

Part II:
Machine Learning Based Analysis and
Solutions for Webpage Classification

Chapter 4: Identifying Malicious Webpages Using Conventional ML

Chapter 5: Detection of Malicious Webpages Using Deep Learning:

 Structured Data

Chapter 6: Detection of Malicious Webpages Using Deep Learning:

Unstructured Data

Chapter 4: Identifying Malicious
Webpages Using Conventional

Machine Learning

4.1 Introduction
In Part I, we discussed data collection and pre-processing of malicious

webpages dataset. In this chapter, we describe the classification process for

detecting malicious webpages and analyzing attributes to be selected for this

task.

In this chapter, we use Conventional ML to classify webpages as either

benign or malicious. The ML literature did not have the concept of shallow ML

until deep learning became prevalent. The word 'Shallow ML', also called

'Conventional ML', was coined to differentiate it from the new deep learning

technology. We'll discuss about deep learning in subsequent chapters. In this

chapter, we use Shallow ML (hereinafter referred to as Conventional ML) for

malicious webpage classification. It is important to note that Conventional ML

techniques require extensive pre-processing for feature extraction. Deep

learning has more or less eliminated feature engineering requirements and is

capable of automatically extracting features from raw data. Conventional ML

based classification comprises a variety of supervised algorithms like Naive

Bayes [97], Decision Trees (ID3 [98], C4.5 [56], CART [99], etc.), Random

Forest [100] (which uses ensemble learning with numerous Decision Trees),

and Support Vector Machine [101] (SVM is Kernel-based classification

algorithm), etc. In this chapter, we have used Naive Bayes [[97], Decision Tree

(C4.5) [56], SVM (with RBF) [101] and Random Forest [100]. The idea behind

choosing these algorithms was to cover the main categories of classification

algorithms, viz., entropy based algorithm, probabilistic classifier, maximal

margin kernel-based classifier, and ensemble classifier

The design of the conventional ML pipeline to detect malicious websites

is shown in Figure 4.1. The steps involved in such a process are data collection

Identifying Malicious Webpages Using Conventional Machine Learning

59

(crawling websites), feature extraction from raw data and its pre-processing,

creation of training and test datasets, training of the classifier, and testing the

model. The crawling process for data collection using MalCrawler has already

been described in Chapter 2.

Figure 4.1: Malicious Website Detection Process Using Conventional ML

One essential facet in Conventional ML is handcrafting the right set of

attributes which can be used for classification. A correct selection of attributes

ensures better classification accuracy and reduces computational requirements.

This chapter focuses on identifying attributes which can classify malicious

webpages more effectively and efficiently. A set of 25 attributes have been

identified for malicious website detection. These attributes have been analyzed

with respect to classification accuracy and computational requirements (during

extraction and pre-processing). Based on this analysis, the most suitable subset

of attributes is recommended. The chapter mainly focuses on identifying the

most relevant attributes for detecting malicious webpages using ML. While

results are presented using metrics like overall prediction accuracy, precision,

F1-score, etc., we have delved more into the inter se performance of attributes

for achieving the best prediction.

Various tools and platforms have been used as part of the research

described in this chapter. MalCrawler [67] has been used to crawl websites

(refer to Chapter 2 for details of MalCrawler). Extraction and pre-processing

have been done using HTML Unit Browser Emulator [53] and custom-written

Java code. Rhino JavaScript Emulator [54] has been used for running the

JavaScript code in a sandboxed environment. Machine learning was carried out

Crawling
(MalCrawler)

Attribute
Extraction &

Pre-Processing

Classifier
Training using
'Train Dataset'
of Malicious
Webpages

Validation
&

Testing of
Classifier

Model

Malicious
Webpage
Prediction

Step 1 Step 2 Step 3 Step 4 Step 5

 Identifying Malicious Webpages Using Conventional Machine Learning

60

on the WEKA platform [55]. Details of these software tools are given in

Appendix C of the thesis.

4.2 Related Work
Significant research has been carried out on malicious webpage detection

using ML techniques. However, the available literature has used a very

restrictive set of attributes. Ma et al., in their work on detecting malicious

websites from suspicious URLs, have considered only URL related attributes

[102]. While Wressnegger et al. have discussed flash-based malware [103],

Mavrommatis et al. have discussed iFrames [104], Ganesh et al. have analyzed

Java Applet based malware [105], Mao et al. have discussed HTML content-

based analysis of malicious websites [106], Cova et al. have examined few

JavaScript-based attributes [107], and Gorji et al. have discussed obfuscated

JavaScript code based attacks [108]. We find that a holistic analysis of all

possible attributes, which can play a critical role in detecting malicious

websites, is lacking. An effort has been made in this chapter to address this gap.

