

Part III:
Machine Learning Based Solutions for

Security
of Mobile Platforms

Chapter 7: Understanding and Mitigating Threats from Hybrid Apps Using

Machine Learning (ML)

Chapter 8: Android Web Security Solution Framework Using Cross-device

Federated Learning (FL)

Chapter 7: Understanding and
Mitigating Threats from Hybrid
Apps Using Machine Learning

7.1 Background
The previous part (Part-II) focused primarily on browser-based security

using ML. Part III (Chapters 7 and 8) proposes solutions to web security

problems related to mobile devices. In this chapter we use conventional

Centralized ML for hybrid apps security on mobile platforms. In the thesis, we

have used the Android mobile platform for experiments. However, it may be

noted that the proposed solution can be applied to other mobile operating

systems as well with minor adaptations.

 The Android platform has emerged as the most popular computing

platform with more than 2.5 billion devicesworking globally, and this platform

is rapidly expanding and evolving [173]. These devices include mobiles and

tablets, even Android Auto modules in cars, various Android versions running

on Televisions, watches, and a host of other smart devices. Application

developers have to keep abreast with this ever-evolving ecosystem of Android

devices, and competing platforms like iOS and Windows Phone. Android

developers are responding to this challenge of supporting multiple platforms

through hybrid apps, which allow HTML content to be displayed within an

Android app. On the Android platform, hybrid apps use the WebView

component to provide the same functionality as web browsers, albeit with

complete customizability concerning how and what content is displayed. This

allows developers to write platform-neutral code in HTML and JavaScript,

which is displayed on any device irrespective of its operating system or its

version. Further, it makes updates simpler as the developers merely update the

content on the central web server. These capabilities have made hybrid apps an

obvious choice for multi-platform applications like Facebook, Twitter,

Instagram, etc. Latest survey indicate that hybrid apps constitute approximately

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

114

30% of the Android app ecosystem, while the remainder 70% comprises native

apps [174]. Moreover, this share of hybrid apps is likely to increase in the

coming years.

While convenient, this customized browser component called 'Android

WebView', which is used for making hybrid apps, can pose security challenges

as the Web Content, in particular JavaScript code, is allowed to interact with

Android Application Program Interface (API). Android APIs are software

modules used for the development of apps. The code accesses various platform

functionalities using this API. Android WebView has a feature in which

JavaScript can invoke Java code on the Android platform through a registered

interface. While this is extremely useful functionality for hybrid apps, this

opens an avenue for malicious exploitation. This offers loopholes for injection

attacks that may be mounted by websites being visited, or Cross Side Scripting

(XSS) based exploitation, or through man-in-the-middle attack on unsecured

HTTP connections (In XSS, malicious JavaScripts are injected into a trusted

website by a hacker by exploiting a vulnerability of the dynamic web platform,

thereby compromising all browsers that access this website). In this chapter, the

security architecture of Android WebView using ML has been analyzed. The

assessment of various attributes using software tools and customized Python

software has been carried out. This analysis has been carried out on hybrid apps

currently hosted on the Google Play store. The study could help identify

vulnerable hybrid apps hosted on the store. Such a security analysis of hybrid

apps using ML is unprecedented. Highlights of the work presented in the

chapter are listed below:

 An Android app named 'WebView Tool' was developed and published

on the Google Play store to understand better the WebView component

and its exploitation by JavaScript-based injection attacks.

 Identified vulnerable hybrid apps hosted on the Google Play store.

 Corrective measures have been suggested to improve hybrid app

security implementations.

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

115

 Another Android app named 'WebView Monitor' has been designed and

developed to monitor the working of hybrid apps on the Android

platform. This app raises alerts during untrusted privilege escalation or

when malicious JavaScript is download.

7.2 Related Work and Research Gap
While significant research has been carried out on Android security, very

less work has been published on security problems associated with hybrid apps.

Most of the work remains confined to the private domain of Google Labs and

various cybersecurity and anti-virus companies. Some relevant published work

related to the security of hybrid apps is discussed below.

Wagner and Chin were amongst the first to discuss WebView

vulnerabilities [175]. They discuss only two types of vulnerabilities - excess

authorization and cross side scripting. Other vulnerabilities are not covered in

their work. Further, the analysis and modeling of attacks were not covered in

depth. Bao et al. have also discussed cross side scripting based attacks on

Android hybrid apps [176]. However, the work remained restricted to a

particular attack vector and did not cover other security issues of hybrid apps

or their mitigating measures. Wei et al. have tried to understand JavaScript

vulnerabilities in Android apps [177]. They also proposed a static analysis tool

called JSDroid. However, the work remained restricted to static analysis of

JavaScript code. Rizzo et al. have discussed a technique of evaluating the

impact of code injection attacks in WebViews using flow-based analysis [178].

