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Chapter 2

Modelling the Effect of Fear in a Prey-predator Sys-
tem with Prey Refuge and Gestation Delay'

2.1 Introduction

The first theory on population dynamics is proposed by Malthus [137] in the end of eighteenth
century. It is based on an idea that the rate of population expansion is proportional to the
current population. The theory is named after ‘Malthusian Theory of Population’. But its
unbounded solutions were unable to convey the accurate prediction in real scenario. On later
the logistic growth model came into the frame that characterize natural restrictions to growth as
a consequence of limited resources and space [215]. Thereafter Lotka [132] and Volterra [217]
established a system of two nonlinear ordinary differential equations that represents population
model of two interacting species and the equations have periodic solutions. It was a beginning
of a book after which innumerable pages get added through tremendous attempts of several
researchers [82, 199, 54, 149, 101]. Holling [85] defined the term ‘Functional Response’ that
represents the rate of prey consumption by their predators. It makes the model more realistic in
the ecological point of view. A lot of research has been done by choosing different functional
response (Holling type-II in [94, 56], Holling type-III in [88, 101], Beddington-DeAngelis
functional response in [131, 40, 208], Crowley-Martin functional response in [214, 191, 210])
to see their effect on the dynamics of system in last few decades.

Further, the Lotka-Volterra model is modified by considering various ecological factors,
like Allee effect, stage structure, habitat complexity, feeding switching, gestation delay, addi-
tional food, etc. and examined the local and global behavior of the system and explored the
effect of such ecological factors on the dynamics of the system. Over years our conception in
prey-predator system was that the predators affect prey population by direct hunting because
predation event are easy to observe in forest provinces. But recently, some studies show that

I'A considerable part of this chapter is published in International Journal of Bifurcation and Chaos, 29(14),
1950195, 2019.
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predators do not affect prey population by only hunting, they also induce fear in prey individ-
uals and due to that birth rate of prey reduces [220, 164, 155]. Due to the fear, induced by
predators, prey individuals always scare to come into an open habitat, they do not get a free
environment for their daily activities including mating. Hence predator’s fear drops a negative
effect on their reproduction rate. Thus, it is important to consider the cost of fear as the form of
a decrease in reproduction. The general form of function representing fear effect can be written
as f(y,k), where y denotes the number of predator individuals and k is cost of induced fear by
them. This function satisfies the following properties [220]:

@ f(0,k) = f(»,0)=1,
(b) limy_e f(y,k) = limg e f(,k) =0,
(c) af<0, oL <.
Particularly, we can consider following functions:

1

k -
F(.k) = 1+ kyy +kay?

leky,f(y, k)=e ™, f(ykik) =

Wang et al. [220] proposed a prey-predator model with cost of fear into prey reproduction and
discussed that high level of fear can stabilize the system by excluding the existence of periodic
solutions. Further, the impact of fear in a tri-trophic food chain model with Holling type-II
functional response is studied by Pandey ef al. [164]. They concluded that system shows
chaotic behavior for lower values of both the fear parameters and chaotic oscillations can be
controlled by increasing these parameters.

Prey refuge is a good idea to reduce the possibilities of over-exploitation of prey biomass
by predators. We divide the prey population into two categories: reserved and unreserved
population. Reserved prey individuals are not accessible for predators whereas unreserved
prey individuals are available for predation. Several research studies have been done with
prey refuge [203, 190, 208, 68, 119, 56]. Most of the studies have shown that refuge have a
stabilizing effect on the system. Tang er al. [203] considered a prey-predator model with a
constant prey refuge and showed a global qualitative analysis to determine the global dynamics
of the system. A Leslie-Gower prey-predator model with disease in prey including prey refuge
is well studied by Sharma and Samanta [190]. Impact of additional food for predator on the
dynamics of prey-predator model with prey refuge is investigated by Ghosh et al. [68]. They
observed that predator extinction possibility in high prey refuge ecological systems may be
removed by supplying additional food to predator population.