Apart from analyzing the attributes, we will also rank them based on two

aspects. Firstly, with respect to their classification accuracy in malicious

website detection. Secondly, with respect to their requirement of computational

resources during extraction and pre-processing. Attribute selection is an

important aspect, which improves classification results by reducing both

overfitting and underfitting. Hall et al. have discussed few attribute selection

techniques applicable to all data mining processes [109]. We have used two

attribute selection techniques for ML to ensure better selection, viz., 'Gain Ratio

method' and '10-Fold Cross Validation' of individual attributes.

4.3 Attributes for Classification

Various attributes which can be used to detect malicious websites were

considered. Amongst the list of all possible attributes, twenty five most suitable

attributes were selected for further analysis. The attributes considered for

detecting malicious websites are shown below in Table 4.1.

 Identifying Malicious Webpages Using Conventional Machine Learning

61

Table 4.1: List of Attributes Considered- Conventional ML

No Attribute
Category

Attribute
Name Attribute Description

A1
Location of

the
Website

Geographical
Location

The IP address is used to find
the geographical location of
the webserver using the Geo IP
database [73].

A2 URL
Properties URL Keywords extracted from the

URL are analyzed.

A3 -do-
HTTPS
Enabled
Website

Whether the website uses
secure HTTPS or unsecured
HTTP.

A4 -do- Domain
Name

Keywords are extracted from
domain name and analyzed.

A5 -do- DNS WHOIS
Information

It is checked whether the DNS
record of the website exists.

A6 -do-
Redirection

from the
website

It is checked whether the
website redirects or not.

A7 Website
Behavior Cloaking

Cloaking is the phenomenon in
which the website shows
different pages based on the
client platform. It is checked
whether a website is cloaking
or not.

A8

Web Page
Semantics
(HTML &
Content)

Presence of
iFrame on the

webpage

The presence of iFrame is
checked.

A9 -do- Number of
Applet Tags

The number of these tags is
recorded.

A10 -do-
Number of
Flash Script

Tags
-do-

A11 -do-

Top 10
keywords of

the page
content

These keywords are analyzed
against a set of keywords
generally found on malicious
websites.

A12 -do- Meta Tag
Values

Keywords are extracted from
Meta Tags and compared as in
A11.

A13 -do- HTML Title
Tag Values

Keywords are extracted from
HTML and compared as in
A11.

A14

Java Script
Behavior

and
semantics

Redirection of
URL using
document.
location()

The presence of redirection
using JavaScript is checked.

 Identifying Malicious Webpages Using Conventional Machine Learning

62

No Attribute
Category

Attribute
Name Attribute Description

A15 -do-
XML HTTP

Request
(XHR)

It is checked if XHR is meant
for the same or different
domain.

A16 -do-
Communicati
on with Flash
components

It is checked if the Flash
component communicates
with the browser.

A17 -do-

Communicati
on with
Applet

Components

It is checked if the Applet
component communicates
with the browser.

A18 -do- URL in XHR It is checked whether the URL
in XHR is encoded or not.

A19
JavaScript

Code
Content

Presence of
eval()

function

Presence of JavaScript eval()
function is checked.

A20 -do-
Presence of
unescape()

function

Presence of JavaScript
unescape() function is
checked.

A21 -do-

Presence of
Popups using
Window.open

() function

Checks the presence of
Window.open() JavaScript
function.

A22 -do-
Presence of

find ()
function

Checks the presence of
JavaScript find() function.

A23 -do-
Presence of
obfuscated

code

Obfuscated code is the
encrypted JavaScript code.
The presence of such code is
checked.

A24 -do-
Size of

JavaScript
Code

The size of JavaScript code
length is recorded.

A25 -do-
Size of

Obfuscated
Code

The size of Obfuscated
JavaScript is recorded.

4.4 Attribute Extraction and Pre-processing

The details of the attributes listed in the previous section and the details

of extraction and pre-processing of these attributes are given in the succeeding

paragraphs. MalCrawler [67] has been used for crawling websites. Wherever a

known list of malicious sites was required (e.g., when providing an initial seed

for crawling to the MalCrawler), the Malware Domain list [110] was utilized.

