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Chapter 4

Optimal Harvesting Policy of a Prey-predator Model
with Crowley-Martin Type Functional Response and

Stage Structure in the Predator '

4.1 Introduction

The Lotka-Volterra system of equations was established and analyzed long time back, about
100 years ago. These equations are a mathematical and dynamical model representing the
relationship between two or more species. Several attempts have been made to generalize,
modify and extend these equations. However, due to complex nature of the biological species,
their complete dynamics is still not known and it needs to be investigated with care. It has
now been established that age plays an important role in deciding the dynamics and evolution
of various species. The rates of reproduction and survival largely depend upon age or the
developmental stage and hence it could be remarked that the life history of several species is
composed of at least two stages, immature or juvenile and mature or adult, with significantly
different biological, physiological and morphological characteristics.

The analysis of stage-structured predator-prey system has attracted good amount of atten-
tion recently, as a way to eliminate the shortcomings of classical Lotka-Volterra models [2, 3,
65, 114, 154, 227]. In these models, a time delay represents the age of maturity of the species.
In fishery system, cannibalism has been observed and various types of cannibalism models have
been discussed [41, 81, 134]. Recently, Bosch and Gabriel [23], and Kar [96] studied the stage
and age structure of species without or with time delays.

One of the major aims of ecologists is to gain insight into predator-prey relationship and one
vital aspect of predator-prey relationship is the rate of predation by an average consumer (this is

known as the functional response or the “trophic function”). The functional response takes into

I'A considerable part of this chapter is published in Nonlinear Analysis: Modelling and Control, 23(4), 493-
514, 2018.
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account of both the predator and prey biological and physiological processes. The functional
response largely controls the stability of the system and they are of several types: Holling I-11I,
Ratio-dependent, Beddington-DeAngelis, Crowley-Martin, Leslie-Gower [15, 118, 86, 129,
158, 214, 228]. There are a few literatures available on predator-prey model with Crowley-
Martin (CM) type functional response [136, 210, 214]. The CM functional response involves
the interference among individual of predators engaged in handling or searching the prey. The
interpretation of the above functional response is given in Chapter 1.

The effect of intra-specific interference among predators has been studied in a prey-predator
model with Holling type II functional response in [76], with Holling type III functional response
in [73] and with Beddington-DeAngelis type functional response in [75]. In these three studies,
spatiotemporal dynamics of the system are also investigated. Guin et. al. [74] have also studied
spatiotemporal pattern in a prey-predator model with prey refuge and Beddington-De Angelis
type functional response.

The optimal management and utilization of renewable and natural resources, which is di-
rectly related to sustainable development, has been studied extensively by many authors [43,
52,54, 53, 93, 96, 97, 115]. Recently, Maiti et al. [136] investigated the dynamics of a prey-
predator model with CM type functional response with refuge for the prey species. To the best
of authors’ knowledge, optimal harvesting of prey-predator with CM type functional response
and with stage structure in predator population has not been studied. Keeping these in view,
we propose a three dimensional model consisting of prey and predator in which predator is
divided into two categories: mature and immature. The prey and mature predator are harvested
as CPUE hypothesis. The rest of the chapter is organized as follows: In Section 4.2, we formu-
late the mathematical model and its qualitative properties. Section 4.3 deals with the existence
of all feasible equilibria, and stability analysis is presented in Section 4.4. Optimal harvesting

policy is discussed in Section 4.5 and numerical simulations are presented in Section 4.6.

4.2 Mathematical model and its qualitative properties

We consider a habitat consisting of a prey and predator system. We assume that the density
of prey population or the renewable resource under consideration, is represented by x(z) at any
time ¢t > 0, can be mathematically and dynamically modelled by a logistic equation when the
predator is absent. We assume that the predators are classified into two stage groups — mature or
adult and immature or juveniles, and their densities are denoted by y(¢) and z(¢), respectively,
at any time r > 0. Here we are assuming the fact that only mature predators are capable of
attacking the prey and have reproductive ability, while the immature predator does not attack
the prey and has no reproductive ability. A good example of such a situation is that in the case
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of the Chinese alligator, which can be regarded as a stage structured species since the mature
is more than 10 years old, and can be regarded as a predator because almost all the aquatic
animals are the chief nutritional source for the alligator. The interference between prey and
adult predator is assumed to be of the CM type. One of the novel features about our model
is to account for the universally prevalent intra-specific competition in the consumer growth
dynamics [106]. This intra-specific competition is assumed to induce an additional increased
death rate which is proportional to the square of the adult population [75, 76, 73]. We assume
that prey and adult predator are harvested as CPUE hypothesis, and juvenile predators are not
harvested. With these assumptions in mind, we propose the following stage-structured prey-
predator interaction model:

dx X oxy

— = 1——)— — a1 E
a0 =) T Ty DB
dy coxy

= = — 8oy — 81y” —E
it = (Txa0) (1 £by) 8oy — 81y” + Piz— q2Ey, @)

%fzﬁy—U%+BOa
x(0) >0, y(0) >0, z(0) > 0.

Here r is the specific growth rate of the prey and K is the carrying capacity. The predator
functional response incorporated is the CM type, where «, a and b are positive parameters that
are used for the effects of capture rate, handling time and magnitude of inference among preda-
tors, respectively. The parameter c is the conversion factor, ¢; is the catchability coefficient of
the prey, ¢, is the catchability coefficient of the mature predator or adult species, E is the har-
vesting effort, &y is the death rate of the matured predator and J; is intra-specific interference
coefficient of the adult predator. The parameter  denotes the birth rate of immature predator,
Bo denotes the death rate of the immature predator and ; denotes the proportionality constant

of transformation of immature to mature predators.

Remark 4.2.1. If E =0, 8, = 0 and By = 0, then dynamics of model (4.1) is well studied in
[191].

Next, we present some qualitative properties of our proposed model to show that the model
is biologically well behaved.

Theorem 4.2.1. The model system (4.1) has a unique and non-negative solution with initial
values {(x(0),y(0),z(0)) € R3.}, where R>. = {(x1,x2,x3) : x; > 0,i = 1,2,3}. Further, the set

]
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is a positive invariant set for all the solutions initiating in the interior of the positive octant,
where L = %7 5111 = mm{qlE, 50+612E— Bvﬁ()}v 60+qu > ﬁ

Proof. The model system (4.1) can be written in the matrix form
X =G(X),

where X = (x1,x2,x3)T = (x,y,2)T € R}, and G(X) is given by

G](X) rx<1—%)—%—q]Ex
G(X)= | G(X) | = | rranizsy — %y — 0% + Biz— @Ey
G3(X) By—(Bo+PB)z

Since G : R> — R is locally Lipschitz-continuous in Q and X (0) = X, € R, the fundamental
theorem of ordinary differential equation guarantees the local existence and uniqueness of the
solution. Since [Gi(X)],, 1o, RS 2 0, it follows [156, 193, 223] that X (z) > O for all # > 0.
In fact, from the first equation of model (4.1), it can easily be seen that x|,—o > 0 and hence
x(t) > 0 for all + > 0. Secondly, y|,—o = Bi1z > 0 and hence y(¢) > O for all + > 0. If this is
not true, then assume that there exist a #; > 0 with t; = inf{r : y(r) =0, ¢ > 0}, such that
Y(t1)ly)=0 = Biz(f1) < 0. But we also have y(t;) = 0, y(t) > 0 with t € [0,#1) and z(¢;) < 0.
Since z(0) > 0, there is a o > 0 with t, = inf{r : z(t) =0, ¢ € [0,71)}. Hence by the definition
of 1, 2(t;) < 0. But z(t2) = By(t2) > 0, which is a contradiction to our assumption. From the
last equation of model (4.1), we have z|,—o = By > 0, and therefore z(¢) > 0 for all t > 0.

From the first equation of the model

dx X
e 1—=
dr — rx( K >’
which yields

limsupx(r) <K.
f—yo0

Now suppose

then we have

dwW(t) dx 1/(dy dz x y , z
L (2 ex(122) 2§ Y42
dt dt+c<dt+dt>_rx< K) m<x+c+c ’

where 6,, = min{q\E, 0 + q:E — B, o}

It is easy to see that the function f(x) = rx(1 — ) has maximum value X atx = £

7.
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Hence, it follows that

‘;—Vtv <80,
which implies
limsupW (z) < %
f—o0 m
We also note that if x > K and W(r) > 4%1, then % <0, ‘ii—vf < 0. This shows that all solutions
of system (4.1) starting in  remains in Q for all > 0. O

Theorem 4.2.2. Let the following inequalities are satisfied:

ocL cOlX;y,

> E,
" 1+bcL+q1 (I +ax,)(1+bcL)

> &)+ qE.

