Chapter 1

Introduction

Ecology, a sub-discipline of biology, is the study of the distributions, abundance and relation of
organisms and their interactions with the environment. It deals primarily with the descriptive
study of organisms. Ecology includes the study of plant and animal communities and ecosys-
tems. The fundamental goal of ecological research is to study all the factors which affect the
interaction of individual organism with each other or environment and to get the results which
help to sustainable development of ecosystem. Mathematical model, which describes dynam-
ics of these organisms, has been playing an important role in understanding the dynamics of
ecosystems. Predator feeds prey but there dynamics depends upon different situations. There
are some biological factors such as hunting rate, handling time, search efficiency, prey escape
ability, predator’s interference, structure of prey habitat etc. In mathematical ecology, we study
the impact of all these factors via some mathematical models, different analytical approaches
and reach to some results which are helpful to keep intact the prey-predator relationship for a
long time.

Nature provides us all the conveniences to survive on the surface of the world. Overall
development of our system we live in, is based on available natural resources. Nowadays,
more renewable resources like forestry and fishery are required in the consequences of the
growing human population and modernization. In such a situation, exploitation of renewable
resources is increasing and hence our society will face problems like shortage of resources
and degradation of environment. Prey-predator is one of the dominant theme in ecology due
to its universal existence and importance. Mathematical modelling has been recognized as an
important tool to understanding and analyzing the prey-predator interactions. It has been an
issue of attention among ecologists and naturalists since last three to four generations. First
model on prey-predator organism was formulated and proposed by Lotka and Volterra, known
as Lotka-Volterra system [ 132]. It contains a pair of first order, non-linear, differential equations
frequently used to described the dynamics of biological system in which two species interact.
After that a lot of work has been done to understand the prey-predator relationship [11, 15,
73, 100, 107, 120, 144, 167, 210]. In classical Lotka-Volterra systems, the functional response
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follows linear mass action law. But all organisms do not happen with same hunting or intake
rate. So one vital factor of the prey-predator interaction is the intake rate of prey by a predator
i.e. functional response. It helps to predict about a prey-predator dynamics with more accuracy.
There are many types of functional response: Holling type I-1V, Ratio dependent, Beddington-
DeAngelis, Crowley-Martin, Hassel-Verley. Holling type I-IV functional responses are prey
dependent whereas Beddington-DeAngelis, Crowley-Martin, Hassel-Verley are predator de-
pendent i.e. functional response is function of both the prey and predator’s density.

The effect of intraspecific interference among predators has been investigated in prey-
predator model with Holling type II functional response in [241, 104], with Holling type III
functional response in [73] and with Beddington-DeAngelis type functional response in [51].
Crowley and Martin [38] assumed that predation will decrease when the predator density is
high due to interference among predators. Some investigations have been conducted on prey
predator model including Crowley-Martin functional response [50, 192, 214].

In recent years, ecological models with add-on of certain new factors such as prey refuge
(creating safe zones for prey) [104, 216, 100], complex habitat [37, 11], strong and weak Allee
effect [185, 4], providing additional food for predators [181, 170], harvesting of renewable re-
sources [144], etc have also been investigated to reach more close to realistic situations. The
effect of the degree of habitat complexity on the dynamics of prey-predator system is well
studied by Bairagi and Jana [11]. They observed that the fluctuations in the population level
can be controlled completely by increasing the degree of habitat complexity. Recently, Verma
and Misra [216] have studied the impact of a constant prey refuge on the dynamics of a ratio-
dependent predator-prey system with strong Allee effect in prey growth. They found that if prey
refuge is less than the Allee threshold, the incorporation of prey refuge increases the threshold
value of the predation rate and conversion efficiency at which unconditional extinction occurs.
They also vindicated that the species can be protected by creating safe zones in accordance
with the Allee threshold. Parsad et al. [170] investigated the characteristics of biological con-
trol agents and additional food permitting the eco-managers to enhance the success rate of
biological control programs.