 Identifying Malicious Webpages Using Conventional Machine Learning

63

For labeling the dataset of malicious webpages, Google Safe Browsing API was

used [61].

 Location Region- Based on IP Address. The IP address of the website

is detected and recorded by the crawler. Geographical location is then

determined from the IP address using the GeoIP database [73]. The

geographical location is stored as country name, a nominal type attribute.

 URL. The URL is extracted by the crawler. A bag-of-words

representation of the URL is generated and then compared with the top 100

words found in URLs of malicious websites [102]. The number of the matches

is then stored as a numerical type attribute.

 HTTPS Enabled Website. HTTPS is more secure than HTTP, and

websites running on HTTPS are less likely to host malicious content [111].

Therefore, during crawling, we have checked whether the website uses HTTP

or HTTPS. This value is then stored as a Boolean attribute.

 Domain Name. The Domain Name is known to have been used as an

attribute in detecting malicious websites using ML [112]. Here, the domain

name is extracted by the crawler. Keywords are extracted from the domain

name and are then compared with few common keywords linked to malicious

behavior. The number of matches is then stored as a numerical type attribute.

 DNS WHOIS Information. The DNS WHOIS information provides the

registration details of the website. The presence and absence of fields in DNS

WHOIS information (e.g., address of domain owner) has been found to be

linked to maliciousness [113]. The presence and absence of this information is

stored as a Boolean attribute.

 Redirection from Website. Redirection has often been linked to

malicious behavior [114]. MalCrawler is capable of redirection detection. The

detection results are stored as a Boolean attribute.

 Cloaking. Cloaking is a phenomenon in which the website shows

different pages based on the client platform. Malcrawler [67] is used to detect

cloaking actions by a website by serving different HTTP requests having

 Identifying Malicious Webpages Using Conventional Machine Learning

64

various user-agent fields in the HTTP header. The presence of cloaking has

been found to be linked to maliciousness [115] [116]. The presence and absence

of cloaking is saved as a Boolean attribute.

 Presence of iFrame on Web Page. The iFrame HTML tag is known to

have been utilized to download malicious JavaScript exploits in numerous

attack vectors [104]. The presence and absence of the iFrame tag has been

checked by parsing websites. Parsing is the process of reading the complete

HTML content, including the JavaScripts. Customized libraries in Java have

been used in conjunction with MalCrawler [67]. The presence or absence is

stored as a Boolean attribute.

 Number of Applet Tags. Malicious exploits through Java Applets have

been reported on many websites [105]. Thus, its presence is recorded by parsing

the webpage and is stored as a Boolean attribute.

 Number of Flash Script Tags. Like Java Applets, numerous exploit

injection cases through Flash Scripts have been reported [103] [117]. Thus, its

presence is recorded by parsing the website. The value is stored as a Boolean

attribute.

 Top 10 Keywords of Page Content. The website is parsed to extract the

Term Frequency - Inverse Document Frequency (TF-IDF) (Note: TF-IDF is a

statistical method showing the importance of a word in a document). The TF-

IDF of this website is compared against the TF-IDF of know malicious websites

[107] [118]. The match of the top 10 TF-IDF keywords of the website against

the TF-IDF of malicious websites is saved as a numerical value attribute.

 Meta Tag Values. The TF-IDF of the meta tag is computed separately.

This TF-IDF is compared against the TF-IDF of known malicious websites

[118]. The value of this match is saved as a numerical value attribute.

 HTML Title Tag Values. The bag-of-words is extracted from the

HTML title tag. It is compared against the bag-of-words of malicious websites

[118]. The match of this comparison is saved as a numerical attribute.

 Identifying Malicious Webpages Using Conventional Machine Learning

65

 Redirection Using document.location(). The presence of JavaScript

function document.location() is checked by parsing the website. This function

has been found to be linked to malicious redirects [108][114]. The presence or

absence of this function is saved as a Boolean attribute.

 XML HTTP Request (XHR). XHR is the core of AJAX technology

(AJAX -Asynchronous JavaScript and XML is a technology to create

asynchronous web applications). However, XHR can be used to inject exploits

[119]. The website is parsed to take a count of the number of XHR instances.

This value is saved as a numerical attribute.

 Communication with Flash Components. Flash components

communicating with the browser are indicative of exploitative behavior. This

feature is checked using the HTML Unit Browser Emulator [103][117]. The

presence or absence of such behavior is stored as a Boolean attribute.

