
Chapter 5: Detection of Malicious
Webpages Using Deep Learning:

Structured Data

5.1 Background
In the last chapter, we discussed how malicious websites continue to be a

threat on the Internet [125]. We also discussed how the detection of malicious

websites evolved from static heuristics (signature-based detection [107][42]),

dynamic heuristics (using honey clients, sandboxes, and browser emulators

[126][50]), and then to ML. ML is the latest technology being explored for such

web security tasks [127][72]. We had used conventional ML, wherein we used

the C4.5, SVM, Naive Bayes and Random Forest classifiers with selected

attributes to improve classification results. However, these conventional

models had limitations regarding high false negatives (FN), low precision and

F1-score, which were not suitable for commercial deployment by web security

firms. So, we explored newer ML technologies that could surpass these results.

In this chapter, we will explore deep learning models to further improve the

classification results for the malicious webpage prediction problem.

In the past few years, deep learning has emerged as the most promising

subfield of ML. It uses large neural networks to achieve good classification

results in image and Natural Language Processing (NLP). We have used deep

learning to overcome the limitations of previous ML approaches in webpage

classification, including the one given in the last chapter. We have used a novel

Deep Neural Network (DNN) model to detect and classify malicious webpages

with better accuracy, precision, and recall. While deep learning can handle both

structured and unstructured data, this chapter uses structured attributes to enable

fast training and quick detection. This approach has given a high accuracy of

99.81% with very low FP and FN. While training a DNN model takes time,

runtime on the test set is quick. The trained model takes a test sample (webpage)

and classifies it in less than 264 in checking, including time for

preprocessing the sample into a vector. This is an approximate time per

Detection of Malicious Webpages Using Deep Learning: Structured Data

76

webpage without considering network delay. The exact time would vary based

on the content of the webpage. Such high speed and accuracy make this

technique suitable for deployment for web security solutions. The contribution

of the work done in this chapter is summarized below:

 Deep learning based detection model for malicious webpages with high

accuracy, precision, and recall.

 The model's fast detection capability enables its deployment on Web

Browser platforms without deterioration of browsing experience.

 The capability of the proposed DNN model to detect Zero-Day attacks.

This is achieved as the DNN model is able to detect more non-linear

patterns compared to conventional ML techniques.

The remaining chapter is structured as follows. Related work is discussed

in Section 5.2. Section 5.3 introduces the deep learning framework for

malicious webpage detection. Section 5.4 discusses the results and analysis.

Lastly, Section 5.5 concludes with a discussion on the utility of the model

proposed and future work scope.

5.2 Related Work
Malicious web page detection approaches have evolved from static

heuristics, dynamic honey client based detection to ML. Recently, with rapid

advances in deep learning, it is being explored for solving web security tasks.

Earlier works using static heuristics include Cova [107] and Canali [42]

et al., wherein they used signature-based detection techniques. Work utilizing

dynamic heuristics include high interaction honey clients by Akiyama [128]

and low interaction honey clients by Ikinci et al [50]. These approaches had

limited capability of detecting new patterns.

Conventional ML approaches for malicious webpage detection have used

classifiers like SVM, Random Forest, Decision Tree, etc. Eshete [127], Singh

[72], Yoo [129] and Wang et al. [130] have used such techniques. However,

their classification results could not surpass 99% accuracy and suffered from

high false negatives or false positives.

Detection of Malicious Webpages Using Deep Learning: Structured Data

77

While attempts have been made to use deep learning for malicious web

page detection, research outcomes are confined mainly to restricted domains of

Google labs [131] or cybersecurity and anti-virus firms with limited

information shared in public. Apart from these organizational efforts, few

research papers, as discussed below, have been published in this field, but they

have been inadequate to address the problem statement holistically. Shrivastava

et al. have used a deep learning framework for webpage classification [132].

