
Chapter 3: Preliminary Analysis and
Visualization of Datasets

Primarily two datasets have been used in the thesis for web security

related problems, viz., webpages dataset and hybrid apps dataset. These two

datasets are analyzed and visualized in sections 3.1 and 3.2, respectively. The

experimental setup and code for these two datasets are given in Appendices A

and B, respectively.

3.1 Webpages Dataset
Web Security is a challenging task amidst ever-rising threats on the

Internet. With billions of websites active on the Internet, and hackers evolving

newer techniques to trap web users, machine learning offers promising

techniques to detect malicious websites. The dataset described in this section is

meant for such ML based analysis of malicious and benign webpages. The data

has been collected from the Internet using a bespoke, focused web crawler

named MalCrawler [67], which was built specifically for this purpose. The

dataset comprises various extracted attributes and also raw webpage content,

including JavaScript code. It supports both supervised and unsupervised

learning. For supervised learning, class labels for malicious and benign

webpages have been added to the dataset using the Google Safe Browsing API

[61]. Safe Browsing is a Google service for checking whether a webpage is

malicious or not. In this dataset, it has been used for assigning Class Labels:

'good'-benign/ 'bad'-malicious. URL of the webpage is submitted using this API

to Google Safe Browsing Service, which after that cross-checks with its

blacklist, and replies whether it is malicious or not. The most relevant attributes

within the scope have already been extracted and included in this dataset.

However, the raw web content, including JavaScript code contained in this

dataset, supports further attribute extraction, if so desired. Also, this raw content

and code can be used as unstructured data input for text-based analytics. This

dataset consists of approximately 1.5 million webpages, which makes it suitable

for deep learning algorithms.

 Preliminary Analysis and Visualization of Datasets

35

3.1.1 Webpages Dataset: Specifications

The specification details of this dataset are given in Table 3.1.

Table 3.1: Specifications of Webpages Dataset

Type of data Dataset
Tables
Figures
Graphs
Python Code

How data was
acquired

The data was collected from the Internet by scraping webpages
using MalCrawler [67]. The raw data collected was processed using
customized Python code to extract relevant features.

Data format Raw (Unstructured web content and JavaScript)
Analyzed
Filtered

Parameters for
data collection

Web content was pruned down to reduce the size by removing less
relevant content, viz. metadata, stop words, style data, HTML tags,
etc.
Obfuscated JavaScript code was de-obfuscated using a browser
emulator.

Description of
data collection

The raw data comprises of webpages
Scraped data were further processed using customized Python code
to extract attributes.
Class labels for malicious and benign webpages were added using
the Google Safe Browsing API [61].

Data source
location

Data was gathered from the Web between November 2019 and
March 2020, with random web crawls to ensure adequate global
coverage.

Data
accessibility

Data hosted in a public repository.
Repository name: Mendeley Data and Kaggle.
Data identification number: 10.17632/gdx3pkwp47.1
Direct URL to data: http://dx.doi.org/10.17632/gdx3pkwp47.1
Data Visualization Code for dataset hosted online on Mendeley [68]
and Kaggle [69].

3.1.2 Webpages Dataset: Importance and Relevance

Webpages dataset is useful for building ML models for carrying out

varied analyses on webpages. Both supervised and unsupervised learning

models can be developed. However, it is important to note that presently no

such comprehensive dataset exists in the public domain to facilitate research in

this field. It will benefit all researchers who are pursuing research in the field

of web security. Further, this data can be used by Cyber Security firms or Anti-

http://dx.doi.org/10.17632/gdx3pkwp47.1

 Preliminary Analysis and Visualization of Datasets

36

Virus companies to model their security products. It contains sufficient

attributes for further insight. This data also includes processed raw web content,

including JavaScript code, which can be used to extract new attributes, if so

required, to aid future research. It has value not only to the Internet Security

research community or Cyber Security firms but also for policy development

by Cyber Law Enforcement agencies.

3.1.3 Webpages Dataset: Data Description

The dataset was designed and prepared keeping in mind the downstream

task of classification of webpages as malicious or benign. However, this dataset

contains sufficient information that can be used for any ML task related to

webpage analysis. The attributes of this dataset are listed in Table 3.2.