Then the model system (4.1) is uniformly persistence, where, x,, is defined in the proof.

Proof. Permanence or uniform persistence of a system implies that all species will be present
in future and none of them will become extinct if they are initially present. System (4.1) is said
to be uniformly persistence if there are positive constants M| and M, such that each positive

solution X (¢) = (x(),y(t),z(¢)) of the system with positive initial conditions satisfies

M, <liminfX(r) <limsupX(t) < M.

f—o0 f—so0
Keeping the above in view, if we define
M, = max{K,cL},
then from Theorem 4.2.1 it follows that
limsup X (1) < M,.
1300

This also shows that for any sufficiently small € > 0, there exists a 7 > 0 such that forallt > T,
the following holds:

x(t) <K+e€, y(t)<cL+¢€, z(t) <cL+e.

Now from the first equation of model system (4.1), for all t > T, we can write
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o(cL+¢) rx’
—(r——— " gE)x— —.
T pleire) MEF TR
Hence, it follows that
. K o(cL+¢€)
1 fx(t) > —(r— ————=—q1E
iminfx(t) = (r I+b(cLt+e) I )
which is true for every € > 0, thus
K ocL
.. SKo _ -
htrgglfx(t)_ r(r T bel G E) = xm,
where r > i'.‘—i';L + q1E. Now from the second equation of model system (4.1), we obtain
dy S COXy,Y Soy — 61372 £
dr = (I +axy)(1+b(cLte)) Yoy —@Ey
cOXy, 2
= — 8 —qE )y—61y°,
<(1+axm)(1+b(cL+8)) %= >y VY
and hence
.. Xy,
liminfy(¢) > — —0—qk ),
e y()_61<(1+axm)(1+b(cL+8)) %~ >
which is true for every € > 0, thus
. 1 cOxy,
1 fy(t) > — —00—qQE )=
iy y<)_61<(1+axm)(1+bcL) % = 4> > ym

where % > & + qoE. Similarly, the third equation of model system (4.1) yields
dz
i > Bym— (Bo+ Br)z-
t
Hence B
.. Ym
liminfz(z) > = Zm.
f—oo (1) = Bo + Bi n
Taking M| = min{x,,, Ym,zm} the theorem follows. O

4.3 Analysis of Equilibria

It can be inspected that model (4.1) has four nonnegative equilibria, namely, Py(0,0,0), P;(%,0,0),
P(0,%,7Z),P*(x*,y",z"). The equilibrium point P, exists obviously. We shall show the existence

of the other equilibria as follows:
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e Existence of P;: Here X is the positive solution of the following equation:

rx(l — %) —q1Ex=0,

and thus
K
X = 7(”—61115)-

Clearly x > 0 if the following inequality holds:
(r—qE)>0. (4.2)

Thus the equilibrium P; exists under condition (4.2).

¢ Existence of P»: Here j and 7 are the positive solutions of the following equations:

By = (Bo+ B1)z, (4.3)

— 8oy — 81y + Biz— qEy = 0. (4.4)

From Equations (4.3) and (4.4), we obtain

_ 1 ( BB
SL(BB s ),
Y 5 \Bo+Bi ?
. By
Bo+ B
We note that for y and Z to be positive, we must have
BB
> 6+ q2E. (4.5)
Bo + B 1

Thus P; exists if inequality (4.5) holds true.

¢ Existence of P*: Here x*,y" and z" are the positive solutions of the following algebraic

equations:
X oy B
%) ey 2670 (+6)
O s syt PP E—0 47
(1+ax)(1+by) DT B p PR -
By—(Bo+pB1)z=0. (4.8)

It is easy to note that if we are able to verify the existence of x* and y*, then existence of

z" automatically follows from equation (4.8). We perform the following analysis to show
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the existence of x* and y*. From equation (4.6), we note the following:

(i) When x=0, theny = 5505 =y,

We note that y, > 0 if, in addition to (4.2), the following inequality holds:

o —br+qiEb> 0. (4.9)

(i) When y = 0, then x = g(r —q1E) := x4. x4 is positive under condition (4.2)
(iii)
dy 1+by
dx l+4ax

r 2
[ay — ocK(l +ax)*(1+by)].
It is easy to see that % <0if

oaKcL
1+ bcL

<r (4.10)

holds.

