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Chapter 5

Dynamics of Prey-predator Model with Stage Struc-
ture in Prey Including Maturation and Gestation

Delays '

5.1 Introduction

Ecology is the study of the distributions, abundance and relation of organisms and their inter-
actions with the environment. The fundamental goal of ecological research is to study all the
factors which affect the interaction of individual organism with each other or environment and
to get the results which help to sustainable development of the ecosystem. The prey-predator
relationship has been focused as an essential area of research in ecological systems [16]. The
very beginning model on the prey-predator relationship is proposed and analyzed by Lotka and
Volterra, which contains a pair of first order, nonlinear differential equations. After that, a
tremendous amount of attempts have been made to extend the pioneering work [108, 43, 129,
9,78, 207].

One crucial factor in the dynamics of prey-predator interaction is the intake rate of prey
by predator population or functional response of predator. It helps to analyze a prey-predator
dynamics with more accuracy. It is known that predation rate is dependent upon several as-
pects like age group, body size, nature of habitat, interference and help among individuals in
particular species. If the prey is weak, small in size, immature or available in abundance then
it consumed by a linear function, known as Holling type I functional response. There are many
types of functional response: Holling type I-III, Beddingtion-DeAngelis, Crowley-Martin, ratio
dependent, Hassel-Verley etc. Holling type I-III functional responses are prey dependent while
all other are function of both prey and predator density. Crowley and Martin [38] considered

that rate of predation will decrease at high density of predators due to interference among them.

I'A considerable part of this chapter is published in Nonlinear Dynamics, 96(4), 2653-2679, 2019.
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This functional response is given by

ax
(1+ax)(1+by)’

flxy) =

where o, a and b are positive parameters denoting capture rate, handling time and magnitude
of interference among predators, respectively. Crowley-Martin functional response is involved
in a significant number of studies [214, 50, 135]. The effect of intraspecific interference among
predators has been investigated in prey-predator model with Holling type II functional response
in [87], with Holling type III functional response in [73], with Beddington-DeAngelis type
functional response in [129, 118, 224] and Hassell-Varley functional response is considered by
Tian [206].

Reproduction rate and survival of most of the biological species is dependent upon age or
the development stage of individuals. A life cycle of species can be divided into two groups,
viz., mature and immature. The nature of a predator is completely different for a mature and
immature prey. Predator has a good attraction on immature prey while mature prey has more
escape ability then immature. Hence, the incorporation of the effect of past life of species is rea-
sonable to obtain more realistic results. The analysis of stage structured models is done by large
number of researchers, as a way to eliminate the shortcomings of classical Lotka-Volterra mod-
els [114, 227, 2, 3, 154, 71, 129, 166, 26]. Bosch and Gabriel [23] considered a predator-prey
system where cyclic population fluctuations are due to the age structure in the predator species.
It is shown that cannibalism is also a stabilizing mechanism when population oscillations are
due to this age structure. Further, the effect of stage structure for prey in a predator-prey model
under harvesting of adult prey and predator has been studied by Chakraborty et al. [26].

Hopf-bifurcation plays an important role to understand the complex dynamical behavior of
the system. It gives such a threshold value of a parameter where the stability behavior of the
system suddenly changes. Stability and Hopf-bifurcation for a prey-predator system including
stage structure and refuge is analyzed by Wei and Fu [224]. Local Hopf-bifurcation in a time
delayed system has been studied by Tripathi et al. [210], Bairagi and Jana [11] and Deng et al.
[46]. They have shown the existence of periodic solution after a certain value of delay.

Time delay occurs in every biological moment, therefore models having delay are much
more realistic in nature. Delay differential equation shows more complicated behavior than
ordinary differential equation. The characteristic equation corresponding to the linearized sys-
tem of delay differential equation has some exponential terms or quasi-polynomial [12]. Time
delay can destabilize the system and emanates periodic solution [238, 46]. Predator species
takes a time lag to introduce new born predators after consuming prey, which is known as ges-
tation time delay. Besides that, in stage structured system maturation delay is the amount of

time which is taken by a juvenile individual of a particular species to become adult and join
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the other class. Models including different type of discrete gestation delays are investigated
by some researchers [140, 71, 66, 144, 11, 130, 210]. The effect of maturation delay on the
dynamics of stage structured models is well studied in [98, 166, 10, 26, 48].

Song and Wei [195] have done bifurcation analysis for Chen’s system with delayed feed-
back. They found that when the delay passes through certain values, chaotic oscillation is
converted into a stable steady state or a stable periodic orbit. The dynamics of a stage struc-
tured population model with harvesting of mature prey is described by Zhang and Zhang [239].
Li and Li [116] have analyzed a prey-predator model with gestation delay and observed that
system changes the stability behavior beyond a certain critical value of the delay. A delayed
prey-predator model with Crowley-Martin type functional response including prey refuge has
been considered by Maiti ef al. [136]. Chakraborty et al. [26] analyzed the simultaneous ef-
fect of harvesting and delay on the dynamics of Leisle-Gower prey-predator system with stage
structure in prey. They have shown that the delay not only can cause a stable equilibrium to
become unstable, it can also cause a switching of stability sometimes. Some investigations
have also been made with two or more delays involved in the model [235, 157, 120, 229,
64, 122, 46, 222]. In such a case, getting the eigenvalues from the characteristic equation is
difficult due to presence of two or more exponential terms. Liao et al. [122] investigated a
three-species predator-prey system with multiple delays and it is shown that Hopf-bifurcation
at the positive equilibrium of the system can occur as the delay crosses its certain value. Further
Hopf-bifurcation analysis for a ratio dependent predator-prey system with two delays and stage
structure for predator is studied by Deng et al. [46].

To the best of author’s knowledge, a prey-predator model with (i) stage structure in prey,
(i1) Crowley-Martin type functional response and (iii) maturation and gestation delay have not
been studied. Hence the main objective of this work is to analyze the dynamical complexity of
a three dimensional prey-predator model incorporating stage structure in prey population with
maturation and gestation delay. Motivated by this, we construct a delayed model in section
5.2, followed by some assumptions. The rest part of the manuscript is organized as follows:
In section 5.3, the dynamics of non-delayed model is analyzed. We discuss positivity, bound-
edness and permanence of solution, existence of equilibrium points and their stability analysis.
Section 5.4 is devoted to local stability and Hopf-bifurcation of delayed system. We investigate
Hopf-bifurcation through local stability of positive equilibrium considering delay as a bifurca-
tion parameter. In section 5.5, we analyze the direction and stability of Hopf-bifurcation using
normal form method and center manifold theorem. Numerical simulation has been carried out

to illustrate our theoretical findings in section 5.6.
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5.2 Construction of Mathematical Model

We consider a three dimensional prey-predator with stage structure. Let x,y and z be the pop-
ulation size of immature prey, mature prey and predator species, respectively. The formulation
of mathematical model is based on some following assumptions:

e We assume that the prey population is classified into two stage groups, immature and
mature. The birth rate of immature prey is proportional to the density of mature prey

population and mature prey grows logistically.

¢ Since the escape ability and battle efficiency of an immature prey is very less due to their
small body size and unawareness. Therefore, predator has a good attraction on immature
prey. It is assumed that the predators consume immature prey population by Holling
type-I (linear mass-action principal) functional response.

e On the other hand predator has some searching time and handling time on mature prey
and there is some magnitude of intraspecific interference among them. Due to this rea-
son we assume that the interaction between mature and predator species is followed by

Crowley-Martin type functional response.

¢ An immature prey becomes mature after time 7; (maturation time delay) and joins the
mature prey group. It is assumed that re % x(¢t — 7;) be the number of immature preys
who were born at the time (# — 7;) and survive at time ¢, ( Jana et al. [90], Chakraborty
et al. [26] and Kar & Matsuda [98]).

e [t is known that each organism requires a certain amount of time to reproduce their
progeny. Because of this the increment in predator population due to predation does
not appear immediately after consuming prey. It takes some time (say 7,) which can be
regarded as gestation period of predator or reaction time of predation. Therefore, it is
assumed that the change rate of predator depends upon the number of individuals present
attime (1 — 7).

