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Chapter 4: Identifying Malicious 
Webpages Using Conventional 

Machine Learning 

4.1 Introduction 
In Part I, we discussed data collection and pre-processing of malicious 

webpages dataset. In this chapter, we describe the classification process for 

detecting malicious webpages and analyzing attributes to be selected for this 

task.  

In this chapter, we use Conventional ML to classify webpages as either 

benign or malicious. The ML literature did not have the concept of shallow ML 

until deep learning became prevalent. The word 'Shallow ML', also called 

'Conventional ML', was coined to differentiate it from the new deep learning 

technology. We'll discuss about deep learning in subsequent chapters. In this 

chapter, we use Shallow ML (hereinafter referred to as Conventional ML) for 

malicious webpage classification. It is important to note that Conventional ML 

techniques require extensive pre-processing for feature extraction. Deep 

learning has more or less eliminated feature engineering requirements and is 

capable of automatically extracting features from raw data. Conventional ML 

based classification comprises a variety of supervised algorithms like Naive 

Bayes [97], Decision Trees (ID3 [98], C4.5 [56], CART [99], etc.), Random 

Forest [100] (which uses ensemble learning with numerous Decision Trees), 

and Support Vector Machine [101] (SVM is Kernel-based classification 

algorithm), etc. In this chapter, we have used Naive Bayes [[97], Decision Tree 

(C4.5) [56], SVM (with RBF) [101] and Random Forest [100]. The idea behind 

choosing these algorithms was to cover the main categories of classification 

algorithms, viz.,  entropy based algorithm, probabilistic classifier, maximal 

margin kernel-based classifier, and ensemble classifier  

The design of the conventional ML pipeline to detect malicious websites 

is shown in Figure 4.1. The steps involved in such a process are data collection 
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(crawling websites), feature extraction from raw data and its pre-processing, 

creation of training and test datasets, training of the classifier, and testing the 

model. The crawling process for data collection using MalCrawler has already 

been described in Chapter 2. 

Figure 4.1: Malicious Website Detection Process Using Conventional ML

One essential facet in Conventional ML is handcrafting the right set of 

attributes which can be used for classification. A correct selection of attributes 

ensures better classification accuracy and reduces computational requirements. 

This chapter focuses on identifying attributes which can classify malicious 

webpages more effectively and efficiently. A set of 25 attributes have been 

identified for malicious website detection. These attributes have been analyzed 

with respect to classification accuracy and computational requirements (during 

extraction and pre-processing). Based on this analysis, the most suitable subset 

of attributes is recommended. The chapter mainly focuses on identifying the 

most relevant attributes for detecting malicious webpages using ML. While 

results are presented using metrics like overall prediction accuracy, precision,

F1-score, etc., we have delved more into the inter se performance of attributes 

for achieving the best prediction.

Various tools and platforms have been used as part of the research 

described in this chapter. MalCrawler [67] has been used to crawl websites 

(refer to Chapter 2 for details of MalCrawler). Extraction and pre-processing 

have been done using HTML Unit Browser Emulator [53] and custom-written 

Java code. Rhino JavaScript Emulator [54] has been used for running the 

JavaScript code in a sandboxed environment. Machine learning was carried out 
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on the WEKA platform [55]. Details of these software tools are given in 

Appendix C of the thesis. 

4.2 Related Work 
Significant research has been carried out on malicious webpage detection 

using ML techniques. However, the available literature has used a very 

restrictive set of attributes. Ma et al., in their work on detecting malicious 

websites from suspicious URLs, have considered only URL related attributes 

[102]. While Wressnegger et al. have discussed flash-based malware [103], 

Mavrommatis et al. have discussed iFrames [104], Ganesh et al. have analyzed 

Java Applet based malware [105], Mao et al. have discussed HTML content-

based analysis of malicious websites [106], Cova et al. have examined few 

JavaScript-based attributes [107], and Gorji et al. have discussed obfuscated 

JavaScript code based attacks [108]. We find that a holistic analysis of all 

possible attributes, which can play a critical role in detecting malicious 

websites, is lacking. An effort has been made in this chapter to address this gap. 