However, the framework was complex and could not achieve satisfactory

accuracy while keeping false positives and false negatives low. Compared to

the model proposed in this chapter, their framework underperforms in all

metrics, including time. Fang et al. proposed a deep learning based solution to

detect cross side scripting (XSS) [152]; however, their solution remains

confined to XSS attacks. Vinaya Kumar et al. have evaluated various LSTM,

CNN, and RNN layers for feature extraction to classify malicious URLs [133].

Although, their work explored practical feature extraction techniques for such

tasks, they failed to propose a suitable end-to-end solution for webpage

classification. Wang et al. have proposed a LSTM bidirectional algorithm based

on CNN and RNN for expressing the similarity of web content with a malicious

page [134]. However, the model underperforms on precision and recall metrics.

Keeping related work in mind, the work presented in this chapter attempts

to overcome existing limitations and gaps.

5.3 Deep Learning Framework for Detection of
Malicious Webpages

This section proposes a deep learning framework for malicious webpage

classification and describes its design and implementation.

5.3.1 Understanding Deep Learning

Deep learning is a subfield of ML that has gained prominence in the last

few years. It uses layered neurons to learn complex non-linear patterns in the

data. It can be used in both supervised or unsupervised settings. Further it can

handle both structured and unstructured data [135]. Deep Neural Networks

(DNN) carry out hierarchical learning, with lower layers learning low-level

features and higher layers progressively learning high-level features from them

Detection of Malicious Webpages Using Deep Learning: Structured Data

78

[136]. According to the Universal Approximation Theorem, feed forward deep

learning models can represent a nonlinear relationship in dataset better than

shallow neural networks and other ML classification algorithms [137]. Typical

deep learning techniques include DNN, Deep Belief Networks (DBN),

Convolution Neural Networks (CNN), Auto Encoders (AE), Recurrent Neural

Networks (RNN), etc.

In this chapter we use DNN with structured data input to classify

webpages as malicious or benign.

5.3.2 Structured vs. Unstructured Data

Before describing the features and dataset used in this chapter, it is

imperative to understand the choice of structured data as input to the DNN

model vis-à-vis unstructured data. In a ML context, unstructured data refers to

unorganized data like images, video, and text that does not follow a predefined

format and is thus more challenging to process. To prepare unstructured data

for learning, there is a need to carry out various transformations, encoding, and

processing that are computationally expensive and time-consuming [135].

Thus, applications where speed and resources come at a premium, structured

data is preferred over unstructured data for learning. Since this work is focused

on quick detection of malicious webpages over millions of records, structured

data is a preferred choice for this model. Subsequently, in the result section, this

choice would be vindicated by the fast training and testing time exhibited by

our model.

5.3.3 Dataset and Features

Refer the 25 attributes listed in Table 4.1, which were analyzed for their

suitability in Chapter 4. Few amongst these attributes were selected and refined

further in section 3.1.3 for the final webpages dataset created for ML tasks in

the current and subsequent chapters. The final selected features of the webpages

dataset, which have been used for DNN classification in this chapter, are listed

in Table 3.2. Features F1-11, less F10, as per Table 3.2 have been used for

DNN classification in this chapter. For further details on the dataset refer to

Chapter 3 (preliminary analysis and visualization) and Appendix A (pre-

processing code).

Detection of Malicious Webpages Using Deep Learning: Structured Data

79

5.3.4 Deep Learning Model

The deep learning model's design for the detection of malicious webpages

in this research is shown below in Figure 5.1.

Figure 5.1: DNN Model for Malicious Webpage Classification

The dataset was preprocessed and fed to the Input Layer. The Input Layer

carried out vectorization, as shown in Table 5.1.

Table 5.1: Feature (Input) layer- DNN with Structured Data

Features Name Transformation
Carried Out

F1, F2, F8,
F9

url_vect, url_len,
js_len, js_obf_len

Normalized and fed as a
numerical column.

