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Appendix A

Chapter 2: Derivations and Proofs

A.1 Proofof Claim 1: Relay Selection Policy: Small
Scale Fading with Path Loss

See that I'g, and I'g, are exponentially distributed with mean A, and p, respectively.

Consider probability of the event I'g, > I'g,. It is given by [137]

o 1
P(FRl > FRQ) _/ 'P(FRI > t) —exp <—£> dt,
0 H H

e (5) e ()
= — exp| —= Jexp | —— | dt,
1 Jo A Iz

= L (A.1.1)
A+
Therefore, we get P(I'g, > I'p,) = ﬁ = %T{%;{ld Furthermore, P(I'p, > I'p,) =

1 A _ 14 _ ’Ydl 9

- At o At o ?/dlrl""idlrg )

A.2 Proof of Claim 2: Relay Selection Policy: Large
Scale Fading with Path Loss

Probability of the event P(¥; > W,) is given by
vy Yy &0
P10 > 101) = / P (Y1 > y) py,(y) dy. (A.2.1)

Since P (Y7 > y) is the complementary cumulative distribution function (CCDF) of a

Gaussian random variable, we have

_1 Yy— i
P(Y1>y)2erfc<al\/§>.
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Furthermore, the PDF of Y, is given by

_ 1 (y — M2)2
Py, (U) - \/TO'QQ exp | — 20_22 .

Substituting the CCDF and the PDF in (A.2.1), we get the desired expression for
probability.

A.3 Proofof Claim 3: Relay Selection Policy: Small
Scale Plus Large Scale Fading with Path Loss

Let g—f £ ¥, and ://ZIA £ ~vs. Probability of the event P(V1v4,,, > WYoya,r,) is given
172
by

v . o
77(\11—2 < %l—l) = / P (U3 < 2) pay(2) dz. (A.3.1)
1 ey 0

We first determine the PDF of 5 from its CDF. The complementary CDF (CCDF)
is given by

L yz y
P (7d17“1 > 7d17“2z) = = / exXp <__ > exp <—_ > dy,
Ydirs J0O Yy Ydira

7d17‘1

Z/yleQ + 7d17‘1
Therefore, the CDF is given by
Zid r
Foglz) = ——2—. A.3.3
’\/3( ) Z7d17‘2 + 7d17‘1 ( )
By differentiating the CDF, we get the PDF. It is given by
7d17‘17d17‘2
Pra(2) = (A.3.4)

<27d1r2 + 7d1r1>2 .

We now determine P (V3 < z). We have
P(Uy < VUyz2) = / P (U, < s2) py, (s) ds,
0

K oo 1 (klns — )
- P (Vs < kln(sz)) Sl 5 ds,
0

V2mo? 201
K > kln(sz) — pa\ 1 (klns — py)?
= [ e (M) e (T )
(A.3.5)
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Substituting (A.3.5), and (A.3.4) in (A.3.1), we get the desired expression for relay
selection probability.

A.4 Proofof Result 1: FASER and its Upper Bound
for MPSK Scheme.

Using Craig’s formula for MPSK [152], the symbol error contribution of R;-Ds, link

and Rs-Ds link can be expressed as

()
FASER 1/ — w1~ / " Blexp (~MT esc?0)do]
0

™

™

(457 )
+ wgl / E [exp (—MFQ csc? Q)dﬁ}. (A.4.1)
0

After averaging over channel fading, we get

(1\/171 T

1 — _
FASERMPSK = wW— / <1 +MF1 CSC2 9) 1d(9
T Jo

M—1

1 i )77 — _
+w2—/ (1+ MTyesc®0) ™ df. (A4.2)
0

™

To simplify further, we use the following [33, (9)].

1 1 1 1-—
_—<_+—arctan< —J\/ll>> (A43)
1"‘/\%:, 2 7 ./\/l—i-%

Using the above definite integral, FASER can be expressed as

FASER s psi = W1 Peg, + Wape,, (A.4.4)
where
1,1 1-M
5 + —arctan I L
! - (AA4.5)
pe = 1 - -— + ) <E.
M 1
Yamavi
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1,1 1-M
. <§ + ;arctan < —M+%>>
. (A.4.6)

—1-| =

Using wy + wy = 1, and simplifying further, we get the expression in (2.2.11).
Furthermore, using the inequality sin?# < 1, FASER can be upper bounded as

1) - 1 () — -1
0 0

T T
(A.4.7)
After simplifying, we get
M-1 1 M-1 1
FASER < = | + =, A48
MPSK = W1 M <1+MF1> W2 i <1—|—MF2> ( )

which is the desired upper bound.

A.5 Proof of Result 2: FASER and its Upper Bound
for MQAM Scheme.

The symbol error contribution of R;-Ds link and Rs-Ds link is equal to [153]

FASER yoam =
w147m ’ E[exp <_mT1 csc? 9)} do — wl% ! E [eXp (—mTl csc? 9)} do
0 0

3 2 ri
+ w247m E[exp (—ng csc? 9)} do — wg% /4 E[eXp (—mT2 csc? 9)} do,
0 0
(A.5.1)

where m £ 1 — \/L— and m/ £ . After averaging over channel fading, we get

M 2(M i)

FASER y0n =

4 3 _
wl—m (1—|—mTlcsc20) do — wl—/ 1—i—mT cse 0) Yo

T Jo

4 3 — - = -
+ w2_m / (1 +m'Ty csc? 9) Yo — wQ— / (1 + m'Ty csc? 9) df. (A.5.2)
T 0 ™ 0
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The above sum of integrals can be expressed as

4 3 _ _ _ _
FASER yoam = Sl / [wl (1 + m'T esc? 0) s Wy (1 + m'Ty csc? 0) ! ] do
T Jo

4m? [1 - - - -
_ A [wl (1 + m'T esc? 0) s Wy (1 +m/Ty csc? 0) ! ] df. (A.5.3)
T Jo
Let Z; denote the first integral and let Z, denote the second integral. To simplify

further, we use the following indefinite integral.

_ [k
/ (1+ k csc? y) ! dy =y — ) arctan tanky +C, (A.5.4)
V k+1

where C is some real constant.
Using the above integral and substituting the limits, we can show that Z; simplifies

to the following form.