Apart from analyzing the attributes, we will also rank them based on two 

aspects. Firstly, with respect to their classification accuracy in malicious 

website detection. Secondly, with respect to their requirement of computational 

resources during extraction and pre-processing. Attribute selection is an 

important aspect, which improves classification results by reducing both 

overfitting and underfitting. Hall et al. have discussed few attribute selection 

techniques applicable to all data mining processes [109]. We have used two 

attribute selection techniques for ML to ensure better selection, viz., 'Gain Ratio 

method' and '10-Fold Cross Validation' of individual attributes. 

4.3 Attributes for Classification 

Various attributes which can be used to detect malicious websites were 

considered. Amongst the list of all possible attributes, twenty five most suitable 

attributes were selected for further analysis. The attributes considered for 

detecting malicious websites are shown below in Table 4.1. 
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Table 4.1: List of Attributes Considered- Conventional ML 

No Attribute 
Category 

Attribute 
Name Attribute Description 

A1 
Location of 

the 
Website 

Geographical 
Location 

The IP address is used to find 
the geographical location of 
the webserver using the Geo IP 
database [73]. 

A2 URL 
Properties URL Keywords extracted from the 

URL are analyzed. 

A3 -do- 
HTTPS 
Enabled 
Website 

Whether the website uses 
secure HTTPS or unsecured 
HTTP. 

A4 -do- Domain 
Name 

Keywords are extracted from 
domain name and analyzed. 

A5 -do- DNS WHOIS 
Information 

It is checked whether the DNS 
record of the website exists. 

A6 -do- 
Redirection 

from the 
website 

It is checked whether the 
website redirects or not. 

A7 Website 
Behavior Cloaking 

Cloaking is the phenomenon in 
which the website shows 
different pages based on the 
client platform. It is checked 
whether a website is cloaking 
or not. 

A8 

Web Page 
Semantics 
(HTML & 
Content) 

Presence of 
iFrame on the 

webpage 

The presence of iFrame is 
checked. 

A9 -do- Number of 
Applet Tags 

The number of these tags is 
recorded. 

A10 -do- 
Number of 
Flash Script 

Tags 
-do- 

A11 -do- 

Top 10 
keywords of 

the page 
content 

These keywords are analyzed 
against a set of keywords 
generally found on malicious 
websites. 

A12 -do- Meta Tag 
Values 

Keywords are extracted from 
Meta Tags and compared as in 
A11. 

A13 -do- HTML Title 
Tag Values 

Keywords are extracted from 
HTML and compared as in 
A11. 

A14 

Java Script 
Behavior 

and 
semantics 

Redirection of 
URL using 
document. 
location() 

The presence of redirection 
using JavaScript is checked. 
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No Attribute 
Category 

Attribute 
Name Attribute Description 

A15 -do- 
XML HTTP 

Request 
(XHR) 

It is checked if XHR is meant 
for the same or different 
domain. 

A16 -do- 
Communicati
on with Flash 
components 

It is checked if the Flash 
component communicates 
with the browser. 

A17 -do- 

Communicati
on with 
Applet 

Components  

It is checked if the Applet 
component communicates 
with the browser. 

A18 -do- URL in XHR  It is checked whether the URL 
in XHR is encoded or not. 

A19 
JavaScript 

Code 
Content 

Presence of 
eval() 

function 

Presence of JavaScript eval() 
function is checked. 

A20 -do- 
Presence of 
unescape() 

function 

Presence of JavaScript 
unescape() function is 
checked. 

A21 -do- 

Presence of 
Popups using 
Window.open

() function 

Checks the presence of 
Window.open() JavaScript 
function. 

A22 -do- 
Presence of  

find () 
function 

Checks the presence of 
JavaScript find() function. 

A23 -do- 
Presence of 
obfuscated 

code 

Obfuscated code is the 
encrypted JavaScript code. 
The presence of such code is 
checked. 

A24 -do- 
Size of 

JavaScript 
Code 

The size of JavaScript code 
length is recorded. 

A25 -do- 
Size of 

Obfuscated 
Code 

The size of Obfuscated 
JavaScript is recorded. 

4.4 Attribute Extraction and Pre-processing 

The details of the attributes listed in the previous section and the details 

of extraction and pre-processing of these attributes are given in the succeeding 

paragraphs. MalCrawler [67] has been used for crawling websites. Wherever a 

known list of malicious sites was required (e.g., when providing an initial seed 

for crawling to the MalCrawler), the Malware Domain list [110] was utilized. 
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For labeling the dataset of malicious webpages, Google Safe Browsing API was 

used [61]. 