The above analysis shows that isocline (4.6) is passing through the point (x,,0) and
(0,y4); and in equation (4.6), y is a decreasing function of x under conditions (4.2), (4.9)
and (4.10).

Now we note the following from equation (4.7):

(i) When x =0, then y = 5i] (ﬁoﬁfb] — 8 — q2E) =y}, and y, > 0 under condition (4.5).
(ii)

dy 1+ by
A >0
dx  (14ax)[2 (1 +ax)(1 +by)? + ba]

This shows that isocline (4.7) is passing through the point (0,y;) under condition
(4.5) and it has always a positive slope, thus in equation (4.7), y increases as x

increases.

From the above analysis, we infer that the two isoclines (4.6) and (4.7) intersect at a

unique point (x*,y") if
Yo < Ya. (4.11)

Now we are in a position to state the following theorem.

Theorem 4.3.1. The positive equilibrium P*(x*,y*,z") exists and it is unique if conditions
(4.2), (4.5), (4.9), (4.10) and (4.11) hold true.
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4.4 Stability Analysis

The local stability of each equilibria can be studied by computing the corresponding Jacobian

matrix. We note the following regarding the linear stability behavior of these equilibria.
1 Py is a saddle point. This follows from the following remarks:
— The eigenvalue corresponding to the x—direction is » — g1 E which is positive from
condition (4.2).

— Since BB > (8 + q2E)(Bo+ B1) from condition (4.5), the product of eigenvalues
corresponding to the y— and z— directions is negative. This, in turn, implies that
the equilibrium point Fy is locally stable only in one direction (either y— or z—

direction) and is unstable in a two dimensional space.
2 P is also a saddle point. This follows from the following remarks:

— The eigenvalue corresponding to the x—direction is equal to —(r — g E) which is
negative from condition (4.2).

— The product of the eigenvalues corresponding to the y— and z— directions is given

by the following expression

cakK(r—qiE)(Bo+pBr)
T T aK(—qiE) + (S0 +q2E)(Bo+ B1) — BB1-

This expression is clearly negative under conditions (4.2) and (4.5). Therefore, the
equilibrium point P; is locally stable in a two dimensional space and is unstable in

a single direction which is either y—direction or z—direction.
3 The following analysis discusses the stability of P:

— P, is locally stable or unstable in x direction depending upon the condition whether

r—qiE < % orr—qE > % holds true, respectively.

— The product and sum of the eigenvalues corresponding to the y— and z— directions,
respectively, are given by the following expressions

BBi — (6 +q2E)(Bo+ B1), (4.12)

— 00— qE—265— (Bo+B1), (4.13)

respectively.
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The expression (4.12) is positive by (4.5) which implies that the product of the
eigenvalues is positive. The sum of the eigenvalues, that is, the expression (4.13) is
clearly negative. The above statements imply that both the eigenvalues are negative.
Therefore, the equilibrium point P is locally stable in the two dimensional space
spanned by the unit vectors pointing in y— and z—directions, respectively.

— Hence, the equilibrium point P is locally stable or a saddle point depending upon

the condition whether r — g1 E < % orr—q1E > % holds true, respectively.

4 We use the Routh-Hurwitz criterion to study the stability behavior of P*. The Jacobian
matrix evaluated at P* is given by

*(r oay* —ox*
(g~ (1(—x¢—a:c*)2(1+by*)) [gljix*)(f—k—by*)z o 0
_ c cotbx ¥ 12
= ey TmeorsmE 0 05T B
0 B —(Bo+B1)

The characteristic equation corresponding to the above Jacobian matrix is
A3+ AA? +BA+C =0,

where A = —(j11+ jo2+ Jj33),
B = j11jo2+ j22j33 + j33J11 — J12J21 — J23J32 — J13J31,
C = j12J21J33 + J11J23J32 + J13J31J22 — J11J22J33 — J12J23J31 — J13J21J32,

h

and j,,, for m,n = 1,2,3 represents an entry, in J, in m'” row and n'* column. All eigen-

values of J will have negative real parts if and only if
A >0,C > 0,and AB > C. (4.14)

Hence P* is locally asymptotically stable under conditions (4.14).
Remark 4.4.1. It has been noted that all inequalities in equation (4.14) are satisfied if

aay”

<
(14 ax*)>(1+by*)

(4.15)

,
K
holds. Hence P* is locally asymptotically stable under condition (4.15).