However, flow-based analysis has lower accuracy compared to ML analysis

used in this work. Jianjun et al. [179] and Song et al. [180] have discussed how

WebView induces bugs into Android apps. However, they did not include many

commonly known JavaScript bugs in their research. Sexton et al. have proposed

a model for an end-to-end information flow control for hybrid apps [181].

However, their work was restricted to enforcing confidentiality policy in hybrid

apps. Tongxin et al. in their research on cross-app remote infections on mobile

WebView (XAWI), have described a unique kind of attack that can manifest

when two WebView based apps run on an Android platform and interact with

each other [182]. Mohsen et al. have studied JavaScript injection attacks on

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

116

WebView-OAuth SDK [183]. WebView-OAuth is a method of authorization

that provides login ability to hybrid apps based on a username and password.

Their work was limited to this particular attack technique and did not discuss

other attack vectors. Imamura et al. have provided a mechanism of WebView

access monitoring on Android platform [184]. However, they achieved it by

loading WebView with modified source code on the Android platform. Their

proposed architecture fails to meet the user aspirations of a simple mechanism

that can monitor and alert malicious WebView activities. A simple WebView

monitoring app which overcomes the shortcomings of the monitoring app

developed by Imamura et al. has been proposed and developed in this chapter.

It is clear from the literature review given above that there is a need to do

a comprehensive analysis of hybrid apps security. We have proposed ML

solutions for the same in coming sections.

7.3 Understanding Hybrid Apps & WebView
Component

7.3.1 Hybrid Apps and Android WebView

Hybrid apps are mobile applications that allow content from websites to

be handled and shown on different mobile OS platforms. On the Android

platform, hybrid apps use the WebView component to provide web content

handling functions akin to a browser. It renders HTML content and runs

JavaScript downloaded from the Web Server. Though it is not a full-fledged

Web Browser, it is used extensively in Android apps to handle web content as

it provides more flexibility than regular browser engines. Popular apps like

Facebook, Twitter, and Instagram use WebView for displaying their content.

Such apps are known as hybrid apps because they make the best use of both

web technology and Android native application framework. These features

make hybrid apps extremely popular. It is for this reason that a large number of

hybrid apps currently exist on Google Play Store.

It is pertinent to note that WebView is preinstalled in all Android

platforms by default. Before Android 4.4 (KitKat), Android WebView used the

Webkit engine [185]. Since Android 4.4, the WebView component is based on

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

117

the Chromium Open Source Project [186]. The latest WebView component

shares the same rendering engine as Chrome, thus making rendering consistent

between Chrome Browser and WebView [187]. Till Android version 5.0

(Lollipop), WebView was updated as part of the system update; versions after

that have been moved to an APK, allowing it to be updated separately.

7.3.2 Understanding WebView Class

The WebView component is available as a class in Android SDK [188].

The WebView Class extends the AbsoluteLayout Class and shows web content

in the Android app's Activity Layout (Activity Layout provides User Interface

to Android app). Android SDK provides two more classes, viz.,

WebViewClient, and WebSettings, which are used to customize WebView

[189]. While WebSettings handles various permissions and settings of

WebView, WebViewClient is the event handler of WebView that specifies the

page navigation behavior of WebView. Table 7.1 below summarizes the

WebView Class.

Table 7.1: Summary of the WebView Class

Class Methods Description

WebView

loadData()
loadUrl()
loadDataWithBaseURL()

Renders the Web Data

getSettings() Gets the Settings Manager
setWebViewClient() Sets the Event Handler
addJavascriptInterface() Adds a JavaScript Interface for

the interaction of JavaScript
Code with Java Code

WebViewClient shouldOverrideUrlLoading() Web Page Navigation

WebSettings

setJavaScriptEnabled() Enabling JavaScript Execution
setAllowFileAccess()
setAllowFileAccessFromFileURLs()
setAllowUniversalAccessFromFile
URLs()

File Access based on various
Zones

7.3.3 Development of Hybrid Apps Using WebView Class

WebView is added to an app by either adding the <WebView element>

in the Activity Layout or by setting the entire Activity Window as WebView in

the onCreate() function. For loading a URL in WebView, the loadUrl()

function is called. A sample code snippet below describes this step.

