LIST OF TABLES

S No.	Title of the Tables	Page No.
1.1	Fuel source-wise evolution of installed capacity 2015-21 (MW)	3
1.2	Comparison of different CSP technologies on various parameters	6
2.1	Integrated solar technology and component of steam power plant of some major works	44
3.1	Coefficients for heat loss in HCE	52
4.1	Extraction steam main parameters of reference plant	71
4.2	PTC Field - Geometrical and optical parameters	73
4.3	The methodology adopted for economic analysis of plant under study	76
4.4	Various costs related with economic analysis of plant under investigation	77
4.5	Thermal performance parameters for various FWH replacement options	79
4.6	Energetic and Exergetic performance comparison of 330 MWe solar-coal hybrid power plant	80
4.7	Performance indicators of the solar-coal hybrid power plant	80
4.8	Economic analysis of 330 MWe supercritical Solar-Coal hybrid power plant	80
5.1	PTC (ET-150) - Geometrical and optical parameters	94
5.2	Methodology adopted for economic analysis of plant under study	97
5.3	Various costs related with economic analysis of plant under investigation	98
5.4	Thermal performance parameters for various FWH replacement options	100

5.5	Performance indicators of the solar-coal hybrid power plant	101
5.6	Energetic and Exergetic performance comparison of 660 MWe solar-coal hybrid power plant	102
5.7	Economic analysis of 660 MWe supercritical Solar-Coal hybrid power plant	107
6.1	Source-wise total installed capacity and power generation in India	113
6.2	State-wise estimated solar potential and solar capacity addition by 2022 in India	115
6.3	Role of central and state government agencies in policy growth	121
6.4a	State government policies for solar energy	123
6.4b	State government policies for solar energy	126
6.4c	State government policies for solar energy	129
6.5	Status of CSP projects sanctioned in JNNSM Phase-I, Batch-I	132
6.6	The source-wise breakup of RECs since inception as of April 25, 2020	139
6.7	State-wise registered Solar PV projects and Capacity as of April 25, 2020	140
6.8	State-wise Solar RPO targets (%) from the year 2016-17 to 2021-2022	140

LIST OF FIGURES

S No.	Title of the Figures	Page No.
1.1	All India installed power capacity	4
1.2	State-wise solar potential, India	5
1.3	Parabolic trough Collector	7
1.4	Linear Fresnel Reflector	9
1.5	Central receiver system	10
1.6	Parabolic dish	11
1.7	Advantages of hybridization of solar thermal energy with CFPP	15
1.8	Power boosting and fuel-saving concept	16
1.9	Simplified plan of CSP integration options into existing plants. (1) Feedwater preheating; (2) high-pressure steam; and (3) cold reheat line	17
2.1	Parallel collector boiler and steam FWH	25
2.2	Feed-water heating using solar energy	25
2.3	Combined parallel collector boiler and solar feedwater heating	26
2.4	Solar energy introduced between HPFWH and Economizer using PTC solar field	29
2.5	Solar energy introduced between the Evaporator and Super-heater using CRS solar field	30
2.6	Solar energy introduced between Super-heater and HP turbine using CRS solar field	31
2.7	Solar energy introduced between HP turbine exit and reheater entry using	32

CRS solar field

2.8	Solar energy introduced between reheater exit and IP turbine entry using CRS solar field	33
3.1	The basic information flow representation for solar field	48
3.2	Thermodynamic model of turbine inlet and outlet	53
3.3	Boiler inlet and outlet model	54
3.4	Deaerator inlet and outlet model	55
3.5	Condenser inlet and outlet model	56
3.6	Inlet and outlet model of closed feedwater heater	56
3.7	Pump inlet and outlet model	57
4.1	Representation of reference 330 MWe original CFPP (Base Option)	67
4.2	Representation of 330 MWe "Solar-coal hybrid power plant" (Option-1)	68
4.3	Representation of 330 MWe "Solar-coal hybrid power plant" (Option-2)	69
4.4	Representation of 330MWe "Solar-coal hybrid power plant" (Option-3)	70
4.5	Variation of DNI for all the months of a typical meteorological year	74
4.6	Thermal energy saved and cycle efficiency for different replacement options	81
4.7	Energy performance and Exergy performance index for different scenarios	81
4.8	Power-boosting and solar contribution for different replacement options	82
4.9	Annual coal saving and CO ₂ reduction for various replacement options	84
4 10	I CoE and SPP for different replacement ontions	8/1

