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Learning 

L

wherein data from various sites/devices is transferred to a central server or 

cloud.  ML models are trained at the central server and then communicated back 

to sites/devices for deployment. There are two major problems with this form 

of machine learning. Firstly, the data needs to be communicated to the central 

server, resulting in high communication costs. In this era of Big Data, it can 

become a major bottleneck. Second, and most important is the fact that privacy 

is compromised when data leaves your device, machine, or organization. 

Federated learning (FL) has emerged as a very promising solution to both these 

problems. In FL, the data never leaves your device or organization. Only, the 

parameters of a trained local model are communicated to the federated learning 

server from each device. To make the system more secure, model parameters 

are encrypted using homomorphic encryption. Local models are aggregated at 

the central server to get the global model. The learning happens in several 

rounds till the aggregated global model achieves desired accuracy. In this 

chapter, we explore how FL can help in mobile security without compromising 

the privacy of users.  

8.1 Background 
The number of smartphones crossed the 3.5 billion mark recently, and 

this figure is estimated to grow rapidly [198]. Smartphone, being the most 

ubiquitous computing device universally, is one of the preferred security 

targets. The mobile computing platform's security is currently an active 

research area, with researchers using ML to detect new malwares and attack 

vectors. However, these conventional ML approaches are centralized, which 

require users to communicate data to a central server or cloud to enable analysis 
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and prediction of security threats. The main issue with a centralized approach 

is that users are not comfortable sharing their data due to privacy concerns. 

Moreover, communicating users' data from millions of devices to a central ML 

server requires large bandwidth. Currently, privacy concerns preclude the use 

of ML in mobile security. Till now, two approaches towards privacy-preserving 

ML were used. First, encryption-based methods represented by 'Secure Multi 

Party Computation (SMPC)' [199] and 'Homomorphic Encryption (HE)' [200]. 

Second, the perturbation method represented by 'Differential Privacy (DP)' 

[201]. Both use protocols to handle data transmission and result computation 

with data as ciphertext, thereby ensuring privacy. However, encryption and 

handling of ciphertext have huge computational overheads [200]. DP uses the 

mathematical theory of privacy through noise addition to data [202]. While it 

has fewer computational overheads as compared to HE or SMPC, it affects the 

model's prediction accuracy. Further, DP approach is different for various ML 

techniques, and it gets overly complicated for deep learning (DL) [202]. While 

still restricted by these shortcomings, only recently privacy-preserving ML has 

been deployed at scale [203] [204].  

This chapter proposes a FL [30] based mobile security solution which 

overcomes privacy concerns. The proposed solution is cross-device, which is 

characterized by a participation of a large number of mobile or IoT devices, 

decentralized data, and a centralized server that orchestrates the training to build 

a global machine learning model. Apart from addressing privacy concerns, the 

proposed solution exploits the computing power of millions of participating 

devices. The solution is thus scalable without requiring expensive computing 

infrastructure.  

A FL system is a single point failure system. If the FL server fails, the 

whole system fails. Moreover, the scalability of the system is dependent on the 

computational capability of the server. More powerful the server, the more 

scalable it can be. We propose a Hierarchical Federated Learning (HFL) system 

which makes FL fault tolerant and at the same time allows for increased 

scalability [205]. There is another important advantage that HFL offers. It 

allows us access to regional patterns at a desired level of spatial granularity. 

Regional patterns cannot be accessed in a single server FL architecture. The 

HFL based solution is presented in section 8.3.4. 
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Furthermore, considering cross-device FL's vulnerability to adversarial 

attacks [206], wherein a rogue remote client may attempt to poison the learning 

model to produce unexpected classification results, adversarial robustness has 

also been incorporated in this proposed FL model in section 8.3.3.  

