
25

Chapter 3
Optimization techniques based on HLS
directives

Chapter 2 discussed multiple HLS optimization techniques available for the area, speed, and

power optimization of designs. In this chapter, some of the applications that were created using

MATLAB HDL coder and Vivado HLS are discussed. Some of the available directives from the

tool vendors were used to optimize the designs and results compared against those available in

the literature. Some of the commonly used directives are described in Appendix. The comparison

is done against previously published results obtained by other researchers. This chapter discusses

five such applications: QPSK modulator, DSP filter, MIPS processor core, AES encryption

algorithm and you-only-look-once (YOLO) v2 deep learning algorithm. Section 3.1 Section 3.3

discuss designs and optimizations based on MATLAB HDL coder directives (Band pass DSP

filter, QPSK modulator, MIPS processor core). Section 3.4 and 3.5 discuss design and

optimization using Vivado HLS (AES encryption algorithm and YOLO v2 algorithm). The tools

are chosen for these design applications depending on the availability of library blocks and ease

of coding. The metrics used to compare the design implementations are maximum frequency of

operation (function of largest critical path), area utilization (function of LUTs, Flip-flops and

registers used for the implementation) and power utilization (sum of dynamic and static power

dissipation). Dynamic power is a function of power consumed during design operation and

depends on factors such as functional resources (logic blocks, PLLs, registers, etc.) and signal

toggle rates. Static power is the power dissipated by the device even when there is no design

running on the FPGA. It is a function of leakage current, sub threshold leakage, junction leakage

etc.

3.1 Bandpass digital signal processing filter design (HDL coder)

Herein, design, implementation and optimization of a band-pass DSP filter is discussed using

MATLAB HDL coder.

26

3.1.1 Introduction to DSP filters

DSP filters are an integral part of multiple signal processing circuits used in communications,

image processing, etc.; thus, achieving their optimal FPGA implementations are crucial in VLSI

designs. The DSP filters help in mathematical manipulation of information signals such as

images, audio etc. These filters are gaining importance in multiple application areas over

conventional analog filters because digital signal processing is more immune to noise. Moreover,

digital signals can be easily reproduced in large quantities with lesser storage cost for data.

3.1.2 Design method and FPGA implementation results

Using MATLAB and Simulink, a bandpass FIR filter was designed and simulated [3.1]. The

following characteristics were chosen for the study:

Sampling Frequency = 48 kHz; Lower stop band frequency (Fstop1) = 6 kHz; Lower pass

frequency (Fpass1) = 9 kHz; Higher pass band frequency (Fpass2) = 12 kHz; Higher stop band

frequency (Fstop2) = 15 kHz.

Sampling frequency of 48 kHz is chosen to be sufficiently higher than Nyquist frequency

of 30 kHz (2 × 15 kHz) to avoid aliasing. This sampling frequency of the filter gets mapped to

the fastest design clock frequency achieved on the target FPGA device.

The filter was designed using the filter designer app available with MATLAB and

exported the same to Simulink. The filter coefficients were quantized for HDL implementation

using fixed-point designer tool [3.2]. The design and simulation environment for the fixed-point

HLS model is shown in Figure 3.1. Time taken for a single linear chirp is 33.66 micro seconds.

MATLAB HDL coder and multiple HLS directives were used as explained in Chapter 2, to

optimize the implementation [3.3]. Implementation results are shown in Tables 3.1 and 3.2. Table

3.1 shows the implementation results for the bandpass filter RTL code targeted for Kintex

7(XCK770T-FBG676) FPGA generated using the MATLAB and Simulink model. Table 3.2

shows a similar table for hand-coded RTL for a filter with the same functional specifications. The

functional simulation results as well as FPGA-in-the-loop simulation results suggest that

functionality of the design remains the same when using HLS. But since a higher platform

frequency is seen (without seeing any timing violations), the total wall clock time for filtering

operation is reduced as compared to hand-coded RTL implementation.

27

 (A)

(B)

Figure 3.1. (A) Fixed-point bandpass filter design (B) Simulation in MATLAB and Simulink.

Table 3.1 Kintex 7 FPGA implementation results for BP filter (HLS optimized)

Resource Utilization Available Utilization (%)

LUTs 2565 41000 6.256

Flip-flops 1280 82000 1.560

DSP 140 240 58.333

IOs 106 300 35.333

BUFG 1 32 3.125

Critical Path: 23.711 ns, Operation Freq. = 40 MHz, Total On-chip Power = 0.379 W

Table 3.2 Kintex 7 FPGA implementation results for BP filter (hand-coded RTL)

Resource Utilization Available Utilization (%)

LUTs 3268 41000 7.970

Flip-flops 1167 82000 1.423

DSP 151 240 62.916

IOs 106 300 35.333

BUFG 1 32 3.125

Critical Path: 29.68 ns, Operation Freq. = 33 MHz, Total On-chip Power = 0.467 W

28

As is evident from Tables 3.1 and 3.2, owing to the usage of distributed pipelining and

multiplier sharing HLS directives (as explained in Chapter 2), better frequency of operation was

achieved for the design created using HLS [3.3]. Even though a better frequency of operation

was achieved using directives, a notable observation is that due to distributed pipelining, the flip-

flop usage in the design created using HLS is slightly higher than the design created using hand-

coded RTL. Further, since the directives of multiplier sharing was used, number of multipliers

used was reduced and hence the implementation used lesser power on the target FPGA. It may be

noted that one has the option to optimize the hand-coded implementation as well but the goal

here is to demonstrate superior or comparable implementation and simulation results with shorter

design cycle time using HLS.

3.2 QPSK modulator design and implementation (HDL coder)

Herein, design, implementation and optimization of a QPSK modulator is discussed using

MATLAB HDL coder.

3.2.1 QPSK modulator introduction

QPSK modulation is a class of Phase Shift Keying. In QPSK, by choosing one of four possible

carrier phase shifts: 0, 90, 180, or 270 degrees, two bits are modulated at once. Using the same

bandwidth, QPSK provides the signal to carry twice as much information than ordinary PSK

[3.4]. The QPSK modulator employs a bit-splitter, two multipliers with a local oscillator, a 2-bit

serial to parallel converter, and a summer circuit.

