
Appendix A: Webpages Dataset

The details of experimental setup and code for reproducing the webpages

dataset is given in this Appendix.

The dataset was collected by scraping websites across the globe on the

Internet. MalCrawler [67], a special purpose focused crawler, was used for this

task (refer to Chapter 2 for more details on MalCrawler). MalCrawler [67] is a

preferred crawler for this task as it seeks more malicious websites than a

random crawl by any other generic web crawler. Further, it is a uniquely

designed crawler that does not get entangled in deep crawls or dynamic

websites. The data collected from the crawl was then processed to extract the

attributes, which have been described in Chapter 3. The basic information

captured during the crawl included IP address, URL, and web content. Other

attributes were thereafter extracted using customized Python Code. The choice

of attributes extracted for this dataset was based on its relevance in malicious

webpage classification, as brought out by Singh et al. in their paper [72] (refer

to chapter 4 for more details on attribute selection). The attribute 'url_len' was

computed from 'url' using the Python code given in Figure A.1.

The 'geo_loc' attribute, which gives out the country to which the IP

Address belongs, is computed from GeoIP Database [73], as given by the code

in Figure A.2.

import pandas as pd

Loading the raw data file into
Pandas Dataframe
df = pd.read_csv("raw_data.csv")

#Generating 'url_len' from 'url'
df['url_len']= df['url'].str.len()

Figure A.1: Code Snippet for Extracting 'url_len'

Webpages Dataset

157

Attribute 'js_len' is computed using the code given in Figure A.3. The

JavaScript code, enclosed within '<script>*****</script>' tags are identified

and extracted using regex function.

Attribute 'js_obf_len' requires decoding of the obfuscated JavaScript code

before computation. This decoding of obfuscated code is carried out using

'JavaScript Auto De-Obfuscator' (JSADO) [74] and Selenium Python library

[75]. Code for de-obfuscation is available at [76]. Attribute 'tld' is computed

from URL using the Python 'Tld' library [77]. Code snippet for this extraction

is given below in Figure A.4.

Loading the GeoIP Database
reader = geoip2.database.Reader('GeoLite2-Country.mmdb')

def geoloc(ip_add): #Function for Computing geo_loc
 geo_loc=""
 try:
 response = reader.country(ip_add)
 geo_loc = response.country.name
 except Exception as msg:
 geo_loc= ""
 return geo_loc

#Fill the 'geo_loc' column in df
 for x in df.index:
 df['geo_loc'][x]= geoloc(df['ip_add'][x]

reader.close() #Close the reader

import re #importing regex for string selection and parsing

def get_js_len_inKB(content): #Function for computing 'js_len from Web
Content
 js=re.findall(r'<script>(.*?)</script>',content)
 complete_js=''.join(js)
 js_len = len(content.encode('utf-8'))/1000
 return js_len

for x in df.index: #Computing and Putting 'js_len' in Pandas Dataframe

from tld import get_tld # Importing the tld library

for x in df.index:
 df['tld'][x] = get_tld(str(df['url'][x]),
fix_protocol=True)

Figure A.2: Code Snippet for Computing 'geo_loc'

Figure A.3: Code Snippet for Computing 'js_len'

Figure A.4: Code Snippet for Extracting 'tld'

Webpages Dataset

158

Attribute 'who_is' is computed with the WHOIS API [78] using the code
snippet shown below in Figure A.5.

Attribute 'https' is computed using the code shown in Figure A.6 below.

