
Chapter 3: Preliminary Analysis and 
Visualization of Datasets 

Primarily two datasets have been used in the thesis for web security 

related problems, viz., webpages dataset and hybrid apps dataset. These two 

datasets are analyzed and visualized in sections 3.1 and 3.2, respectively. The 

experimental setup and code for these two datasets are given in Appendices A 

and B, respectively. 

3.1 Webpages Dataset 
Web Security is a challenging task amidst ever-rising threats on the 

Internet. With billions of websites active on the Internet, and hackers evolving 

newer techniques to trap web users, machine learning offers promising 

techniques to detect malicious websites. The dataset described in this section is 

meant for such ML based analysis of malicious and benign webpages. The data 

has been collected from the Internet using a bespoke, focused web crawler 

named MalCrawler [67], which was built specifically for this purpose.  The 

dataset comprises various extracted attributes and also raw webpage content, 

including JavaScript code. It supports both supervised and unsupervised 

learning. For supervised learning, class labels for malicious and benign 

webpages have been added to the dataset using the Google Safe Browsing API 

[61]. Safe Browsing is a Google service for checking whether a webpage is 

malicious or not. In this dataset, it has been used for assigning Class Labels: 

'good'-benign/ 'bad'-malicious. URL of the webpage is submitted using this API 

to Google Safe Browsing Service, which after that cross-checks with its 

blacklist, and replies whether it is malicious or not. The most relevant attributes 

within the scope have already been extracted and included in this dataset. 

However, the raw web content, including JavaScript code contained in this 

dataset, supports further attribute extraction, if so desired. Also, this raw content 

and code can be used as unstructured data input for text-based analytics. This 

dataset consists of approximately 1.5 million webpages, which makes it suitable 

for deep learning algorithms.  
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3.1.1 Webpages Dataset: Specifications 

The specification details of this dataset are given in Table 3.1. 

Table 3.1: Specifications of Webpages Dataset 

Type of data Dataset 
Tables 
Figures 
Graphs 
Python Code 

How data was 
acquired 

The data was collected from the Internet by scraping webpages 
using MalCrawler [67]. The raw data collected was processed using 
customized Python code to extract relevant features. 

Data format Raw (Unstructured web content and JavaScript) 
Analyzed 
Filtered 

Parameters for 
data collection 

Web content was pruned down to reduce the size by removing less 
relevant content, viz. metadata, stop words, style data, HTML tags, 
etc. 
Obfuscated JavaScript code was de-obfuscated using a browser 
emulator. 

Description of 
data collection 

The raw data comprises of webpages 
Scraped data were further processed using customized Python code 
to extract attributes. 
Class labels for malicious and benign webpages were added using 
the Google Safe Browsing API [61]. 

Data source 
location 

Data was gathered from the Web between November 2019 and 
March 2020, with random web crawls to ensure adequate global 
coverage.  

Data 
accessibility 

Data hosted in a public repository. 
Repository name: Mendeley Data and Kaggle. 
Data identification number: 10.17632/gdx3pkwp47.1 
Direct URL to data: http://dx.doi.org/10.17632/gdx3pkwp47.1 
Data Visualization Code for dataset hosted online on Mendeley [68] 
and Kaggle [69]. 

3.1.2 Webpages Dataset: Importance and Relevance 

Webpages dataset is useful for building ML models for carrying out 

varied analyses on webpages. Both supervised and unsupervised learning 

models can be developed. However, it is important to note that presently no 

such comprehensive dataset exists in the public domain to facilitate research in 

this field. It will benefit all researchers who are pursuing research in the field 

of web security. Further, this data can be used by Cyber Security firms or Anti-

http://dx.doi.org/10.17632/gdx3pkwp47.1
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Virus companies to model their security products. It contains sufficient 

attributes for further insight. This data also includes processed raw web content, 

including JavaScript code, which can be used to extract new attributes, if so 

required, to aid future research. It has value not only to the Internet Security 

research community or Cyber Security firms but also for policy development 

by Cyber Law Enforcement agencies. 

3.1.3 Webpages Dataset: Data Description 

The dataset was designed and prepared keeping in mind the downstream 

task of classification of webpages as malicious or benign. However, this dataset 

contains sufficient information that can be used for any ML task related to 

webpage analysis. The attributes of this dataset are listed in Table 3.2. 