., 2nd bit, 4th bit, 6th bit, etc.) and odd bits (i.e., 1st bit,

3rd bit, 5th

multiplied with the same carrier to produce odd BPSK (called as PSKI) and even BPSK (called

as PSKQ). The PSKQ signal is anyway phase shifted by 90° before the modulation.

3.2.2 Design methodology and implementation results

Figure 3.2 shows the block diagram depicting the QPSK modulation scheme. Figure 3.3 shows

the design and verification framework developed in MATLAB. Figure 3.3 additionally presents

the HDL code generated by applying MATLAB HDL coder.

29

Figure 3.2. QPSK modulator block diagram.

 (A)

 (B)

Figure 3.3. (A) QPSK modulator design and verification using MATLAB and Simulink. (B) HDL

code generated using HDL coder.

30

Table 3.3 shows the synthesis reports for Kintex 7(XCK770T-FBG676) FPGA for HDL

code generated from optimized model using distributed pipelining directive [3.5]. Table 3.4 shows

the synthesis reports for the same application using hand-coded RTL. Further, functional verification

of the generated RTL design was performed using xSim simulation. A comparison was also done

against the reference implementation in MATLAB using FPGA-in-the-loop feature of MATLAB

HDL Verifier.

Table 3.3. Kintex 7 FPGA implementation results for QPSK modulator (HLS optimized)

Resource Utilization Available Utilization (%)

LUTs 212 41000 0.517

IOs 34 300 11.333

Flip-flops 765 82000 0.933

BUFG 1 32 3.125

Critical Path: 2.97 ns, Operation Freq. = 330 MHz, Total On-chip Power = 0.263 W

Table 3.4. Kintex 7 FPGA implementation results for QPSK modulator (hand-coded RTL)

Resource Utilization Available Utilization (%)

LUTs 328 41000 0.800

IOs 34 300 11.333

Flip-flops 740 82000 0.902

BUFG 1 32 3.125

Critical Path: 3.62 ns, Operation Freq. = 276 MHz, Total On-chip Power = 0.221 W

As can be seen from Tables 3.3 and 3.4, the results obtained with HLS optimization are

better than those obtained for hand-coded RTL implementation in terms of resource utilization as

well as the operating frequency. Another point to note is that flip-flop utilization is slightly

increased in HLS implementation owing to the usage of distributed pipelining. This is because it

introduces flip-flops on combinational paths. A marginal increase in power dissipation is also

attributed to the increase in the number of flip-flops. It may be noted that one has the option to

optimize the hand-coded implementation as well but the goal here is to demonstrate superior or

comparable implementation and simulation results with shorter design cycle time using HLS.

So, to conclude, for this application of QPSK, the HLS directive of distributed

pipelining helps in the overall reduction of resource utilization (Flip-flops and LUTs together)

as well as improvement in frequency of operation at the cost of a slight increase in power

dissipation of the design.

31

3.3 MIPS processor core (HDL coder)

Herein, design, implementation and optimization for a MIPS processor core is discussed using

MATLAB HDL coder.

3.3.1 Introduction to MIPS cores

MIPS processors are based on the reduced instruction set computer architecture. This was

developed by MIPS technologies and Imagination Technologies and has evolved from 32-bit to

64-bit version over the last few years. These processors have been in use for years and remain in

wide use today as well in varied applications such as automation, information processing, and

communication. MIPS processors are often used in applications involving consumer audio

devices, such as audio players, set-top boxes, DVD recorders and players, and digital displays,

which are typically implemented with a multifunction system on-chip.

3.3.2 Previous works for MIPS processor implementation

Numerous research efforts have focused on MIPS architecture in the past. In 2019, Indira et al.

implemented a 32-bit MIPS processor and targeted the same on a Xilinx Virtex 7 FPGA [3.6].

They also discussed possible pipeline hazards and the associated remedies. In 2017, Rashidah et

al. proposed a simulator for the RISC-16 instruction set that was based on visual basic

programming and five pipeline stages [3.7]. In 2016, Husainali et al. proposed a three-stage, 32-

bit pipelined processor that they designed in Verilog and implemented on a Xilinx Virtex 7

FPGA using Xilinx ISE software [3.8]. In 2018, Mangalwedhe et al. proposed a low-power RISC

processor that they designed in Verilog [3.9]. They used clock gating to decrease the dynamic

power consumption. The design was then implemented on a Spartan 6 FPGA. In 2014, Rakesh et

al. proposed a novel architecture for a 17-bit address RISC processor [3.10]. They implemented

their Harvard architecture-based design on a Xilinx FPGA. In the present work, we use HLS to

design a MIPS core and implement it on a Xilinx Virtex 7 FPGA target. Furthermore, we

compare this implementation with previous implementations. In the proposed design, we use

multiple HLS directives to decrease the area and boost the speed of implementation. The

proposed FPGA s results are clearly better than those of previous implementations proposed in

literature.

32

3.3.3 Proposed design and optimization using directives

The processor model for the MIPS core was created using Simulink with MATLAB function

blocks. Figures 3.4 shows the top level implementation. MIPS block includes the data path and

controller as shown in Figures 3.5 and 3.6 respectively. An instruction parser operates within the

data path and consisted of the opcode, source register, destination register, immediate operand,

and jump address. The parser is directly linked to a sign-extend block and a jump calculator

block. A 32-bit register file is also available which consists of one writing port and two reading

ports. The ALU result consists of three inputs: ALU control, Scr A, and Scr B. This block

performs four major operations on the input: addition, subtraction, AND and OR between the Scr

operands A and B. The register file provides Scr A, and the Scr B output data are obtained from

the sign-extended immediate value. The three-bit ALU control specifies the operation to perform

on operands while the ALU generates a 32-bit result and a zero flag: this is to indicate if ALU

result is equal to zero. The ALU Scr multiplexer is used to handle the R-type instructions, which

write the ALU result in the register file. Therefore, we add this multiplexer to select between

Read Data and ALU result and call the output as Result. This multiplexer was controlled by the

signal Mem to Reg, which is zero for R-type instructions to choose result from the ALU

Result, and unity for load word instruction (lw) to choose Read Data. For verification of the

design implementation, a pre-compiled machine code was used as boot software without having

the need to use a C compiler.