Google introduced and exploited FL for improving its mobile keyboard, 

which transformed touch-typing  [207]. This work exploits this technology for 

proposing a decentralized mobile security solution. In the proposed solution, 

each mobile device temporarily stores its web browsing data and uses it to 

refine a skeleton Deep Neural Network (DNN), which is communicated to each 

mobile device by the central server. The refined model is then communicated 

back to the central server securely, where it is aggregated with models received 

from other mobile devices to get a global model. The global model is then 

shared with each mobile device for deployment and further incremental 

learning. On each mobile device, the  model is trained using a supervised 

DNN model, wherein the supervised classification labels ('malicious' or 

benign') for each webpage are computed using a security API. We may use an 

Antivirus API (e.g., Virus Total API [208]) or Google Safe Browsing API [61] 

for this labeling task. In this work, the Google Safe Browsing API [61] has been 

used. The complete solution runs on a mobile platform as an app. In this 

chapter, this is implemented and simulated on an Android platform. While this 

concept has been demonstrated on the Android platform in this work, this 

solution can be implemented on other platforms, like iOS or any cross-platform 

device. The solution proposed in this chapter will help enhance mobile security 

without compromising mobile users' privacy. 

The experimental setup for this work simulated thousands of mobile 

devices participating in this FL security model using a dataset of 1.2 million 

webpages distributed randomly amongst them in an idd (independent and 

identically distributed) manner. In addition to preserving users' privacy, the 

performance of the FL model is comparable with that of the corresponding 

centralized ML model. 

The rest of the chapter is structured as follows: related work is discussed 

in Section 8.2, Section 8.3 introduces the FL framework for Android web 

security, Section 8.4 discusses and analyses results, and lastly, Section 8.5 
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concludes with a discussion on the utility of model proposed and scope for 

future work. 

8.2 Related Work and Research Gap 
The work presented in the chapter brings together two areas of active 

research, viz. mobile web security and FL. The related work in these two areas 

is described in sub-sections 8.2.1 and 8.2.2. 

In 2017, Google Inc. proposed an innovative technology through their 

paper on decentralized deep learning [205]. They coined this new technique as 

'Federated Learning (FL)'. Over the last two years, Google has used this new 

technology to improve Android Keyboard suggestions, which revolutionized 

mobile touch typing  [207] [209]. In 2019, Bonawitz et al. discussed designs 

for large-scale FL in their paper  [203]. FL has also ushered in a new research 

direction in the healthcare domain by allowing multi-institutional collaboration 

without the need to share sensitive patients' data (Sheller et al. [210]). Li et al. 

[32] have presented a privacy-preserving brain tumor segmentation using FL in 

which multiple hospitals in the UK participated. Privacy-preserving data 

analysis has been studied for more than five decades. It is only in the past 

decade that solutions have been deployed at scale [204] [211]. Google has 

extensively used FL in the Gboard mobile keyboard [31][212][213][214] and 

Android messages [215]. While Google has pioneered cross-device FL, Apple 

is also using it in iOS 13 [216] for applications like the QuickType keyboard 

and the vocal classifier for Siri [217]. Snips has explored cross-device FL for 

hot word detection [218]. 

Recently researchers have gained interest in a variant of FL, named 

hierarchical FL (HFL), which facilitates further decentralization of the FL 

model with multiple servers replacing a central server. Lumin et al. [205] and 

Aidmar et al. [219] proposed such a HFL model and brought out the benefits of 

this implementation vis-a-vis a FL model. The convergence of HFL based 

solutions has been analyzed by Wang et al. [220]. We propose to use HFL to 

get country wise patterns and also to provide a more fault tolerant FL solution. 
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Conventional centralized ML has been used in the literature to develop 

mobile web security solutions. Singh et al. have used ML to identify threats 

emanating from hybrid Android apps  [221] (refer to Chapter 7 for details). 