T T
1+ m/F1 1+ mTQ

Furthermore, we can show that Z, simplifies to the following form.

12:7712—4—7”2 w1 Lfl_cot_1 LE_
™ 1 —+ m/F1 1 -+ m/F1
m'T T
+wo —2_ cot™! m—Q_
1 —+ mTQ 1 + m’FQ

Finally, Z; — 7, yields the required result.

Using the inequality sin?€@ < 1, upper bound of FASE Ryoan can be derived by
using (A.5.2) as,

dm (2 - 4m? (7 -
FASERMQAM—wl—m/ (14 mTy) o —w, [ (14 m'Ty) " do
™ 0 ™ 0
dm (2 - dm? 7 -
+w2—m/ (1+mTo) " do —w e [ (1+mTy) " do. (A5.7)
7™ Jo ™ Jo
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After simplifying, the upper bound for FASE Rygan is,

wh Wa

FASER 04 < (2m —m?) T - Tty | (A.5.8)
A.6 Proof of Result 3: FASE Analysis
The FASE can be expressed as
S, = wiE[log, (1 +T1)] + wE[log, (14 T)]. (A.6.1)

Unfolding the expectations, we get

&

— 1 &0 _
S, = w <_—/ log, (1+)e
0

Iy

1 [ _22
d71> + wy <_—/ log, (1 +72)e T2 d72> :
Is Jo
(A.6.2)

To simplify further, we use the following [35].

/OOO In(1+ ) e T dy=Texp <%> Ei <%> , (A.6.3)

where Ei(-) is the exponential integral [154, (5.1.1)]. Using the above integral and
simplifying further, we get the desired result.

Lower bound and upper bound: To derive the bounds, we use the following inequal-
ity [155].

1 2 1
5 In <1 + —> < eYEi(y) <In <1 + —> ,y > 0. (A.6.4)
Y Y

Applying the above inequality in the exact FASE expression, we can obtain the lower
and upper bounds. Furthermore, the upper bound can also be obtained using Jensen’s

inequality.

A.7 Proof of Result 4: Diversity Order Analysis

The analytical expression for exact FASER in (2.2.11) is complex. Therefore, in order
to derive the diversity order, we use its upper bound, and lower bound. We first prove
that the diversity order for MPSK upper bound is one in the scaling regime, in which
the average SNRs I'y, and I's, are very high and 'y ~ Ts.
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Diversity order of upper bound: In the scaling regime, the upper bound of FASER
for MPSK is given by (2.2.12)

M-1 () Wo M-1 w1+w2>
FASERyg. = — — ~ — .
UB-MPSK M <1+MF1 1+MF2> M <1+MF1

It can be observed that FASERuyp.Mmpsk 1_“_11 Thus, it can be stated that the
diversity order of the FASER upper bound is one.

Diversity order of Lower bound: To derive an insightful lower bound on exact
FASER, we use the following inequality. For y > 0, tan~!y < y. Using the above the

inequality, the FASER can be lower bounded as

M-1 wq

1 Wo
M 2 1 + 1
\/1+M—T1 \/1+ L

FASER\psk > <

MT'y

1= M - M
—<%\/ Y + =2/ Y >éFASERLB_MPSK. (A7.1)

For the scaling regime, using the fact that wy 4+ w; = 1, we have

M—1 1 1 1 /1=
FASERMpsk > FASERLB.Mpsk ~ — s | —F— 1y 1-M .
M 2 \/ﬁ T M
My

(A.7.2)
Let M = 2. We have M = sin? 17 — 1. Further simplification yields the following.
1
FASERLB—MPSK ~ —. (A73)
417

Therefore, the diversity order of the FASER lower bound is equal to 1.
Since the lower bound, and, the upper bound, both achieves diversity order of 1,

dprsp is equal to one.

A.8 FASER in High SNR Regime for PRSP

In the scaling regime, assuming 7, = 7, = 7, for equation (A.4.2). Furthermore in
scaling regime we assume P, — o0, hence we can neglect 1 in the denominator of

both the terms of equation (A.4.2). The FASER expression for the scaling regime for
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MPSK is given by

G o) LA ()
FASERYqp = wy — / R do + ws ~ / - do,
T Jo M 5 cesc? 0 T Jo M =1 cesc2 0

r
a.

do.

. w1 + Wo /<%>7T 1
0

™ M % csc2 0
n

Since wy + wy = 1, we get

T M

1 (257 )
FASER! o, = [—] / " sin? 0 do.
0

r ¥
2
Tn

M—-1

Let K = f0< M >7Tsir129 df. Therefore,

K 1
FASERI;RSP - [m] [f]’

where T is the mean received SNR.

A.9 FASER in High SNR Regime for ORSP

To derive the expression for FASER for the system model considered, first, we deter-
mine the probability density function of the instantaneous SNR at the destination.

Therefore, the end SNR at the destination node is given by

B P, max{y4, Y8} b7
o 2 o 2

I'g

g g,

where v4 = min{vg,»,, 71}, v = min{vg,, %}, and P, denotes the power received
at destination.
Using the fact that the instantaneous channel power gains are statistically inde-

pendent, the complementary cumulative distribution function of v,4 is given by

FY, (v) = P(min{yg,r,, i} > ), (A.9.1)

_ ) s (A9.2)
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Therefore, the CCDF FY () is given by

L L)y

Fi (v) = e (A.9.3)

Similarly, the CCDF of g is given by

1,1

F‘?B(V) = 6_ <7d1r2+w>777 > 0.

Now, we determine the PDF of Z. Using statistical independence, we have

Fz(v) = P(max{ya, 78} <7)

— (1 _ 6—71eff “/) (1 _ 6_?/2eff “/).