Figure 3.4. Top-Level Implementation of MIPS processor system with memory.

33

Figure 3.5. MIPS data path model.

Figure 3.6. MIPS processor controller.

After the base implementation was created, MATLAB HDL coder was used to convert

the MIPS core model to synthesizable Verilog code and subsequently run it through FPGA

synthesis using Xilinx Vivado. As a second step, the following HLS directives were applied to

optimize the results of the MATLAB HDL coder:

i. Hardware Pipeline. The HLS directive enables the concurrent execution of operations for

memory read and write. This is done by decreasing the initiation interval for a loop or a

function (memory read and write in this case) implemented in hardware. While using this

directive, a tradeoff in area and speed must be considered. Since the proposed

34

implementation uses loops for reads and writes to memory, a pipeline directive with an

initiation interval of two was used for all hardware loops [3.11].

ii. Loop unroll allows the loop iterations to run in parallel by generating various copies of the

same loop body in the generated RTL [3.11]. The directive supports either partial or full

unrolling of loops with minor trade-off on resource consumption. Unroll factor of two is used in

the implementation. Further, loop unroll applied on memory read and write loops helped in

reducing the pessimism for input and output paths by pipelining the IO pads. Further, it also

helps to replicate the single loop into two separate read and write paths from memory, leading to

better performance with slight area penalty.

3.3.4 Simulation, FPGA implementation results and comparison

After generating the RTL code, we performed an RTL simulation for the design using a

nonsynthesizable Verilog test bench using xSim software. Additionally, FPGA-in-the- loop

simulation was also performed. The Verilog memory model in the testbench was preloaded with

pre-compiled memory contents generated by the compiler (boot firmware). The simulation

results were identical to the simulation results obtained using a high-level simulation in Simulink.

Table 3.5 shows the FPGA implementation results for Virtex 7(XC7V585T-3) FPGA and Table

3.6 shows a comparison with other works in the literature.

Table 3.5. Virtex 7 FPGA resource utilization for proposed MIPS implementation

Resource Utilization Available Utilization (%)

Slice Reg 43 91050 0.05

Slice LUTs 178 582720 0.03

Flip-flops 41 728400 0.005

Bonded IOBs 47 850 5.53

BUFG 1 32 3.125

Critical Path: 2.47 ns, Operation Freq. = 404.1 MHz, Total On-chip Power = 0.021 W

35

Table 3.6. Comparison of FPGA implementation results of MIPS for Virtex 7

Resource Proposed design Indira et al.

[3.6]

Rakesh et al.

[3.10]

Slice registers 43 81 56

Slice LUTs 178 321 203

Flip-flops 41 81 43

Bonded IOBs 47 71 51

BUFG 1 2 1

Power (W) 0.021 0.023 1.318

Maximum Frequency

(MHz)

404.100 420.028 100.000

As can be seen from Tables 3.5 and 3.6, even though the proposed implementation

operates at almost the same operating frequency as that of Indira et al. [3.6], the resource usage is

40%-50% less. It also important to note that even with almost same flip-flop count, the

implementation is about 4x faster than the one proposed by Rakesh et al. [3.10]. This is because

of reduced timing calculation through IOs and replication of separate input and output paths

owing to unrolling of memory write and read loops. Further, both Indira et al. and Rakesh et al.

have used hand coded RTL along with pipelining optimize their respective implementations. To

conclude, the results of FPGA synthesis clearly indicate that the proposed implementation is

superior to previous implementations, despite having the same design specifications.

3.4 Encryption and cryptography algorithms: AES (Vivado HLS)

Herein, design, implementation and optimization of a common cryptographic algorithm, AES

using Vivado HLS is discussed.

3.4.1 Introduction to AES algorithm

Nowadays, the consumer industry extensively utilizes communication technology to connect

devices without wires, i.e., wireless communication [3.12]. Further mobile commerce

applications and wireless information services are needed because number of mobile users have

grown significantly worldwide [3.13]. In the last two decades, cellular networks transformation

from 2G to 3G and 4G to 5G was considerable [3.14]. Compared with preceding technologies,

5G has much better reliability and higher bandwidth support [3.15]. Still, higher connectivity has

36

various shortcomings, like more possibilities of data theft. For example, consider the web s

online transactions where multiple devices are connected. These transactions are more

susceptible to financial scams than cash payments at merchants: in the second case, just two

parties are included.

Cryptography is one method for ensuring that messages are encrypted and the messages

reception is performed only by the intended receiver. One of such algorithms for the key

encoding process is the AES [3.16]. The AES algorithm is regularly used for encryption in

several applications, which include IEEE standards like 802.11i, 802.15.4 and ZigBee [3.17,

3.18, 3.19].

In the context of cryptographic algorithms, a chip block is a method to protect the

symbolic importance of the message to be transmitted. A block cipher is a computable and

deterministic function that produces n-bit ciphertext employing k-bit keys and n-bit plaintext

blocks. Because it is deterministic, the same output ciphertext would be produced every time the

input text and keys being used are the same. AES receives a 128-bit input for each block and a

key size: 128, 192, 256 bits. Consequently, it produces a ciphertext after a finite number of

encryption rounds (Nr), which is the function s key size. A key size of 128 bits with 10 rounds of

block size is the most common. The ciphertext is the output scrambled version of the input

plaintext. AES encryption rounds (iterations) are conducted in a finite field, specifically a Galois

Field (GF) of 28 [3.20]. In a GF, mathematical operations, such as addition and subtraction, can

be executed smoothly as data is presented in vectors. AES is an iterative algorithm acting on a

square matrix of symmetric size, denominated as a state. The state arranges the message s finite

number of bytes into columns. Each column consists of a fixed number of bytes. Once a message

is set up, five functions are called on the message, and they act on the state: byte substitution,

shift rows, mix columns, add round key, and key scheduling described later in the section.