 Location Region- Based on IP Address.  The IP address of the website 

is detected and recorded by the crawler. Geographical location is then 

determined from the IP address using the GeoIP database [73]. The 

geographical location is stored as country name, a nominal type attribute. 

 URL. The URL is extracted by the crawler. A bag-of-words 

representation of the URL is generated and then compared with the top 100 

words found in URLs of malicious websites  [102]. The number of the matches 

is then stored as a numerical type attribute. 

 HTTPS Enabled Website.  HTTPS is more secure than HTTP, and 

websites running on HTTPS are less likely to host malicious content [111]. 

Therefore, during crawling, we have checked whether the website uses HTTP 

or HTTPS. This value is then stored as a Boolean attribute. 

 Domain Name.  The Domain Name is known to have been used as an 

attribute in detecting malicious websites using ML [112]. Here, the domain 

name is extracted by the crawler. Keywords are extracted from the domain 

name and are then compared with few common keywords linked to malicious 

behavior. The number of matches is then stored as a numerical type attribute. 

 DNS WHOIS Information.  The DNS WHOIS information provides the 

registration details of the website. The presence and absence of fields in DNS 

WHOIS information (e.g., address of domain owner) has been found to be 

linked to maliciousness [113]. The presence and absence of this information is 

stored as a Boolean attribute.  

 Redirection from Website. Redirection has often been linked to 

malicious behavior [114]. MalCrawler is capable of redirection detection. The 

detection results are stored as a Boolean attribute. 

 Cloaking. Cloaking is a phenomenon in which the website shows 

different pages based on the client platform. Malcrawler  [67] is used to detect 

cloaking actions by a website by serving different HTTP requests having 
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various user-agent fields in the HTTP header. The presence of cloaking has 

been found to be linked to maliciousness [115] [116]. The presence and absence 

of cloaking is saved as a Boolean attribute. 

 Presence of iFrame on Web Page.  The iFrame HTML tag is known to 

have been utilized to download malicious JavaScript exploits in numerous 

attack vectors  [104]. The presence and absence of the iFrame tag has been 

checked by parsing websites. Parsing is the process of reading the complete 

HTML content, including the JavaScripts. Customized libraries in Java have 

been used in conjunction with MalCrawler  [67]. The presence or absence is 

stored as a Boolean attribute. 

 Number of Applet Tags.  Malicious exploits through Java Applets have 

been reported on many websites [105]. Thus, its presence is recorded by parsing 

the webpage and is stored as a Boolean attribute. 

 Number of Flash Script Tags. Like Java Applets, numerous exploit 

injection cases through Flash Scripts have been reported [103] [117]. Thus, its 

presence is recorded by parsing the website. The value is stored as a Boolean 

attribute. 

 Top 10 Keywords of Page Content.  The website is parsed to extract the 

Term Frequency - Inverse Document Frequency (TF-IDF) (Note: TF-IDF is a 

statistical method showing the importance of a word in a document). The TF-

IDF of this website is compared against the TF-IDF of know malicious websites  

[107] [118]. The match of the top 10 TF-IDF keywords of the website against 

the TF-IDF of malicious websites is saved as a numerical value attribute.  

 Meta Tag Values.  The TF-IDF of the meta tag is computed separately. 

This TF-IDF is compared against the TF-IDF of known malicious websites 

[118]. The value of this match is saved as a numerical value attribute. 

 HTML Title Tag Values.  The bag-of-words is extracted from the 

HTML title tag. It is compared against the bag-of-words of malicious websites 

[118]. The match of this comparison is saved as a numerical attribute. 
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 Redirection Using document.location().  The presence of JavaScript 

function document.location() is checked by parsing the website. This function 

has been found to be linked to malicious redirects [108][114]. The presence or 

absence of this function is saved as a Boolean attribute. 

 XML HTTP Request (XHR).  XHR is the core of AJAX technology 

(AJAX -Asynchronous JavaScript and XML is a technology to create 

asynchronous web applications). However, XHR can be used to inject exploits 

[119]. The website is parsed to take a count of the number of XHR instances. 

This value is saved as a numerical attribute. 

 Communication with Flash Components. Flash components 

communicating with the browser are indicative of exploitative behavior. This 

feature is checked using the HTML Unit Browser Emulator [103][117]. The 

presence or absence of such behavior is stored as a Boolean attribute.  