(A.9.4)

1 4 1
T/dl 9 :/2 ’
From the above equation, we can determine the probability density function. The

where 7, = ﬁ + ;{—11 and Yo pp =
pdf is given by

P(Y) = Trepr €I T A Foepp €705 T = (Tiopp + Tgeps) € Tresrt e 7,

Therefore, the FASER for the ORSP is given by

1 (2w ,
FASERorsp = E —/ exp (—./\/lFE csc 0) do|,
0

1 ()= PZ
—E—/ exp | —M-—3csc”0 | dO|,
™ Jo g

(A.9.5)

122

where M = sin? (%), and M is the modulation order. Furthermore, the average

value of 7 is given by

_ 1 1 1
E[Z] =7 = — + — — = — . (A.9.6)
Yierf  Voerr  Vierf T Voefs

Therefore, solving (A.9.5), we get

| () 1
FASERORSP - - / ~——— d(9 (A97)
T Jo 1+ M PQQZ csc2 0

Further, to derive FASER for the scaling regime, we assume P, — 0o, therefore we
can neglect 1 in the denominator terms of above equation (A.9.7). We also assume,

Veyry = Vdyry = V1= Yo =7 We get Jyopp = % and Yo, pr = % It can be easily shown
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that Z = 21.

In the scaling regime, the FASER is given by

FASERORsp =

M—1

where K = f0<T>W

! 2] )
. — / sin? 0 do,
| ™M % 37| Jo

[ 4K 1
3 M| T

sin? @ df and T is the average received SNR.
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Appendix B

Chapter 3: Derivations and Proofs

B.1 Proof of Result 5: FASER Optimal Relaying
Policy for MPSK

Consider the objective function in (3.2.4), which is convex in Gg \psk. It is easy to
verify that the constrained optimization problem is convex in Gg_ppsk. To solve this
FASER minimization problem, we can use Lagrange multiplier method.

Let Lk (Gs—mpsk) denote the Lagrangian function given by
Lx(Gs_mpsk) = E (wle_MF1 + wpe™ M2 L K (gﬁ—MPSKpr — Pth)) . (B.1.1)

Now, equating the values of I'y and I'y from equation (3.2.1) in equation (B.1.1),

we get

Lk (gﬁ—MPSK) =E

2
Tn

< Mgﬁ—MPSKpr’Yl>
wrexp | —

(B.1.2)

2
Tn

MGs_ b, .
+ wy exp <— Gs-npsic 72) + K (gﬁ—MPSKPr - Pth)

In equation (B.1.2), by virtue of convexity, we can drop the expectation. Further, to
obtain the optimum RGF Gj_\psx, we differentiate (B.1.2) with respect to Gs wpsk
and equate it to zero. By doing this, we get

< MQEMPSKISWYI> <M]5r71>
wrexp | — 5 5

On On

MG P, P, p
g/@’fMPQ’SK 72) <M13272>— KP,. (B.1.3)
o

g

n n

+ wy exXp <—

Let ¢ 2 MP Further simplification of (B.1.3) yields

oz
wiyi ¢ exp (— G wpsk) + Ware ¢ exp (— %G ypsk) = K D (B.1.4)
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Furthermore, it is easy to verify that G5 ypsx = 0 when w7y, ¢ +wyys ¢ < K]ST,
which is the power conservation rule for the FASER optimal policy for MPSK.

B.2 Proof of Result 6: Exact FASER and its Up-
per Bound for MPSK

FASER optimal policy for MPSK provides optimal relay gain G ypgx. After unfold-
ing the expectation, the exact expression for FASER for MPSK in terms of G5 ypgi

p(71) -
/ / / Ve €T dy dy df
172 0=0 ¥1=0 J 2=

1\11

is given by

FASERMpsk =

/ / eV ¢ dy, d d@]
Yo a1
=p(m)
I\I
]\1 7T ,0("/1) — —
—l—ﬂ;uﬂy [/ / eWieeT T dryy dy, do
172 =0 ¥

1\11

2=0
/ o / / eV e dryy dp d@] (B.2.1)
6=0 7=0 Jy2= P(“/l

where W = ¢ G}_ypgi csc? 0. From equation (3.2.7), we have G%_pgi is zero for

vo < p(71). Therefore, after simplification we get the expression for FASER\psk,
which is given in (3.2.8).

Further, to obtain the upper bound of the FASER, we use sin?# < 1. Therefore,
substituting sin’¢ = 1 in equation (3.2.8), we get

FASERuB-mpsk =
Wi mm / E / / e~MMeTT &% dyy dry dO
T™Y17V2 0=0 v1=0 Jv2=p(71)
w, mm (%) Wi -2 B
+ —— / / / e 2 d’}/gd’}/l df ,
Y172 6=0 1=0 Jy2=p(71)

(B.2.2)

where W = ¢G; ypgi- Further simplification of the above expressions gives us equa-
tion (3.2.9).
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B.3 Proof for Optimality of FASER MPSK

To prove the optimality of FASER [36], let f(z) £ w, exp(—%)—i—wg exp(—%)

for x > 0. Further, for the policy whose relay gain is the function of Gs_\psk, wWe

define the unconstrained Lagrangian function Lg, .. (K) as

LQB*MPSK(K) = E[f(Gs_mpsk)] + K E[gﬁ—MPSKpr], (B.3.1)

for all K > 0. Further, consider a policy Gs_mpsk that specify the relay gain as
Gs_npsk = arg r§1>1(r)1{f(x) + K (xP,)}. (B.3.2)

Note that Q~5,MPSK is the function of channel power gain of v, and 5. Further, for
the above policy, let K > 0 denote the value of K at which the above policy meets the
power constraint in equation (3.2.5) with equality. Therefore, for this specific K value,
let G%_\ipsk denote optimal relay gain function. Hence from equation (B.3.2) it can
de deduced that Lgy | (K) < Lg, e (K). Substituting this in equation (B.3.1)

and re-arranging. we get

E[f(gg’—MPSK)] < E[f(gﬁ—MPSK)] + f( E[gﬁ—MPSKpr - Pth]- (B-3-3)

Further, we know that E[gﬁ_l\4PSKP7-] < Py Therefore, we can write equation (B.3.3)

E[f(G5_wpsk)] < E[f(Fs-mpsk)] (B.3.4)

Therefore, G5 ypgi satisfies the average relay transmit power constraint with equality

and has the lowest possible FASER among all the feasible policies. Hence it is optimal.

