

Chapter 6: Detection of Malicious
Webpages Using Deep Learning:

Unstructured Data

6.1 Background

6.1.1 Inspiration

 As seen in the previous chapter, the ever-increasing and evolving web

platforms pose a daunting task for the security experts trying to outsmart the

hackers and prevent any web-based attack. But, with 1.7 billion websites active

on the Internet and hundreds getting added each minute, this is a complex and

challenging task [151]. In the last chapter, we presented a deep learning model

to detect malicious webpages using structured web data. This technique may

face scalability challenges with the ever-evolving nature of new websites. To

overcome such limitations in detecting malicious webpages, we have developed

another deep learning model which uses unstructured web content.

We hypothesize that using unstructured data will allow deep learning

models to scale better and help in unearthing new patterns that could not have

been discovered using structured data.

Deep learning and Natural Language Processing (NLP) research have

reported significant developments in the last decade. We attempt to leverage

this potent combination to detect malicious websites more efficiently and

effectively and handle ever-evolving web attacks better.

6.1.2 Webpages Analysis: Structured vs Unstructured Data

This chapter uses unstructured data as input to the deep learning models,

extracting relevant information directly from raw web content, including

JavaScript. The choice of unstructured web content over structured data as an

input was discussed in the previous chapter and needs to be delved further into

before we proceed ahead. Deep learning models have this unique ability to learn

from either structured or unstructured data. However, while training

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

93

unstructured data, we need to process it into coded vectors. On the other hand,

structured data requires limited processing while training. Thus, unstructured

data may be computationally more expensive to use vis-à-vis structured data.

However, it has been observed that unstructured data in deep learning can

unearth new patterns that complement the patterns obtained by analyzing

structured data. With unstructured data, we get the added advantage of

scalability (simplicity and modularity of the design facilitate scalability) and

the ability to handle evolving web content (as data is not tied to any specific

feature set, it can manage any new textual content). Not only this, our results in

this chapter demonstrate that using unstructured data, we have been able to

achieve better accuracy, precision, and recall as compared to structured data.

6.1.3 Overview

We propose a hybrid two-stage deep learning model. The first stage

(Stage-I), which is unsupervised, comprises three layers of LSTM blocks

(Autoencoders) for encoding the text. This is followed by the second stage

(Stage-II), which is supervised, comprising four hidden layers of feed-forward

supervised training. The output of three unsupervised layers in Stage-I is a fixed

20-dimensional vector that feeds into the Stage-II of supervised learning. In

Stage-II, the four dense layers feed into the output layer, which gives the

probability of webpage being malicious or benign. The proposed hybrid deep

learning model could achieve a high classification accuracy of 99.89% with

very low False Positives (FP) and False Negatives (FN) (specify the FP and FN

rates also). The contribution of this work can be summarized as:

 Hybrid deep learning model for identifying malicious webpages

with high accuracy, precision, and recall.

 The capability of detecting zero-day web attacks. In zero-day

attacks, the vulnerabilities that have not yet been made public are

utilized by hackers to penetrate systems. Security systems

designed using deep learning detect malicious activities based on

patterns. Thus they can detect zero attacks whereas, signature-

based systems fail to do so.

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

94

 Scalability and ability to handle evolving content on the Internet.

The rest of the chapter is structured as follows:

 Section 6.2 discusses related work. Section 6.3 describes the hybrid deep

learning model. Section 6.4 analyzes the results. Section 6.5 explores the scope

for future work, and Section 6.6 concludes with a discussion on the model's

capabilities.

6.2 Related Work

The conventional ML algorithms used in Chapter 4 could not achieve

accuracy higher than 99% and suffered from high false positives and negatives.

The DNN based approach using structured data proposed in Chapter 5

improved the classification metrics significantly; however, it still left scope for

further improvements, especially with regards precision and F1-score. Apart

from the works carried out in the previous chapters and discussed before in the

thesis, few more research papers need our consideration. Vinaya et al. extracted

features for classifying malicious URLs using CNN, LSTM, and RNN [153].