 Communication with Java Applets.  Like the Flash component, the 

communication of Applet with the browser can be used to inject exploits [105]. 

This is also checked using the HTML Unit Browser Emulator. This behavior is 

stored as a Boolean value. 

 URL in XHR.  A URL in XHR outside the domain is an indicator of 

malicious behavior [119]. This can be analyzed using the HTML Unit Browser 

Emulator. The presence or absence of this behavior is recorded as a Boolean 

value. 

 Presence of eval() Function.  Malicious websites use the eval() function 

to generate malicious code at runtime to thwart detection [108]. The JavaScript 

code on the website is parsed to detect the eval() function. The number of eval() 

functions in JavaScript code is stored as a numerical attribute. 

 Presence of unescape() Function.  Hackers generally encode malicious 

code and use the unescape() function to decode it. Thus, the number of 

unescape() function calls in JavaScript is a strong indicator of malicious activity 

[120]. For our ML analysis, the number of unescape() functions in JavaScript 

code is stored as a numerical attribute. 
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 Presence of Windows.open() Popups.  The JavaScript Windows.open() 

Popups are used for ads and also to inject exploits [121]. For our ML analysis, 

the presence or absence of Popup is stored as a Boolean value. 

 Presence of find() Function.  The find() JavaScript is used along with 

unescape() and eval() to decrypt malicious code at runtime [120]. Thus, the 

occurrences of the find() function in JavaScript code is noted and stored as a 

numerical attribute. 

 Presence of Obfuscated Code. Obfuscated code is the encrypted 

JavaScript code. Generally, obfuscation is done to thwart the detection of 

malicious code [122]. Thus, its presence is a strong indicator of malicious 

activity. The presence or absence of obfuscated code is recorded as a Boolean 

attribute. 

 Size of JavaScript Code.  Generally, malicious JavaScript code is of 

relatively large size [122]. Thus, the size of JavaScript code is a good indicator 

of maliciousness. We have used it as a numerical attribute with a value equal to 

the size of JavaScript code in KiloBytes (KBs). 

 Size of Obfuscated Code.  Large obfuscated code indicates the presence 

of an exploit [120]. Thus, the size of obfuscated code (in KB) is captured and 

stored as a numerical value for ML. 

4.5 Experimental Setup and Evaluation Metrics 
Classification was carried out using four algorithms - C4.5, Naive Bayes, 

SVM and Random Forest. These four algorithms were chosen as they represent 

four different approaches to classification. While C4.5 uses a Decision Tree, 

Naive Bayes is a probabilistic generative model, SVM is a kernel-based (RBF 

kernel) maximal margin learner, and Random Forest is an ensemble learning 

algorithm. The SVM classifier was chosen with the Radial Basis Function 

(RBF) kernel in order to capture the non-linear relationship in the dataset. 

WEKA [55] data mining software was used for training and running the 

classifiers. The training dataset was collected using MalCrawler and 

customized Java code. The initial seed for crawling in MalCrawler was created 
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using Malware Domain List [110]. While MalCralwer is designed to seek more 

malicious webpages than benign, an initial malicious seed improves this 

performance further. Google Safe Browsing API [61] was used to prepare the 

class labels in the dataset- '1' for benign and '0' for malicious webpages. A copy 

of the dataset that has been created for this research has been published online 

[123]. This dataset has an imbalance of classes; there are more benign classes 

than malicious. This imbalance reflects the real web from where this data has 

been collected, wherein malicious webpages represent a very small fraction of 

the total number of webpages. Class imbalance is known to create a bias 

towards the majority class. Hence, for the classification task, we have 

oversampled the minority class to reduce the imbalance. We used the SMOTE 

(Synthetic Minority Oversampling Technique) for oversampling the malicious 

samples  [124].  

For checking the attribute predictability, two techniques were used- The 

Gain Ratio method and '10-fold cross-validation. Firstly, as we were looking to 

rank the attributes based on their individual ability to predict malicious 

websites, we used the Gain Ratio method [109] of attribute selection. In this 

method, each attribute Ai is assigned a score based on the information gain 

between itself and the class. If C is the class and A is the attribute, equations 

(4.1) and (4.2) below give Entropy H before and after observing the attribute. 