 Communication with Java Applets. Like the Flash component, the

communication of Applet with the browser can be used to inject exploits [105].

This is also checked using the HTML Unit Browser Emulator. This behavior is

stored as a Boolean value.

 URL in XHR. A URL in XHR outside the domain is an indicator of

malicious behavior [119]. This can be analyzed using the HTML Unit Browser

Emulator. The presence or absence of this behavior is recorded as a Boolean

value.

 Presence of eval() Function. Malicious websites use the eval() function

to generate malicious code at runtime to thwart detection [108]. The JavaScript

code on the website is parsed to detect the eval() function. The number of eval()

functions in JavaScript code is stored as a numerical attribute.

 Presence of unescape() Function. Hackers generally encode malicious

code and use the unescape() function to decode it. Thus, the number of

unescape() function calls in JavaScript is a strong indicator of malicious activity

[120]. For our ML analysis, the number of unescape() functions in JavaScript

code is stored as a numerical attribute.

 Identifying Malicious Webpages Using Conventional Machine Learning

66

 Presence of Windows.open() Popups. The JavaScript Windows.open()

Popups are used for ads and also to inject exploits [121]. For our ML analysis,

the presence or absence of Popup is stored as a Boolean value.

 Presence of find() Function. The find() JavaScript is used along with

unescape() and eval() to decrypt malicious code at runtime [120]. Thus, the

occurrences of the find() function in JavaScript code is noted and stored as a

numerical attribute.

 Presence of Obfuscated Code. Obfuscated code is the encrypted

JavaScript code. Generally, obfuscation is done to thwart the detection of

malicious code [122]. Thus, its presence is a strong indicator of malicious

activity. The presence or absence of obfuscated code is recorded as a Boolean

attribute.

 Size of JavaScript Code. Generally, malicious JavaScript code is of

relatively large size [122]. Thus, the size of JavaScript code is a good indicator

of maliciousness. We have used it as a numerical attribute with a value equal to

the size of JavaScript code in KiloBytes (KBs).

 Size of Obfuscated Code. Large obfuscated code indicates the presence

of an exploit [120]. Thus, the size of obfuscated code (in KB) is captured and

stored as a numerical value for ML.

4.5 Experimental Setup and Evaluation Metrics
Classification was carried out using four algorithms - C4.5, Naive Bayes,

SVM and Random Forest. These four algorithms were chosen as they represent

four different approaches to classification. While C4.5 uses a Decision Tree,

Naive Bayes is a probabilistic generative model, SVM is a kernel-based (RBF

kernel) maximal margin learner, and Random Forest is an ensemble learning

algorithm. The SVM classifier was chosen with the Radial Basis Function

(RBF) kernel in order to capture the non-linear relationship in the dataset.

WEKA [55] data mining software was used for training and running the

classifiers. The training dataset was collected using MalCrawler and

customized Java code. The initial seed for crawling in MalCrawler was created

 Identifying Malicious Webpages Using Conventional Machine Learning

67

using Malware Domain List [110]. While MalCralwer is designed to seek more

malicious webpages than benign, an initial malicious seed improves this

performance further. Google Safe Browsing API [61] was used to prepare the

class labels in the dataset- '1' for benign and '0' for malicious webpages. A copy

of the dataset that has been created for this research has been published online

[123]. This dataset has an imbalance of classes; there are more benign classes

than malicious. This imbalance reflects the real web from where this data has

been collected, wherein malicious webpages represent a very small fraction of

the total number of webpages. Class imbalance is known to create a bias

towards the majority class. Hence, for the classification task, we have

oversampled the minority class to reduce the imbalance. We used the SMOTE

(Synthetic Minority Oversampling Technique) for oversampling the malicious

samples [124].

For checking the attribute predictability, two techniques were used- The

Gain Ratio method and '10-fold cross-validation. Firstly, as we were looking to

rank the attributes based on their individual ability to predict malicious

websites, we used the Gain Ratio method [109] of attribute selection. In this

method, each attribute Ai is assigned a score based on the information gain

between itself and the class. If C is the class and A is the attribute, equations

(4.1) and (4.2) below give Entropy H before and after observing the attribute.

The Entropy was computed for all 25 attributes and is shown in

Table 4.2 (refer to the second column shown in red color). Interestingly, the

Entropy of the entire dataset was as low as 0.156, which is due to class

imbalance (malicious webpages were a mere 2.27% of the entire dataset).