The choice of features in Table 3.2 was based on their relevance in

malicious webpage classification as will be shown in Chapter 4. Out of the 25

attributes analyzed in Chapter 4 in Table 4.1, few good predictors, as listed in

Table 3.2, have been taken for further work. Few otherwise good predictors

like 'Cloaking (A7)', 'Presence of iFrame' (A8), 'Redirection' (A6), and 'Popups'

(A21), etc., have been left out due to the ambiguities and complexities

associated with them during the extraction and pre-processing stage that make

them unsuitable for commercial deployment (refer to Figure 4.4 showing the

utilization of computational resources). Few of the attributes listed in Table 4.1

have been processed further as per the requirements of ML models in the thesis.

The attribute numbers from Table 4.1 are written against each attribute for the

ease of correlation with the work done in Chapter 4.

Table 3.2: Attributes of Webpages Dataset

Attribute
Reference
to Table

4.1

Attribute
Name

Attribute Description

F1

A2

url/
url_vect

(url_vect is
further

processed
from url)

URL of the webpage.
{Datatype- string}

Also, for vectorized inputs, like the input used for
DNN in Chapter 5, URL is vectorized further.
Keywords extracted from URL are vectorized
using the Profanity Score (Profanity Score is a
real value given to a group of words based on their

 Preliminary Analysis and Visualization of Datasets

37

goodness/badness. A pretrained SVM model was
used for computing this score [138].).
{Datatype- Numerical, float64:
Normalised between 0-1}

F2 A1
(F2 is

taken from
A1)

ip_add IP Address of the webpage (Note: IP Address (F3)
is used for determining the Geographic Location
(F4). However, the attribute (F3) itself may not
used for training as it lacks requisite information
value and relevance. Thus, it should be dropped
before the input layer.).
{Datatype- string}

F3 A1
(F3 is also
taken from

A1)

geo_loc Name of the country based on IP Address
location.
{Datatype- Categorical, string}

F4

A2
(F4 is also

further
processed
from A2)

url_len Length of URL- count of characters in a URL.
{Datatype- Numerical, int16}

F5 A24 js_len Length of JavaScript code (in KB) in the
webpage.
{Datatype- Numerical, float64}

F6 A25 js_obf_len Length of Obfuscated JavaScript (in KB) in the
webpage.
{Datatype- Numerical, float64}

F7 A4
(F7 is also
processed
from A4)

tld Top Level Domain of the webpage.
{Datatype- Categorical, string}

F8 A5 who_is It gives out whether the WHOIS information of
the registered domain is complete or incomplete.
{Datatype- Categorical, string,
value- incomplete/complete}

F9 A3 https Gives out whether the website uses HTTPS or
HTTP protocol.
{Datatype- Categorical, string,
value- yes/no}

F10 - content Raw web content of the webpage. Includes
filtered and processed text and JavaScript code

F11 Class
Label

label Classification label categorizing the webpage as
malicious or benign.
{Datatype- Categorical, value- good/bad}

The dataset comprises 1.564 million webpages having 11 attributes. A

Snapshot of the dataset is shown in Figure 3.1.

 Preliminary Analysis and Visualization of Datasets

38

Figure 3.1: Snapshot of the Webpages Dataset

The last attribute in Table 3.2 is 'Class' label, which can be used for
training the classification algorithm. The two classes correspond to malicious
and benign webpages. As the Internet has more benign pages than malicious
webpages, a similar disproportion also reflects in our dataset. A webpage is
malicious if it has malware, i.e., Cross Site Scripting [XSS] code, Code
injection or Drive-by-Download based malware, or exhibits behavior like
phishing. As seen in Figure 3.2, most webpages are benign. Thus, users of this
dataset should appropriately factor this skew in class distribution while training
ML models.

Figure 3.2: Class Label Distribution- Malicious & Benign

The first attribute of the dataset represents the URL of the webpages.

Visualization of 'url' attribute, after vectorizing it using profanity score

('url_vect'), is depicted in Figure 3.3. Profanity Score is a value given to a group

of words based on their goodness/badness. A higher value indicates that a larger

number of bad/vulgar words were present.

 Preliminary Analysis and Visualization of Datasets

39

Figure 3.3: URL Plot (Vectorized using Profanity Score)

The second attribute, 'ip_add' gives the IP address of the webserver

hosting the webpage. The third attribute, 'geo_loc' gives the country to which

the IP Address belongs. The IP address distribution is plotted country-wise in

Figures 3.4 and 3.5 for malicious and benign webpages, respectively. As can

be inferred from the maps, the dataset represents webpages from servers across

the globe.