They achieved this by learning threat patterns from a repository of disassembled 

Android apps. Similarly, Milosevic et al. [222] carried out a static analysis of 

Android apps using machine learning with two approaches: one based on the 

bag-of-words representation of source code and the second based on system 

permissions. Also, Li et al. used an application permission-based SVM 

classifier to detect malicious Android apps  [223]. Ma et al. took a deeper 

approach; they generated control flow graphs of Android apps and prepared 

three datasets- API calls, API frequency, and API sequence, and used these 

datasets for classification using an ensemble method  [224]. It is pertinent to 

note that all the work done till date has used a central repository of Android app 

codes or user data, which is primarily restricted due to user data privacy 

concerns [225]. As mentioned in Section 8.1, Secure Multi Party Computation 

(SMPC) [199] and Homomorphic Encryption (HE) [200] based encryption 

methods, and Differential Privacy (DP) [201] [202] based perturbations have 

been tried to overcome the privacy concerns of conventional ML. However, 

they suffer from computational overheads, complications, and loss of prediction 

accuracy; thus, they have not been utilized in the field of mobile security. 

From the literature, it is clear that there has been no work on mobile web 

security which provides a privacy preserving solution. This makes a case to 

leverage the advantages offered by FL in the field of mobile security.  

To the best of our knowledge, this is the first attempt to solve the Android 

web security problem using cross-device FL. 

8.3 Federated Learning Framework for Android 
Web Security 

This section proposes a FL framework for Android web security and 

describes its design and implementation. 
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8.3.1 Federated Learning (FL) 

FL is a novel technology that is quite different from conventional 

centralized ML  [226]. It uses a decentralized ML approach, where users' data 

on mobile devices is used to train ML models locally, and the update is shared 

with a centralized server over the network [227]. So, while conventional ML 

takes data to the model, FL takes the model to the data. This design overcomes 

privacy concerns regarding the user data that were prevalent earlier, since now 

merely the model is shared with the central server and that too in encrypted 

form. An implementation of secure aggregation proposed by Bonawitz et al. 

ensures that individual encrypted updates from phones are un-inspectable 

globally  [203].  

Currently, there are two variants of federated learning viz., cross-device 

and cross-silo. The major distinguishing factor between the two is the scale of 

operations. In cross-device, we can have up to 1010 clients, whereas in cross-

silo we can have anywhere from 2 to 100 clients which are typically 

organizations participating in a learning activity. Brain tumor segmentation 

example of cross-silo federated learning wherein many hospitals participated 

[32].  Apart from scale, the other major differences being client reliability and 

availability. In cross-device, both reliability and availability are low, whereas 

in cross-silo, both are high. Data partitioning is always example-partitioned 

(horizontal), while it could either be example-partitioned (horizontal) or 

feature-partitioned (vertical) in cross-silo. Mobile security fits the cross-device 

FL variant. Subsequent sub-sections describe how this technique has been 

adapted to improve Android web security. 

8.3.2 Design and Implementation 

A federated cross-device learning system has two loosely connected 

components, viz., the clients (Android mobile platform) and the central server. 

Numerous clients communicate with the central server over the Internet, as 

depicted in Figure 8.1. Some of the clients are rejected based on their 

connection, bandwidth, battery backup, etc. Rejected clients are told to come 

back later. The central server sends an initial model to each of the clients. Each 
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client is an Android mobile platform, which carries out incremental learning 

using the DNN model and computes a model update . This is shared 

over the Internet with the central server. If there are total n clients in a FL setup, 

only a small fraction c would be active any time (assuming these clients would 

participate in learning when the mobile's computational resources are idle and 

communicate model/update over a non-metered Wi-Fi connection to save 

communication costs).

Figure 8.1: A Typical Federated Learning (FL) Round

After receiving the updates from 'c.n' clients (where , 

denotes the fraction of clients participating in an update round), the central 

server performs aggregation to produce an aggregated global model. This 

updated model is then, in turn, shared with the clients, and the process repeats.

For any ML problem based on DNN, the loss on a prediction ( is 
computed as,

where, is the estimated output, is the target output, and w depicts 

model parameters of DNN (matrix containing both weights and biases. Please 
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note that here symbol 'w' denotes both parameters- weights, and biases.). With 

data partitioned over  clients, with  as data index of  client and 

, the federated averaging involving all the clients in the FL network can be 

given by equations (8.2) and (8.3).  