 

The Entropy  was computed for all 25 attributes and is shown in 

Table 4.2 (refer to the second column shown in red color). Interestingly, the 

Entropy of the entire dataset  was as low as 0.156, which is due to class 

imbalance (malicious webpages were a mere 2.27% of the entire dataset). 

Secondly, 10-fold cross-validation was run, one attribute at a time, to assess 

each attribute's ability to predict malicious websites (Only three classification 

algorithms were used for cross-validation, viz., C4.5, Naive Bayes and SVM). 

The confusion matrix produced by this 10-fold cross-validation is given in 
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Table 4.2 (Refer columns 3-18). The table elucidates an attribute's overall 

ability to predict malicious websites using the two techniques mentioned above. 

Table 4.2: Attribute Selection using 'Gain Ratio' & '10-Fold Cross Validation' 

 

The accuracy achieved, using a single attribute at a time, while carrying 

out cross-validation, is plotted in Figure 4.2.  

Gain Ratio  

# TNR FPR TPR FNR TNR FPR TPR FNR TNR FPR TPR FNR C4.5
Naive 
Bayes

SVM
Average 
Accuracy

A1 0.05888922 0.34 0.66 0.46 0.54 0.33 0.67 0.37 0.63 0.34 0.66 0.42 0.58 0.40 0.35 0.38 0.38 24
A2 0.07243895 0.39 0.61 0.51 0.49 0.42 0.58 0.52 0.48 0.44 0.56 0.50 0.50 0.45 0.47 0.47 0.46 22

A3 0.11386985 0.71 0.29 0.75 0.25 0.67 0.33 0.77 0.23 0.72 0.28 0.75 0.25 0.73 0.72 0.74 0.73 13

A4 0.07921381 0.49 0.51 0.51 0.49 0.49 0.51 0.51 0.49 0.48 0.52 0.56 0.44 0.50 0.50 0.52 0.51 21

A5 0.11360928 0.66 0.34 0.76 0.24 0.65 0.35 0.79 0.21 0.73 0.27 0.77 0.23 0.71 0.72 0.75 0.73 14

A6 0.14519058 0.88 0.12 0.96 0.04 0.86 0.14 0.99 0.01 0.91 0.09 0.97 0.03 0.92 0.93 0.94 0.93 3

A7 0.14904704 0.95 0.05 0.95 0.05 0.90 0.10 1.00 0.00 0.92 0.08 1.00 0.00 0.95 0.95 0.96 0.95 1
A8 0.14670189 0.90 0.10 0.97 0.03 0.87 0.13 1.01 -0.01 0.93 0.08 0.96 0.05 0.94 0.94 0.94 0.94 2
A9 0.04586063 0.20 0.80 0.30 0.70 0.27 0.74 0.36 0.65 0.29 0.71 0.35 0.65 0.25 0.31 0.32 0.29 25
A10 0.09536926 0.56 0.44 0.64 0.36 0.55 0.45 0.65 0.35 0.58 0.42 0.68 0.32 0.60 0.60 0.63 0.61 18
A11 0.11829957 0.75 0.25 0.77 0.23 0.74 0.26 0.76 0.24 0.75 0.25 0.77 0.23 0.76 0.75 0.76 0.76 12
A12 0.08286182 0.49 0.51 0.55 0.45 0.44 0.56 0.56 0.44 0.52 0.48 0.62 0.38 0.52 0.50 0.57 0.53 20

