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Chapter 8

Modelling the Effect of Fear and Hunting Cooper-
ation in a Prey-predator System with Cooperation

and Anti-predation Response Delay

8.1 Introduction

Hunting is the most common phenomenon associated with the survival of all living beings.
It connects all the components of multispecies food webs that play a vital role to make na-
ture stable and ecologically balanced. Mathematical models are very useful tool to describe the
dynamical behavior of interaction of two or more species. Understanding of ecology with math-
ematical models begun in the mid of 1920s with two independent works [132, 217]. Since then
ecologists are continuously in practice with numerous models considering essential aspects. In
1959, Holling [85] considered the consumption rate of prey by predator (functional response)
as a nonlinear function of prey that saturates a certain level. On later it was considered as a
function of both prey and predator by some researchers [38]. There are a lot of aspects that are
widely studied during the last few decades including conservation and harvesting policies for
species, complexity of habitat, Allee effect, stage-structured models, additional food provided
to predators, etc.

Group hunting (hunting cooperation) is a vital characteristic among predator species that
occurs when more than one predator individuals hunt on a common victim. There are sev-
eral famous examples of group hunting in mammals including spotted hyena Crocutta crocutta
[105, 143, 84], African wild dogs Lycaon pictus [60, 35], wolves Canis lupus [141, 141, 151],
chimpanzees Pan troglodytes [22, 212], in birds Aves [83] and in spiders Carnivore [213]. Fan-
shawe and Fitzgibbon [60] have carried out an experimental study and shown that the success
rate of African wild dogs influenced by the age (stage) of prey and the number of members in
their pack. The larger group reduces intrspecific interference from other predators like spot-
ted hyena. As a pack, African wild dogs have a success rate per chase of over 85% and a
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mean time of only 25 minutes between starting an activity cycle to capturing prey [58]. Chim-
panzees are also dependent on small size mammals like colobinae subfamily for meat when
fruits become scarce [212]. Boesch [21] studied some cooperative roles (driver, blocker, chaser
and ambusher) of Tai chimpanzees during hunting and concluded that chimpanzees are strongly
dependent on the cooperative effort by other individuals. There are a lot of research paper avail-
able in literature that demonstrates the success rate (percentage of encounters that end with kill)
increases in communal hunting. Kruuk [105] has shown that spotted hyena succeeded in 15% of
solo hunt of wildebeest Connochaetes taurinus calves but it increases up to 74% during group
hunts. Even lions Panthera leo are not an exception to group hunting, they hunt on Thomson’s
gazelle Eudorcas thomsonii succeeded in 15% of solitary attack but in 32% of communal attack
[188]. A book written on spotted hyena [105] reveals that group hunts of some prey species like
wildebeest, are significantly more successful than the hunts performed by a lone hyena. Apart
from this, there are some other advantages that seem reasonable in group hunting like searching
time and chasing distance decreases, hunting probability of huge size prey increases [105], the
predators can employ several tactics like making trap or skirmish. Predator individuals deliver
some kind of signals for example vocal cues [58], olfactory signals, visual cues [141] that help
them to connect with each other while hunting. They have to do this without informing the
victim individual. Estes and Goddard [58] have studied that African wild dogs use a repeated
bell-like "hoo" as a contact call when the group members are separated.

Recently, few authors have paid attention to analyze the effect of group hunting through
modelling and obtain significant results [7, 163]. Alves and Hilker [7] considered a model
with Allee effect and hunting cooperation, they found that hunting cooperation is beneficial for
predator population due to increasing the capture rate. Saha and Samanta [178] have analyzed
an eco-epidemic model with group defense of susceptible prey and hunting cooperation among
predators. They revealed the fact that the growth of predators starts decreasing at higher cooper-
ative hunting rate. Possibly, it happens due to the fact that higher cooperation among predators
leads to over-exploitation of prey resources and as consequences they face the negative effect.

Since when the models proposed by Lotka and Volterra, the general perspective of explorers
was that the predator removes the prey population only by direct killing because it is easy to
observe in field. But in recent, some experimantalists have shown that fear effect is as important
as direct killing of prey [124, 34, 123, 236, 36]. Due to the fear of being killed by predators,
prey individuals show anti predator nature in several forms such as reduce foraging time [6],
change the living locality [36], adjust reproduction strategies [171], change in vigilance and
physiological nature [202, 168] etc. These facts are supported by field works and experiments
on invertebrate and aquatic species. A well constructed experimental work was conducted by
Zanette et al. [236] on songbirds Passeri over an entire breeding period. All the bird individuals
which were under experiment, protected by predators (direct killing). Fear was induced in
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some songbirds by broadcasting pseudo sounds of predators while rest of the population was
kept away to hear such sounds. Authors found 40% deceleratation in the number of progeny of
scared population in compared to non-scared population of songbirds. In another experiment
[6] on mule deer Odocoileus hemionus, it is obtained that due to predation risk of mountain
lions Puma concolor they reduce the grazing time and shows more vigilant behavior at forest
edges than in open and forest areas. Due to an acute level of predation fear a victim individual
consumes less forage and confined in a small area which give birth to problems like starvation
which again leads to the reduction of birth rate and survival of prey population [36]. Some
studies show that fear of being hunted may influence the physiological condition of progeny
prey and drop harmful impacts on their survival as mature [34, 32].

In the last few years many authors have paid attention to study fear of predators through
mathematical models [220, 221, 187, 148, 109, 163, 237]. The first model on fear effect was
proposed and analyzed by Wang et al. [220]. They found that increment in the cost of fear
may alter the direction of Hopf-bifurcation from supercritical to subcritical under a condition.
The effect of fear in a stage structured population model with adaptive avoidance of predators
is examined by Wang and Zou [221]. They showed the fear interplays with maturation delay
between immature prey and mature prey in determining the long-term population dynamics.
The mature prey shows strong anti-predator behaviors at large population of predators whereas
it shows weak anti-predator behaviors at high costs of fear. A tri-trophic food chain model with
effect of fear was studied by Panday et al. [164] and observed that the system exhibits chaotic
nature for small costs of fear. Further, the chaotic oscillations are controlled by increasing the
fear parameters. Kumar and Dubey [109] analyzed a prey-predator model with fear effect and
prey refuge and shown that cost of fear is capable to remove the oscillations from the system.
They also concluded that the conservation of prey under a threshold level promotes both the
prey and predator populations.

It is known that each biological organism takes an amount of time to respond to any action.
This amount of time is said to be delay in biology. There are various kind of time delays that
represent lag in response of a specific action or process such as hunting [196], digestion of
food [107], defense in prey population [183], maturation [26, 55], gestation [46, 109], negative
feedback [64, 56], etc. Previously, it has been studied that the prey individuals reflect some
anti-predation behaviors in the response of fear induced by predators and consequently their
reproduction rate reduces. But in the real scenario, the prey population does not exhibit anti-
predation responses as immediate as the fear is induced, while it takes an amount of time
to recognize the fear and respond to it [165]. Therefore, the impact of fear follows a time
lag to reflect in the reproduction rate prey, which is called anti-predation response delay. A
delayed model shows much realistic dynamics than a non-delayed model. We incorporate the
delay in a model through a delay differential equation. Delay differential equations show finer
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but complex behavior than ordinary differential equations. A variety of research articles on
single and multiple delay are available in the literature [107, 46, 111, 57, 165]. Kundu and
Maitra [111] explored the complex dynamics of a 3-D prey-predator model with interspecific
cooperation and three discrete delays and observed that each delay is capable to destabilize the
system. Delay is used to control chaos or to remove uneven oscillation from the system [172,
195]. Song and Wei [195] introduced time delayed feedback in Chen’s system. The authors
found that when the delay passes through a threshold level, chaotic nature is converted into
stable steady state or a stable limit cycle.

The objective of this chapter is to analyze the complex dynamics of a prey-predator model
with the effect of fear and cooperation hunting. Moreover, the impact of anti-predation response
delay and cooperation delay is also incorporated in the model to study the complex dynamics
of the system. In the next section, we establish the non-delayed and delayed models. In section
8.3, we discuss some preliminary results. Dynamical analysis of non-delayed model is con-
ducted in section 8.4. Section 8.5 is devoted to stability and Hopf-bifurcation of the delayed

system. In section 8.6, we present some numerical simulations in the favor of our findings.

8.2 Formulation of mathematical model

We contemplate an ecological system where two biological populations (one is prey and another
is predator) survive. We assume that the prey population grows logistically in the absence of
predators. This leads us to the following differential equation
dx 5

o =X rox— X
where x is number of individuals in prey species at time ¢, r and rq are reproduction rate and
natural death rate respectively. The parameter r; denotes the coefficient of intraspecific compe-
tition among preys.

Let y denotes the predator population and according to some recent field experiments, it
was observed that due to the fear induced by predators, the reproduction rate reduces in terms

of y and cost of fear k. So, the modified form of above is as follows

dx

i h(k,y)rx — rox —rix?,

where h(k,y) is known as fear function and rh(k,y) is effective growth rate of prey under fear

effect that mainly depends on cost of fear k and y.