Keeping all above aspects in view, a suitable mathematical model can be governed as follows:

% =ry—dx— re*d“x(t —T1) — pXxz,

dy y —dt ayz

A 1— < Ix(t — —

% sy( K) +re “Mx(t—1y) (1 +ay)(1+b2)’ .1
dz ) cay(t—mn)z(t— 1)

—=—_0yz— 0 =)t — T ’

T oz — 012"+ c1px(t = 1)z(r — 1) + (14+ay(t—1))(1+bz(t — 1))
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subject to the non negative conditions x(§) = ¢1(§) > 0, y(&) = ¢2(E) > 0, z(&) = ¢3(&) >

0,8 € [-7,0],7 = 71 + T2, where ¢;(§) € C([-7,0] = R;), (j =1,2,3), where 7 and ©»

denote maturation time delay of the prey and gestation time delay of the predator, respectively.
Model (5.1) takes the following form in the absence of both the delays (71 = 7, = 0).

—dx—r —dx—rx— px

dy ( y) oyz

A 1— =) +rx— 7

dt 4 K = (1 + ay)(l + bZ) (5.2)
dz 5 cr0yz

_— = — —6

7 00z — 012° +ci1pxz+ (I ay)(1+b7)

x(0)=x0 = 0,y(0)=y0 = 0,2(0)=2 = 0.
The biological meaning of all parameters and variables in above model is provided in Table 5.1.

Table 5.1: Variables and parameters used in model (5.1), and (5.2).

Variables/ Biological meaning Units
Parameters

X Density of immature prey Number per unit area
(tons)

y Density of mature Prey Number per unit area
(tons)

b4 Density of predator Number per unit area
(tons)

r Growth rate of immature prey Per day

d Mortality rate of immature prey population Per day

p Attack rate of predator on immature prey Per day

s Intrinsic growth rate of mature prey Per day

K Carrying capacity of the prey population Number per unit area
(tons)

o Attack rate of predator on mature prey Per day

a Handling time Per day

b Magnitude of interference among predators Per day

cl Conversion efficiency of z on x Constant & 0 < ¢1 < 1

c Conversion efficiency of zon y Constant & 0 < ¢ < 1

% Natural death rate of predator Per day

o) Coefficient of intraspecific interference among Per day

predators
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T Maturation delay for prey population Days
T Gestation delay for predator population Days

5.3 Dynamics of non-delayed model

In this section, we analyze the dynamics of non-delayed system (5.2). First we show that our
system has positive and bounded solution, which refers that a restriction on populations to grow
exponentially as a effect of limited space and resources in nature. Then we find out all feasible
equilibrium points of the system and then their local and global stability is shown under certain

conditions.

5.3.1 Positivity and boundedness of the solution

Theorem 5.3.1. The model system (5.2) has a unique and non-negative solution with initial
values {(x(0),y(0),z(0)) € R3.}, where R>. = {(x1,x2,x3) : x; > 0,i = 1,2,3}. Further, the set

1 M,
Q:{(x,y,Z)tOSHySfmax O}

0< —<—
y+—2 5

is a positive invariant set for all the solutions initiating in the interior of the positive octant,
where fya, = (s+2r)2 K & =min{r,d}, My= (25+7) fax+—x o5 ( ‘pfmax)z, 0 =min{s, &}

Proof. The model system (5.2) can be written in the matrix form
X =G(X),

where X = (x1,x2,x3)7 = (x,%,2)T € R, and G(X) is given by

G1(X) ry—dx—rx— pxz
GX)=|G(X)| = | sv(1= %)+~ rasiiires
G3(X) — 80z — 812 +clpxz#'gibz)

Since G : R3. — R? is locally Lipschitz-continuous in Q and X (0) = X, € R}, the fundamental
theorem of ordinary differential equation guarantees the local existence and uniqueness of the
solution. Since [G;(X)] . o, verd 2 0; it follows [193, 223] that X (¢) > O for all # > 0. In fact,
from the last equation of model (5.2), it can easily be seen that z|,—¢ > 0 and hence z(¢) > 0 for
allt > 0. Secondly, y|y—o = rx > 0 and hence y() > 0 for all # > 0. If this is not true, then assume
that there exist at; > 0 with t; = inf{t: y(t) = 0, ¢t > 0}, such that y(¢1)|,(,)=0 = rx(t;) <O.
But we also have y(¢;) = 0, y(¢) > 0 with ¢ € [0,7;) and x(¢;) < 0. Since x(0) > 0, there is



5.3. Dynamics of non-delayed model 113

aty >0 withnn =inf{r:x(t) =0, t € [0,11)}. Hence by the definition of #, x(#2) < 0. But
x(t2) = ry(t) > 0, which is a contradiction to our assumption. From the first equation of model
(5.2), we have X|y—o = ry > 0, and therefore x(z) > 0 for all t > 0.
Now, suppose
Wi(1) = x(1) +y(1),

then we have W) d J
1 X y ( )’>

- 47 _ 1— 2

@ @ sy

:sy<l—%> +2ry—ry—dx.

Let f(y) = sy(1 — %)+ 2ry, then f has maximum value fax = (s +2r)*K at y = £ (s+2r).

Hence, it follows that

dW (¢
d]( ) S fmax - 6Wl (t)7
t
where 6 = min{r,d},
which implies
limsup W (1) < 255
100 6
Again, suppose
1
Wa(e) = y(e) + —3(0)

then we have

sz([) dy 1dz 01 2

ko e (e
a di Taa = o) TGS +cszz

where 6 = min{s, &},

Hence, it follows that

sz([) 2

dt

21
+ 0" Wa(t) < (2sy+rx)+ o8 (c]px> —C—2<\/5_12—2C—\/]6_]px>

< (2s+r)

fnéax N 0216] (Clpfnéax>2 My,

which implies
M
limsupWs (1) < 0

1o 5

We also note that if W, (¢) > f’”“‘ and Wh (1) > ’(‘S’fg’ then dW] (t) <0, sz(t) <0.

This shows that all solutlons of system (5.2) starting in Q remains in £ for all r > 0. O
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Theorem 5.3.2. Let the following inequalities hold true:

M
s > 06026—3, c1pxg > Op.

Then model system (5.2) is uniformly persistence, where, x, is defined in the proof.

Proof. Permanence or uniform persistence of a system implies that all species will be present
in future and none of them will become extinct if they are initially present. System (5.2) is said
to be uniformly persistence if there are positive constants M| and M, such that each positive
solution X (t) = (x(¢),y(¢),z(¢)) of the system with positive initial conditions satisfies

M, < litmian(t) <limsupX (¢) < M,.
—00

f—oo

Keeping the above in view, if we define

M
Mzzmax{fmax O}7

5%
then from Theorem 5.3.1, it follows that

limsup X (1) < M,.

f—o0

This also shows that for any sufficiently small € > 0, there exists a 7 > 0 such that for all
t > T, the following holds:

f max
0

M
f"g’"+e, 2(t) < crgo e

x(t) < 5

+e, y(t) <

Now from the second equation of model system (5.2), for all # > T, we can write

Hence, it follows that
. K M,
> — —
htrgglfy(t) >~ <s oc(cz 5 +8>>,

which is true for every € > 0, thus
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where s > acz%.
Now from the first equation of model system (5.2), we obtain

dx>r —dx—rx— x(c MO—HS)
ar =" ST ’

=TIy, — <d+r+p<cz1;if +8>>x,

which implies

liminfx(r) > Do
tyes d+r+p(cs?+e)
which is true for every € > 0, thus
liminfx(r) > —— 24— = x,.
t—eo d+r+pcest

Third equation of model system (5.2) yields

d
d—f > —8yz— 012 +¢1 pXaz.

Hence 1
.. S1o .
htrgglfz(t) > 51( O +C1PpXa) =: Za,
where ¢1px, > 8.
Taking M| = min{x4,ya,24}, the theorem follows.

O

Remark 5.3.1. The above analysis shows that the system is persistence if intrinsic growth rate

of mature prey is greater than a threshold value and death rate of predator population is less

than a threshold value.

5.3.2 [Equilibrium points

It can be investigated that model (5.2) has three equilibria, namely, Ey(0,0,0), E.(x.,y.,0)

and E*(x*,y",z"). The equilibrium Ej exists trivially. We will show the existence of planer

equilibrium E, and interior equilibrium E*.

