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Chapter 7

Stability and Bifurcation of a Prey-predator System
with Additional Food and Two Discrete Delays '

7.1 Introduction

Living organisms on the surface of the earth adopt only the way that boosts their survival pos-
sibilities so that they can pass their genes to the next generation. There are several fundamental
instincts in ecological communities and, predation is one of them that constitutes the building
blocks for multispecies food webs. Initially, Lotka [132] and Volterra [217] studied the model
for prey-predator interaction and observed the uniform fluctuations in the time series of the
system. On later the fluctuations were removed from the system by taking logistic growth of
prey population [133, 56]. Many researchers have widely studied prey-predator interactions for
the last century [85, 38, 219, 61, 170, 117, 220, 119]. They have considered several essential
concepts over time that play a vital role in the dynamics of the system like functional response,
time delay, harvesting and conservation policies of species, stage structure, fear induced by
predators, etc. The idea of functional response was proposed by Holling [85]. It is defined as
the consumption rate of prey by predators. Holling considered it nonlinear function of prey
species that saturates at a level. Further, it was considered a function of prey and predator both
by several authors [38, 50, 117, 136].

In last few decades, many authors have studied the qualitative dynamics of prey-predator
systems in the presence of additional food resources for predators [197, 44, 179, 110, 189, 68].
Additional food is an important component for predators like coccinellid which shapes the life
history of many predator species [179]. Ghosh ef al. [68] investigated the impact of additional
food for predator on the dynamics of prey-predator model with prey refuge and they observed
that predator extinction possibility in high prey refuge may be removed by providing additional
food to predators. Again, to study the role of additional food in an eco-epidemiological system,

I'A considerable part of this chapter is published in Computer Modeling in Engineering & Sciences, 126(2),
505-547, 2021.
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a model was proposed and studied by Sahoo [180]. The author found that the system becomes
disease free in presence of suitable additional food provided to predator. Recently, a prey-
predator model with harvesting and additional food is analyzed by Rani and Gakkhar [175]
and they have shown some local and global bifurcation with respect to different parameters.
To incorporate the additional food into the model, they modified the Holling type II functional
response.

Delayed models exhibit much more realistic dynamics than non delayed models [11, 56]. In
prey-predator system, the impact of consumed prey individuals into predator population does
not appear immediately after the predation, there is some time lag that is gestation delay [208].
We incorporate the effect of time delay into the model with delay differential equations. A
delay differential equation demonstrates much more complex character than ordinary differen-
tial equation. On the other hand predators do not consume the additional food as soon as it is
provided. They take some time to consume and digest the food. Delayed models are widely
studied by researchers [71, 195, 173, 144, 27, 64, 92, 145, 130, 117, 136]. A delayed prey
and predator density dependent system is investigated by Li ef al. [117]. The authors ana-
lyzed stability, Hopf-bifurcation and its qualititative properties by using Poincare normal form
and the formulae given in Hassard et al. [80]. Sahoo and Poria [181] examined prey-predator
model with effects of supplying additional food to predators in a gestation delay induced prey-
predator system and habitat complexity. They have pointed out that Hopf-bifurcation occurs in
the system when delay crosses a threshold value that strongly depends on quality and quantity
of supplied additional food. The effect of additional food along with fear induced by predators
and gestation delay is discussed by Mondal et al. [148]. There are several studies carried out
with multiple delays [120, 231, 229, 111]. Li and Wei [120] have done stability and Hopf-
bifurcation analysis of a prey-predator model with two maturation delays. Gakkhar and Singh
[64] explored the complex dynamics of a prey-predator system with multiple delays. They
established the presence of periodic orbits via Hopf-bifurcation with respect to both delays.
Recently, Kundu and Maitra [111] have discussed about the dynamics of two prey and one
predator system with cooperation among preys against predators incorporating three discrete
delays. The authors have found that all delays are capable to destabilize the system.

To the best of our knowledge, an ecological model including (i) effect of additional food
supplies to predators, (ii) dependency factor of supplied additional food, (iii) Holling type II
functional response, (iv) gestation delay in predator have not been considered. Inspired by this,
we establish three dimensional non delayed and delayed models in section 7.2. We analyze the
dynamics of non delayed model and validate it via some numerical simulations in section 7.3.
In section 7.4, we analyze the dynamics of delayed model through Hopf-bifurcation. Direction
and stability of Hopf-bifurcation are carried out in section 7.5. Section 7.6 is devoted to the

numerical simulations for delayed model.
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7.2 Proposed Mathematical Model

We consider a habitat where two biological populations, prey population and predator popu-
lation are surviving and interacting with each other. It is assumed that prey population grows
logistically and the interaction between prey and predator follows Holling type II functional
response. We assume that the density of the additional food supplied to the predators is di-
rectly proportional to the density of predators present in the habitat. Keeping these in view, the
dynamics of the system can be governed by the following system of differential equations:

Y

dx :rx<1— x> _a(l—Ag)xy

dt K 14+ax

dA

2 = AAgy — BA — Ay,

= 0y — BA — @Ay 1)
dy _ crol—Ag)xy

Ay — dy — ey’
dt Irax et dy—er

x(0) > 0, A(0) > 0, y(0) > 0.

In the above model x(¢), y(¢) are number of prey and predator individuals at time ¢ and A is
quantity of additional food provided to predators. Ag is dependency factor of predators on
provided additional food resources. If Ag = 1, then predators depend completely on additional
food and prey population grows logistically. If Ag = 0, then predators depend only on the prey
population and in such a case additional food is not required. A is maximum supply rate of
additional food resources.

In real situations, each organism needs an amount of time to reproduce their progeny. Due
to this fact the increment in predators does not appear immediately after consuming prey. It is
assumed that a predator individual takes 7| time for gestation. Therefore, it seems reasonable
to incorporate a gestation delay in the system. Thus, the delay 7; is considered in the numeric
response only. Again, it is assumed that the additional food is provided to predators with
another delay 7,. The generalized model involving these two discrete delays takes the following

form

Y

dx _ rx(l B f) _a(1—Ag)xy

dt K 1+ax
dA
7 = Moy — BA— oAy, (7.2)
dy C](X(l —A())x(t —T )y(t — T]) 7
— At — t—1)—dy—

subject to the non negative conditions x(s) = ¢;(s) >0, A(s) = ¢2(s) >0, y(s) = ¢3(s) >0, s €
[—17,0], where T = max{7, 7>} and ¢;(s) € C(|—7,0] = Ry), (i=1,2,3).
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The biological meaning of all parameters and variables in above models is provided in Table

7.1.
Table 7.1: Variables and parameters used in models (7.1) & (7.2).
Variables/ Biological meaning Unit
Parameters
X Density of prey population Number per unit area (tons)
A Quantity of additional food Number per unit area (tons)
y Density of predator population Number per unit area (tons)
r Intrinsic growth rate of prey Per day
K Carrying capacity of the prey population Number per unit area (tons)
o Attack rate of predator on prey Per day
Ay Dependency factor of predators on provided Constant & 0 < Ap < 1
additional food
a Handling time Days
A Maximum supply rate of additional food Per day
B Natural depletion rate of additional food Per day
() Consumption rate of additional food by preda-  Per day
tors
cl Conversion efficiency of y on x Constant & 0 < ¢; < 1
c) Conversion efficiency of y on A Constant & 0 < ¢, < 1
d Mortality rate of predators Per day
Intra-specific interference among predators Per day
T Gestation delay of predators Days
T Delay in supply of the additional food Days

7.3 Dynamics of Non-delayed Model

First of all, we examine the boundedness and persistence of the system (7.1).

7.3.1 Boundedness and persistence of the solution

Theorem 7.3.1. The set

Q=

1 c2A2A2
{(x,A,y):OSxSK,0§01x+czA+y§— 207K + 2 O}}

0

4e
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is a positive invariant set for all the solutions of model (7.1), initiating in the interior of the

positive octant, where 8 = min{r,3,d}.

Proof. The model system (7.1) can be written in the matrix form
X =G(X),

where X = (x1,x2,x3)7 = (x,A,y)T € R, and G(X) is given by

G1(X) (11— ) - “e
GX)=|G(X)| = AAgy — BA — ¢ Ay
Gy(X)| Q%A 4 o 6ay —dy — ey

Since G : R* — R3 is locally Lipschitz-continuous in Q and X (0) = X, € R3., the fundamental
theorem of ordinary differential equation guarantees the local existence and uniqueness of the
solution. Since [G;(X)],,)—0, xe g3 = 0, it follows that X (t) > 0 for all t > 0. In fact, from the
first equation of model (7.1), it can easily be seen that x|,—o > 0, y|y—¢ > 0 and hence x(t) > 0,
y(t) > 0 for all t > 0. Secondly, A[4—o = AAgy > 0 for all t > 0 (as y(¢) > 0 for all > 0.) and
hence A(r) > 0 for all ¢ > 0.
From the first equation of model (7.1), we can write

%C < rx(l — %),
which yields

limsupx(r) < K.

t—soo0
Now, suppose
W (1) = c1x(r) + c2A(t) + y(1),

then we have

aw (t ) dx dA dy
<2c1rK — Aoy — A —
7 1 +Czdt o S2arK—cirx— dy+caAAgy — c2BA —ey?