B.4 Proof of Result 7: FASER Optimal Relaying
Policy for MQAM

To derive FASER optimal policy for MQAM, we use the approach similar to that of
MPSK. The objective function is convex. Therefore, we form the Lagrangian function,

which given by

Lx/(Gs_mgam) = E <w16_m B e 2 4 K7 (gﬁ—MQAMpr — Pth)) . (B.4.1)
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Substituting I'; and I'y from equation (3.2.1) in equation (B.4.1), we get

Ly (gﬁ—MQAM) = E |w; exp <_m/F17gB—MQAM>

+ws, exp <—m/F2,g5,MQAM> + K’ (gﬁfMQAMpr - Pth) , (B.4.2)

Gs_nmqamPrm

Gs_nqamPry2
o2 '

2
T

where Flygﬂ—MQAM = and FQ,Q[%?MQAM =

By virtue of convexity, dropping the expectation in equation (B.4.2), differentiat-

ing it with respect to Gs_mqam and at last equating the differentiated expression to

zero, we get

’ m/pr ’ m/pr ~
wy €Xp <_m Fl,QB—MQAM) <—2%> + wq €Xp <_m FQ,QB—MQAM) <—272> = K/Pr-

On Oh

(B.4.3)

Let ¢ = mgf . We can express equation (B.4.3) as

wiy dexp (— dGi_yaan ) T were ¢ exp (— d%Gi_yiqan ) = K'Pr. (B.4.4)

Furthermore, it is easy to verify that G5 y;qam = 0 when w7y, ¢ +wyys ¢ < K’ P,
which is the power conservation rule for the FASER optimal policy for MQAM.

B.5 Proof of Result 8: Exact FASER and its Up-
per Bound (MQAM)

FASER optimal policy for MQAM provides optimal relay gain Gz_yjqay- After un-
folding the expectation, the exact expression for FASER for MQAM in terms of
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G5-mqawm s given by

4 Pln) _n _x
FASERMqam = ﬂj l_Ul [ / / / INeTH 7T dryy dryy dO
0=0 J~v1=0 J 2=

Y172

/ / / S YRR ¢ dyy doy db
0=0 Jv1= Y2=p'(71)
o ()
4m 1 / / / P i drys dyy dO
7T7172 0=0 Jv1=0 J o=
/ / / YT TR dyy dy d
0=0 Jv1= Y2=p'(71)

o' (1)
4m 2 / / / e VreTT ¢ T dryo dryy dO
7T7172 0=0 Jv1=0 J =
o _x
/ / e YT € T2 dyy dryy df

=p'(m)

o0 o ()
4m w2 /2 / / AP i drys dryy dO
T™Y17V2 0=0 "9=0

/ / / VeI ¢ dyg dy dO |, (B5.1)
6=0 Jv1=0 Jv2=p'(11)

ST iy and Y = ¢/ G&_yiqan osc’ 0.

From equation (3.2.19), we have G5 yqan = 0 for 72 < p(71). On further simpli-

where m' =

fication, we get equation (3.2.20).
Further, to obtain the upper bound for FASER, we use the inequality sin?6 < 1.
Substituting sin? @ = 1 in equation (3.2.20), we get

2
FASERUB—MQAM [wll / / / Y7 _7_6_
7172 6=0 Jv1=0 J yo= P(“ﬂ

ER A
0=0 J v1= V2= P(“ﬂ
+— f‘i‘/ / / _Y’Yg _ﬁ_le_ﬁ_gd’)/gd’}/lde

m 0=0 Jy1=0 Jy2=p'(71)
/ / / e B dypdmidd | |, (B.5.2)
0=0 Jv1=0 Jva=p'(71)

where Y = ¢ G%_\jqan- On further simplification, we get the desired upper bound

4||m

2dyy d%d@]

QllH
4||m

—w e

[y

d%d’hd@]

expression.
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B.6 Proof of Result 9: FASE Optimal Relaying
Policy

As the optimization problem stated for FASE is concave, this can be re-formulated

as the following convex problem.

. r(nin : —E [w; log, (1 +1'1) + welog, (1 +1'9)], (B.6.1)
n{71,72

st. B [gnﬁ,} < Pa. (B.6.2)

Clearly, the objective function in the above minimization problem is convex, we
can again use Lagrange multiplier method to determine the optimal solution. The

Lagrange function for the above optimization problem can be written as
Ly (Gy) = E[—(wy logy(1 + Iy) + wslogy (1 + Ta) ) + T(Gy P — Pu)l,  (B.6.3)

where T > 0. Substituting the value of I'; and I'y in equation (B.6.3), we get

LT(%):E _< w1 n <1+gnpr’}’1>+lw2)ln <1+g7’P;72>>+7'(%157«—Pth)

In(2) o n(2 2

(B.6.4)
Dropping the expectation and equating the derivative of the expression inside the

expectation to zero, we get

wlpr%(o'g + gnpr%) + UJQPT’YQ(U?L + gnp/h)

_ - = TP 1n(2). B.6.5
(02 + 6o Pn)(0% + Gy Fr) " P69

Simplifying the above equation further, we get a quadratic equation, which can be

expressed as
AG,” + BG, +C =0, (B.6.6)

where
A= ]5,27172T1n(2),

B2 PyoT In(2) + PyoT In(2) — Py

C2olTIn(2) —wimio? — woyor.

The optimal solution is the unique positive root of the quadratic equation. Fur-
thermore, it is easy to verify that G = 0 for w1y, + waye < To21n(2), which is the

power conservation rule for the FASE optimal policy.
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B.7 Proof of Result 10: Exact FASE Expression

and its Upper Bound

FASE optimal policy provides the optimal solution, that is, G,. Expanding the ex-

pectation, the FASE as a function of G; can be written as the sum of two integral

expressions:

o L(71) g* v e . )
Sy = / / In|1+ % e e dryy dy
M7V2 ln 71 =0 Jya=
00 00 g Pr
wl/ / In|1 n
7=0 Jy2=L(71)
£ln) g Pr _m _2
/ / In <1—|— 72) e e dyy dyy
.