Existence of E,(x.,y,0): Here x. and y. are solution of the following system:

ry—(d+r)x=0, sy(l—%) +rx=0,

which yields
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Clearly, x, and y, both are positive. Thus, the equilibrium E, (x,,y.,0) exists always.
Existence of E*(x*,y",z"): Here x*, y* and z" are the positive solutions of the following alge-

braic equations:

ry—dx—rx—pxz=0,

y oyz
1— 2 — =
=) T
Oy o
0o 6]Z+C]px+(1+ay)(l+bz)_0

From the first equation of above system, we get x = d—}—:—)—;—pz' Putting the value of x in last two

equation of above system, we obtain

2

y r az
-2 - —0, 53
S( K>+d+r+pz (1+ay)(1+bz) 63
T (5.4)

d+r+pz  (14ay)(1+b2)

From equation (5.3) we note the following:

e When y = 0, then we obtain
mz* +moz+ms =0, (5.5)

where m; = (bs — a)p, my = (bs — &t)d + (bs — @)r+br* +sp, m3 = ds+r>+sr.
Equation (5.5) has a positive root z; under the following inequality:

(bs — o) < 0. (5.6)

e Whenz=0, theny:K(s—kd’—jr) =:y; > 0.

e We have S o
% _ K + (1+ay)?(1+bz)
dy r2p a
4 (d+r+pz)? + (14ay)(1+bz)?

<0.

The above analysis shows that equation (5.3) passes through the points (y;,0) and (0,z;) and z
is a decreasing function of y under condition (5.6).

Now we note the following from equation (5.4):
e When y =0, then z = —% =:720 < 0.

e When z = 0, then we obtain
n1y2+n2y+n3 =0, (5.7)
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where n; = crarp, ny = codot —ad & + coar — ador +c1rp, n3 = —8(d +r).
Equation (5.7) always has a positive root y;, (say).

e We also have

apr_ o
dz d+ripz ~ (1+ay)2(1+bz)
dy _ cirply  caby
o1 + (d+r+pz)?  (1tay)(1+bz)?

It is evaluated that Z—; > 0 if the following condition holds

max{b, P }< czocb(d+]\;;) , (5.8)
d+r c1pr(1+a05—9)3

where ag = max{a,b}.

This shows that equation (5.4) passes through the point (y,,0) and (0,z), z is increasing func-
tion in y under condition (5.8).
From above analysis we conclude that isoclines (5.3) and (5.4) intersect a unique point
(v",z") if
y2 <1 (5.9)
Now we are in a position to state the following theorem.
Theorem 5.3.3. The positive equilibrium E* (x*,y*,z") exists uniquely under conditions (5.6),(5.8)

and (5.9).

5.3.3 Stability Analysis

The local stability of each existing equilibrium point can be investigated by computing the
Jacobian matrix corresponding to the system and further by evaluating it at each equilibrium

point. Then using the Routh-Hurwitz criterion, we get following results:
e The equilibrium point Ey(0,0,0) is saddle point.

e The Jacobian matrix evaluated at E. (x,,y.,0) is given by

—d—r r —px.
2
- BV i Yk
J|E* - r K d+r (1+ay+)
0 0 —8 +c1px. + 22

1+ay.

and it is noted that

CoOyx
1+ays*

- E.(x.,y.,0) is locally asymptotically stable if &y > cjpx, +
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- E.(x.,y:,0) is saddle point having stable manifold along x and y-axis and unstable

Co Oy«

manifold along z-axis if § < cipx. + 5 o

e In order to study the local stability behavior of positive equilibrium, let J|g+ be the vari-

ational matrix evaluated at E*(x",y", z%).

_ *
—;y r —px*
Jge=1| r ooty eyt S 5 A
BT K y" T (tay ) (1+b27) (I+ay")(1+b27)
* cazt N creay*z
cipz (Fay P(1+52) A r (e

The characteristic equation corresponding to the above variational matrix is
A3 H AN+ AL+ A3 =0, (5.10)

where Aj,A, and A3 are given by

Ay = —(ji1 +Jja2 +j33),

Az = Jirjoz + j22j33 + j33ji1 — J12J21 — J23J32 — J13J31,

Az = J12J21J33 + J11J23J32 + J13J31J22 — J11J22J33 — J12J23J31 — J13J21J32,

h row and n'* column. Us-

and j,,, for m,n = 1,2,3 represents an entry, in J|g«, in m'
ing the Routh-Hurwitz criteria, all eigenvalues of J| g+ have negative real part if and only
ifA; > 0, A3 > Oand AjA, > As.

Thus we can state the following theorem.

Theorem 5.3.4. The system (5.2) is locally asymptotically stable around the interior
equilibrium E* if and only if Ay > 0, Az > 0and AjA; > As.

In the next theorem, we are able to find sufficient condition under which E* is globally asymp-

totically stable.

Theorem 5.3.5. The system (5.2) is globally asymptotically stable around the interior equilib-

rium E* under following condition:

) czx*(1+bz*)>2 <i_ aaz* >
r <1+—01y*(1+ay*) <4(d+r) K (Uta)(+be)) (5.11)

Proof. Consider the following Lyapunov function about E*

(x—x")2+1 (y—y* —y*ln%) +lz<z—z* —z*lnzé>,

| —

V(x,y,2) =
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where /1 and [, are positive constants to be determined in the subsequent steps. Now, differen-

tiating V with respect to time along the solutions of system (5.2)

a5 g

dv dx
E_(x_ )dt+l (

After a little algebraic manipulation, we get

dV__ Y _i_ﬁ OCCIZ* K2
g = dHrtpylx—x) ”1{ K yy*+(1+ay)(1+ay*)(1+bz*)}(y y)
N Czaby* V) L K Lk
lz{éﬁ(1+bz)(1+ay*)(1+bz*)}<z D))

+ {_ll « +1 2%
(I+ay)(1+bz)(1+bz*) (I+ay)(1+bz)(1+ay*)

+[=px" +heapl(x—x")(z—2").

Jo=ye-2)

Choosing [; = % and I, :’C‘—T,we obtain
av oo X" (1+bz") aaz" “2
Y« _(a _ _ S _
pra GO IC Ry  prupsers o I Gl g Py v pry ey Al

+ | r+

2 ) ey,

cry*(14ay*)

V

which implies ;- 4V is negative definite under condition (5.11). Hence, the positive equilibrium

* is globally asymptotlcally stable under condition (5.11). (I

5.4 Analysis of delayed model

In this section we shall investigate the dynamics of the delayed system (5.1).

5.4.1 Local stability and Hopf-bifurcation

Rewritting model system (5.1) as

dU ()
dt

=FU(1),U(t—7),U(t —m)),

where U (t) = [x(¢),y(t),z(t)]T, U(t — 1) = [x(t — ), y(t — ), z(t — )T, i =1,2.
Let x(t) =x" +X/(t), y(r) =y"+ (1), z(t) = 2" +Z(¢). Then linearizing system (5.1) about

the interior equilibrium solution E*(x*,y*,z"), we have
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dz
— =PZO)+0Z(t— 1)+ RZ(t - 1),
where
o oF o - oF R oF
“\ww ), ¢ \avea ), "= \ave-),
and Z(t)= [ (1),y' (1), 2 @)

Thus, the variational matrix of the system (5.1) at E* is given by
J=P+ Q/efm, —i—R'e*MZ-

After a little calculation, we obtain

ay—ne 0 r —px’
J = neilf‘ a as )
cipze ™ ae ™ as+age ™
where
I g2 az’ = 2
a)=—d—pz', a=s5s—"¢ (ray )2(1+62) B~ TUray) (1162 2
o Czaz* — _ * = * = 7dTl
U4 = Tray )2(11bz) 95 = & —2812", ag = c1px" + a3, M =re ",

and its corresponding characteristic equation is

A3 4D A+ byd+by+ (A2 +byd+bs)Ne *P 4+ (bgA? +bA +bg)e % 4 (bgA +bo)ne +(F17) =0,
(5.12)
where
by = —(a1 +a2+a5), by =ajay +aras +ajas, by = —ajaras, by = —(r+a2+a5),
2k

bs = ayas +ras, b¢ = —ag, b7 = arag — azas +ayag+c1px 7",

bg = —ajayag + ajazaq —rcipasz’ — cy pzazx*z*, bg = arag — azay + rag + pasx”.

Remark 5.4.1. When t) = 1, = 0, then the characteristic equation (5.12) is same as the char-
acteristic equation (5.10) of the non-delayed model system (5.2) studied earlier.