While they explored feature extraction techniques for such a task, they did not

provide an end-to-end solution. Wang et al. proposed an algorithm for

expressing the similarity of web content with malicious pages using LSTM

[154]. However, their model underperformed on recall and precision metrics.

Shrivastava et al. used deep learning for web page classification; their model

suffers from complexity, high FP, and FN [155]. It is evident from the literature

that the use of unstructured data for webpage classification lies largely

unexplored, and it is this gap which we intend to plug. The model proposed in

the chapter also attempts to overcome the limitations of existing models while

bridging the identified gap.

Before we present the proposed hybrid deep learning model, it is

imperative to highlight advances in text analytics and NLP, which have helped

our hybrid model achieve the desired accuracy. Contextualized text

representation has scaled new heights recently. Using unsupervised deep

learning, it has become possible to encode text effectively into vectors

representing the context well. Accurate deep learning models can be built using

such well-represented vectors, which can then be used for downstream tasks.

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

95

These models have been used extensively in review, feedback, sentiment

analysis, etc. ELMo [156], Transformers [157], BERT [158], and Universal

Sentence Encoder [159] are some of the recent and popular text embedding

models. ELMo stands for 'Embedding from Language Models'. It is different

from traditional word embedding, in which a token is assigned a representation

based on the entire sentence. Thus, it gives a contextual representation of each

word. It uses bidirectional LSTM trained on a large corpus of text. Transformers

are a non-recurrent sequence-to-sequence encoder-decoder model that uses the

attention mechanism. BERT (Bidirectional Encoder Representation from

Transformers) gives a bidirectional representation of text, using both right and

left context. Universal Sentence Encoder provides a mechanism for encoding

sentences into embedding vectors of fixed length. For Stage-I unsupervised pre-

training, we have developed a customized text encoder using the best

capabilities of both ELMo and Universal Sentence Encoder.

6.3 Hybrid Deep Learning Model
The model proposed in this chapter uses LSTM (Long Short Term

Memory is a type of RNN that connects previous information with the present

data input) based Autoencoder (AE are used for unsupervised learning of codes

from data, and it helps to represent data in reduced dimensions) for Stage-I

unsupervised encoding, and Deep Neural Network (DNN) for Stage-II

supervised classification. In this section, we propose and describe this model.

6.3.1 Hybrid Deep Learning Model

The design is a two-stage model, with stage-I being an unsupervised

stacked LSTM autoencoder for encoding web content and JavaScript. This

autoencoder is trained with random web content and JavaScript to encode data

into fixed numerical codes (20-dimension vector). Stage-II of the model is a

supervised DNN to classify webpages as malicious or benign. The trained

encoder from Stage-I is utilized in Stage-II for encoding inputs (webpages) to

the DNN.

The design of the hybrid deep model for classification is illustrated in

Figure 6.1.

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

96

Figure 6.1: Hybrid Deep Learning Model

6.3.2 Stage-I: Unsupervised LSTM Autoencoder

 Before understanding the Stage-I process, it is imperative to understand

the need for a text encoder. Before the data is fed into the DNN model, it has to

be represented as a vector. The accuracy of encoding textual data by encoder

will determine the efficacy of the overall ML process. Hence, in NLP, it is

essential to get a precise representation of text in numerical codes. Another

question that arises is the necessity of pre-training a new encoder model for this

work and why an existing generic encoder was not used (Generic encoder

models can be found on sites like TensorFlow Hub [160]). Existing encoder

models from previous research were trained on generic text, and they could not

achieve the desired accuracy for our application. Web content, especially

JavaScript, has a unique vocabulary not found in generic text encoders, and

therefore, we designed and trained our bespoke encoder.