2 242 2
<2¢rK + /}lA <f—cz’\12°> _ W,

where 6 = min{r,,d}.
Hence, it follows that
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29242
5 A7AG
e

We also note that if x(r) > K and W(t) > %(2011’1(—# 4 then 1) < o AV ¢

dt =
This shows that all solutions of system (7.1) are bounded and remains in Q for all > 0 if

(x(0),A(0),5(0)) € Q. O
Theorem 7.3.2. Let the following inequalities are satisfied:

C1 (X(l —Ao)xa

>d.
1 +ax,

r>o(l—Ap)ys,

Then model system (7.1) is uniformly persistence, where, x, is defined in the proof.

Proof. System (7.1) is said to be permanence or uniform persistence if there are positive con-
stants M and M, such that each positive solution X (r) = (x(¢),A(z),y(t)) of the system with

positive initial conditions satisfies

M, < litmian(t) <limsupX (¢) < M,.
—00

t—oo

Keeping the above in view, if we define
M, = max{K, &Js}’
(&)

then from Theorem 7.3.1, it follows that

limsup X (1) < M,.

t—so0
This also shows that for any sufficiently small € > 0, there exists a 7 > 0 such that for all
t > T, the following holds:
x(t) < K+e, A(r) < ? +e&, y(t) <ys+e.
2

Now from the first equation of model system (7.1), for all t > T, we can write

o > rx(l — %) —a(l—A)(ys +€)x

~ -l A+ )

Hence, it follows that ©
liminfx(¢) > —[r— o (1 —Ag)(ys + €)],

t—oo r
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which is true for every € > 0, thus

. K
htrgglfx(t) > 7[r— o(1—Ap)ys| =: xg,

where r > a(1 —Ao)ys.
Now from the third equation of model system (7.1), we obtain

dy S c1o(1—Ap)(xq +€)

Y 2
_dv—
dt = 1ta(x.+e) Yo

which implies

c1o(1—Ap)(xs+€) —d}

1
liminfy(r) > |
iminfy(r) 2 e l+a(x,+e¢)

f—oo

which is true for every € > 0, thus

C1 (X(l —Ao)xa

1
liminfy(s >_[
ltrggl y() 2 e 1+ ax,

_d} = Ya,

. a(l—A
for persistence, we must have C'](JFTO)X“ >d.
a

Second equation of model system (7.1) yields

dA
2 Mo(ya+€) — BA— 9+ €)A.
Hence,
A
liminfA(r) > 240 .y
I=ree B+ oys
Taking M| = min{x,,A,,y4}, the theorem follows. O

Remark 7.3.1. Theorem 7.3.2 shows that threshold values for the persistence of the system are

dependent on the parameter Ay.

7.3.2 Equilibrium points and their stability behavior
System (7.1) has four equilibrium points, trivial equilibrium Ey(0,0,0), axial equilibrium E; (K, 0,0),
prey free equilibrium E; (0, A, §) and interior equilibrium E*(x*,A*,y*). Eq and E| always exist.
e Existence of E5(0,A,): The prey free equilibrium E; is positive solution of the follow-
ing system:
AAgy — BA— ¢Ay =0,
c20A—d—ey=0.

(7.3)



Chapter 7. Stability and Bifurcation of a Prey-predator System with Additional Food and

180 Two Discrete Delays

From the second equation of above system, we have

_d+tey
¢

Putting the value of A in the first equation of system (7.3), we get

A

9oy’ +(9d+ Be— 29 AA0)y+ Bd = 0. (7.4)
Above equation has two positive roots if
c20AA) > ¢d + Be, (c20AAg— ¢d — Be)? > 4pdfe. (7.5)

System (7.1) has two prey free equilibrium under conditions given in (7.5): E»(0,A,7)
and £5(0,A,). Again, If c;0AA¢ < ¢d + Be, then equation (7.4) does not have any
positive root. Therefore, E; does not exist in this case.

¢ Existence of interior equilibrium E*(x*,A*,y"): It may be seen that x*, A* and y* are

the positive solution of the following system of algebraic equations:

r<1_£> _a(l—Ag)y o,
K I +ax

AAgy — BA— 9Ay =0, (7.6)
C1 (X(l —Ao)x

A—d—ey=0.
Lrar 0 <

From the second equation of system (7.6), we have

. )VA()y
B+oy
Putting this into the first and third equation of system (7.6), we obtain the following
system:
r X
=—|(1-— —) 1 7.7
a(l1—A AA
aall=Aox  c0Rdoy , (7.8)
1 +ax B+oy

We note the following points from equation (7.7):

1. Wheny:O,thenx:—é<00rx:K>0.

2. Whenx=0theny =

—(]ZAO) > 0.
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Q:;[a_
dx (X(I—Ao)

Italsocanbenotedthat% >Oif—£ <x< %(K—%) and% <0ifx> %(K—%)
4. Ymax = %(14—;—]()(1—}—61]() atx = %(K—%).
Similarly, from equation (7.8), we note the following:

1. Wheny =0, thenx = o d

]*Ao)*ad.
2. e
cro(1—
Q . ](H—ax)zo
dx o _ BcadAdy”
(B+0y)?
It can be noted that % > 0if
e(B+ya)® > BeadAAo. (7.9)

From above analysis we can conclude that system (7.6) has a unique positive solution
(x*,A*,y*) if, in addition to condition (7.9), the following holds:
d

0< <K. 7.10
C](X(I—Ao)—ad ( )

Hence, we can state the following theorem.

Theorem 7.3.3. The system (7.1) has a unique positive equilibrium E* (x*,A*,y*) if (7.9)
and (7.10) hold.

Remark 7.3.2. The number of positive equilibrium for the system (7.1) depends on values

of parameters, which we have chosen. Several possibilities are depicted in Figure 7.1.

The local behavior of a system in the vicinity of any existing equilibrium is very close to the
behavior of its Jacobian system. So, we compute the Jacobian matrix to see the local behavior
of the system around its equilibrium and we observe that

e The trivial equilibrium E((0,0,0) is always a saddle point having stable manifold along
the A and y-axes and unstable manifold along the x-axis.

o The axial equilibrium E; (K,0,0) is locally asymptotically stable iff L201—40K 4 1f

14aK
CW‘](L—;?}O)K > d, then E| is a saddle point having stable manifold along the x and A-axes

and unstable manifold along the y-axis.
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(a) No interior equilibrium (b) Unique interior equilibrium
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(c) Two interior equilibrium (d) Three interior equilibrium
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Fig. 7.1: Four possiblities of the prey and predator zero growth isoclines. (a) Interior
equilibrium does not exist for the parametric values a = 0.08,d = 0.01, (b) Interior equi-
librium exists uniquely for the values of parameters a = 0.1,d = 0.235, (c¢) Two interior
equilibria for parameter values a = 0.1,d = 0.137, (d) Three interior equilibria for pa-
rameter values a = 0.105,d = 0.1. Rest of the parameters are same as that in (7.25).
e The Jacobian matrix evaluated at prey free equilibrium E> (0,4, §) is given by

r—a(l—Ag)y 0 0
T, = 0 —H Ao~ 9A
aa(l=A)y ey —ef

Characteristic equation is given by

70

(&= (r—a(l—Ap))) [£*+ (AAoF + eF){ + (eAAoF” — c20F(AAg — $A))] = 0. (7.11)
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The roots of equation (7.11) have negative real part if
r<o(l—Ag)¥, AAg< QA. (7.12)

Hence E>(0,A, ) is asymptotically stable under condition (7.12).
Equation (7.11) have at least one positive and one negative root if

eAAF < 20 (AAg — PA) (7.13)

Therefore, E>(0,A, ) is a saddle point under condition (7.13).

Remark 7.3.3. By replacing A by A and § by $, similar analysis holds good for the
stability behavior of F»(0,A,¥).

e In order to analyze the local stability of unique interior equilibrium E*(x*,A*,y"), we

evaluate the Jacobian matrix at E* and it is given by

* a(l—-Ag)ax*y* o(1—Ap)x*
Tt ey 0 TTmar
I = 0 Mo QA — AT
1—Ag)y*
C]E);(_FGX*())? Czd)y* _ey*

Characteristic equation corresponding to above matrix is given by

A +A N +AA+A5=0, (7.14)
where . (1— Ao’y Adgy
rx"  a(l—Ap)ax*y 0y .
A ="
'~k (1+ax*)? + A* e
AAgey*? rx* a(l —Ag)ax*y*
Ay =20 oAy — 9A )y [ - *
2 A CZ(D( 0o—¢ )y + K (1+ax*)2 (ey)
c10?(1—Ag)*x*y* N rx*a(l —Ag)ax*y*\ [ AAgy*
(1+ax*)3 K (1+ax*)? A )7

A = _<_ rx’ N a(l —Ao)ax*y*> {),Aoey*z
K (14 ax*)? A*

(X(l —Ao)x* )~14()y>~< C1 (X(l —Ao)y*
1+ ax* { A* (I4ax*)? }

—c2¢<AAo—¢A*>y*}

Now using the Routh-Hurwitz criterion, all eigenvalues of J|g+ have negative real part iff

A; >0, A3 >0, AjAy > As. (7.15)
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Thus we can state the following theorem.