We will now prove that P* is globally asymptotically stable under certain conditions in the next

theorem.
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Theorem 4.4.1. Let the following inequalities hold:

aay” r
(I +ax*)(1+by*) <K7 (4.16)
4BB1 <y 81 (Bo+Bi). (4.17)

Then P* is globally asymptotically stable in Q with respect to all the solutions initiating in the

interior of the positive octant.

Proof. Consider the following positive definite function about P*
K
V=x—x" —x*lnﬁ* +K(y—y" —y*ln%) + —Z(Z—z*)z,
X y

where K| and K, are positive constants to be chosen suitably in the subsequent steps. Differ-

entiating V with respect to ¢ along the solutions of model (4.1), a little algebraic manipulation

yields
v __ = auay” Jx—xy— | Kicabx’
dt K (14ax)(14+ax*)(1+by*) (1+by)(1+ax*)(1+by")
R+ B 2 ot el -2 [
- ) 60+ [P ] -y -2
Choosing K| = C((llii);?) and K, = IE‘ y[i‘, we note that ‘2—‘; is negative definite under conditions

(4.16) and (4.17). Hence, V is a Liapunov function with respect to all the solutions initiating in
the interior of the positive octant, proving the theorem. (I

The above theorem implies that under parametric conditions (4.16) and (4.17), the preda-
tor (juvenile and adult both) and prey densities settle down at their interior equilibrium point

irrespective of the initial values of their densities at r = 0.

Remark 4.4.2. As long as P* exists, it is interesting to note here that condition (4.16) implies
condition (4.15) because 1 +ax* > 1 holds.

4.5 Optimal Harvesting Policy

The exploitation of biological resources is commonly practiced in fishery, forestry and wildlife
management. A management for biological species such as fishery is needed to maintain an
ecological balance, which is disrupted due to overexploitation of these renewable resources.
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Keeping this in mind, we discuss the optimal harvesting policy, that is to be adopted by the
regulatory agency so as to maximize the total discounted net revenue obtained from harvesting
prey and predator species using harvesting effort as the control instrument. We wish to investi-
gate the 3D curve (x,y, z) with the optimal harvesting effort E so that the system remains at an
optimal equilibrium level.

The net economic revenue to the society

7(x,y,z,E,t) = net economic revenue to the harvester + net economic revenue to the regulatory

agency

= p1q1xXE + pagoyE — ('E,

where ¢’ is the harvesting cost per unit effort, which in turn is given by ¢’ = ¢ + ¢, where ¢,

is the harvesting cost per unit effort corresponding to the prey species and c; is the harvesting

cost per unit effort corresponding to the adult predator species , p; is the price per unit biomass

of x, and p; is the price per unit biomass of y. We take p;, p> and ¢’ to be positive constants.
Our problem is to optimize the objective functional

R:/O e*‘St(p]q]Ex(t)—kpzquy(t) —E)dt,

subject to the model equation (4.1) by using Pontryagin’s Maximum Principle.

We construct the Hamiltonian

X oxy

_ 6t _ A A S
H=¢ °(piqixE + p2qoyE — C'E) + A1 (¢) | rx(1 K) (£ ax)(1+by)
- coxy oo oo 4.18
qlEx} +’12(t)[(1+ax)(1+by) &y — 61y" + Piz— q2Ey (4.18)

+23(t)[By — (Bo+ B1)z],

where A, A, and A3 are the adjoint variables, E is the control variable subject to the constraint:
0 < E < E,u. Here E,, denotes a feasible upper limit of E subject to the infrastructural
support available to fishing/harvesting.

