147

Chapter 6

Dynamics of Prey-predator Model with Strong and

Weak Allee Effect in the Prey with Gestation Delay
1

6.1 Introduction

Prey-predator relationship is a very dominant phenomenon that occurs in nature. It has been an
issue of attention among ecologists and biologists since last few decades. First model on prey-
predator interaction is formulated and proposed by Lotka and Volterra. It contains a pair of first-
order, nonlinear differential equations frequently used to describe the dynamics of biological
systems in which two species interact. After that several attempts have been made to generalize
and extend these equations.

A general two dimensional model of interaction between prey and predator is represented
by
% = xf(x) —yg(x,y), % = y(=d+cg(x,y)),
where x and y denote prey and predator densities at time 7, respectively. f(x) is per capita
growth rate of prey. g(x,y) and cg(x,y) are functional and numerical response of predator for
prey, where ¢ (0 < ¢ < 1) stands for conversion coefficient denoting the number of newly born
predators for each captured prey. d is mortality rate of predator population.

One vital factor of the prey-predator interaction is the intake rate of prey by a predator i.e.
functional response. It helps to predict about a prey-predator dynamics with more accuracy.
There are many types of functional response: Holling type I-III, Ratio dependent, Beddington-
DeAngelis, Crowley-Martin, Hassel-Verley. Holling type I-III functional responses are prey de-
pendent whereas Beddington-DeAngelis, Crowley-Martin, Hassel-Verley are prey and predator

dependent i.e. functional response is function of both the prey and predator’s density.

I'A considerable part of this chapter is published in Nonlinear Analysis: Modelling and Control, 25(3), 417-
442, 2020.
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Crowley-Martin [38] assumed that predation will decrease when the predator density is
high due to interference among predators. Some investigations have been conducted on prey-
predator model including Crowley-Martin functional response [38, 210, 136]. This type of

response function is written as:

ax
14 ax)(1+4by)’

n(x,y) = (

where a,a and b are positive parameters denoting attack rate, handling time and magnitude of
interference among predators, respectively.

The effect of intraspecific interference among predators has been investigated in prey-
predator model with Holling type II functional response in [241, 205], with Holling type III
functional response in [69], with Beddington-De Angelis type functional response in [159, 117].
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Fig. 6.1: Plot of per capita growth rate as a function of population size.

Allee effect plays a major role in the structure of population. It creates the possibilities of
extinction of species [185, 241] and has a huge impact in population dynamics [4]. The Allee
effect can be classified into two types on the basis of per capita growth rate at low density. These
are known as strong Allee effect and weak Allee effect. Strong Allee effect have negative per
capita growth rate at low population level and implies the existence of a threshold level of
population so that the species become extinct below this level. Recently, Verma and Misra
[216] have studied the impact of a constant prey refuge on the dynamics of a ratio-dependent
predator-prey system with strong Allee effect in prey growth. They found that if prey refuge
is less than the Allee threshold, the incorporation of prey refuge increases the threshold value
of the predation rate and conversion efficiency at which unconditional extinction occurs. They
also vindicated that the species can be protected by creating safe zones in accordance with the
Allee threshold. On the other hand in weak Allee effect, the per capita growth rate decreases but
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remains positive at low population level. Sexual selection [18, 147], reduced mating efficiency
[47] and alleviated foraging efficiency [17] are some other reasons to give rise to Allee effect.
Figure 6.1 makes us more clear that initially, the per capita growth rate is negative in strong
Allee effect (blue) while it remains positive in weak Allee effect (brown).

The Allee effects are observed in many natural species. For example, in plants [62, 72],
insects [112], marine invertebrates [198], in birds and mammals [33]. Recently, many ecolo-
gists have paid attention to the Allee effect [30, 59, 63, 152, 160, 185, 200, 240]. Some crucial
results have been investigated in [25, 241] via a comparative analysis of prey-predator system
with and without Allee effect. Some studies have been conducted on strong Allee effect on
prey-predator model [69, 159, 160]. Weak Allee effect has been well studied by ecologists [63,
182, 186]. Some researchers have found the natural evidence of weak Allee effect by experi-
mental work on flour beetles of the genus Tribolium [4, 103, 211]. They have shown that the
per capita growth of beetles reaches its maximum at a medium density and the rate is positive
at low density. Hopf-bifurcation is an important tool which helps to understand the behavior of
system. It gives us such a critical value of a parameter that the stability behavior of system is
contrasty in both the sides of the critical value [63, 117]. Hopf-bifurcation analysis with Allee
effect has been carried out in [20, 63, 161, 159].

Time delay occurs in every biological movement. A delay differential equation shows much
more complicated behavior than an ordinary differential equation. Delay is capable to change
the stability behavior of any system. Due to time lag in conversion of prey population to
predator population (gestation delay), dynamics of system changes. The prey-predator pop-
ulation model with gestation delay [144, 27, 92, 20, 210, 136, 121] has been studied. Some
authors [182, 186] have considered an eco-epidemiological model with weak Allee effect in
prey-predator population. They have concluded that chaotic dynamics can be controlled by the
Allee parameter. Further Biswal er al. [20] have applied gestation delay and observed that the
system exhibits chaotic oscillation due to increase of the delay.