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

118

WebView myWebView = new WebView(activityContext);
setContentView(myWebView);
myWebView.loadUrl("https://www.bits-pilani.ac.in");

The setJavaScriptEnabled method of WebSetting is used to enable

JavaScript on WebView using the code snippet below.

WebSettings webSettings = myWebView.getSettings();
webSettings.setJavaScriptEnabled(true);

The setAllowFileAccess(boolean) method is used to enable or disable file

access within WebView. Similarly, setAllowFileAccessFromFileURLs

(boolean) decides if the JavaScript code running in the context of file scheme

URL can access other file scheme URLs, and setAllowUniversalAccess

FromFileURLs(boolean) determines access of JavaScript to different scheme

URLs (file, HTTP, HTTPS).

The addJavaScriptInterface(Object, String) method allows JavaScript to

interact and run Java Code Object attached. This allows JavaScript to invoke

functions of the Java Object, and through this Object, it can call other Java API

on the Android platform.

7.3.4 Vulnerabilities: Enabling and Using JavaScript
Interface

JavaScript is disabled by default in Android WebView. But, for working

with interactive web pages using client-side scripts, JavaScript has to be

enabled. This, however, leaves the platform vulnerable to JavaScript-based

injection attacks. Frequently, developers, to provide rich functionality in their

Android app, use the addJavaScriptInterface() method to permit JavaScript

interaction with Java code. This functionality enrichment comes at the cost of

making the Android platform vulnerable to malicious JavaScript. A malicious

JavaScript can use an Android app's permission to cause serious compromise

of the complete Android platform. Such vulnerabilities in hybrid apps have

been analyzed using ML in the next section.

https://www.bits-pilani.ac.in

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

119

7.3.5 'WebView Tool' Android App

As mentioned earlier, an Android app named 'WebView Tool' has also

been developed and published on Google Play Store [190] to understand better

the various facets of WebView and how JavaScript-based injection attacks

exploit it. The source code for this app is available on Git Hub [191].

7.4 ML Based Solutions for Hybrid Apps Security

This section describes the use of ML in the security analysis of hybrid

apps. In particular, the following tasks have been carried out:

 Identify ML attributes that are good predictors of a vulnerable hybrid

apps; thereby identifying characteristics of a vulnerable hybrid app.

 Assess the vulnerability of hybrid apps presently hosted on Google Play.

 Make recommendations for improving the security architecture of

hybrid apps based on the characteristics identified through ML.

7.4.1 Methodology

We have used SVM (Support Vector Machine) to analyze and classify

hybrid apps on Google Play. Various tools were used for this experiment, and

custom code was written in Python to integrate them. SCIKIT-LEARN [168]

platform was used for running the SVM Classification. JADX Disassembler

[66] was used for disassembling the Android apps. Downloading of relevant

app APKs (APK - Android Package Kit, it is the format in which Android apps

are distributed) from the Internet and processing of datasets was done using

customized Python code.

For classification, a training dataset was required, which comprised of a

known list of benign and malicious Android apps. This dataset was prepared

from the following sources - Android Malware dataset 2017 (CICAndMal2017)

[62], Android Application dataset for Malware Application [192] and Android

Anti Malware dataset [193]. As these data sources did not have a common set

of attributes, these datasets were processed using customized Python code, and

suitable attributes were added and deleted. Attributes not available in these

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

120

datasets were extracted after downloading the APKs of these apps from a mirror

of Google Play named 'APK Combo' [65]. Google Play does not permit

downloading of APKs by bots. Thus, we used a Mirror site that permits

downloading using bots. The list of attributes is given in Table 3.4 of chapter

3. The training dataset prepared from this process comprises 78,767 samples.

As the number of malicious apps in these samples are a mere 2.3% of the dataset

size, the dataset is skewed. To overcome inaccuracies related to ML in a skewed

dataset, oversampling of minority class was carried out using ADASYN [144].

ADASYN- is an algorithm for generating synthetic

samples of minority class based on existing minority observations.

For preparing the test dataset, the current hybrid apps available on Google

Play were downloaded using the 'APK Combo' mirror site [65]. A total of

34,708 hybrid apps available on Google Play were downloaded for this purpose.

These downloaded app APKs were then disassembled using JADX

Disassembler [66]. The disassembled code was then parsed using customized

Python code to extract relevant attributes for creating the test dataset. It is

pertinent to note that the test dataset is unlabeled as we intend to use the trained

model to gauge vulnerabilities in the test dataset of live Google Play apps.