Equation (8.1) depicts the loss function, which is minimized to find 

appropriate w (model parameters) as part of the learning process on each client 

locally through equation (8.2). When all clients, after local learning, send their 

appropriate parameters w to the central server, they are averaged using equation 

(8.3).  

The FL topology has the client and central server processes running 

asynchronously. The client process is illustrated in Figure 8.2. The client 

process on the Android mobile is implemented using an app, 'FL-based Web 

Security app (FWS)', which has been developed for this work. When a client 

accesses a webpage using the inbuilt Chrome browser (or the WebView 

Component), the FWS apps stores the copy of the webpage locally in a 

database. Each webpage in the dataset is pre-processed to remove stop words 

and tags (however, the JavaScript code, if any, is retained). Since a supervised 

learning approach has been adopted, there was a need to label the webpage as 

either 'malicious' or benign'. This was done using the Google Safe Browsing 

API [61]. Alternately, the labels can also be learned using a local Anti-virus 

installed on the mobile. After a specific interval (e.g., a day or whenever the 

phone is idle, whichever is later), the prepared dataset is used to train the last 

updated global model received by the client. It is pertinent to note that the local 

dataset is ephemeral and is deleted after each local training cycle is completed. 

The model update  produced by local training is shared, after encryption, by 

the communication module to the central server. What is essential is that no 

other information, apart from the model parameters w, is communicated. The 

central server carries our federated averaging [30] using equation (8.3) and 

produces an updated global model, which is again pushed to the clients in the 

next round of learning. When a client gets the updated global model, it replaces 
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the last local model with the current global model. This cycle proceeds 

continuously, and the model keeps getting evolved over time. FWS app has a 

browser plugin, which uses the current model to predict whether the page being 

visited by the browser is 'malicious' or 'benign.' Thus, the browser helps in 

training the FL Android web security model, and in turn predicts webpage more 

accurately. This design makes FL Android web security architecture uniquely 

symbiotic and self-evolving.

Figure 8.2: Client Process

The DNN model used in the proposed framework is illustrated in Figure 

8.3. The locally labeled webpages dataset is fed to the input layer, a stacked 
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LSTM encoder that produces fixed 20-dimension output. The LSTM encoder 

has been implemented in this model using 'Transfer Learning' (In Transfer 

Learning [228], a pre-trained model is used as the starting point for a new 

model). The building block of this LSTM encoder was an autoencoder that had 

three layers in the encoder and three layers in the decoder. It was trained with 

web text and JavaScript to produce a fixed 20 code vector output for any 

variable length input. After training, the decoder was removed, leaving the 

encoder alone. This pre-trained encoder was then used in our model (using the 

concept of 'Transfer Learning' mentioned above) to encode the input. The 

detailed implementation and design of the LSTM encoder can be accessed 

online [229]. The output of this encoder is the input to the two-layer DNN. The 

advantage of using the DNN model, which makes it easy to use in FL, is that it 

can simply be represented by its parameters w (weights and biases).

Figure 8.3: DNN Model Used for FL Learning
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The trainable parameters in this model are shown in Table 8.1. These 

parameters are trained locally, shared with the central server, aggregated using 

Federated Averaging at the central server, and again shared back to the clients. 

Table 8.1: Layer Wise Tunable Parameters 

Layer 
# 

Layer 
(Type) 

Output 
Shape 

Parameter (w) # 

1 Input 
Embedding 

Layer 

20 Sized 
Vector 

-  

2 Dense 
(Hidden 1) 

32 46048 
(1438 x 32 Weights + 32 bias) 

3 Dense 
(Hidden 2) 

16 528 
(32 x 16 Weights + 16 bias) 

4 Output 1 17 (16 Weights + 1 bias) 

Total Trainable Parameters: 46,593 
 

Each client's data is split into 'B' batches and trained over 'E' Epochs. The 

training is done to reduce the loss function  given in equation (8.1). Since 

this is a binary classification problem, the Binary Cross Entropy loss, as given 

in equation (8.4), was used. 