Some studies have been conducted with Allee effect including gestation delay [20, 19, 161,
159]. Li et al. [117] investigated the stability and Hopf-bifurcation of a delayed density depen-
dent prey-predator system with Beddington-DeAngelis functional response. Pal and Mandal
[159] analyzed a modified delayed Leslie-Gower prey-predator model with strong Allee effect
and shown that delay is incapable to decrease the risk of extinction. A prey-predator model
with Crowley-Martin functional response including prey refuge has been considered by Maiti
et al. [136]. They also examined the effect of gestation delay on the dynamics of the system.

To the best knowledge of the authors, a comparative analysis between strong and weak
Allee effect in a prey-predator model with Crowley-Martin type functional response and ges-
tation delay has not been studied. The main motive of this chapter is to analyze the dynamical
complexity of Allee effect in the prey-predator model, studied by Tripathi et al. [210] and
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further to show the impact of gestation time delay on the dynamics of the system. Keeping all
these in mind, we reconstruct the model described by Tripathi er al. [210] by incorporating

strong and weak Allee effects. Then we introduce gestation delay in the predator population.

6.2 Model formulation

Tripathi et al. [210] have analyzed the dynamics of following density dependent non-linear

mathematical model

dx cy

—zx(l—x— ),

dt 1+ax+bry+cixy

Q: (—d—ey— Jx >7 ©.1)
dt I1+aix+bry+cixy

x(0) =x9 > 0, y(0)=yo > 0.

In this model prey population grows logistically and predator is survived only on the prey
population. They follow Crowley-Martin functional response to hunt the prey population.
rnK,a,a,b,8) and &) are positive constants representing intrinsic rate of prey, carrying ca-
pacity, capture rate, handling time, magnitude of interference among predators, natural death
rate of predators and crowding effect, respectively.

Now at low and sparse population, prey exhibits strong Allee effect. Let 6; be the Allee
parameter and f an auxiliary parameter which shapes the Allee function. The prey-predator

dynamics with strong Allee effect in prey population is governed by the following system:

d_x_rx<1_£><1_93+f>_ oy
dr K x+f (14+ax)(1+4by)’
dy coxy

ay _ S Sl (6.2)
i " Uvan(thy) 0o

x(0)=x0 > 0, y(0) =yo > 0.

On the other hand, the model with weak Allee effect is based on probability of successful
mating of prey population. It is incorporated into the population growth model by multiplying
the probability P(x) with birth term of prey population, where P(x) is the probability of suc-
cessful mating for a female prey during the reproductive period and should follow the bellow

criteria:
1 No mating occurs at zero population size, P(0)=0.
2 P'(x) > 0O i.e. if population size increases the probability of successful mating increases.

3 Mating is guaranteed when the population is sufficiently large, that is P(x) — 1 asx — oo.
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We consider the probability function as P(x) = g2, 6, > 0 (rectangular hyperbolic) [47, 182].

Thus the model (6.1) with weak Allee effect can be written as:

ﬁ—rx<1—£>< al )— o
dt K’\6,+x/ (1+ax)(1+by)’
dy _ coxy  Syy— 81y (6.3)

dt— (14ax)(1+by)
x(0)=x9 > 0, y(0)=yo > 0.

In real situation, the conversion of hunted prey into predators growth is not instantaneous
process rather, there occurs a time lag for gestation of predator biomass. Therefore, we assume
that the reproduction of predator population after hunting prey is arbitrated by a constant time
lag, called gestation delay. In order to get the rich dynamics of the system, we introduce
gestation delay 7, and 7,, in model (6.2) and (6.3) respectively. Then model (6.2) takes the form

I - _i B es+f _ oxy
Z_rx(l K><1 x+f> (1+ax)(1+by)’
dy cox(t — )y(t — %)

dar (I+ax(t— 1)) (1 +by(t — 15)) —50y—61y2,

(6.4)

subject to the non-negative condition x(§) = ¢;(&) >0, y({) = ¢ (£) > 0, £ € [—1,,0], where
¢i € C([-17,0] = Ry), i=1,2.
Similarly in the presence of gestation delay model (6.3) can be written as

dx X X B oxy
Z_rx<1 K><x+ew> (1+ax)(1+by)’ 65
dy cox(t — T)y(t — Tw) (6.5)

dr - (1+ax(t —1y)) (1 +Dby(t — 1)) —50y—51y2,

subject to the non-negative condition x(x) = ¢3(x) >0, y(x) = ¢1(x) >0, x € [T, 0], where
¢ € C([—74,0) = Ry), i=3,4.

6.3 Dynamics of non-delayed systems

In this section, we will study the dynamics of the model (6.2) and model (6.3).
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6.3.1 Positivity and boundedness of model system (6.2)

It is necessary to prove that the model is biologically well behaved before the detailed study.

From model system (6.2), we can write

x([) — x(O)e |:f6 {r<]7i[(s>> <)§c((bb>):refb ) B (l+ux($§ﬁlby(s)) }dsi|

Y

ax(s)

1(0) = (0)e L Lty ~&0-au o

Y

which shows that all solutions remain within the first quadrant of the xy plane starting from an
interior point.
In the following theorem, we show that all solutions of system (6.2) are bounded which

refers that the model is biologically well behaved.

Theorem 6.3.1. The set

1 2rK
Q:{(x,y):OngK, 0§x+;y§7}

is a positive invariant set for all the solutions initiating in the interior of the positive quadrant,
where 6 = min{r,8}.