Further details on the training and test dataset are given in Chapter 3

(preliminary analysis and visualization) and Appendix B (pre-processing code).

After the datasets were prepared, a ML model was trained using the SVM
classifier with RBF Kernel. The choice of the SVM classifier was based on its
better performance over this dataset vis-a-vis other classifiers like Naive Bayes,
Decision Tree, etc. RBF kernel was used with SVM to better model non-
linearity in the multi-dimensional data space. As this classification problem has
two classes (malicious and benign), the SVM model builds a representation of
data points in space separating the two classes with a hyperplane, with the
margin made as wide as possible. For data points [(,... (] in the
dataset, where, denotes a multi-dimensional point (Twelve-dimensional
vector in this dataset), denotes the Class (malicious: -1, benign: 1), and the
size of the training dataset (78,767 samples in this dataset), the hyperplane de-
limiting the SVM model is given by equation (7.1),

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

121

where, is the normal vector (unit direction vector), and b is a constant
depicting the offset of the hyperplane from origin. For a soft margin non-linear
data distribution, the SVM classifier tries to maximize the margin by reducing
equation (7.2) as given below,

where, is a parameter that gives the tradeoff between increasing margin
or ensuring lies to the correct side of the margin. For handling non-linearity
in multi-dimensional space, we used the Radial Basis Function (RBF) kernel as
given in equation (7.3),

where is a hyperparameter that is tuned with grid search to ensure that
our SVM model is well fitted to training data. Python-based SCIKIT-LEARN
[168] platform was used for SVM classification. The trained classifier was then
run on test dataset to check the vulnerabilities of hybrid apps found on Google
Play. The test results are discussed in subsequent sections. Schematic
representation of the complete ML process described above is given in Figure
7.1.

Figure 7.1: Schematic Diagram Describing the ML Process

 INTERNET
Google Play

Store

Existing Datasets of
Malicious and Benign Apps

Processing for Creating
Training Dataset

(Customized Python Code)

Processing for Creating
Test Dataset

(Customized Python Code)

JADX Disassembler

Downloading Latest Hybrid
Apps from Google Play

Store

Training Dataset
(Known List of Malicious

and Benign Hybrid
Android Apps)

Test Dataset
(To Identify Vulnerable
Hybrid Android Apps on

Google Play Store)

SVM Classification with RBF Kernel
(Using SCIKIT-learn Platform for Machine Learning)

Results

APK Combo
(Mirror Site)

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

122

7.5 Results and Analysis

7.5.1 Training and Validation

The dataset (78,767 samples) was split randomly into training and

validation datasets (80% for training- 63014, 20% for validation-15753). The

trained SVM classifier was tested for its accuracy by running validation. The

hyperparameters were tuned using grid search to avoid overfitting. Table 7.3

below gives the validation results.

Table 7.2: Validation Results of ML on Hybrid Apps

Metric Value
Accuracy 0.9986

Recall (TPR, Sensitivity) 0.9976
Specificity (TNR,

Selectivity) 0.9996

Precision (PPV) 0.9832
NPV 0.9999

F1 Score 0.9904
*Note: Positive class represents the 'Malicious label'.

High accuracy of 99.86% vindicates the effectiveness of this model in

detecting malicious hybrid apps. Precision, Recall and F1-score are also

impressive. The meaning of metrics used in Table 7.2 has already been given

in Table 4.4. The confusion matrix is given in Figure 7.2. The matrix clearly

highlights negligible FNR and FPR during the evaluation of the test dataset.

Figure 7.2: Confusion Matrix after Validation

TP = 361 FN = 1
TPR = 0.9976 FNR = 0.0024

FP = 6 TN = 15385
FPR = 0.0004 TNR = 0.9996

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

123

7.5.2 Analyzing Active Samples from Google Play Store

After training and validating the SVM classifier model, the trained model

was run on a dataset comprising 34,708 samples from the Google Play store.

Results of the classification are given below in Table 7.4. As seen, 0.7% of the

34,708 apps downloaded from Google Play were found vulnerable.