1=U v 2=
o G: P, _n o _»
w2/ / In {1+~ 272 e e dry, dfyl]. (B.7.1)
71=0 Jyv2=L(71) On

Since G, is zero, when the condition in equation (3.2.25) is satisfied, after simplifying

+

e e dys d’yl]

further, we get the desired expression in equation (3.2.26).
We now derive an upper bound for the FASE using Jensen’s inequality. Applying

the inequality in the exact FASE expression, we get

L(71) g*P
wi In 1+—/ / rylezieﬁ2 dryy dyy
Y1=0 v y2=

Sn-us = In(2)

Y172

G: P, n
/ / LR R dp dy
/71/72 v1=0 Jv2=L(71) UTL

L(71) g*P
weln [ 14 —/ / e _%1 6_% dryy dyy
Y1=0 v y2=

=

+
Y172

g Pr 1 2
/ / 272 e dya dy | |- (B.7.2)
/71/72 v1=0 Jv2=L(71) On

Using the power conservation condition given by equation (3.2.25), the above ex-

pression can be simplified to obtain the desired upper bound expression in equa-

tion (3.2.27).
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B.8 Proof of Result 11: FAEE Optimal Relaying
Policy

To derive the FAEE optimal policy, we use a similar approach as that of FASE optimal
policy. Since the FAEE optimization problem is also concave, we re-formulate it as a

convex optimization problem as follows.

min —E <w1 logy(1 + ) + w, lf)gQ(HF?)), (B.8.1)
Ge(71,72) Py, + Ge(m,v) P+ P.
st. B [gg 15,} <P, (B.8.2)

To derive the optimal policy, consider the following Lagrangian function:

_ wun 10g2(1 + Fl) =+ woy 10g2(1 + FQ)
Pd1 + gé’ Pr + Pc

Lp(Ge) = E < +D(Ge P, — Pth)>. (B.8.3)

Substituting the value of I'y and I'y, dropping the expectation, differentiating it
with respect to Ge and then equating the resultant expression to zero, we get

" In (1+ %)

y Y In (14 9ebrz)
1 = — =
O-%—i_gfprfh Pd1+gSPr+Pc

w = — =
|02+ Gy Py +Gebr + P
= D(Py, + GeP, + P.)In(2). (B.8.4)

The optimal solution is the unique positive root of the above transcendental equa-
tion. Furthermore, it is easy to verify that Gf = 0 for wyys + waye < D 02 (Py, +
P.)In(2), which is the power conservation rule for the FAEE optimal policy.

B.9 Proof of Result 12: Exact FAEE Expression
and its Upper Bound

The FAEE for the proposed model in terms of optimum RGF G¢ is given by

wi logy(1 + E21) + w, logy (1 + %572

E=E _
Pd1+gg' PT—"_PC

(B.9.1)
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Further, unfolding the expectation, we get

H(v) In 1—|— P’ ﬂ”) o
- w e e mdyd
’YWQIH ' /"/1 =0 [/ Pd1 + QgP + P, = n

m(1+%52)
+ wy / / e 7 e ndy dvy
=0 /2= H(mpdl +Gi b + Pe

ol

5 (B.9.2)
H(y1) In 1+ Ge I “/2> 71 ¥2
+ ws / / o e e mady, dy
Y= Y2 = Pch + gSP + P
P7 "/2)
il
71

2
e 2dyy dv|.
[/1 =0 /w H(mpdl +GiF + P,
For 0 < v, < H(7), we have Gf = 0. Applying this condition in the above equa-
tion (B.9.2), we get the simplified expression which is shown in equation (3.2.35).
To obtain the upper bound for the FAEE, we use the inequality In(1 + z) < « for
x > 0. The upper bound of the equation (3.2.35) can be expressed as

71

Gg P7 ’Yl)

J— a2
Eup = / / e e dy dy
’Yl’YQIH [ =0 Jryo=H(n) Piy + QSP + P
gg P, w)
_m

2
e e dy dy|.
/"{1 0/2 H(v1) Pd1+ggp +P

(B.9.3)
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Appendix C

Chapter 4: Derivations and Proofs

C.1 Proofof Lemma 4.2.1: Statistical Average EH ax

For the simplified path loss and shadow fading model, the maximum energy harvested
by the EHRNs is given by

EHmax = max{EH1,...EHp, ..., EHL}, (C.1.1)
Gm CnVn CL’YL}

= max ey e , C.1.2

{ ¢1 % wL ( )

where 1, %9, ..., Yy, ..., ¥ are i.i.d log-normal random variables, and ~v;,y2, ...,z
are exponential random variables. Note that all ¢/,, and ~, are statistically indepen-
dent. The CDF of EH .« is given by

Gm CaVn CL’YL} < >
b b <y]).
wl % wL

P(EHmax < y) =P <max{ (C.1.3)

By virtue of statistical independence, we have

P(E’Hmaxgy)—P<%§y>7’(%§y)><---

1

x P <i—n Sy) Pyn<y)...xP <i—L Sy) Py <y). (C.1.4)

n L

We have ¢, = 103, n = 1,2, ..., L, where Y, ~ N'(0,02). Thus,

7><i— g)w%g)—@(ém (%)) (1-¢%), (C.15)

10

where @ (-) is the Gaussian Q—function and ¢ = 75.

Therefore, we have

P <) = [0 (Su () (=) 2rnnw. (©L0)
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Thus, from the CCDF, we can compute &Hpax using the following formula: EH pax =

Suppose di~..~d,~...dp=d,00=...=0,=... =0 =0, and hence
GG=...=( =...=( = (. Furthermore, 7, =%, = ... =7, = 7. Therefore, by
virtue of the ii.d property, the cumulative distribution function (CDF) expression

further simplifies to

Eettna (Y) = <Q <§ In <%>>>L (1 - e‘%)L y > 0. (C.1.7)

Since EHnax is @ non-negative random variable, the average energy harvested can be
evaluated from the complimentary CDF (CCDF).

mmax = / (1 - FS’HmaX (y)) dy (618)
0

Using the fact that Q(y) = ferfc (%), we get the desired result in terms of comple-
mentary error function.
L =1 scenario: For the single EHRN scenario, we have EH = (E [ﬂ 7. Note

2 &2

that Y ~ A(0,0?). Since E [ﬂ =E [10_1&0} =E [e‘ﬂ — €27, we get EH = (Fea.

C.2 Proof of Lemma 4.4.1: Link Outage Analysis

From the definition of link outage probability, we have

&
P(lp <) =e¢ T / / P < >
kY Vrsa Joo kv
<1 — exp < >> exp < > 2 dy,
k/—y Vng
_1
DVU(?Z

Consider the inner integral. Using substitution (1—exp(—%)) = t, and simplifying

(C.2.1)

where C =

further, we get

%y& _ oz L—-1 k7 a L
/0 e (1—6 m) dz—f<1—exp<—§>> :

where a = %, b = Tld' Substituting the above simplified expression and further
7‘S

simplification yields the desired expression for the outage probability.