STACKED
LSTM

ENCODER

STACKED
LSTM

DECODER

 CODE

STAGE-I
Pre-training an

Autoencoder for
Web Content
& JavaScript

Encoding

OUTPUT

Matching Output with Input &
Reducing Error with Training

STACKED LSTM
ENCODER

Pre-trained
Saved Model

CODES

(Vectorized Features)

INPUT
WEBPAGES

DEEP NEURAL
NETWORK

(DNN)

CLASSIFICATION
OUTPUT

(Malicious / Benign)

STAGE-II

Classification of
Webpages as

Malicious/Benign
using Supervised

Training

INPUT
RANDOM TEXT &

JAVASCRIPT

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

97

6.3.2.1 Dataset for Unsupervised Training
Before understanding the autoencoder design, let us understand its

intended input which is a dataset of random web content and JavaScript from

the Internet, consisting of 1 million samples. This dataset is different from the

dataset used in Stage-II and is used exclusively for unsupervised pre-training

of the autoencoder. This dataset is published online on Kaggle to facilitate

further research [161].

6.3.2.2 Autoencoder Design
In Stage-I, a stacked LSTM autoencoder is trained to encode web content,

and JavaScript found on webpages into a fixed 20-dimensional vector, as shown

in Figure 6.2. Three layers of LSTM are used in the encoder and three in the

decoder. The autoencoder is trained to reproduce its own input, and its process

can be represented by Equations (6.1) and (6.2) given below.

The autoencoder is trained to reduce the difference between output and

input as represented by Equation (6.3). The training is carried out using

backpropagation and gradient descent algorithms. Backpropagation is an

algorithm for computing error gradients using the chain rule of differentiation.

At the same time, gradient descent is an optimization algorithm that minimizes

loss function by iteratively moving in the direction of steepest descent.

Once the autoencoder is trained on the dataset, the encoder is detached

from the decoder and is saved separately for Stage-II input encoding. This

encoder model, which is pre-trained and saved, can accept a variable-length text

(containing both web content and JavaScript code) and produce a reduced

dimensional (summarized) 20-dimensional vector.

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

98

Figure 6.2: Stage-I: Unsupervised Pre-training AE for Web Content & JS Encoding

6.3.3 Stage-II: Supervised Training

6.3.3.1 Dataset for Supervised Training
Stage-II model accepts unstructured web content as input. Dataset of

unstructured web content was prepared by crawling and scraping websites on

the Internet using our bespoke web crawler, MalCrawler [67]. Collected raw

web content was cleaned to remove stop words, punctuations, HTML tags, etc.,

while JavaScript code in the web content was retained. The obfuscated

JavaScript code, if any, was de-obfuscated using 'JavaScript Auto De-

Obfuscator' (JSADO) [74] (De-obfuscation code has been published online

[162]. JavaScript Obfuscation is the process of scrambling/ encrypting code

with an aim to make it difficult for human understanding. Generally, it is used

INPUT
RANDOM TEXT &

JAVASCRIPT

Pre-processing Pipeline
(Cleaning, removing

punctuation & stop words)

WORD TOKENIZING & PADDING

EMBEDDING LAYER

LSTM LSTMLSTM LSTM

LSTM LSTM

LSTM LSTMLSTM LSTM

LSTM LSTM LSTM LSTMLSTM LSTM

ENCODED TEXT

REPEAT VECTOR

SOFTMAX OUTPUT LAYER

LSTM LSTM LSTM LSTMLSTM LSTM

LSTM LSTM

30

20

50

20 CODE VECTOR

20

30

50

MAX LENGTH

MAX LENGTH

DIMENSIONS -50

PRE-
TRAINED

ENCODER
USED FOR
STAGE-II

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

99

to protect intellectual property in software codes. However, occasionally, it is

used by hackers to hide malwares.). The 'label', which gives the class of the

webpage as malicious or benign, was added in the dataset using Google Safe

Browsing API [61]. The cleaned dataset, comprising 1.564 million records, was

packed into a CSV file with features as shown in Table 6.1 (refer to F1 and F10

attributes in Table 3.2 of Chapter 3).