Suppose E is the optimal control and x,y,z are the responses. By the maximum principle,

there exist adjoint variables A;, A, and A3 for ¢ > 0, such that

dh _ oH _
dt  dx

2rx (04
ot Y

— Epigi+M(r——— —q1E)+ A
¢ 1 ir K (l—i—by)(l—i—ax)2 1E)+ A2

coy
(1+by)(1+ax)?V’
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dlz . oH . St (XX)V] C(XX)Q _ _
a9y < Pz (Fa( by (e oy 020k
_q2E)~2+)~3ﬁ}a
dA 0H
2= T = B~ M3(Bo+ Bl
dt 0z

At the equilibrium point P*, the above equations reduce to

rx* oax*y* coy® _
(D——+ Y )M+(< Y )lzz—e “Epiqi,

K (14+ax*)?(1+by*) 1 +ax*)?(1+by*)
—ax'Ay Biz cox*by* Y
+(D—5 P12 )/1+ A= —e S Eprg,
(@) (1 +by)? Y T a1+ hy ) e TPl = e TERe

BiAz2 + (D~ (Bo+B1))A3 =0,

where D denotes %.
This system of linear differential equations can be solved using the operator method by

eliminating A, and A3. Then the reduced differential equation in A; can be written as

(Cl3D3 +a2D2+a1D+ao)).1 =M, e*&, (4.19)
where
az =1, a2:t3—[30—[31 — b,
a; = tits — Pots — Bitz — otz + 120 + 121 — BB,
ay = tPots +12Bits — BPi13 — Potits — Bitita,
My = Eprqatsd +Eprgata(Po+ Bi) + Ep1gi BB — Epi1gi1t2
—Ep1q1t2Bo — Ep1q1t28 — Ep1q1818 — Ep1q1BoS — Ep1q18°,
where
i —ox*
= (14+ax*)(1+by*)?’
z* cox*by*
= 51)’* + ﬁ] Y PR
yo o (I+ax)(1+by*)
rx* oax*y”
3 =—

K T tar 2(140y)
—cay”*
(1+ax*)*(1+by*)

=
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The solution of equation (4.19) is

M
Ay = Are® + Age® - Ase ™ e, (4.20)

where Als(i = 1,2,3) are arbitrary constants and os(i = 1,2,3) are the roots of the auxiliary
equation

a3m3 +a2m2+a1m+ao =0,
N = 53+a262+a15+a0 # 0.

It is clear from (4.20) that A; is bounded if and only if o < 0(i =1,2,3) or A;(i = 1,2,3)
are identically zero. For robust calculations, we ignore the cases where o; < 0(i =1,2,3) and

take A;(i = 1,2,3) are identically zero. Then we have

M
e&ll = —]
N

Proceeding in a similar fashion, we obtain

M
51‘1 — 2
e D —N,
M
51‘2’ — 3
e 3 N7
where E N M oM BM
t —_
My — P1q1N +13M ]andM3: 1My
I 5+BO+B]

Thus, the shadow prices €% ;(i = 1,2,3) remain constant over time in optimal equilibrium
when they satisfy the transversality condition at ¢ = oo, ie, when they remain bounded as ¢ — oo.
From (4.18), we note that Hamiltonian H is linear in the control variable E, hence optimal
control will be a combination of the bang-bang control and singular control. A necessary
condition for singular control to be optimal [31] is that

JoH _
55 =€ S (prg1x+ prgy — ') — Mqix — Aagay = 0,
which gives
_ 5t 877.7
Mqix+ gy =e 35 4.21)

Therefore, we may conclude that the total cost of harvest per unit effort (the left hand side
of (4.21)) must be equal to the discounted value of the marginal profit of the static effort (the
right-hand side of (4.21)) level.
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Substituting the values of A; and A; in (4.21), we obtain

M, M,
q1x(p1— ) +qy(p2 = —7) = c. (4.22)

The above equation together with the value of E at the interior equilibrium, namely,

*

roorx* oy cox* oo O N Biz*

E=— — _ :
g1 @K (1+ax*)(1+by*)q1  (1+ax*)(1+by )2 @ q  q2y°

(4.23)

gives the optimal equilibrium population x = x5 and y = y;.

When 6 — o, we have % — 0, % — 0. Then (4.22) reduces to

P1q1%e0 + P2gayee =,

and hence TT(Xe, Yoo, 2, E) = 0. This shows that the economic rent is completely dissipated when
the discount rate is infinite. The economic rent can be expressed as
(M] q1x+ quzy)E

T = (pi1qix+ prgoy— ' )E = N :

We note that M, is of O(8%),M, and M3 are O(8%) and N is of O(83). Thus 7 is a decreasing
function of 4.