1
Ty

sented by red curve in figure 8.1 [220, 163]. Although, it follows all the above properties that a

Most of the researchers have worked with the fear function h(k,y) = which is repre-
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fear function should do but despite that it is not much realistic. The reason is the sudden fall in
the reproduction rate at low population level of predators. This nature can be clearly seen in the
zoomed window of the figure. On the other hand, the blue curve decreases slowly at the low
population level and gradually falls with increment of predators then approaches zero at high
population density. In this chapter, we work with a modified fear function h(k,y) = 1+]—ky2’ that
makes more sense than the previous one. Therefore, under the effect of fear, the prey-predator

model takes the following form

dx 1 )

= —rox — —F

71T 5 TX — X — 1 X (x)y, .
dy '

= cF(x)y— 8y — &y’
dr ( )y y 1Y
where F(x) is functional response of predators and ¢, (0 < ¢ < 1) is conversion efficiency
denoting the fraction of consumed biomass that transferred into predator biomass. 0 is natural

death rate of predators and J; is coefficient of intraspecific competition among them.

1
\ — h(k,y)=1/(1+ky)
— h(k,y)=1/(1+ky?)

y

Fig. 8.1: comparison of two types of fear functions.

The functional response or feeding rate is mainly depends on two factors, viz the volume
searched for prey per unit time (searching rate or attack rate) and the time taken to consume

each prey item (handling time) [85, 153]. According to mass action principle, the feeding rate
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always increases linearly with prey density. But in the presence of searching rate and handling
time it initially increases and becomes flat at the abundance of prey resources. The Holling

type-II functional response is formulated as

. ox
1+aox’

F(x)

where « is searching rate or attack rate and a is handling time. As we discussed in the previous
section, most of small size predators prefer to hunt in packs to boost their hunting success rate.
Now, to incorporate the effect of team hunting in the model, we adopt the Berec’s perspective
of encounter-driven functional response for cooperative behavior among predators [13]. It is
based on that the attack rate of predator population increases with predator density and handling
time remains constant. Mathematically, the attack rate can be modelled as

a(y) =oo(l1+ey)”, a(y)=a, e>0, w>0.

In this particular study, we choose w =1 so a(y) = ap(1 +ey) = (1 + vy), where u = o and
v = e0p. Hence, the modified Holling type-II functional response with cooperative behavior

among predators (Berec’s encounter-driven functional response) is given as

(1 + vy)x
1+a(p+vy)x’

F(xvy) =

where u is predation rate and v is cooperation strength of the predators. Incorporating the
cooperation behavior of predators in the model (8.1), our mathematical model is governed as

follows:

dx _ _rx e i — (U +vy)xy
dt 1+k2 O T Tta(u+vy)x
dy _ c(u+vy)xy
dt  1+a(u+vy)x
x(0)=x0 > 0, y(0)=yo > 0.

= f(x),

—8y—&81y* = g(x,y), (8.2)

As previously discussed, predators use several communicational cues to being unified while
hunting. But they do not come together in a group as soon as the prey appears, even they need
an amount of time to transmit signals and form a group [162]. Due to this, there occurs a time
lag in the system that may affect the dynamics. So, it is very reasonable to incorporate a time
delay known as cooperation delay 7, representing the delay in group forming. In the presence

of anti-predation response delay 7, the fear function becomes h(k,y) = m With the
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incorporation of both the delays model (8.2) takes the following form

dx rx ) (L~ vy(t —12))xy
a1 k2i—n) T T (v —n))x
dy _ c(u+vy(t—1))xy
dit 1+a(u+vylt—1))x

(8.3)

— 8y — 81y?,

subject to the non negative conditions x(s) = ¢1(s) > 0, y(s) = ¢2(s) > 0, s € [—7,0], where
0:i(s) e C([-7,0] = Ry), (i=1,2) and T = max{1}, > }.

8.3 Preliminaries

For a population model, it is mandatory to examine its well-posedness before moving ahead.
Positivity of solution shows that species exist and they never cross zero population level and
boundedness illustrates a natural restriction on species to grow them rapidly in the conse-

quences of limited resources. The model (8.2) can be written as

dx dy
E _xd)](xvy)v dt _yd)Z(xvy)v
where
r (L+vy)y c(u+vy)x
= rx— = —0—0yy.
1 (x,y) T2 ro—rix [T (it vy)x P2 (x,y) [Faliut vy 1y

It follows that
X(t) — X(O)ef(; ¢] (X(S),y(s))ds Z 07

y(t) = y(O)ef(;ﬁbZ(x(S),y(s))ds > 0.

Thus, the solution X (¢) = (x(¢),y(¢)) with positive initial condition X (0) = Xy = (x(0),y(0)) €
R%L remains positive throughout the region Ri.

Theorem 8.3.1. The set Q ={(x,y): 0 <x < ,0<cx+y< %} is a region of attraction for

all solutions initiating in the interior of the positive quadrant, where d = min{ry,0}.

Proof. The first equation of model (8.2) implies

X
— <rx— r1x2,

dt

which implies
limsupx(r) < .
t—so0 r
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Again let N(1) = cx(t) +y(1),
then we have

dN_ dx Q_ crx

= —CE-F i Tkyz — Crox — crxt — oy — 51y2 < crx—crix* —dN,

where d = min{ry,6}.

) . o2 )
We also have the maximum value of crx — crix? is % atx = ﬁ Hence it follows that

72
limsupN(r) < ¢

=:L.
—>o0 - 4}"]d

. > . .
We also note that if x > ;= and y > 77, then % < 0 and ‘;—{ < 0. This shows that solutions of

system (8.2) are bounded and € is a positive invariant set. U

Theorem 8.3.2. Model system (8.2) is uniformly persistence if following inequalities are satis-
Sied:
cUux;

r> (LKL (ro+ (1 + VL)L), Ita(ut VD 0

Proof. Persistency of a population model illustrates that species will remain for all future time if
they are initially exist. Mathematically, the model system (8.2) is said to be uniformly persistent
if there are positive constants m and M such that each positive solution X (¢) = (x(¢),y(¢)) of
the system with positive initial pair satisfies

m < liminfX (z) <limsupX(r) < M.
[—reo t—voo

We define

r
M :max{—,L},
T

then from Theorem 8.3.1, we have

limsupX (1) <M.

f—o0

This also shows that for any sufficiently small € > 0, there exists a 7 > 0 such that forallt > T,
the following holds:
x(t) < = +e, y(t) <E+e.
r

Now from the first equation of model (8.2), for all t > T, we can write

dx rx 5
> - — L L
dt = 1+k(L+ey? (+v(L+e))(L+e)x
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- <W£+e)2 —r— (/.L+V(L+8))(L+e)>x—r1x2.

It follows that

li;’gglfx(t) > % <Tz+e)2 —ro—(u +v(L+e))(L+e)> :

For sufficiently small € > 0, we have

. 1 r
liminfx(r) > . <1 2 (/.L+VL)L> = X;.

Therefore, the prey population of system (8.2) is persistent under following condition
r> (14+kL*) (ro+ (u+ VL)L).

Now from the second equation of model (8.2), we can write

dy CHX}y 2
- > —8y—6
dt = T+a(p+v(Lre) > W

CHX; 2
= —8)y=96
<1+a<u+v<L+e>>xi >y 1

which implies

- 1 CHX;
> — .
liminfy(r) > 5 <1+a(,u+V(L+8))xi 6>

For sufficiently small € > 0, we have

o 1 cUx;
liminfy(r) > — w0 =
imin y(t) > S <1+a(u+vL)xl' > ’

For persistence of the predator population of system (8.2), we must have

cux;
0.
1 —|—Cl<,u + VL)X,' -

Taking m = min{x;,y;}, the theorem follows. O
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8.4 Dynamical behavior of non-delayed model

8.4.1 Existence of equilibrium points
It is investigated that system (8.2) has three equilibria E((0,0),E/(x,,0) and E*(x*,y"). The

trivial equilibrium E(0,0) always exists, and x, = ri](r —rp). Then Ej(x.,0) exists if » > rg.

Existence of interior equilibrium E*(x*,y*): The interior equilibria are the positive solu-

tions of the following system of algebraic equations

AN T .40
1+k2 0 l+a(p+vy)x 7 8.4)
1+a(u+vy)x '

From the second equation of above system, one can obtain

. 0+ 0y
" (c—al6+6y)(u+vy)

Clearly x > 0 if ¢ > a(6 + ;). Now substituting the value of x in the first equation of system
(8.4), we get
Boy +B1y° + B2y’ + B3y* + Bay’ +Bsy’ + Bey + B7 = 0, (8.5)

where
By = —a’87kv?, B =2a8kv(v(c—ad)—adu),

By =4adikvu(c—ad) —kv?(c—ab) — a* 82 (v +ku?),

B3 =2a8, (v +ku?)(c —ad) +acdikvry — 2a* 8 uv — 2kuv(c — ad)?,

By = acdkury — c¢8ikry — a>8tu* — ckvrg(c — ad) — (v + ku?) (c — ad)* 4+ 4ad uv(c — ad),
Bs = ac8 vro—acd vr—c8kri —2vu(c—ab)* — ckury(c —ad) +2ad u*(c — ad),

Bo = cvr(c—ad)—cdiry —cvrg(c —ad) — u*(c—ad)? —acd p(r—ry),

By =—céri +u(c—ad)(r—ro).