Figure 3.4: Geographic Distribution of IP Addresses - Malicious

Figure 3.5: Geographic Distribution of IP Addresses - Benign

The fourth, fifth and sixth attribute of the dataset are 'url_len', js_len' and
'js_obf_len' respectively (representing URL length, JavaScript length and

 Preliminary Analysis and Visualization of Datasets

40

obfuscated JavaScript length respectively). All three are numerical attributes,
and their univariate plots are shown below in Figure 3.6.

Figure 3.6: Univariate Plots: URL Length, JS Length & Obfuscated JS Length

The tri-variate distributions of these three numerical attributes are shown

in Figures 3.7 to 3.10. Figure 3.7 gives the 3D plot, Figure 3.8 shows the

correlation score amongst these three numerical attributes, Figure 3.9 plots

these three attributes against each other pairwise, and Figure 3.10 plots all three

together as parallel coordinates. In Figure 3.8, it may be noted that a correlation

score gives the relationship between two attributes, with a higher score

depicting a closer relationship.

Figure 3.7: Trivariate 3D Plot

 Preliminary Analysis and Visualization of Datasets

41

Figure 3.8: Trivariate Correlation Matrix

Figure 3.9: Tri-variate Pairwise Plot

Figure 3.10: Tri-variate Parallel Coordinates Plot

As attributes 'js_len' and 'js_obf_len' have exhibited high correlation in

the matrix of Figure 3.8, their bi-variate distributions are plotted in Figure 3.11

and 3.12 to highlight their relationship.

 Preliminary Analysis and Visualization of Datasets

42

Figure 3.11: Bivariate Pairwise Plot

Figure 3.12: Bivariate Density Plot

The seventh attribute is 'tld' that gives the Top Level Domain Name of

the webpage. This attribute is plotted in Figure 3.13. As depicted by the graph,

this dataset contains webpages from numerous domains.

Figure 3.13: Plot of Top Level Domain ('tld') Attribute

 Preliminary Analysis and Visualization of Datasets

43

The eighth and ninth attributes of the dataset are 'who_is' and 'https',

respectively (representing whether the webpage's WHOIS information is

complete, and if it uses HTTPS, respectively). Both are categorical attributes.

The 'who_is' attribute gives completeness of domain registration records of

websites held with domain registrars. The 'https' attribute tells us whether the

webserver uses HTTP secure protocol or not for delivering the webpage. These

two attributes are visualized in Figures 3.14 and 3.15.

Figure 3.14: Plot of Who Is Registration ('who_is') Attribute

Figure 3.15: Plot of HTTPS ('https') Attribute

The tenth attribute of the dataset is 'content'. This attribute contains raw

web content, including JavaScript code, filtered and cleaned to reduce size. The

objective of providing this attribute in the dataset was to enable further attribute

extraction from this dataset, if desired in future research. Further, certain ML

techniques, like deep learning, can use this unstructured web content directly

for experiments (In Chapter 6, unstructured web content has been used directly

for deep learning). Figures 3.16, 3.17, and 3.18 below show the vectorized plot

of this raw content.

 Preliminary Analysis and Visualization of Datasets

44

Figure 3.16: Web Content: Sentiment Score

Figure 3.17: Web Content: Profanity Score

Figure 3.18: Web Content- Word Count

Dimensionality reduction was done using Principal Component Analysis

(PCA) to get the three most informative principal components. Scree plot was

used to decide the number of principal components to be included. The 3D

scatter plot is given below in Figure 3.19, while the tri-surface plot is given in

 Preliminary Analysis and Visualization of Datasets

45

Figure 3.20. These plots show that the dataset is non-convex; however, it can

be segregated into classes. Thus, data scientists can apply various machine

learning techniques to this dataset.

Figure 3.19: 3D Plot of Complete Dataset

Figure 3.20: Tri-surface Plot of Complete Dataset

The objective of showing the above visualizations of the dataset and its

attributes was to understand the dataset and its utilization in the thesis better

and accordingly utilize it for building ML models. The detailed visualization,

with more insight and analysis, along with the Python code that has been used

to generate it, is available alongside the dataset on the Mendeley repository

[68]. Also, the visualization output is hosted publicly on Kaggle for live

experimentation [69].