F4, F5 geo_loc, tld Converted to Hashed
Categorical Columns, with

bucket size equal to the
number of unique values in

each.
F6, F7 who_is, https One Hot coded and fed as

Categorical Column.
F11 label Converted into a single class

label column with binary value
0/1.

....
Webpages
Dataset

....

Input
Layer

Preprocessing
Pipeline

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

Vectorized
Features

Neurons- 128
Activation- RELU

Neurons- 32
Activation- RELU

Neurons- 1
Activation- Sigmoid

Output
Class Labels

y=1

y=0

Dropout
Layer

Detection of Malicious Webpages Using Deep Learning: Structured Data

80

The vectorized and normalized values given above are condensed into a

dense feature layer and fed to the next layer. The next layer is a hidden layer

comprising 128 fully connected neurons. The output of this layer is fed to the

third layer, which too is a hidden layer of 32 fully connected neurons. RELU

(Rectified Linear Unit), which is one of the activation functions used in deep

learning, was used for both the hidden layers. The choice of RELU for hidden

layers was based on its faster convergence during training. The third layer feeds

its output to a fully connected single neuron layer with a Sigmoid activation

function. The sigmoid function is another popular activation function used for

binary classification problems that gives a binary 0/1 output for each of the two

class labels defined in the F11 feature. Between the third and output layer, a

dropout layer was introduced with a dropout rate set at 10%. Dropout is a

technique of randomly excluding few nodes from update cycles. 10% dropout

from a layer of 32 nodes means that three nodes are dropped in each update

cycle. The use of this technique gave a regularized model and overcame

overfitting [140]. The summary of tunable parameters in the generated DNN

model is given in Table 5.2.

Table 5.2: Layer-wise Tunable Parameters (DNN with Structured Data)

Layer# Layer
(Type)

Output Shape Param#

1 Input Multiple -
2 Dense

(Hidden 1)
128 184192

(1438 x 128 Weights + 128 bias)
3 Dense

(Hidden 2)
32 4128

(128 x 32 Weights + 32 bias)
- Dropout - -
4 Output 1 33 (32 Weights + 1 bias)
 Total Params: 188,353

Trainable Params: 188,353
Non-trainable Params: 0

This DNN model is a feed forward network that is trained using 'Gradient

Descent'. Gradient Descent is an optimization algorithm that minimizes the

cost/loss function by moving in the direction of steepest descent, thereby

finding the minima of cost/loss function. 'Binary Cross Entropy' has been used

as the loss function in this work. In this model, an extension of 'Gradient

Descent' algorithm known as 'Adam Optimization' is used due to its better

Detection of Malicious Webpages Using Deep Learning: Structured Data

81

performance. Adam is a variant of the Stochastic Gradient Descent algorithm

which uses an adaptive learning rate. Its name is derived from Adaptive

moment estimation [141]. The Gradient Descent algorithm works in two steps

- the forward and backward pass. In the forward pass, it computes errors using

current parameters. In backward pass, it computes gradients using partial

derivatives and amends parameters accordingly [142].

At any neuron in layer in this DNN model, calculations can be shown

as given in Fig.2. Where, if (i.e., the input layer), inputs are depicted by

vector X= [x1, x2, , xn]; for , inputs to the neuron are the activation

outputs from previous layer and are depicted by the vector

.The vector of weights from layer to Neuron

in layer is depicted by and for the complete

layer by,

Bias for Neuron in layer is depicted by and for complete

layer by . Similarly, vectors W and b can be shown as

matrices combining and for all layers.

Figure 5.2: A Single Computation Unit in DNN

  


...

+

Activation
Function

Neuron in layer

Affine Function

Forward Pass

Backward Pass
Back Propagation

Compute Error at Output Layer

Compute Gradients

  


 





RELU or Sigmoid

Detection of Malicious Webpages Using Deep Learning: Structured Data

82

As seen in Figure 5.2, the Affine function computes the weighted sum

of all inputs coming to the neuron.