Theorem 7.3.4. The system (7.1) is stable in the neighborhood of its positive equilibrium
iff inequalities in (7.15) hold.

It is also noted that inequalities in (7.15) hold if

r _ a(l—Ag)ay*

—>—" AA)< PA". 7.16

K~ (1+ax*)? 0<¢ (7.16)
Infect, the above two conditions imply that A; > 0 and A3 > 0. The third condition
A1A, > Aj is also satisfied.

Remark 7.3.4. The system (7.1) is stable around its positive equilibrium E* if inequali-
ties in (7.16) hold.

In the following theorem we give a criterion for global asymptotic stability of interior equilib-
rium E*(x*,A",y*) of the system (7.1).

Theorem 7.3.5. The interior equilibrium E*(x*,A*,y") of the system (7.1) is globally asymp-

totically stable under the following conditions:

r_a(l—Ap)ay” 2,2
_> A“As < 4BeA”. 7.17
K™ Trae o @MAv<dpe (7.17)

Proof. We Choose a suitable Lyapunov function about E* as

Vixdy) = (v-x =) +%(A—A*)2+Yz<y—y*—y*ln)%),

where y; and 9, are positive constants, to be specified later. Now, differentiating V' with respect

to t along the solutions of system (7.1), we get

a (5 )a eGSR 3

:_F_ T }<x_x*)2—71(ﬁ+¢y)(f\—A*)Z—Yze(y—y*)2+(Y1)~Ao

K (1+ax)(1+ax¥)
(X(I—Ao) YzC]OC(l—A())
1+ax (I+ax)(1+ax*

CROA" +1erd) (A— Ay —y) + {— |50y
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Choosingyz:]t—‘]’x* and y; = B2 we get
dv r o(1—Ag)ay* »  (I+ax™)e )
@ __|\L_ e LI S e, S RS
dt K (taitar)) ) A P )
1 +ax* . 1+ax")cy . y
- e(y—y )h%le(A—A )y =y).
Cl c1A

Applying Sylvester criterion, ‘2—‘; is negative definite if conditions in (7.17) hold. Hence E* is

globally stable under conditions in (7.17). ]

7.3.3 Hopf-bifurcation and its properties

Hopf-bifurcation is a local phenomenon where a system’s stability switches and a periodic solu-
tion arises around its equilibrium point by varying a parameter. In system (7.1), the parameter
Ap seems crucial, therefore we analyze the Hopf-bifurcation by taking Aq as bifurcation pa-
rameter, then we have some Ay = A;. The necessary and sufficient conditions for occurrence

Hopf-bifurcation at Ag = A are
(a) Ailag >0, Asls; >0,
(b) f(Ap) = (A1A2 —A3)|as =0,

(c) Re [ZTASL e is either positive or negative, where A;, i = 1,2,3 are roots of equation
(7.14). '
From A1A; — A3 = 0, we get an equation in Ap and assume that it has at least one positive root
A Then for some € > 0, there is an interval containing Ajj, (A, — €,A;+€) such that Aj—& >0
and Ay > 0 for Ay € (A — €,A;+ €). Thus, equation (7.14) cannot have any real positive root
for Ag € (Aj—€,A;+€).
Therefore, at Ag = A, equation (7.14) becomes

(A+A1)(A*+A4,) =0,

this gives us three roots
Al,z = :l:lpv Az = u,
where p = /A and 4 = —A;.

For Ag € (Aj— €,A;+ €), roots can be taken as
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Now, we have to verify the transversality condition. Differentiating equation (7.14) with respect
to the bifurcation parameter Ay, we obtain

dA . A]A2+A2A+A3
dAo| 4 _ar  L3A24+241A+A,;

A=iVA;

dR dR
dag {\/ Az AVA 75
2(A?+A2) 240 2A,(A2+Ay) ]
where R = A1A> — A3z and A;, i = 1,2,3 denote the derivative of A; with respect to time. Thus
dR
dAo A—a;  2(AT+A)
Thus, we can state the following theorem.

Theorem 7.3.6. The system undergoes Hopf-bifurcation near interior equilibrium E* (x*,A*,y*)
under the necessary and sufficient conditions (a),(b) and (c). Critical value of bifurcation pa-

rameter A is given by the equation f(A;) = 0.

In order to see the stability and direction of Hopf-bifurcation, we use center manifold theo-
rem [80] and some concepts used in [146]. Now, consider the following transformation

X1=x—x,x=A-A", x3=y—y".

Using this transformation, system (7.1) takes the following form

X =M'X+G(X), (7.18)
where X = (x1,%,x3)7,
_%*jt% 0 _0‘(]1;—2‘&)96* my _%% _ all—Ao,
" axy
M= 0 —2 AAg— A" |, G=|my| = —9x2x3
1-Ag)y* -
Cl—gg_ax*())gy y” —ey” ms3 % + coPxpx; — ex%

Let vi and v, be the eigenvectors corresponding to eigenvalues ip and p of E* at Ag = A;. Then

vy and v, are given by

—p —H(M(’y +ey >p+M°y ¢ — 0y (AAg — PAY)
V] = —Clggaﬁggy ()VA() — (DA*)

cra(1=Ag)y* { AAgy* .
(1+ax*)? ( A* p
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and
* *2
“2+i<Mf\\2y +€y*>“+ME\y*_e_CZ‘PY*()'AO_‘PA*) P13
1—Ag)y*
V2= %(“‘O—W‘*) = | p23 | (say).
cra(1-Ao)y" ( AAgy*
(1+ax*)? (Ag —[.L) P33
Let
P11 P12 P13
H = (Im(v1),Re(v1),v2) = | p21 p2 P23l
P31 P32 P33
where
)VA() - )VA() *26
P11=< A*y +€y*>P7 P12=—P2+A—{—02¢y*()~Ao—¢A*)v p21 =0,
cro(l—Ap)y” cra(l—Ag)y'p cra(l—Ag)y" AAgy*
== (AAg — 0A" = — =
p2 (1+ax*)? (AAo=947), pa (14+ax*)? p32 (14+ax*)? A
q11 412 413

Then H ' =% |g21 g2 o3|, where

q31 432 433

A = p11(pa2p33 — p23p32) + P12(P23p31 — p21p33) + pi3(pa1ps2 — paap3) # 0,

q11 = P22p33 — P23P32, {12 = P21P33 — P23P31, 413 = P21P32 — P22P31;
421 = P12P33 — P13P32, 422 = P11P33 — P13P31, 423 = P11P32 — P31P12;
431 = P12P23 — P13P22, {432 = P11P23 — P13P21, 433 = P11P22 — P12P21-

Now let X = HY or Y = H 'X, where Y = (y3,y2,y3)”. Using this transformation, system

(7.18) can be written as

Y=(H 'M'H)Y+F(), (7.19)
where
f! | |9 qiama + qizms 0 —p 0
F(Y)=H 'G(HY)= | =% | @211+ q22ma + qa3m3 ,H'MH=1|p 0 0
f? q31m1 + q32my + q33m3 0 0 pu
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So, we can write system (7.19) as

hJ| 0 —p O |m f!
nl=1p 0 0f|n|+|f]- (7.20)
V3 0 0 pujlys f?

Thus, system (7.20) takes the following form

U =BU+ f(U,V),

. (7.21)
V=CU+g(U,V),

‘0"’ L C=(u), f=(f',f2) and g = (f3). The

eigenvalues of B and C may have zero real part and negative real parts, respectively. f, g vanish

where U = (y1,y2)7, V = (y3), B=

along with their first partial derivative at the origin.
Since the center manifold is tangent to W€ (y = 0) we can represent it as a graph

WS ={(U,V):V=hU)}: h(0)=H(0)=0,

where /1 : U — R? is defined on some vicinity U C R? of the origin [24, 113].
We consider the projection of vector field on V = h(U) onto W€ :

U =BU + f(U,V)=BU + f(U,h(U)). (7.22)

Now we state the following theorem to approximate the center manifold.