 Preliminary Analysis and Visualization of Datasets

46

3.1.4 Webpages Dataset: Self Organising Map (SOM)
based Analysis of the Dataset and its Attributes

In 1990, Kohonen came up with an Artificial Neural Network (ANN)

based unsupervised learning technique named 'Self Organising Map (SOM)'

[70]. This technique carries out mapping of the input dataset to a low-

dimensional map, either 2D or 3D. The map uses competitive learning instead

of backpropagation with gradient descent used by DNN to carry out a

topological plotting based on a neighborhood function. A SOM-based analysis

was carried out on the webpages dataset. The 2D SOM plot with hexagonal

nodes is shown in Figure 3.21. The scaled color background depicts the SOM

clusters (Each hexagon represents a neuron; a total of 15 x 15 neurons grid is

generated). Classes (malicious and benign as per the legend) have been plotted

on this map after the SOM cluster is generated to correlate clusters formed with

class labels. As it emerges from Figure 3.21, SOM clusters are broadly aligned

with the class labels with only minor overlaps, as seen in the bottom right of

the figure. This confirms that in the dataset, cluster patterns exist that broadly

align with the class labels.

Figure 3.21: 2D SOM Hexagonal Plot of Webpages Dataset (with Classes Superimposed)

Akin to the above figure, in Figure 3.22, a rectangular nodes based SOM
plot was generated, and after that, all class labels were plotted on it as a scatter
plot. The grid on the left shows the natural SOM cluster plot as a color map,
whereas the right grid shows the scatter plot of class labels on this SOM map.

 Preliminary Analysis and Visualization of Datasets

47

Note the distinct spread of malicious webpages. There is only one overlap
region in the bottom right of the SOM map. Analyzing Figures 3.6, 3.9, 3.11,
and 3.12 in conjunction with Figure 3.22, we may deduce that the overlap in
the bottom right may be attributable to the 'js_obf_len' and 'js_len' attributes;
wherein at low values of these two attributes, both malicious and benign
webpages are present in this dataset.

Figure 3.22: SOM Rectangular with Classes Marked on Top

In Figure 3.23, the SOM map (neuron distance) was plotted on the world
map as a grayscale density plot (each country's average neighborhood distance
was plotted) to observe patterns, if any. If we see Figure 3.23 in conjunction
with Figures 3.4 and 3.5 (plot of malicious and benign class labels on the world
map), no specific pattern emerges. This confirms that maliciousness cannot be
directly related to geographic locations.

Figure 3.23: SOM Plot on World Map (Showing Country Wise Density Distribution)

 Preliminary Analysis and Visualization of Datasets

48

Figure 3.24 shows the country names ('geo_loc' attributes) plotted on the

15x15 SOM neuron grid. Again, we can see that the country names do not form

any cluster patterns. This re-confirms the statement that no specific patterns

emerge with respect to geographic locations.

Figure 3.24: Country Name ('geo_loc') Attributes Plotted on the Rectangular SOM Grid

Figure 3.25 plots the domain name ('tld') attribute on the 15x15 SOM

neuron grid. Here we find that this attribute also does not exhibit patterns in the

SOM cluster, as domain names ('tld') are scattered randomly all over the SOM

map.

The code and the visualization of the SOM analyses shown in this section

are hosted online on Kaggle [71].

 Preliminary Analysis and Visualization of Datasets

49

Figure 3.25: Domain Name ('tld') Attribute Plotted on Rectangular SOM Plot Grid

3.1.5 Webpages Dataset: Experimental Design and Code

The details of the experimental design and code for reproducing the

webpages dataset is given in Appendix A.

3.2 Hybrid Apps Dataset

Chapter 7 of this thesis describes work carried out towards mitigating

threats on Android hybrid apps using ML. This section describes the dataset

which has been used in Chapter 7.

This dataset has extracted features from hybrid apps available for

deployment on the Android platform until recently. Hybrid apps are

applications that allow content from websites to be shown on mobile OS

platforms. On the Android platform, hybrid apps use the WebView [19]

component to provide web content handling functions akin to a Browser. It

renders HTML content and runs JavaScript downloaded from the webserver.