It is studied that the presence of a predator may alter the behavior and physiology of prey

to such an extent that it can exert an effect on prey populations even more powerful than direct
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predation ([124, 34, 123, 36]). So we realized that the prey-predator interaction should not be
governed by the only predation, the cost of fear should also be considered. Moreover, prey
refuge might be a good idea to reduce the over-exploitation of prey biomass by predators.
Particularly, in this chapter, we are interested to pore over the dynamics of a prey-predator
system with fear effect and prey refuge.

Time delay occurs in each biological phenomenon. The effect of delay in an ecological
model can be shown by delay differential equations. Delayed models are much more realistic in
nature. A delay differential equation demonstrates much more complex behavior than ordinary
differential equation. In a prey-predator system, the effect of consumed prey into predator
population does not appear instantaneously, there is some time lag that is gestation delay [210].
The dynamics of prey-predator systems with time delay and different kind of other parameters
is studied by many researchers [107, 15, 144, 116, 89, 117, 133]. Ma and Wang [133] proposed
and analyzed a delay induced predator-prey system with the effect of habitat complexity. Li
et al. [117] examined the stability and Hopf-bifurcation of a delayed prey-predator model
with Beddington-DeAngelis functional response. The roll of prey refuge and degree of mutual
interference among predators is studied by Tripathi et al. [208]. Further, they have investigated
the effect of gestation delay in the dynamics of the system. There are several studies carried
out with multiple delays [120, 231, 111]. Li and Wei [120] have done stability and Hopf-
bifurcation analysis of a prey-predator model with two maturation delays. Recently, Kundu
and Maitra [111] have discussed about the dynamics of two prey and one predator system
with cooperation among preys against predators incorporating three discrete delays. They have
shown that all delays are capable to destabilize the system.

To the best of author’s knowledge, an ecological model with (i) effect of fear in prey, (ii)
prey refuge, (iii) Crowley-Martin functional response, (iv) gestation delay in predator have not
been considered. Motivated by this, we formulate two mathematical models (non-delayed and
delayed) in section 2.2. In section 2.3, we analyze the dynamics of non-delayed model via
stability and Hopf-bifurcation. Analysis of delayed system is done in section 2.4. Properties
of Hopf-bifurcation for the delayed system are given in section 2.5. We have also done some
numerical simulations for both the non-delayed and delayed models to confirm our analytic
findings. Section 2.6 is devoted to numerical simulations.
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2.2 Evolution of Mathematical Model

We consider a ecosystem where prey and predator species survive. Prey population grows
logistically in the absence of predation. Then it leads the following

dx 2

— =FX—roX—rix

I 0 X7,
where x represents the population of prey, r is the birth rate of prey, ry is the natural death rate
of prey and r; denotes the death rate of prey due to competition among them. In the present
chapter, we take

k) = l%ky

It may be noted that there are some arguments ([32]) that survival of prey may be affected due
to fear effect of predator. But there is no such experimental evidences and hence we take the
parameters ry and r; as constant in our model. Now we introduce the effect of fear and modify

the expression (2.1) according to Wang et al. [220] and get

dx 1 5
— = rX —rox —rix
dt  1+ky o

where £ is the cost of fear and y represents the predator population.

The Holling type-II functional response is only prey dependent functional response. This
shows that the feeding rate of predators decreases with density of prey due to presence of
handling and searching time. Crowley and Martin assumed that predator will decrease at high
predator density due to interference among them for the common resources. It makes the
functional response more realistic in the ecological point of view. The Crowley-Martin type

functional response is given by

ox
14 ax)(1+4by)’

g(x,y) = (

where « is attack rate, a is handling time required per prey and b is magnitude of interference
among predator individuals. Apart from this, it converts into classical (when a = 0,b = 0) and
Holling type-II functional response (whena > 0,b =0 ora = 0,b > 0). Now we divide the prey
population into two categories: reserved population which is not accessible for predators and
unreserved or open access population which are available for predation. This process is known
as prey refuge. Let Ox be the number of prey individuals which are reserved and (1 — 6)x the
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number of prey individuals which are available for predation. Therefore, we modify Crowley-

Martin type functional response incorporating the effect of prey refuge as:

o(l—0)x
1+a(l1—6)x)(1+by)’

g(x,y) = (

where 6 (0 < 6 < 1) is refuge parameter.