The rate of reproduction and survival largely depend upon age or the development stage and
hence it is important to incorporate the effect of past life history during analysis of the system.
A life cycle of species can be divided in two stages, viz., mature and immature. The analysis of
stage structured prey-predator models has attracted good amount of attention recently, as a way
to eliminate the shortcomings of classical Lotka-Volterra models [233, 219, 173, 39, 234, 99].
Bosch and Gabrial [23], and Kar [96] studied the stage and age structure of species without
and with delay. A study of simultaneous effects of harvesting on the dynamics of Leslie-Gower
prey-predator system has been done by Chakraborty ef al. [26]. They suggested a policy of
optimal harvesting for the system with stage structure.
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Hopf-bifurcation is an important tool which helps to understand the behavior of system. It
gives us such a critical value of a parameter that the stability behavior of system is contrasty in
both the sides of the critical value [79, 45]. Patra et al. [167] proposed and analyzed three math-
ematical models to study the degradation and conservation of a wetland park. Models shows
interaction among bird population, good biomass, bad biomass and applied effort to control the
density of bad biomass. It has been shown that carrying capacity serves as a bifurcation param-
eter for the systems. If carrying capacity increases beyond a threshold value, then behavior of
the system changes from stability to instability. Local Hopf-bifurcation in a delayed system has
been studied by Song and Wei [194], Bairagi and Jana [11] and Deng et al. [46]. They have
shown the existence of periodic solutions after a certain value of time delay.

Allee effect plays a major role in the structure of population. It creates the possibilities of
extinction of species [185, 241] and has a huge impact in population dynamics [4]. The Allee
effect can be classified into two types on the basis of per capita growth rate at low density. These
are known as strong Allee effect and weak Allee effect. Strong Allee effect have negative per
capita growth rate at low population level and implies the existence of a threshold level of
population so that the species become extinct below this level. On the other hand in weak
Allee effect, the per capita growth rate decreases but remains positive at low population level.
Sexual selection [18, 147], reduced mating efficiency [47] and alleviated foraging efficiency
[17] are some other reasons to give rise to Allee effect. Many researchers have found the natural
evidence of weak Allee effect by experimental work on flour beetles of the genus Tribolium [4,
103, 211]. They have shown that the per capita growth of beetles reaches its maximum at a
medium density and the rate is positive at low density.

Time delay occurs in a wide range of physical, chemical, economic, engineering and bi-
ological systems. The conversion of hunted prey population to predator population is not an
instantaneous process, there is some time lag (gestation delay) [136]. Besides that, in stage
structured systems maturation delay is the time lag for juvenile individuals to be mature [26].
Negative feedback delay [64, 61], hunting delay [235] are some other kind of time delay. Time
delay makes the model more realistic. It is well known that delay differential equations ex-
hibit much more complicated dynamics than ordinary differential equations as a time delay
could cause a stable equilibrium to become unstable and cause the population to fluctuate. The
characteristic equation corresponding to the linearized system of delay differential equation is
no longer a polynomial, rather, it is exponential polynomial or quasi-polynomial as named in
Bellman and Cooke [12]. We refer to the monographs of Cushing [42], Gopalsamy [70] and
Kuang [107] for general delayed biological systems and to Song and Wei [195], Tripathi et al..
[210], Bairagi and Jana [11], Beretta and Kuang [15] and references cited therein for studies on
delayed prey-predator models. Song and Wei [195] have done bifurcation analysis for Chen’s
system [28] with delayed feedback. They found that when the delay passes through certain



4 Chapter 1. Introduction

critical values, chaotic oscillation is converted into a stable steady state or a stable periodic
orbit. Feng and Hongwei [116] have analyzed a prey-predator model with gestation delay and
observed that system changes its stability behavior beyond a certain critical value of the de-
lay. Hopf bifurcation and it’s stability and direction have been investigated using normal form
theory and the center manifold theorem for functional differential equations by Zhang et al.
[238] and Tripathi ef al. [210] by taking maturation delay and gestation delay, respectively.
Chakraborty et al. [26] have shown that the delay not only can cause a stable equilibrium to
become unstable, it can cause a switching of stability sometimes.

Some investigations have been made with two or more delays involved in the system. In
such cases, the complexity involved in obtaining the eigenvalues from the transcendental char-
acteristic equation becomes difficult. Thus, the bifurcation problem will be complicated due to
presence of multiple delays. Some systems with multiple delays have been well studied in [64,
120, 46, 122, 126, 128].

1.1 Objectives of the thesis

The objective of thesis is to deal with several problems of survival of biological populations
subject to ecological stability and to study various characteristics that play significant role to
stabilizing the ecosystem. The following objectives are fulfilled in this thesis using mathemati-
cal models:

(i) To study the dynamics of a fear induced prey-predator model with gestation delay.