B

We cannot simplify the integral further. However, for L = 1 and ~ = 0, the
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outage probability is given by

1 oo oo
— / <1—eXp <—C—l>>6_bydy— l—b/ exp <— <C—l+by>> dy.
Yrsd JO Y 0 Y

Further simplification using the standard integral [156, (3.324.1)]

[ e <‘ <a § by)) W= \/i Ky (Vaab). (C22)

yields the desired expression for outage probability.

C.3 Proof of Result 13: Exact FASE

Substituting the expression for I'p given by equation (4.4.2) in equation (4.5.1), we
get FASE as

S =E| log, <1 A maX{ng’SZ{Q’ ' ’SHL}%W)] . (C.3.1)
o3 DY
Since EH.,, = kv, we have
S =E|log, <1 LAk max{%’f’ - ’VL}%‘S”Z>] . (C.3.2)
o DY

Let v = max{vi,7%,...,7z}. The pdf of vy is given by [100]

X

L—1
P =2e 7 (1=e7) 7y 20 (C.3.3)

=2l =
o

Therefore, unfolding the expectation, equation (C.3.2) can be expressed as
— L kv v
eSS R

)7 T «d J =0 %Sd 0 o;D Y
x | 1—exp —z exp | — ngd dYyea dry.
/7 Vng

Further, considering the energy conservation rule, the above above expression

(C.3.4)

148



becomes

@l
H

L[ / LAk ) (L
77 v=0 ’Y’Sd O 2D 7
X | 1—exp —Z exp —Z dyrea dy
Y ﬂyrgd
L () ()
2pv
7=0 v Yrga="0 Y
x | 1—exp —Z exp —ZTSd dvpea dy |-
Y Vrgd

From the energy conservation rule, we have A = 0 for v,.,4 < 7 and A =1 for

(C.3.5)

Yrsd = Yo Simplifying further, we get

L—1
_ I o
n , -
7 Trsd Ja=0 7 (C.3.6)
X [/ In <1 + Cﬂ’ 7rgd> exXp <_ ZTSd> df}@“gd]] dﬂ%
Vrgd="0 Trsd

where C; = Ug—ljy. Using the substitution ~,.q = 7 + v and simplifying the above
d

inner integral with respect to u using the definite integral [156, (4.337.1)]

/oo e In(t + A)dt = = (In(\) + E; (pA)e) (C.3.7)

=l

we get the desired single integral expression for FASE in equation (4.5.2).

C.4 Proof of Result 14: Closed-Form FASE Upper
Bound

To determine the expression for upper bound FASE, we first obtain the average SNR
of Rs — D link, that is, E[I'p]. Therefore, from equation (4.4.2), E[['p] is given by

_ Amax{EH1,EHa, ..., EHL} Yra

I'p=E C.4.1
b a?ﬂ)” ( )
Using statistical independence of A, EH pax, and 7,4, we have
= ElA] E[EHnax] E|yr
Tp = ['A] [EH ] [7 sd] . (C.4.2)

27Ty
05D
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It is easy to show that E[A] =1 — py.
From equation (4.3.2), we see that P(V,.a > 70) = 1 — po = exp ( ) There-
7S

fore, E[A] = exp ( — ﬂ;’—d> Further, as Raylelgh fading channel is considered for the
s

S — Rg link, we have EHmax = k7 Z
Substituting the expressions for E[A], E[EHmax] and, E[y,.], the expression for

mlm

T'p is given by

. kexp(—%gd)(Zilm)vwsd s
b= a2 Dv (C.4.3)

Lastly, substituting I'p expression in equation (4.5.3), we get the desired closed-form

upper bound in equation (4.5.4).

C.5 Proof of Result 15: Asymptotic FASE

First, we consider the closed-form upper bound of FASE. For ,.4 > v, we have

_ o
S < Syp = log, e x log, <1 + CiJe Trsimy %Sd> , (C.5.1)
where J = 328 | -
We use the following inequality: for y > 0, In(1+vy) < y. Using the inequality, we
have
_0 o
(o) o, {14+ CuJe 507 7,0 ) < (o) Cude 07 T (€52)

In the scaling regime, as py — 0, we have vy — 0. Therefore, in the scaling regime,
__J0

e Trs¢ — 1. Further simplification yields the designed expression for the asymptotic
FASE.

C.6 Proof of Result 16: Exact FAEE

From equation (4.6.3), the average relay transmit power can be expressed as

_ A max{EH1, EHa, ..., EHLY
Pr (1—v)T ’
D)

(C.6.1)

By virtue of statistical independence of the random variables, P, can be expressed as

5 _ EA] ElfH .
Py = (1—o)T :
2

(C.6.2)
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Substituting E[A] = exp ( - ) and E[EH max] = k7T, we get

rgd

p o ) | (C.63)

(1—v)T
2

Therefore, the average total power consumption is given by

- (Ps +P)

Pr = T ( ”’g”) . (C.6.4)
2

Further, substituting equation (4.5.2) and equation (C.6.4) in equation (4.6.1) we
get (4.6.4).

C.7 Proof of Result 17: Closed-Form FAEE Upper
Bound

It is straightforward to derive closed-form FAEE upper bound from the closed-form
FASE upper bound Syg. Let Eyp denote the FAEE upper bound. We have
= Sus

Eos = Ty (C.7.1)

Substituting the upper bound of FASE given in equation (4.5.4), we get

log, (1 + CiJexp ( )7 %Sd) Lt

(P, + P,)U=2t +k’yJeXp< V_o)'

rgd

Eup =

(C.7.2)

C.8 Proof of Result 18: Asymptotic FAEE Expres-
sion

We use the similar approach that we followed in deriving the expression for asymptotic
FASE. First, we consider the closed-form upper bound of FAEE. For v,.q > 7o, we

have

log, (1 + CiJexp ( )7 %Sd) e

(Ps+ P12t —i—/f’)/JeXp( VO)’

rgd

ESEUB :10g26><

(C.8.1)
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where J = Zm Lo
We again use the inequality: For y > 0, In(1 + y) < y. Applying the inequality,

(QJ exp ( )7 %Sd) U=t

(P, + P, =t +k’yJeXp< V_o)'

rgd

we have

Eup < log, e x (C.8.2)

In the scaling regime, as py —> 0, we have the threshold vy — 0. Therefore, in
the scaling regime, we have e ”Tsd — 1. Further simplification yields the desired

expression for the asymptotic FAEE.
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Appendix D

Chapter 5: Derivations and Proofs

D.1 Proof of Result 19: Optimal FASE Relaying
Policy

We reformulate the optimization problem in equation (5.2.2) into a convex optimiza-

tion problem.