The AES algorithm allows multiple modes of operation. Such modes differ in the way the

input text is arranged into blocks and how they are transformed. There are four major modes:

counter (CTR), cipher block chaining (CBC), electronic codebook (ECB), and cipher feedback.

ECB is the simplest of the AES modes. In the ECB mode, the encryption and decryption occur

independently of the other blocks. The implementation is more straightforward in ECB mode, but

one disadvantage is the patterns replication which is avoided in CTR mode using a counter value

and initialization vector (IV). In CBC mode, there is no correlation between input and output,

making it slightly more complicated, but at the same time more secure. A pseudo-random IV

application accomplishes this as an input message to plaintext and the input variable s derivation

as output from the previous block, hence the name chaining. Below is the detailed description of

37

functions in the encryption process.

3.4.1.1 Byte substitution function

In the AES algorithm, the byte substitution function involves substituting the inputs with new

bytes using a pre-defined matrix (called substitution box or S-box) [3.21]. Figure 3.7 (B) shows

the AES S-box. For byte substitution to happen, first hexadecimal character is used as row,

second character is treated as column and intersection point becomes new byte. As an example, if

input is 0x11, it becomes 0x82 (Entry in Row1, Column 1), Input of 0x12 becomes 0xC9 (Row

1, Column 2).

Another way to explain the same behavior is using an affine transform in GF (28). It is

described in Figure 3.7 (A) and 3.7 (C). Taking the same example of input 0x11 (00010001). It

corresponds to polynomial x4 +1. Multiplicative inverse of this is g(x) x7 + x5 + x4 + x2 such that

f(x) × g(x) is 1. Hence g(x) = 0xB4 10110100. When we substitute g(x) as 00101101(LSB to

MSB) in Figure 3.7 (A), we get output 01000001(LSB to MSB) which is 0x82. This is the same

result we get from S-box in Figure 3.7 (B). Figure 3.7 (C) shows the pseudo-code for the same

algorithm.

(A)

 (B)

38

 (C)

Figure 3.7. (A) Affine transform for byte-substitution.

(B) S-box representing each element

(C) Psuedo-code for byte substitution

3.4.1.2 Shift rows function

A linear operation shifts each state matrix row by a finite number. The I row is unchanged; the II

row is circularly left shift by one byte, the III row is changed circularly with a two-byte left shift,

and the IV row is circularly shifted to the left with 3 bytes. This method provides diffusion. The

shift rows function, operating on the cipher, is displayed in Figure 3.8.

Figure 3.8. Shift rows function on block cipher.

3.4.1.3 Mix column function

The Mix columns function provides, in a similar fashion to the shift rows function in

AES, diffusion to the data by mixing the inputs. This operation is executed by splitting the matrix

through columns instead of rows. Matrix multiplication is computed according to the GF 28.

Figure 3.9 shows how there are an independent multiplication of each column.

39

Figure 3.9. Mix column function on block cipher.

3.4.1.4 Add round key

During this stage, the state matrix is bit-by-bit XOR (or addition in GF) by the 16-byte

round key (128 bits). This feature is invoked 11 times (10 rounds and one additional before the

first round). Consequently, 11 × 16 = 176 bytes of the key are required. The 16-byte key is

proceeded to expand to 176 bytes in this stage.

40

Figure 3.10. Functional stages of AES.

Key Addition

Key (k bits)

Transform 0

K1 = K0+ 16

Expanded Key, Kn = K0 + (n)*16

Cipher Text

Key Addition

Plain Text

Key Addition

Byte Sub

Shifting Rows

Mixing Columns

Byte Substitution

Key Addition

Byte Substitution

Shifting Rows

Shifting Rows

Mixing Columns

Transform 1

K0

41

3.4.1.5 Key scheduling

This round determines the keys utilized in the algorithm from the starting input key (16 bytes). A

different key is generated from the previous fundamental exploitation for each key addition: an

XOR of some bits with the last key value. Thus, while working on words N to M, the value used

in the XOR is the previous word of the previous round key, i.e., N-1 to M-1. Figure 3.10 presents

the AES algorithm s included functions and steps.

3.4.2 Previous works for AES algorithm implementation

In the recent past, various optimal FPGA hardware implementations of the AES algorithms have

been introduced. In 2015, Soltani and Sharifian proposed an ultra-high throughput

implementation of a fully pipelined AES algorithm. Their implementation is based on the counter

(CTR) mode of the operation and targeted for the Virtex-6 Xilinx FPGA [3.22]. In 2018, Zhang

et al. introduced another AES architecture offering increased throughput because of an inner and

outer pipelined architecture [3.23]. Their implementation showed a throughput of above 60 Gbps

on Xilinx Virtex-6 FPGA. In 2018, Smekal et al. presented a comparison of two distinct

encryption algorithms. They targeted design implementations on the FPGAs Virtex-7 and

Ultrascale+ and obtained a maximum throughput of about 50 Gbps on both targets [3.24]. In

2019, a custom AES encryption algorithm was implemented on the Spartan 3 E FPGA kit. This

was done by Noorbasha et al. Their implementation produced better data security at the expense

of slightly decreased throughput [3.25]. In 2019, Chen et al. presented an encryption algorithm

for pipelining in big data applications that reached above 30 Gbps [3.26].

3.4.3 Proposed implementation and optimization using directives

For our design implementation, we chose the CTR mode of operation. A 16-byte

initialization vector was created with an unchanged nonce with an incrementing counter value

with each block encryption completion. Because of CTR mode s parallel nature, it is commonly

used in wireless network application designs with streaming data and ciphers. Figure 3.11

portrays the AES algorithm s CTR mode of operation.

42

Figure 3.11. CTR mode of operation for AES Algorithm.