Proof. From first equation of the model system (6.2)

dx X\ /x— 06 X
@ <= (Cp) =m-%)

AN

which yields

limsupx(r) < K.
f—$oo

Now suppose W (1) = x(t) + 1y(t).
Then we have
d 1d

dw  dx _y_x<1 x>_50

B e Zyv— V2 <2rK — 8W
dt dt+cdt ! K cy cy = ’

where 8 = min{r,d}.
Hence it follows that

) 2r
limsupW(r) < —.
1—vo0 6
We also note that ‘ii—vf <0if W > zg_{( Hence all solutions of the system (6.2) point towards Q.

Thus, Q is a positively invariant set and all the solutions of model (6.2) are bounded. U
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6.3.2 Local stability and Hopf-bifurcation

In this subsection, first we will find out all feasible equilibrium points of system (6.2) and
present all possibilities for interior equilibrium. Then a brief description on their local stability
has been done and lastly the analysis of Hopf-bifurcation through local stability of the positive

equilibrium has been carried out.

6.3.2.1 Existence of equilibrium points

The system (6.2) has following equilibrium points:
1 The trivial equilibrium point E((0,0).
2 The axial equilibrium points E;(6;,0) and E>(K,0).

3 The system (6.2) has a unique positive equilibrium point E*(x*,y") if the following con-

dition holds true:

8o

0, <

Remark 6.3.1. The number of positive equilibrium for the system (6.2) depends on values of

parameters, which we have chosen. Several possibilities are depicted in Figure 6.2.

6.3.2.2 Local stability analysis

To analyze the local stability behavior of the equilibria, whenever they exist, we compute the
Jacobian matrix for the model system (6.2) and further this matrix is calculated at each of

equilibria. Then using Routh-Hurwitz criteria, we get following results:
1 The equilibrium Point Ey(0,0) is always asymptotically stable.
2 The equilibrium Point Ej (6;,0) is unstable.

3 - E>(K,0) is locally asymptotic stable if caK < d(1 + aK).

- E»(K,0) is saddle point having stable manifold along the x—axis and unstable man-
ifold along the y—axis if caK > &y(1 +aK).
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Fig. 6.2: Four possible relative of the prey and predator zero growth isoclines. (a) Inte-
rior equilibrium does not exist for the parametric values 8, =5, & = 0.8 ,6; = 0.5. (b-¢)
Interior equilibrium exists uniquely for the values of parameters 8, = 5, 8§ =4 ,0; =2
and 0 =5, & = 0.8 ,8; = 1 respectively. (d) Two interior equilibria for parameter values
6, =5, 8 = 0.8 ,8; = 2. Rest of the parameters are same as that in (6.15).

In order to investigate the stability behavior of positive equilibrium, let M(E*) denotes the

variational matrix evaluated at E*

Al A

M(E*") =
(E) Axl Ax

Y
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_ X6 (K=x)(f+6) aax’y" S S
where A = =% 557 = Tt | ez AT T e (e

_ coy* o bcox*y* . ¥
AZ] - (1+ax*)2(1+by*)’ A22 - (1+ax*)(1+by*)2 61)’ .

Then the characteristic equation of M (E*) is given by

A2 +AA+A, =0, 6.7)

where A| = —tr(M(E*)) = —(A11 +Ax) and Ay =det(M(E")) = A11Axn — A12A2).
Using the Routh-Hurwitz criteria, both the eigenvalues of M (E*) have negative real part if
and only if A} > 0, A, > 0. Thus, we can state the following theorem.

Theorem 6.3.2. The system (6.2) is locally asymptotic stable around the interior equilibrium
E* ifand only if A; >0, Ay > 0.

Remark 6.3.2. It can be noted that if A1 <0, then A} > 0, Ay > 0. Consequently the interior

equilibrium E* is asymptotically stable.

In equation (6.7), if we assume A, < 0, then one eigenvalue is real and positive and other
eigenvalue is real and negative. Thus, the following theorem follows:

Theorem 6.3.3. If A, < 0, then the interior equilibrium E* is a saddle point.

Now, assume that A; < 0, and A, > 0. Then both the eigenvalues are real and positive or
both the eigenvalues are complex conjugate having positive real parts. Thus we can state the

following theorem.
Theorem 6.3.4. IfA; <0, and A; > 0, then the interior equilibrium E* is unstable.

Remark 6.3.3. We have seen that E is always stable equilibrium and interior equilibrium E*
is stable if A1 < 0. Hence, if A1y < 0 holds, then system (6.2) exhibits bi-stability. Bi-stability
is a phenomenon where the system can converge to different equilibrium in the same parametric

region based on the variation of initial condition.

6.3.2.3 Hopf-bifurcation analysis

Here auxiliary parameter f is an important parameter which shapes the Allee function. In this
subsection, we analyze how the dynamics of system (6.2) changes with respect to f by using
Hopf-bifurcation analysis.
Now, to show the existence of Hopf-bifurcation, we assume that A} =0, A > 0. This gives
f=f", where f* satisfies
rx* [x" =0y (K—x*)(f"+6) oaxy” bcox*y*

e _ - Sy =0
Klxrr  @+r)p (+ax 2(1+by) T (Trar)(1+by 2 O =
(6.8)
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and it leads us to the following theorem.