At the input layer, this equation changes to,

Equations (5.1) and (5.2) are shown with vectors as,

Affine function feeds into the activation function, which for layer-2 and

layer-3 () is a RELU as represented by equation (5.3). Activation

function for the output layer () is a Sigmoid as represented by equation

(5.4).

As shown in Figure 5.2, many such neural units form a neural layer, and

many such layers are stacked together to form the DNN. The output of the

activation function in the final layer is the DNN output, . The training

comprises actions to find those values of parameters W and b that lead to the

correct predicted output . To achieve this, the 'Binary Cross Entropy' loss

function E compares values of final output and target output t as shown in

equation (5.5). This completes the forward pass or the feed-forward in the

DNN.

After that, backward pass or backpropagation is carried out, wherein error

contribution of each parameter and in the network towards total loss E is

computed through gradients. Using the chain rule of differentiation, the partial

derivates are calculated successively backward from output to input. In this

model, the error gradient for in the last layer () is given as,

Detection of Malicious Webpages Using Deep Learning: Structured Data

83

Solving partial derivate using equation (5.5),

Solving partial derivative using equation (5.4),

Solving partial derivative using equation (5.1),

Using equations (5.6) to (5.9),

Similarly, using the chain rule to compute error gradient for in the last

layer,

Computing partial derivative using equation (5.1),

Using equations (5.7), (5.8), (5.11), and (5.12),

Equations (5.10) and (5.13) give us error gradients concerning parameters

in the last layer (Note: The final layer has only a single neuron with Sigmoid

activation. Thus, k=1.). Computation of error gradients for lower layers'

parameters requires recursive application of chain rule as part of the

backpropagation algorithm. For the third layer (), the error gradient with

respect to is given below.

Detection of Malicious Webpages Using Deep Learning: Structured Data

84

The first two partial derivatives have been computed in equation (5.7) and

(5.8), the third is calculated using equation (5.1),

Solving partial derivate of RELU activation of layer 3 using equation

(5.3),

Using equation (5.1),

Using equations (5.7), (5.8), and (5.14) to (5.17),

Similarly, error gradient with respect to in the third layer is given by,

Using equation (5.1),

Using equations (5.7), (5.8), (5.14) to (5.16), (5.19), and (5.20),

Moving further backward in the DNN, gradients with respect to

parameters of layer-2 are computed recursively based on the derivates of layer-

3. Since layer 2 uses RELU activation like layer 3, equations can be built up

similarly as shown above and thus are not discussed further.

This backpropagation, as described above, is carried out for all input

samples. After that, the loss function E is minimized over all n input samples

of X, using gradient descent. 'Adam' algorithm was used with a mini-batch size

Detection of Malicious Webpages Using Deep Learning: Structured Data

85

of 2048 random samples. Adam algorithm uses the partial derivates computed

during the backpropagation to determine the global minima of the loss function

 with respect to W and b. This ultimately leads to a successive tweaking of W

and b to minimize the loss function for all X inputs. This process can be denoted

mathematically by equation (5.22).

W and b are tweaked, and their new values are computed in each mini-

batch using equations (5.23) and (5.24). Here in the equations, is the learning

rate, and it signifies the step size during descent. For this model, was

found to be optimum.

5.3.5 Handling Class Imbalance

It is pertinent to note that the number of malicious webpages on the

Internet is just a very small percentage compared to benign webpages. This

disproportion is also visible in the dataset that was prepared for this research

(refer to Figure 3.2 in Chapter 3). Out of the 1.2 million samples in the training

dataset, 97.73% were positive (benign), and only 2.27% were negative

(malicious). The class imbalance creates a bias towards the majority class,

thereby resulting in an inaccurate trained model [143]. Thus, there was a need

to address this imbalance.