The C++ model for the AES algorithm in CTR mode was created using 10 rounds and a

block length of 128 bits. Simulation of the algorithm was performed with a C++ testbench using

Vivado HLS. The input signal was chosen to be an input text string or a stream of characters, i.e.,

plaintext. The implementation ran on the Vivado HLS high level simulator, and the output was a

ciphertext corresponding to plaintext at any given instant in time. Figure 3.12 shows the

algorithm s design using floating type data types for design nodes.

Figure 3.12. Algorithm model for the advanced encryption standard.

Once the baseline model was created, Vivado HLS was used to generate synthesizable

Verilog RTL. It was then implemented on the target FPGA. Moreover, to optimize the operation

results (throughput), HLS directives offered by tool were used [3.11]. The pipeline, unroll, and

inline-off directives that we used are explained below.

KEY

X[i], Plain
Text

Y[i], Cipher Text

Block Cipher Encryption (Full AES as in Figure 3.10)

Initial Vector, Counter Value(incrementing)

+

43

i. The pipeline permits the operations concurrent execution by decreasing the initiation

interval for a loop or a function. Therefore, while using this directive, a tradeoff exists

between timing and area. This AES implementation is optimized by applying a pipeline with

an initiation interval of two for all design loops.

ii. Loop unroll enables the loop iterations to run in parallel by generating multiple single-loop

body copies in RTL design. This pragma assists in improving the throughput by making the

loops either fully or partially unrolled. For our AES application, the partially unroll directive

was used to enhance the performance with minimal resource usage. The unroll factor applied

on the code is two.

iii. After a function is inlined, it can no longer be interpreted as a separate entity in the hierarchy.

Inline functions are merged into the calling function. These functions, consequently, cannot

be shared, increasing the area utilized by the target FPGA. The inline-off directive was used

in our application to restrict the functions from inline on their own. This helps alleviate the

effect of an area increase produced by the loop unrolling and pipelining. Table 3.7

summarizes the different HLS directives applied on distinct functions or loops in the design.

Table 3.7. Functions in AES implementation and applied HLS directives

Function Pipeline Unroll Inline (Off)

Sub Bytes YES YES YES

Shift Rows YES YES YES

Mix Column YES YES YES

Add Round Key YES YES YES

AES Encrypt (Top) YES NO NO

L Rounds (Inner Loop) YES NO YES

This proposed design and optimization method is suitable for other HLS tools and other

applications apart from AES having similar bottlenecks. Moreover, as the produced RTL code is

optimal, the method is also applicable to all FPGA targets. Depending on the types of directives

available in the tool and the bottlenecks identified for the application, one can optimize the

synthesis results. In the next section, the effect of these HLS directives on optimization for FPGA

synthesis is presented for AES.

44

3.4.4 Simulation, FPGA implementation results, and comparison

Simulation results

Since AES is a published standard, this study confirmed that the functional verification results

achieved by using a C++ testbench matches with the standard. We confirmed the same by

comparing the output from MATLAB against the output (ciphertext) from the design s HLS

model for the same input text. Figure 3.13 displays the encryption results for the plaintext

HELLO WORLD THIS IS A SECRET TEXT. The algorithm requires the input two times (16

bytes per text), with a completed counter to two (after the increment) as there are 32 characters in

the input file.

Figure 3.13. HLS model simulation results of AES.

As depicted in Figure 3.13, and considering the implementation with the applied

directives, the base implementation s simulation results were identical. This demonstrates

functional equivalence between HLS and design implementation on the target FPGA. Moreover,

the RTL functional simulation results obtained from xSim (an HDL simulator integrated with

Xilinx Vivado) were also equal to the same plaintext s theoretical AES output. This was

confirmed by the HLS simulation using a C++ testbench. Additionally, FPGA-in-the-loop

verification confirmed the same results.

45

FPGA synthesis

From a guided Vivado HLS framework, the Verilog RTL code was created. The same code was

implemented on the Kintex 7 FPGA from Xilinx (XC7K70T-FBG676 -3). Vivado HLS software

version 2019.1 was used. The generated RTL source code was also implemented on Virtex 6

device using iSE 14.7 software from Xilinx. This was done to facilitate a direct comparison with

some of the available literature results for same target boards. Even though our results are

presented for Virtex 6 and Kintex 7 FPGA, the directives help RTL level optimization. This

indicates that the optimizations are technology-independent and consequently appropriate for

other different FPGA targets.

Tables 3.8 and 3.9 show the corresponding FPGA implementation reports from both the

baseline design as well as one created using HLS directives, respectively.

Table 3.8. Base implementation results of AES on Kintex 7

Resource Utilization Available Utilization (%)

LUTs 572 41000 1.395

LUT-RAMs 8 13400 0.060

Flip-flops 446 82000 0.543

BRAM 4 135 2.962

IOs 264 300 88.000

BUFG 1 32 3.125

Throughput = 28 Gbps, Operation Freq. = 218.8 MHz, Total On-chip Power = 0.114 W

Energy dissipation, E = P × T, where P is power and T is time required for one round of AES for

128 bit input. Since throughput is 28 Gbps, we see T = (1/28) × 128 ns.

Hence, energy dissipation, E = (1/28) × 128 × 0.114 = 0.52 nJ (Nano Joules)

46

Table 3.9. HLS directives optimized implementation of AES on Kintex 7

Resource Utilization Available Utilization (%)

LUTs 749 41000 1.827

LUT-RAMs 9 13400 0.070

Flip-flops 866 82000 1.056

BRAM 4 135 2.962

IO 264 300 88.000

BUFG 1 32 3.125

Throughput = 54.2 Gbps, Operation Freq. = 425 MHz, Total On-chip Power = 0.124 W

Energy dissipation, E = Px T, where P is power and T is time required for one round of AES for 128

bit input. Since throughput is 54.2 Gbps, we see T = (1/54.2) × 128 ns.

Hence, energy dissipation, E = (1/54.2) × 128 × 0.114 = 0.293 nJ (Nano Joules)

As is evident from Tables 3.8 and 3.9, there is an improvement in

of pipeline and loop unroll directives. This is due to the fact that critical paths in the design are

reduced due to retiming and logic replication. However, due to additional retiming flip-flops and

loop unrolling (which leads to logic replication), an increased resource usage is also observed.