 Preliminary Analysis and Visualization of Datasets

50

Though it is not a full-fledged web browser, it is used extensively in Android

apps to handle web content as it provides more flexibility than regular browsers.

Popular apps like Facebook, Twitter, and Instagram use WebView for

displaying their content. Presently, a large number of hybrid apps exist on the

Google Play store.

The data for this dataset has been culled out from various sources,

including existing similar datasets and Google Play store or its mirrors. The

dataset is labeled to differentiate malicious and benign hybrid apps. Thus, it may

conveniently be used for supervised learning. Nonetheless, the dataset has

adequate attributes to support any unsupervised learning tasks as well. The

dataset comprises of 78,767 samples. The following section describes the

analysis of the dataset.

3.2.1 Hybrid Apps Dataset: Specifications

The specification details of this dataset are given in Table 3.3.

Table 3.3: Specifications of Android Hybrid Apps Dataset

Type of data Dataset, Tables, Figure, Graphs, Python/Java Code

How data were
acquired

The data was collected from multiple sources using custom Python
code

Data format Analyzed and Filtered

Parameters for
data collection

Data collected from various sources. Most attributes were extracted
directly from disassembled hybrid apps

Description of
data collection

The data was collected from multiple sources like Android Malware
Dataset 2017 (CICAndMal2017)[62], Android Application Dataset
for Malware Application [80], and Android Anti Malware Dataset
[81]. Most attributes, which were not available in these datasets,
were extracted after downloading the APKs of these apps from a
mirror of Google Play Store, named 'APK Combo' [65].

Data source
location

Data was collected from various sources on the Internet and Google
Play Store

Data
accessibility

Data hosted in a public repository.
Repository name: Kaggle [82].
Data Visualization Code for the dataset is also hosted on Kaggle
[83]. Pre-processing code hosted on GitHub [84][85].

 Preliminary Analysis and Visualization of Datasets

51

3.2.2 Hybrid Apps Dataset: Importance and Relevance

The dataset facilitates ML-based analysis of Android hybrid apps.

Presently, no such dataset exists in the public domain for this purpose. The data

is labeled with two class labels- 'malicious' and 'benign'. The labeling facilitates

supervised learning. The dataset has twelve attributes covering vast

characteristics of apps, which could be used for unsupervised learning.

The data will benefit researchers in the field of Android and web security.

Furthermore, anti-virus and cybersecurity firms could use it for modeling their

products and solutions. Also, developers for Android OS and apps could use

this to improve the OS and apps hosted on it.

3.2.3 Hybrid Apps Dataset: Data Description

The dataset was prepared with the primary objective of classification of

'Hybrid Android apps'. However, it can support other ML tasks related to hybrid

apps as well. The attributes of this dataset are listed below in Table 3.4.

Table 3.4. Attributes of Hybrid Apps Dataset
Attribute

Name
Data Type Attribute

Description
1. WebView_or_

ChromeTabs
Type: Categorical String
{WebView,ChromeTabs}

It gives out whether the Android
app uses WebView or
ChromeTabs [86].

2. JavaScript_ Enabled Type: Boolean
{True, False}

It gives out whether Android app
has enabled JavaScript in
WebView Component or not.

3. JavaScript_
Interface_Defined

Type: Boolean
{True, False}

It gives out whether JavaScript
Interface has been defined or not
for accessing the Android Code.

4. Access_to_System_Calls Type: Boolean
{True, False}

It gives out whether the Android
Code permits the JavaScript
Interface to access System Calls.

5. Obfuscated_Java
Script_Permitted

Type: Boolean
{True, False}

It gives out whether WebView
permits Obfuscated JavaScripts to
run.

6. Interface_Android_Code_
Obfuscated

Type: Boolean
{True, False}

It gives out whether the Android
Code in JavaScript Interface is
obfuscated or not.

7. Outside_URL Type: Boolean
{True, False}

It gives out whether WebView is
allowed to access URLs apart
from the domain of the Web
Server providing service to the
app.

8. Google_Safe_
Browsing

Type: Boolean
{True, False}

It gives out whether WebView
makes use of Google Safe
Browsing API [61] or not.

 Preliminary Analysis and Visualization of Datasets

52

Attribute
Name

Data Type Attribute
Description

9. HTTP_or_HTTPS Type: Categorical String
{HTTP, HTTPS}

It gives out whether the app uses
HTTP or HTTPS access to the
webserver.