(i) To investigate global stability and Hopf-bifurcation in a prey-predator model including
habitat complexity and prey refuge.

(iii) To study an optimal harvesting policy of a stage structured prey-predator model.

(iv) To analyze the dynamics of delay induced prey-predator system with stage structure in

prey.
(v) To study the dynamics of prey-predator system with strong and weak Allee effect.

(vi) To examine the effect of additional food provided to predator in a ecosystem.



1.2. Basic population models 5

1.2 Basic population models

1.2.1 Malthusian model

This is the simplest case where the rate of change in population is proportional to existing

population. The mathematical form is

P

— =rP,
dt

Y

where r is proportionality constant, called growth rate. This is known as exponential growth
model as the population grows without any restrictions. Such growth may be followed for a

short time, but not much applicable forever in real world.

1.2.2 Logistic model

Due to limitations of Malthusian model, logistic model came into the existence by introducing

interference among individuals. The equation of growth is

dP P
—=rP{1—-=,
7 =7(1-%)
where K is carrying capacity, the number of individuals which is affordable by the environ-

ment. Initially population increases with exponential growth but as population size increases,

interference also increases accordingly and keeps the population bounded.

1.2.3 Prey-predator model

The prey-predator interaction between two species occurs if one species consumes another as
food resource. The first prey-predator model is proposed by Lotka [132] and Volterra [217].

i ax — bxy,
d
d—f = cxy —dy,

a,b,c,d >0 and x(0) >0,y(0) >0,

where x and y are densities of prey and predator, a is growth rate of prey, b is attack rate
of predator on prey, c¢ is growth rate of predator due to predation and d is the death rate of

predator.
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1.3 Functional response

In the dynamics of prey-predator system, functional response is an important aspect, which
represents the consumption rate of prey by predator. If the number of prey consumed by a
predator per unit time is a linear function of prey then it is known Holling type-I functional

response, which is represented as follows:

f] (X) = ox,

where « is capture or attack rate. Mathematically, it is represented by a straight line which
passes through origin. This is conventional functional response which is used in the pioneer
work of Lotka [132] and Volterra [217]. But this functional response has some limitations. If
prey population is in abundance then predators will consume at maximum rate therefore further
increment in prey population will not be able to increase the consumption rate. In this case
the prey predator phenomenon is described by Holling type-II functional response. It can be

written as follows:
ox

falx) = 1+hax’

where « is attack rate and / is handling time required per prey. In the above expression, number

of prey consumed per predator initially increases fast but as the density of prey increases it goes
to its saturation level.

Holling type-III functional response is similar to Holling type-II functional response at high
level of prey density. But at low prey density, the number of consumed prey and the density of
the prey population is more linearly increasing function of prey consumed by predators. It can
be represented by the following equation

o’

BO= T

This functional response is typical of generalist predators which readily switch from one food

to another and concentrate their feeding in areas where certain resources are abundant.
Holling type-IV functional response is a non-monotonic function of prey density. Initially,

it increases and reaches its maxima and then decreases for further values. Mathematically, it is

represented by
ox

falx) = x2+ax+b’
where a is the tolerance limit of predator and b is half-saturation constant. This functional
response is used for such prey species that show group defence against predator.
Beddington and DeAngelis assumed that predator’s feeding rate decreases at high predator
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density due to interference among them. It makes the functional response more realistic. The
Beddington DeAngelis functional response is

ax

gi(x,y) = m7

where b is magnitude of interference among predators. On later Crowley and Martin modified it
by adding the interference between prey and predator. The Crowley Martin functional response
is

ox
1+hox)(1+by)

g2<x7y) = (

1.4 Some useful definitions

We develop variety of ecological models to address our main objectives which are described
by system of ordinary differential equations and delay differential equations. To investigate the
stability of the deterministic models, many approaches are established. We have adopted the

following techniques. We consider a nonlinear autonomous system

dx
= =), (L.1)

where x = (x1,x2,...,X,) is a vector and f € C[R",R"] is a smooth enough function that ensure

the existence and uniqueness of the solution of (1.1).

Definition 1.4.1. (Stability) The solution of system (1.1) x(t) with initial data x(0) = xo, is
called locally stable if for any € > O there exist a 6(€) > 0 and to such that for any solution
X(t), the inequality ||Xo — xo|| < & implies ||%(t) — x(t)|| < € for each t > to. In other words
the solution x(t) is locally stable if any solution initiated from d—neighborhood of xq always

remains in €é—neighborhood of x(t) after a considerable time.

