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Chapter-5. Surface Potential Based Current Model 

for an OTFT 

 

5.1 INTRODUCTION  
 

This chapter3, deals with the modeling aspects of an OTFT. Due to rapid 

progress in material processing technology and dedicated efforts from researchers: both 

from industry and academic, performance of an OTFT, in terms of mobility, 

subthreshold swing, ION/IOFF ratio and stability have seen a significant improvement. 

However, a reliable compact model which could describe the I-V characteristics of 

OTFTs is still missing and needs to be addressed.  Conventional device models, 

available as a part of the commercial computer aided design (CAD) tools are tailored 

for inorganic semiconductors, especially silicon. Such models, developed with primary 

the observed characteristics of an OTFT. Hence, there is an urgent need to develop an 

accurate, computational efficient and a physics based model for OTFTs.   

 

Organic Semiconductors, both small molecules as well as polymer can be 

classified as dis-ordered semiconductors. The weak van der Waals forces among the 

molecules result in severe localization of the energy states. Hence, in OSCs, energy gap 

between Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied 

Molecular Orbital (LUMO) is filled with unwanted electronic states: referred as traps. 

These trap states, play a significant role in the conduction mechanism of OSCs.  Trap 

states, can be classified as deep states and tail states based on their location with 

reference to the fermi level. Those states which lie a few kT  ( k  is the Boltzmann 

constant and T is absolute temperature) away from the HOMO/LUMO edge are 

classified as tail states while, those which lie far away from the HOMO/LUMO band 

                                                 
3 This chapter in its similar form has been published as "Surface potential based current model for organic 
thin film transistor considering double exponential density of states." K.B.R.Teja, N.Gupta, Superlattices 
and Microstructures 142 (2020): 106513. 
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edge and close to the intrinsic fermi level are classified as deep states. Understanding 

the exact location and density of trap states is essential to assess the conductivity of 

OSCs. Several models have been proposed in the literature to model trap states in OSCs 

[33], [82], [86], [159]. These models explain the distribution of trap states in OSCs and 

referred as density of states (DoS). Among, various DoS models available, double 

exponential and Gaussian are most commonly used models for OTFTs [160] [162]. To 

the best of our knowledge, no conclusive evidence has been drawn on which of these 

models fit the best. The quest to find one such DoS model which could explain the 

characteristics of an OTFT is in progress. However, in this work we choose the double 

exponential DoS model, which is reported by several researchers as the best fit model 

for an OTFT.  

 

Transistor models can be broadly classified as: (i) Threshold voltage (VT) based 

models, (ii) inversion charge based models and (iii) surface potential based models 

[89][163]. VT based models are well studied models and preferred by circuit designers 

due to their direct correspondence to circuit design and optimization.  Although, VT 

based models are well studied and established in case of inorganic MOSFETs, they 

VT based models for 

an OTFT include: defining VT and extracting VT. Since, an OTFT operates in 

accumulation mode, defining threshold voltage is a challenge. Moreover, extracting VT 

from I-V characteristics is even more challenging. This is due to the large sub-threshold 

swing in OTFTs. Furthermore, the VT extraction procedures available in the literature 

rely on a large number of fitting parameters like contact resistance, gate voltage and 

field dependence of mobility. Extraction of these fitting parameters is not only a 

complex process but also inappropriate for physics based models due to their empirical 

nature. The other alternative, inversion charge based models are not applicable for 

accumulation mode. Moreover, inversion charge based models cannot explain certain 

important electrical characteristics which include: noise, gate current partition in the 

channel [164].  

 

Owing to the non-adaptability of VT based model and inversion charge based 

models, surface potential based models have gained significant attention for OTFTs. 
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Unlike VT based models, surface potential based models are developed from 

fundamental device physics and uses little or no empirical constants. Therefore, device 

characteristics obtained using surface potential based models could be related directly 

to the intrinsic material properties of device. Therefore, provides a better insight into 

the correlation between performance parameters of an OTFT and intrinsic material 

properties. Hence, surface potential based models are best suited for OTFTs. They 

provide accurate, reliable and physics based models for obtaining device characteristics 

of OTFT. However, a major challenge while adapting surface potential is its 

computation which is explained further in next section.  The main objective of the 

current work is to address the problem of computing surface potential and to develop 

an efficient and accurate model for surface potential which can be incorporated to 

develop models for an OTFT.      