The local training is carried out using Stochastic Gradient Descent (SGD) 

with learning rate . The local  model generated after training with SGD is 

thereafter shared with the central server for aggregating the model using 

federated averaging [205] described by equation (8.3). To further enhance 

security and privacy, secure aggregation (a class of SMPC) proposed by 

Bonawitz et al. [230], and differential privacy (DP) as presented by Abadi et al. 

[231] was implemented (these two were implemented as different solutions). 

Secure aggregation used homomorphic encryption to encrypt individual 

, which were aggregated at the Central Server in an encrypted form 

to produce the updated model. The DP solution used a 'Differentially Private 

Distributed Stochastic Gradient Descent' algorithm to compute the results at 

Central Server after introducing a small noise in s prepared by the 

clients. 
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The pseudo-code of the FL algorithm is given in Table 8.2. The algorithm 

has been implemented in Python and has been hosted online [232].  

Table 8.2: FL Algorithm for Android Web Security 

Process Algorithm Description 
Server 
Process 

(Running 
on Central 

Server) 

            #Federated Averaging 
Initialize parameters  #The initial global model [step 1] 
for each communication round t=0..1...t' do 
      
      # c=0.3 used in this experiment 
    for each active client k m in background do 
         #[step 2] 
     #Client Update (  received from each K clients 
                 #[step 3] 
   #New computed global model after averaging client updates    

Client 
Process 

(Running 
on a  

client k) 
 

             #Local Dataset Generation 
While Browser Process active do 
     Website Visted 
       

            
 

for local epoch from 1.. to E do 
    for batch  do 
         
return  (locally updated w) to server 
            #Prediction Plugin for Mobile Browser 
While Browser Process active do 
    Webpage visited                   
      #Prediction generated using currently updated  
      local model 

 

8.3.3 Adversarial Robustness of FL Model 

It is essential for FL models to be robust against poisoning attacks, as 

rogue clients can send poisoned  updates to the central server and thereby 

poison the aggregated output. Researchers have used many approaches to detect 

poisoning, viz., activation clustering [233], spectral signature [234], etc. 

However, these techniques are better suited to centralized ML and do not 

perform well in a FL environment. Cao et al. proposed the ensemble federated 

learning technique specifically for federated environment  [235]. But being 

computationally intensive, it unsuitable for a large federated architecture like 

the one proposed in this chapter. Thus, a novel method of detecting poisoning 

in FL models was proposed. The variance of the  model is computed from the 
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last updated model held with the central server in every update cycle. The 

variance is computed using trainable parameters of the DNN model as listed in 

Table 8.1. If the variance of a  model is above the threshold , then that model 

sent by the client is dropped before the update process. The appropriate 

threshold  is computed separately by training few models with poisoned data 

and a few with clean data and thereafter checking their variance. This technique 

has been implemented using the Adversarial Robustness Toolbox (ART) library 

[236], and the code for this implementation is shared online on Git Hub [237]. 

8.3.4 Hierarchical Federated Learning (HFL) Model 

Privacy, scalability, and reliability of a FL topology can be enhanced 

further by adopting a hierarchical topology with servers for aggregation at each 

level [205]. Privacy in HFL is enhanced further as each level (an organization, 

region, or country) can have its own server for aggregation [219]. For e.g., each 

hospital, office, region, or country can have its own aggregation server. 

Multiple servers also provide redundancy to the federated topology because if 

any server fails, the learning process still continues with the rest of the servers 

in the network. Also, with HFL, regional patterns can be identified by analyzing 

the model aggregated by each regional server. Further, HFL enhances 

scalability of the solution. 

Like FL, where the central server carries out Federated Averaging 

(FAVG), in HFL, it happens with each server. Servers lowest in the hierarchy 

carry out FAVG over the client  models, whereas servers higher in the order 

of the hierarchy aggregate the averaged models using Hierarchical Federated 

Averaging (HierFAVG) [205]. The global model converges over multiple 

communication rounds [220]. The topology of HFL used for mobile security 

has three tiers, as shown in Figure 8.4. The lowest tier represents the clients 

(Android mobiles). The second tier represents each country's server, and the 

third tier represents the global aggregator, which receives averaged models 

from each country's server. 
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Figure 8.4: Hierarchical Federated Learning (HFL) Topology

The HFL algorithm is given in Table 8.3. The code for this HFL 

algorithm based experiment is hosted online on Github to facilitate 

reproducibility and further research [238].