The choice of features in Table 3.2 was based on their relevance in 

malicious webpage classification as will be shown in Chapter 4. Out of the 25 

attributes analyzed in Chapter 4 in Table 4.1, few good predictors, as listed in 

Table 3.2, have been taken for further work. Few otherwise good predictors 

like 'Cloaking (A7)', 'Presence of iFrame' (A8), 'Redirection' (A6), and 'Popups' 

(A21), etc., have been left out due to the ambiguities and complexities 

associated with them during the extraction and pre-processing stage that make 

them unsuitable for commercial deployment (refer to Figure 4.4 showing the 

utilization of computational resources). Few of the attributes listed in Table 4.1 

have been processed further as per the requirements of ML models in the thesis. 

The attribute numbers from Table 4.1 are written against each attribute for the 

ease of correlation with the work done in Chapter 4.  

Table 3.2: Attributes of Webpages Dataset 

# Attribute 
Reference  
to Table 

4.1 

Attribute 
Name 

Attribute Description 

F1 
 

A2 
 

url/ 
url_vect 

(url_vect is 
further 

processed 
from url) 

URL of the webpage. 
{Datatype- string} 
 
Also, for vectorized inputs, like the input used for 
DNN in Chapter 5, URL is vectorized further. 
Keywords extracted from URL are vectorized 
using the Profanity Score (Profanity Score is a 
real value given to a group of words based on their 
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goodness/badness. A pretrained SVM model was 
used for computing this score [138].). 
{Datatype- Numerical, float64:  
Normalised between 0-1} 

F2 A1 
(F2 is 

taken from 
A1) 

ip_add IP Address of the webpage (Note: IP Address (F3) 
is used for determining the Geographic Location 
(F4). However, the attribute (F3) itself may not 
used for training as it lacks requisite information 
value and relevance. Thus, it should be dropped 
before the input layer.). 
{Datatype- string} 

F3 A1 
(F3 is also 
taken from 

A1) 

geo_loc Name of the country based on IP Address 
location. 
{Datatype- Categorical, string} 

F4 
 

A2 
(F4 is also 

further 
processed 
from A2) 

url_len Length of URL- count of characters in a URL. 
{Datatype- Numerical, int16} 

F5 A24 js_len Length of JavaScript code (in KB) in the 
webpage. 
{Datatype- Numerical, float64} 

F6 A25 js_obf_len Length of Obfuscated JavaScript (in KB) in the 
webpage. 
{Datatype- Numerical, float64} 

F7 A4 
(F7 is also 
processed 
from A4) 

tld Top Level Domain of the webpage. 
{Datatype- Categorical, string} 

F8 A5 who_is It gives out whether the WHOIS information of 
the registered domain is complete or incomplete. 
{Datatype- Categorical, string,  
value- incomplete/complete}  

F9 A3 https Gives out whether the website uses HTTPS or 
HTTP protocol. 
{Datatype- Categorical, string,  
value- yes/no} 

F10 - content Raw web content of the webpage. Includes 
filtered and processed text and JavaScript code 

F11 Class 
Label 

label Classification label categorizing the webpage as 
malicious or benign. 
{Datatype- Categorical, value- good/bad} 

 

The dataset comprises 1.564 million webpages having 11 attributes. A 

Snapshot of the dataset is shown in Figure 3.1. 
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Figure 3.1: Snapshot of the Webpages Dataset 

The last attribute in Table 3.2 is 'Class' label, which can be used for 
training the classification algorithm. The two classes correspond to malicious 
and benign webpages. As the Internet has more benign pages than malicious 
webpages, a similar disproportion also reflects in our dataset. A webpage is 
malicious if it has malware, i.e., Cross Site Scripting [XSS] code, Code 
injection or Drive-by-Download based malware, or exhibits behavior like 
phishing. As seen in Figure 3.2, most webpages are benign. Thus, users of this 
dataset should appropriately factor this skew in class distribution while training 
ML models.  

 
Figure 3.2: Class Label Distribution- Malicious & Benign 

The first attribute of the dataset represents the URL of the webpages. 