Definition 1.4.2. (Asymptotic stability) The solution of system (1.1) x(t) with initial data x(0) =
X0, is said to be locally asymptotically stable if there exist a 6 > 0 such that the inequality
||X0 — x0|| < O implies lim;_,o0 ||%(¢) — x(¢)|| — 0. In other words the solution x(t) is locally
asymptotically stable if any solution initiated from 6—neighborhood of x,, converges to the

solution x(t).

Definition 1.4.3. (Instability) The solution of system (1.1) x(t) is known as unstable if it is not
locally stable.

Definition 1.4.4. (Equilibrium point) Equilibrium point is a solution of system (1.1) that does

not change with time. It can be obtained as a solution of system of equation f(x) = 0.
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Definition 1.4.5. (Global stability) An equilibrium point is called globally asymptotically sta-
ble if the solutions initiated from any point in a finite region, converge to the equilibrium point.

Definition 1.4.6. (Basin of attraction) Basin of attraction of an equilibrium point is collection
of such points in phase space, that any solution trajectory started from them, approaches the

equilibrium point.

Definition 1.4.7. (Bistability) In a system bistability occurs when there are two local stable
equilibria (sometimes attractor). The curve that separates the basin of attraction of both the

equilibria, known as separatrix. In the similar way, tristability and multistability can also be
defined.

Definition 1.4.8. (Invariant set) A set Q € R" is said to be invariant set if for every solution
x,x(to) € Q implies x(t) € Q for all t > ty. In other words if a solution is started from point in

Q, remains in Q for all time.

Definition 1.4.9. (Limit cycle) A closed trajectory of a system is known as orbit and the motion
along orbit is periodic. An orbit is said to be limit cycle if every trajectory that starts at a
point close to the orbit, converges towards the orbit as t — oo. Any orbit that is not one of a
family of concentric orbits, must be either a limit cycle or an originating cycle in the sense
that all neighboring trajectories diverse from the orbit. Thus a limit cycle is a isolated periodic
solution. The neighboring solutions may be attracted or repelled by the limit cycle. A limit
cycle is stable if nearby trajectories are attracted by the limit cycle. A limit cycle is unstable if
nearby trajectories are repelled by the limit cycle. A limit cycle is semistable if trajectories are

attracted from one side and repelled from another side by the limit cycle.

1.5 Mathematical tools used in the thesis

1. Linearization of differential equations: Suppose

dX (1)
dt

=F(X(1)), (1.2)

where X () = [x1(¢),x2(t), .., x,(¢)]7 is a system of ODEs. Let x;(¢) = x}(¢) +z(t), i =
1,2,...n, then linearizing the system (1.2) about the equilibrium solution E* = (x},x3, ..., X},),

we have
dZ(t)

dt

where J is the Jacobian matrix of the system, calculated at E* and Z(t) = [z (¢),22(t), ...,z (¢)]" .

=JZ(1)),
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2. Eigenvalue Method for Local Stability: Being a straight forward method, based purely
on the sign of real parts of eigenvalues. We shall use Routh-Hurwitz criterion [1] to study
the local stability of wide range of systems in homogeneous environment.

The Routh-Hurwitz Stability Criterion: According to this criterion, the necessary and
sufficient condition for the negativity of the real parts of all the roots of the polynomial

AT+ AAT AT 4+ A,=0

with real coefficients is the positivity of all the principal diagonals of the minors of the

Hurwitz matrix

AL 1 0 .. 0
Ay Ay Al ... 0
Hy= |As Ay Ay ... 0
0 0 0 ... A,

The alternate columns in this matrix consist of coefficients with only odd indices or with
only even indices (including the coefficient ay = 1). Hence, the elements of the Hurwitz
matrix H, = (b ) are given by bik = ap;_ , the missing coefficients (i.e., the coefficients

with indices greater than n or less than zero being replaced by zeros.

A 1
Di=A1>0, D,= >0,
A A
A 1 0
Di3=|A; Ay A | >0,
As Ay Az
D, =det(H,).

The Routh-Hurwitz criterion for particular values of n = 2,3 and 4 are stated below:
n=2;, A; >0, A, >0,

n=3; A; >0, A3>0, AjA; > A3,
n=4; A;>0, Ay>0, A3>0, Ay>0, AjArA3 > AT+ A%A,.