Table 7.3: Classification Results- Hybrid Apps on Google Play

Total App
Samples in Test
Dataset

34,708

Hybrid Apps
Found Vulnerable

243 (0.7%)

Hybrid Apps
Found Safe

34,535
(99.3%)

7.5.3 Ranking of Attributes

Ranking of attributes was done using the 'Gain Ration Attribute

Evaluation' method to find the attributes that best predict vulnerable hybrid

apps. In this method, each attribute Ai is assigned a score based on information

gain between itself and the class [72] [194]. If A is the attribute and C is the

class, equations (7.4) and (7.5) below give entropy H before and after observing

the attribute.

The above method of ranking attributes was run on the SCIKIT-LEARN

platform [168]. Results of this attribute selection are shown graphically in

Figure 7.3. As can be seen from the ranking in Figure 7.3, A3, A4, and A10

are good predictors of hybrid android app's vulnerability. When tested, the top

three ranked attributes together gave an accuracy of 98.27%.

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

124

Figure 7.3: Attribute Ranking Based on Classification Accuracy

7.5.4 Interpretation of Results and Inferences

Based on the above analysis, the following aspects can be interpreted and

inferred:

 A large number of Android hybrid apps are hosted on Google Play store.

Few of them have design vulnerabilities, which could not be detected by

Google Play Protect. Google Play Protect is a Google Security Program

for Android apps. It checks all apps hosted on Google Play Store. Also,

it checks Android devices for any potentially harmful app downloaded

from other sources. Google Play Protect's inability to detect

vulnerabilities is possible because these apps are not malicious ab initio,

but are vulnerable to JavaScript-based injection attacks only at runtime.

0 25 50 75 100

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

Classification Accuracy (%)

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

125

In this experiment, about 0.7% of Android apps downloaded from

Google Play Store were found to be vulnerable. This is a significant

number, which cannot be ignored. Thus, there is a critical need to avoid

such vulnerabilities by Android developers while writing hybrid apps.

Further, Google Play Protect should also incorporate a mechanism to

check and identify such potential or active vulnerabilities.

 During experiments, it was also found that Google Play Protect cannot

check such vulnerabilities dynamically during the runtime of these

hybrid apps. Such a capability is necessary for preventing any runtime

exploitation. One such background monitoring app for the Android

platform has been developed and discussed in the subsequent section.

This app can detect any malicious activity by running dynamic runtime

analysis of WebView component of Android platform.

 It emerges from the attribute ranking that attributes A3

(JavaScript_Interface_Defined), A4 (Access_to_ SystemCalls), and

A10 (JavaScript_Input_Validation) are the best predictors of

vulnerabilities in hybrid app. This means that hybrid apps in which

JavaScript Interface is defined and code permits access to system calls

are most vulnerable. Further, hybrid apps that have implemented

JavaScript input validation methods are benign and safe.

7.6 Recommendations for Improving Security Of
Android Hybrid Apps

7.6.1 Recommendations for Android App Developers

Based on the experiments above, the following measures are

recommended to be implemented by Android Developers.

 Do not enable JavaScript until it is required.

 If JavaScript is enabled, then write additional code to carry out

JavaScript input validation. In the validation process, look for functions

that are generally associated with malicious JavaScripts [72], viz.,

eval(), find(), unescape(), open(). Further, write validation code for

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

126

obfuscated JavaScripts as they are more likely to conceal malicious

behavior [194]. Validation code should be able to analyze obfuscated

JavaScript after carrying out de-obfuscation.

 If JavaScript is enabled, then limit the use of JavaScript Interfaces,

which can interact with Android code. Try replacing the dynamic

JavaScript Interactions with pure Android code, which can do the same

task. This may reduce some flexibility but will significantly improve

security.

 When perforce JavaScript access to Android code has to be given, limit

access to a specific Class or API. Avoid access to System Calls. Also,

do not give access to code or API which has inter app permissions.

 Whereever feasible, use Chrome Custom Tabs [86]. Chrome Custom

Tab is a new feature supported on the Android platform since 2015,

which permits the launch of Chrome browser from inside the app.

Though it lacks the flexibility of WebView, it can be used to create

WebView like experience. The added security advantage which it

provides is that it uses Google Safe Browsing to protect users from

dangerous sites [61]. Google Safe Browsing is a service provided by

Google for Chrome Browser, GMail, Google Ads, and Google Search

that checks URLs against a known list of malicious URLs before

opening the link.

7.6.2 Recommendations for Android OS Platform

Based on the experiments, the following changes or additions are

recommended in the Android OS platform.

 There is a need for stricter checking of apps that are being uploaded on

Google Play. Especially, apps need to be checked for runtime behavior

before being accepted as safe.