Theorem 6.3.5. Assume that f = f* and A, > 0. Then system (6.2) has Hopf-bifurcation near
the equilibrium point E*(x*,y") if following condition is satisfied.

(" = f)(K+65) +2x"f* #0.

Proof. At f = f*, we have tr(M(E*)) =0 and det(M(E")) > 0,which shows the eigenvalues

are purely imaginary and conjugate to each other at f = f*. We also have

d . oo . (K—=x"){(x"+f)—2(f+6,)}
W[IV(M(E D= = Ko+ /72 (x" —6) + £ /)
_ K(x*L—::f)z[(x* KA+ 6,) + 26 7).

Hence, the transversality condition holds under the condition
(" = f)(K+65) +2x"f* #0.

This shows that E* changes its nature from locally asymptotic stable to unstable as parameter
f crosses the critical value f = f*. Therefore by the Hopf-bifurcation theorem, system (6.2)

exhibits Hopf-bifurcation near the interior equilibrium point E£*. U

6.3.3 Dynamics of weak Allee effect model

The analysis of model (6.3) with weak Allee effect is similar to that of model (6.2) with strong
Allee effect. Thus, in this section we omit the detail mathematical analysis and present the

main results of this model system briefly.

1. All the solutions of model system (6.3) with initial conditions that initiate in R%r are

positive invariant and uniformly bounded.

2. The system (6.3) has following equilibrium points: Ey(0,0), E2(K,0) and the unique
interior equilibrium E, (x,,y.). E. exists if the following condition holds:

&

o< ——m <
cot —ady

K. (6.9)

3. - The equilibrium point E((0,0) is stable proper node.
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- E>(K,0) is locally asymptotic stable if caK < dy(1+aK), and a saddle point having
stable manifold along the x—axis and unstable manifold along the y—axis if caK >
O (1 +ak).

4. In order to analyze the stability behavior of interior equilibrium, let M’(E,) denotes the

variational matrix evaluated at E... Then

AL A
! _ 11 12
M (E*) o AI AI ’
21 22
R _ 6(K—xy) QLaxsy« I X
where A%y = gy %~ B+ rraepimy A = e
/ cOLyy ro_ bcotxy« .
Ay = (1+ax.)2(1+by.)’ Ay = tax,)(1+by,)? O1Y+-

Then the characteristic equation of M’'(E..) is given by
A2+ AL +4L =0,

Using the Routh-Hurwitz criteria, we have

— The system (6.3) is locally asymptotic stable around the interior equilibrium E’, if
and only if A} >0, A, > 0.

— It can be noted that if A}, < 0, then the interior equilibrium E, is locally asymptot-
ically stable.

5. Now, to show the existence of Hopf-bifurcation we assume that A} = 0,45, > 0. This

gives 6,, = 0,;, where

0" (K — o bca.
FX. |: - w( X*):| . axXyy« COLX Y« . +6]y* —0.

— T |X +
K(6,; +x.) (x.46;) (14+ax.)2(1+by,) (1+ax,)(1+by,)
Thus, we can state the following.

Theorem 6.3.6. Assume that 6,, = 6,;, A5 > 0 and x, > 6,;. Then system (6.3) has Hopf-

bifurcation near the equilibrium point E.(X.,Y.).

Now, we are in position to compare the system with strong Allee effect and weak Allee effect.

In the Table 6.1, comparison between both the cases has been carried out.



1 ggwapter 6. Dynamics of Prey-predator Model with Strong and Weak Allee Effect in the Prey

with Gestation Delay

Table 6.1: Comparative results for strong Allee (6.2) and weak Allee system (6.3).

S. No. Strong Allee effect Weak Allee effect

1 The per capita growth rate of prey The per capita growth rate of prey
population is negative. population is slower then without

Allee effect but remains positive
(see Fig.6.1).

2 The model (6.2) has locally asymp- Species always coexist if they ini-
totically stable trivial equilibrium tially exist under weak Allee effect
point. Consequently possibility of (model (6.3)).
extinction is high at low population
density.

3 Model (6.2) shows bi-stability Model (6.3) never shows bi-
when E™ is locally asymptotically stability. When interior equilib-
stable. rium is unstable then populations

fluctuate around it.

4 Model (6.2) does not show the Model (6.3) shows the Hopf-

Hopf-bifurcation with respect to

Allee parameter 6;.

bifurcation with respect to Allee

parameter 6,,.

6.4 Local stability and Hopf-bifurcation of delayed models

In this section, we will investigate local stability of the positive equilibrium E£* and exhibition
of local Hopf-bifurcation. We know that delay does not affect the equilibrium of the system.
Therefore equilibrium points are same as non-delayed model system. We omit the proof of the

following theorem as it is similar to non-delayed system.

Theorem 6.4.1. All the solutions of model system (6.4) and (6.5) with positive initial conditions

are positive invariant and uniformly bounded.

To see the effect of time delay on the dynamics of the system, we can re-write model system

(6.4) as
dU ()

dt
where U(r) = [x(t),y(0)]T, U(t — 1) = [x(r — 7,),y(t — 7,)]".