Theorem 7.3.7. Let ® be a C' mapping of a neighborhood of the origin in R* into R with
®(0) =0and ®'(0) =0. If for some g > 1,(N®)(U) =0o(|U|9) asU — 0, then h(U) = ®(U) +
o(|U|?) as U — 0, where

(N®)(U) = @' (U)[BU + f(U, (V)] - CR(U) — g (U, (V).
In order to approximate i(U ), we consider

y3 = h(y1 ,yz) = (b] 1)1% +2b12y1y2 + bzzy%) +h.o.t., (7.23)

| =

where h.o.t. stands for high order terms. Using (7.23), we get from (7.22)

dh dy1 dh dyz .

o sl et 3.
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After simplification, we get

(Pblz = Ebn)y% + <—Pb]2 = %bn)y% +{p(=b11 +b2)— ubi2}yiy2

2 (7.24)
= Qly% + Ooy1y2 + Q3y% +h.o.t.,

where

1 r
0= A {6131 (— Epﬂ — ol —Ao)p11P13> +q32(—9p21p31) +g33(c1a(l —Ag)p11p3i

+c20p21p31 — €P§1)} :

1 2r
0> =1 431 (— ZPupi— a(1—Ao)(p11p32 +p12p31> +q32(— ¢(p21p32+ P31P22))

+g33(c1o(1—Ao)(pr11p32+ p12p31) +c20 (p2a1p32+ P2p3i) —ep3ips2) |

1 r
03 = A {6131 (— Ep%z — ol —Ao)p12P32> +q32(—9p3p2) +g33(cia(l —Ag)praps

+c20p2p3— eP%z)} .

Equating both the sides of equation (7.24), we get

pbip — %bn =0,

p(—=bi1+ b)) —ubiy = 0s,
—pbi2— %bzz = Q3.

Using Crammer’s rule,

_PHQ1+03) +5(pOr+ Q)

by = 3 ;
Ttup?
2
biy — _%ta%”(%—Q])’
T tup?
2
by — T2~ 5PQ2+ P (01 +05)

3
T tup?

We can find the behavior of the solution of system (7.21) from the following theorem.
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Theorem 7.3.8. If the zero solution of (7.22) is stable (asymptotically stable/ unstable), then
the zero solution of (7.21) is also stable (asymptotically stable/ unstable).

Now from equation (7.22), we have

HE A

1 1

= Z(Ch]m] +qramy +qi3m3), f*= Z<

f]

Y1
+ fz

»

Y

where

G21m1 + qaomy + ga3ms),

r r
my = [— Epﬂ —afl —Ao)P11P31}y%+ [—Ep%z— a(l _AO)P12P31})’%
2r
+ [_ PP = o(1—Ao)(pr1p32 +p12p31)}y1y2+h~0-t- )

my = =@ p21p31yt — O P2pays — O (p21p32 + prapai)yiy2 +ho.t.

m3 = [c1a(1 = Ao)p11p31 + 20 pa1p31 — ep3y |yi + [c1a(1 — Ao) praps2 + 20 prap32 — ep3y|v3
+ [c1a(1 —Ao)(p11p32 + p12p31) + 20 (pa1 P32 + pazp3i) — 2ep31p32 ] yiy2 + ho.t.

Let £k = [ o } nd fX [m—af - } Therefore
ij gyigyj 00) ijl = | dyidy;dy; (()7()). ’

2 r
fli = {6111 [— EP%] —af(l —Ao)Pnpm} +q12[—9pa1p31] +qi3 [c1a(1 — Ag) p11p3i

+c20p21p31 — €P%1}} :

2 r
fii= {6121 [— EP%] —af(l —AO)P11P31} + q2[—9p21p31] + g3 [c1a(1 — Ag) p11p3i

+c20p21p31 —epglﬂv

2 r
fr = {6111 [— Ep%z —af(l —Ao)Plzpm} +q12[— 9 p22p3a) +q13 [cr10(1 — Ag) p12p32

+c20pp3r — €P%z}} ;

2 r
fh= {6121 [— Ep%z —af(l —Ao)Plzpm} + q2[— 9 p2op32] + g2z [c10(1 — Ag) p12p3o

+c20pnpi — €P§zﬂ :
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1 2r
fh= N {(Jn [— o Pupiz— a(l—Ao)(pr1ipn +P12P31)} +q12[— 9 (P21p32 + P22p31)]

+qi3[c10(1—Ao)(pr1p32 + prapst) + 20 (p21p32 + p2op3t) — 261?311?32}} ,

1 2r
fir= N [— wPupi2— a(l—Ao)(pr1ipn +P12P31)} +g22[— 9 (p21p32 + p22p31)]

+ a3 [c1o(1—Ag) (pr1p32 + prapsi) + 20 (p21p32 + P2op3r) — 261?311?32}} :

P11P33b11 +P13P31b11>>

6 r
fli=— {fhl <— —pupizbi —a(l —Ag) + (-apﬂpm + 5

A K

+4q12 < - g<P21P33b11 +P23P31b11>> +4q13 <01 a(l—Ap) ( —ap}ip3i

11p33b11 + p31p31b611 &)
4 Pup p3ip >+ 2¢(p211?33b11+1?31pz3b11—€P31P33b11)>}7

2

P12P33b22 + p13p3abaxn ) >

6 r
o=~ {(]21 <— —p12p13ban — o (1 —Aog) + (— apip3 + 5

A K

+q» < _9 <P22P33b22 +P23P32b22>> +q23 <01 a(l—Ap) ( —aphpa

2
12P33b22 + p32p13D22 &)
gl 5 p32b ) + 2¢ (P22p33b22 + P32p23b2s — €P32P33b22)>} )
1 r
fin = 3 {(Jn <— e (2p11p13b2 +4p1api3bia) — a(1— Ag) (— 4api1p3abiz — 2api, pai

+ p11p33ba2+2p12p3zbiz + p31pizban + 2P32P13b12)> +q12 < — ¢ (p21p33bn

+2p22p33bi2 + p31pasban + 2P32P23b12)> +4q13 <01 o(1—Ag)(—4api1p3bin
—2aptyp31 + p11pasba +2p12p3sbia + p31pisba + 2p3apisbia) + €20 (p21p3sba

+2p22p33bia + P31 pa3baz +2p3apazbiz) — e(2p31p3sbaz +4p3apssbiz) > } :

1 r
fiin = A {(Jz] <— E(2p12p13b11 +4p11p13bia) — a(1—Ao)(—4api1p3ibia — 2apt p3

+ p12p33bii +2p11p3sbiz + p3apizbin + 2P31P13b12)> +q» < — 0 (p22p33bi

+2p21p33bi2 + p32pasbia + 2P31P23b12)> + a2 <01 o(1—Ag)(—4api1p3ibi2
—2apt,p32+ p11p3sbia +2p12p3sbii + p32pisbin +2p31pisbiz) + 29 (p22p3shis

+2p21p33biz + p3ap23bii +2p31pasbiz) — e(2p3ap3sbii +4p3ip3zbia) > } .
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We determine the direction and stability of bifurcation periodic orbit of the system (7.21) by
the following formula [125]

{d[(
v

1
%L P [f]lz (i) = [ (fh+ 1) — A+ P — (flan + flin+ fia +f2222)} .

In above expression, if v > 0(< 0), then the Hopf-bifurcation is supercritical (subcritical) and
bifurcation periodic solution exists for Ag = A;. The bifurcating periodic solution is stable

(unstable) if
v { dK

dAO} Ap=A})

The bifurcating direction of periodic solution of the system (7.1) is same as the system (7.21).

> 0(<0).

7.3.4 Numerical simulation

To validate our theoretical findings of model (7.1), we perform some numerical simulations
using MATLAB R2018b. We have chosen the following dataset

r=3,K=70, a =0.3, a=0.07, Ag=0.5, A =2,

(7.25)
B=032,¢=07 ¢, =04, c=0.5,d=0.3, e=0.02.

For the above set of parameters, condition for existence of prey free equilibrium (7.5) and
conditions for existence and uniqueness of interior equilibrium (7.9) and (7.10) are satisfied.

Therefore, the system (7.1) has five equilibrium points (refer to Table 7.2).

Table 7.2: Existing equilibria and their stability nature.

Equilibrium Point Eigenvalues Stability nature
E(0,0,0) 3,-0.32,-0.3 Saddle point
E(70,0,0) -3,-0.32,0.4113 Saddle point
£5(0,0.9019,0.7828) 0.0898,-0.9734,2.8826 Saddle point
E>(0,1.3577,8.7601) -0.1511,-6.4762,1.6860 Saddle point

E*(18.0971,1.4094,33.6153) —0.0990 4 0.3860i,—23.7585 Locally asymptotically stable

The eigenvalues of the Jacobian matrix at Ey and E; are (3,—0.32,—0.3) and (—3,—0.32,0.4113),
respectively. Therefore, Ey and E| both are saddle points. Similarly E, and E, are also saddle
points. Again, all the inequalities in (7.15) are satisfied. So, according to Theorem 7.3.4, the
interior equilibrium E™* is locally asymptotically stable. The stability of system in the vicinity

of the positive equilibrium E™ is illustrated by Fig. 7.2. In Fig. 7.2(a), time evolution of species
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is shown and it is noted that they converge to their equilibrium levels after some oscillations.
In Fig. 7.2(b), phase diagram is drawn in xAy—space which shows the asymptotic stability
behavior of positive equilibrium E*.