A13 0.06357951 0.38 0.62 0.42 0.58 0.40 0.60 0.40 0.60 0.41 0.59 0.43 0.57 0.40 0.40 0.42 0.41 23

A14 0.12142644 0.74 0.26 0.80 0.20 0.78 0.22 0.78 0.22 0.77 0.23 0.79 0.21 0.77 0.78 0.78 0.78 11

A15 0.09015783 0.50 0.50 0.60 0.40 0.56 0.44 0.62 0.38 0.56 0.44 0.62 0.38 0.55 0.59 0.59 0.58 19

A16 0.11048242 0.64 0.36 0.72 0.28 0.70 0.30 0.72 0.28 0.68 0.32 0.78 0.22 0.68 0.71 0.73 0.71 15

A17 0.10579213 0.57 0.43 0.69 0.31 0.67 0.34 0.70 0.31 0.69 0.31 0.75 0.25 0.63 0.68 0.72 0.68 16
A18 0.10110184 0.58 0.43 0.69 0.32 0.58 0.42 0.66 0.34 0.68 0.32 0.70 0.30 0.63 0.62 0.69 0.65 17
A19 0.13237045 0.84 0.16 0.86 0.14 0.83 0.17 0.85 0.15 0.85 0.15 0.85 0.15 0.85 0.84 0.85 0.85 7
A20 0.13601845 0.84 0.16 0.90 0.10 0.84 0.16 0.90 0.10 0.84 0.16 0.90 0.10 0.87 0.87 0.87 0.87 6
A21 0.13862417 0.88 0.13 0.89 0.12 0.85 0.15 0.91 0.09 0.86 0.14 0.94 0.06 0.88 0.88 0.90 0.89 5
A22 0.12955627 0.77 0.23 0.89 0.11 0.77 0.23 0.87 0.13 0.80 0.20 0.87 0.13 0.83 0.82 0.84 0.83 8

A23 0.12403215 0.73 0.27 0.85 0.15 0.75 0.25 0.83 0.17 0.78 0.22 0.82 0.18 0.79 0.79 0.80 0.79 10

A24 0.12611673 0.77 0.23 0.85 0.15 0.76 0.25 0.85 0.16 0.74 0.26 0.88 0.12 0.81 0.80 0.81 0.81 9

A25 0.14023972 0.84 0.16 0.93 0.07 0.86 0.14 0.92 0.08 0.86 0.15 0.98 0.02 0.89 0.89 0.92 0.90 4

Note:- Overall rank is based on both Info Gain [H(C/A)] & Accuracy achieved by attribute in 10 Fold Cross Validation

Attribute

H(C/A)

Overall 
Relative 

Rank

Accuracy

Ten Fold Cross Validation

C 4.5 Classifier Naive Bayes Classifier SVM Classifier
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Figure 4.2: Classification Accuracy of Attributes  
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Apart from the 10-fold cross-validation which was carried out for 
attribute selection, the dataset was trained with one million samples and 
thereafter tested on 0.564 million samples using all four ML algorithms 
mentioned earlier, viz., C4.5, Naive Bayes, SVM and Random Forest. The 
classification results from these four algorithms (with all 25 attributes) on the 
test dataset is shown in Table 4.3. 

Table 4.3: Classification Results with Conventional ML Algorithms 
 (all 25 attributes used) 

 

The meaning of the attributes used is summarized in Table 4.4 for ready 
reference. 

Table 4.4: Meaning of the Classification Metrics Used 

 

C 4.5 Naive Bayes SVM RF
Accuracy 0.979 0.981 0.986 0.983

Recall 
(TPR, Sensitivity)

0.9740 0.9800 0.9830 0.9810

Specificity
(TNR, Selectivity)

0.9840 0.9820 0.9890 0.9850

Precision
(PPV)

0.5857 0.5584 0.6749 0.6030

NPV 0.9994 0.9995 0.9996 0.9996
F1 Score 0.7315 0.7114 0.8003 0.7469

Metrics
Classifiers

*Note: Positive class represents the 'Malicious label'.
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The confusion matrices generated from the test results with all four 

classification algorithms (all 25 attributes are used) are given in Figure 4.3.  

 

Figure 4.3: Confusion Matrices using Conventional ML Algorithms  
(All 25 Attributes used) 

4.6 Analysis of Results 
The results obtained are analyzed to find the most suitable set of attributes 

for detecting malicious webpages. 

4.6.1 Classification Accuracy of Attributes 

The comparison of the 25 attributes considered for detecting malicious 

webpages using ML was shown graphically in Figure 4.2. The bar graph 

showed the classification accuracy for each attribute, running 10-fold cross-

validation, using the three classification algorithms- C4.5, Naive Bayes, and 

SVM. It emerges from the graph that few attributes (A7, A8, A6, A25, A21, 

A20, A22, A24, A23) are better predictors and contribute more towards 

classification accuracy. 