 

The remaining portion of this chapter is organized as follows: Section-5.2 

explains various DoS models and the concept surface potential in OTFTs. Section-5.3, 

presents an analytical expression for surface potential considering double exponential 

DoS. Section-5.4, compares the results obtained from analytical expression against 

numerical simulation. Followed by, I-V characteristics of an OTFT obtained using the 

analytical expression derived in Section-5.3. Section-5.5 summarizes the work and 

presents a conclusion.    

 

5.2 TRAP STATES DISTRIBUTION AND SURFACE 

POTENTIAL  
 

Organic semiconductors, both small molecule as well as polymers can be 

categorized as energetically disordered. In such materials, the charge transport 

mechanism is determined by the localized trap states in the band gap between HOMO 

LUMO. The energetic disorder can be attributed to presence of interface dipole, weak 

molecular interactions among the polymer molecules, orientation of the polymer side 

chains and grain boundaries. Though the disorder is an intrinsic parameter of the OSCs, 

it is also strongly influenced by the deposition technique, temperature and the interface  
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Figure 5-1 Lowest unoccupied molecular orbital (LUMO), highest occupied 

molecular orbital (HOMO) and localized states in an organic semiconductor 

 

materials like contacts, substrate and gate dielectric. A schematic representation of 

energy band diagram of such energetic disordered OSC material is shown in Fig.5-1. 

 

The distribution of localized trap states between HOMO and LUMO is 

expressed in the form of density of states. DoS is the number of energy states available 

per unit volume per energy level. The actual nature of DoS in organic semiconductors 

is still a debated topic and several models have been proposed by various research 

groups [82][85], [159]. A closer examination of various models presented for OSCs 

suggests that organic semiconducting material: single crystalline or amorphous in its 

doped or un-doped form can be modeled using either a Gaussian distribution or an 

exponential distribution and sometimes even the summation of the two [161]. Tail 

states, the ones which are close to the HOMO/LUMO can be accurately modeled either 

by a Gaussian distribution or an exponential distribution. While, deep states: which lie 

away from HOMO/LUMO edges, can be described well using an exponential 

distribution. Hence, a better approximation for localized trap distribution in an OSC 

which includes both the tail states and deep states is a double exponential density of 

states given as [161]: 

Tail

LUMO

Tail

Tail

Deep

LUMO

Deep

Deep EENEEN
Eg expexp   (5.1) 
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Figure 5-2 Double exponential density of states (DoS) distribution in an organic 

semiconductor. Plot shown for the case: NDeep=1019 cm-3eV-1, NTail=1021 cm-3eV-1, 

Tail =20 meV, Deep =60 meV 

where, g(E) is the density of states, NDeep and NTail are concentration of deep and tail 

states per unit volume. Deep  and Tail  are the characteristic energy of deep and tail 

states. ELUMO is the LUMO edge. DoS stated in Eq.(5.1) is for n-type OTFTs; in which, 

drain current is determined by acceptor trap states [165]. A similar distribution can also 

be stated for p-type OTFTs. Fig.5-2 shows trap state distribution for a n-type OTFT. It 

could be observed that deep states dominate the distribution when the fermi level EF is 

close to the mid gap while tail states dominate when EF moves close to the band edge. 

This is a significant observation, and will be used later in developing analytical solution 

for surface potential. 

 

Surface potential is defined as the potential at gate dielectric/channel interface. 

It is usually evaluated using the gradual channel approximation (GCA). GCA, neglects 

the electric field along the lateral direction. As a result, Poisson equation at the gate 

dielectric/channel interface becomes 1-D. The resultant expression is shown in 

Eq.(5.2).  Surface potential in the energy band diagram of a MOS structure comprising  
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of OSC is shown in Fig.5-3. Generalized 2-D Poisson equation at the gate 

dielectric/channel interface is given by[161], [165], [166] 

freeTD
osc

yx nNNq
y
F

x
F2  (5.2) 

where, is the surface potential, xF , yF are the electric field components in x, y 

direction respectively  

 

Using, gradual channel approximation (GCA) (which is very well valid in the case of  

long channel OTFTs), which states that  yx FF . DN , TN denote the ionized trapped 

carrier concentration in the deep states and tail states respectively. freen denotes free 

carrier concentration. In, organic semiconductors, most of the charge carried are 

trapped in the trap states ( freeTD nNN ) which is also the reason why they exhibit 

low conductivity. Using,  

TD
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d

2
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 (5.3) 

The electric field can be obtained as shown below [165] 

Figure 5-3 Energy band diagram of a metal-oxide-semiconductor structure 
showing various potentials and energy levels, metal work function (q M) 

and electron affinity of the semiconductor (q s)  
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where, chV is the channel potential.   

interface in terms of electric field is given by [161], [165], [167], [168] 

)(),( FBGSichxosc VVCVF  (5.5) 

where, osc is the dielectric constant of the organic semiconductor, iC  is the capacitance 

per unit area of the gate insulator, VGS is the gate-source potential, VFB is the flat band 

voltage.  