(a)

(b) Phase portrait

—X

y B

stable equilibrium point

populations

time

Fig. 7.2: Time series evolution (a) and phase portrait (b) of species for the set of param-
eters chosen in (7.25). Positive equilibrium E* is locally asympeoeically stable.

In this chapter, we found that predators dependency factor Ay on additional food plays an
important role in the dynamics of the system. If it is less than a threshold value then it can
be the cause of destabilizing the system. The threshold value can be calculated by solving
f(Ay) = 0 (Theorem 7.3.6). By our computer simulation we obtain it as Aj = 0.482. All the
conditions of Theorem 7.3.6 are satisfied, so the system undergoes a Hopf-bifurcation at A}, =
0.482. If we keep the value of parameter Ay below its threshold value, then the system (7.1)
always remains unstable. The instable behavior of solutions and presence of stable limit cycle
at Ag = 0.45 < A; = 0.482 is shown in Fig. 7.3. In Fig. 7.4, we draw the bifurcation diagram
with respect to parameter Ag for both prey and predator species. From the figure, it is noted that
the periodic solution present in the system when A € [0,A;] and oscillations can be removed
from the system by increasing the parameter Ao beyond A.

In the model (7.1), consumption rate of additional food ¢ is also a vital parameter. We have
noted that if system is stable for parameter Ay (Ao € [0.482, 1]) then it is stable for all range of
parameter ¢. Butif Ay € [0.2361,0.482) then system undergoes a Hopf-bifurcation with respect
to parameter ¢. In Fig. 7.5, we have shown the bifurcation diagram when Ay = 0.4 and other
parameters are same as given in (7.25). The Hopf-bifurcation point is ¢* = 0.02847.
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(a) o) (c) Phase portrait
50 13
40
x|
. —y 129 stable limit cycle
35
W 128
35 127 30
20 126
£ =25
o]
Eos <125
2
g2 124 20

123

122

121
B
12 12
0 20 40 0 s 100 120 140 160 180 200 40 50

0O 20 40 60 8 100 120 140 160 180 200
time X

Fig. 7.3: Instable behavior of solutions and existence of stable limit cycle for Ag =
0.45(< Aj). Rest of the parameters are same as (7.25).

70 T T T T T T T T T 45

60 -

50 -

40
x
30
A
201 T
0 J . 0 .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
A, .
Fig. 7.4: Bifurcation diagram of the prey and predator population with respect to param-
eter Ag.
(a) (b)
50 T T T T T T T T T 36 T

0 . . . . . . . . . 16 . . . . . . . . .
0 0005 001 0015 002 0025 003 0035 0.04 0045 0.05 0 0005 001 0015 002 0025 003 0035 0.04 0045 0.05

? @

Fig. 7.5: Bifurcation diagram of the prey and predator population with respect to param-
eter ¢.
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As the system (7.1) shows Hopf-bifurcation with respect to parameters Ap and ¢, and di-
rection of Hopf-bifurcation is opposite for both the parameters. Therefore, we can divide the
Ap¢-plane into two regions:

Region of stability (green) S| = {(Ao, @) : system (7.1) is locally asymptotically stable}.
Region of instability (white) S, = {(Ao, ¢) : system (7.1) is unstable}.

Both the regions are drawn in Fig. 7.6. The curve which separates both the regions is called
Hopf-bifurcation curve.

09T I Region of stability
1 Region of instability

0.8

0.7

06

-05F /

Hopf-bifurcation curve

04 r
031
021
011
0 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A0

Fig. 7.6: Region of stability and instability for system (7.1) in Ag¢-plane.

The number of interior equilibrium points depend on the values of parameters. In the Ta-
ble 7.3, we have shown dependence of total number of interior equilibrium on parameters
a and d and the nature of their stability. It is observed that when a = 0.105 and d = 0.1
(other parameters are as in (7.25)), then three interior equilibrium exist for the system (7.1),
E;(0.5099,1.398,20.9174), E;(8.2355,1.409,32.9068) and E;(42.309,1.4136,43.0591). E;
and E5 are locally asymptotically stable and E is unstable. Since there are two locally asymp-
totically stable equilibrium in the system, so it shows bistability. Bistability is a phenomenon
where a system converges to two different equilibrium points for the same parametric values
based on the variation of the initial conditions. In Fig. 7.7, we initiated two trajectories from

two nearby points and they converse to different interior equilibria. The black dotted curve
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is separatrix, which divides the xy—plane into two regions in such a way that if a solution is
initiated from the left of the separatrix, it converses to E| and if a solution is initiated from the
right of the separatrix, it converses to E5. In other words, left region is region of attraction for

E{ and right region is region of attraction for E5.

Remark 7.3.5. For the best representation of bistability phenomenon and separatrix curve, the
Fig. 7.7 is drawn in the xy—plane. But initial conditions and interior equilibrium points are

written as they are.

Bistability
45 T T IY T T T T T
, E*,(42.309,1.4136,43.0591)
(locally asymptotically stable)
40 §
35 §
>

30

E* 2‘é.2355,1 .409,32.9068)

’ (unstable)
I}
25 I’ - - - separatrix i
1 (XO,AOaV0)=(9-2,1 ’35)
' E*,(0.5099,1.398,20.9174) Ay )o(9.3.1.35)
X =(9.
(locally asymptotically stable) 1 0’ 0"{0 I’ ’
20 1 1 1 1
0 5 10 15 20 25 30 35 40 45

X

Fig. 7.7: Trajectories initiated from region of attraction of both the locally asymptoti-
cally stable equilibrium points, system (7.1) shows bistability.

Table 7.3: Dependence of total number of interior equilibria and their stability on pa-
rameters a and d. Rest of the parameters are same as in (7.25).

Parametric values No. of in-  Equilibrium points Nature of
terior equi- equilibrium
librium points
points

a=0.08,d =0.01 0 - -
a=0.1,d =0.235 1 (46.7827,1.4114,37.6669) stable
(4.4407,1.4048,27.0479) unstable

a=0.1,d =0.137 2 (41.3432,1.4132,42.038) stable
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(0.5099,1.398,20.9174) stable
a4—=0.105.d=0.1 3 (8.2355,1.409,32.9068) unstable
’ (42.309,1.4136,43.0591) stable

7.4 Analysis of Delayed Model

In this section, we discuss the local stability and Hopf-bifurcation phenomenon for the delayed
system (7.2). The introduction of time delay does not affects the equilibria of the system. So,
all the equilibria remain same as the non-delayed system (7.1). To see the effect of delay on the

dynamical behavior of the interior equilibrium E*, we rewrite the delayed system (7.2) as

dU (1)
dt

=FU@),U(t—711),U(t—m)), (7.26)
where
U(t) = (1) At) y(O)), Ut —1)) = [x(t = 7), Al — 7)), y(t = 7)), j=1.2.
Now we linearize the system (7.26) by using the following transformations:
x(t) = X(1) +x", A1) =A(t)+A", () =5(1) +",

where %,A and j are small perturbations around x*,A* and y*, respectively. Then the linearized

system of (7.26) about the interior equilibrium E™ is given by

‘fl_f =PZ(t)+Q1Z(t— 1)+ Q2 Z(t — »),

where

_ {%’H 01 = {%} 01— {%} Z = [5(0).A(0), 5]

Thus, the Jacobian matrix of the system (7.2) at E* is given by

aj 0 —a
0 as ag s
c1a5e’5f' cz(l)y*e’zgf2 ae +crlare &M +cz¢A*e’5f2

where
2rx* o(1—Ap)y" _o(l1-Ap)x"

M= (14 ax*)? T T T

, a3 :_ﬁ_d)y*v
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(X(l —Ao)y*
(14+ax*)? "’

The characteristic equation corresponding to the above Jacobian matrix is

as = AAg— Q0A”, as = ag = —d —2ey".

E3 4 b1EX 4 br& + b3+ (b4E% +bsE +bg)e ST + (b7E> +bgé +bo)e 2 =0,  (7.27)
where
by = —(a1 +asz +a6), by = azag +ajag+ajaz, by = —ajazag, by = —cias,

bs = C]dg(d] +as +a5), bg = —cla2a3(a1 +a2), by = —CZ(I)A*,
by = crp(a1A" +azA" —agy”), bg = cra19(—az3A™ +agy”).

Remark 7.4.1. When t, = 1, = 0, then the characteristic equation (7.27) is same as the char-

acteristic equation (7.14) for non-delayed system.

Case (1): 7 >0, 7p = 0. Then equation (7.27) becomes
§3+d1§2+d2§+d3+(b4§2+b5§—i—bdeiéf' =0, (7.28)

where
dy = by +b7, dy = by +bg, d3 = b3+ by.