Table 8.3: Hierarchical FL (HFL) Algorithm for Android Web Security

Process Algorithm Description
Global 
Server 
Process

(Running 
on the 
Global
Server)

            #Hierarchical Federated Averaging
Initialize parameters #The initial global model [step 1]
for each communication round t=0..1...t' do
    for each active server k r in background do
       #[step 2]

     #Update ( received from each regional server
                #[step 3]

     #New global model computed after averaging updates from 
      regional servers   

Regional 
Server 
Process

(Running 
on each

Country's 
Server)

            #Federated Averaging
Initialize parameters based on model received from global 
server #The initial regional model [step 1]
for each communication round t=0..1...t' do
    #[step 2]
      # c=0.3 used in this experiment
    for each active client k m in background do
       #[step 3]

     #Client Update ( received from each K clients
              #[step 4]
   #New computed regional model after averaging client updates   

Client 
Process 

(Running 
on a 

             #Local Dataset Generation
While Browser Process active do
     Website Visted
     

Client Client Client.......
'n'

clients

Regional
Server

Client Client Client.......
'n'

clients

Regional
Server

Client Client Client.......
'n'

clients

Regional
Server

....... 
'r' 

Regional
Servers

Global
Server

HierFAVGLevel 3:
Global

Level 2:
Country

Level 1:
Mobiles
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Process Algorithm Description 
client k) 

 
            

 
for local epoch from 1.. to E do 
    for batch  do 
         
return  (locally updated w) to the regional server 
            #Prediction Plugin for Mobile Browser 
While Browser Process active do 
    Webpage Visited                   
      #Prediction generated using currently updated  
      local model 

8.4 Experimental Setup and Results 

8.4.1 Dataset 

Cross-device FL solutions typically involve millions of clients and are 

very difficult to test and validate over a live setup. Thus, this work has used 

simulation to test and validate the proposed solution. Since simulation requires 

a ready large dataset, the 'Malicious and Benign Webpages dataset' published 

by Singh et al. [163] [139] (refer to Chapters 3) has been used. The dataset 

contains 1.5 million webpages (web content including JavaScript), labeled as 

'malicious'/'benign.' It is pertinent to note that any web security problem, 

whether on a hybrid app running in a mobile or on a browser running in a 

desktop, ultimately boils down to analyzing webpages. Thus, we have chosen 

the webpages dataset for this FL based web security task. 

 For simulation, 80% of records (1.2 million samples) were selected as 

training data and split over n shards, representing federated dataset for n clients. 

The split was random to ensure independent and identically distributed (iid) 

variation in data [239]. To produce non-iid data (for comparison experiments 

with iid data), the data was first sorted into its two classes and then distributed 

amongst the clients ensuring uneven distribution of classes. It is essential to 

mention that any data taken for the web security task will be skewed since the 

number of malicious webpages on the Internet are just a tiny percentage 

compared to benign webpages. The solution to this has already been discussed 

in Chapter 6 in section 6.3.3.3.  We thus use modified class weights given in 

Equations 6.28 and 6.29 to overcome skewedness. Also, to improve 

convergence, we use initial bias for our setup as given in Equation 6.30. 
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8.4.2 Experimental Setup 

The DNN model presented in Section 8.3 was implemented using 

TensorFlow, an open-source ML platform in Python released by Google [147], 

and Keras [148], a deep learning library in Python that can run on top of 

TensorFlow libraries. FL algorithm and simulation were implemented using 

TensorFlow Federated (TFF) [240]. Algorithms that were not part of the 

standard library were coded in Python using NumPy. For generating results and 

analysis graphs, TensorBoard (a library that provides storage, retrieval, and 

visualization of machine learning results produced using TensorFlow), and 

Seaborn (a Python data visualization library) were used.   The code is written 

to run on CPUs. However, with minor modifications, it can run on mobile 

GPUs, thereby further improving its efficiency. The Google Colab platform 

was used for the experimentation. The code and the generated results are hosted 

online on Google Colab [232] and Git Hub [241]. Various metrics, viz., 

accuracy, precision, recall, F-score, etc., were evaluated as part of the 

simulation and are discussed in the next sub-section. 