5.1	Representation of reference 660MWe original CFPP (Base Case)	90
5.2	Representation of 660MWe "Solar-coal hybrid power plant" (Option-1)	91
5.3	Representation of 660MWe "Solar-coal hybrid power plant" (Option-2)	92
5.4	Representation of 660MWe "Solar-coal hybrid power plant" (Option-3)	93
5.5	Variation of DNI for all the months of a typical meteorological year	95
5.6	Thermal energy saved and cycle efficiency for different replacement options	102
5.7	Energy performance and Exergy performance index for different scenarios	103
5.8	Power-boosting and solar contribution for different replacement options	103
5.9	Annual coal saving and CO ₂ reduction for various replacement options	105
5.10	LCoE and SPP for different replacement options	106
6.1	Distribution of India's grid-connected renewable power capacity in MW as of 28 th Feb 2021	113
6.2	Structure of energy policy for solar energy in India	114
6.3	Top 10 States in solar installation, capacity in MW as of 31-03-2019	116
6.4	Institutional framework for the development of CST technologies	134
6.5	Process showing steps followed for monitoring compliance of RPOs	142
6.6	Analysis of compliance with solar RPOs of state DISCOMs for FY 2017-18	142

NOMENCLATURE

A_c	aperture area/collector area	m^2
C_F	Fuel cost/unit	-
C_{FOM}	Fixed O&M cost/unit	-
C_{VOM}	Variable O&M cost	-
d	Discount rate	%
e	Escalation Rate	%
\dot{E}_{xs}	Exergy input through solar radiation	-
f	Dilution factor	-
h_s	Specific enthalpy of extraction steam	kJ/kg
h_w	Specific enthalpy of feedwater	kJ/kg
k	Incidence angle modifier	-
m_s	Mass flow rate of extraction steam	Ton/h
m_f	Mass flow rate of coal	kg/s
n	Life of power plant	Years
P_G	Generator output	kW
P_{Net}	Net annual energy generated	kWh/kW
P_s	Pressure of extraction steam	MPa
Q_{abs}	Heat absorbed by receiver tubes	W
$Q_{\scriptscriptstyle LD}$	Incident solar energy falling on the aperture of solar field	W
Q_{u}	Useful heat gain by heat transfer fluid over the solar field	W
Q_{loss_HCE}	Heat losses per unit length in heat collection element (HCE)	W/m^2

Q_{loss_piping}	Thermal losses in the piping system of the solar field	W/m^2
$\dot{Q_s}$	Input energy to solar field	W/m^2
$\overset{\cdot}{Q_c}$	Output energy from solar field	W/m^2
T_a	Ambient temperature	K
T_i	Inlet temperature of solar field	K
T_o	Outlet temperature of solar field	K
T_s	Temperature of extraction steam	K
T_{sun}	Temperature of Sun	K
W	Width of mirror aperture	m
$\overset{\cdot}{W}_{net}$	Net electric output	MWe
X	Row shadow factor	-
β	Collector tilt angle	0
δ	Declination angle	0
η	efficiency	%
η_c	Collection efficiency of solar collector	%
η_o	optical efficiency	%
ϕ	Latitude angle	0
θ	Incidence angle	0
$ heta_z$	Zenith angle	0
ω	Hour angle	0
ψ_c	Specific exergy of coal	MJ/kg

LIST OF ABBREVIATIONS

ACC Annualized Capital Costs

ACoE Annualized Cost of Electricity

APC Auxiliary Power Consumption

APH Air preheater CC Capital Cost

CERC Central electricity regulatory commission

CFPP Coal-fired power plant

CLFC Compact linear Fresnel collector
CLFR Compact linear Fresnel reflector

CPP Coal power plant

CRF Capital recovery factor
CRS Central receiver system
CSP Concentrated solar power

DCC Direct capital costs

DNI Direct normal irradiance
DSG Direct steam generation

EnPI Energy performance index

ETC Evacuated tube collector

EV Evaporator

ExPI Exergy performance index

FC Fuel cost

FCC Fixed capital cost

FOM Fixed operation & maintenance cost

FPC Flat plate collector
FWH Feedwater heater

GCV Gross calorific value

HP High pressure

HPFWH High pressure feedwater heater

HTF Heat transfer fluid

ICC Indirect capital costs
IP Intermediate pressure

LCoE Levelized cost of electricity

LF Leveizing factor
LP Low pressure

LPFWH Low pressure feedwater heater

MTBE Matrix thermal balance equation

NREL National renewable energy laboratory

PCC Post carbon capture

PP Power plant

PTC Parabolic trough collector
PTC Parabolic trough collector

RH Reheater

SAM System advisor model

SAPG Solar aided power generation

SCHPG Solar-coal-hybrid power generation

SCHPP Solar-coal hybrid power plant
SCR Selective catalytic reduction

SD Solar dish
SH Superheater
SM Solar multiple

SPP Simple payback period
STE Solar thermal energy
SWH Solar water heater

TMCR Turbine max continuous rating
TMY Typical Meteorological Year

TPP Thermal power plant
TSS Thermal storage system

UHR_{Net} Net unit heat rate