For the delayed system (7.2), the positive equilibrium is locally asymptotically stable if and only
if all the roots of the equation (7.28) have negative real parts. For switching of the stability, the
root of the equation (7.28) must cross the imaginary axis. Therefore let i (@ > 0) be a root of
equation (7.28), then it follows that

(—by0* 4 bg) cos(®T)) + bswsin(w1)) = d) 0> — ds,

5 (7.29)
bswcos(oT)) — (—bs@? + bg) sin(07)) = ©° — dr .
From the above set of equations, we can obtain
6 4 2 _
@°+h o +hho“+h; =0, (7.30)

where
hy = d? — b —2d>, hy = d3 — b2 —2dd3 + 2bsbg, hy = d3 — b?.

If we put ®?* = z, then equation (7.30) becomes

g(2) =2+ +hyz+h3 =0. (7.31)
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Theorem 7.4.1. If equation (7.31) has no positive root, then there is no change in the stability
behavior of E* for all T; > 0.

Corollary 7.4.1.1. If inequalities in (7.15) hold and equation (7.31) has no positive root, then
E* is locally asymptotically stable for all T; > 0.

Corollary 7.4.1.2. Ifinequalities in (7.15) do not hold and equation (7.31) has no positive root,
then E* is unstable for all Ty > 0.

Now let inequalities in (7.15) hold and equation (7.31) has at least one positive root, say

71 = a)]z. Substituting @; into equation (7.29), we obtain

1 1 [(d] (1)]2—d3)(—b4(0]2+b6)+(0)]3—d20)1)0)1b5 +21l
w

T|; = ——COS ,i1=0,1,2.... (7.32)
W (—b4(0]2+b6)2+(0]2b52 1

(H]) : gl((l)]z) > 0.
Let &(1),) = i be the root of equation (7.28), a little calculation yields

S —C
dn E=imy, 1=1y; <_b4w12 +b6)* + w12b52
But sign of [%Re(é)k:iwh _— is same as the sign of [Re(j—f])}é

Hence, the transversality condition can be obtained under (H, )

=i, T1="Ty;"

d
[d—,ﬁ(Re(fS))] o >0,

Thus, we can state the following theorem.

Theorem 7.4.2. For system (7.2), with Tp = 0 and assuming that (H)) holds, there exists a
positive number Ty, such that the equilibrium E* is locally asymptotically stable when 7| < Ty,
and unstable when T\ > T\,. Furthermore system (7.2) undergoes a Hopf-bifurcation at E*

when T = T,,.

Case (2): 11 =0, 7, > 0. Then equation (7.27) becomes
§3+€1§2+€2§+€3+(b7§2+bg§+b9)€75f2 =0, (7.33)

where
ey = by + by, ey =Dby+bs, e3 = b3+ bg.

Under an analysis similar to Case (1), one can easily deduce the following theorem.
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Theorem 7.4.3. For 11 = 0, the interior equilibrium point is locally asymptotically stable for
T < T, unstable for v, > T, and it undergoes Hopf-bifurcation at T, = T given by

o = L cost | (€102 = €3)(Zbr003 o) + (@3 — erm) dndy
T (—d1@3 +bo)? + w3 bg? ’

where i@, is root of characteristic equation (7.33).

Case (3): 7y is fixed in the interval (0, ’510) and assuming 7, as a variable parameter
We consider equation (7.27) with 7; as fixed in its stable interval (0,7;,) and 7, as a variable.
Letiow (@ > 0) be a root of characteristic equation (7.27). Then separating real and imaginary
parts, we obtain

— b1 @* 4 b3+ (—bs@* +bg) cos(07T) )+ bsosin(@T ) = —(—b7 > +bg) cos(@T,) — by sin(@7T,),
(7.34)

— @+ by — (—bg@* +bg) sin(@T) ) +bswcos(@T;) = (—b70° +by) sin(@T,) — by cos(WT).
(7.35)

Squaring and then adding (7.34) and (7.35) to eliminate 7,, we obtain

(=b1@* +13)* + (—0° + bry0)* + (—bs @ + bg)* + b2 0> 4 2[(—b 1 ©° + b3)
(—bs@* 4 bg) + (— @ + by )bs ] cos(@7T)) + 2[— (— @ + br®) (—by®* +b)  (7.36)
+ (b1 % + b3)bs 0] sin(OT;) = (—b7®* + by )? + b0’

Equation (7.36) is a transcendental equation in complex form. So, it is not easy to predict the
nature of roots. Without going detailed analysis with (7.36), it is assumed that there exist at

least one positive root wy. Equations (7.34) and (7.35) can be re-written as
— (—=b70 + bo) cos(myT2) — by sin(wyT) = D (7.37)

(—b70)§—l—b9) sin(@yT2) — by cos(wyT2) = Do (7.38)

where
Dy = —b @3 + b3+ (—ba@3 + bg) cos(wy ;) + bs g sin(ayTy ),

Dy = —a +baay — (—ba@] + bg) sin(anty ) + bsap cos(wpTy).

Equations (7.37) and (7.38) lead to

~1 —(—bﬂﬂg +bo)D1 — bganD; 2nm
(—=b7095 + by)2 + b0y

1
T, = —Cos ,n=0,12,.... (7.39)
"o
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Now, to verify the transversality condition of Hopf-bifurcation, differentiating equation (7.34)
and (7.35) with respect to 7, and substitute 17, = ’cﬁo, we obtain

P{d(Reé)} *+Q{dw} :*:R,

d’L’z d_’L'z
4
d(Re &) do (7.40)
—o|TER L p S8 =,
) =1} dn =T}

where

P =30, + by +bscos(wyT)) — (—by] + bg) T cos(ayT; ) 4 2bsay sin(wy ;) — bs T,
sin(@yTy) — (—b7a)§ +bg) T cos(myTy) + bg cos(@yTr) — bg Wy T sin( @y Ty ) + 2b7wp sin(wp ),

Q = —2b1 @ — 2bsycos(wyT)) — (—bs@f + bg) Ty sin(@yT; ) + bssin(wyTy) + bswy cos( @y )
—2b7mpcos(wyT) — (—b7a)§ +b9) Ty sin(@yTy) — bg Wy T cos(WyT2) + by sin(wp),

R = (—b7003 + bo) ax sin(wy T2 ) — by cos(my ),

S = (—=b705 + bo) ax cos (T2 ) + by @f sin(@y ).

Solving equation (7.40) for [d(g—if)} ., itis obtained
T2:T20
{d(Reé_‘,)} _ PR-0S
dt =1 . E=Boy P2+ Q2

(H>) : PR— QS #0.

Theorem 7.4.4. For system (7.2), with Ty € (0,7,) and assuming that (H,) holds, there exists
a positive number ’L'éo such that E* is locally asymptotically stable when t) < ’L'éo and unstable

when 1T, > ’L'éo. Furthermore, system (7.2) undergoes a Hopf-bifurcation at E* where T, = ’L'éo.

Case (4): 1, is fixed in the interval (0, ’L'zo) and assuming 7; as a variable parameter Under

an analysis similar to Case (3), one can easily prove the following theorem.

Theorem 7.4.5. For 1, € (0, 13,), the interior equilibrium point is locally asymptotically stable
for ty < 1) and it undergoes Hopf-bifurcation at T\ = 1, given by

;o 1 1 —(—b4(0$+b6)D3—b5(0*D4
o. (—ba®? + be)? + bio?

Y

where
D3 = —by 0)3 + b3+ (—b7(0£ —l—bg)COS((D*Tz) + bg @, sin(a)ﬂz),



Chapter 7. Stability and Bifurcation of a Prey-predator System with Additional Food and

202 Two Discrete Delays

Dy =—> + by, — (—b70> + by ) sin(®.72) 4 by @, cos(@.T),

and i, is characteristic root of equation (7.27).

7.5 Direction and Stability of Hopf-bifurcation

Now with the help of center manifold theory and normal form concept (see [80] for details), we
shall study direction and stability of the bifurcated periodic solutions at T; = 7| o
Without loss of generality, we assume that 7, < 7] , where 7; € (0,7y,). Let

X1 (1) = x(0) — 3", A1) = AG) A%, i (1) = y(0) ¥,

and still denote xi(r),A1(¢),y1(¢) by x(t),A(t),y(t). Let 71 = 7 + i, 1 € R so that Hopf-
bifurcation occurs at 4 = 0. We normalize the delay with scaling ¢ — (Ti]), then system (7.2)
can be re-written as

*

U(t) =7 (PUH) + QiU — 1)+ QaU (1 — %) +F(AL), (7.41)

where U(t) = (x(¢),A(t),y(t))7,

a 0 —a O 0 O 0 0 0 S
P=10 as as |, Q]Z 0 0 0 ) QZZ 0 0 0 7f<x7A7y): f2
0 0 was cias 0 crap 0 c20y" c20A” f

The nonlinear term fi, f> and f, are given by

fi= <_ 2r  2ao(1 —Ao)y*>x2<t)_ o(1—Ap)

= 0 +ax*)zx(t)y(t) +ho.t.,

K (1+ax*)3

fr=—0A(t)y(t) +h.o.t.

f3=—2ey*(t) — 20](?33;%03)); Ar—1)+

T T
+c0A <t — %)y(r — 72> +h.o.t.,

The linearization of equation (7.41) around the origin is given by

C1 (X(l —Ao)
(1+ax*)?

x(t—=1)y(t—1)

*

U(t) =1 (PU(t)+ QU(t— 1)) + QoU (t — %).
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For x = (X1, %2, 43)" € C([~1,0],R%), define

*

Lu(x) = (1) (P(0) + Qux(-1) + Qo (~ 2) ).