From equation (8.5), it can be seen that system (8.2) may exhibit at most 7 interior equilibria.
The exact number of interior equilibrium point can be obtained by putting certain parametric

conditions on the coefficients of equation (8.5). But they seem quite complex and it is difficult
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to provide any parametric condition on the coefficients analytically. Here we shall show that
how the birth rate of prey population r influences the number of positive equilibrium point.

Let’s consider the following set of parameters:

ro=0.5, r =0.005, k=0.006, u=0.75 v=0.2,

(8.6)
a=0.11, ¢c=03, §=168, & =0.1.

For the above set of parameters, our observations are listed in Table 8.1. From the biologi-
cal point of view, it is important to study the uniqueness of interior equilibrium point. Here
we are also able to get some conditions on parameters for the existence of a unique positive

equilibrium. From the first equation of system (8.4), we note the following:

e Wheny=0, thenx="-2 =:x, >0.

r]
e When x = 0, then @ —ro— (U+ vy)y =0, which yields

kvy* + kpy® + (v + rok)y* 4+ py — (r—rg) = 0. (8.7)

Equation (8.7) has always has a unique positive root y.(say).

e Let’s consider a continuously differentiable function H : R*> — R such that

r (1 +vy)y
H(x,y)=————ro—rix— .
(x,3) 1+ ky? 0 l+a(u+vy)x
Then we have
JH 2rky wA42vy+a(p+vy)x

dy  (I+k?)?  (I+a(p+vy)x)?

It is observed that ?T[; < 0 for all (x,y) € R%. Hence by the Implicit Function Theorem,
H (x,y) = 0 can be represented as a continuous function y of x in the interior of the first
quadrant.
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Table 8.1: Dependence of total number of interior equilibrium points and their stability

on parameters r, k, i and v. Rest of the parameters are same as in (8.6).

Value of parameters

No. of in-

terior equi-

Equilibrium points

Stability nature

librium
points
r=0.55 0 - -
r=0.65 1 (19.073811,0.18362) stable focus
r=2 1 (77.598227,6.855034) unstable focus
(112.234169,9.673778) saddle point
r=2.8447 2 (21.521139,5.322634) unstable focus
(22.813979,5.740728) unstable focus
=3 3 (67.940677,9.1256) saddle point
(173.787471,9.962255) stable focus
(14.360925,4.397571) unstable focus
r=3, k=0.005 u=0.01 4 (76.560757,9.830711) saddle point
(202.705685,10.236283) stable node
(499.908615,0.0386953) saddle point
(33.328355,7.531355) unstable node
r=13.35 2 (239.923444,10.104824) stable focus
r=4 1 (337.611621,10.212256) stable focus
r=4.5 1 (406.201711,10.256567) stable node

Similarly from the second equation of system (8.4), we can deduce

e Wheny =0, thenx:ﬁ—

=:X1.

. Whenx:O,theny:—(% =:1y; <0.

e The slope of the curve is

It can be noted that the slope % is positive if & >

__clptvy)
dy _  (Fa(utvye?
dx 61 - v

(Ita(p-+nuy)x)?

cvr
r :

From the above discussion it is concluded that the graph of the first equation of the system

(8.4) enters in the first quadrant through intersecting the y—axis at (0,y") and behaves as a



8.4. Dynamical behavior of non-delayed model 227

continuous function in the interior of the first quadrant and then it enters in the fourth quadrant
through intersecting the x—axis at the point (x*,0). The second curve of the system (8.4) passes
through (0,y;) and (x1,0) and it increases if apd; > cv holds. We also assume that x; < x* to
intersect both the curves in the first quadrant.

Theorem 8.4.1. The interior equilibrium point (x*,y*) exists uniquely under the following con-
ditions

ald; > cv and x; < x".

8.4.2 Stability analysis

The local nature of a nonlinear system in a vicinity of a point can be approximated by the
nature of corresponding Jacobian system. Hence, in order to analyze the local stability nature
of existing equilibria we compute the Jacobian matrix and evaluate at each equilibrium point.

The analysis follows:

e The equilibrium point Ey(0,0) is always a saddle point.
e The Jacobian matrix, computed at E; (x.,0) is

—(r— I
(r r()) 1+apx
CIJ)C*
O H—aux*

J|E (x.0) =

It is noted that the equilibrium point Ej (x.,0) is
— locally asymptotically stable if

CUX:

—_ 8.8
1 +CI,UX>~< ( )

— saddle point having stable manifold along the x—axis and unstable manifold along

the y—axis if
CUX,

1+ allx,

e The Jaxobian matrix, computed at positive equilibrium E* (x*,y") is given by

—(rx — a(u+vy*)2xty* o 2rkx*y* + vx'y* + (L+vy")x*
JEr (e y4) = (Itap+vy)r)? (I+ky2)2 7 (Ita(utvy ) © (Ta(putvy)a)
E*(x*,y") c(u+vy )y* —(&y — cvx*y*

(I4+a(u+vy*)x*)? (1+a(u+vy*)x*)?

The characteristic equation corresponding to above Jacobian matrix is

A2 +AA+Ar =0, (8.9)
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where
L a(utvy Py . cvx'y”
Ar=—trUle o) = 0 = vy e 2 O T T ralu v x )
. alptvy )y . cvx'y’
Az =detl]p o) = <r1x T (I+a(u+ vy*)x*)2> <6]y ~ (I+a(u+ vy*)x*)2>
c(u+vy)y' < 2rkx’y* vx'y* (1 A+ vy )x! >
(I+a(u+vy)x )2\ (1+ky )2~ (I+a(p+vy)x)?  (I+a(p+vy)x) )

Now using the Routh-Hurwitz criterion, both the eigenvalues of J| E*(x+,y*) have negative
real part if and only if
A1 >0, A >0. (8.10)

Thus, we can state the following theorem.

Theorem 8.4.2. The positive equilibrium point E*(x*,y*) is locally asymptotically stable
in the xy—plane if and only if inequalities in (8.10) hold good.

Remark 8.4.1. It is easy to note that inequalities in (8.10) hold if

a(u+vy*)?y* cvx*
d 6 >
(T+alu+vy )z 07 UFa(utvy)x)?

r > 8.11)

satisfy.

Hence, we state the following theorem

Theorem 8.4.3. If inequalities in (8.11) hold, then E*(x*,y*) is locally asymptotically
stable in the xy—plane.

8.4.3 Bifurcation analysis

In this section, we investigate different bifurcations that system (8.2) exhibits. We obtain the
threshold values of parameters where bifurcation occurs and examine the transversility condi-
tions for each bifurcation. In the characteristic equation (8.9) if A, < 0, then both the eigenval-

ues are real and have opposite sign. Thus, the following theorem can be stated.
Theorem 8.4.4. If A, < O then the positive equilibrium E* (x*,y") is a saddle point.

Againif A < 0and A; > 0, then both the eigenvalues are either real and positive or complex

conjugate with positive real part. This leads us to the following theorem.

Theorem 8.4.5. IfA; < 0 and A, > 0, then the positive equilibrium E*(x*,y") is unstable.
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From above discussion, if A, > 0 then the positive equilibrium point E*(x*,y*) switches
its stability nature at A} = 0, where both eigenvalues are purely imaginary. Hence to show
the occurrence of Hopf-bifurcation and existence of periodic solutions, we assume A; = 0 and

A > 0 that gives the threshold value of parameter k = k77! as

-G
Kl ”(}y*z, (8.12)
where
(H+vy )y ex' (H+ vy )(1+a(p+ vy )x') +cvx'y*
G=ro+2rx"+ — +6+261y",
T T T a(u vy 2 (I+a(p+vy ) v
and r > G.

Theorem 8.4.6. Assume that Ay > 0, then system (8.2) experiences a Hopf-bifurcation with

respect to cost of fear k at k = k1] near the positive equilibrium E*.

Proof. It can be noted that
(i) If A} > 0and A, > 0, then k > k#/] and E* is locally asymptotically stable.
(ii) IfA; < 0and A, > 0, then k < k#/1 and E* is unstable.

This shows that E* switches its stability nature from instability to local asymptotic stability
as the cost of fear passes through its threshold value k = kP71 We note that at k = klF/],
tr(J|g+ (v y+)) = 0 but det (J| g+(x+ y+)) > 0. Hence the eigenvalues are purely imaginary.

For Hopf-bifurcation the transversality condition also must be satisfied. We have

+2

d ___n
{ﬁ <tr(J|E*)>} xln (1ky)2 <0

Hence by the Andronov-Hopf bifurcation theorem, system (8.2) experiences a Hopf-bifurcation
with respect to cost of fear k at k = k#/] near E*. U

We can fix some criteria for the existence of periodic orbit of system (8.2) using Poincare-

Bendixson Theorem.