Keeping above assumptions in mind, our mathematical model is governed as follows:

@— ! rx — rox — rix’ — a(1-0)vy

dt 1+ky 0T T (U ta(1—0)x)(1+by)

d ca(l—0)x

y _ =6y 50 5,2 (2.1)

dt — (1+a(1—0)x)(1+by)
x(0)=x0 > 0, y(0)=yo > 0,

where ¢(0 < ¢ < 1) is the conversion coefficient representing the number of newly born predator
for each hunted prey, & and §; denote the natural death rate and crowding effect of predators,
respectively.

As we have explained earlier that in real life, each organism needs an amount of time to re-
produce their progeny. Due to this fact the increment in predators does not appear immediately
after consuming prey. It is assumed that a predator individual takes 7 time for gestation. There-
fore, it seems reasonable to incorporate a gestation delay in the system. Here it is assumed that
change rate of predators depends on the number of prey and predator present at some previous
time [107]. Thus, the delay 7 is considered in the numeric response only. The generalized

model involving discrete time delay takes the following form

. P S (L)
T T T Y T A= 0 (1 1 by) (2.2)
dy co(l—0)x(t—1)y(t—1) — 8oy — 81y?,

dt ~ (1+a(l—0)x(t— 1)) (1 +by(r—1))

subject to the non negative conditions x(s) = ¢;(s) > 0, y(s) = ¢(s) > 0, s € [—7,0], where
¢1(s) € C([—7,0] = Ry+), (i=1,2) and 7 denotes gestation time delay of the predator.

Remark 2.2.1. From the first equation of model (2.1), we have % < (r—ro)x. Assume r < ry,
which leads us to lim;_,e.x(t) = 0 and consequently lim,_,.. y(t) = 0 (as y is specialist predator
and depends on only prey). This implies both the species will die out when r < ry. This case is
not substantial from biological point of view. Hence, throughout this chapter we consider the

case when r > r.
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2.3 Dynamics of Non-delayed Model (2.1)

In this section we shall show some preliminary properties of proposed non-delayed model (2.1)
like positivity, boundedness and persistence of solutions. Then we shall investigate the local

and global behavior of system near existing equilibrium points.

2.3.1 Positivity and boundedness of the solution

Positivity of solution shows that species exists and boundedness represents a restriction on

species to grow them exponentially. The model (2.1) can be written as

dx

dy
E_xd)](xvy)v E_y(PZ(xvy)v

where

_ 1 (1-6 _ ca(1-)x
01(x,y) = 557 —ro—rx— (1+a(779)x)){1+by)’ ¢ (x,y) = (]+a(;x£9)x))(1+by) —& —dy.

It follows that

x(t) = x(())ef(; 01 (x(s),y(s))ds >0,
y(t) = y(O)ef(;ﬁbZ(x(S),y(s))ds > 0.

Thus, the solution X (z) = (x(¢),y(¢)) with positive initial condition X (0) = X = (x(0),y(0)) €

R%r remains positive throughout the region R%r.

Lemma 2.3.1. The set Q = {(x,y) : 0 <x < 0<x+ %y < rr]—25} is a region of attraction for

all solutions initiating in the positive quadrant, where & = min{ry, 8 }

Proof. The first equation of model (2.1) implies

dx < 2
— <rx—rx
dr — o
which yields
limsupx(r) < .
t—so0 r
Again let L(t) = x(t) + Ly(t),
then we have
dL dx ldy  rx » 0 0,

p
—rox—rx ——y——y < ——6L,
C C r

ar di a1tk
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where 6 = min{ry,5}.
Hence it follows that

. 2 . .
We also note that if x > r—r] and L > rr]—5, then % < 0 and ‘fi—[; < 0. This shows that solutions of
system (2.1) are bounded and € is a positive invariant set. U

Persistence of a system characterizes that all species will survive in future time and none
of them will extinct if they are initially present. Now we shall establish some conditions for
uniform persistence of model (2.1).