Secondly, 10-fold cross-validation was run, one attribute at a time, to assess

each attribute's ability to predict malicious websites (Only three classification

algorithms were used for cross-validation, viz., C4.5, Naive Bayes and SVM).

The confusion matrix produced by this 10-fold cross-validation is given in

 Identifying Malicious Webpages Using Conventional Machine Learning

68

Table 4.2 (Refer columns 3-18). The table elucidates an attribute's overall

ability to predict malicious websites using the two techniques mentioned above.

Table 4.2: Attribute Selection using 'Gain Ratio' & '10-Fold Cross Validation'

The accuracy achieved, using a single attribute at a time, while carrying

out cross-validation, is plotted in Figure 4.2.

Gain Ratio

TNR FPR TPR FNR TNR FPR TPR FNR TNR FPR TPR FNR C4.5
Naive
Bayes

SVM
Average
Accuracy

A1 0.05888922 0.34 0.66 0.46 0.54 0.33 0.67 0.37 0.63 0.34 0.66 0.42 0.58 0.40 0.35 0.38 0.38 24
A2 0.07243895 0.39 0.61 0.51 0.49 0.42 0.58 0.52 0.48 0.44 0.56 0.50 0.50 0.45 0.47 0.47 0.46 22

A3 0.11386985 0.71 0.29 0.75 0.25 0.67 0.33 0.77 0.23 0.72 0.28 0.75 0.25 0.73 0.72 0.74 0.73 13

A4 0.07921381 0.49 0.51 0.51 0.49 0.49 0.51 0.51 0.49 0.48 0.52 0.56 0.44 0.50 0.50 0.52 0.51 21

A5 0.11360928 0.66 0.34 0.76 0.24 0.65 0.35 0.79 0.21 0.73 0.27 0.77 0.23 0.71 0.72 0.75 0.73 14

A6 0.14519058 0.88 0.12 0.96 0.04 0.86 0.14 0.99 0.01 0.91 0.09 0.97 0.03 0.92 0.93 0.94 0.93 3

A7 0.14904704 0.95 0.05 0.95 0.05 0.90 0.10 1.00 0.00 0.92 0.08 1.00 0.00 0.95 0.95 0.96 0.95 1
A8 0.14670189 0.90 0.10 0.97 0.03 0.87 0.13 1.01 -0.01 0.93 0.08 0.96 0.05 0.94 0.94 0.94 0.94 2
A9 0.04586063 0.20 0.80 0.30 0.70 0.27 0.74 0.36 0.65 0.29 0.71 0.35 0.65 0.25 0.31 0.32 0.29 25
A10 0.09536926 0.56 0.44 0.64 0.36 0.55 0.45 0.65 0.35 0.58 0.42 0.68 0.32 0.60 0.60 0.63 0.61 18
A11 0.11829957 0.75 0.25 0.77 0.23 0.74 0.26 0.76 0.24 0.75 0.25 0.77 0.23 0.76 0.75 0.76 0.76 12
A12 0.08286182 0.49 0.51 0.55 0.45 0.44 0.56 0.56 0.44 0.52 0.48 0.62 0.38 0.52 0.50 0.57 0.53 20