Using Eq.(5.4) and Eq.(5.5) an expression for electric field can be obtained as: [161] 
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Using the conditions:  1exp
Deep

chV
 and 1exp

Tail

chV  Eq.(5.6) can be 

simplified as: 
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Substituting Eq.(5.7) in Eq.(5.5) 
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where, FBGSGF VVV  

 

The equation in Eq.(5.8) is a non-linear transcendental expression and it is 

difficult to have a closed form expression without making approximations. It can be 

solved only using numerical solvers iteratively. However, iterative methods are suitable 

simulators. Since, circuit simulators have limited capabilities and can implement only 
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regular algebraic expressions. Hence there is a need to develop an accurate, non-

iterative solution which could be incorporated into circuit simulators.  

 

Several research groups have proposed various techniques to address the issue 

of non-iterative solution for obtaining surface potential by solving Eq.(5.8). The 

problem of calculating surface potential is similar for both OTFTs and amorphous oxide 

TFTs. Various techniques presented in the case of amorphous oxide TFTs include: a 

Lambert-W function based solution proposed by Wang et al.[36] and a second order 

Taylor series expansion combined with a correction term introduced by Schroder series 

by Zong et al.[166]. Colalongo [161] has proposed a solution using the Lagrange 

reversion theorem. He also proposed another technique based on Lambert-W function 

for calculating surface potential in InGaZnO thin film transistors [168].  Among these 

techniques, Lambert-W based approach is very accurate, however, it is not suitable for 

circuit simulators, since it is a special mathematical function which is not available in 

circuit simulators. A few other approaches proposed include algebraic approximations 

for Lambert-W function which introduces significant error, also they are multi-step 

processes and fit only for a certain region with errors shooting up beyond the region in 

which the approximation is valid. In case of multiple approximations for various 

regions they also necessitate the use of empirical smoothing function to ensure 

continuity of the solution. The technique proposed in section-5.3 for calculating surface 

potential uses a simple yet accurate technique to solve the problem.   

 

5.3 AN EXPRESSION FOR SURFACE POTENTIAL  
 

To obtain an expression for surface potential near the gate dielectric/channel 

interface in an OTFT, we need to solve Eq.(5.8). A close observation at Eq.(5.8) reveals 

that, left hand side (LHS) is a quadratic term while on the right hand side (RHS) is an 

exponential term. The exponential term on the RHS has Deep  and Tail in the 

denominator which represent the characteristic energies of deep and tail states 

respectively. These parameters are typically in the order of a few meV. Hence, when 

VGF is small (less than Vch), surface potential is approximately equal to VGF. In this case, 

the LHS is zero while the exponential terms on the RHS have a negative numerator 
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resulting in a very small value close to zero. Hence, a reasonable approximation for the 

surface potential is VGF. From a physical perspective, when VGF is low, there is little or 

no band bending near the interface. As VGF raises in magnitude, bands near the gate 

dielectric/channel interface starts bending and surface potential follows VGF. Once VGF 

value increases beyond Vch, surface potential saturates and attains a constant value, 

which results in surface potential, close to Vch. The exact value can be calculated using 

the procedure discussed below.  

Numerical methods for solving transcendental equations can be classified as (i) 

single starting variable and (ii) two starting variables. Single starting variable methods 

are preferred over two starting variables owing to ease of picking up an initial guess. 