Visualization of 'url' attribute, after vectorizing it using profanity score 

('url_vect'), is depicted in Figure 3.3. Profanity Score is a value given to a group 

of words based on their goodness/badness. A higher value indicates that a larger 

number of bad/vulgar words were present. 
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Figure 3.3: URL Plot (Vectorized using Profanity Score)  

The second attribute, 'ip_add' gives the IP address of the webserver 

hosting the webpage. The third attribute, 'geo_loc' gives the country to which 

the IP Address belongs. The IP address distribution is plotted country-wise in 

Figures 3.4 and 3.5 for malicious and benign webpages, respectively. As can 

be inferred from the maps, the dataset represents webpages from servers across 

the globe. 

 
Figure 3.4: Geographic Distribution of IP Addresses - Malicious 

 
Figure 3.5: Geographic Distribution of IP Addresses - Benign 

The fourth, fifth and sixth attribute of the dataset are 'url_len', js_len' and 
'js_obf_len' respectively (representing URL length, JavaScript length and 
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obfuscated JavaScript length respectively).  All three are numerical attributes, 
and their univariate plots are shown below in Figure 3.6.  

 
Figure 3.6: Univariate Plots: URL Length, JS Length & Obfuscated JS Length  

The tri-variate distributions of these three numerical attributes are shown 

in Figures 3.7 to 3.10. Figure 3.7 gives the 3D plot, Figure 3.8 shows the 

correlation score amongst these three numerical attributes, Figure 3.9 plots 

these three attributes against each other pairwise, and Figure 3.10 plots all three 

together as parallel coordinates. In Figure 3.8, it may be noted that a correlation 

score gives the relationship between two attributes, with a higher score 

depicting a closer relationship. 

 
Figure 3.7: Trivariate 3D Plot   
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Figure 3.8: Trivariate Correlation Matrix 

 
Figure 3.9: Tri-variate Pairwise Plot 

 
Figure 3.10: Tri-variate Parallel Coordinates Plot 

As attributes 'js_len' and 'js_obf_len' have exhibited high correlation in 

the matrix of Figure 3.8, their bi-variate distributions are plotted in Figure 3.11 

and 3.12 to highlight their relationship. 
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Figure 3.11: Bivariate Pairwise Plot 

 

 

Figure 3.12: Bivariate Density Plot 

The seventh attribute is 'tld' that gives the Top Level Domain Name of 

the webpage. This attribute is plotted in Figure 3.13. As depicted by the graph, 

this dataset contains webpages from numerous domains. 

 

Figure 3.13: Plot of Top Level Domain ('tld') Attribute 
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The eighth and ninth attributes of the dataset are 'who_is' and 'https', 

respectively (representing whether the webpage's WHOIS information is 

complete, and if it uses HTTPS, respectively). Both are categorical attributes. 

The 'who_is' attribute gives completeness of domain registration records of 

websites held with domain registrars. The 'https' attribute tells us whether the 

webserver uses HTTP secure protocol or not for delivering the webpage. These 

two attributes are visualized in Figures 3.14 and 3.15. 

 
Figure 3.14: Plot of Who Is Registration ('who_is') Attribute 

 
Figure 3.15: Plot of HTTPS ('https') Attribute 

The tenth attribute of the dataset is 'content'. This attribute contains raw 

web content, including JavaScript code, filtered and cleaned to reduce size. The 

objective of providing this attribute in the dataset was to enable further attribute 

extraction from this dataset, if desired in future research. Further, certain ML 

techniques, like deep learning, can use this unstructured web content directly 

for experiments (In Chapter 6, unstructured web content has been used directly 

for deep learning). Figures 3.16, 3.17, and 3.18 below show the vectorized plot 

of this raw content. 
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Figure 3.16: Web Content: Sentiment Score 

 

 
Figure 3.17: Web Content: Profanity Score 

 

 
Figure 3.18: Web Content- Word Count 

Dimensionality reduction was done using Principal Component Analysis 

(PCA) to get the three most informative principal components. Scree plot was 

used to decide the number of principal components to be included. The 3D 

scatter plot is given below in Figure 3.19, while the tri-surface plot is given in 
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Figure 3.20. These plots show that the dataset is non-convex; however, it can 

be segregated into classes. Thus, data scientists can apply various machine 

learning techniques to this dataset. 