Theorem 8.4.7. Assume Z*x* > 0 and one of the following hold

(l) A <07
(ii) Ay <0and Ay >0

then the system (8.2) has a limit cycle.
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Proof. Earlier, we have shown that the interior of set Q is a positively invariant set. We have

ClUXy
H—aux*

Ay <0orA; <0andA, > 0 then the positive equilibrium is unstable. Thus, the positive limit

also carried out that if > § then the axial equilibrium E, (x,,0) is a saddle point and if

set does not contain any equilibrium point. Hence by Poincare-Bendixson Theorem, the system
must have a limit cycle. U

Theorem 8.4.8. The system (8.2) experiences a transcritical bifurcation in the axial equilib-
r—rp
r

war plel = WM ifc > ad and A3 # 0, where A3 is defined in the proof.

rium E.(—2,0) = E.(x.,0) and interior equilibrium E*(x",y") with respect to the parameter

Proof. The variational matrix of the system (8.2) in the vicinity of the axial equilibrium E, (x,,0)

is given as

—(r— _ HXs
J|E = (r=ro) rape: |
*(x*,O) O CUX«
H—aux*
One eigenvalue of above matrix is —(r — rp) and other eigenvalue will be zero if and only if

= pld At yu = plel the above matrix takes the following form

)
c —\r—=ry) —¢

The vectors V = (1, —%)T and W = (0,1)7 are eigenvectors corresponding to the zero
eigenvalue of the matrix JII| E.(x.,0) @nd its transpose matrix respectively. Let F = (f 27,
where f and g are defined previously. Now we define Ay = W' [F,, (E., pleh], where F}, denotes

the partial derivative of F' with respect to (. Then we have
Ar =W [Fu(E., 1)) = (0,1)(0,0)" =0.

Let Ay = WY [DFy (E., ul")V], where

0 ad®> 8

1 [re] o2 [tc]
DF”(E*”LL[C]): 0 ﬁagz uic
u [tc] c u [tc]

A little calculation yields

N2 SN2
Ay = — (r—ro)*(c—ad) <o
r1o

Again we define A3 = W7 [D*F(E,, ul“)\(V, V)], where D*F (E,, ul") is evaluated as

DR (.. ) — [fxx fo Fn fyy]
8xx 8xy 8yx 8yy
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where all the entries in above matrix have the conventional meaning and we calculated at E*

and n= u[tc] as
_ . (c—ad)dr _ 2(c—ab)vé  2rk(r—ry)
A - R
_ __(c—ad)dr _ 2(c—ad)vé
=0 g =gn ="y B =T g 2

Putting these values in the expression of A3, one can easily get

2v(c—ad)*(r—rp) —261> (r—ro)zcz.

cry 52

Az =-2(c—ad)r + <

If Az # 0 then all the conditions of Sotomayor’s Theorem [169] are fulfilled. Thus, the sys-
tem(8.2) experiences a transcritical bifurcation in the axial equilibrium E, (x.,0) and interior

equilibrium E*(x*,y") with respect to the parameter u at plc) = WM. O

Theorem 8.4.9. The system (8.2) undergoes a saddle node bifurcation around E(X,y) with
respect to the parameter | at L = ", if Qi # 0 and Q, # 0 where E (X,¥) is the equilibrium
point when L = [.L[S”] at which two interior equilibrium points E{ and E5 collide, and Q,Q,
are defined in the proof.

Proof. We shall use the Sotomayor’s Theorem [169, 209] to show that the system (8.2) under-
goes a saddle node bifurcation with respect to the parameter (. The Jacobian of the system at

the equilibrium E(x, ) is given by

J=DF(i.3) = ["“ ‘“2],

21 J22
where
o alut i)y 2k VEy (u+vy)x
ju==(ns <1+a<u+vy>x>2>’ 2o <(1+ky2)2+<1+a<u+vy)f)2 <1+a<u+vy>x>>’
. cutvi)y . _ CVEY
— =_—{&yv— .
T T au+vpn? /2 (85 <1+a<u+vy->x>2>

Let /.L[S”] be the value of u such that the matrix J has a zero eigenvalue. This demands
det(J) = 0 at u = ub"). The vectors V| = (1,—54)7 and W = (1,—%)7 are the eigenvec-

12
tors corresponding to the zero eigenvalue of the matrices J and J7 , respectively. Now we define
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Q, =W/F, (E, ub), where Fy (E,ubn) = (fu,gu) evaluated at £ and pu = ubsl as

aBy(ul +vy) iy _ ca®y(pb 4 vy) )
(1 +a(ubrd +vy)x)2  14+a(ubr +vy)x’ fu= (1+a(ubl+v9)5)2  14+a(ubr + vi)x

fu:

Then a simple calculation yields _
J11
Q) = f u— - 8u-
J21

Again, we define Q, = W D?F(E, ul")(vy, V), where D*F (E, ul"))(V;, V) is given b
1 y

. . 2
_Jug i Ju
Jrx jlzfxy jlzfyx"i‘ﬁzzfyy

DZF(E_',,LL[S”])(V],V]): J1i

_Ju J11

&xx — 55,80y — 8 T 72,8
Then one can easily obtain
. . ) . ) %) .3
J11 J11 J J11 J J J
QZ:fxx_._fxy_._fyx‘i‘%fyy_._gxx+ ; 11 8xy T = ]]. gyx_%gyy
J12 J12 J12 J21 J12J21 J12J21 J12J21

Thus from Sotomayor’s Theorem, the system (8.2) undergoes a saddle node bifurcation around
E(%,7) at p = ub" if Q) # 0 and Q, #0. O

8.4.4 Global stability

In this section, we shall obtain the criterion of the global asymptotic stability of axial and
positive equilibrium points. Global asymptotic stability convey that the basin of attraction of a

particular solution is the whole invariant set.

Theorem 8.4.10. The equilibrium point E|(x,,0) is globally asymptotically stable under fol-
lowing inequality
c(u+VvL)x, < 6. (8.13)

Proof. We consider a positive definite function

D(x,y) :c<x—x* —x,.In (é)) +y.

The derivative of ® with respect to time gives

do r

e c(U + vy)yx, _
- = c(x—xy) (—1 e

l+a(u+vy)x

— 61)12.

—ro—r1x> +
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Since x, = %, so it follows

2 c(u+vyyx. >
—rp— —Oy—61y°.
1o r1x> + T+ a(i+ vy y—o1y

dCI)< c( r

dr =\ k2

Fro the above, it is easy to note that % is negative definite under inequality (8.13). Hence,

E|(x.,0) is globally asymptotically stable under inequality (8.13). O

Theorem 8.4.11. System (8.2) is globally asymptotically stable around the positive equilibrium
point if the following conditions hold:

y>0, >0, and > <4y, (8.14)

where y,1, are defined in the proof.

Proof. We consider a positive definite function W(x,y) around the positive equilibrium point

(x*,y%) 1
¥l —x—r =t (F) 1 (v=y (%) )
X C y

Differentiating the above function with respect to time along the solution of the system (8.2),

we get

dt~  x dt ¢y dt

A simple mathematical manipulation yields

a¥y ()c—x*)dx+ 1(y—y")dy

ﬁ’:_{r]_ ap’y* +auvy' (y+y") +aviy’ h B *)2_{ rk(y+y")

dt (1+a(u+vy)x)(1+a(u+ vy )x) (1+ky?)(1+ky*?)
vy 4 ap’x* +apx v(y+y"*) +avix*
(I+a(u+vy)x)(1+a(p+ vy )x")
61 vx* )

| a0

(x—x")(y—y)

Applying the Sylvester’s criterion, % is negative definite if

y>0, n>0, and &> < 4yn,

where

B ap®y* +apvy*(y* 4+ L) +av?y* _ 6 vx*
I4a(p+ vy )x* T e Tda(ut vyt

Y=n
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[ = rk(y* +L)  vy* +au’x* +auvx*(y* +L)+avix*
1 4ky? l+a(p+ vy )x* '

Hence, the positive equilibrium point E*(x*,y*) is globally asymptotically stable under condi-
tion (8.14). O

8.5 Analysis of delayed model

In this component, we shall explore the local stability of delayed system (8.3) near all the
existing equilibrium points. It is known that equilibrium points are not affected by introducing

the time delay in the system. The delayed system (8.3) can be written in vector form as follows

az

i =9(Z(t),Z(t—11),Z(t — 12)), (8.15)

where
Z(t) = [x(0),y(®)]", and Z(t—5) = [x(r —w),y(t — @), i=1,2.
The linearized system of (8.15) around a point (u,v) is given by

dX (1)
dt

= PX(1) +0X (1 — 1) +RX(t — ),

where

B { 09 09 09

92—(0} () 0= {m} () = {m} () nd X (0 =) =)

Hence, the variational matrix of the delayed system (8.3) at the point (u,v) can be given as

D P pratque M trpe
T ) = wy ’
P21 P22 trne
where
r (L+vv)v u(p+vv) c(u+vv)y
= — —2 — = — , —= ,
P= e o (1+a([.t+VV)u)2’p]2 1+a(u+vv)u b (1+a(p+vv)u)?
cu(+vv) 2rkuv Vuy
P2 = T a(u + vo)u IR =T e T T M ra(u v 2T TR

Remark 8.5.1. In the above matrix, q1o =ri2 =1 =0ifu=0o0rv=0. In such a case, the
variational matrix turns out to be same as the non-delayed model. Thus, the delay does not af-

fect the local asymptotic stability of trivial equilibrium point E((0,0) and the axial equilibrium
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point E,(x.,0).