Nevertheless, the throughput increase of almost 2x is attributed to faster synthesis frequency and the

pipelining of several loops and functions, as described in Section 3.4.3.

Results comparison with literature

Our implementation was compared with other proposed implementations available in the literature

[3.22, 3.23, 3.26]. Table 3.10 shows comparison of results for Virtex-6 (V6) and Kintex-7 (K7)

FPGA devices. Soltani et.al [3.22] used memory and non-memory based approaches along with loop

unrolling and pipelining in their implementation. Zhang et.al [3.23] in their implementation

combined multiple steps of round units, used a dual port ROM structure and used 3 stage pipelining

to optimize the design. Chen et.al [3.26] used deep pipelining and full expansion technology in their

implementation for optimization.

47

Table 3.10. Comparison of AES synthesis results with the literature

FPGA metrics Proposed design Soltani et.al

[3.22]

Zhang et.al

[3.23]

Chen et.al

[3.26]

Max Freq (V6)

(MHz)

542.102 508.102 471.000 Not

available

Throughput (V6)

(Gbps)

276.50 260.14 60.30 Not

available

Max Freq (K7)

(MHz)

425.0 Not available Not

available

244.4 MHz

Throughput (K7)

(Gbps)

54.2 Not available Not

available

31.2

As is clear from Table 3.10 and the simulation results discussed above, the proposed

implementation has better throughput than other implementations available in the literature with

identical functionality. The throughput for the proposed design is roughly 8% higher than that of

Soltani et al., 17% higher than the design proposed by Zhang et al., and 70% higher than Chen et

al. [3.22, 3.23, 3.26]. Moreover, the improvement obtained is technology-independent, i.e., it

applies to all FPGA targets. We have tested and obtained the results for two widely used Xilinx

FPGAs - Virtex 6 and Kintex 7. From the previous analysis, it is concluded that our design

implementation has a higher throughput than the ones presented by other researchers, with a

small tradeoff in resource usage. Further, we could not provide comparison of energy utilization

with literature as same was not reported by other researchers. We also validated that usage of

these performance directives is benign for design functionality.

3.5 YOLO v2 deep learning algorithm (Vivado HLS)

Herein, design, implementation and optimization for a YOLO v2 algorithm which is based on

convolutional neural network using Vivado HLS is discussed.

3.5.1 Introduction to YOLO v2 algorithm

Artificial intelligence and machine learning techniques have gained increasing popularity in

recent years and almost all fields of engineering and technology, including computer vision. The

models based on convolutional neural networks (CNNs) intended for object detection have been

48

constantly evolving. The object detection task is challenging in terms of accuracy and speed.

Accordingly, several perspective algorithms for object detection have been developed based on

deep learning, including single-shot multibox detection (SSD), region-based CNN (R-CNN) and

YOLO [3.27, 3.28, 3.29]. The YOLO CNN model that was slightly larger than previous

implementations but almost three times faster was introduced by Redmon and his research team

in 2016 [3.30]. A speed of 45 frames per second was achieved with certain accuracy, enabling

video detection [3.31]. An improved version of YOLO, namely YOLO v2, could maintain high

recognition accuracy at a high speed and provided a large improvement in real-time image

processing [3.32]. Comparing the YOLO algorithm with the R-CNN algorithm, which requires

multiple CNN operations, it can be noted that the accuracy of the latter is better, but the former is

faster [3.33]. Therefore, YOLO provides one of the best tradeoffs between accuracy and speed in

object detection. YOLO is based on a single neural network used to predict the bounding boxes

of objects and the class confidence in a single evaluation. A GPU is commonly employed to

implement deep learning techniques. However, it becomes ineffective for optimization tasks,

such as selecting the data width and managing data access in peripheral memory. Therefore,

extensive research is conducted to design deep learning accelerators, which can be deployed on

FPGAs to tackle this challenge. Additionally, FPGAs provide parallel architectures, thus

enabling execution on high data rates. FPGAs have a flexible design and short development

cycles, and therefore, they have been extensively applied to high-efficiency deep learning tasks.

3.5.2 Previous works for YOLO v2 implementation

Several implementations of YOLO rely on floating-point representation; however, they are

associated with large computational costs [3.33, 3.34, 3.35]. FPGAs support only fixed-point

implementations, and therefore, they can be applied to address this problem.

The research introduced by Nguyen et al. reported that a floating-point representation was

unnecessarily redundant [3.36]. Several studies clearly demonstrated that CNNs could be

quantized to a lower number of bits and trained without the significant loss of accuracy [3.37,

3.38, 3.39]. Quantization facilitated designing a low-power and fast CNN accelerator based on an

FPGA. Such FPGA could store the complete quantized CNN model in its on-chip block RAM

comprising tens to hundreds of MB. Therefore, FPGA is merged with low-bit CNN quantization

to create a low-power accelerator for deep neural networks, providing a throughput of the order

of tera operations per second. Various FPGA implementations were realized using CNNs based

on Vivado HLS [3.33, 3.35, 3.40, 3.41, 3.42]. Zhang et al. deployed a single processing element

based on a theoretical roofline model applied to design an accelerator for the implementation of

49

each CNN layer [3.33]. However, to realize a small network of five levels, the accelerator

consumed a significant area on the target FPGA chip. All of this while operating at a low

throughput of 61 giga operations per second.

Alwani et al. [3.35] and Xiao et al. [3.42] proposed a fused-convolutional layer in CNNs

for downgrading the number of off-chip accesses by optimizing intermediate data between

adjacent layers in a group. However, a significantly greater number of block RAMs were

required in these designs.