=FU@),U(r - 1)),
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Let x(r) =x*+x'(t), y(t) =y*+'(r). Then linearizing system (6.4) about the interior equilib-

rium solution E* (x*,y*), we have

dZ
— =PZ(t)+ QZ(t — 1),
dt
where
p_ oF _ ay—a; —a 0= oF _ 0 0 ’
8U([) - 0 —ay 8U([ — TS) - cay car
_ ay” _ o’ _ 20"\ (X" 0y * “\ (f£65) _
A = a2 (ithy) 2 = W’ a3 =r(1- %)(fcuf) +rx'(1 - x?)(x*ﬂc)z, aq =
5() + 25])1*
and Z(1) = [x'(1),y'(1)]""
Thus, the variational matrix of the system (6.4) at E* is given by
- as —aj —az
J=P+Qe *% =
Q [cal e M cape M — a4]
and corresponding characteristic equation is
A4+ AL+ (BA4C)e M5+ D=0, (6.10)
where A = a; — a3z + a4, B= —cay, C = caraz and D = a4(a) — a3).
Case (1): 7, = 0. Then characteristic equation becomes
A?+(A+B)A+(C+D)=0. (6.11)

Remark 6.4.1. The characteristic equation is same as the characteristic equation (6.7) of the

non-delayed model system (6.2) studied earlier.

All the roots of characteristic equation (6.11) have negative real part if and only if
(Hy): A+B>0,C+D >0.
Case (2): 7, > 0. Letio(® > 0) be a root of equation (6.10), then we have

—w? +Aio + (Bio +C)(cos(wt,) — isin(@7T)) +D = 0.
On equating real and imaginary parts, we obtain

Bwsin(w71) 4+ Ccos(wT,) = 0* — D, 6.1
Csin(@7T;) — Bocos(0T;) = A, '
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which leads to
Z+pz+q=0, (6.13)
where p = A> — B> —2D, g = D> —C? and z = »°.
Let f(z) = 2> +pz+q
(Hy):p > 0,9 > 0.

Remark 6.4.2. 1. If (H,) holds, then equation (6.13) has no positive roots. Hence, all the

roots of (6.10) have negative real part and hence E*(x*,y") is asymptotically stable for
all Ty > 0 under conditions (Hy) and (H,).

2. If (Hy) fails and (H>) holds true, then E* is unstable for all T3 > 0.

(H3) g < 0.
If (H;) and (Hs) hold, then equation (6.13) has a unique positive root 3. Substitution of @y

into equation (6.12) gives us
) 2
By sin(wyTs) + Ccos(wots) = oy — D,

Csin(ayT;) — Boycos(wyt,) = Aay,

which yields

C(w?—D)—AB®? | 2i
(@) —D) 0 +£,i:o,1,z.... (6.14)

B2o)} +C?

(Hy): p <0,q >0, p* > 4q.
If (Hy) and (Hy) hold, then equation (6.13) has two positive roots ®7 and @3, substituting a)]z?2

into equation (6.12), we have

1 .
7)? = —cos

5 w12

,j=0,1,2....

C(a)]{z —D) _AB(D%Q] 2jm

320)12‘2 +C? W12

Let A(7,) be a root of equation (6.10) satisfying Re{A(7;,) } = 0. Then differentiating equation
(6.10) with respect to Ty, we obtain.

dAr ”__QA+AVMQ% B 5
dt,)  (BA+C)A  (BA+C)A A’
{ﬁ} - _ (2iay +A)e 0 B T
At ) j_iw, (Bim+C)icy — (Biwy+C)icy iay’
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Y

dl} ' —Bag(Acos(ayy) — 2ansin(anT)) +Can (2 cos(wpT) +Asin(wt,)) — B0}

Re | —
Ll’cs B o)+ C*a}

A=iax

where sin(@y7;) computed as

ACwy + Bwy(wi — D)

sin(@yTy) =

B2wg + C?
After a little calculation, we obtain
rel %] f'(e5)
e|l— ="
But sign [%Re(l)]l:i(% = sign [Re(j—i)} A—ito

(Hs) : f'(e) #0.
Hence [diTSRe(),)} A—im, 7 0 under condition (Hs).
Now we are in position to state the following theorem.

Theorem 6.4.2. For system (6.4), assume that (Hy), (H3) and (Hs) hold. Then there exists a
positive number Ty, such that the equilibrium E* is locally asymptotically stable when T, < Ty,
and unstable when t; > Ty,. Furthermore system undergoes a Hopf-bifurcation at E* when

Ty = Tyy-

The investigation of local stability and Hopf-bifurcation for model (6.5) is similar. In the
case of weak Allee effect in prey population. Let (Hj), (H3) and (H¢) are hypotheses for model
system (6.5) corresponding to (H), (H3) and (Hs) respectively.

Theorem 6.4.3. For system (6.5), assume that (Hj), (H3) and (H5) hold, there exists a positive
number T,,, such that the equilibrium E, is locally asymptotically stable when t,, < T,,, and

unstable when t,, > T,,,. Furthermore system exhibits a Hopf-bifurcation at E. when T,, = T,,,.