The characteristic equation of the variational matrix evaluated at the positive equilibrium
point (u,v) = E*(x",y") is

A+ diA+dp + d3€7M:] + (dsA +d5)€7m:2 =0, (8.16)

where di = —(p11+p2), do=puipn—piap21, d3=—p2iqi2, ds=—ry, ds=piirn—
DP21712-

Remark 8.5.2. When 1) = 7, = 0, then the equation (8.16) is same as the characteristic equa-
tion (8.9) obtained for non-delayed system.

Case (1): When 7; > 0 and 7, = 0. In this case the characteristic equation takes the follow-
ing form
A2+ biA+by+dze *™ =0, (8.17)

where by = d; +d4, by, = dy 4+ ds. The system (8.3) is stable near the positive equilibrium
point if and only if all the characteristic roots of equation (8.17) have negative real part. For the
switching of stability of E* through Hopf-bifurcation, the characteristic root must intersect the
imaginary axis. Therefore, we assume i@ be a root of equation (8.17). Then splitting the real
and imaginary parts, we obtain

d3 COST| = (1)2 — bz,

(8.18)
d3sinwt; = b 0.
Squaring and then adding both the equations of (8.18), we get
o* + (b2 —2by)@* + (b3 —d3) = 0. (8.19)
Putting > = z, above equation becomes
h(z) = 22+ (b3 —2by)z + (b3 — d3) = 0. (8.20)

Proposition 8.5.1. If equation (8.19) does not have any positive root, then the stability nature
of E* does not change for all | > 0.

Remark 8.5.3. It can be observed that if b% —2by >0 and b% — d% > 0, then equation (8.19)
does not have any positive root, so the stability behavior remains same as the non-delayed
system (8.2).
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Theorem 8.5.1. Assume that inequalities in (8.10) hold and the conditions b% — d% < 0 and
n (a)g) =# 0 are also satisfied. Then there exist a threshold value of T = ’L'][Hf ], where the

delayed system (8.3) experiences a Hopf-bifurcation.

Proof. Assume that inequalities in (8.10) hold good, then the non-delayed system (8.2) is lo-
cally stable around E*. Again let b% — d% < 0, so that equation (8.19) have a unique positive
root @y. On substitution of @y in equation (8.18), we get

d3 CoOSWp T = (Dg —bz,

d3sin wyT) = b ay.

which yields
1 ] by } 2jr .
7/ = —tan ! { +2Z j=0,1,2,... (8.21)
! (Dg — by (0 J
We also have .
AT b
dT] A=iwy la)()d3
which leads
R {dl } - 2w cos wy Ty + by sinwyT;
e|l— = .
dT] A=iay d3(1)()

Using equation (8.20) in the above expression, we obtain

dT]

—1

Re{dﬂ,} B h’(wg).

A=i d3
10 3

Therefore, the transversility condition holds if // (a)g) = (). Hence, according to Andronov-Hopf

bifurcation theorem, the delayed system (8.3) exhibits Hopf-bifurcation at 7; = ’L'][Hf ]. O

Case (2): When 71 = 0 and 7, > 0. Then the characteristic equation (8.16) becomes
A2+ di A+ (dy+d3) + (daA +dse *™ =0, (8.22)

One can deduce the following theorem under the analysis similar to the previous case.

Theorem 8.5.2. Assume that inequalities in (8.10) hold and the condition (dy + d3)* —d? < 0

is also satisfied. Then the delayed system (8.3) experiences a Hopf-bifurcation at ) = ’L'Z[Hf ],

given by

Y

LA _ icosfl (ds — dvds) @0} — (da +d3)ds
? @y d2 + w}d?

where i@, is root of characteristic equation (8.22).
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Case (3): When 7 is fixed and 1 as a variable parameter
We consider equation (8.16) with 7 as fixed parameter and 7, as a variable. Let i@ be a root of

characteristic equation (8.16). Then splitting real and imaginary parts, we obtain
ds®sinWT +dscos T, = »* —dy—drcos @1y, (8.23)

ds@cos Wt —dssinwt = —wd) +d3sinwT;. (8.24)

Squaring and then adding (8.23) and (8.24) to eliminate 7,, we obtain
4 ) 2 2, 2 P . 2 _
0"+ (di —dj —2dr) 0+ (d5 +d5 — d5) — 2wd d3 sin ©T) +2d3(dy — ©”) cos wT; = 0. (8.25)

Equation (8.25) is a transcendental equation in complex form. So, it is not easy to predict the
nature of roots. Without going detailed analysis, we assume that there exist at least one positive
root *. From equations (8.23) and (8.24) one can obtain

. 1 [0?ds—dyds—dydscos T — 0*2dids + 0 dydysinw’ 1| 2nzm
D, = — COs 2 22 +—
W ds +djo w
(8.26)

Now, to verify the transversality condition of Hopf-bifurcation, differentiating equation (8.23)

and (8.24) with respect to 7, and substitute 7, = 7,, we obtain

] alte]

d’L’z d’L’z
2
d(Re &) do (8:27)
Q| — = +P o =5,
2 =g Q=1

where
=d| —d3T1cos® ' T] +dscos @' T —dsT, COSO T, —da® T, SINO 15,
01=-20"—d318in® 7] — dsT, Sin® 7, + dysin@* 15 + dy®" 7, cos 0" 15,

R=ds0" sin®'tj —dy0*cos®’ T} and §=dso"cos 0T} +ds ™ sinw" 3.

Solving equation (8.27) for [ (Re 5)} , it is obtained
T

R
2="Ty

d(Re 5) _ RP; — S0
dr ce_. Pr 0
2 =1, t=io* 1 1
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Theorem 8.5.3. For system (8.3), with fixed T| and assuming RP, — SQ1 # 0 holds, there exists
a positive number T, such that system (8.3) undergoes a Hopf-bifurcation at 7 = ;.

Case (4): When 71, is fixed and 7; as a variable parameter then under an analysis similar to

Case (3), one can easily prove the following theorem.

Theorem 8.5.4. For a fixed 1, the system(8.3) undergoes a Hopf-bifurcation at T| = |, given

by

1 1| 10y +dso,cos w.T) — dssin ;T

T] = —tan 3 - s
w, Wz —dy —dy@, Sin @, T) — d5c0s 0. Tp

where i@, is characteristic root of equation (8.16).

8.6 Computer simulations

In this particular section, we shall perform some simulations and depict graphs in favor of
our analytic findings. These simulations are done using MATLLAB R2020b with the following

parametric values:

r=3.5, rp=0.5, r =0.0375 k=18, p=0.2,

(8.28)
v=0.1, a=02, c=045 &=0.76, & =0.025.

For the above values of parameters, three equilibrium exist Ey(0,0), E,(80,0) and E*(8.60126,
1.13557). The trivial equilibrium point Ey has eigenvalues —0.76 and 3. So, it is a saddle
point. The axial equilibrium point E, is also a saddle point as eigenvalues (—3 and 0.954286)
have opposite sign. The positive equilibrium point £* has eigenvalues —0.042206 £ 0.927918i
with negative real part, so it is locally asymptotically stable. We observe that both the species
oscillate around the equilibrium in transient state and as time passes they move towards their
respective steady states. This nature demonstrates the local asymptotic stability of the unique

positive equilibrium point. The stable behavior is depicted in figure 8.2.



8.6. Computer simulations 239

. (@) N N

T T T T T T T T T
Prey
Predator 2r
30 1

251

08 .
stable E

06

VN~ 04

0 20 40 60 80 100 120 140 160 180 200 0 5 10 15 20 25 30 35
t X

Fig. 8.2: Time series evolution of species and phase portrait for parametric set (8.28).
The system (8.2) is locally asymptotically stable in a vicinity of the positive equilibrium
point E*.

Itis observed that the transient period of both the species increases as we decrease the cost of
fear k, and at a threshold value of k the system becomes unstable around the positive equilibrium
point. The bifurcation point of parameter k is computed by equation (8.12) as k//] = 0.987135.

Since A, = 0.967012 > 0 and dik (tr(J|E*)>} = —0.77301 < 0. Therefore, according to
k=klHf]
Theorem 8.4.6, system (8.2) experiences a Hopf-bifurcation with respect to parameter k at

kST = 0.987135. If we keep the cost of fear below this level then system shows its instability
behavior and limit cycle appears in the phase portrait of the system. We also computed the
value of o* using the formula given in [220]. The numerical value of ¢* is obtained as o* =
—0.507181. Since o* < 0, so the Hopf-bifurcation is supercritical [169] and the limit cycle is

stable in nature.

o @ (b)

Prey
Predator | |

Trajectory initiated from inside of the limit cycle
Trajectory initiated from outside of the limit cycle

351

30
251

? 20 H stable limit cycle

0 10 20 30 40 50 60 70 80 90 100
t X

Fig. 8.3: Unstable nature of solutions and existence of stable limit cycle of system (8.2)
around the positive equilibrium point E* at k = 0.5 < k#/1 = 0.987135.