The above method is useful to check the local stability of an equilibrium point. The local

stability describes the qualitative behavior of the solution in a certain neighborhood. It



10

Chapter 1. Introduction

does not give any information about the behavior of the solution out of that neighbor-
hood. The Lyapunov’s direct method [1] can be useful to study the stability behavior of

nonlinear systems.

. Lyapunov’s Direct Method: The physical validity of this method is contained in the fact

that stability of the system depend on the energy of the system which is a function of sys-
tem variables. Lyapunov’s direct methods consists in finding out such energy functions
termed as Lyapunov functions which need not be unique. The major role in this process
is played by positive or negative definite functions which can be obtained in general by
trial of some particular functions of state variables, and in some cases with a planned

procedure.

We shall use the following important results for the stability analysis of our models.

Consider the following system of autonomous differential equations:

dx
— = 1.3
where f € C[R",R"] and Sp = {x e R" : [|x]| < p}.

Assume that f is smooth enough to ensure the existence and uniqueness of the solution
of (1.3). Let £(0) =0 and f(x) # 0 for x # 0 in some neighborhood of the origin so that
(1.3) admits the so-called zero solution (x = 0) and the origin is an isolated critical point

of (1.3).

Theorem 1.5.1. If there exists a positive definite scalar function V(x) such that % <0

on Sy, then zero solution of (1.3) is stable.

Theorem 1.5.2. If there exists a positive definite scalar function V(x) such that % <0
on Sp, then zero solution of (1.3) is asymptotically stable.

Theorem 1.5.3. [f there exists a scalar function V(x), V(0) = 0 such that ‘2—‘; >0o0nSp
and if in every neighborhood N of the origin, N C Sy, there is a point xo, where V (xg) > 0

then the zero solution of (1.3) is unstable.

. Bendixson-Dulac Theorem: Consider a dynamical system

dx dy

Z - f(xvy)v Z :g<x7y)7

where f(x,y) and g(x,y) are assumed to be smooth functions in a simple connected do-

main D. If there exist a smooth function ¢ (x,y) in domain D such that the expression
d
o _ 265)

d(9g)
- Ox + dy
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does not change the sign in D. Then the above system has no limit cycle in the domain
D.

5. Center Manifold Theory: We shall study the direction and stability of the periodic
solution bifurcating from the steady state by using center manifold theory introduced by
Hassard et al. [80].

Theorem 1.5.4 (Center Manifold Theorem). Let f : R* — R" be a vector field in
CH1(k > 1), with f(0) = 0. Consider a matrix A = Df(0), and let V*,V*, V¢ be the
corresponding stable, unstable and center sub-spaces. Then there exists § > 0 and a

local center manifold M with the following properties.

(i) There exist a C* function ¢ : V¢ — R" with m.¢ (x.) = x. such that
M={¢(xc) :xc €V, |x;| <}

(ii) The manifold M is locally invariant for the flow of (1.3), i.e. x € M implies X(t,x) €
M for |t| small.

(iii) M is tangent to V¢ at the origin.

(iv) Every globally bounded orbit remaining in a suitably small neighborhood of the

origin is entirely contained inside M.

(v) Given any trajectory such that x(t) — 0 as t — oo, there exists N1 > 0 and a tra-
Jectory t — y(t) € M on the center manifold such that

eMx(t) —y(t)| =0 as t— +o.

5. Numerical Simulation: Numerical experiments have been carried out with the help of
Mathematica / MATLAB to validate the theoretical findings.

1.6 Bifurcation

In dynamical systems, a bifurcation occurs when a small perturbation made to the parameter
values of the system causes a sudden qualitative or topological change in its behavior. This
qualitative change can happen in different ways, on their basis bifurcation can be categorized

into several types.

(i) Saddle-node: In saddle-node bifurcation, two distinct equilibrium points (one is saddle
point and another is node) come towards each other by varying a parameter and at a
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(ii)

(iii)

(iv)

critical value of the parameter, both the equilibria collide and annihilate each other. A
typical example of saddle-node bifurcation is
dx

—_— 2
TR

where U is bifurcation parameter and the bifurcation value of u is 0.