A13 0.06357951 0.38 0.62 0.42 0.58 0.40 0.60 0.40 0.60 0.41 0.59 0.43 0.57 0.40 0.40 0.42 0.41 23

A14 0.12142644 0.74 0.26 0.80 0.20 0.78 0.22 0.78 0.22 0.77 0.23 0.79 0.21 0.77 0.78 0.78 0.78 11

A15 0.09015783 0.50 0.50 0.60 0.40 0.56 0.44 0.62 0.38 0.56 0.44 0.62 0.38 0.55 0.59 0.59 0.58 19

A16 0.11048242 0.64 0.36 0.72 0.28 0.70 0.30 0.72 0.28 0.68 0.32 0.78 0.22 0.68 0.71 0.73 0.71 15

A17 0.10579213 0.57 0.43 0.69 0.31 0.67 0.34 0.70 0.31 0.69 0.31 0.75 0.25 0.63 0.68 0.72 0.68 16
A18 0.10110184 0.58 0.43 0.69 0.32 0.58 0.42 0.66 0.34 0.68 0.32 0.70 0.30 0.63 0.62 0.69 0.65 17
A19 0.13237045 0.84 0.16 0.86 0.14 0.83 0.17 0.85 0.15 0.85 0.15 0.85 0.15 0.85 0.84 0.85 0.85 7
A20 0.13601845 0.84 0.16 0.90 0.10 0.84 0.16 0.90 0.10 0.84 0.16 0.90 0.10 0.87 0.87 0.87 0.87 6
A21 0.13862417 0.88 0.13 0.89 0.12 0.85 0.15 0.91 0.09 0.86 0.14 0.94 0.06 0.88 0.88 0.90 0.89 5
A22 0.12955627 0.77 0.23 0.89 0.11 0.77 0.23 0.87 0.13 0.80 0.20 0.87 0.13 0.83 0.82 0.84 0.83 8

A23 0.12403215 0.73 0.27 0.85 0.15 0.75 0.25 0.83 0.17 0.78 0.22 0.82 0.18 0.79 0.79 0.80 0.79 10

A24 0.12611673 0.77 0.23 0.85 0.15 0.76 0.25 0.85 0.16 0.74 0.26 0.88 0.12 0.81 0.80 0.81 0.81 9

A25 0.14023972 0.84 0.16 0.93 0.07 0.86 0.14 0.92 0.08 0.86 0.15 0.98 0.02 0.89 0.89 0.92 0.90 4

Note:- Overall rank is based on both Info Gain [H(C/A)] & Accuracy achieved by attribute in 10 Fold Cross Validation

Attribute

H(C/A)

Overall
Relative

Rank

Accuracy

Ten Fold Cross Validation

C 4.5 Classifier Naive Bayes Classifier SVM Classifier

 Identifying Malicious Webpages Using Conventional Machine Learning

69

Figure 4.2: Classification Accuracy of Attributes

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

A20

A21

A22

A23

A24

A25

Classification Accuracy (%)

SVM Naive Bayes C 4.5

 Identifying Malicious Webpages Using Conventional Machine Learning

70

Apart from the 10-fold cross-validation which was carried out for
attribute selection, the dataset was trained with one million samples and
thereafter tested on 0.564 million samples using all four ML algorithms
mentioned earlier, viz., C4.5, Naive Bayes, SVM and Random Forest. The
classification results from these four algorithms (with all 25 attributes) on the
test dataset is shown in Table 4.3.

Table 4.3: Classification Results with Conventional ML Algorithms
 (all 25 attributes used)

The meaning of the attributes used is summarized in Table 4.4 for ready
reference.

Table 4.4: Meaning of the Classification Metrics Used

C 4.5 Naive Bayes SVM RF
Accuracy 0.979 0.981 0.986 0.983

Recall
(TPR, Sensitivity)

0.9740 0.9800 0.9830 0.9810

Specificity
(TNR, Selectivity)

0.9840 0.9820 0.9890 0.9850

Precision
(PPV)

0.5857 0.5584 0.6749 0.6030

NPV 0.9994 0.9995 0.9996 0.9996
F1 Score 0.7315 0.7114 0.8003 0.7469

Metrics
Classifiers

*Note: Positive class represents the 'Malicious label'.

 Identifying Malicious Webpages Using Conventional Machine Learning

71

The confusion matrices generated from the test results with all four

classification algorithms (all 25 attributes are used) are given in Figure 4.3.

Figure 4.3: Confusion Matrices using Conventional ML Algorithms
(All 25 Attributes used)

4.6 Analysis of Results
The results obtained are analyzed to find the most suitable set of attributes

for detecting malicious webpages.

4.6.1 Classification Accuracy of Attributes

The comparison of the 25 attributes considered for detecting malicious

webpages using ML was shown graphically in Figure 4.2. The bar graph

showed the classification accuracy for each attribute, running 10-fold cross-

validation, using the three classification algorithms- C4.5, Naive Bayes, and

SVM. It emerges from the graph that few attributes (A7, A8, A6, A25, A21,

A20, A22, A24, A23) are better predictors and contribute more towards

classification accuracy.