6.5 Stability and direction of Hopf-bifurcation

In the previous section, we obtained the condition under which periodic solution bifurcates
from the steady state at the critical value of 7. In this section, we will study the direction of
Hopf-bifurcation and stability of the periodic solution by using normal form theory and center
manifold theory introduced in Hassard et al. [80]. We assume that system (6.4) undergoes
Hopf-bifurcation at the steady state E* for 7y = 7y, and Z-iay is corresponding purely imaginary

roots of the characteristic equation at E™.
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Let x1(t) = x(¢) —x*, y1(t) = y(t) — y* and still denote x; (), y1(¢) by x(¢), y(t). Let 7, =
Ty, + U, W € R so that Hopf-bifurcation occurs at it = 0, system (6.4) is transformed into

dx 1
E;ZOn—aOﬂﬂ—awU%Fﬁzl,Jﬁ)(ﬂyU%

itj>2 b
4 _ carx(t — Ty) + cary(t — T) —asy(t) + Y, 2)x’t—’L')j(t—’L')l(t)
dr 1 s 2y s 4y i 'l' ,Jl s)Y s)Y 1),

i+j+1>2

where

F() :rx<1 —%) ();Jr(jcs) - <1+ag)§y1 +by)’

B cox(t — ) y(t — T5)
e = (I tax(t— )1 +by(i—1,)) By = 81y”,

QitiF()

(1)
F.’ = —
dxidyJ

ij

o Qi+tiH E(2)
E*’ ijl — axi(z—fcs)8yj(t—fs)8yl

Here, we omit the detailed analysis and write only the results, which are obtained. One can
easily derive them by using the computation process similar to that in Song and Wei [195] and

Tripathi et al. [210]. The standard results can be computed as:

i
2Ty,

c1(0) = 3 | T

802 > g1 Re{ci(0)}
27 Re{A'(15,)}’

<gzog11 —2lgni|*—

m:maq@hnz_m@mﬂxzmwmm7

where g20,811, 802 and g»1 are evaluated as follows:

820 = 7{ F) +2PF1(1) +P*< 72’“’0“0F(z) +2pez""0T°0F(z)>}7

gnzy{ ()+2Re{p}F]] +p*< 2(03+2Re{p}F1 )},

o) = 2 {F(l)w( )(O)+pF1(1])W2%)(O)+p ( ()<pe’w0r°0W( )( 1)+ ’("O%W( )( 1)

where

Wao(6) = 22 a(0)e ™™ 4 g (0)e "% + By,
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Wl](e):_a’f)lfl q(0)e zabfsoe+al)§11 G(0)e leTSOG—i—Ez,

E| = (E](]), (2)) €R’and E; = (E él), éz))T € R? are constant vectors, computed as:

—1
2imy — a3z +ay a
E; =2 —care 2i®0T, . _ —2im T
1e 0 2wy + a4 — caze 0
Jos )+QPF1( )+p2FO( )
*Z’wOTSOF( ) + zpeth(ooTbOF(Z) + pzetha)oTbOF 6][)
B ( ) 2p(1)
Ey— 2 asz —aj —az +2Re{p}F +|P| Foz
ca  —as+cay 2(03+2Re{p}F1 +1pPES) — 81p?|
caje "% . a

Y

iy +as — care D%’ P = i@y + care' ™% — ay
d=1+pp*+cpty(ar+pay)e "%,

These expressions give a description of the bifurcating periodic solution in the center manifold

of system (6.4) at critical values 7, = 7y, which can be stated as follows:

1., determines the direction of Hopf-bifurcation. If i, > 0(< 0) then the Hopf-bifurcation

is supercritical (subcritical).

2. B, determines the stability of bifurcated periodic solution. If B, > 0(< 0) then the bifur-

cated periodic solutions are unstable (stable).

3. T, determines the period of bifurcating periodic solution. The period increases (de-
creases) if T, > 0(< 0).

Remark 6.5.1. We can also analyze the properties of bifurcating periodic solution for weak
Allee case by adopting the same process.

6.6 Numerical simulation

In this section, we will present numerical simulations to validate the analytical findings, ob-

tained in previous sections using MATLAB R2017a.
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6.6.1 Non-delayed models

For model (6.2), we consider a set of parameters as follows:

r=3,K=90, 8, =6, =0.05, f=0.002, & =0.7,

(6.15)
a=0.02, b=0.03, c=0.6, 8§ = 0.8, 8 = 0.25,

/ Separatrix

Fig. 6.3: (a) Time series of x and y, (b) Trajectories initiated from region of attraction of
both the locally stable equilibrium points, system (6.2) shows bi-stability.

(@) (b)

60 8

50

Fig. 6.4: Time series evolution of x and y for the different values of parameter 0.

6.6.1.1 Strong Allee effect

For the set of values of parameters in equation (6.15), condition (6.6) is satisfied. Thus, there
exists a positive equilibrium E*(6.4758,5.1441). It is also noted that A;; < 0 holds for the
set of parameters chosen in (6.15). So the interior equilibrium E* is asymptotically stable,
depicted in Figure 6.3. This figure shows that the density of prey and predator species both are
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increasing initially, then some fluctuations occur and eventually settle down to their respective
steady states.

As the trivial equilibrium point Ey is always asymptotically stable for system (6.2). There-
fore, under the condition of stability of positive equilibrium E*, system shows bi-stability. A
separatrix lies in the xy—plane which divides the plane into two regions in such a way that tra-
jectories starting from different regions approach to different steady states. This phenomenon
of system (6.2) is depicted in Figure 6.3(b). From the figure, it is clear that solution curves,
which are initiated from left of the separatrix, approach to E((0,0) and solution curves, which
are initiated from right of the separatrix, approach to interior equilibrium point E*. The effect
of parameter 0; on both the prey and predator species is shown in Figure 6.4. In Figure 6.4(a)
and 6.4(b), time series analysis is shown for four different values of ;(d; = 0.15,0.7,1.5,2).
From Figure 6.4(a), it is noted that prey population increases with the parameter 6;. The preda-
tor population initially grows up with d; but after a threshold value of §;=6; = 0.825 it starts
to decrease and settles down at its equilibrium level (see Fig. 6.4(b)).