Techniques that are generally used for handling class imbalance are

discussed below:

 Over Sampling: The dataset is oversampled to create additional

samples of the minority-class [144]. ADASYN and SMOTE are some

oversampling algorithms that are suitable for this task (Note:

ADASYN (Adaptive Synthetic) and SMOTE (Synthetic Minority

Oversampling Technique) are algorithms for generating synthetic

samples of minority class based on existing minority observations.).

Detection of Malicious Webpages Using Deep Learning: Structured Data

86

 Under Sampling: The majority-class samples are reduced to bring

down imbalance [144]. However, this technique can lead to a drastic

reduction of samples and is thus prone to error.

 Modifying the Weights of Loss Function: The loss function too can

be modified to handle the imbalance by giving higher weight to the

minority class vis-a-vis the majority class [145]. These weights are

different from parameter of DNN model discussed in the previous

subsection. These are weightages given to classes in the loss function

and are denoted by .

Modification of weights in the loss function was used as it gave better

results than the other two techniques. The modified weights for the binary cross

entropy loss function used in this model were computed using the formula

below.

where,

wt0 - Weight of Negative Class

wt1 - Weight of Positive Class

total - Total Number of Samples

neg- Number of Negative Samples

pos - Number of Positive Samples

These weights were fed to the 'Binary Cross Entropy' loss function during

the model's training.

Apart from the techniques discussed, two more tricks were used to handle

this imbalanced data. Firstly, data was handled in a large batch size of 2048

samples, which ensured that the minority-class was adequately represented in

each batch. Secondly, correct initial bias was given to the model at the start of

training to ensure faster convergence. The correct bias was derived using

equation (5.27) given below [146].

Detection of Malicious Webpages Using Deep Learning: Structured Data

87

5.3.6 Implementation

The DNN model proposed in the last two subsections was implemented

using TensorFlow and Keras libraries. TensorFlow is an open-source ML

platform in Python that was released by Google [147]. Keras [148] is a deep

learning library in Python that can run on top of TensorFlow. Few

functionalities that were not part of the standard library were coded in Python

using NumPy library. NumPy is a Python library that provides functions for

vector calculus. For generating results and analysis graphs, TensorBoard and

Seaborn libraries are used. TensorBoard library provides storage, retrieval,

visualization of machine learning results produced using TensorFlow. Seaborn

is a Python data visualization library based on Matplotlib. The code is written

to run on CPUs. However, with minor modification, the code can run on GPUs

and thereby further improve its time performance. The code is published online

on Kaggle [149] to support further research.

5.4 Results and Analysis
The model proposed in the previous section was trained with 1.0 million

samples. For validation, a separate dataset of 0.2 million samples and for testing

a different test dataset of 0.35 million samples were used.

5.4.1 Training and Validation Results

The DNN model was trained over 40 Epochs with Early Stopping (with

patience set to 20). The accuracy in each epoch during training and validation

is plotted below in Figure 5.3. The dark red line represents training accuracy,

while the light red line depicts validation accuracy. While the training was set

to 40 epochs, it is seen that it was stopped at 25 by the early stopping algorithm

when the accuracy stabilized.

Detection of Malicious Webpages Using Deep Learning: Structured Data

88

Figure 5.3: Training and Validation Accuracy

Similarly, the binary cross entropy loss during the validation and training

is shown below in Figure 5.4.

Figure 5.4: Training and Validation Loss

It can be seen from Figures 5.3 and 5.4 that the training accuracy had

lagged behind validation accuracy, and validation loss has lagged behind

training loss. This behavior is attributable to the 10% dropout that was

implemented during training for regularization (10% dropout will randomly

switch off neurons in layer 3, thereby reducing training performance).

Since dropout is not used during validation and testing, training performance

always lags validation and test performance in such regularized models.

0.987

0.988

0.989

0.99

0.991

0.992

0 4 8 12 16 20 24

0.506

0.507

0.508

0.509

0.51

0.511

0 4 8 12 16 20 24

Detection of Malicious Webpages Using Deep Learning: Structured Data

89

In the previous section, we had discussed the initial bias used in this

model as per equation (5.27). The modified initial bias resulted in faster

convergence, as can be seen in Figure 5.5. The graph shows that the loss

dropped rapidly within few epochs with the use of initial bias.