4.6 Numerical Results

In the following section, we present some numerical simulations to verify our theoretical results
proved in the previous sections by using MATLAB R2017a. For model system (4.1), we choose

the following set of values of parameters

r=7,K=10,c=0.1, 0 =05 =1 E=6 g =g =1,
B():lv B1:77B:107 61:17a:b:0'17

(4.24)

For the above set of values of the parameters, conditions in Theorem 4.4.1 for the existence of
the interior equilibrium is satisfied. Thus, the positive equilibrium point P*(x*,y*,z") is given
by

x"=0.3973, y" = 1.7662, 7 =2.2078.

We also note that condition (4.14) is satisfied for the set of parameters chosen in (4.24). Thus,
the equilibrium point P*(x*,y*,z") is locally asymptotically stable. The time series of x,y and z
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are presented in Figure 4.1. This figure shows that the density of the prey species decreases with
time whereas densities of predator species (mature and immature both) increase with time, and
finally settle down at their steady states. It is also observed here that the density of immature

predator settles at a larger value than that of the mature predator and prey.

Time Domain Response Gilobal Stability of positive equilibrium

25

P’(8.568,0.009763,0.003665)

0 2 4 6 8 10 12 14 16 18 20
time
Fig. 4.1: Time series of x,y and z for the set

Fig. 4.2: Stable solution in xyz-space for the set
of values of parameters given in 4.24

of values of parameters given in 4.25

It may be pointed out that the values of parameters chosen in (4.24) satisfy local stability
conditions but they do not satisfy global stability conditions. Since conditions obtained in
Theorem 4.4.1 are sufficient (not necessary) for the global stability of P*, hence at this stage
we can not say anything about the global stability of P*.

Now we choose following set of values of parameters:

r:77K:107C:17a:0.5760:17E:17q]:q2:17

(4.25)
B(): 1, B] :7, B :3, 61 :300, a:bzo.l,

with different initial conditions. These values of the parameters satisfy the global stability con-
ditions of Theorem 4.4.1. The trajectories or solution curves of x,y and z with different initial
conditions are plotted in Figure 4.2. From this figure, we note that all the trajectories start-
ing from the different initial conditions converge to the equilibrium point P*(8.568,0.009763,
0.003665). This shows that P* is globally asymptotically stable.

Figure 4.3 shows the behavior of x, y and z for different values of the parameter ¢c. Here, rest
of the parameters have the same values as in (4.24). We note that if o (capture rate) is small,

then all the three species grow and finally attain its respective steady states. If o increases
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beyond a critical value, then prey population decreases, mature and immature populations in-
crease. If o becomes high, then the density of prey species tends to zero.

Fig. 4.3: Behavior of x,y and z with time ¢ for different values of oo =0.1(a),0.4(b), 1(c)
and other values are same as in 4.24

081

06 \ =02 c=02

x(t)
2(t)

04 \

02 ~

Fig. 4.4: Behavior of x,y and z with time ¢ for different values of ¢ = 0.2(a),0.5(b), 1(c)
and other values are same as in 4.24
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Fig. 4.5: Behavior of x,y and z with time ¢ for different values of E and other values are
same as in 4.26

Figure 4.4 shows the behavior of x,y and z for different values of the parameter c. Here,
again, rest of the parameters have the same values as in (4.24). In this case, it can be noted that
as the value of ¢ increases, the densities of y and z increase but the density of x decreases.

For the optimal harvesting part, we choose the following set of parameters:

r=7,K=10,¢c=0.1,x=0.586=1, g1 =¢g» =1,
Bo=1,Bi=7,B=10,8=1,a=b=0.1.

(4.26)

Solving (4.22) and (4.23) simultaneously, we get the optimal values as x5 = 1.001, ys =
2.3530, z5 = 2.94125 and the optimal value of E is given by E5 = 5.4339. This value of
E is optimal in the sense that for such a value the harvesting agency gets the maximum revenue
for the harvest, and all the three species will co-exist at an optimal level.

From Figure 4.5, one can remark that when the value of E is below Eg, then the prey and
predators (mature and immature both) survive, but when the value of E is above Eg(case of
over harvesting), then the population densities of prey and mature predators tend to zero.