Transcritical: In transcritical bifurcation, two existing equilibrium points interchange
their stability behavior as the bifurcation parameter is varied. It is characterized by an
equilibrium having an eigenvalue whose real part passes through zero. A common ex-
ample of this bifurcation is similar to the logistic growth equation without restriction on

growth rate 1

dx
= 1 —

where U is bifurcation parameter and the bifurcation occurs at u = 0.

Pitchfork: In pitchfork bifurcation, the system transitions from one equilibrium point to
three equilibrium points. The stability behavior of two newly born equilibria is alter to
the existing equilibrium. A typical example of this bifurcation is

dx — Uy x3

a '
For u < 0, there is one stable equilibrium at x = 0. For u > 0O there is an unstable
equilibrium at x = 0, and two stable equilibria at x = £, /L.

Hopf-bifurcation: In this bifurcation, an equilibrium point of the system switches its
stability and a periodic solution (limit cycle) arises. The eigenvalues of linearized system
around the equilibrium point are complex in vicinity of the critical value of bifurcation
parameter. They cross the imaginary axis as the bifurcation parameter is varied and at
the critical value, we get a pair of pure imaginary eigenvalues. When a stable limit cycle
surrounds an unstable equilibrium point, the bifurcation is called a supercritical Hopf
bifurcation. If the limit cycle is unstable and surrounds a stable equilibrium point, then
the bifurcation is called a subcritical Hopf bifurcation.

Let’s consider a two dimensional system

dx dy

E :f<x7y7.u)7 Z —g(X,y,[.L)

where U is a parameter. Suppose it has a fixed point, which without loss of generality we

may assume to be located at (x,y) = (0,0). Let the eigenvalues of the linearized system
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about the fixed point be given by A (u),A (1) = a(u)+iB(u). Suppose further that for a
certain value of u (which we may assume to be L) the following conditions are satisfied:

(a) non-hyperbolicity condition: conjugate pair of imaginary eigenvalues
a(fe) =0, B(pe) = #0,

(b) transversality condition: the eigenvalues cross the imaginary axis with non-zero

speed

{daw

—d 40,
d‘u :|I'LI~LC ?é

(c) genericity condition:

1 1
o= 1_6 (fxxx +fxyy + &xxy +gyyy) + @(fxy(fxx‘i‘fyy) _gxy<gxx+gyy)

— fux&ux + fyygyy) # 0,

%f

where f, = [m etc.

} H=He(x.)=(00)
Then a unique curve of periodic solutions bifurcates from the origin into the region pt > 0
if od <0or u <0if od > 0. The origin is a stable fixed point for g > 0 (resp. 4 < 0)
and an unstable fixed point for g < 0 (resp. u > 0) if d < 0 (resp. d > 0) whilst the
periodic solutions are stable (resp. unstable) if the origin is unstable (resp. stable) on the
side of u = 0 where the periodic solutions exist. The amplitude of the periodic orbits

grows like /|| whilst their periods tend to %' as || tends to zero.

1.7 Delay differential equations

Delay differential equations are a type of differential equation in which the derivative of the un-
known function at a certain time is given in terms of the values of the function at previous times.
Many physical and biological systems include aftereffect phenomena in their inner dynamics.
In such systems, its necessary to incorporate delay to approach reality.

A general delay differential equation have the following form for x(¢) € R"

dx(t)
dt

= f(t,x(t),xf),

where x; = {x(7) : 0 < 7 <t} represents the solution trajectory in the past. There are three
types of DDEs
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(i) Discrete DDEs: The derivative of unknown function at a certain time depends on several

specific values of the function in the past.

dx(t)
dt

= f(t,x(t),x(t —71),x(t — ©), ..., x(t — Ty),

where 71, T2, ..., T, are positive and constants.

(i) Continuous DDEs: The derivative of unknown function at a certain time depends on all

the values of the function in the past.

d’;(;) _f <t,x(t),/ix(t+f)du(’c)> .

(iii) Scaled DDEs: The derivative of unknown function at a certain time depends on the values

of the function at a multiple of that time.

dx(t)
dt

= f(t,x(t),x(p7)), 0<p <L

Similar to ODEs, many properties of DDEs can be characterized and analyzed using the charac-
teristic equation. The characteristic equation associated to linear system of DDEs with discrete

delays
dx(t)

dt

:on(t) +A1x(t — T]) +A2x(t — Tz) +... +Anx(t — Tn)

can be given by

det(—Al+Ag+Are T fAre A 4 LA ) = 0.