Class labels for this dataset have been generated using the Google Safe
Browsing API (refer to the sample code for generating labels below in Figure
A.7).

from urllib.request import urlopen # Importing url library
import json # Importing the JSON Module

url = 'https://www.bits-pilani.ac.in' #A sample URL
apiKey = 'at_YC7W9LM2w1lQOCMmN0KUe3OU7B8Jc'
url = 'https://www.whoisxmlapi.com/whoisserver/WhoisService?'\
 + 'domainName=' + url + '&apiKey=' + apiKey + "&outputFormat=JSON"

whois_data= urlopen(url).read().decode('utf8') #WHO IS info returned by
API
data=json.loads(whois_data) # Converting it from JSON to a Python Dict
Object
if data['registrarName']=="":
 who_is = 'incomplete'
else:
 who_is = 'complete'

import http.client # Import http client library

for x in df.index:
 https_status= False
 try:
 conn = http.client.HTTPSConnection(df['url'][x])
 conn.request("HEAD", "/")
 res = conn.getresponse()
 if res.status == 200 or res.status==301 or
res.status==302:
 https_status= True
 except Exception as msg:
 print(x,"Error: ",msg)
 finally:

df['https'][x]= https_status

KEY=
"AIzaSyABO6DPGmHpCs8U5ii1Efkp1dUPJHQfGpo"

s = SafeBrowsing(KEY)

for x in df.index:
 try:
 url = df['url'][x]
 r = s.lookup_urls([url])
 label=r[url]['malicious']
 df['label']=label

except Exception as msg:

Figure A.5: Code Snippet for Computing 'who_is'

Figure A.6: Code Snippet for Computing 'https'

Figure A.7: Code Snippet for Class Labels

https://www.bits-pilani.ac.in'
https://www.whoisxmlapi.com/whoisserver/WhoisService?'\

Webpages Dataset

159

The code used for generating and pre-processing this dataset has been

hosted online on the Mendeley repository [68] and Kaggle [79] to facilitate

future research.

Appendix B: Hybrid Apps Dataset

The details of experimental setup and code for reproducing the hybrid

apps dataset is given in this Appendix.

The dataset was compiled by collecting data from various datasets and

downloading and disassembling numerous Android APKs from multiple

sources using the JADX disassembler [87]. Datasets that were used include the

Android Malware dataset 2017 (CICAndMal2017) [62], Android Application

dataset for Malware Application [80], and Android Anti Malware dataset [81].

As these data sources did not have common attributes, these datasets were

processed using customized Python code, and suitable attributes were added and

deleted. Most attributes were not available in these datasets. Thus, they were

extracted from APKs downloaded from a mirror of Google Play named 'APK

Combo' [65], as Google Play does not permit downloading APKs by bots. For

Disassembling the hybrid apps downloaded from the 'APK Combo' mirror,

JADX Disassembler [87] was used.

The code for disassembling Android APKs using JADX disassembler is

given below in Figure B.1. The entire code (in Java) for using JADX

disassembler for disassembling APKs during the pre-processing step is hosted

on Github [84].

Figure B.1: Code Snippet for Disassembling APKs Using JADX Disassembler

private static int processAndSave(JadxArgs jadxArgs) {
jadxArgs.setCodeCache(new NoOpCodeCache());
jadxArgs.setCodeWriterProvider(SimpleCodeWriter::new);
try (JadxDecompiler jadx = new JadxDecompiler(jadxArgs)) {
jadx.load();
if (LogHelper.getLogLevel() ==

LogHelper.LogLevelEnum.QUIET) {
jadx.save();

} else {
jadx.save(500, (done, total) -> {
int progress = (int) (done * 100.0 / total);
System.out.printf("INFO - progress: %d of %d (%d%%)\r",

done, total, progress);
});

}
int errorsCount = jadx.getErrorsCount();

}
return 0;
}

Hybrid Apps Dataset

161

The Python code for checking usage of either Chrome Custom Tabs [86]

or WebView is given in Figure B.2. The code looks for instantiation of the

Chrome Custom Tab within the Android Code by searching for

'CustomTabsIntent.Builder', which is the code for instantiating it [88].

Figure B.2: Code Snippet for Checking WebView or Chrome Tab Usage

The Python code for checking whether JavaScripts are enabled for the app

is given in Figure B.3. This code looks for a WebView setting named

'setJavaScriptEnabled(True)' in the disassembled app code obtained from the

output of the JADX disassembler (refer to Figure B.1). The presence of this

setting confirms enabling of JavaScript within the WebView context [89].