Theorem 2.3.2. Model system (2.1) is uniformly persistence if following inequalities are satis-
fied:
2

r> (1+k%) <r0+oc(1—9)

ﬁ co(1—0)x;
1’15)’ (1+a(1— 0)x)(1+b<) oo

where x; is defined in the proof of this theorem.

Proof. System (2.1) is said to be uniformly persistence if there are positive constants M and N
such that each positive solution X (t) = (x(z),y(¢)) of the system with positive initial conditions
satisfies

M <liminfX () <limsupX(z) <N.

I—ro0 f—so0

According to the above, if we define

rocr?
N = max{—, —},
ry ro
then from Lemma 2.3.1, we have
limsupX(r) <N.

t—so0
This also shows that for any sufficiently small € > 0, there exists a 7 > 0 such that forallt > T,
the following holds:

()<= +e (t)<”2 te
X Z , Y }"]_6 .

Now from the first equation of model (2.1), for all t > T, we can write

dx rx ) cr?
— > ————— —rpx—rx —a(l - 0)x(— +¢€
di =14k Ste) (=05 +e)

r cr2 2
= —s——r—a(1-0)(— + — it
<1+k(—f]’§+e) ro— o )<r16 8>>x e
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It follows that

r

1
liminfx(r) > — [ ———5——
14+ k(<5 +€)
8

t—o0 r

_ro—a(1—9)<:—r;—|—8>>.

For sufficiently small € > 0, we have

o 1 r cr?
htrgglfx(t) > Z(l—kk% —ro—oc(l—e)r]—6> =:X;.
r

Therefore, the prey population of system (2.1) is persistent under the condition given below:

2 P

cr c

1+k— 1-0)—).
r>< + r15><r0+a< )r15>

Now from the second equation of model (2.1), we can write

Q> co(1—0)(xi+€)y

— &y — &2
dt_(1+a(1—8)(x,~+e))(1+b(fl%+e)) v o

B ca(l—0)(x;i+¢) B s 2
B <(1+a(1—9)(x,~+8))(1+b(f]%2;+8)> 50))’ s
which implies
- 1 co(l1—0)(xi+¢€) _
liminfy() 2 5 <<1+a<1_e)(x,~+e))(1+b<f+fS +e)) 60>.

For sufficiently small € > 0, we have

. 1 co(1—0)x; B
liminfy(r) = 5 <(1+a(1—8)x,~)<1+b%> 60>'

For persistence of the predator population of system (2.1), we must have

oa(l—0)x;
c ( )xl Crz > 60
(1+a(1—0)x;)(1+b<5)
. . . c_r2 . c_r2 co(1—0)x; .
Taking M = mm{r (1 +kr]5) (ro + o1 6)”5), (1+a(1—9)x,~)(1+b;']’—fs) 80}, the theorem

follows. U
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Remark 2.3.1. From the above theorem, we can conclude that the fear parameter k governs

the persistence of the system.

2.3.2 Existence of equilibrium points

It is investigated that system (2.1) has three equilibria E(0,0),E} (x,,0) and E*(x*,y"). The
trivial equilibrium E(0,0) always exists.

¢ Existence of F|(x.,0): It is easy to see that x, is given by

1
Xy = Z(r—ro).

¢ Existence of interior equilibrium E*(x*,y"): It may be seen that x* and y* are the

positive solutions of the following system of algebraic equations:

! —rg—rix— a(l—@)y
T+ky O 7 (IT+a(1=0)x)(1+by)

— 8 — 61y =0.

=0,

co(1—0)x 2.3)

(I+a(l—0)x)(1+by)

From the first equation of system (2.3), the following points are noted:
(i) When y = 0, then we get r — ro — rjx = 0, which leads to

1
x= Z(r—ro) = X..

(i1)) When x = 0, then it leads to the following quadratic equation
m1y2 +myy+ms3 =0, 2.4)

where my = k(rob+ a1 = 0)), my = rok+b(ro —r)+ (1 = 6), m3 = —(r—ro).
Eq. (2.4) has always a positive root y.
(iii)
aa(1-6)%y
ry— 5
dy (1+a(1-6)x) (1+by)

dx - rk + a(1-0)
(1+ky)? (1+a(1—8)x)(1+by)?