Table 6.1: Attributes in Dataset File (DNN with Unstructured Data)

Attribute Attribute Description
url URL of the webpage {Datatype- Text}

content Cleaned web content and JavaScript
(Obfuscated JavaScript is de-obfuscated)
{Datatype- Text}

label Classification label categorizing webpage as
malicious or benign {Datatype- Categorical}

Further details on the dataset, pre-processing, and visualization have been

given in Chapter 3 and Appendix A of the thesis.

6.3.3.2 DNN Design
Stage-II carries out supervised training for webpage classification. The

encoder model, which was pre-trained in Stage-I, is utilized in Stage-II for

encoding webpages (input) using Transfer Learning (it is a process in which a

trained and saved model is used for a second task). The output of this encoder

is a fixed 20 code vector, which is further fed to four dense layers of DNN, as

shown in Figure 6.3. Two Dropout layers [140] (it is a technique of randomly

dropping nodes from training) were added in the model for regularization (it is

the process of reducing overfitting). This DNN is a feed-forward network

trained using 'Gradient Descent' with 'Binary Cross Entropy' as cost function

(this function measures the performance of the ML model). The gradient

descent algorithm works in two directions. In the forward pass, it computes

errors, and in the backward pass, it computes error gradients using

backpropagation and amends parameters accordingly [164]. RELU activation

was used for all neurons in all hidden layers. In contrast, Sigmoid activation

was used for the final DNN output  

.

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

100

Figure 6.3: Stage-II: DNN Model for Classification

The process of training using gradient descent has already been described

schematically in Figure 5.2 in the previous chapter. Input to DNN model is

represented by vector X= [x1, x2, , xn]. From the second layer to the fourth

layer, inputs to neurons are activation outputs from the previous layer, e.g.,

inputs to layer is given by vector . Weight

vector to neuron in layer is represented by ,

while bias for neuron in layer is . As shown by Figure 5.2 in the last

chapter, Affine function gives the weighted sum of inputs coming to the

neuron.

For input layer, the equation is represented as,

STACKED LSTM ENCODER
(Pre-trained Saved Model from Stage I)

CODES
(20 VECTORIZED FEATURES)

INPUT
WEBPAGES

Pre-processing Pipeline
(Cleaning, removing punctuation

& stop words)

128

64

32

16

y=1
(Benign)

y=0
(Malicious)

Output
Class Labels

Activation
RELU

Activation
RELU

Activation
RELU

Activation
RELU

Activation
Sigmoid

L1

L2

L3

L4

INPUT
LAYER

DROPOUT
LAYER

DROPOUT
LAYER

OUTPUT
LAYER

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

101

Affine function feeds into the activation function, which for layer one to

four (is a RELU as represented by Equation (6.6), and for output layer

() is a Sigmoid depicted by Equation (6.7).

During training, tuning of parameters W and b is carried out. In the

forward pass, the error is computed by comparing predicted output and target

output t using binary cross entropy loss function E.

Thereafter, backpropagation [165] is carried out, wherein error

contribution of each parameter and in the network towards total loss E is

computed through gradients. Using the chain rule of differentiation, partial

derivatives are calculated successively backward from output to input. In this

model, error gradient with respect to in last layer () is,

Solving partial derivative using Equation (6.8),

Solving partial derivative using Equation (6.7),

Solving partial derivative using Equation (6.4),

Using Equations (6.9) to (6.12),

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

102

Similarly, chain rule is used to compute error gradient with respect to

in last layer,

Computing partial derivative using Equation (6.4),

Using Equations (6.10), (6.11), (6.14) and (6.15),

Equations (6.13) and (6.16) give us error gradients with respect to

parameters in last layer (only a single neuron exists in last layer, thus,).