 
Figure 3.19: 3D Plot of Complete Dataset 

 

 
Figure 3.20: Tri-surface Plot of Complete Dataset 

The objective of showing the above visualizations of the dataset and its 

attributes was to understand the dataset and its utilization in the thesis better 

and accordingly utilize it for building ML models. The detailed visualization, 

with more insight and analysis, along with the Python code that has been used 

to generate it, is available alongside the dataset on the Mendeley repository 

[68]. Also, the visualization output is hosted publicly on Kaggle for live 

experimentation [69]. 
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3.1.4 Webpages Dataset: Self Organising Map (SOM) 
based Analysis of the Dataset and its Attributes 

In 1990, Kohonen came up with an Artificial Neural Network (ANN) 

based unsupervised learning technique named 'Self Organising Map (SOM)' 

[70]. This technique carries out mapping of the input dataset to a low-

dimensional map, either 2D or 3D. The map uses competitive learning instead 

of backpropagation with gradient descent used by DNN to carry out a 

topological plotting based on a neighborhood function. A SOM-based analysis 

was carried out on the webpages dataset. The 2D SOM plot with hexagonal 

nodes is shown in Figure 3.21. The scaled color background depicts the SOM 

clusters (Each hexagon represents a neuron; a total of 15 x 15 neurons grid is 

generated). Classes (malicious and benign as per the legend) have been plotted 

on this map after the SOM cluster is generated to correlate clusters formed with 

class labels. As it emerges from Figure 3.21, SOM clusters are broadly aligned 

with the class labels with only minor overlaps, as seen in the bottom right of 

the figure. This confirms that in the dataset, cluster patterns exist that broadly 

align with the class labels. 

 
Figure 3.21: 2D SOM Hexagonal Plot of Webpages Dataset (with Classes Superimposed) 

Akin to the above figure, in Figure 3.22, a rectangular nodes based SOM 
plot was generated, and after that, all class labels were plotted on it as a scatter 
plot. The grid on the left shows the natural SOM cluster plot as a color map, 
whereas the right grid shows the scatter plot of class labels on this SOM map. 
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Note the distinct spread of malicious webpages. There is only one overlap 
region in the bottom right of the SOM map. Analyzing Figures 3.6, 3.9, 3.11, 
and 3.12 in conjunction with Figure 3.22, we may deduce that the overlap in 
the bottom right may be attributable to the 'js_obf_len' and 'js_len' attributes; 
wherein at low values of these two attributes, both malicious and benign 
webpages are present in this dataset. 

 
Figure 3.22: SOM Rectangular with Classes Marked on Top 

In Figure 3.23, the SOM map (neuron distance) was plotted on the world 
map as a grayscale density plot (each country's average neighborhood distance 
was plotted) to observe patterns, if any. If we see Figure 3.23 in conjunction 
with Figures 3.4 and 3.5 (plot of malicious and benign class labels on the world 
map), no specific pattern emerges. This confirms that maliciousness cannot be 
directly related to geographic locations. 

 
Figure 3.23: SOM Plot on World Map (Showing Country Wise Density Distribution) 
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Figure 3.24 shows the country names ('geo_loc' attributes) plotted on the 

15x15 SOM neuron grid. Again, we can see that the country names do not form 

any cluster patterns. This re-confirms the statement that no specific patterns 

emerge with respect to geographic locations.  

 
Figure 3.24: Country Name ('geo_loc') Attributes Plotted on the Rectangular SOM Grid 

Figure 3.25 plots the domain name ('tld') attribute on the 15x15 SOM 

neuron grid. Here we find that this attribute also does not exhibit patterns in the 

SOM cluster, as domain names ('tld') are scattered randomly all over the SOM 

map. 

The code and the visualization of the SOM analyses shown in this section 

are hosted online on Kaggle [71].  
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Figure 3.25: Domain Name ('tld') Attribute Plotted on Rectangular SOM Plot Grid 

3.1.5 Webpages Dataset: Experimental Design and Code 

The details of the experimental design and code for reproducing the 

webpages dataset is given in Appendix A. 

3.2 Hybrid Apps Dataset 

Chapter 7 of this thesis describes work carried out towards mitigating 

threats on Android hybrid apps using ML. This section describes the dataset 

which has been used in Chapter 7. 

This dataset has extracted features from hybrid apps available for 

deployment on the Android platform until recently. Hybrid apps are 

applications that allow content from websites to be shown on mobile OS 

platforms. On the Android platform, hybrid apps use the WebView [19] 

component to provide web content handling functions akin to a Browser. It 

renders HTML content and runs JavaScript downloaded from the webserver. 
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Though it is not a full-fledged web browser, it is used extensively in Android 

apps to handle web content as it provides more flexibility than regular browsers. 