ﬂvapter 8. Modelling the Effect of Fear and Hunting Cooperation in a Prey-predator System
2 . . . .
with Cooperation and Anti-predation Response Delay

The unstable nature of the positive equilibrium is narrated graphically in figure 8.3. It can
be noted that the solution trajectories oscillate around the positive equilibrium and converge to
the limit cycle. To confirm the stability of the limit cycle, we initiated two solution trajectories
from the inside (blue) and outside (red) of the cycle and perceived that both the trajectories are
attracted by the limit cycle. This behavior of the limit cycle indicates its stable nature. The
stability and instability of the system can be illustrated in a much better way by the bifurcation
diagram (see Fig. 8.4). The blue and red curves show the upper peak and lower peak of the limit
cycle for corresponding value of bifurcation parameter k. The difference between the blue and
red curve exhibits the double amplitude of the limit cycle. From the figure 8.4, one can observe
that the amplitude of the limit cycle decreases along the positive direction of k and vanishes at
k = kIH/] and remains zero for further increment in k. This demonstrates the presence of limit

cycle before k = kl7/] and stability of the positive equilibrium point for higher cost of fear.

80 T T T T 18
of: o
L
sk '~.. 141
3
iy 12
50 kS
\\ 10 |
X 401 X 1 > N
\ 8 4
30t ] Y
N i \\
L * =k i
20 \ ’< /_0.987135 ok k=k"1-0.987135
10 [ ‘/f 1 2r N

0 0.5 1 15 2 25 0 0.5 1 15 2 25

k k

Fig. 8.4: Bifurcation diagram for x and y with respect to cost of fear k. The system is
bifurcated from unstable equilibrium and stable limit cycle to stable equilibrium point at
k= kAl = 0.987135.

The Hopf-bifurcation with respect to v is also identified. The threshold value of v is eval-
uated vI7/] = 0.134875. Therefore, the stability of positive equilibrium point will change as v
crosses its threshold value and limit cycle is produced around the equilibrium point. Further,
the stability and direction of bifurcation is verified by computing ¢* using the formula given
in Wang et al. [220]. Since 6" = —1.032453 < 0, so Hopf-bifurcation is supercritical and the
limit cycle is stable. In figure 8.5, we plotted two solution trajectories for v = 0.18 > v[H/],
The blue trajectory is started from inside of the limit cycle and the red trajectory is started from
outside of the limit cycle. Both the trajectories are attracted by the limit cycle which insures its
stability.
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Fig. 8.5: Stable limit cycle when v =0.18.  Fig. 8.6: Region of stability and instability in vk— plane.

In the above discussion, we noted that the system (8.2) undergoes a supercritical Hopf-
bifurcation in reference to parameters k and v. Therefore, it is feasible to separate the vk— plane
into two regions viz, region of stability and region of instability (refer to Fig. 8.6). The unique
positive equilibrium point is asymptotically stable in the white region, so it is called region of
stability. On the other hand, stable periodic solution exists around unstable equilibrium point
in the blue region, so it is called region of instability in the context of equilibrium point. Both
the regions are separated by a curve. Each point on this curve is a Hopf-bifurcation point for
corresponding values of v and k (other values are same as in parametric set (8.28)). Hence, the
separation curve is named Hopf-bifurcation curve.

To explore some more dynamical features for the model (8.2) like transcritical bifurcations,

we pick out the following parametric set.

r=35, ro=0.5, r=0275 k=18, v=0.1,

(8.29)
a=02, ¢c=045 §=0.76, & =0.025.

We take  as a bifurcation parameter, for this set of parameters, E,(10.909091,0) is the axial
equilibrium point for all values of w. Initially for very small values of u, the positive equilib-
rium does not exist and in such a case E, is locally asymptotically stable. Now we increase
u, then at u = pl'cl = 0.233781, the positive equilibrium appears in the scenario. The axial
equilibrium point E, leaves its stability as soon as the positive equilibrium point E* comes into
existence. It sounds like the axial equilibrium handovers its stability to the positive equilibrium
point for further values of p. Again, we evaluate all A;(i = 1,2,3) (refer to Theorem 8.4.8).
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Our computation shows:

1 0
V= L W= |, A =0, A = —3.824096 0, Ay = 1.036895 # 0.
[—1.776316] H 1 ’ 70 A 7

Hence, as per Theorem 8.4.8, the system (8.2) experiences a transcritical bifurcation between
the equilibrium points E, and E* with respect to parameter it at ul“l = 0.233781. This char-
acteristic of the system is described for both the species x (left) and y (right) by figure 8.7.
The blue dashed and red dashed curves correspond to stable and unstable equilibrium point
respectively. Moreover, if we increase the parameter u, then the steady-state level of x falls
down which is quite reasonable, if predators consume prey species with a higher attack rate
then prey species will decrease. But the steady-state level of predators initially grows up to a
certain value (1 ~ 1) and then starts decreasing. The reason is when predator consumes prey
at a larger attack rate then over-exploitation of prey occurs and in consequences of that the prey
starts fall off. The predators also go down due to lack of food resources. Now if we further
increase the value of i, then system becomes unstable and both the species start to fluctuate.
The system undergoes a Hopf-bifurcation with respect to u at "/l = 2.056025 as shown
in figure 8.7. The system is stable around its positive equilibrium point if u<l < u < u/1 and
becomes unstable as i crosses /). Stable limit cycle arises in the system and unstable E* is

shown by red dashed curve inside the limit cycle in figure 8.7.

12 T T T 1.6 T T T T T
le E . 4
ffi'.f_e_ e - u Eslat_’le_E_* ..: ___________ : stable limit _,.-~"
14+ [tc] : | ',4" B
10 E i ” IR evele.
i M[Hf]\ 121 | i /"
i i i S
8 i i b s
i i i iy
Y I P I i’
Y i Nt 08F i — ]
X 6 stable limit,~ 1 > P .
P ! < ! 77 stableE 4 - - - _ unstable E
i i cycle .- o6t | 7 | U I
i i e ’ i // \‘\‘
ab | * i 4 1 i Y
i \stable E i "/ 04l ‘II N
| \\ (e | | S
: ~. 4 i el
2F 0 el - 3 1 o2f S N -
~ * |
i Sl - l.lnstable E unstableiE,
i P\ ----- Ofm=fm = = = = === = == == |
0 i . . S stable E, . . i .
0 05 1 15 2 25 3 3.5 0 0.5 1 15 2 25 3 3.5
H 1

Fig. 8.7: Bifurcation diagram for both the species with respect to parameter pt. The sys-
tem (8.2) shows transcritical bifurcation at u = u“l = 0.233781 and Hopf-bifurcation at
u= u[Hf] = 2.056025. Other parameters are same as in (8.29).
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Fig. 8.8: Bi-stability phenomenon between equilibrium points E{ and E. for the system
(8.2). Parameters are chosen as in (8.30) and u = 0.008.

For the parametric set (8.30), we examined the following points:

e The system (8.2) does not have any positive equilibrium point when u < ¥ = 0.007184
while it has two positive equilibrium points E; and E; when u > ul"l = 0.007184. E;
is locally asymptotically stable and E5 is saddle point.

e The system (8.2) has an axial equilibrium point E, (50.666667,0) for all values of param-
eter i. From the inequality (8.8) we found that E, is locally asymptotically stable when
U < 0.009445 and saddle point when p > 0.009445.

These observations show that there are two locally asymptotically stable equilibrium points
(E+ and E}) when 0.007184 < u < 0.009445. Hence the system (8.2) exhibits the bi-stability
phenomenon for the parametric set (8.30) and 0.007184 < u < 0.009445. In figure 8.8, we
have plotted several trajectories for g = 0.008 from different initial pairs. The black dashed
curve is separatrix, that separates basin of attraction of both locally asymptotically stable equi-
librium points. It can be seen that two blue solution curves that are initiated from above of
the separatrix, approach to the positive equilibrium point E; (45.664067,0.954132) and green
solution curves that are initiated from below of the separatrix, approach to the axial equilibrium
E.(50.666667,0).
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Remark 8.6.1. It is interesting to note here that the predator population extincts when the
attack rate 1 < 0.007184 and coexists with prey when y > 0.009445. But when 0.007184 >
w > 0.009445, then the existence and extinction of predator population depend upon initial

populations.
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Fig. 8.9: Saddle node bifurcation diagram of system (8.2) with respect to u, the solid
curve stands for stable equilibrium and the dotted curve is stands for saddle point.

In order to show the saddle node bifurcation in system (8.2), we choose the parameters as

follows:

r=2, ro=0.1, ry=0.0375, k=0.1, v=0.02,

(8.30)
a=02, ¢=043, §=0.1878, & =0.25.

For the above set of parameters the threshold value of 1, where det(J) = 0 is obtained pbn =
0.007184 and the interior equilibrium is £ = (48.29704,0.637887). The Jacobian of the system
at E is given by

—1.809419 —12.61917

J= .
0.003846  0.026786
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Fig. 8.10: (a-c) Separatrix and basin of attraction of equilibrium points E, and E{ (or
limit cycle around it) for different values of cooperation coefficient v (a) v=1,(b) v =
4, (c) v = 6. Basin of attraction of E. is in white color and basin of attraction of E| (or
limit cycle) is in cyan color. Red dot denotes unstable equilibrium point while green dot
denotes stable equilibrium point and blue curve in (b-c) is limit cycle. (d) Extinction and
existence of predator for different values of parameter v.