Now, we observe the dynamical behavior of the system for the variation of the Allee pa-
rameter 6;. It is noted that as we increase the value of parameter 6y, the time of fluctuations for
both prey and predator increase. Time series analysis has been shown in Figure 6.5 for different
values of 6, which refers that the system is stable for 6, = 0.1,0.5 and 1. At 6; > 6, = 1.4985,
interior equilibrium E* becomes unstable and beyond this threshold value of 6, system con-
verges to the stable trivial equilibrium point Ey. This shows that as we increase Allee param-
eter 6, the life expectancy of both biological species decreases and after a critical value of
0; (= 6,), they move to extinction.

In the model system (6.2), the auxiliary parameter f is also a crucial parameter because it
shapes the Allee function. Therefore, we will analyze how the dynamics of system changes
with respect to f by using Hopf-bifurcation analysis. The condition of Hopf-bifurcation, which
is derived in Theorem 6.3.5, is satisfied. The critical value of parameter f where bifurcation
occurs is calculated from equation (6.8) and it is f = f* = 3.22. In Figure 6.3 we depicted time
series (Fig. 6.3(a)) and phase portrait (Fig. 6.3(b)) for f =0.002 < f*=3.22, which refers that
the system (6.2) is stable. Figure 6.6 shows that the system is unstable for f =3.7 > f*=23.22

and periodic solution occurs.
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Fig. 6.6: Time evolution of species and existence of periodic solution when f =
3.7 > f.

6.6.1.2 Weak Allee effect

On the other hand for the system (6.3), with weak Allee effect in prey population and with same
values of parameters as in (6.15), condition for the existence of unique equilibrium E, (x,,y.)
is satisfied and it is given by E.(6.4782,5.1464). The conditions of Theorem 6.3.6 are also
satisfied. Therefore, Hopf-bifurcation with respect to 6,, occurs near the interior equilibrium
E.. The threshold value of 6,, is evaluated as 6,, = 3.36. Thus the equilibrium point E, is
asymptotically stable for 6,, =2.5 < 6,, which is shown in Figure 6.7 and unstable for 6,, =
4.3 > 0, (fig. 6.8) and a periodic solution exists around E.. The bifurcation diagram has been
shown in Figure 6.9 by taking 0,, as a bifurcation parameter. This figure depicts the dynamics
of the system as the Allee parameter increases. From the figure, it is clear that for 6,, < 6,;,
the system (6.3) is stable but as 6,, crosses its critical value, the system loses its stability and

undergoes Hopf-bifurcation.



6.6. Numerical simulation 167

We have drawn phase portrait for model (6.2) and (6.3) together in a single figure keeping
all the values of parameters and initial pair same. Then both are compered with the model
proposed by Tripathi et al. [210]. The significant difference can be seen among model with
strong Allee effect, model with weak Allee effect and model with no Allee effect in the Figure
6.10. The figure shows that possibilities of extinction of species are high at low density under

strong Allee effect whereas under weak Allee effect, both species coexist.

(a) (b)

0 20 40 60 80 100 2 3 4 5 6 7 8 9
t X

Fig. 6.7: (a) Time series of x and y, (b) phase portrait when 6,, = 2.5 < 6,,. E. is
asymptotically stable.
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>
> 20f
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Fig. 6.8: Time series of x and y and existence of periodic solution when 6,, =4.3 > 6,.
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Fig. 6.9: Bifurcation diagram of the prey and predator population with respect to Allee
parameter 6,,.

Coexistence of specie:

Initial pair (2,2)
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1| —— proposed model (6.2) with strong Alle effect
—— proposed model (6.3) with weak Allee effect
Tripathi et al. [210] model with no Allee effect
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Fig. 6.10: Phase portrait of system with strong Allee effect, weak Allee effect and with-
out Allee effect for same values of all parameters and initial conditions (2,2).

6.6.2 Delayed models

6.6.2.1 Strong Allee effect

In order to verify the theoretical predictions derived in case of delayed systems, first we simulate
model (6.4), having strong Allee effect in prey population, with same values of parameters as
that in (6.15). We know that introduction of delay does not affect equilibrium of the system.
Thus, the interior equilibrium E*(6.4758,5.1441) remains as it is.

For 7, > 0, we note that conditions (H;) and (H3) are satisfied. So, equation (6.13) has

a unique positive root. Taking i = 0 in equation (6.14), our computer simulation yields the
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following:
wy = 1.4472, 1, =0.3914,

and transversality condition (Hs) is satisfied. Here all three conditions of Theorem 6.4.2 hold
true. Therefore system undergoes a Hopf-bifurcation at 7, = 7,, = 0.3914. By the algorithm
obtained in section 6.5, we computed the following:

W =0.0166 > 0, B, =-0.0259 < 0, 7, =0.0093 > 0.