Popular apps like Facebook, Twitter, and Instagram use WebView for 

displaying their content. Presently, a large number of hybrid apps exist on the 

Google Play store. 

The data for this dataset has been culled out from various sources, 

including existing similar datasets and Google Play store or its mirrors. The 

dataset is labeled to differentiate malicious and benign hybrid apps. Thus, it may 

conveniently be used for supervised learning. Nonetheless, the dataset has 

adequate attributes to support any unsupervised learning tasks as well. The 

dataset comprises of 78,767 samples. The following section describes the 

analysis of the dataset.  

3.2.1 Hybrid Apps Dataset: Specifications 

The specification details of this dataset are given in Table 3.3. 

Table 3.3: Specifications of Android Hybrid Apps Dataset 

Type of data Dataset, Tables, Figure, Graphs, Python/Java Code 

How data were 
acquired 

The data was collected from multiple sources using custom Python 
code 

Data format Analyzed and Filtered 

Parameters for 
data collection 

Data collected from various sources. Most attributes were extracted 
directly from disassembled hybrid apps 

Description of 
data collection 

The data was collected from multiple sources like Android Malware 
Dataset 2017 (CICAndMal2017)[62], Android Application Dataset 
for Malware Application [80], and Android Anti Malware Dataset 
[81]. Most attributes, which were not available in these datasets, 
were extracted after downloading the APKs of these apps from a 
mirror of Google Play Store, named 'APK Combo' [65].  

Data source 
location 

Data was collected from various sources on the Internet and Google 
Play Store 

Data 
accessibility 

Data hosted in a public repository. 
Repository name: Kaggle [82]. 
Data Visualization Code for the dataset is also hosted on Kaggle 
[83]. Pre-processing code hosted on GitHub [84][85]. 
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3.2.2 Hybrid Apps Dataset: Importance and Relevance 

The dataset facilitates ML-based analysis of Android hybrid apps. 

Presently, no such dataset exists in the public domain for this purpose. The data 

is labeled with two class labels- 'malicious' and 'benign'. The labeling facilitates 

supervised learning. The dataset has twelve attributes covering vast 

characteristics of apps, which could be used for unsupervised learning.  

The data will benefit researchers in the field of Android and web security. 

Furthermore, anti-virus and cybersecurity firms could use it for modeling their 

products and solutions. Also, developers for Android OS and apps could use 

this to improve the OS and apps hosted on it. 

3.2.3 Hybrid Apps Dataset: Data Description 

The dataset was prepared with the primary objective of classification of 

'Hybrid Android apps'. However, it can support other ML tasks related to hybrid 

apps as well. The attributes of this dataset are listed below in Table 3.4. 

Table 3.4. Attributes of Hybrid Apps Dataset 
# Attribute 

Name 
Data Type Attribute 

Description 
1. WebView_or_ 

ChromeTabs  
Type: Categorical String 
{WebView,ChromeTabs} 

It gives out whether the Android 
app uses WebView or 
ChromeTabs [86]. 

2. JavaScript_ Enabled Type: Boolean  
{True, False} 

It gives out whether Android app 
has enabled JavaScript in 
WebView Component or not. 

3. JavaScript_ 
Interface_Defined 

Type: Boolean  
{True, False} 

It gives out whether JavaScript 
Interface has been defined or not 
for accessing the Android Code. 

4. Access_to_System_Calls Type: Boolean  
{True, False} 

It gives out whether the Android 
Code permits the JavaScript 
Interface to access System Calls. 

5. Obfuscated_Java 
Script_Permitted 

Type: Boolean  
{True, False} 
 

It gives out whether WebView 
permits Obfuscated JavaScripts to 
run. 

6. Interface_Android_Code_
Obfuscated 

Type: Boolean  
{True, False} 
 

It gives out whether the Android 
Code in JavaScript Interface is 
obfuscated or not. 

7. Outside_URL Type: Boolean  
{True, False} 
 

It gives out whether WebView is 
allowed to access URLs apart 
from the domain of the Web 
Server providing service to the 
app. 

8. Google_Safe_ 
Browsing 

Type: Boolean  
{True, False} 
 

It gives out whether WebView 
makes use of Google Safe 
Browsing API [61] or not. 
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# Attribute 
Name 

Data Type Attribute 
Description 

9. HTTP_or_HTTPS  Type: Categorical String 
{HTTP, HTTPS} 
 

It gives out whether the app uses 
HTTP or HTTPS access to the 
webserver. 