Computation of error gradients with respect to parameters in lower layers

requires recursive application of chain rule as part of back propagation

algorithm. For the third layer (), error gradient with respect to is given as,

The first two partial derivatives have been computed in Equations (6.10)

and (6.11), and the third is calculated using Equation (6.4),

Solving partial derivative of RELU activation in layer 3 using Equation

(6.6),

Using Equation (6.4),

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

103

Using Equations (6.10), (6.11) and (6.17) to (6.20),

Similarly, error gradient with respect to in the fourth layer is given by,

Using Equation (6.4),

Using Equations (6.10), (6.11), (6.17) to (6.19), (6.22) and (6.23),

Moving further backward, up the layers, gradients with respect to

parameters of layer 3 are computed recursively based on derivatives of layer 4,

and so on. Since layers 1 to 3 use RELU activation like layer 4, equations can

be built up similarly as shown above and thus are not discussed further. This

backpropagation, as described above, is carried out for all input samples.

Thereafter, loss function E is minimized over all n input samples X, using a

variant of gradient descent called 'Adam'. Adam algorithm uses partial

derivatives computed during backpropagation to find out global minima of loss

function with respect to W and b. This successive tweaking of W and b leads

to minimization of loss function over inputs X, expressed mathematically as,

W and b are tweaked in batches using a learning rate which signifies

step-size during descent. For this DNN model, was found suitable.

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

104

6.3.3.3 Class Imbalance in Data

The issue of class imbalance has already been discussed in the thesis in

Chapter 3 (refer to Figure 3.2) and in section 5.3.5 of the previous chapter. So,

like in the previous chapter, we have used modified weights for this DNN model

to handle class imbalance.

{wt0- Weight of Negative Class, wt1- Weight of Positive Class, total-

Total Number of Samples, neg- Number of Negative Samples, pos- Number of

Positive Samples}

6.3.3.4 Convergence in Training
While training a large dataset with imbalanced classes, convergence time

to reach minima of the cost function is high. To reduce convergence time, we

have used 'Initial Bias' [166] based on class weights as given in Equation (6.30).

Applying the above equation, initial loss decreased manifold and thus

resulted in faster convergence.

6.3.3.5 Tuning of Hyperparameters
In deep learning, the correct selection of Hyperparameters (these are

values that control the machine learning process) is essential to train an accurate

model. These suitable values are generally arrived at by persistent trial and

error. In our experimentation, we used the Grid Search [167] technique to find

appropriate values of Hyperparameters.

6.3.4 Experimental Setup

The hybrid model has been implemented using Python libraries -

TensorFlow [147] (it is an open-source ML platform in Python that Google

released), Keras [148] (it is a deep learning library in Python), NumPy (it is a

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

105

Python library that provides functions for vector calculus) and Skikit-learn

[168] (it is a ML library in Python and in this model it was used for tuning

hyperparameters using grid search). For the generation of result graphs,

TensorBoard (it provides visualization of TensorFlow results) and Seaborn (a

data visualization library based on Matplotlib) were used. Code for Stage-II was

written to run on GPU (it was used as computations involved matrix

multiplications, which is more efficient on GPU vis-à-vis CPU). In contrast, for

Stage-I, Tensor Processing Unit (TPU) [169]was used to meet large processing

requirements of stacked LSTMs. TPUs are Application Specific Integrated

Circuits (ASIC) developed by Google for high-speed deep learning. However,

with minor modifications, this code can be run on either CPU, GPU, or TPU.

Code for complete setup as listed below (written in separate Jupyter Notebooks)

is published on Kaggle to facilitate reproducibility and further research.

 Code for Stage-I pre-training using stacked LSTM encoders [170].

 Code for Stage-II classification using DNN [171].

 Code for tuning of Hyperparameters [172].

Results of training, validation, and testing of this hybrid model are given

in the subsequent section.