 Google Play Protect is presently not capable of monitoring hybrid apps

dynamically during their runtime. There is a need for such dynamic

monitoring to be implemented on the Android platform. One such app

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

127

for dynamic background monitoring has been implemented as part of

this work and is discussed in the next section.

 The Android runtime is recommended to be upgraded to permit only

limited Android API access to JavaInterfaces. The remaining access

should seek explicit user permission before execution.

 It is recommended that Google Safe Browsing API is made mandatory

in WebView on the lines of Chrome Tabs [86]. It would then ensure that

WebView cannot open sites marked as unsafe by Google Safe Browsing

[61].

 Android Runtime is recommended to be upgraded to include a feature

wherein Android Code access is limited to the domain, which was

initially used in registering the JavaScript Interface. Any redirection

away from this domain should be denied by Android Runtime.

7.7 App For Monitoring WebView Vulnerabilities
An Android app named "WebView Monitor" has been developed to

monitor hybrid apps. This app runs silently in the background and monitors the

following WebView related activities:

 Enabling of JavaScript.

 Instantiation of defined JavaScript Interface.

 JavaScript downloaded from the Internet is parsed by this app. During

parsing, it looks for signatures of common JavaScript-based injection

attacks.

This app is designed to trigger the following alarms:

 An alarm is raised when JavaScript code interacts with Android code.

 An alarm is also raised when JavaScript downloaded by WebView has

signatures similar to known injection attacks.

The architecture of the "WebView Monitor" app is given in Figure 7.4.

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

128

Figure 7.4: The "WebView Monitor" App

The source code of the app is available at Git Hub [195]. The performance

of this app was tested by installing and running ten vulnerable Android hybrid

apps. During the test, the app performed well and gave alarms for actions that

could have exposed the Android mobile to JavaScript-based injection attacks.

7.8 Scope For Future Research
Suggestions which can take the research further are,

 A similar study can be conducted for the iOS platform. The iOS

platform is used by mobiles and tablets manufactured by Apple Inc.

After Android, it is the second most popular platform globally, based on

the number of users. The iOS has an equivalent of the WebView

component of Android; it is called 'UIWebView' [196]. The analysis of

hybrid apps on the iOS platform using 'UIWebView' can be carried out

on similar lines.

 This work had used the 'SVM' for classifying hybrid apps. With recent

advances in deep learning, researchers may explore it for the

classification of hybrid apps. Further, deep learning has the capability of

ANDROID OS

INTERNET
Web Service/ Website

Hybrid Apps

(Using WebView)

Dynamic
Runtime

Monitoring

Native Libraries
(WebKit, WebView,etc)

Background App

Monitoring WebView
Vulnerability

Android Runtime

Android Mobile Phone/ Tablet

Understanding and Mitigating Threats from Hybrid Apps Using Machine Learning

129

carrying out feature extraction from raw disassembled APK code, which

may be utilized by the researchers.

 FL [197] has emerged as a popular technology for distributed ML which

does not require data from individual sites/mobiles to be uploaded on a

central server or cloud. This feature of FL preserves privacy of data as

data never leaves the site/mobile. We present a FL model for Android

web security in the next chapter.

7.9 Conclusions
The Android platform, by virtue of a large number of users across the

globe, is a preferred target of hackers. On the Android platform, hybrid apps

are quite popular on Google Play store. Hybrid apps are generally preferred by

developers when cross-platform services have to be provided simultaneously

on the web and various mobile OS platforms like Android, iOS, etc. While

many hybrid apps exist on Google Play store, and many are being developed,

not much work has been done to study hybrid apps security holistically. This

work is an initiative in this direction. In this chapter, we have described the

security architecture of hybrid Android apps. The Android WebView

component used in hybrid apps has been discussed in detail, bringing out its

security vulnerabilities. An Android app named 'Web View Tool" has been

developed to facilitate a better understanding of WebView Security. Apart from

this, we have analyzed various JavaScript-based attacks on Android hybrid apps

and have used a ML model to detect them with high accuracy. Based on this

analysis and experimental findings of the ML process, we have recommended

threat mitigation methodologies. As assessed by carrying out testing on random

samples, these mitigation techniques can reduce the vulnerabilities

significantly. Also, we have developed an Android app that can monitor and

detect malicious activities of hybrid apps. The study carried will help us better

understand hybrid app security and facilitate identifying vulnerabilities.

Further, it will help us monitor hybrid apps and prevent them from indulging in

any malicious activity.