8.4.3 Results and Analysis 

From the webpages dataset, (1.2 million) samples were taken for 

training. These were split between  clients, with an average  samples per 

client; the split was random to ensure iid behavior. The number of active clients 
for aggregation at the central server was taken as 30%, i.e., . Different 
values of  (Number of Clients),  (Number of training Epochs on each client 
using the local DNN model), (Batch size for training) were taken for federated 
training. After each communication round, the model aggregation was carried 
out at the central server, and the updated model was shared with the clients for 
the next round. For determining the test accuracy, a test dataset of size 0.363 
million was used, and test accuracy was determined after each communication 
round.  The results are plotted in Figure 8.5. As can be seen from the figure, 
the best accuracy was achieved for the set of hyperparameters (E=20, B=5, 
n=1000). This result could have been improved further by increasing E, the 
number of epochs on each client. However, this tendency was avoided because 
it was felt that any greater value would extract more computational time from 
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the client. Nonetheless, increasing E can be considered when adequate client
resources are available. 

Figure 8.5: Test Accuracy vs. Communication rounds
(with various values of E, B, & n)

FL model's performance has been compared with a similar conventional 
ML model trained with the same dataset (trained with complete d=1.2 million 
records using the same DNN model running on a centralized server). The results 
of this comparison are plotted in Figure 8.6. As expected, the convergence of 
conventional centralized ML solution is faster. 

Figure 8.6: Conventional Centralized ML vs. FL
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The class imbalance issue, highlighted in the previous section, was 

handled using initial bias as per equation (8.6) and class weights as per equation 

(8.5). Also, earlier in this chapter, the importance of iid vis-à-vis non-iid data

was discussed. The variation due to initial bias, class weight, and iid-data is 

illustrated by Figure 8.7, which plots test accuracy for all scenarios. 

Figure 8.7: Impact of Initial Bias, Class Wt & iid-data
(E=20, B=5, n=1000 for all scenarios)

The results for the best combination of FL training hyper-parameters 
(E=20, B=5, n=1000) are summarized in Table 8.4. The table also shows a 
comparison of these metrics' vis- à-vis a corresponding Centralized ML model.
The meaning of metrics used in Table 8.4 has already been given in Table 4.4.

Table 8.4: Evaluation of Test Dataset

Metric FL Centralized
ML*

Accuracy 0.9972 (99.72%) 0.9974(99.74%)
Recall  

(TPR, Sensitivity)
0.997 0.947

Precision (PPV) 0.771 0.800
F-Measure 0.869 0.868

The positive class is 'Malicious'. 
The total test samples were 0.36 million- malicious (3240), benign (356760). 
*Note: Metrics of centralized ML shown in this table are less than those in 
Table 6.2, as the DNN model used here is different. The DNN model chosen
here is such that it is akin to the light FL model running on the mobile. 
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From the comparison presented in Table 8.4, it can be seen that the 

performance of FL is comparable to that of the centralized ML for Android web 

security. Centralized ML model marginally performs better. However, the F1-

score is marginally better for FL. This marginal gap too can be covered up by 

the FL model if the number of epochs on clients are increased (For e.g., at 

E=100, accuracy touches 99.76%, though it comes at the cost of additional load 

on clients). 

Confusion Matrix is given in Figure 8.8 for both FL and centralized ML 

models. It emerges from the results that the FL model outperforms the 

conventional ML model in correctly classifying the 'malicious' class, i.e., 

malicious webpages (TPR of FL model is much higher than ML model). This 

suits our Android security requirements well, as higher TPR will ensure that no 

malicious webpage is ever wrongly classified as benign.  