Figure B.3: Code Snippet for Checking Whether JavaScript is Enabled or Not

The Python code for checking whether the JavaScript Interface was

defined in the app is given in Figure B.4. It is confirmed by looking for the

annotation '@JavascriptInterface' in the disassembled Android code [90]. This

annotation has to be present before a public method in the Android code to

become accessible to JavaScript on a webpage during runtime.

Checked by looking for substring
This substring is used to instantiate a
Chrome Custom Tab within Android Code

def check(string, sub_string):
 if (string.find(check_string) == -1):

 print("False")
 else:
 print("True")

disassembled_code = outputOfJADX # Feed the output of JADX here
Check_string =
check(disaasembed_code, Check_string)

Check for SetJavaScript Enabled settings in Disassembled Code

def check(string, sub_string):
 if (string.find(check_string) == -1):

 print("False")
 else:
 print("True")

disassembled_code = outputOfJADX # Feed the output of JADX here
Check_string =
check(disaasembed_code, Check_string)

Hybrid Apps Dataset

162

Figure B.4: Code Snippet for Checking JavaScript Interface

The Python code for checking whether access to system calls is permitted

or not in the app is given in Figure B.5. Access to system calls in an app can be

allowed by providing specific permissions in the '<user-permission>' attribute

of the 'AndroidManifest.xml' file [91]. These permissions, which can facilitate

access to system calls, are listed in the 'matches' variable in Figure B.5. The

code below looks for a match of these permissions in the 'AndroidManifest.xml'

file extracted from the disassembled app code.

Figure B.5: Code Snippet to Check Access to System Calls

Python code to check WebView permission for obfuscated JavaScript

code is given in Figure B.6. While WebView does not have a mechanism for

explicitly denying obfuscated JavaScript code, it can accomplish this through

two techniques. First, it can deny JavaScript altogether using the setting'

setJavaScriptEnabled(True)' as described through the code in Figure B.3;

however, it is not a preferred method as it disables even clear JavaScripts.

Second, it can search for obfuscated code and deny it from running. This search

for obfuscated code is generally done by checking for 'eval()' and 'regexp()'

Check for in Disassembled Code

def check(string, sub_string):
 if (string.find(check_string) == -1):

 print("False")
 else:
 print("True")

disassembled_code = outputOfJADX # Feed the output of JADX here
Check_string =
check(disaasembed_code, Check_string)

import xml.etree.ElementTree as ET
#Read the AndroidManifest.xml file from disassembled code
root = ET.parse("AndroidManifest.xml").getroot()
permissions = root.findall("uses-permission")
Permissions that can start access to a system call
matches = ["REQUEST_COMPANION_RUN_IN_BACKGROUND ",
"REQUEST_INSTALL_PACKAGES ", "
SIGNAL_PERSISTENT_PROCESSES", "INSTALL_PACKAGES "]

for perm in permissions:
 for att in perm.attrib:
 if any(x in perm.attrib for x in matches):
 print("True")
 else:

Hybrid Apps Dataset

163

functions in the code [92]. Code snippet which identifies apps in which

WebView uses the second technique is given in Figure B.6.

Figure B.6: Code Snippet to Check Permission for Obfuscated JavaScript

The Python code to check whether the Android code in

JavaScriptInterface is obfuscated or not is given in Figure B.7. Generally,

hackers would like to obfuscate Android code that is there in the

JavaScriptInterface. Figure B.7 brings out the code to identify such obfuscated

Android Code. It uses the trick that any obfuscated Android code in the

JavaScriptInterface will have special characters; thus, it looks for such special

characters in the code block.

Figure B.7: Code Snippet to Check for Obfuscation of JavaScript Interface Code

Figure B.8 gives the code to check whether WebView allows access to

URLs apart from the Web Server being visited. To open outside URLs that the

user clicks, the WebView instance must be provided with a WebViewClient

instance using the setWebViewClient() method [93]. Thus, the presence of the

WebViewClient instance can indicate this behavior.