A CNN accelerator developed by Sun et al. [3.40] was applied to optimize the data path,

applying a loop unrolling directive and providing improved performance for each layer. The

authors employed Vivado HLS in the separate design of each layer of the proposed CNN

accelerator. However, a double buffer was required to store entire intermediate feature maps

produced by each layer. Therefore, this design did not scale appropriately when the CNN became

deeper due to large buffers needed. Li et al. proposed a design that was associated with a similar

limitation, in spite of proving good performance in the Alex Net network [3.43]. Shen et al. also

employed Vivado HLS for their implementation, and their design achieved a similar optimization

as the approach proposed by Zhang et al. [3.41, 3.33]. However, in their implementation, the

available resources were partitioned in a way that allowed scaling down the size of multiple

convolutional layer processors (CLP) into a smaller size, rather than using a single large CLP.

Ma et al. presented a proposal in which a RTL compiler was used to generate, for a given

network, an RTL code for each layer [3.44]. This aimed to solve the problem of the excessively

high memory bandwidth requirement. Every convolutional layer read the inputs and wrote

outputs to a dynamic RAM (DRAM) in this configuration. Each layer was launched

consecutively, meaning that the following layer began only when the current layer finished its

execution. This processing scheme and repeated access to the external DRAM drastically reduced

the processing speed. Wnograd et al. proposed a custom minimal filtering algorithm that differed

from conventional convolution [3.45]. This algorithm was further utilized by Aydonat et al. and

Lu et al. to improve the speed of convolutional computations [3.46, 3.47]. However, these

designs still required a large number of DSPs and LUTs although applying the Winograd

algorithm allowed reducing the number of required multipliers. They also reported that the

performance of their design decreased as the network deepened due to the need to transfer data

back and forth between the accelerator and external memory. This limitation was mitigated by

Umuroglu et al. and Liang et al. by reducing the number of expensive external memory accesses

[3.48, 3.49]. They realized a low-cost pop-count computation that replaced the multiplier-

accumulator (MAC) operation and utilized an OR gate to implement the comparator in the max-

50

pooling layer.

Other several FPGA implementations were proposed to realize the YOLO algorithm too.

One such implementation, presented by Preußer, comprised twelve hidden layers to enable

programmable logic in Zynq Ultra scale+ FPGA [3.50]. This was an extended version of the

design proposed by Umuroglu et al. [3.48]. Finally, a lightweight YOLO v2 combined with a

binary network with support vector machine regression was proposed by Arcos-Garcia et al.

[3.51].

3.5.3 Proposed HLS implementation and optimization using HLS directives

In this work, we aim to develop a lower area, high throughput implementation of the YOLO v2

algorithm. The model used in the YOLO v2 network was implemented using the Vivado HLS

software. Then, it was simulated to test functionality using high-level simulation in HLS (C++

testbench simulation). The synthesizable RTL code was generated using the same platform, and

RTL simulation was performed using a nonsynthesizable hand-coded Verilog testbench. The

synthesis and simulation results are discussed in more detail in the next section. The vanilla or

base implementation was optimized using the below-mentioned HLS directives.

i. Pipelining and loop optimization directives
The pipeline directive enables the concurrent execution of operations in a function or a loop

[3.11]. Such a directive allows reducing the size of an initiation interval. A pipelined function or

loop can process new inputs after every N clock cycles. Here N denotes an initiation interval of a

loop or a function, and its value is set to one for the pipeline pragma, which can be changed

manually. Fig. 3.14 (a) illustrates the pipelining process of a loop that realizes the operation of a

loop to work concurrently. In this figure, three different operations are executed during three

clock cycles for a single loop. Therefore, it requires eight clock cycles to complete the execution

of three loops. In Fig 3.14 (b), Initiation interval is set to three, and therefore, it requires five

clock cycles to finish three loop operations and to obtain the final output.

51

(A) without pipelining (B) with loop pipelining

Figure 3.14. Effect of the pipelining directive on loops.

ii. Loop Unrolling
Loop unrolling is performed to launch multiple independent operations that can be run in

parallel, rather than establishing an individual group of operations being executed serially [3.11].

The unroll pragma converts loops by generating multiple copies of a loop operation in the RTL

design. This process permits running all or some loops in parallel. If a loop is rolled (default

behavior), then the synthesis tool generates the logic for one iteration of the loop, and the RTL

design implements this logic for each iteration of a loop in sequence. The unroll pragma can be

used to unroll loops to increase the design s data access throughput. This pragma supports a full

or partial unroll. Full unrolling implies creating a copy of the loop body in the RTL for each loop

iteration. Therefore, a complete loop can be run in parallel. If the partial unrolling of a loop is

performed with a factor of N, then N copies of the loop body are created, thereby reducing the

number of loop iterations accordingly.

iii. Latency
Latency is defined as the duration expressed in terms of clock cycles required to produce an

output for a given input. The latency pragma can be defined as function latency and loop latency

[3.11]. The former is the total number of clock cycles required to compute all output values in a

function and return the result. Loop latency is the total number of clock cycles required to

execute all iterations in a loop. In Xilinx Vivado HLS, the latency pragma can be used to specify

the maximum or minimum latency, or both of them, for the completion of functions, loops, and

regions. When the latency pragma is used, the tool attempts to minimize latency in the design by

completing a task within a specified number of clock cycles.

Latency is defined as the duration expressed in terms of clock cycles required to produce

an output for a given input. The latency pragma can be defined as function latency and loop

latency [3.11]. The former is the total number of clock cycles required to compute all output

values in a function and return the result. Loop latency is the total number of clock cycles

52

required to execute all iterations in a loop. In Xilinx Vivado HLS, the latency pragma can be

used to specify the maximum or minimum latency, or both of them, for the completion of

functions, loops, and regions. When the latency pragma is used, the tool attempts to minimize

latency in the design by completing a task within a specified number of clock cycles.

In the implemented code, different functions, such as in_to_buff, wt_to_buff, convolute,

and max_pool were used. Accordingly, many loops were used in these functions. While running

HLS simulation and using different directives, the reduction in the amount of computation and

utilized memory resources was observed.

The synthesis results were analyzed post the usage of HLS directives. As a consequence,

in the results, it was observed that timing slack was equal to 0, and the use of resources,

including block RAMs (BRAMs), look-up tables (LUTs) and DSPs, was less compared with

those required to implement the baseline implementation (without using directives).