Case (1): 71 =0, 7, > 0. Then equation (5.12) becomes
l3+d])~2+d2)~+d3+(d4)~2+d5)~+d6)€7m:2 =0, (5.13)

where
di=by+r, dy=">by+rby, ds = b3+ rbs dy = bg, ds = b7 +rbe, dg = bg + rbg.
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Letio (@ > 0) be aroot of equation (5.13), then it follows that

(—dy0* 4 dg) cos(0T) + dswsin(0n) = d) 0> — ds, (5.14)
dscos(0T) — (—dy@* +dg) sin(0T) = 0> — dyo. '

This leads to a six order equation in @ and has at most six real positive roots, which ensures
that there are only finite intervals for the roots to cross the imaginary axis.

0)6+p10)4+p20)2+p3:0, (5.15)

where
p1=d3 —d; —2dy, pr =d5 —d? —2d,ds + 2duds, p3 = d3 — d2.
If we put ®?* = v, then equation (5.15) becomes

v3+p1v2+p2v+p3 =0.
Let g(v) = v + p1v? + pov + ps.

Without loss of generality it is assumed that @ is a positive root of equation (5.15). Substi-

tuting @, into equation (5.14), we obtain

1 1 [(d] (1)]2—d3)(—d40)]2+d6)+(0)]3—d20)1)(1)1d5 2IT

Ty, = —COS +—1,i=0,1,2.... (5.16
§ W (—d40)]2+d6)2+0)12d52 W ( )

(H1): g'(}) #0.
Let A(7,) = £im,; be the root of equation (5.13), a little calculation yields

dA } - _ g'(of)
l:i(z)], TziTzi (—d40)]2+d6)2+0)]2d52

But sign of [-Re(1)] A—ion. 1,1, 1S same as the sign of [Re(j—?z)}

Hence, the transversality condition can be obtained under (H, )

l:i(z)] s TziTzi :

limea»] > 0,

d (%)
Tr= Tzi

Thus, we can state the following theorem.

Theorem 5.4.1. For system (5.1), with 7| = 0 and assuming that (H)) holds, there exists a

positive number Ty, such that the equilibrium E* is locally asymptotically stable when T, < Ty,
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and unstable when v, > T,. Furthermore system (5.1) undergoes a Hopf-bifurcation at E*
when T, = Ty,.

Case (2): 71 > 0, 7 = 0. Then equation (5.12) becomes
A7 _}_6112 +eA+ez+ (6’412 +esA —l—€6)e*lf' =0,

where
et =by+bg, ex=by+b7, e3=b3+bg, es =1, es =N (bs+bg), es = N(bs+bo).
Again above characteristic equation can be written as

P(A, 1) +Q(A,7)e o =0, (5.17)

where
P(A, 7)) = A° +eiA? + ek +e3, Q(A,71) = eqA> +esA +es.

The necessary condition for a stability change of positive equilibrium E™ is that the charac-
teristic equation (5.17) has purely imaginary roots. It is also noted that P(A,7;) and Q(A, 7))
are delay-dependent terms as the positive equilibrium is function of delay. Therefore, it is a
little difficult to handle the characteristic equation with delay-dependent coefficients. The main
complication germinates during investigation of the existence of a purely imaginary root A = i®
of (5.17).

Here, we follow the technique developed by Berreta and Kuang [14]. Let 7; _ be the

max

maximum value of 7; for which the positive equilibrium E* exists. For 7, € [0, 1) we

max ] ?

assume the following:
¢ P<07T1)+Q<07T1) =e3+e6 7£0

e P(io, 7))+ Q(iw, 7)) = e3 + e + 0 (eg +e4) — i(@° — er — esw) # 0.

. esl? + esA + eg
= lim

=0<1.
A|—eo A3 +e1A2 + e +e3

lim
[A]|—o0

A'7’1'-1)
P(X,T])

e F(w,7)) =|P(iw,1))|*> —|Q(iw, 71)|? is a polynomial of degree 6. Therefore, it has finite
number of positive roots.

e Each positive root of F(w,7;) = 0 is continuous and differentiable in 7; whenever it

exists (by implicit function theorem).
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Let A(11) = &(11) +io(71) be an eigenvalue of the system. Then stability will switch for
Re(A) = 0. Therefore, we substitute A = i@ in (5.17) and separating the real and imaginary
parts, we obtain

(64(02 — 66) COS((DT]) —es50 SiIl((DT]) = —e »° +e3, (5.18)
escos(0T)) + (e40% — eg) sin(@71)) = ©° — e, 0, '
which gives
2 3
(e 0> — 0 — W’ —er®
sin(wr) = S 632) (e eg)z( 20) (5.19)
e20* + (eg — €4 ?)
2 2
o0 — e, 0 — w0 —
cos(0T]) = s 0 ©2 2 G eg)gel 63). (5.20)
e20* + (eg — e4®?)
Squaring and adding both the equations of (5.18), we get
how, 1) = 0)6+q10)4+q20)2+q3 =0, (5.21)

where
q1 = e] 2ey) — e4, g2 = e% — eg —2e1e3+2eqe6, q3 = e% — eé.

Thus, @ can be evaluated from equation (5.21) in terms of 7;. For each 7, equation (5.21)
has at most six real positive roots, which indicates that the roots can cross the imaginary axis at
most six times.

Now, we consider I = {7} : 7 > 0 and (1) is positive root of (5.21)}. So, if 7, € I,
then there is no positive solution of (5.21) and thus no stability changes occur (Chakraborty et
al.[26]).

Now, for any 1) € I, we define 6(7;) € (0,27) as the solution of (5.21). Then we can write

. 6‘5(0(6’1(0 —63)+(€4(02—e6)((03—62(0) _ ()
sin(0(11)) = 207+ (eg—er?)? = 0Go.n)E (5.22)
es(@° —er0) — (e40* —e6) (e @* —e3) Y
cos(8(m)) = 20 + (e — e402)? Qlio, 7))’ 62

where ¢ and y are continuous and differentiable functions of 7; such that ¢* 4 y? = |P(iw, 7)|*
and |Q(iw,7))|*> = |P(iw, 1 )|>. Substituting ® = ®(7;) in (5.22) and (5.23), 6(7;) € (0,27)
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can be determined as follows:

(

tan~ ' &, if sin(6(1,)) > 0, cos(6(1;)) > 0;
Z if sin(6(7;)) =1, cos(0(11)) =0;
0(71) =< w+tan! ;lf, if cos(0(71)) < 0;
iz if sin(@(1)) = —1, cos(0(11)) = 0;
[27+tan ' £, if sin(6(7)) <0

Here, we notice that for 7; € I, 6(1;) defined as above is continuous at 7;. Furthermore if

0(t) € (0,2m), 7y € I, then O(7)) is also differentiable at 7). Now from (5.19), (5.20) and

above, we have @(7;)7 = 0(7))+2n7, n € Ny. We can define the maps 71, (7)) = w(]m (6(7)+

2nr), n € Ny, 171 € I, where @(7y) is a positive root of h(®, 71) = 0.
Let us introduce the function S, : I — R given by

S, =1 —T1H(T1), T €1, ne Ny,

which are continuous and differentiable at 7. It can be noted that the values of 7 (€ 1), S,(71) =
0, n € Ny, consequently stability switches under the transversality condition. Transversality
condition is similar to Pathak et al. [166] and Chakraborty et al. [26]. Thus, we can now state
the following theorems.

Theorem 5.4.2. Let (7)) be the positive root of equation (5.17) for T € I and for some Ty, €
and n € Ny, Sy(t1,) = 0. Then a pair of simple conjugate pure imaginary root A+ (7y,) =
+io(t),) of (5.17) exists at T) = Ty, which crosses the imaginary axis from left to right if
0 (71,) > 0 and crosses the imaginary axis from right to left if o(71,) <0, where

)Li(o}

Theorem 5.4.3. Let Ay >0, A3 > 0 and A1Ay > A3. Further, let ®(7)) be a positive root
of (5.17) defined for t € I and for some T, € I and n € Ny, Sy(71,) = 0. Then the system
(5.1) exhibits a Hopf-bifurcation near the positive equilibrium E*, provided o (t,) # 0. As

o(n)= sign{diﬁRe(l)

Ty increases from zero to positive direction the system would be stable to unstable, and then

unstable back to stable. But this pattern would be repeated at most six times.