#Read the disassembled code and look for the keywords
Keywords to be matched
matches = ["eval() ", "regexp"]

disassembled_code = outputOfJADX # Feed the output of JADX here

if any(x in disassembled_code for x in matches):
 print("True")
else:

print("False")

#Extract the JavaScript Interface Code from disassembled code
disassembled_code = outputOfJADX # Feed the output of JADX here
Define the start & end index of Android Code within the JavaScript Interface
start = disassembled_code.find("@JavascriptInterface") +
len("@JavascriptInterface")
end = s.find(";}")
android_interface_code = s[start:end] #This will give the Android Interface code

special_characters = "!@#$%^?~"
#These special characters are generally found in obfuscated code

if any(c in special_characters for c in android_interface_code):
 print("True")

Hybrid Apps Dataset

164

Figure B.8: Code Snippet to Check Permission for Outside URLs

The code to check whether the app uses Google Safe Browsing or not is

given in Figure B.9. The android platform can allow the use of Google Safe

Browsing API [61] by WebView. This feature is enabled by the

'setSafeBrowsingEnabled()' setting in the WebView code. The presence of this

setting is used to identify whether the Google Safe Browsing feature is being

used or not.

Figure B.9: Code Snippet to Check Whether Safe Browsing is Being Used or Not

The code to check whether the app uses HTTP or HTTPS to connect to

the server is given in Figure B.10. WebView uses the loadUrl() method for

loading URLs [94]. By checking the URLs being used in loadUrl(), the usage

of HTTPS can be ascertained.

Figure B.10: Code Snippet to Check Usage of HTTPS

#Get the disassembled code
disassembled_code = outputOfJADX # Feed the output of JADX here

match = "WebViewClient" # Defining the string to be searched

if any(x in match for x in disassembled_code):
 print("True")
else:

print("False")

Check for in Disassembled Code

def check(string, sub_string):
 if (string.find(check_string) == -1):

 print("False")
 else:
 print("True")

disassembled_code = outputOfJADX # Feed the output of JADX here
Check_string =
check(disaasembed_code, Check_string)

Check for HTTPS in loadUrl() method of Disassembled Code

def check(string, sub_string):
 if (string.find(check_string) == -1):

 print("True")
 else:
 print("False")

disassembled_code = outputOfJADX # Feed the output of JADX here
Check_string = loadUrl("https://
check(disaasembed_code, Check_string)

https://

Hybrid Apps Dataset

165

Figure B.11 gives the code to check whether the app is using JavaScript

validation or not. While WebView does not have a predefined function for

validation, it can validate using the evaluateJavascript() method of the

WebView class [95]. This trick is used to check if JavaScript validation is being

carried out by WebView or not.

Figure B.11: Code Snippet to Check the Usage of JavaScript Input Validation

Python code to check whether the app permits web redirection is given in

Figure B.12. Whenever Android WebView has to load a redirected URL, it has

to override the shouldOverrideUrlLoading() method [96]. The presence of this

method in the code is an indication that WebView is permitting the usage of web

redirections.

Figure B.12: Code Snippet to Check Whether Web Redirection is Permitted or Not

Figure B.13 gives the code to compute the length of the Android code

that is defined in the JavaScript Interface of WebView.

Check for evaluateJavaScript() in Disassembled Code

def check(string, sub_string):
 if (string.find(check_string) == -1):

 print("True")
 else:
 print("False")

disassembled_code = outputOfJADX # Feed the output of JADX here
Check_string = evaluateJavaScript
check(disaasembed_code, Check_string)

Check for shouldOverrideUrlLoading() in Disassembled Code

def check(string, sub_string):
 if (string.find(check_string) == -1):

 print("True")
 else:
 print("False")

disassembled_code = outputOfJADX # Feed the output of JADX here
Check_string = shouldOverrideUrlLoading
check(disaasembed_code, Check_string)

Hybrid Apps Dataset

166

Figure B.13: Code Snippet for Checking Android Code Length in JavaScript Interface

It may be noted that the Class Label was created using information about

the app being malicious or not, which was collected from multiple sources and

datasets [62][80][81] already available on the Internet.

The code used for generating and pre-processing this dataset has been

hosted online on GitHub to facilitate further research [84][85].