6.4 Results and Analysis

6.4.1 Stage-I (Pre-training of Autoencoder)

The Autoencoder in Stage-I was trained on a dataset comprising 1 million

random samples of web content and JavaScript (Note: Dataset used in Stage-I

for training the autoencoder differs from Stage-II). Autoencoder was trained to

100 Epochs, with successive reduction of loss as plotted in Figure 6.4. Once

trained, the autoencoder could achieve an accuracy of 98.83%. After training,

the encoder was detached and saved for Stage-II input encoding. This encoder

outperformed other generic text encoders in encoding web content and

JavaScript.

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

106

Figure 6.4: Loss for Stage-I Unsupervised Training

6.4.2 Stage-II (Classification of Webpages)

6.4.2.1 Training and Validation Results
Stage-II model was trained on 0.9 million samples, validated on 0.1

million samples, and evaluated over a test dataset of 0.564 million samples. The

DNN network was trained over 100 epochs with early stopping (with patience

set to 50). The accuracy over the epochs (during training and validation) is

plotted in Figure 6.5. It may be noted that the 'Early Stopping Algorithm' stops

the training early once metrics have stabilized (Patience decides the

stabilization point), and it restores the best metrics reached before exiting the

session.

Figure 6.5: Training and Validation Accuracy

It can be seen from Figure 6.5 that training accuracy lagged validation

accuracy. This behavior is attributed to 20% dropout implemented for

regularization during training (20% dropout will randomly switch off

neurons, thereby reducing training performance). Since dropout is used only for

training and not for validation and testing, training accuracy lags validation and

test accuracy. Similarly, Binary Cross Entropy validation loss over the training

Epochs is plotted in Figure 6.6.

Training Accuracy
 Validation Accuracy

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

107

Figure 6.6: Validation Loss

The previous section had highlighted the role of initial bias in faster

convergence during training (refer Equation (6.30)). The plot of training with

and without initial bias is shown below in Figure 6.7. The plot clearly brings

out that loss dropped rapidly with initial bias, and after that converged faster.

Figure 6.7: Impact of Initial Bias

6.4.2.2 Test Evaluation Results
The trained model was evaluated on a test dataset that comprised 0.367

million samples. The result of this evaluation is shown below in Table 6.2. An

accuracy of 99.89% during evaluation vindicates the effectiveness of this

hybrid model in the classification of malicious webpages. This notion is further

reinforced by high precision, recall and F1-score.

Table 6.2: Evaluation on Test Dataset (Hybrid DNN with Unstructured Data)

Metric Value
Accuracy 0.9989

Recall (TPR, Sensitivity) 0.9979
Specificity (TNR, Selectivity) 0.9999

Precision (PPV) 0.9957
NPV 1.0000

F1 Score 0.9968
*Note: Positive class represents the 'Malicious label'.

Validation Loss (Zero Bias)
Validation Loss (Initial Bias)

 Validation Loss

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

108

The meaning of metrics used in Table 6.2 has already been given in

Table 4.4. The confusion matrix is given in Figure 6.8. The matrix clearly

highlights negligible FNR and FPR during the evaluation of the test dataset.

Figure 6.8: Confusion Matrix

AUC-ROC (Area Under Curve- Receiver Operating Characteristic)

metric gives the probability of ranking a random positive sample vis-a-vis a

random negative sample. The AUC graph is plotted in Figure 6.9. The high

AUC value shows that this hybrid model can clearly distinguish the two classes

with negligible errors.