Case (3): 7 is fixed in the interval (0,7;,) and 7 > 0.
We consider equation (5.12) with 7 as fixed in its stable interval (0, 7;,) and 7, as a variable

parameter. Let i@(@ > 0) be a root of characteristic equation (5.12). Separating real and
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imaginary parts, we have

— b1@* + b3+ (—©° + bs)N cos(07) + ban wsin(@T;) = sin(OT) [bon sin(@T)
— bgn cos(@T)) — by®] +cos(®T;)[—bo7 cos(®T; ) — bgn @ sin(wT;) — (bs@* + bg)],
(5.24)

— &’ + by — (0% — bs)n sin(@1)) + byncos(wt)) = sin(®T2) [bg1n cos(®T| )
+ bgnwsin(@71)) + (—bs@* + bg)] + cos(®T ) [bon sin(@7T; ) — bgn @ cos(wT;) — b7 ).
(5.25)

Squaring and adding (5.24) and (5.25) to eliminate 7,, we obtain

f+E+R+ - —fe—f—fs+2(ifa+ fifa— fsfr — fofs) cos(wTy)

(5.26)
+2(f1fs — fofs — fof7 + f5/3) sin(wT;) = 0,

where
fi = =b10* +b3, fr=(—0*+bs)N, f5=bno, fs =—0+bo,
fs =bon, fo =bsnw, f1=—be®*+bg, fz =br0.
Equation (5.26) is a transcendental equation in complicated form. It is not easy to predict
about the nature of roots. Without going detailed analysis with (5.26) it is assumed that there

exist at least one positive root wy. Equation (5.24) and (5.25) can be re-written as
Aq Sin(a)()’tz) — By COS((D()TZ) = C], (5.27)

B Sin(a)()’tz) + A COS((D()TZ) =, (5.28)

where

A1 = bonsin(wyT1) — beN @ cos(wyT)) — by,

By = bon cos(wyT;) + bgn @y sin(woty) + (—be @ +bg),

C) = —b10] + b3+ (— @3 +bs)n cos(wyTy) +banaysin(ayT),

Co — @ + by — (— @G + bs)n sin(@yT1 ) + banaxycos(anT ).
Equation (5.27) and (5.28) leads to

1 {Alcz—Blcl} 2% 012, (5.29)

o
T, = ECOS AT B =
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Now we will verify the transversality condition of Hopf-bifurcation. Differentiating equation
(5.24) and (5.25) with respect to 7, and substitute 7, = Téo, we obtain

) ofi2] o
de =1 de 72:T£0

o[ )
dv =1 ="}

(5.30)

where

P =30, + by + (bs+ wyT) — bsT))n cos(wyTy) + (2 — byt) )My sin(@oTy) + (b7 +b6a)§r§0
— by, ) cos(@yTy,) + (2bs — b7y )y sin(wy Ty, ) + beM cos(wy (T + Ty, )) — bon (T1 + 73,
cos( (1 + 75,)) — beN o (71 + Ty ) sin( (71 + 15,)),

Q = —2b1y — (2 — b1 )Ny cos(@yT1) + (by + @ T — bsTy)N sin(ayTi) + (2bs — b7 75,
wo cos(yTs, ) + (b7 + be ) Ty, — bg T, ) sin(@y ) — bon (T + 75, ) sin( @y (T + 73,))

+ benao(T1 + 73, ) cos(@o(T1 + 3, ) +ben sin(wo(T1 + 13,)),

R = (bg — bewg ) wy sin(wyh, ) — by @ cos(@Th, ) + bon @y sin(wy (71 + 75,))
— benag cos(ay (T +1,)),

S = (bg — bewg )y cos(@yTy, ) + by g sin( @y, ) — bon wocos(awy(T) +1,))
+ ben oy sin(wy(T1 4 75,)).-

Solving equation (5.30) for [d({:;& )} o_q - itis obtained
g
{d(Re),)}  PR—0S
do =1 . A=109 P2+ Q2

(Hy) : PR— QS #0.

Theorem 5.4.4. For system (5.1), with 7y € (0,71,) and assuming that (H,) holds, there exists
a positive number Téo such that E* is locally asymptotically stable when 7, < Téo and unstable
when 7, > ’L'éo. Furthermore, system (5.1) undergoes a Hopf-bifurcation at E* where T, = ’L'éo.

Case (4): 1, fixed in the interval (0,7,) and 7; > 0.

The characteristic equation of the system (5.1) at E*(x*,y*,z") is

Pi(A, 1)+ Q1(A,7) =0, (5.31)
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where
Pi(A,71) = A3+ 1A% +byd + by + (bA? + byA + bg)e *7,
01(A,11) = [12 + bgA +bs + (beA —i—bg)e*lﬁ]n.
Here, we notice that P; (A, 71) and Q; (A4, 71) are delay dependent as the interior equilibrium
components x* and y* having delay term. Similar to Case (2), let 7j,, be the maximum value of

7; for which the interior equilibrium E* exists. For 7; € [0, 71, ], we assume
e P1(0,71)+Q1(0,7) = b3 +bg + (bs +by)n #0.

o P(io, 7)) + 01(iw, 1) = —(by + N)®* + bsn + b3 + (—bs* + bon + bg) cos(®T,) +
(b7 +bgn)@sin(@T) — i(—®> +byN @+ by — (bg®? +bgN @ + bg) sin( 0T, ) + (b7 +
bon)cos(@w1y)) # 0.

Q] (2'77])

=0<1.
Pi(A,m)

lim
[A]—o0

F'(0,7) = |Pi(i0,11)]* = |01 (i0,7)[* = pol(®) +T,

where pol(w) is a polynomial of degree 6 in @ and T is a trigonometric function. There-

fore, it has finite number of positive roots.

e Each positive root of F/(w, 7)) = 0 is continuous and differentiable in 7; whenever it

exists (by implicit function theorem).

Let A(71) = &(71) +iw(1)) be an eigenvalue of the system. It change the stability when
Re(A) = 0. Therefore, we substitute A = i® in (5.31) and separating the real and imaginary
parts, we obtain

Ajsin(wT)) — Bycos(wT)) = Dy, (5.32)

B> SiH((DT]) + A, COS((DT]) =D, (5.33)

where

Ay = byn sin(0Ty) — bgn@cos(OT) —bsN @,

B, = b1 cos(@T) + bgnwsin(w1,) — (—®? + bs)7,

Dy = —b1@* + b3+ (—be®? + bg) cos(®T2) + b7 wsin(w1T),
Dy = —@* + by — (—bg@?* + bg) sin(®71,) + by cos(07T3),

which gives
AxD1 +BoDs

2 Rp2
A5+ B3

AxD> — BoD;

sin(wt) =
(0n) A2+ B2

, cos(@T)) =
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Squaring and adding equations (5.32) and (5.33), we get
A3+Bi-D}—D3=0. (5.34)

Thus, @ can be evaluated from equation (5.34) in terms of 7;. For each 71, equation (5.34) has
at most six real positive roots, which indicates that the roots can cross the imaginary axis at
most six times.

Further analysis can be carried out as in Case (2).

5.5 Direction and Stability of Hopf-bifurcation

In previous section, we have obtained the condition under which the system undergoes Hopf-
bifurcation for the different combinations of the delay 7; and 7,. In this section we will deter-
mine the direction, stability and period of the bifurcated periodic solutions at 7| = T o using
center manifold theorem and normal form theory following the concept of Hassard et al. [80].

Without loss of generality, we assume that 7, < 7j , where 7, € (0,7y,). Let

x1 (1) = x(1) =x", y1(0) = y(1) =", 21 () = 2(1) = 2,

and still denote x;(t),y1(¢),z1(¢) by x(¢),y(¢),z(t). Let 7 = 7j + i, U € R so that Hopf-
bifurcation occurs at 4 = 0. We normalize the delay with scaling ¢ — (Ti]), then system (5.1)

can be re-written as

*

U@ =a(PU@)+RU(1- %) +QU(— 1)+ (3,9)), (5.35)

where U (t) = (x(¢),y(t),z(t))"

P = 0 as s QI: n 0 0f, R = 0 0 0f, f’(x,y,z): le
0 0 —as 0 00 c1pz’ as ag 1
The nonlinear term f{, f; and f; are given by

fi==px(t)y(1),
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2s 20az” 20by* oy(t)z(t)
/ 2 2 2
=2 (1) + 1)+ 1) —
I S e T L (D TR~ S (EeT D (e
60a’z" 3 6ab?y* 3 2aa 5
— t)— t)+ t)z(t
(o re) O Trani+b Ot Trayyaeee? O
2otb >
+ N2 () + ...,
(rayabe
2cr0azt ’L’ 2coaby* ) T
53 12 (1) - (L+@)(1+bﬂy ) (tay)(A+br 3N

e
*
2

+(I—Fay gzle—kbz ( ; Z< )

20a

6cr b’y 3 (t T, )
Z —_——
(14 ay*)(14bz")* T

*

6cr0ta’z T
+(1+ay)(1+bz ( 1>
2ab T
— t—
s iR

(1+ay*)3

T
270
T1 T1

2 G)( %)
t——=)zlt——=
1+bz)y< 7/ VT

5.