#Extract the JavaScript Interface Code from disassembled code
disassembled_code = outputOfJADX # Feed the output of JADX here
Define the start & end index of Android Code within the JavaScript
Interface
start = disassembled_code.find("@JavascriptInterface") +
len("@JavascriptInterface")
end = s.find(";}")
android_interface_code = s[start:end] #This will give the Android
Interface code

#Compute length of android_interface_code
def utf8len(s):
 return len(s.encode('utf-8'))/1000 #Length of string in KB

print (utf8len(android_interface_code)) # Print length in KB

Appendix C: Details of Software
Libraries and Tools Used

The details of software libraries and tools used for this thesis are given

below in alphabetical order.

 Adversarial Robustness Toolbox (ART) Library. ART [236] is a

Python library for ML security. It provides tools to evaluate, defend and verify

ML models and applications against adversarial threats. It supports Keras and

TensorFlow libraries (described later) and can be used along with them. In this

thesis, the ART library has been used for strengthening the FL model against

adversarial attacks (refer to Chapter 8).

 Android SDK. Android Software Development Kit (SDK) [242] is the

set of software development tools and libraries used to develop Android

Applications. In Chapter 7 of this thesis, Android SDK has been used to develop

two apps, viz., 'WebView Tools' and ' WebView Monitor'. In Chapter 8, it has

been used to develop the FL client app for the Android platform.

 Android Studio. Android Studio [243] is the Integrated Development

Environment (IDE) for the Android operating system. This IDE was used to

develop and test all Android apps that were created for this thesis.

 GeoIP Database. GeoIP database [73] provides the geographical

mapping of IP addresses. Using the GeoIP API, the country and city of an IP

address can be determined. In this thesis, it has been used for determining the

geographical location of webpages during the dataset preparation and pre-

processing stage (refer to Chapters 2 and 3).

 Google Colab ML Platform. Google Colaboratory (Colab) [244] is the

online platform for writing and executing Python code. It provides cloud

service based Jupyter Python notebooks. It supports various ML libraries and

is thus is used extensively for running ML Python code. It supports both CPU

and GPU. This platform has been used for running the FL simulation code in

Chapter 8.

Details of Software Libraries and Tools Used

168

 Google Safe Browsing API. Google Safe Browsing API [61] is a Google

service that permits the checking of URLs against a constantly updated list of

unsafe web sources. It has been used in this thesis for generating Class Labels

of webpages dataset for supervised ML (refer to chapters 2 and 3).

 HTML Unit Browser Emulation Library. The HTML Unit [53] is a

browser emulation library based in Java. It is used to emulate a Browser session.

Certain features can be tested only by emulating a Browser session, e.g.,

redirection, cloaking, etc. It has been used for such testing in Chapters 2 and 4

of this thesis.

 JADX APK Disassembling Library. JADX [66] is an Android APK

disassembling library. Given the dex code of an Android app, it produces the

Java source code of that app. In this thesis, it was used for disassembling

Android apps while preparing the hybrid apps dataset (refer to Chapters 2, 3,

and 7).

 JavaScript Auto De-Obfuscator (JSADO) Library. 'JavaScript Auto

De-Obfuscator' (JSADO) [74] is a JavaScript de-obfuscation library. In the

thesis, it has been used for de-obfuscating the JavaScript at the feature

extraction stage (Refer to Chapters 2, 3, 5 and 6).

 JSoup Parsing Library. The JSoup library [52] is a Java-based library

with web page parsing capability. This library has been used for parsing web

pages and extracting - hyperlinks, document content, and JavaScript tags during

the pre-processing stage (Refer to Chapters 2 and 3).

 JupyterLab IDE. JupyterLab [245] is a web-based Interactive

Development Environment (IDE) for Jupyter Notebooks. Jupyter Notebooks

are used for running the Python code and visualization. In this thesis, all Python

code used for ML has been written in Jupyter Notebooks in JupyterLab IDE.