It can be seen that % < 0 under the condition

1128 > aa(l—6)%cr. (2.5)
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The above analysis shows that the first equation of system (2.3) passes through the points

(x4,0), (0,y1) and decreases under condition (2.5).
From the second equation of system (2.3), we note the following:

(l) Wheny = O7 then x = m =IX1.

(i) When x=0, theny = — =y, <0.
(iii)

co(1—-0)
dy <1+a(179)x>2(1+by) 0
dx ca(1—6)bx > 0.

(1+a(1-6)x) (1+by)?

This shows that the second equation of system (2.3) passes through the points (x;,0) (0,y;)

and increases as % > 0.

From above analysis it can be concluded that system (2.3) has unique positive solution

(x*,y*) if, in addition to condition (2.5), the following inequality holds true:

X > X1, (2.6)

Hence, we can state the following theorem.

Theorem 2.3.3. The interior equilibrium E* (x*,y") exists uniquely if (2.5) and (2.6) hold.

2.3.3 Stability analysis

The local behavior of system around any existing equilibrium point is closely related to the
behavior of corresponding variational (Jacobian) system. Therefore, we compute the Jacobian
matrix. Further this matrix is evaluated at each equilibrium point. Then using the Routh-

Hurwitz criterion, it is concluded that

e The equilibrium point Ey(0,0) is saddle point having stable manifold along the y—axis

and unstable manifold along the x—axis.

e The Jacobian matrix, computed at E; (x,,0) is

r—ri 1—0)x
~(r—ro) =5 °>+13‘.£,(12>x*)

co(1—0)xy
0 T+a(l—0)x. d

JIE (x0) =

It is noted that the equilibrium point E| (x,,0) is
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— locally asymptotically stable if

co(l—0)x,

1+a(l1—0)x. <&

— saddle point having stable manifold along the x—axis and unstable manifold along

the y—axis if
ca(l—0)x,

l1+a(l—0)x, > %-

e The Jaxobian matrix, computed at interior equilibrium E*(x*,y*) is given by

x — aa(1—0)%x*y* . er** o(1-0)x*
] _ [ : <1+a(19)x*>2(1+by*)} [(”’W )y (1+a(19)x*)(1+by*)2}
E*(x*,y*) ca(lfe)zy* . [S]y* co(1—0)bx"y* }
(H—a(]fe)x*) (14by*) (1+a(179)x*)(1+by*)2
A2 +AA+Ar =0, 2.7)
where
A {r o aa(l—0)*x"y* } N { vt co(1—0)bx"y* }
1= |nXx — 1 )
(1+a(1—6)x)*(1+by") (1+a(l—6)x*)(1+by*)?
Ay — {r o aa(l—0)*x"y* } {51))* co(1—0)bx*y" }
(14a(1—6)x)(1+by*) (1+a(1—6)x*)(1+by*)?

co(1—0)y* { krx* N a(l—0)x" }
(14a(1—0)x")*(14by) LI +ky)> * (1+a(l—0)x")(1+by) ]
Now using the Routh-Hurwitz criterion, both the eigenvalues of J| E*(x+,y*) have negative

real part iff
A >0, Ay >0. (2.8)

Thus, we can state the following theorem.
Theorem 2.3.4. The interior equilibrium point E* (x*,y") is locally asymptotically stable

in the xy—plane iff inequalities in (2.8) hold.

It can easily be noted that (2.8) holds if

aa(l—0)%y*

ry > 5 .
(1 +a(l— G)x*) (1+Dby*)

(2.9)
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Remark 2.3.2. The interior equilibrium point E*(x*,y") is locally asymptotically stable
in the xy—plane if (2.9) holds.

In the characteristic Eq. (2.7), if we assume that A, < 0, then both the eigenvalues are

real and have opposite sign. Thus, the following theorem can be stated.

Theorem 2.3.5. IfA; <0, then E*(x*,y*) is a saddle point.