_ 1
The eigenvectors corresponding to zero eigenvalue of J and J7 are calculated V; =
—0.143387
1 _ —21.659878 _
and W) = respectively. We have F,, (E, us) = and D?F (E, us"!
1 [470.51378] peevEy (B, 1) [ 9313747 (&%)

—0.336037

Vi,Vi) =
", ¥) [—0.0020163

] . Transversality conditions for saddle-node bifurcation are given by

Q1 =W Fy(E, ul"y = 4360.586625 # 0 and Q, =W D*F (E,ul")(v;,v}) = —1.284729 #0.

Thus, from the Sotomayor’s Theorem [169] the system (8.2) undergoes a saddle node bifurca-
tion around E = (48.29704,0.637887) at u = ubnl = 0.007184. This particular bifurcation has
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also been illustrated geometrically in figure 8.9.

In figure 8.9, it can be seen that there are two interior equilibrium points E| and E5 coexist
for higher values of parameter i. E| is stable node whereas E; is saddle point. Now if we
alleviate the value of u both the equilibrium points come towards each other and at the threshold
value = ¥ = 0.007184 they collide and annihilate each other via a saddle node bifurcation.
None of the interior equilibrium exists for p < uls".

Now, we consider on parametric set (8.29) to examine the effect of cooperation coefficient.
For this, we fix ¢ = 0.2 and vary the parameter v. It is noticed that the axial equilibrium
point E.(10.909091,0) is stable for all v. Initially, when v = 0, then system does not have
any positive equilibrium point. Therefore, species will approach E,. This shows that predator
population extincts when there is no cooperation among them while hunting. On increasing
v, at v = 0.2918, two positive equilibrium E| (stable node) and E; (saddle point) appear in
the system via a saddle node bifurcation. Since E. is always stable, so the system shows
bistablity between E. and E|". In figure 8.10(a), basin of attraction of E, and E| are presented
in phase plane of x and y. This shows that coexistence or extinction of predator depends upon
initial conditions. At v = 1.3, the system undergoes a local Hopf-bifurcation and species start
oscillate. For v > 1.3, the system shows bi-stability between E. and the stable limit cycle
around E}. The basin of attraction of E* and limit cycle are drawn in figure 8.10(b). On
further increasing v, the period of limit cycle increases and its basin of attraction shrinks (see
figure 8.10(c)). This indicates that the possibility of coexistence of species falls off with further
increment in v. In figure 8.10(d), we have plotted time evolution curves of predator population
for different values of v. All the solution curves are started from same initial pair (1,2). It can
easily be noted that when v = 0, predator vanishes after a certain time, when v = 0.5 and 1,
predator attains its steady state level, when v = 3.5 > 1.3, predator population oscillates and
when v = 6, predator population goes for extinction.

In order to employ the numerical simulation of delayed system (8.3), we choose the value
of parameters given in the set (8.28). The numerical values of equilibrium points remain same
as earlier. The set of inequalities in (8.10) also holds, that shows initially the system is stable
around the positive equilibrium point £* in the absence of both the delay parameters. From
equation (8.19), we get the unique positive value of @y which is 0.926686. Further, we obtain
the critical value of 7y which is 7"/} = 0.112093 with the help of formula derived in (8.21).
Since /' (a)g) = 1.507833 # 0, so the transversility condition also holds. Hence, according to
Theorem 8.5.1, the delayed system (8.3) experiences a Hopf-bifurcation near E* at 7| = ’L'][Hf [
0.112093.

In the figure 8.11, time evolution of species (left) and the phase portrait (right) are presented
for 71 = 0.08 < ’L'l[Hf ). We see that the solution curve approaches towards E* with time and

eventually stabilizes on E*. This behavior of E* demonstrates its local asymptotic stability. If
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[

we increase the value of 7| beyond its critical value ’L'le ], then the system becomes unstable
near E* via a Hopf-bifurcation and a limit cycle arises. The unstable behavior is depicted in the
figure 8.12 for 7 = 0.13 > 71"/,

To experience the Hopf-bifurcation in a different perspective, we plot the bifurcation dia-
gram (refer to Fig. 8.13). In this diagram, we have plotted only attractors for different values of

delay parameter 7;. It can be observed that when 7; < ’L'I[Hf  the trajectories are attracted by the

positive equilibrium point £*, which also insures the stable nature of E* and when 7, > ’L'I[Hf ]

then the trajectories are attracted by stable limit cycles, drawn in the figure 8.13.
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Fig. 8.11: Time series evolution of species (left) and phase portrait (right) at 7, = 0.08 <

Tl[Hf | The system (8.3) is locally asymptotically stable near the positive equilibrium
point E*.
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Fig. 8.12: Unstable nature of solutions and existence of stable limit cycle of system (8.3)
around the positive equilibrium point E* at 7, = 0.13 > Tl[Hf !
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59

stable limit cycles

Fig. 8.13: Bifurcation diagram with respect to delay parameter 7;. The system is bi-
furcated from stable equilibrium to unstable equilibrium point and stable limit cycle at
7 =" =0.112093.

As the delayed system (8.3) exhibits Hopf-bifurcation with respect to parameters k and 7y,
we can bisect the k7;— plane into following two regions keeping other parameters same as in
(8.28).

Region of stability (green) S| = {(k, 7;) : system (8.3) is locally asymptotically stable near
E*},

Region of instability (white) S, = {(k, 7;) : system (8.3) is unstable}.

Both the regions are drawn in figure 8.14. It is noted that the threshold value of delay parameter

’L'l[Hf }increases with cost of fear k and vice versa. The curve which separates both the regions

is called Hopf-bifurcation curve.
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Fig. 8.14: Region of stability and instability of the system (8.3) in k7; —plane. Other
parameters are same as in (8.28).

Now if 71 = 0 and 7, > 0, then there does not exist any purely imaginary root of the char-
acteristic equation (8.22) for the parametric set (8.28). Therefore, the system (8.3) will never
change its stability status on varying 7. As the set of inequalities in (8.10) holds and non-
delayed system is stable with parameters in (8.28). Hence, the delayed system is stable around
its positive equilibrium for all values of 7,. Nevertheless, to explore some more characteris-
tics of the delayed system, we change numerical values of some parameters like k = 1 and
r1 = 0.00375. Due to this change in parameters the axial and positive equilibrium point shift
at (800,0) and (7.54079,1.670848) respectively. In this case the inequalities in (8.10) do not
hold and hence the non-delayed system is no longer stable. The equation (8.22) has purely
imaginary root when 7, = ”L’él) = 2.62025 and 1, = ”L’éz) = 4.423719. Therefore, the system
(8.3) undergoes a local Hopf-bifurcation twice at ”L’él) =2.62025 and ”L’éz) =4.423719. Initially

when 7, = 0 system is unstable around E* and remains unstable up to ”L’él) whereas it is stable

between ”L’él) and 12(2). The system changes its stability again at Tz(z) and falls into instability for

all further values of 1,.
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In the range of delay 7.3 < 17, < 10.5, the system goes through period-doubling oscillations,
which often sounds like a route to chaos. The system behaves as a chaos and shows sensitivity
with respect to initial pair at higher values of 17,(7, > 11.4). In figure 8.15, we plotted two
solutions starting from two nearby initial pairs for 7; = 18 and notified that a slightest difference
of 0.0001 in initial values causes a significant difference between both the solutions at a finite
time. This shows the chaotic nature of the system. The strange behavior of both the species is
depicted as a phase portrait in figure 8.16. To see the behavior of the system for a wide range
of 17, we draw the bifurcation diagram (refer to Fig. 8.17) that demonstrates the system from

periodic oscillations to chaotic nature via period-doubling bifurcation.
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Fig. 8.15: Sensitivity of solutions of system (8.3) with respect to initial condition when
T = 18.

The fact that the system is chaotic for a wide range of the delay parameter does not mean
that chaos is the same in each case, even chaoticity can be quantified and that can be reflected
in the complexity of the time series. To analyze the quantity of chaos, we calculate and map
maximum Lyapunov exponent (Fig. 8.18) and Poincare sections (Fig. 8.19) for various values
of 7,. Lyapunov exponent refers that how sensitive a system is with respect to initial conditions.
Positive (negative) Lyapunov exponent indicates that the system is chaotic (non-chaotic). A
positive but small Lyapunov exponent points out that the system is chaotic but less sensitive
with respect to initial conditions. In figure 8.18, graph stays negative until 7, = 11.4 and then

it rises above zero that confirms the chaotic regime of the system.
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Fig. 8.17: Bifurcation diagram of system (8.3). Fig. 8.18: Maximum Lyapunov exponent of system (8.3).



gwapter 8. Modelling the Effect of Fear and Hunting Cooperation in a Prey-predator System
2 . . . .
with Cooperation and Anti-predation Response Delay

(a) (b) (c)

0 5 10 15 20 25 30 3 40 45 50 20 25 30 35 40 45 50 [ 50 100 150 200
X X X

Fig. 8.19: Poincare sections of system (8.3) for different values of 7,. When 7, = 6,
limit cycle exists in the system (a), the system have period doubling solutions at 7, = 10
(b), when 7, = 18, system shows higher periodic (chaotic) oscillation (c).