 Kaggle ML Platform. Kaggle [246] is a cloud-based ML platform

hosted by Google for publishing datasets, building models, running and sharing

them with the community of data scientists. In this thesis, it has been used for

Details of Software Libraries and Tools Used

169

publishing the datasets and ML code developed as part of the work to facilitate

further research in the field of web security.

 Keras ML Library. Keras [148] is an open-source deep learning library

in Python. It acts as an interface for the TensorFlow library (refer to C.20 in

this Appendix). Apart from supporting ANN, it also supports CNN and RNN.

It supports utilities like dropout, normalization, etc. It supports CPU, GPU, and

TPU for ML training. In this thesis, it has been used for making the DNN

models discussed in Chapters 5, 6, and 8.

 NetBeans IDE and Profiler. NetBeans [247] is an Integrated

Development Environment (IDE) for Java. NetBeans has been used in this

thesis for developing all Java-based software within the scope of this thesis. For

example, it was used to develop the MalCrawler, which has been written in Java

(refer to Chapter 2). NetBeans also has a Profiler module that can measure the

CPU cycles and memory utilization while running the Java code. This profiler

has been used in Chapter 4 for profiling the attribute extraction and pre-

processing step (to compare the attributes).

 NumPy Vector Calculus Python library. NumPy [248] is a Python

library that provides functions for vector calculus, like handling of multi-

dimensional arrays and matrices. This library has been used for writing various

ML codes in this thesis.

 PostgreSQL Database. PostgreSQL [249] is an open-source relational

database management system that is SQL compliant. In this thesis, it has been

used for storing data during the data collection phase (refer to MalCrawler in

Chapter 2).

 Rhino JavaScript Emulation Library. Rhino [54] is a Java-based

library that can run JavaScript. In this thesis, it has been used to run JavaScript

in a sandboxed environment for analyzing runtime behavior (refer to Chapters

2 and 4).

Details of Software Libraries and Tools Used

170

 Seaborn Python Visualization Library. Seaborn [250] is a Python data

visualization library based on Matplotlib. It has been used on various occasions

in this thesis for plotting the ML results (refer to Chapters 5, 6, and 8).

 Scikit-learn ML Library. Scikit-learn [168] is an open-source ML

library in Python. In this thesis, it has been used for building Conventional ML

models (refer to Chapter 4) and also for grid search of hyperparameters

 TensorFlow ML Library. TensorFlow [147] is an open-source ML

library in Python that was released by Google. It supports deep learning. In this

thesis, it has been used along with Keras (refer to C.13) to build DNN models

and LSTM Autoencoders (refer to Chapters 5 and 6).

 Tensor Flow Federated (TFF) FL Library. TFF [240] is an extension

of the TensorFlow library that supports FL models and tasks. In this thesis, it

has been used for building and training the FL model for Android web security

(refer to Chapter 8).

 Tensor Processing Unit (TPU). Tensor Processing Unit (TPU) [251]

are Application Specific Integrated Circuits (ASIC) developed by Google for

high-speed deep learning. It supports TensorFlow (refer C.20). These TPUs are

accessible for ML training through the Kaggle platform (refer to C.12) or

through the Google AI cloud. In this thesis, TPUs have been used for speeding

up ML training (refer to Chapters 5 and 6).

 TensorBoard ML Visualization Library. The TensorBoard library

[252] provides storage, retrieval, visualization of ML results produced using

TensorFlow (refer C.20). It has been in this thesis for plotting of ML results.

 WEKA Data Mining Library. Waikato Environment for Knowledge

Analysis (WEKA) [55] is a Java-based Data Mining library. In this thesis, it has

been used for URL prediction tasks as part of MalCrawler (refer to Chapter 2)

and also for Conventional ML based classification (refer to Chapter 4).

 WHOISXML API for DNS Information. The WHOISXML API [78]

provides the Whois DNS information for domains and IP addresses. In this

thesis, it has been used for extracting domain-related information (like

Details of Software Libraries and Tools Used

171

ownership records and registration details) of webpages collected from the

Internet (refer to data collection and pre-processing in Chapters 2 and 3).