Again if we assume that A; < 0 and A; > 0, then eigenvalues are either real and positive

or complex conjugate with positive real part. Thus, the following theorem follows.

Theorem 2.3.6. IfA; < 0and A, > 0, then E*(x*,y") is unstable.

Now, we shall show the existence of limit cycle in the system via Hopf-bifurcation. In the
characteristic Eq. (2.7), we assume that A; = 0, A, > 0. This gives us a critical value of fear

parameter k = k*, where
r—G

k' = ——
Gy*’
where

o(l—0)y"
(1+a(1—6)x")*(1+by")

co(1—0)bx*y"

G= 2rx* .
ro+2rx + (1+a(1—9)x*)(1+by*)2

oy +

Theorem 2.3.7. Ifk = k*, which is defined above and A, > 0, then system (2.1) goes through a

Hopf-bifurcation near the interior equilibrium point E*(x*,y").

Proof. We have tr(J|g+) = 0 and det(J|g+) = Ap > 0 at k = k*, which implies the eigenvalues

are purely imaginary. We also have

() e Q o <O
Hence, it is noted that
e When A; > 0 and A, > 0, then k > k* and E* is locally asymptotically stable.
e WhenA; <0and A, >0, then k < k* and E* is unstable.

Hence, by the Andronov-Hopf bifurcation theorem, system (2.1) has a Hopf-bifurcation near

the interior equilibrium point E*(x*,y*). O

In the following theorem we give a sufficient condition for global asymptotic stability of
the unique positive equilibrium E*(x*,y*) of the system (2.1). It is assumed that conditions in

Theorem 2.3.3 are satisfied.
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Theorem 2.3.8. Assume that following inequality holds

2 2. % *
_ 1—
< kr *> <4<r1— aa(l—6)%y ><61+ ca(l—6)bx 2 >7
I+ky (1+a(1—6)x)(1+by") (1+a(1—6)x")(1+by*) (1+b5)
(2.10)
then the positive equilibrium E*(x*,y*) is globally asymptotically stable.

Proof. Choose a positive definite function about E™* as
* * X * * y
Vix,y)=x—x"—x ln;—kﬁ <y—y —y 1n)7> ,

where B > 0 to be specified later. Now, differentiating V with respect to ¢ along the solutions
of system (2.1), we have

a - ()G (5E

On a little algebraic manipulation, we obtain

av aa(l—0)%y* N
E‘<_”+(1+a<1_e)x)(1+a<1—e)x*)(1+by*)><x *)

B co(1—0)bx* Y B kr

85+ rar o e (Carmie
a(l—0) Pea(1-6) . *

T 0o (L ra(l— 001 1by) (1+a(1—6)x*)(1+a(1—9)x>(1+by)><x_x Y=y
Now choosingﬁ:%,we get
av aa(l—0)%y* 2 (I+a(1-6)x7)
E__<”_ <1+a(1—9)x><1+a(1—9)x*)(1+by*)><x *) c(1+by") <51

ca(l—0)bx" 2 kr " .
T o) O TR0

which implies ‘2—‘; is negative definite under condition (2.10). Hence, E* is globally asymptoti-

cally stable under condition (2.10). O

2.3.4 Periodic orbit

In this section, we shall obtain certain conditions for the existence and non-existence of periodic

orbit of system (2.1).
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Theorem 2.3.9. Assume that
a(1—8)(r—ry) <r, .11)

holds. Then the system (2.1) has no periodic solution in the interior of the xy—plane.

Proof. Let
o ) o(1—6)xy
Fiy) = e X 0N = N — e ey (T by
f2<x7y) = Ca(l _e)xy —60)7_6])}2

(1+a(l—0)x)(1+by)
In the interior of the positive quadrant of the xy—plane, consider a continuously differentiable

function as lta(l—0 L+b
bta) = (LHa =L b)

Now, we have

0 0
V= a(fl‘l’)ﬂL&—y(fz‘P)

— ra(lyzlel(]iy—)kb)’) (1 —;by) [r1 +roa(1—9)+2r1a(1—9)x]_M[& + b+ 2b81y]
= (1—;[9)’) Vzlfi—_kye)) —ri—roa(l —0)—2a(l—06)rx —M[al + b8+ 2b8yy].