Here we have done some simulations on case (3) of the delayed system (8.3) keeping 7; =
0.25 fixed and 7, as a variable parameter for the parametric values given in set (8.28). We
noticed stability behavior of the system on varying the delay parameter 7, in a wide range.
Initially when 1, = 0, the system is unstable around E* as ’L']H /< 0.25. From the formula
(8.26) given in the previous section, we obtain six different values of 7,. The obtained critical
values of 7, are 1.183063,5.025491,8.58355,11.233724,15.984048,17.441955, where system
experiences local Hopf-bifurcations (refer to Theorem 8.5.3) i.e. system becomes unstable to
stable at 7, = 1.183063 and becomes stable to unstable again at 7, = 5.025491 and so on.
We have shown the unstable nature and stable nature for 7» = 1 < 1.183063 and 1.183063 <
T, = 4 < 5.025491 of the system respectively in figure 8.20. The multiple switching is an
important characteristic of the system in view of ecology as the stability of the system directly
dependent upon the time taken in group forming by predators. The stability switching behavior
of species can be seen in bifurcation diagram 8.21. From figure 8.21, it can be seen that the
stability change via hopf-bifurcation occurs exactly six times at the obtained critical values of
parameter 7.
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Fig. 8.20: Presence of a stable limit cycle when 7o = 1 < 1.183063 (left) and stable
phase diagram at 1.183063 < 7, = 4 < 5.025491 (right) when 7; = 0.25 is fixed.

Fig. 8.21: Bifurcation diagram of delayed system (8.3) with respect to 7, when 7| =
0.25 is fixed.

Now we consider the case (4) when 7, = 6 is fixed and 1) is a variable parameter. According
to formula obtained in Theorem 8.5.4 and choosing the parametric set (8.28), our computer
simulation yields

. = 0.969397 and 7; =0.128111.

The transversality condition also holds, therefore according to the Andronov Hopf Theorem,
system (8.3) undergoes a Hopf-bifurcation with respect to 7; at ;. Initially when 7; = 0 system
is stable near E*. Now if we increase 7; then remains stable till 7; = 7; and then it becomes
unstable via Hopf-bifurcation on more increment in parameter 7; (see Fig. 8.22). In figure
8.23, we have separated the 7, 7; —plane into two regions, viz. region of stability and region of
instability. From the figure, it can be noted that if 7; is fixed in (0.112,0.636) then the system
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switches its stability multiple times with respect to 7, but if 7; lies away from this range then
the system does not change its stability even once and the behavior remains same for all 7,.

stable limit cycle

35 0 5 10 15 20 25 30 35

Fig. 8.22: Phase portrait of system (8.3) when 7; = 0.1 < 0.128111 (left) and presence
of a stable limit cycle at 71 = 0.15 > 0.128111 (right) when 1, = 6 is fixed.
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Fig. 8.23: Region of stability and instability of the system (8.3) in 75 7; —plane. Other
parameters are same as in (8.28).



8.7. Conclusion 255

Remark 8.6.2. In case (2) (when 11 = 0 and 1 # 0), it has been observed that the system
shows chaotic behavior for some parametric values (r;y = 0.00375, k = 1 and other parameters
are same as in (8.28)). This chaotic nature can be controlled from the system by introducing

anti-predation response delay T (see figure 8.24).
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Fig. 8.24: Time series evolution for two different value of 7; when 17, = 18. The figure
shows that uneven oscillations can be controlled by increasing 7.

8.7 Conclusion

Due to universal existence and significance in many multispecies systems, group hunting is a
concern of exploration among theoretical ecologists over a long span. Although, a few studies
have been conducted on group hunting by the mathematical modelling approach but still less
attention is paid [7, 178, 162]. On the other hand, direct killing is the pillar at which the prey-
predator relationship is hinged. But in recent studies, it is investigated that predator induces
fear as well in prey individuals and because of this, their reproduction rate falls off [220]. The
separation of fear effect from direct killing by predators was being possible just because of
the tremendous experimental work by several theoretical ecologists [236, 201]. In the present
chapter, we deal with a prey-predator model with fear effect in prey population by predator
individuals and cooperation among predator individuals while hunting. Further, we incorporate
two discrete delays taken into account of time lags in anti-predation response due to fear and
delay in cooperation. The prey population is growing logistically in absence of predators but
in the presence of predators, they remove prey by direct killing and reduce their birth rate by
inducing fear as well. We modified fear function that affects prey population in a more realistic
way and to include the effect of team hunting, we use Berec’s approach.

The model shows complex and varied dynamical behavior. The solutions of the system

are positive and bounded in a positive invariant set 2. We have examined the persistence of
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the model that gives two parametric conditions for the coexistence of both the species for all
future time. It is noted that if the birth rate of prey r is bigger enough than a threshold and
the natural death rate of predator § is less than another threshold, then both the species will
survive evermore. We analyzed that how the number of interior steady state and there stability
nature vary with change in parameters. The local stability of all existing equilibrium is inves-
tigated and obtained parametric conditions under with the system is stable around them. The
trivial equilibrium point is always a saddle point so the system never collapses for any value
of parameters. Since, the condition of stability of the axial equilibrium E; and the positive
equilibrium E* are not exclusive and overlap for a certain range of parameter u, therefore the
system shows bi-stability between E| and E*. For the chosen set of parameters in (8.30), and
0.007184 < u < 0.009445, the existence of predator population depends on initial conditions.

The model experiences various bifurcations such as saddle-node, transcritical and Andronov
Hopf with respect to different parameters. Since the predator population depends only on hunt-
ing prey individuals. Therefore, predators are absent from the system (or Ej is stable) at low
attack rate 1. For any set of parameters, there is a threshold value of u (u!) where E; trans-
fers its stability to E* and predator population comes into the scenario. The cost of fear plays
a vital role in the complex dynamics of the system. It is capable to remove chaotic oscilla-
tions from the system and the oscillations are further controlled through Hopf-bifurcation on
increasing the cost of fear. The effect of strength of cooperation and cost of fear is also ex-
plored in vk bi-parametric plane keeping other parameters fixed. It is interesting to see that the
Hopf-bifurcation value of k increases quadratically with v (refer to Fig. 8.6). We noted that
the strength of cooperation among predators is as crucial as their attack rate. For a chosen set
of parameters, predators will die out if they do not cooperate while hunting. If we increase
v, then a stable positive equilibrium point appears via saddle-node bifurcation and the species
coexist. On further increment in Vv, the basin of attraction of E* shrinks and the possibility
of coexistence falls off (refer to Fig. 8.10). This shows that the higher cooperative strength
of predators while hunting leads to their extinction. This is because of the fact that higher
cooperation among predators reduces the density of prey species.

We have explored the dynamics of the model by incorporating two discrete delays; one is
anti-predation response delay (7;), in order to delay in response to the induced fear by predators
and another is cooperation delay (7, ), representing the time lag in forming group and prepara-
tion for the attack. The incorporation of delays does not affect the equilibria of the system so
the number of equilibria and their value remains as it is in the delayed system. We found that
the Jacobian matrix of the system at £y and E| remains same as the non-delayed system. Hence,
the local behavior of both the equilibrium points is not affected by the delay. So, basically, our
main aim is to analyze the stability and Hopf-bifurcation of the system in the vicinity of E* for
both the delays.
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We have considered all the possible cases with both the delays. First we assumed that 7, =0
and obtained a critical value of 7| (8.21), where the system leaves stability and attains limit cy-
cle via Hopf-bifurcation (see Fig. 8.13). The dynamics is further studied in k7; bi-parameter
plane and observed that the bifurcation value ’L'l[Hf Vincreases with cost of fear k. In the case
of 7 = 0, system does not change its stability for all 7, > 0. So, we replace r; = 0.00375 and
k = 1. For these values, the characteristic equation has two roots. So the stability changes twice.
On the large values of delay parameter (7, > 11.4), chaotic nature is detected. Moreover, the
chaotic behavior of the delayed system is confirmed by evaluating maximum Lyapunov expo-
nent and mapping Poincare sections (refer to Figs. 8.18 and 8.19). Ecologically, if predators
spend more time in forming groups against prey (it may happen due to miscommunication or
lack of coordination among individuals), then both the population oscillate in a strange manner
and become sensitive with respect to their initial populations. The bi-parametric analysis is
carried out in 77, plane and interestingly we get a non-monotonic Hopf-bifurcation curve in
the plane (see Fig. 8.23). This shows the bubbling phenomenon occurs in the system when
0.112 < 71 < 0.636. In this range of 7, stability of the system switches multiple times on vary-
ing 7,. It is observed that if 7; = 0.25 then system shows cyclic behavior and populations reach
periodic oscillation around E™ for 7, = 0. On increasing 7>, system undergoes Hopf-bifurcation
six times and eventually attains the cyclic behavior for all larger 7,. Generally, stability switch-
ing in a delayed system through Hopf-bifurcation can be justified by its memory. In this case
when stability of the system switches multiple times, it happens possibly due to recollection of
its memory [162].

Lastly, we have conclude that fear induced by predators is capable to reduce the oscillations
of the system and plays an important role in the stabilization of the ecosystem. Cooperation
while hunting is an essential characteristic of predator individuals that plays a vital role in their
survival. Apart from this, both the delays make the model dynamics richer and more extensive.