This shows that the Hopf-bifurcation with respect to 7, is supercritical, bifurcating periodic so-
lution is stable and the period increases. Thus, the system is stable for 7, = 0.16 < 7,, =0.3914
which is shown in Figure 6.11. As 7, passes through its critical value 7, the system loses its
stability and a Hopf-bifurcation occurs into the system. In Figure 6.12(a), we have shown time
series analysis for 7, = 0.45 > 73 = 0.3914. Figure 6.12(b) shows that a periodic solution
exists and any solution trajectory initiating from inside and outside the closed trajectory, ap-
proaches towards the closed trajectory. This shows the existence of a stable limit cycle.

Bifurcation diagram has also been carried out in Figure 6.13 by taking 7, as a bifurcation
parameter. Figure makes us clear that 7, changes the stable behavior of the system into instable
behavior.

Fig. 6.11: The system (6.4) is locally asymptotically stable when 7, = 0.16 < 7, other
parameters are same as in (6.15).
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Fig. 6.12: The system (6.4) is unstable and have a periodic solution when 7, =
0.45 > 7, other parameters are same as in (6.15).
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Fig. 6.13: Bifurcation diagram of the prey and predator population with respect to gesta-
tion time delay ;.

6.6.2.2 Weak Allee effect

The model system (6.5), with weak Allee effect in prey population has one interior equilibrium
E.(6.4782,5.1464), with set of parameters (6.15). We see that the conditions (H{) and (Hj})

are satisfied and we obtain
o = 1.447, 1,,=0.3921,

and transversality condition (H{) is also satisfied. Therefore, system (6.5) undergoes a Hopf-
bifurcation around interior equilibrium at 7,, = 7, = 0.3921 (Theorem 6.4.3). Using algorithm

derived in previous section, it is obtained

1, =0.0281 > 0, By =—0.0437 < 0, T =0.0379 > 0.
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This shows that the Hopf-bifurcation with respect to 7,, is also supercritical, bifurcating periodic
solution is stable and its period increases. Thus, the positive equilibrium E, is asymptotically
stable for 7,, = 0.22 < 1, = 0.3921 which is shown in Figure 6.14(a) and unstable for 7, =
0.48 > 1,,=0.3921 (Fig. 6.14(b)). When 1,, = 7,,,, system undergoes a Hopf-bifurcation at
the positive equilibrium E,. The phase portrait has been shown in Figure 6.14(b), which shows

the existence of a stable limit cycle.

6.7 Conclusion

In this chapter, we made an attempt to discuss the impact of Allee effect (strong and weak
both) with gestation delay in the model proposed by Tripathi et al. [210]. They analyzed a
density dependent non-linear mathematical model (6.1). In that model, prey grows logistically
and predator fully depends on prey for food that follows Crowley-Martin functional response.

Fig. 6.14: The system (6.5) is (a) locally asymptotically stable when 7, = 0.22 < 71,,,
(b) unstable when 7,, = 0.48 > 7,,. Other parameters are same as in (6.15).

Allee effect plays an important role in the structure of population. The Allee effect increases
the possibilities of extinction. Thus, we include Allee effect into model (6.1). Since, there are
two types of Allee effect; strong and weak, so we studied both the models separately. In the
study, we discussed positivity, boundedness of the solutions, existence of equilibrium points
and their stability analysis of both the models. Positivity and boundedness of the solutions
refer that the system is well behaved.

We have shown that system (6.2) and (6.3) may have more than one interior equilibrium
point. Under sufficient condition (6.6) (for system (6.2)) and (6.9) (for system (6.3)) they have
unique interior equilibrium point. We also derived a sufficient condition for asymptotic stability
of interior equilibrium point. Then we found that model system (6.2) is bi-stable in the presence

of positive equilibrium. The existence of periodic solution via Hopf-bifurcation with respect
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to auxiliary parameter f in model (6.2) and Allee parameter 6,, in model (6.3) have also been
shown. In Table 6.1, we presented that how the dynamics of model (6.2) differs from model
(6.3). We also observed that the time of fluctuations for both prey and predator increases with
increase in Allee parameter for system (6.2). But after a critical value, interior equilibrium E*
becomes unstable. In this situation system converges to stable trivial equilibrium Ey, which
shows extinction of species after a critical value of Allee parameter.

Delay exhibits much more realistic behavior. The reproduction of predator after hunting
prey is not instantaneous i.e. there is some time lag for gestation. Therefore to make the model
biologically more realistic, we consider gestation delay for predator into both the models (6.2)
and (6.3). We have analyzed Hopf-bifurcation through local stability considering delay as a
bifurcation parameter. When the time delay is small then trajectory of system oscillates around
the positive equilibrium for finite time and eventually settle down to equilibrium level. As the
time delay increases, time of oscillations also increases and beyond a critical value of gestation
delay, then stability of system switches and we obtain periodic solutions. This proves that the
time delay can cause a stable equilibrium to become unstable. The stability and direction of
Hopf-bifurcation also have been investigated using Normal form theory and Center manifold
theory.

The numerical simulation is based on some biologically feasible data to support our theoret-
ical results. We found that Hopf-bifurcation is supercritical and stable with increasing period.
Bifurcation diagram with respect to 6,, and 7, help us to understand about the stability behavior
of the system. This chapter has some new and significant results that we hope very helpful to

understanding the dynamics of prey-predator system with Allee effect and gestation delay.