Itis noted that V < 0 if a(1 — 6)(r — ry) < r;. By Dulac-Bendixson criterion, we conclude that

system (2.1) has no periodic orbit under assumption (2.11). O
Theorem 2.3.10. If any one of the following holds:

e A <O,

e Ay <0QandA; > 0.
Then system (2.1) has at least one periodic orbit.

Proof. In Lemma 2.3.1, it is shown that solutions of system (2.1) are bounded and Q is a
positively invariant set. Above inequalities implies that E* is unstable. Thus, the positive limit
set does not contain any equilibrium point. Hence, by Poincare-Bendixson Theorem, system

(2.1) admits at least a periodic solution. Ol
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2.4 Dynamics of Delayed Model (2.2)

Under our analysis similar to Section 2.3, it can easily be seen that all the solutions of delayed

system (2.2) initiated from positive initial pair are positive and uniformly bounded.

2.4.1 Local stability and Hopf-bifurcation

Model system (2.2) can be rewritten as

dU ()
dt

=F(U(1),U(t 1)),

where U (1) = [x(t),y(1)]", U(t —7) = [x(r — 7),y(r = 7)]".
Let x(r) =x*+x'(t), y(t) =y*+'(r). Then linearizing system (2.2) about the interior equilib-
rium solution E* (x*,y*), we have

az
dr

o[ oF [ oF
“\ww ), ¢ \aue—)

and Z(r) = [¥'(1),y'(1)]"
Thus, the variational matrix of the system (2.2) at E* is given by

PZ(t)+QZ(t — 1),

where

AT aj a
J =P+ Qe = ,
¢ [caw“ as +ca5eM]

where

_ r % a(l-0)y* _ rkx* a(1-6)x"
@ = Togr — 10— 2N~ e e () 2T T kP (el 8)r ) (1 P

. o(1-0)y* _ s * . o(1-0)x*
43 = Tra(l_0) )2 (1tby)’ W = & —281y", as = (ta(l_6)x)(11by 2

Characteristic equation of above Jacobian matrix is given by
A2+ by A +by + (b3A +by)e 7 =0, (2.12)

where
by = —(a1 +a4), by =aya4, b3 = —cas, by = c(a1a5 —612613).
Case (1): 7 = 0. Then characteristic equation becomes

A2+ (b +b3)A + (by+by) = 0. (2.13)
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Remark 2.4.1. The characteristic equation (2.13) is same as the characteristic Eq. (2.7) of the

non-delayed model system (2.1), studied earlier.

All the roots of characteristic Eq. (2.13) have negative real part if and only if
(H]) :bi+b3 >0, by+by > 0.
Case (2): 7> 0. Letio (@ > 0) be a root of Eq. (2.12), then it follows

—@? + b1io+ (b3iw + by)(cos(wT) — isin(@T)) + by = 0.
On equating real and imaginary parts, we obtain

b3wsin(@t) + by cos(@T) = 0> — by, 2.14)
bysin(@7) —bswcos(wt) = b0, '
which leads to
Z+pz+q=0, (2.15)

where p = b} — b} —2b,, g= b3 — b3 and z = ©°.
Let h(z) =22+ pz+q.
(Hy): p>0, qg>0.

Remark 2.4.2. e [f (Hy) holds, then Eq. (2.15) has no positive roots. Hence, all the roots
of (2.12) have negative real part and hence E*(x*,y*) is asymptotically stable for all
T > 0 under conditions (Hy) and (H,).

e If (H)) fails and (H,) holds true, then E* is unstable for all T > 0.