By the Riesz representation theorem, there exists a 3 x 3 matrix (6, ), (—1 < 60 <0) whose

element are of bounded variation function such that
0
Lu(x)= | dn(8.w)x(8) forx € C(I=1,0LF). (742

In fact, we can obtain

(1, +H)(P+ Q1 +Q2), if6=0
7|+ +0»), ifoe[—2.0

n(o.p) = | (o THIQIT0) T (-2 )
(T{0+N)Q2, 1fee(_ 7_7_2]>
0, ifo=—1.

Then equation (7.42) is satisfied.
For x € C'([—1,0],R?), define the operator H(u) as

M) = roe-Lo
L2 ldn (&, w)x (&), ifo=0,

and
0, if 6 €[—1,0)
R(u)x(8) = { .
h(u,x), if6 =0,
where
h
h(p,x) = (tf,+ 1) | k2| » x = (X1, 22, 3)" € C([=1,0,R%),
h3
hy = <_ 2_[§ + W) 2( ) — %x@)y(m +h.o.t.,
hy = —¢A(0)y(0) +h.o.t.
hy = —Qeyz(O) B 201(?$;Cg%)y*xz(_l) + %x(—l)y(—l)

s s
+cz¢A<——,2>y<—Tz> +ho.t.,
T T

0 0
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Then system (7.2) is equivalent to the following operator equation
Uy =H(W)U +R(W)U;

where U; =U(t+0) for 6 € [—1,0].
For y € C!([0,1], (R*)*), define

—dvs) if s € (0,1]
fgl ‘I/(—é)d'n (gvo)v ifs=0,

and a bilinear form
0 6
(W(s),2(0) = (0)2(0) — [ [ W(E—0)dn(0)2(8)d

where n(0) =n(0,0), H=H(0) and H" are adjoint operators. From the discussion in previous
section, we know that iy T , are the eigenvalues of H (0) and therefore they are also eigenval-
ues of H*. It is not difficult to verify that the vectors ¢(0) = (1,0, B )Teiwofioe (6 € [—-1,0])
and ¢*(s) = 5 (1,0, ﬁ]*)eiwoffos (s €[0,1]) are the eigenvectors of H(0) and H* corresponding

to the eigenvalue iwp7; and —iayT)  respectively, where

1 — )

fiwo’clo aa

g T/
crase "o as i
pr= -, 0=
. —iwp -~ 1y —as
. fz(oo’cf " 7
iy — ag — ci1ase 0 —crPAte 0
.o
: ; —ioyT o, g
. iy +a . ar—lioy+as+ciaze 04 crpA*e 0] B,
1 )

ciase

D= |1+ajof +BiB; +1, (Bicias+BiBiciaz)e " + 13 (ou By eagy’

*
i)

_ . —iwy -
+ﬁ]ﬁ]*C2(f)A )e o |.

Following the algorithms explained in Hassard et al. [80] and using a computation process
similar to thatin Song and Wei [195], which is used to obtain the properties of Hopf-bifurcation,
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we obtain

/

27, [ r —F B B2 _ B —2iwoT]
820 =~ EJrﬁla(l—Ao)ﬂLO‘](l’alﬁl+ﬁ1€ﬁ1—[31010‘(1—140)[316 0

— Bl 2o By 62’.@0@} ;

g = o {2%+a(1 —A0)(B1 +Br) + 05 ¢ (cu By + @i py) + 2By ey B

—Blcra(1—Ao)(Bi+B1) + B2 (o B + 0y |,

2T
802 = 7]{ +Bro(1—Ag) + o 90 By + By ePr —ﬁlclo‘<1_’40)ﬁlezw0]°

~Bie ¢71E€2iw°ﬂ ;

I

27
g =——=" {—{2W](]])(0)+W2(3)(0)}+oc(1 ~a){ W)+ 3w (0) +
— — 1

+BWL ()~ aBi — 24y b+ a5 { Wi (0) + WA (0) + 2 Wl (0)+ B, 0)}
o n nx —i Iy

+ B {287 (0) + Biwsy) (0) | — Berar(1 = Ag){e oW (1) + 3¢ oy (-1)
1— oyt —iwyT! o —iwyT] —i

+ 3 Bre ™ W (<1) + Bre oWl (1) — aBre ™™ — 2apre o |

nr i * T4 1 T Ty
e () S (- )+ o (- )
]0 1o 1o

+Bre s (- 2) }} :

T]O
where
j _ . /g 9 ' 9
Wa0(6) = 53-4(0)e i +3;§)°; G(0)e @08 4 Ey 2o,
. i) 7| — —iwpt, 0
W“(e):_aif_%foq(o)e’ 'o +a’,f—;]10q(0)e’ " 4 Ey,

E| = (E](]),E](Z),E](3))T €R}and E; = (Ez(]),Eéz),Ef))T € R3 are constant vectors, computed
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as:
~1
2i(0() —aj 0 az
E =2 0 2iay — a3 —a4 %

iy T, i . —2iwyT! —2ion T
—crase @™o —cr Py e ™% gy — ag — craze ‘@0 lo — crpA*e 2D

% +(X(1 —Ao)ﬁ]
oo B ;

! .
eﬁ]Z—C](X(l —Ao)ﬁ]e 2leT'O — 0o ﬁ] e 20T,

—1
—aj 0 ar

I
S}

E, 0 —aj —day

—cias —c20y" —ag—cray —c20A”

% +30(1—=A0)(Bi+Br)
Lo(aB +aifr)
ePiBi — ycia(l—Ag)(Bi+ Br) — 320 (@i B + i Br)

Consequently, g;; can be expressed by the parameters and delays 7| o and 7,. Thus, these stan-

dard results can be computed as:

2
Re(c1(0

c1(0) 3 2 _Re(l’(f{o))’

- 20077,
Im(c1(0) + palm(A' (7).

B> = 2Re(c1(0)), T = — wofllo

These expressions give a description of the bifurcating periodic solution in the center manifold

of system (7.2) at critical values 7 = 7j, which can be stated in the form of following theorem:

Theorem 7.5.1. e i, determines the direction of Hopf-bifurcation. If i > 0(< 0) then

the Hopf-bifurcation is supercritical (subcritical).

o B, determines the stability of bifurcated periodic solution. If B, > 0(< 0) then the

bifurcated periodic solutions are unstable (stable).

o T, determines the period of bifurcating periodic solution. The period increases (de-
creases) if T, > 0(< 0).

Remark 7.5.1. When t; > 0 and 7o =0 or 11 = 0 and 7, > 0, then under an analysis similar
to section 7.5, the corresponding values of Wy, Br and T> can be computed. Depending upon

the sign of W, B and T», the corresponding results can also be deduced.
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7.6 Numerical Simulation of Delayed Model

In order to validate our theoretical findings, obtained in previous sections, we perform some
simulations by taking the same values of parameters in (7.25). We consider all four cases on
delay parameters 7; and 7;.

Case (I): When 1, = 0 and 7] > 0, then we see that condition (H}) holds. Since the transver-
sality condition is satisfied, therefore Hopf-bifurcation occurs in the system. To evaluate the
critical value of delay parameter, taking i = 0 in equation (7.31) and (7.32), we obtain

o = 0.3688, Ty = 0.2889.

Thus, the positive equilibrium is locally asymptotically stable for 7; < 77, = 0.2889, which is
shown in Fig. 7.8. When 7 = 7}, system undergoes a Hopf-bifurcation and periodic solution
occurs around E*. The time series analysis and periodic solution have been shown in Fig. 7.9.
If we starts a trajectory from an initial point then it approaches to the periodic solution (Fig.
7.9). This shows that the periodic solution is stable. In Fig. 7.10, we made the bifurcation
diagram for both the populations. The blue (red) curve represents the maximum (minimum)
values of population at sufficiently large time. It is easy to see that Hopf-bifurcation occurs at
T = 71, = 0.2889.