Figure 6.9: AUC-ROC Graph

6.4.3 Utilization of Computational Resources

Analysis of computational resources utilized is an important

consideration factor in ML. As discussed earlier, the Stage-I model is designed

using LSTMs; thus, its complexity is . For Stage-I, BERT [158] model was

also considered based on its good performance in generic text encoders;

however, it was not used due to its high computational requirements

(complexity was Stage-II model is a feed-forward DNN, whose

TP = 12776 FN = 27
TPR = 0.9979 FNR = 0.0021

FP = 55 TN = 551142
FPR = 0.0001 TNR = 0.9999

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

109

complexity is The complete hybrid model took 665.55 mins to train over

100 Epochs (312.25 mins for Stage-I and 353.30 mins for Stage-II). The test

time per sample was 997 (Stage-I code was run on Kaggle with a TPU v3.8:

8 Core, 16 GB RAM. Stage II code was run on Kaggle Server with

configuration: CPU- Intel Xenon 2.2Ghz, GPU- Nvida Tesla P100, RAM-

16GB.). However, if we consider pre-processing time per sample (e.g., time for

preparing a vectorized sample from each webpage visited by the web browser),

then the total time per sample is 1.3 (this is an approximate value and the

total time will vary based on the size of webpage and network delays.).

6.4.4 Analysis and Inference

If we analyze the training and validation accuracy, it emerges that the

model is adequately trained without overfitting. The model has given an

accuracy of 99.89%, which surpasses all existing models for malicious

webpage classification. High accuracy has been achieved while keeping very

low FP, FN, and high precision and recall metrics. These values substantiate

the capability of the proposed hybrid model in detecting malicious webpages

precisely.

6.5 Future Work
With regards to scope for future work, the work presented in this chapter

offers various options, as listed below:

 Stage-I model used a stacked LSTM network with fixed 20 code

output. We had kept feature output limited to 20 to avoid

overloading of computational resources. However, higher

encoding outputs (64, 128, etc.) may be explored if adequate

computational resources are available. Theoretically, higher

code output should improve accuracy further. Also, few other

designs apart from LSTM, like Transformers [157], BERT

[158], etc., may be explored to improve results.

 This model can be deployed as a web browser plugin to detect

malicious webpages. Also, 'Tensorflow.js' [150] may be used to

train and run this model directly from the browser.

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

110

6.6 Deployability of Solutions Proposed

Solutions in part I and II of the thesis were proposed keeping in mind the

current requirements in web security. These solutions have been designed and

developed to be deployed without further significant development efforts.

MalCrawler: MalCrawler has been used extensively in the thesis for

crawling and gathering webpages. MalCrawler, which is a Java-based

application, has run for months on the Internet without interruptions. The

crawler is ready to be deployed for any focused crawling task related to web

security and can be utilized by Internet search and cybersecurity

firms/organizations.

Trained ML Models for Web Security Predictions: The thesis has offered

various ML models for webpage prediction, each with its strength and

weakness. For e.g., DNN based model with structured data input proposed in

Chapter 5 gives a good time response albeit with reduced accuracy. The hybrid

DNN model presented in this chapter offers good prediction accuracy, although

with reduced time response. These models can be chosen based on the

deployment requirements and be integrated into existing solutions or deployed

as standalone applications. For e.g., malicious webpage prediction models can

be integrated into a browser using a plugin. Such a browser plugin with a trained

ML model can be developed with a small development effort. Furthermore,

these ML models can be used for creating newer solutions using the concept of

Transfer Learning [228]. In Transfer Learning, a pre-trained model is used as

the starting point for a new model.

6.7 Conclusions

In this chapter, we introduced a hybrid deep learning model to classify

webpages as malicious or benign. The model used a two-stage hybrid design.

Stage-I was a LSTM Autoencoder pre-trained to vectorize input web content

and JavaScript into fixed 20-dimensional output. The trained encoder from

Stage-I was used to encode webpages at the input of Stage-II. The stage-II

model was a four-layer supervised DNN trained to classify webpages as benign

or malicious. The results achieved in this research have outperformed previous

Detection of Malicious Webpages Using Deep Learning: Unstructured Data

111

studies in various metrics like accuracy, FP, FN, precision, and recall.

Therefore, this solution is suitable for various web security requirements that

demand satisfactory performance over standard evaluation metrics.