Consider a set of parameters as follows:

}":3.5, K:70, C:0.2, OC:O.S, 6():12, E = 1, q1 :qzzl,
Bo=02, B =025 B=04,8=03 a=001,b=12.

(4.27)

In system (4.1), let b = 0.1 and rest of parameters are same as that in (4.27). Then it is easy
to note that system (4.1) has a unique interior equilibrium E*(27.7097,2.3121, 2.0552) which
is globally asymptotically stable as conditions of Theorem 4.4.1 are satisfied. Figures 4.6(a),
4.6(b), 4.6(c) shows the time series analysis and Figure 4.6(d) shows the phase portrait analysis

of model system (4.1) for different values of the parameters b. These figures shows that system
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is stable if b is small and if b increases beyond a threshold value, the system becomes unstable.
Thus the parameter b induces a Hopf-bifurcation in the system.

45 T T T T T T T T T 6 T T
sl —b=0.1 —b=01

—b=03 s —b=03
a5 —b=06]

—b=0.6
30 B 4r
25
x >3-
20 H “V“

L L L L L L L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

22 T T T T T T T T T —b=0.1
—b=0.3
—b=0.6

z
- o i >
T T T
=
B —

—b=0.1
ool | —b=03] |

o6 1|} —b=06]

0.4

Fig. 4.6: Trajectory of x, y,z and limit cycle with respect to the parameter » and other
parameters are same as in (4.27).

In order to consider the importance of parameter 8;, let 8 = 2 and rest of the param-
eters are same as that in (4.27). Then system (4.1) has unique positive equilibrium point
E*(21.7536,1.3268,1.1793) and conditions of Theorem 4.4.1 are also satisfied. Hence the
positive equilibrium point is globally stable. The behavior of x,y and z for different values of



Ehapter 4. Optimal Harvesting Policy of a Prey-predator Model with Crowley-Martin Type
10 . :
Functional Response and Stage Structure in the Predator

0; are shown in Figure 4.7. This figure shows that &; is also a bifurcation parameter and it

changes the instable behavior of the system into stable behavior.

45 T T T T T T T T T 4.5
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Fig. 4.7: Trajectory of x,y,z and limit cycle with respect to the parameter §; and other
parameters are same as in 4.27.

4.7 Conclusions

The proposed model consists of three non-linear differential equations, namely, one for mature
predator, one for immature predator and one for the prey. Only the mature predator feeds
on the prey, immature predator survives via mature predator and some alternative food. The
interaction between prey and mature predator has been taken as the Crowley-martin type which
is more realistic in nature. For ecological balance, it has been modeled in the system that
only prey and mature predators are harvested while the immature predators are not harvested.
An interesting aspect in mathematical ecology is permanence/persistence which ensures the
survival of biological entities for all positive initial conditions. If a system exhibits permanence,

then the ecological planning on fixed eventual population can be carried out. Analyzing the
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system, we have obtained some constraints on the intrinsic growth rate of the prey species for
the permanence of the solutions of our system. It has been shown that all solutions of the system
are positive and bounded if all the species are initially present. Thus, our proposed model is
biologically well behaved. The dynamical modeling of the system’s behavior shows that the
system under consideration is locally stable around positive interior equilibrium. Also, it has
been observed that the system around the positive equilibrium is globally asymptotically stable
under certain conditions.

We have studied the optimal harvesting policy using the Pontryagin’s Maximum Principle.
For economic and biological views of renewable resource management, we studied exploitation
of both prey and adult predators. From the point of view of ecological management, in order
to plan harvesting strategies and keep sustainable development of ecosystem, we have used
harvesting effort as a control parameter and obtained its optimal level Es. If applied effort
is less that Eg, all the species will co-exist at an optimal level and ecological balance can be
maintained. If applied effort is larger than Eg, then it represents over-exploitation and the
prey-predator system will be in the danger of extinction. Our numerical simulation results
obtained in Figure 4.6 and Figure 4.7 show that the parameter b (magnitude of interference
among predators) and 0; (intra-specific interference among adult predators) play an important
role in governing the dynamics of the system. We hope that this chapter will help to understand

the dynamics of prey-predator system with harvesting.