The linearization of equation (5.35) around the origin is given by

Ut)=

For (Z) = (¢1a¢23¢3)T S C([_I’O]’R3)a define

Ly(9)=

(71 +1)(P'9(0)+R¢(~

T (PU@t)+RU(t - 2&+QU@—U)

(2 ,
)+ 0o(-1).

By the Riesz representation theorem, there exists a 3 x 3 matrix {(0,u), (—1 < 6 < 0) whose

element are of bounded variation function such that

Li(0)= [ at(0.0)0(6) for g <C((-1,0L).

In fact, we can obtain

)

(71, +1)(
(71, + )R+ Q'),
(710

0

)0,

Y

P/_'_R/_'_Q/)’

(5.36)

if =0
ifge[—2,0)
ifge(-1,-2)

if 0 =—
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Then equation (5.36) is satisfied.
For ¢ € C'([—1,0],R?), define the operator A(1t) as

Awo(@) = { 41 roel=ho
S 1dg(E, )9 (E), if6=0,

and
0, if 6 € [—1,0)
R(1)9(6) = ,
I (1,9), if6=0,
where
hy
hl(.ua(l)) = (T{O —|—[.L) hlz ’ (l) = (¢1a¢2a¢3)T S C([—I,O],R3),
H
Hy = —px(0)y(0) ,
, 25 , 20az” ) 20by* 5 ay(0)z(0)
R (R (e M A (R TR A (R (R
6oa’z" 3 6ab?y* 3 20a 5
- 0) - 0 0)z(0
a6y O T et Ot e pa e 0
20b 5
+ (14+ay*)3(1 +bz*)3y(0)z 0)+-..
2co0az" T, 2c,aby” T
By = —28,2(0) — 2(_n2) _ 2T
3 12(0) (1 t+ay 31 +bz7) ( ’L']) 1+ay)(1+bz p3° ( ’L'])

n o y(_f_§‘>2<_f_§‘)+ 6¢r0b?y* z3<—f—§>
(I+ay )2 (1+bz )"\ n/  (L4+ay)(1+bzr)* T

n 6cr0ta’z 3< T ) 20a ) ( T ) ( T )
—_— j— —_— Z —_—
() (10e)” \n) (ayPI+b? o/ g
2ab TE‘) 2( TE‘)
(1+ay*)2(1+b2*)3y< EYARNEE AR

Then system (5.1) is equivalent to the following operator equation

U, =A(W)U; +R(1)U;

where U, =U(t+0) for 6 € [-1,0].
For y € C!([0,1], (R*)*), define

_dy(si) if s
A*II/(S]) — . dsy f 1€ (0’1])
f,] W(_é)dC<5a0)a if sy :0,
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and a bilinear form
0 6
(W(s1).9(8)) = W0)0(0) — [ [ W(E—)dL(8)9(E)dE

where {(0) = {(6,0), A=A(0) and A" are adjoint operators. From the discussion in previous
section, we know that iia)of{o are the eigenvalues of A(0) and therefore they are also eigenval-
ues of A*. It is not difficult to verify that the vectors ¢(0) = (1, a1, )Teiwofioe (6 € [—1,0])
and ¢*(s1) = 5(1, oc]*,ﬁ]*)eiwofios' (s1 € [0,1]) are the eigenvectors of A(0) and A* correspond-
ing to the eigenvalue iay 7] and —ieT;, respectively, where

(q"(s1),4(0)) =1, {g"(s1),9(6)) = 1,

* *
—iwy T . « 7’.(‘)0?1’2_ 7iw0<flo+?2_>
o Ne o + a3 B (iog —ay)c1pz’e o +ayme lo
1 = . ) 1= s P
o= o iy g
(img — az) (za)o+a5 —age ‘0> — azase lo
,L.*
* 71.(00?2_ * (s
o — r+Biase lo B — px*(ioy + ay) + azr
1 — . ) 1 — ] * ] o
—ip —az —iag - —iey -

(img+ a2) (ia)o—a5+a6e T'0> —azage lo
5 1 s s B i, -
D= {1 + a0y +Pif + 1, (=m+o5n)e Bl +[31*T72(clpz* + oas + Prag)e lo )} )
Lo
Following the algorithms explained in Hassard er al. [80] and using a computation process
similar to thatin Song and Wei [195], which is used to obtain the properties of Hopf-bifurcation,
we obtain

/

§20=——=" {Pﬁl +06TE0‘12+0‘0‘1*061 Bi+Bi 8157 —BicipPre ¥ N% —Bicroan Pre 2’(‘“2},

D
/

U . . _ _
g1 = _% {pﬁl +pBi+aaia B +aa Biog —Bicip(Bi+Bi)— B cao(ay By +71[31)} ;

27:], - 5 ) R — — h sk — o h &
g =—"-=" {Pﬁl +oc1*E0612+06061*061 Bi+B; 8181 —BjcipBie® ™™ — By croic B 62’%4 :
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~ 2% [ o)+ Lowo om -
§21=——=5 |P ()+ 5P W20 0)+5 PWzo()ﬁ1+Pﬁ1W11()+o‘1 oWy, (0)
— 1 1— _
+ Wy (0) ) + oo { oW, (0) + S@W,G (0) + S BiWS (0)+ Byw,T (0) — adaf
— = - — (2
—2aaa By —2boy B1B1 — ba ﬁ]z} —i—ﬁ]*a] {2[31W1(]3)(0) —i—ﬁ]Wz(O ( )} ﬁ] c1p{W](3)< le )
Lo
1 T4 . ¥ 1— T4 . * T . #
71(001:2 B _ Y ity | = Y i0yTy My _ Y —iayT,
3% ( ’L'{O)e +2ﬁ]W20 ( ’L'{O)e B, ( ’L'{O)e }
_ GV _ BN g L) (B o L5 @ (2 s
ﬁ] CQ(X{(X]W] ( T{())e 2 +2(X]W2 ( Tl,())e 2—}—2[31W20 ( T{())e 2
T4 . * — — . X
+ B (- ,72)67’(0”2 — (aai By +2a0, a1 +2bB1 Broy + bBiay)e " NT }} :
Lo
where
Wao(6) = wf? ¢(0)¢™o® + 35;)0?/ g(0)e "®M0% 4 £y &P

7

E| = (E](]), (2 ) EP )) & andE —( EV, 2( ) EP ))T € R? are constant vectors, computed

as:
. —2ioT] . —1
2imy —ay +ne 0 —r px
iy, .
E; =2 —ne "™ 2iwy — an —a3
—c1pzie Hmn —age ANG Diay +as — age 2T
pBi
2
%(X] + ooy By ,
S I
8187 —cipBie N — cro0 Bre HNT
R ] _
—a+n —r  px 3P (B1+pBi)
_ = 1y (A a
Ey=2] -n —a;  —as o0+ yo(aifr +oupr)
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Consequently, g;; can be expressed by the parameters and delays 7| o and 7,. Thus, these stan-

dard results can be computed as:

C1 (0) =

ol 1, Rle0)
27 Re(A'(11,))’

l 2
) _
2T, <g20811 lg11] 3

Im(c1(0)) + palm(A' (7))

=2Re(c1(0)), Th=-—
B2 (c1(0)), T o,
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These expressions give a description of the bifurcating periodic solution in the center manifold
of system (5.1) at critical values 7; = 7|, which can be stated in the form of following theorem:

Theorem 5.5.1. e Ifuy, > 0(< 0), then the Hopf-bifurcation is supercritical (subcritical).
e IfB > 0(< 0), then the bifurcated periodic solutions are unstable (stable).

e IfT, > 0(< 0), then the period increases (decreases) .