70 40

X 38
60 — Al
36 stable equilibrium point

50 y 1 34

32
40 g

> > 30

= 30 i 28

26

20

24

22

| 3
A2
0 .-~~~
T o 15 20

0 50 100 150 200 250 300 25 30 35 40 45
time X

Fig. 7.8: Time series evolution and phase portrait of species for the set of parameters in
(7.25)and 71 = 0.2 < 71, = 0.2889 when 7, = 0. System is locally asymptotically stable
around the positive equilibrium E*.
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Fig. 7.9: System (7.2) is unstable when 7; = 0.35 > 71, = 0.2889 and 7, = 0. Hopf-
bifurcation occurs and stable limit cycle arises in the system.
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Fig. 7.10: Bifurcation diagram of the prey and predator population with respect to delay
parameter 7; when 7, = 0.
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Fig. 7.11: Stable time series solutions and phase diagram of system (7.2) for 7, = 0.7 <
Ty, = 0.9618 and 7; = 0. Other parameters are same as in (7.25).

Case (II): When 71 =0 and 7, > 0. In this case, the transversality condition is satisfied,
so the system will show Hopf-bifurcation at a critical value of delay parameter 7,. By some
computation, we obtain

w =0.317, 1, =0.9618.
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Therefore, according to our theoretical analysis, the system (7.2) is locally asymptotically stable
for 7, < 1,. In Fig. 7.11, we draw the time series of both the species for 7, = 0.7 < 7, =
0.9618. From the figure, it can be seen that system is stable around the positive equilibrium
E*. At o = 7, the system goes through a Hopf-bifurcation and for 7, > 75, system becomes
unstable and limit cycle produces. This behavior is depicted in Fig. 7.12. Again bifurcation
diagram with respect to delay 7, for both the species is drawn in Fig. 7.13, which helps us to
understand the Hopf-bifurcation phenomenon in the system.

3

—
y 1415

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
time time

Fig. 7.12: Instable behavior and existence of periodic solutions of system (7.2) around
the positive equilibrium E* at 7o = 1.2 > 7, = 0.9618 and 71 = 0.
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40 -

35

30

251

201

Fig. 7.13: Bifurcation diagram of the prey and predator population with respect to delay
parameter 7, and 7; = 0.

Case (IIT): When 7; = 0.12 (fixed in the interval (0, 7,)) and 7 as a parameter, then we
observe that the condition (H>) holds true. Therefore according to Theorem 7.4.4 system (7.2)
undergoes a Hopf-bifurcation. Equations (7.36) and (7.39) give us the values of @y and ’L’éo as

wp = 0.445, ) = 0.4731.

Thus the equilibrium point E* is locally asymptotically stable for 7, < ’L’éo = 0.4731 which is
shown in Fig. 7.14 and unstable for 7, > 73 (Fig. 7.15). When 7, = 17 , system undergoes a
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Hopf-bifurcation around E* and periodic solution arises in the system. Bifurcation diagram is
also presented in Fig. 7.16 with respect to 7, for both the species when 7; = 0.12 (fixed).

70
40
—Xx
60 Al
y 35 stable equilibrium point
50 ]
=, 40 >.30
<r\
= 30 1 25
20
20
1
10 1.2
A 14
0 : : : : : : : : : o s
0 50 100 150 200 250 300 350 400 450 500 16 T, 4o 15 20 25 %0 %
i X
time

Fig. 7.14: E* is locally asymptotically stable when 7; = 0.12 is fixed in its stable range
(0,71,) and 7, = 0.4 < 75 = 0.4731.
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Fig. 7.15: E* is unstable when 7; = 0.12 is fixed in its range of stability (0, 71,) and
7, =0.6 > Téo =0.4731. Time series solution of species and existence limit cycle (right).
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-

> T,
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Fig. 7.16: Bifurcation diagram of the prey and predator species with respect to parame-
ter o when 7; = 0.12 is fixed in its range of stability (0, 7y,).

Case (IV): When 1, = 0.42 (fixed in the interval (0, 75,)) and 7 as a parameter, then our
computer simulation yields
o, = 0.4491, ’L'{O =0.1336.
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For 71 = 0.1 € (O,T{O), the system is locally asymptotically stable (Fig. 7.17). But for 7, =
0.2 > ’L'{O, the system becomes unstable (Fig. 7.18). Thus the model is stable for 7; < ’L']’O. As
) passes through 7| ,» it loses the stability and a Hopf-bifurcation occurs in the system. Fig
7.18 shows the existence of periodic solution (closed trajectory). The trajectory started from an
initial point, approaches to the closed trajectory. This shows that the closed trajectory is stable.
In Fig. 7.19, we present the bifurcation diagram of both the species with respect to 7; when
T, = 0.42 (fixed).
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0 50 100 150 200 250 300 350 400 30 40 50 50 1
H X
time

Fig. 7.17: E* is locally asymptotically stable when 1, = 0.42 is fixed in its stable range
(0,75,) and 7; = 0.1 < 77, = 0.1336.
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Fig. 7.18: E* is unstable when 7, = 0.42 is fixed in its stable range (0, 7p,) and 7| =
02> Tl’o = 0.1336. Time series solution of species and existence limit cycle (right).

As the system (7.2) shows Hopf-bifurcation with respect to both the delay parameters T;
and 7. Therefore, we can bisect the 7;7,—plane into two regions, which are separated by
Hopf-bifurcation curve.

Region of stability (sky blue) S3 = {(71, 1) : system (7.2) is locally asymptotically stable},
Region of instability (white) Sy = {(71,72) : system (7.2) is unstable}.

Both the regions are drown in Fig. 7.20.
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Fig. 7.19: Bifurcation diagram of the prey and predator species with respect to parame-
ter 71 when 7, = 0.42 is fixed in its stable range (0,7, ).
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Fig. 7.20: Region of stability and instability for system (7.2) in 7 7»-plane.

7.7 Conclusion

In this chapter, we have considered a habitat where two biological populations, prey population

x and predator population y are surviving and interacting with each other. It is assumed that prey

population follows logistic growth in the absence of predator and in the presence of predator,

the interaction between them follows Holling type II functional response. We have shown the

positivity, boundedness and persistence of the system, which implies that the proposed model

is ecologically wellposed. We have defined a parameter Ay (0 < Ag < 1) which denotes the

dependency of predators on supplied additional food. Our system has four kinds of equilibria,

trivial equilibrium E(0,0,0), axial equilibrium E; (K,0,0), two prey free equilibria £, and E

under condition (7.5) and unique positive equilibrium E* under conditions (7.9) and (7.10).

Local and global stability of the positive equilibrium are shown under several conditions which
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are dependent upon the parameter Ag. The parameter A is crucial, so we have studied its effect
via Hopf-bifurcation analysis which is also condescend by the numerical illustration. For a
chosen set of parameters we calculated the threshold value of parameter Ag, that is Ag = 0.482,
where Hopf-bifurcation occurs and system stabilizes. It is also observed that after stabilization
of system if predators are more dependent on additional food then prey population increase
whereas predators remain in their range. We also have studied the Hopf-bifurcation with respect
to consumption rate of additional food ¢. Threshold value of ¢ is obtained as ¢ = 0.02847. In
table 7.3, we have shown the different number of positive equilibrium points by varying the
parametric values, when a = 0.105 and d = 0.1 (other parameters are same as in (7.25)) then
our system has two stable equilibrium together, therefore system shows the phenomenon of
bistability, which is depicted in Fig 7.7.

Models with delay show comparatively more realistic dynamics than non delayed models.
When a predator consumes a prey individual, then its effect does not come immediately, it
takes some time i.e. time lag for gestation. Again, predators also take some time to consume
and digest the supplied additional food to them. Therefore, to make our model ecologically
more realistic, we incorporated two delays; one for gestation delay and other for consuming
and digesting the supplied additional food.

For the delayed model, we have analyzed Hopf-bifurcation via local stability taking delay
as a bifurcation parameter. We investigated the Hopf- bifurcation phenomenon for all combi-
nations of both delays. We obtained the sufficient conditions for the stability of the positive
equilibrium point and existence of Hopf-bifurcation for Case(1): 7; > 0, 7o = 0, Case(2):
71 =0, 7o >0, Case(3): 7 is fixed in the interval (0,7,) and 7, as a variable parameter,
Case(4): 1, is fixed in the interval (0,7,,) and 7; as a variable parameter. Our system un-
dergoes Hopf-bifurcation in the vicinity of the interior equilibrium point with respect to both
the delay parameters when they cross their critical values. The qualitative properties of Hopft-
bifurcation are studied by using the Normal form theory and the formulae given in Hassard et
al. [80].

We have performed some numerical simulations to illustrate our theoretical results. For a
biologically feasible set of parameters, the system is stable initially, then we introduce delay and
system remains stable till its critical value. If we increase the delay parameter over the critical
value, then system goes through Hopf-bifurcation and becomes unstable. Bifurcation diagrams
(Fig.7.10,7.13,7.16,7.19) with respect to different delays depict the dynamical behavior of the
system.

Our study is important to conserve the prey population through providing additional food
to predators and to establish their balance. Here, we have also shown the significance of delay
parameters. We hope that this study will help to perceive the dynamics of an ecological system
with additional food and two discrete delays.