Newton-Raphson method, is a single variable starting technique in which the solution 

of a transcendental equation )(xf is obtained using the procedure shown below     

ixx
ii xf

xfxx
)(
)(

1  (5.10) 

Where, i is the iteration, )(xf is the first derivative of )(xf . The process in 

Eq.(5.10) is repeated iteratively, until the results obtained in two consecutive iterations 

are almost equal. The term almost equal to zero is determined by a relative tolerance 

which is typically set as 10-6. The number of iterations needed to obtain the solution is 

a measure of how good the numerical method and the initial guess are. In a few cases, 

the solution may not be possible because two consecutive values may not be close to 

each other even after a considerable number of iterations. This problem is referred as 

convergence problem in numerical solvers. Logarithmic functions are known to 

converge fast when compared to linear functions. Hence, surface potential expression 

in Eq.(5.8) is converted to logarithmic function as shown below  
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where, chVy the first derivative of )(yf is given below 
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Using Eq.(5.11) and Eq.(5.12) in Eq.(5.10) the first iterative solution for )(yf

expressed as 1y in terms of the initial guess 0y is given as 

0
)(
)(

01
yyyf

yfyy  (5.13) 

substituting the expression and using the initial condition, 00y , surface potential is 

given by 
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(5.14) 

 

The expression shown in Eq.(5.14) is a closed form expression for surface 

potential in a n-channel OTFT considering double exponential density of states. There 

is no special function or fitting parameters in this expression. All parameters are related 

to intrinsic material properties of the OTFT. The two cases in Eq.(5.14) signify the 

extent of band bending near the gate dielectric/channel interface. When the potential 

VGF is small, there is only a little band bending and surface potential follows VGF. But, 

when VGF becomes significantly large, the extent of bending near the surface is 

determined by the distribution of the localized trap states. Here, the Fermi level moves 

closer to the LUMO edge filling more and more trap states which leads to increase in 

the charge carrier density. However, when all the trap states are filled, the surface 

 

 

5.4 RESULTS AND DISCUSSION 
 

To compare the accuracy of analytical expression derived in Eq.(5.14) we have 

implemented a numerical solver using MATLAB®. The numerical solver uses an 

iterative technique to calculate surface potential from Eq.(5.8). A numerical technique, 

bisection method, which uses two starting variables to iteratively arrive at the solution 

is used. Two variable starting method are preferred over single variable starting 

methods. The advantages of two variable starting methods include: (i) guaranteed 
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convergence: if proper choice of the initial guess is done, (ii) computational efficiency: 

they evaluate only one function per iteration unlike the other methods which may 

necessitate the computation of the function as well as its derivative and (iii) the error 

can be controlled. The choice of starting variables is important to ensure convergence. 

A necessary condition for obtaining a solution using bisection method is that the two 

starting values should lie on either side of the solution. The relative tolerance for this 

simulation is kept at 10-9 which ensures that the surface potential values obtained from 

the numerical solution are highly accurate. Such a tight relative tolerance value helps 

us to prove the accuracy of proposed analytical expression for surface potential. In 

general, relative tolerance can be set to 10-6 which is sufficient for a reasonable accuracy 

in calculating the surface potential. The surface potential values obtained using the 

numerical solver is shown in Fig.5-4. The parameters used for simulation are reported 

in Table-5.1 which are obtained from [16]. Surface potential values for varying VGF

(VGS-VFB) and Vch are shown in Fig.5-4. As explained earlier, surface potential tends to 

follow VGF at lower values and gradually saturates as VGF increases.

Figure 5-4 Variation of surface potential  as a function of VGF for various Vch

A comparison between the numerical solution and analytical solution is shown 

in Fig.5-5. It can be observed that analytical solution matches with the numerical 
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solution. Error analysis is shown in Fig.5-6 where the absolute percentage error is 

plotted as a function of VGF. The error is obtained by comparing surface potential 

obtained from analytical expression, with numerical solution. It is observed that the 

maximum absolute error is at 0.6% which is a very small value. After analyzing the 

absolute error at various values of Vch we have observed that absolute error is always 

less than 1% which confirms the accuracy of our analytical solution. Also it is to be 

noted that the analytical solution is obtained in a single step. The solution has only 

simple algebraic operations which make it an appropriate choice to be incorporated in 

circuit simulators.

Table 5-1 Parameters used in the simulation [16]

Figure 5-5 Comparison of surface potential obtained from analytical expression 
and numerical simulation.