5.6 Numerical Simulation
In this section, we will present some numerical simulations to verify our theoretical findings,

obtained in previous section using MATLAB 2018b.

5.6.1 Non-delayed system

For the model (5.2), parameters are chosen as follows:

r=3,K=100,5=4,d=07, p=057, a =13,
a=0.03, b=0.04, c; = 0.67, c» = 0.84, & = 1.8, & = 0.025,

(5.37)

with initial conditions x(0) = y(0) = z(0) = 1.

For the above set of parameters, there exists a positive equilibrium point £*(0.846,1.8755,5.1766).
It is also noted that the condition in Theorem 5.3.4 is satisfied for the set of parameters chosen
in (5.37). So, the system (5.2) is asymptotically stable around the positive equilibrium, which is
shown in Fig. 5.1. This figure shows that density of populations fluctuate for some finite time
and then settle down to their respective equilibrium levels. Now, if we increase the value of
parameter a keeping value of other parameters same as in (5.37), then the time of fluctuations
also increases and the system (5.2) undergoes a Hopf-bifurcation at a critical value of parame-
ter a =a” = 0.0616. The system (5.2) becomes unstable for further increment in the value of
parameter a. In Fig. 5.2 we have drown time series evolution and phase portrait of species at
a = 0.07. This figure depicts that the system (5.2) is unstable for a = 0.07 > a* = 0.0616 and

periodic solution exists.
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Fig. 5.1: Local asymptotic stablility of system for the set of parameters chosen in (5.37)
(a) Time series evolution of x, y and z, (b) phase portrait.
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Fig. 5.2: E* is unstable when a = 0.07 > a* (a-c) Time series evolution of species, (d)
existence of periodic solution.

Similarly the system (5.2) shows Hopf-bifurcation on decreasing the value of parameter b =
b* =0.0029185. Therefore the positive equilibrium point E* is locally asymptotically stable for
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b > 0.0029185 (shown in Fig. 5.1) and unstable for b < 0.0029185. Fig. 5.3 depicts that the
positive equilibrium point is unstable at b = 0.002 < b*.

Fig. 5.4 is bifurcation diagrams of the system (5.2) with respect to parameter a, which
make us more clear that the stable interior equilibrium point bifurcates into a stable limit cycle
and unstable interior equilibrium point on increasing the parameter a. The region of stability
and instability for the set of parameters (5.37) with respect to parameters a and b has been
drawn in Fig. 5.5. For each value of parameter b there is a critical value of parameter a, where
Hopf-bifurcation occurs in the system.

(a) (b)
3.5 T T T T T T T T T 8 T T T T T

25

(©) (d) Limit cycle

Fig. 5.3: E* is unstable when b = 0.002 < b* (a-c) Time series evolution of species, (d)
existence of periodic solution.

We have analyzed the sensitivity of parameter & and s with respect to each other. It is
observed that the parameter s may have multiple bifurcation point (switching of stability more
than one time) in different range of o, which is shown in Table 5.2. From the table it can be
noted that if & € (0,0.886), then the system (5.2) is stable for all s > 0 i.e. there is no bifurcation
point where stability of the system switches. If o € (0.886,1.835), system change the stability
once with respect to the parameter s. The bifurcation diagram at @ = 1.5, considering s as
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the bifurcation parameter is depicted in Fig. 5.6 that demonstrates the above phenomenon.
The stability of the system (5.2) switches twice with respect to s when a € (1.835,4). For
o = 2.6, bifurcation diagram is presented in Fig. 5.7. From the figure it can be observed that
for ¢ = 2.6 € (1.835,4) stability of the system switches twice. Initially at s = 0, the system is
stable around its positive equilibrium point. Now, if we increase the value of parameter s then
it is observed that the system losses its stability at a certain value of s and becomes unstable.
Again if we increase the value of s then it gets the stability back and remains stable for further

increment in parameter s. (see Fig. 5.7).

Table 5.2: Multiplicity of stability switching of system (5.2) with respect to parameter
s in different range of ¢, when ¢, = 0.35 and rest of parameters have same value as in

(5.37).

Range of o multiplicity of Nature of positive equilib-
stability switch-  rium point at s = 0
ing

(0, 0.886) 0 stable

(0.886, 1.835) 1 unstable

(1.835, 4) 2 stable

i /
/
I/ > / N
| /

N

a

006 007 008 009 01

Fig. 5.4: Bifurcation diagram of x, y and z with respect to parameter a. Other parametric

values are same as in (5.37).
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Fig. 5.5: Stability and instability regions of model (5.2) for the set of values of parame-
ters in (5.37) with respect to parameters a and b.

10 12 14 16 18 o 2 4
s s s

Fig. 5.6: Stability of the system (5.2) switches only once with respect to parameter s
when o0 = 1.5.

5.6.2 Delayed system

In order to validate the analytical predictions derived for delayed system, the values of param-
eters are chosen as follows:

r=3 K=100,s=4,d=07,p=03, a=1.3,

a=0.03, b=0.04, c; =0.67, ¢ =0.1, 6y = 1.8, & =0.25,

(5.38)



Chapter 5. Dynamics of Prey-predator Model with Stage Structure in Prey Including

138 Maturation and Gestation Delays

Case-1: When 71 =0 and 1 > 0, then the positive equilibrium point E* is given by E*(11.8818,24.0078,7.8722).
Taking i = 0 in equation (5.16), our computer simulation gives

o) =2.2763, Ty, = 0.1229,

(@) (b) (©
70 120

s s s

Fig. 5.7: Stability of the system (5.2) switches twice with respect to parameter s when
a = 2.6 and rest of parameters are same as in (5.37).

and the transversality condition is also satisfied. Hence from the Theorem 5.4.1, it follows
that the system (5.1) undergoes a Hopf-bifurcation at 7, = 7,,. Therefore the system is locally
asymptotically stable around the positive equilibrium E* when 7, < 7, and unstable when
T, > T,. The time series evolution and phase portrait of system (5.1) is shown in Fig. 5.8 for
7 =0.05(< ’L'zo), which confirms the system is stable when 7, < 7»,,. In Fig. 5.9, the time series
solution and phase portrait trajectory have been drawn for 7, = 0.15(> 1,). The figure shows
instability of the system when 7, > 1.

Table 5.3: Effect of gestation delay 1, on critical value of parameters a and b. Other
values are as in (5.37).

(%) a* b*

0 0.0616 0.0029185
0.01 0.0498 0.0182
0.02 0.03912 0.0302
0.03 0.0286 0.04107
0.04 0.01877 0.0509
0.05 0.0089 0.05968
0.0596 0 0.0676

In the Table 5.3, we have studied that how the gestation delay 7, change the critical value

of parameters a and b where system undergoes Hopf-bifurcation. Here it is remarkable that as
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T increases, value of a* decreases while value of b* increases.

(a) 7,=0.05 < 0.1229, =,=0
- 2 1 (b)

“35 40

Fig. 5.8: £ is stable when 7, = 0.05 < 1y, (a) Time series evolution of x, y and z, (b)
phase portrait.

(a) 7,= 015> 0.1229, 7,= 0 o
100 z (b) Limit cycle
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Fig. 5.9: E* is unstable when 7, = 0.15 > 1, (a) Time series evolution of x, y and z, (b)
existence of stable periodic solution.

Case-II: When 7; > 0 and 7, = 0, then interior equilibrium is delay dependent and transver-
sality condition is satisfied, so the system will show the Hopf-bifurcation with respect to 7;.
Through some computation we get 71, = 0.8216.

According to Theorem 5.4.3, we can see that the system (5.1) is locally asymptotically
stable around E* when 71 = 0.5 < 7y,, which is shown in Fig. 5.10. The interior equilibrium
E* loses its stability and system undergoes a Hopf-bifurcation as the value of 7, passes through
71, The instability behavior of E* for 71 = 1.5(> 7y,) is shown in Fig. 5.11. It is noted that that
if we further increase the value of 77, then at 7; = 1.9083, the system again change the stability
behavior. Fig. 5.12 shows the system is stable at 7) =2.7 > 1.9083. Further the behavior of the
system switches at 71 = 3.8377, 5.0067 and 6.4309. The switching of stability at above values
of parameter 7; can be seen in the bifurcation diagram, presented in Fig. 5.13. From the figure,

it is clear that the stability is switching less than six times, as followed by theory presented.
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(a) 7,= 0.5 C (0,0.8216), ,= 0 ®
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Fig. 5.10: E* is stable when 7; = 0.5 € (0,0.8216) and 7, = 0 (a) Time series evolution
of x, y and z, (b) phase portrait.