Figure 5.5: Impact of Initial Bias

5.4.2 Evaluation on Test Dataset

The test dataset's evaluation gave results as shown in Table 5.3. The total

number of samples in the test dataset were 0.564 million.

Table 5.3: Evaluation on Test Dataset (DNN with Structured Data)

Metrics Value
Accuracy 0.9981

Recall (TPR, Sensitivity) 0.9970

Specificity (TNR, Selectivity) 0.9990

Precision (PPV) 0.9586
NPV 0.9999

F1 Score 0.9774
*Note: Positive class represents the 'Malicious label'.

The meaning of metrics used in Table 5.3 has already been given in

Table 4.4. Confusion Matrix that gives us the distribution of True Positives

(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) is

given below in Figure 5.6. The confusion matrix clearly highlights negligible

FN and FP during the test dataset evaluation.

Detection of Malicious Webpages Using Deep Learning: Structured Data

90

Figure 5.6: Confusion Matrix

AUC-ROC metric denotes the area under the Receiver Operating

Characteristic curve. This metric gives the probability of ranking a random

positive sample vis-a-vis a random negative sample. The AUC graph is given

below in Figure 5.7. The high AUC value (0.9967) shows that the DNN model

is capable of distinguishing classes with negligible errors.

Figure 5.7: AUC-ROC Graph

5.4.3 Execution Time and Computational Resource

Time and computational resources used are essential factors in gauging

any machine learning solution. Training time for 1 million records over 40

Epochs was 175.96 mins, which is impressive keeping in mind the high training

time requirements of deep learning. This is the time taken on a 2.5Ghz Intel i5

CPU, without using any GPU, parallelization, or distributed computing. If these

techniques are used, training time will come down further. What is essential is

that the testing time per sample is less compared to other ML models

[130][133]. The test time per sample is 14 . If we consider the time for

preprocessing each sample (for example, preparing one sample from each

TP = 12764 FN= 38
TPR = 0.997 FNR= 0.003

FP = 551 TN = 550646
FPR = 0.001 TNR = 0.999

Detection of Malicious Webpages Using Deep Learning: Structured Data

91

webpage being visited by a browser), we get a total time of 264 . Total time

will vary based on the size of the webpage. Further, network delay has not been

factored in this calculation. Such fast response in testing makes this trained

DNN model suitable for deployment on Internet Browsers or other platforms

for real-time maliciousness check.

5.4.4 Analysis

Analysis of training and validation results clearly show that the model

was well trained without overfitting. The trained model gave a high accuracy

of 99.81%, which surpasses the results of other machine learning models used

until now to detect malicious webpages. The negligible False Negatives and

False Positives, high Precision and Recall values substantiate the model's

capability to produce accurate decisions with minimal false alarms.

5.5 Conclusions
This work provides a functional interdisciplinary approach to use deep

learning in the field of web security. While other ML techniques have been used

to detect malicious webpages, the use of deep learning in this field has been

largely unexplored. It was seen that deep learning performs better than earlier

ML models in the detection of malicious webpages. The deep learning model

has outperformed previous models not only in accuracy, precision, and recall,

but also in test response time. The performance of this model makes it suitable

for real-time web security solutions on the Internet.

With respect to scope for further work, this DNN model may be deployed

on a browser like Google Chrome or Mozilla Firefox using a plugin to provide

real-time detection of malicious webpages while browsing. Also, the use of

'Tensorflow.js' [150] can be explored for training and running this model

directly on the web browser. Lastly, we used structured data for deep learning.

It would be interesting to know how the accuracy and response time changes

with the use of unstructured data as input to the deep learning model, for

example, feeding the web content directly to the DNN. We explore this in the

next chapter.