TP = 12470 FN= 333 TP = 12547 FN = 256
TPR = 0.974 FNR= 0.026 TPR = 0.98 FNR = 0.02

FP = 8819 TN = 542378 FP = 9922 TN = 541276
FPR = 0.016 TNR = 0.984 FPR = 0.018 TNR = 0.982

TP = 12585 FN = 218 TP = 12560 FN = 243
TPR = 0.983 FNR = 0.017 TPR = 0.981 FNR = 0.019

FP = 6063 TN = 545134 FP = 8268 TN = 542929
FPR = 0.011 TNR = 0.989 FPR = 0.015 TNR = 0.985

SVM Classifier Random Forest Classifier

*Note: - Test dataset has 5,64,000 samples with 12,803 malicious (positive class) and 
5,51,197 benign (negative class) webpages

N ve Bayes ClassifierC 4.5 Classifier
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4.6.2 Computational Resources Used 

The computational resources (memory & CPU cycles) utilized for 

attribute extraction and pre-processing is an essential factor in ranking the 

attribute, especially when you want to deploy your solution in a near-real-time 

or real-time environment. The computational resources used by attributes were 

assessed using the Netbeans Profiler when running the extraction and pre-

processing java code. Netbeans is a software development platform for Java. 

Netbeans Profiler was used to measure the CPU cycles & memory utilization 

while running the Java code for Attribute extraction & Pre-processing. The 

values obtained were normalized to show on a scale of 0 to 1. The result 

obtained is shown in Figure 4.4. 

 

Figure 4.4: Computation Resources Used by Attributes 

4.6.3 The Top Attributes 

The top attributes to predict a malicious website based on the 

classification accuracy are - A7 (Cloaking), A8 (presence of iFrame), A6 

(redirection from website), A25 (size of obfuscated code), and A21 (Popups 

using Window.open()). However, when we also consider the complexities and 

resources during the extraction and pre-processing of attributes, we find that 

suitable attributes for scalable commercial ML web security applications are - 

A25 (size of obfuscated code), A24 (JavaScript length), A5 (WHOIS), A3 

(HTTPS), A4 (domain name), A2 (URL) and A1 (geographic location). The 

10-fold cross-validation result using the top five attributes is given below in 

Figure 4.5.   
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Figure 4.5: Confusion Matrix- Conventional ML Algorithms with Top Five Attributes 

4.7 Conclusion 
This chapter compares the attributes used for their effectiveness in 

detecting malicious webpages using ML. A total of 25 attributes were 

considered, which are generally used to detect malicious websites. These 

attributes were analyzed with respect to the computational resources required 

for extraction and pre-processing and the classification accuracy while 

predicting malicious webpages. The analysis was carried out using four 

different categories of Conventional ML algorithms  Decision Trees (C4.5), 

Probabilistic classifier (Naive Bayes), Kernel-Based Classifier (SVM with non-

linear RBF kernel), and Ensemble Leaner (Random Forest).  Based on the 

analysis, the best attributes were identified for detecting malicious websites. 

Previous studies related to detecting malicious webpages using ML had 

considered few attributes and had not compared the relative importance of using 

an attribute with respect to others. The comparative and analytical model 

discussed in this chapter may also be used by researchers to carry out other 

forms of malware analysis that use ML. The classification accuracy achieved 

through Conventional ML algorithms, though better than the accuracy reported 

TP = 12073 FN= 730 TP = 12086 FN = 717
TPR = 0.943 FNR= 0.057 TPR = 0.944 FNR = 0.056

FP = 29213 TN = 521984 FP = 26457 TN = 524740
FPR = 0.053 TNR = 0.947 FPR = 0.048 TNR = 0.952

TP = 12163 FN = 640 TP = 12137 FN = 666
TPR = 0.95 FNR = 0.05 TPR = 0.948 FNR = 0.052

FP = 24253 TN = 526945 FP = 25355 TN = 525842
FPR = 0.044 TNR = 0.956 FPR = 0.046 TNR = 0.954

SVM Classifier Random Forest Classifier

*Note: - Test dataset has 5,64,000 samples with 12,803 malicious (positive class) and 
5,51,197 benign (negative class) webpages

N ve Bayes ClassifierC 4.5 Classifier
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in the literature, was not high enough for commercial deployment. Also, there 

is scope for improving Precision and F1-score, especially since the dataset is 

imbalanced.  In later chapters of the thesis, we have explored deep learning to 

improve these results further. Notwithstanding the shortcomings of 

classification results' metrics, this research has successfully utilized 

conventional ML techniques (including the Gain Ratio method) to select most 

suitable attributes for web security tasks.  

 

 