(a) 7,= 1.5 € (0.8216,1.9083), 7,= 0 ®
50 T T T T T T T T T

Fig. 5.11: E” is unstable when 71 = 1.5 € (0.8216,1.9083) and 7 = 0 (a) Time series
evolution of x, y and z, (b) phase portrait.

Case-III: When 7; € (0,7),) and 7» > 0. Let 7/ = 0.4 € (0,0.8216) and choosing 7, as a
parameter. In such a case, the positive equilibrium point E*(x*,y*,z") is given by

x"=11.6118, y* =19.7958, 7" =7.1569.

Transversality condition is also satisfied so Hopf-bifurcation occurs in the system with respect
to 7p. Taking j = 0 in equation (5.29), a little computation yields

o = 1.8931, 7§, = 0.2651.
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(a) 7,= 2.7 € (1.9083,3.8377), 7,= 0

Immature Prey
Mature Prey 16
38 Predator 1

(b)

Fig. 5.12: E* is stable when 7; = 2.7 € (1.9083,3.8377) and 7, = 0 (a) Time series
evolution of x, y and z, (b) phase portrait.

(a (b) (©
4 14

Fig. 5.13: Bifurcation diagram of x, y and z with respect to 7; when 1, = 0. Stability of
the system (5.1) switches five times.

For 1, € (0, ’L’éo), the system is locally asymptotically stable but as 7, crosses the critical
value ’L’éo the system undergoes a Hopf-bifurcation and system becomes unstable. The stability
and instability behavior of the system is depicted in Fig. 5.14 and 5.15 for 7, = 0.22(< ’L'éo)
and 0.3(> ’L’éo), respectively. Fig. 5.16 is the bifurcation diagram with respect to bifurcation
parameter 7. It can be seen from this figure that the system (5.1) changes its stability nature
around the positive equilibrium point E* at 7, = ’L'éo =0.2651.
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(a) 7,= 0.22 < 0.2651, 7,= 0.4
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Fig. 5.14: E* is stable when 7, = 0.22 < 7; and 7y = 0.4 is fixed (a) Time series evolu-
tion of x, y and z, (b) phase portrait.
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Fig. 5.15: E* is unstable when 7> = 0.3 > 7 and 71 = 0.4 is fixed (a) Time series evolu-
tion of x, y and z, (b) existence of periodic solution.
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Fig. 5.16: Bifurcation diagram of x, y and z with respect to 7, when 7} = 0.4 is fixed.
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(a) 7,=0.65 ¢ (0,0.7512), 7,= 0.025 (b)

o

—30 o

25
t

Fig. 5.17: E* is stable when 7; = 0.65 € (0,0.7512) and 7, = 0.025 (a) Time series
evolution of x, y and z, (b) phase portrait.

Case-IV: When 1, € (0,7,) and 71 > 0. Let 7; = 0.025 € (0,0.1229) and assuming T
as a parameter, we obtain ’L'{ 0= 0.7512, T](z) = 2.64 and ’51(3) = 3.4307 as critical values of 1
where stability of the system (5.1) switches. The system is stable for 7, € (0, 7;,) U (’L'](z), ’51(3))
and unstable for 7 € (1, T](z)) U (71(3),00). Stability behavior of system (5.1) is presented in
Figs. 5.17,5.18,5.19 and 5.20 for different values of 7| picked up from each of above intervals.
Bifurcation diagram (Fig. 5.21) makes sure that stability of the system is switching three times.
The figure shows that at 71 = O the system is stable around the positive equilibrium and it
becomes unstable at 7; = 0.7512 and we obtain periodic solution. The system obtains stability
on increasing the value of 7; beyond 2.64. It remains stable till 7, = 3.4307 and thereafter
becomes unstable for further increment in 7;. By the algorithm derived in section 5.5, we can
obtain

c1(0) = —0.01179+0.001618i, pu, =0.1649, B, = —0.02358, 7> = 0.01859.

Since u, > 0, the Hopf-bifurcation is supercritical. B, < 0 implies that the bifurcated periodic

solution is stable. 7, > 0 shows that the period of bifurcated periodic solution increases.
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(a) 7,= 0.82 C (0.7512,2.64), 7,= 0.025

(b)
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Fig. 5.18: E* is unstable when 7; = 0.82 € (0.7512,2.64) and 7, = 0.025 (a) Time series
evolution of x, y and z, (b) Existence of stble limit cycle.

(a) 7,= 3.1 € (2.64,3.4307), 7= 0.025
1 2
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Fig. 5.19: E” is stable when 7; = 3.1 € (2.64,3.4307) and 7, = 0.025 (a) Time series
evolution of x, y and z, (b) phase portrait.

5.7 Conclusion

In this chapter, a three dimensional mathematical model is proposed and analyzed to understand
the dynamical complexity of prey-predator interaction including stage structure in prey popu-
lation. The mature prey grows logistically and consumed by predator with Crowley-Martin
functional response. The growth rate of immature prey population is proportional to the num-
ber of existing mature prey. It is consumed by the predator with linear mass action principle.
It is assumed that the immature prey joins mature prey class after a certain time lag (matu-
ration delay) 7; with mortality rate d. As the reproduction of predator after consuming prey
is not instantaneous process. There is some time required, known as gestation delay. So, for
more realistic situations, we have considered the gestation delay for predator population in our

model. First we discussed the positivity, boundedness and persistence of the solution for the
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non-delayed model (5.2). The system is confined within a compact set £ in the non-negative
octant, which represents a natural restrictions to growth as a consequence of limited resources.
The model is persistence if intrinsic growth rate of prey population is greater than a threshold
value whilst death rate of predator population is less than a threshold value. The local and
global behavior of the system around its interior equilibrium point is also investigated. Further,
we have studied the Hopf-bifurcation with respect to different parameters. The multiplicity of
stability switching for the different range of parameter o with respect to parameter s is obtained
in the Table 5.2 and illustrated by Figs. 5.6 and 5.7.

(a) 7,= 4> 3.4307, 7,= 0.025 ®
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Fig. 5.20: E" is stable when 7; = 4 > 3.4307 and 7, = 0.025 (a) Time series evolution of
x, y and z, (b) phase portrait (existence of stable limit cycle).

(©)

Fig. 5.21: Bifurcation diagram of x, y and z with respect to parameter 7y when 7, =
0.025 is fixed.

In order to analyze the dynamical behavior of delayed system (5.1), we discussed Hopf-
bifurcation via local stability taking delay as a bifurcation parameter. We have shown the
existence of Hopf-bifurcation for possible combinations of both the delays. Case (1): 7, =
0, 7o >0, Case (2): 11 >0, 7p =0, Case (3): 1 is fixed in its stable interval and 7, as bifurcation
parameter, Case (4): 7 is fixed in its stable interval and 7; as bifurcation parameter.
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In each of above cases we note that when time delay increases, oscillations in species in-
creases and beyond a critical value of delay system becomes unstable and periodic solution
occurs in the system. This proves that the time delay can cause a stable system to become
unstable. Here one notable result is that for Case (2) and Case (4) (when 7; as a bifurcation
parameter) system becomes unstable as delay crosses a threshold value of 7;. But if we fur-
ther increase the value of 7; then system changes the stability again and becomes stable. In
other words stability of the system switches more than once. According to our theoretical anal-
ysis, the stability can switch at most six times, which is followed by the system. Hence the
time delay can cause a stable equilibrium to become unstable and even a switching of stability.
The direction and stability of Hopf-bifurcation also have been investigated using normal form
method and center manifold theorem. For the set of values of parameters chosen in (5.38), our
numerical experiments show that the Hopf-bifurcation is supercritical, the bifurcated periodic
solution is stable and its period increases.

Our numerical simulation and graphical illustration is based on some biologically feasible
data to validate the analytical findings. Switching of stability with respect to delay 7; can be
seen in the bifurcation diagrams 5.13 and 5.21. We hope that this chapter will help to under-
stand the dynamics of prey-predator system with stage structure in prey population including
maturation delay and gestation delay.