. wspr%id wspﬂ/fgd
I?/én —E P1 10g2 <1+W + P2 10g2 1+W s (Dll)
@DSPT%Z; d wsPr’Yi d
1. E L 22 < Ty D.1.2
S p1 o2 D + P2 2D | th ( )

It can now be verified that the objective function shown in equation (D.1.1) is a convex
function. Therefore, we use Lagrange multiplier method to obtain the optimum RGF

1s. The Lagrangian function can be mathematically written as

Vs Py, Vs Py, nvs By,
L(ts) 2E|- p1log, nyd +ps log, 1—127d + M #
04 d oy dv oh Dv
p2¢3Pr77z; d
— =1 D.1.3
+ O'%) DV th> 9 ( )

where M > 0 is the Lagrange multiplier and is set such that it should satisfy the
average interference constraint defined in equation (D.1.2). Further, to obtain 95,
dropping the expectation (due to virtue of convexity) from equation (D.1.3), differen-
tiating with respect to ¥s and equating the simplified expression to zero, we get the

quadratic equation presented in (5.2.6).
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D.2 Proof of Result 20: Exact Optimal FASE Ex-

pression

We now use the optimized RGF and power conservation rule to derive the final ex-
pression for optimal FASE. For the proposed spectrally-efficient IC-PA-DAF policy,
optimal FASE is given by

P Py
p1 log, <1+%> + po log, <1+w>]. (D.2.1)
d

S=E
o2 dv

Expanding the expectation, we get

Al e e
a0 =0 =05, =0

e e md e
P - == pr; pr;
where X = ——L—— Y, = wf—];'y, and Z = e Md X e 'n2d x e d x e r2d |

’\/71d?/72d’y71d’y72d
Further, 75 4, 75,4, Ve,q» and 7.4 is the average channel power gain of R — D, link,

RS — D§, link, Rf — DE_link and RS — Dk link respectively. Further applying power

conservation rule, we get equation (5.2.8).

D.3 Proofof Result 21: Optimal FASE Upper Bound

Expression

Applying the Jensen’s inequality, the upper bound is given by

> + p2 log, <1—|—E

)] (s
Expanding the expectation, the above expression becomes

X/ / / / YIVTle dVTQd dVTld dVTld d7r2d1>

"/Zw d:0 'Y: diO d*O ’Y

/ / / / YIVTQdZ d/yng dVTld dVTld dVTQd >
a=0 Y77, =0 Yr 1a=0 ”/

(D.3.2)

Sup = [Pl log, <1 +E| Y17, 4 Y1974

Sus=pi log, <1 +

+ po log, <1 +
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Lastly, applying the power conservation rule, the upper bound expression for FASE

is shown in equation (5.2.9).

D.4 Proof of Result 22: Optimal FAEE Relaying
Policy

Converting the concave optimization function to convex function, we get

e Pryl e Prys
p1 log, <1 + ig—zuld> + pa log, <1 + ggg—zuﬂ)
min —E , D.4.1
e Ps + Pc + wé'Pr ] ( )
%P/Yi d wé'Pr’Yi d
t E 1 281 < [y, D.4.2
S P1 O'%) DV P2 O'%) DV > 1th ( )

It can be analyzed that the objective function in equation (D.4.1) is a convex func-
tion. Therefore, we will be using the convex optimizing technique (Lagrange multi-
plier method) to obtain optimum ¢¢. The Lagrangian function for the optimization

problem can be written as

e Py e Py
<p1 o, <1 + —> + polog; <1 + —> )

Lo (the) £ E Pt 0P
, p1¢sPr’Yi d p2¢5Pr77z; d
L ) D.4.3
+M< 2 D + 2 D i ||, ( )

where Ps. = Ps+ P., M’ > 0 is the Lagrange multiplier and is set such that it should
satisfy the average interference constraint defined in equation (D.4.2).

Further, to obtain v%, neglecting the expectation (due to virtue of convexity) from
equation (D.4.3), differentiating it with respect to ¢ and equating the simplified

expression to zero, we get the equation (5.2.15).
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D.5 Proof of Result 23: Exact Optimal FAEE Ex-

pression

The expression of optimal FAEE for the proposed model after expanding the expec-

tation can be written as

L
. <p2 log, <1+Y27f2d>>

Psc+¢:€‘Pr

P1 10g2(1+Y27f1d)
Po + 0D,

Z dv;,g dvg g Ay dvgya |, (D.51)

Yz Pr
o2 dv

(F = 0 for 75,4 < ') to derive the expression for optimal FAEE presented in (5.2.17).

where Y, =

We now use the optimized RGF and the power conservation rule

D.6 Proof of Result 24: Optimal FAEE Upper

Bound Expression

Using the inequality log,(1 +vy) < y for y > 0, the upper bound expression for the
optimal FAEE can be written as

ook )
Vrga=0Y 7 =0V 77 =077, 4=0 Pec +¢§P
Psc + wgpr

Further, applying the power conservation rule, the upper bound optimized FAEE is

Eup =

expressed as shown in equation (5.2.18).
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D.7 Proof of Result 25: Optimal Relay Gain Func-
tion for FASE

Since the optimization problem stated in (5.5.4) is concave, we re-formulate it into a

convex optimization problem. Therefore the problem statement can be written as

min —E
©s

10g2(1 + Cl ¥s Vmax Vng)] (D71)

s.t. E

Cy vs vilaxvigd] < . (D.7.2)

It can be analyzed that the objective function written in equation (D.7.1) is con-
vex. Therefore, to obtain the optimum solution, we use the Lagrange multiplier
method. Hence, the Lagrange function for the optimization problem shown above

can be written as

Lm(ps) =E

—108,(1 + C1 08 Vonax Vood) + M(Co08VaxVhod — Ith)] , (D.7.3)

where M is the Lagrange multiplier. Further, to obtain the optimum value of g,
we differentiate the above equation with respect to ys after dropping the expectation

(by virtue of convexity) and equating it to zero. Hence, we get

Tos [— 108(1 + C1 95 Voax Vrod) + M(Co08VaxVrea — Ith)] =0,

Cl Vrsnax ngd
ln(2)<1 + Cl ¥s Vrsnax ngd)

=M (0271511ax77i“gd) :
(D.7.4)

Further, rearranging the above equation, we get equation (5.5.6).