We examined the computation process of loops in the program, and for purposes of

performance optimization, HLS directives were applied: loop pipelining, loop merging, loop

unrolling, interfacing, loop flattening, latency, and expression balancing.

Due to manual transformations applied during the code restructuring step, the

opportunities for loop merging and loop flattening were limited. When used, the obtained results

demonstrated negative slack, and the resource usage reported was much greater than the available

ones. This problem was solved by performing loop pipelining. In some instances, an inner loop s

execution required multiple reads and/or writes from/to distinct addresses in the same BRAM.

Therefore, in such loops, the initiation interval was prolonged to reflect the latency of multiple

BRAM reads and writes.

In some instances, if an inner loop had a small loop bound, and the loop content

performed the execution or search operations (rather than memory writes), complete unrolling

and pipelining was applied. For example, both the loop unrolling and the pipelining allow

multiple loop iterations to be executed in parallel, leading to the increased resource usage (for

example, in terms of registers or functional units). However, various optimization ways have

improved the performance and the use of resources in several ways. In the proposed YOLO v2

implementation, the best results were observed after applying the pipelining, unrolling, and

latency directives. Specifically, loop pipelining and loop unroll were applied to the inner loop of

the top function, namely, YOLO v2.

53

3.5.4 Simulation, FPGA Implementation Results, and Comparison

Simulation results

Using the Vivado HLS model, the obtained functional simulation results were identical to the

YOLO algorithm s theoretical results. The test objects were correctly classified as fork, knife,

spoon, bowl, etc. in accordance with the test and training images. In addition to the HLS

simulation, the RTL (Generated from Vivado HLS) simulation was performed using the xSim

simulator and the results were identical. The RTL implementation achieved a throughput of 40

frames per second. Additionally, to have a comparison with golden implementation, an FPGA-in-

the-loop simulation was also performed using MATLAB and results were found to be identical.

FPGA synthesis

After the successful functional verification of the proposed design (HLS model), we generated a

synthesizable RTL and implemented it on a target FPGA device, namely, Xilinx Zynq

xc7z020clg484-1. Various directives were applied to the code aiming to optimize it, including

pipeline, loop unrolling, function in-lining, etc. The FPGA synthesis results obtained after the

application of multiple directives, one at a time, are summarized in Table 3.11. The table

indicates that the combined use of directives (pipeline, unroll, and latency) provides the best

implementation results (the last row in Table 3.11).

Table 3.11. Implementation results on Zynq for YOLO v2 using HLS directives.

Directive used Frequency

(MHz)

BRAM DSP Flip-

flops

LUTs Slack

(ns)

Without Directives 176 182 151 27606 420241 5.4

(Not

met)

Pipeline 220 182 164 27647 40180 0

Pipeline

+ Loop Unroll

220 182 38 15943 19297 0

Latency

(min = 20,

max = 200)

220 182 30 14655 18601 0

LUT: Look-up table; RAM: random access memory; BRAM: block RAM, IO: input/output.

Total On-chip Power = 0.461 W

54

Energy dissipation, E = P × T, where P is power dissipation and T is time required to process one

input frame. Since frame rate is 40fps, therefore T = 1/40 = 0.025 s.

Hence, energy dissipation, E = 0.461 × 0.025 = 11.5 mJ (Milli Joules) per cipher.

Results of comparison with the literature

Our implementation was compared with other proposed implementations available in the

literature [3.52, 3.53]. Table 3.12 shows the comparison with other implementations available in

the literature targeted for Xilinx Zynq Ultrascale+ and Virtex 7 FPGAs. Nakahara et.al [3.52]

have used binarized CNN with pipeline based architecture for their design. Full parallelization of

all CNN layers in the design was also implemented by Nguyen et.al [3.53] in their design.

Table 3.12. Comparison of the YOLO v2 Implementation results

Metric
Proposed

design

Proposed

design

Nakahara

et.al [3.52]

Nguyen et.al

[3.53] Tiny

Nguyen et.al

[3.53] Sim

FPGA Zynq Virtex-7 Zynq Virtex-7 Virtex-7

Frequency

(MHz)

220

176

300

200

200

BRAM 182 234 1706 1026 1144

DSPS 30 68 377 168 272

Flip-flops 14655 9200 135000 86000 155000

LUTs 18061 9120 370000 60000 115000

As can be seen from Table 3.12, the resource usage for the proposed implementation

decreased by an order of magnitude when compared with other implementations proposed in the

literature. Functionally, we achieved a mean average precision of 0.48 at intersection of union of

0.5. The generated RTL implementation was able to achieve a frame rate of 40 frames per second

and took a total energy of 11.5 milli Joules per frame. The same is not reported by other

researchers for a direct comparison. It is clear from the above results that our implementation is

superior without any effect or change in functionality.

55

3.6 Concluding remarks

In this chapter, we studied that different HLS tools offer multiple directives which one can use to

optimize a particular application for area, speed, or power on a target FPGA. Continuing from the

prior works in the same domain, we have explored multiple tools and applications and

understood the effect of HLS directives on those applications. Five different designs which find

place in multiple applications were used and optimized using HLS directives. As an example,

loop unroll directive (which unrolls a loop to create multiple copies in hardware) can help

achieve better performance at cost of slight increase in area. But this will be effective if the

application is architected with help of loops in high level language. Similarly, resource sharing

HLS directive will be effective if a common resource (like a multiplier) is shared between two or

more data paths in the design. Three unique application designs were created using MATLAB

HDL coder and two unique designs were created using Vivado HLS as part of this work and

synthesis results were optimized after using applicable directives. All these designs were

thoroughly verified using xSim RTL simulation along with FPGA-in-the- loop simulation feature

of MATLAB HDL Verifier. The verification results proved that HLS optimization directives did

not have any effect on the design functionality. Finally, the optimized designs were implemented

on target FPGAs. A comparison of synthesis results for all these five optimized application

designs with other implementations published in literature was also presented. It was noted that

directives helped to achieve better synthesis characteristics of area, speed and power depending

on the usage and application. However, the outcome of this exercise is that none of the directives

are generic but application and tool specific.