Parameter Value Parameter Value

DeepN 319 /108.4 cm osc 03

TailN 321 /102.4 cm Ci 17 nF/cm2

Deep 80 meV EF0 1eV

Tail 30 meV T 300K
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Figure 5-6 Percentage of absolute error in surface potential calculated from 

numerical solution and analytical expression as a function of VGF at Vch=7 

 

Further, the I-V characteristics of an OTFT are obtained using the analytical 

expression derived for surface potential. For this we use, the all-region I-V 

characteristics equation shown in Eq.(5.15). [165] 

)(
2
1)( 22

DrainsourceDrainsourceGSiD VC
L

WI   (5.15) 

where, source and Drain represent the source and drain potentials respectively and 

calculated at source and drain ends of the OTFT. It is assumed that the contacts are 

ideal with no potential drop or contact resistance which is a valid assumption for long 

channel OTFTs operating with large voltages. The mobility value is also assumed to be 

sVcm /1 2  which is a valid approximation for an OTFT. In this case we 

intentionally neglected the dependence of mobility on various factors like electric field 

and gate to source potential (VGS) to demonstrate the elegance of our surface potential 

expression in accurately modeling the drain current. A detailed explanation on various 

charge transport mechanisms in organic semiconductors and the mobility expressions 
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are elaborately discussed elsewhere [24], [38], [169] .The ID Vs VDS characteristic 

curves for an n-channel OTFT are shown in Fig.5-7. The I-V characteristics clearly 

show the linear and saturation regions of an OTFT and a smooth transition from linear 

to saturation region can also be seen. Fig.5-8 shows the I-V characteristics of a p-

channel OTFT. In Fig.5-9 the output characteristics obtained using our model is 

compared with the experimental data [170] using a constant mobility. It is observed that 

there is a close match between the two. Slight deviations observed can be attributed to 

factors like the contact resistance, drain voltage dependence of mobility. In Fig.5-10, 

the experimental data [170] is fitted against our model but this time using a simple 

power law dependency of the mobility on the gate voltage. Using this model, it can be 

observed that I-V characteristics can be accurately modeled over a wide range of VSG 

and VSD.  

 

Figure 5-7 Normalized drain current IDS as a function of VDS and VGS in an n-
channel OTFT 
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Figure 5-8 ISD Vs VSD as a function of VSG for a p-channel OTFT based on our 
model to fit the experimental data provided in [170]. µ=0.10 cm2/Vs , W/L=50, 
Ci=11.5 nF/cm2, NDeep=4.2×1019 cm-3eV-1, NTail=3×1021.  cm-3eV-1, Tail = 18 meV, 

Deep = 46 meV. 

 

Figure 5-9 ISD Vs VSD at VSG=30V using a constant mobility model. µ=0.10 
cm2/Vs, W/L=50, cox=11.5 nF/cm2, NDeep=4.2×1019 cm-3eV-1, NTail=3×1021.  cm-3eV-

1, Tail = 18 meV, Deep= 46 meV. Experimental data from [170] 
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Figure 5-10 ISD Vs VSD for various VSG: comparison of our model (symbols) with 
experimental data (solid lines) [170] using a simple power law mobility model 

µ=µ0×(VSG-VT0) . µ0= 0.02 cm2 T0=16.2V. 

 

Through a simple yet accurate formulation for surface potential, we presented a 

model for drain current in OTFTs. This model is a suitable model for circuit simulators 

because of its algebraic simplicity and non-iterative nature. Although a few 

assumptions are made while deriving I-V characteristics, the model suits well for long 

channel OTFTs in its present form. It would be interesting to see how contact effects 

like injection barrier at the source/drain contacts, position of the contact terminals like 

top/bottom and length of the contacts could be incorporated in this model. A 

comprehensive investigation on how the surface potential alters with these physical 

parameters could be an interesting topic. Moreover, this model is developed considering 

the gradual channel approximation which assumes the channel length is fairly large. 

Therefore, how well the model scales for short channel OTFTs and what modifications 

are required for this model to incorporate various short channel effects could be another 

interesting aspect. However, the model presented in this work is quiet suitable for 

modeling OTFTs for a majority of applications like display driver circuits, sensors and 

RFID tags which uses long channel OTFTs.   
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5.5 CONCLUSION  
 

Surface potential based models are an appropriate choice for developing an accurate 

and physics based model for an OTFT. This work addresses the problem of computing 

surface potential in an OTFT whose trap state density is molded using the double 

exponential density of states function. The existing techniques, either employ an 

iterative method or some special mathematical function. Both these approaches fit 

poorly into the circuit simulation tools. Therefore, a single analytical solution, without 

using any special functions is presented in this work.  This expression is highly 

accurate: computes the surface potential with an accuracy up to a few nano-Volts, 

computationally efficient: single step process, which involves simple algebraic 

expressions. Moreover, it is a physics based model without any empirical constants or 

fitting parameters. Hence, this model is a suitable one for incorporating into circuit 

simulators which can be used to design and optimize OTFT based circuits.  

  