10. JavaScript_Input_ 
Validation 

Type: Boolean  
{True, False} 
 

Gives out whether WebView 
carries out Input Validation of 
JavaScript Code before feeding it 
to the JavaScript Interface running 
Android Code. JavaScript 
functions like eval() , find(), 
unescape(), open() have generally 
been associated with malicious 
activities [87]. Input Validation 
can check the presence of such 
functions. 

11. Web_Redirection Type: Boolean  
{True, False} 
 

Gives out whether WebView 
denies HTTP redirection or 
JavaScript redirection using 
document.location() function. 

12. JavaScript_ 
Interface_length 

Type: Numeric  
{Value in bytes} 
 

Gives out the length of Android 
Code in JavaScript Interface. 

13. Class Label Type: Class 
{malicious, benign} 

It gives out whether the hybrid 
app is malicious or benign. 

This dataset comprises 78,767 samples with 13 attributes (along with 
class labels). The attributes were selected based on their ability to predict 
maliciousness in hybrid apps. Figure 3.26 below gives a snapshot of this 
dataset. 

 
Figure 3.26: Snapshot of the Hybrid Apps Dataset 

Since there are more benign apps than malicious on the Google Play store, 

a similar disproportion is seen in this dataset. Figure 3.27 elucidates the 

distribution of the Class Labels in the dataset. While training in ML, the 

disproportion in the dataset should be factored in to ensure accurate predictions. 
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Figure 3.27: Class Labels Distribution- Malicious & Benign Hybrid Apps 

The distribution of 'WebView_or_ChromeTabs' and 'JavaScript_Enabled' 

attributes is shown in Figure 3.28. As seen in the plot, apps with attribute 

JavaScript disabled are least likely to be malicious. 

 

Figure 3.28: Plot of WebView_or_ ChromeTabs & JavaScript_ Enabled Attributes  

Plots of 'JavaScript_Interface_Defined' and 'Access_to_System_Calls' 

attributes are given in Figure 3.29. The resultant security on the Android 

platform with JavaScript Interface not defined and no access to system call is 

evident from the plots below. 

 
Figure 3.29: Plot of JavaScript_Interface_Defined & Access_to_System_Calls Attributes 

The distribution of 'Obfuscated_JavaScript Permitted' and 

'Interface_Android_Code_Obfuscated' attributes are given in Figure 3.30. 
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Figure 3.30

Interface_Android_Code_Obfuscated  

The plots of 'Outside_URL' and 'Google_Safe_Browsing' attributes are 

given in Figure 3.31. It can be seen that the usage of Safe Browsing API [61] 

has improved security, but is not entirely foolproof.  

 

Figure 3.31: Plot of 'Outside_URL' & 'Google_Safe_Browsing' Attributes 

Plots of 'HTTP_HTTPS' and 'JavaScript_Input_Validation' attributes are 

given in Figure 3.32. It is evident from the plot on the right that JavaScript input 

validation significantly helps in limiting malicious code injections. 

 

Figure 3.32 HTTP_or_HTTPS JavaScript_Input_Validation  

The plot of the 'Web_Redirection' attribute for malicious and benign 
hybrid apps is given in Figure 3.33.  
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Figure 3.33: Plot of 'Web_redirection' Attribute 

Figure 3.34 gives plots of 'JavaScript_Interface_length', which is a 
numerical attribute. The frequency plots have been plotted separately for 
malicious and benign hybrid apps. It can be seen that in benign apps, the length 
of the Android code for JavaScript Interface is less. The size of such Android 
code for benign apps remains lower than 500 KB (refer to the violin plot at 
bottom-right). 

 
Figure 3.34: Univariate Plot of 'JavaScript_Interface_length'Attribute (in KB) 

The objective of showing the above visualization was to understand the 

dataset better and utilize it while building ML and deep learning models. The 

detailed visualization, with more insight and analysis and the Python code that 

has been used to generate it, is available alongside the dataset hosted on the 
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Kaggle repository [82]. Also, the visualization output is hosted publicly on 

Kaggle for live experimentation [83]. 

3.2.4 Hybrid Apps Dataset: Experimental Design and Code 

The experimental design and code for reproducing the hybrid apps dataset 

is given in Appendix B. 

 