 

Figure 8.8: Confusion Matrix FL vs. ML 

Section 8.3.4 had described the HFL variation that was tried as part of 

this experiment. The HFL experiment simulation was carried out with a three-

level structure. The first level of aggregation was carried out at the country 

level, i.e.,  models from clients within the same country was aggregated using 

Federated Averaging (FAVG). Thereafter, at the global level, models received 

from country servers were averaged using HierFAVG. Figure 8.9 shows the 

accuracy of the HFL model as compared with the FL model (refer to Figure 

8.5). 
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Figure 8.9: HFL vs. FL Accuracy Plot

A comparison of the confusion matrix of HFL vs. FL is given in Figure 

8.10. A minor underperformance in HFL is seen vis-a-vis FL, which is 

attributed to the slow convergence and presence of non-iid data in the first stage 

of aggregation using FAVG (at regional servers).

Figure 8.10: Confusion Matrix FL vs. HFL

It emerges from the results that the FL model performs as good as the 

conventional centralized ML model for the Android web security problem 

addressed. While the FL model's convergence is not as efficient as centralized

ML, it is not of much consequence in our distributed security architecture as 

there is no time-criticality. It is also evident that while the FL model fared well 

in F1-score and TPR, it fell just short in other metrics. These minor differences

in metrics can be bridged by further hyper-parameter tuning (e.g., changing E, 

B, n, etc.). However, it is pertinent to note that these minor shortcomings are 

far outweighed by the advantages that FL offers to the Android security model, 
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viz., privacy preservation, decentralized incremental learning, increased data 

availability for training, reduction of server load, and utilization of 

computational resources of the client. Further, we see from Figures 8.9 and 

8.10, FL slightly outperforms the HFL model. However, HFL provides 

additional benefits like fault tolerance, increased scalability and enhanced 

privacy. The choice between the two can be done based on the requirements. 

8.5 Deployability of Solutions Proposed  
Solutions in part III of the thesis were proposed keeping in mind the 

requirements in web security on mobile platforms. These solutions have been 

designed and developed for academic research. However, these can be 

deployed in live commercial settings or integrated into existing security 

solutions with minor improvements and upscaling. 

Hybrid Apps Solutions: Both 'WebView Tool' and 'WebView Monitor' 

apps are deployable. 'WebView Monitor' can be deployed commercially as a 

security app after further refinement. Furthermore, the functionality of 

'WebView Monitor' can be integrated into existing mobile antivirus apps with 

minor adaptations. The trained ML model for predicting hybrid apps 

maliciousness/vulnerability can be readily used by firms/organizations to test 

new android apps hosted on various online stores like the Google Play store. 

FL based Web Security Solution: The FL based cross-device web security 

solution proposed in this chapter is fully deployable. With suitable 

improvements, like integration of the FWS app (refer to Figure 8.2) with 

mobile browser and Android WebView, upscaling the central server 

application, it can be deployed in live settings. Likewise, the proposed 

hierarchical FL (HFL) solution is fully deployable after suitable improvements. 

8.6 Conclusion and Future Work 
This work has provided a privacy-preserving solution for Android web 

security using cross-device FL. Using a simulated environment, it has been 

shown that FL based Android security model is as good as the conventional ML 
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models in terms of standard metrics used for comparing the performance of 

classification models while dealing with class imbalance problems. 

Regarding future scope, while this work has used a supervised local 

learning technique, unsupervised learning may be explored as part of further 

research as it would reduce the dependence on any third-party app for data 

labeling. In the future, we plan to extend the work to iOS devices and thereby 

provide a seamless solution that will work for devices using any of the two 

popular platforms (Android & iOS). Further, the plan to build an Android 

security suite using FL may be explored, which will provide a comprehensive 

security solution for mobile devices. It will be capable of providing security 

from not just malicious web pages but also from viruses and intrusions. The 

possibility of developing a privacy-preserving browser security plugin may also 

be worthwhile to explore. 

 
 