D.8 Proofof Result 26: Exact Expression for FASE

Expanding the expectation of the equation (5.5.3), we get

3 = / / / ln 1+ Cl SOS Vmax Vng) exp = VTSd
T o Vrgd Vorga 1112 =0 Joi_ =05 =0 Vorsd

max

L-1
X exp | — Z.ng exp | — @ l—exp| — lsmax AVorax Ppea AVoa
Vngd Y max ¥ max

(D.8.1)
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where, V5.0 Vrao and ¥, , are the mean or average channel power gain of the

ST — R% link, R% — D3, link, and R°s — D}, link, respectively. Further, equating the
optimal value of ps and applying the power conservation rule to the above equation

the optimal FASE expression can be written as

_ C S S
S / / / In 17rsd exp <_ &)
”r max’Y rscﬂ red In(2) J+i sa=0 IV a=P(Va) Y Vinax= MC?'Yrsd n(2) Vred

L-1
X exp <— 1 d > exp < ;ma" > <1 — exp < ;max >> SO C
(D.8.2)

max

Assume, 1 — eXp(—;:S“—‘“) = u. We get

S= i exp | — =
/7 maxﬂy rsdﬂy red ln o *0 r = 'o(’yr a MCQVTSd IH(Z) y red

X exp < 7T8d> [/ V_max L= ldUI dﬂyrgd dﬂy;“sd
/7 TSd u:0
(D.8.3)
= ﬁ—z“ Therefore, the above equa-

Applying power rule [156], [f o Pmax U7 1du}

tion can be written as

= 1 > > CiVrsa Vrod
S==—— / / In — exp | — =5 o
~i [ ~ i <M027;“Sd IH(Z) VSTSd sd

VrgdVrsa 10(2) rgd=0 rea=P(Vrga)
/7 TSd
(D.8.4)

Integrating the above equation by parts, we get

s__ 1 /°° Y LIV W SLG/ 70 WY B/ 7 P
Virsd IH(Z) "/ir a=0 MCQVT dln(z) VSTSd Virsd e

1 > ! i .
+ ——/ E, <p(—z Sd)) €Xp <— lsd> 'Y;«Sd-
VirsaIn(2) /4 =0 T red Vred
(D.8.5)

Applying the value of p(v_,4) from equation (5.5.7) in above equation can be written

as

MC51In(2)~i i :
E, < 5_5 )%Sd> exp <— lrsd> Yrsd- (D.8.6)
0 1Y rsd
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Solving the above equation, we get

3:

MCQ N ; ln (MCQ ln(Z)) Cl?rgd
Ci7Pyoq + MOy, 4 1n(2) rad C, MCy1n(2)

() * (e * 7o) [0 () + 1P

O
+1n<1+ 1Y red )} :
MCo, 4 1n(2)
(D.8.7)
Further simplifying the above equation, we get equation (5.5.8).

D.9 Proof of Result 27: Optimal Relay Gain Func-
tion for FAEE

Since the optimization problem stated in (5.5.12) is concave, we re-formulate it into

a convex optimization problem. Therefore the problem statement can be written as

log, (1 + C S o Vo
pe (Ps + F) + Cs 0e Viax
sit. E[Cy pe fyfnaxfyisd] < Iip. (D.9.2)

It can be analyzed that the objective function written in equation (D.9.1) is con-
vex. Therefore, to obtain the optimum solution, we use the Lagrange multiplier
method. Hence, the Lagrange function for the optimization problem shown above

can be written as

~ logy(1 4 €1t @ Vinax Vrsa)

(C s 1] (D93
(P + Po) + Cs 08 Vorax T MUC: P8 Yo Yra = L) |- (D-93)

LM/(SOS) =E

To obtain the optimum value of g, we drop the expectation of equation (D.9.3)
(by virtue of convexity), differentiate it with respect to pg, and equate it to zero, we

get

0 10851+ O e (Vi Voo Yrsd) Vamax Vo)
00 (Voo Vosd> Vo) (Ps 4+ o) + C30e (Vanax> Voods Vooa) Vinax

+ M (Cope (Vnaer Voods Vod) VonaxVooa — Tin) | = 0. (D.9.4)
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Further, re-arranging the above equation, we get equation (5.5.14).

D.10 Proof of Result 28: Exact Expression for
FAEE

Expanding the expectation of the equation (5.5.11), we get

ln 1+ Cl we Vmax Vng) ngd
E=— exp | — =
0 maxfy rgdfy red 11’1 =0 "/, a=0 Y7 d*O P + P + 039057max Yrsd

mlx

L1
X exp %Sd exp| — _Z—max 1 —exp| — _Z—max Adax Vioa A75ea-
’}/ rad ¥ max ¥ max
) (D.10.1)

Applying the optimal RGF and the power conservation rule, the above equation can

be expressed as equation (5.5.16).

D.11 Proof of Result 29: Upper Bound Expression
for FAEE

Applying the Jensen’s inequality to the spectral efficiency term of equation (5.5.11),
the upper bound of the FAEE can be written as

_ ’Yr
=0 Ji_,=0 /3, dfo G red

mlx

L-1
xexp | — 1 “exp | — @ l—exp| — lsmax >> Vo AV dvf«gd]
Vngd Y max Y max
N T
=0 'y?i‘SdZO yigdzo (Ps + Pc) + 039057151151)( ?ng

max

L-1
X exp| — 1 “)exp | - @ l—exp| — @ SRR R D
Y ed Y max ¥ max
) (D.11.1)

where R = ——L —— Further, substituting the optimum ¢ and applying power

’Y max 7 7Sd'\/s7gd
conservation rule, the above equation can be expressed as (5.5.17).
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