10. JavaScript_Input_
Validation

Type: Boolean
{True, False}

Gives out whether WebView
carries out Input Validation of
JavaScript Code before feeding it
to the JavaScript Interface running
Android Code. JavaScript
functions like eval() , find(),
unescape(), open() have generally
been associated with malicious
activities [87]. Input Validation
can check the presence of such
functions.

11. Web_Redirection Type: Boolean
{True, False}

Gives out whether WebView
denies HTTP redirection or
JavaScript redirection using
document.location() function.

12. JavaScript_
Interface_length

Type: Numeric
{Value in bytes}

Gives out the length of Android
Code in JavaScript Interface.

13. Class Label Type: Class
{malicious, benign}

It gives out whether the hybrid
app is malicious or benign.

This dataset comprises 78,767 samples with 13 attributes (along with
class labels). The attributes were selected based on their ability to predict
maliciousness in hybrid apps. Figure 3.26 below gives a snapshot of this
dataset.

Figure 3.26: Snapshot of the Hybrid Apps Dataset

Since there are more benign apps than malicious on the Google Play store,

a similar disproportion is seen in this dataset. Figure 3.27 elucidates the

distribution of the Class Labels in the dataset. While training in ML, the

disproportion in the dataset should be factored in to ensure accurate predictions.

 Preliminary Analysis and Visualization of Datasets

53

Figure 3.27: Class Labels Distribution- Malicious & Benign Hybrid Apps

The distribution of 'WebView_or_ChromeTabs' and 'JavaScript_Enabled'

attributes is shown in Figure 3.28. As seen in the plot, apps with attribute

JavaScript disabled are least likely to be malicious.

Figure 3.28: Plot of WebView_or_ ChromeTabs & JavaScript_ Enabled Attributes

Plots of 'JavaScript_Interface_Defined' and 'Access_to_System_Calls'

attributes are given in Figure 3.29. The resultant security on the Android

platform with JavaScript Interface not defined and no access to system call is

evident from the plots below.

Figure 3.29: Plot of JavaScript_Interface_Defined & Access_to_System_Calls Attributes

The distribution of 'Obfuscated_JavaScript Permitted' and

'Interface_Android_Code_Obfuscated' attributes are given in Figure 3.30.

 Preliminary Analysis and Visualization of Datasets

54

Figure 3.30

Interface_Android_Code_Obfuscated

The plots of 'Outside_URL' and 'Google_Safe_Browsing' attributes are

given in Figure 3.31. It can be seen that the usage of Safe Browsing API [61]

has improved security, but is not entirely foolproof.

Figure 3.31: Plot of 'Outside_URL' & 'Google_Safe_Browsing' Attributes

Plots of 'HTTP_HTTPS' and 'JavaScript_Input_Validation' attributes are

given in Figure 3.32. It is evident from the plot on the right that JavaScript input

validation significantly helps in limiting malicious code injections.

Figure 3.32 HTTP_or_HTTPS JavaScript_Input_Validation

The plot of the 'Web_Redirection' attribute for malicious and benign
hybrid apps is given in Figure 3.33.

 Preliminary Analysis and Visualization of Datasets

55

Figure 3.33: Plot of 'Web_redirection' Attribute

Figure 3.34 gives plots of 'JavaScript_Interface_length', which is a
numerical attribute. The frequency plots have been plotted separately for
malicious and benign hybrid apps. It can be seen that in benign apps, the length
of the Android code for JavaScript Interface is less. The size of such Android
code for benign apps remains lower than 500 KB (refer to the violin plot at
bottom-right).

Figure 3.34: Univariate Plot of 'JavaScript_Interface_length'Attribute (in KB)

The objective of showing the above visualization was to understand the

dataset better and utilize it while building ML and deep learning models. The

detailed visualization, with more insight and analysis and the Python code that

has been used to generate it, is available alongside the dataset hosted on the

 Preliminary Analysis and Visualization of Datasets

56

Kaggle repository [82]. Also, the visualization output is hosted publicly on

Kaggle for live experimentation [83].

3.2.4 Hybrid Apps Dataset: Experimental Design and Code

The experimental design and code for reproducing the hybrid apps dataset

is given in Appendix B.