TP = 12470 FN= 333 TP = 12547 FN = 256
TPR = 0.974 FNR= 0.026 TPR = 0.98 FNR = 0.02

FP = 8819 TN = 542378 FP = 9922 TN = 541276
FPR = 0.016 TNR = 0.984 FPR = 0.018 TNR = 0.982

TP = 12585 FN = 218 TP = 12560 FN = 243
TPR = 0.983 FNR = 0.017 TPR = 0.981 FNR = 0.019

FP = 6063 TN = 545134 FP = 8268 TN = 542929
FPR = 0.011 TNR = 0.989 FPR = 0.015 TNR = 0.985

SVM Classifier Random Forest Classifier

*Note: - Test dataset has 5,64,000 samples with 12,803 malicious (positive class) and
5,51,197 benign (negative class) webpages

N ve Bayes ClassifierC 4.5 Classifier

 Identifying Malicious Webpages Using Conventional Machine Learning

72

4.6.2 Computational Resources Used

The computational resources (memory & CPU cycles) utilized for

attribute extraction and pre-processing is an essential factor in ranking the

attribute, especially when you want to deploy your solution in a near-real-time

or real-time environment. The computational resources used by attributes were

assessed using the Netbeans Profiler when running the extraction and pre-

processing java code. Netbeans is a software development platform for Java.

Netbeans Profiler was used to measure the CPU cycles & memory utilization

while running the Java code for Attribute extraction & Pre-processing. The

values obtained were normalized to show on a scale of 0 to 1. The result

obtained is shown in Figure 4.4.

Figure 4.4: Computation Resources Used by Attributes

4.6.3 The Top Attributes

The top attributes to predict a malicious website based on the

classification accuracy are - A7 (Cloaking), A8 (presence of iFrame), A6

(redirection from website), A25 (size of obfuscated code), and A21 (Popups

using Window.open()). However, when we also consider the complexities and

resources during the extraction and pre-processing of attributes, we find that

suitable attributes for scalable commercial ML web security applications are -

A25 (size of obfuscated code), A24 (JavaScript length), A5 (WHOIS), A3

(HTTPS), A4 (domain name), A2 (URL) and A1 (geographic location). The

10-fold cross-validation result using the top five attributes is given below in

Figure 4.5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25

UTILIZATION OF COMPUTING RESOURCES

Memory CPU Cycles

 Identifying Malicious Webpages Using Conventional Machine Learning

73

Figure 4.5: Confusion Matrix- Conventional ML Algorithms with Top Five Attributes

4.7 Conclusion
This chapter compares the attributes used for their effectiveness in

detecting malicious webpages using ML. A total of 25 attributes were

considered, which are generally used to detect malicious websites. These

attributes were analyzed with respect to the computational resources required

for extraction and pre-processing and the classification accuracy while

predicting malicious webpages. The analysis was carried out using four

different categories of Conventional ML algorithms Decision Trees (C4.5),

Probabilistic classifier (Naive Bayes), Kernel-Based Classifier (SVM with non-

linear RBF kernel), and Ensemble Leaner (Random Forest). Based on the

analysis, the best attributes were identified for detecting malicious websites.

Previous studies related to detecting malicious webpages using ML had

considered few attributes and had not compared the relative importance of using

an attribute with respect to others. The comparative and analytical model

discussed in this chapter may also be used by researchers to carry out other

forms of malware analysis that use ML. The classification accuracy achieved

through Conventional ML algorithms, though better than the accuracy reported

TP = 12073 FN= 730 TP = 12086 FN = 717
TPR = 0.943 FNR= 0.057 TPR = 0.944 FNR = 0.056

FP = 29213 TN = 521984 FP = 26457 TN = 524740
FPR = 0.053 TNR = 0.947 FPR = 0.048 TNR = 0.952

TP = 12163 FN = 640 TP = 12137 FN = 666
TPR = 0.95 FNR = 0.05 TPR = 0.948 FNR = 0.052

FP = 24253 TN = 526945 FP = 25355 TN = 525842
FPR = 0.044 TNR = 0.956 FPR = 0.046 TNR = 0.954

SVM Classifier Random Forest Classifier

*Note: - Test dataset has 5,64,000 samples with 12,803 malicious (positive class) and
5,51,197 benign (negative class) webpages

N ve Bayes ClassifierC 4.5 Classifier

 Identifying Malicious Webpages Using Conventional Machine Learning

74

in the literature, was not high enough for commercial deployment. Also, there

is scope for improving Precision and F1-score, especially since the dataset is

imbalanced. In later chapters of the thesis, we have explored deep learning to

improve these results further. Notwithstanding the shortcomings of

classification results' metrics, this research has successfully utilized

conventional ML techniques (including the Gain Ratio method) to select most

suitable attributes for web security tasks.