(H3) 1q<O.
If (H,) and (H3) hold, then Eq. (2.15) has a unique positive root . Substitution of @y into
Eq. (2.12) gives us

b3y sin(@yT) + bycos(ayT) = wf — by,

bysin(@yT) — b3y cos(myT) = by @y,

which yields

1 1| ba 0)2—[92 —b]b30)2 2im
Ti:ECOS : ( Ob2w2)+b2 0 +Evl:07172“-- (216)
3%0 4

(Hi): p<0,¢>0, p*>4q.
If (Hy) and (H,) hold, then Eq. (2.15) has two positive roots ®7 and ®?, substituting a)]z?2 into
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Eq. (2.14), we have

1 by(®}, — by) — b1 b3 7 2in
2= = cos! ( ]’22 2) 5 1,2 J , J=0,1,2....
o b307 , + b3 2

Let A(7) be aroot of Eq. (2.12) satisfying Re{A(7;)} = 0. Then differentiating Eq. (2.12) with

respect to T, we obtain.

dANT_(@Atb)et byt
dt B (D3sA +bsy)A  (D3A +by)A A
{@}] B (2iax + by )e'@® b3 T
dT | j_ip, (b3i00+ba)icxy — (b3in+by)icx 0
R {dl} ! —b3@3 (b1 cos(wpt) — 2 sin(anT)) +Cawp(20ycos(wyt) + by sin(wy)) — b33
e | — =
AT |5 _im biayg + biof

where sin(@y7) computed as

bi1bsyg —|—b3(00((1)§ — bz)
bwg+b; '

sin(wpT) =

After a little calculation, we obtain

But sign [%Re(l)} Amiay = 518N [Re(E)} At

(Hs): ' (ag) #0.

Hence [£Re(A)] A—iay 7 0 under condition (Hs).
Now we are in position to state the following theorem.

Theorem 2.4.1. For system (2.2), assume that (Hy), (Hz) and (Hs) hold. Then there exists a
positive number Ty such that the equilibrium E* is locally asymptotically stable when T < 1y and
unstable when T > Ty. Furthermore, system undergoes a Hopf-bifurcation at E* when T = 1.

2.4.2 Global stability

Theorem 2.4.2. The interior equilibrium E* of the delayed system (2.2) is globally asymptoti-
cally stable under condition (2.10).

Y
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Proof. We consider a Lyapunov function about E™* as
x  (I+a(l—0)x") y
Vi(x,y)=x—x"—x"In— + —y " —y"In=).
1(x,) PR R (y=y"—y y*)
Differentiating V| with respect to ¢ along the solutions of system (2.2)
avi (x—x*) dx+ (I+a(l—0)x") (y—y*)dy
dt —\ x /Jdt c(1+by*) y /dt
. r o(l1—0)y } . { co(1—0)x
=X—x —rp—rix— + -
(x=x) L T T Trai—ewatey | TP | Trai- e o)

L (Lra(l=0)x) ry—y'y  ca(l—O(t—)(—1)
—60—61y} c(1+by") ( y )(1+a(1 0)x(t—1))(1+by(t — 1))
co(l1—0)x

(I+a(l1-6)x") ;
T by T el om (15 by
On simplification, one can obtain
avi [ aa(l—0)%y* P (I+a(l—0)x")
dr <r] (1+a(1—G)X)(Ha(l—G)X*)(Hby*))(x ) c(1+by") <6l

N co(1—0)bx* >( o kr
(I+a(l—0))(1+by)(1+by) /> 7~ (T+ky)(1+ky")
(I+a(l—06)x%) (y—y*) co(1—0)x(t—1)y(t—1)

c(1+by y J(U+a(1—0)x(t—1)(1+by(t—1))
(I+a(l1—6 co(l—0)x
 c(1+by 1+a(1—6)x)(1+by)

(x—=x")(y—y")

x")

S— | N — | —

y—y")
(
Now let

S) B x*y*

))(I+0by(s))  (1+a(l—0)x*)(1+by")

. vy (A2 el 0 )0 )],
(I+a(l—0)x*)(1+by*) x*y*(I+a(l—0)x(s))(1+by(s))

Then we have

xX(s)y(

V2:V1+Ca(1_e)/t {(I—Fa(l— 6)x(

ava _ %—F co(1—0)xy {1 X —1)y(t—1) (I+a(l1—06)x)(1+by)
dt — dt  (1+a(1-0)x)(1+by) Xy (1+a(1— )x(t—1))(1+by(t —1))
_x*y*(1+a(1—9)x)(1+by)ln<xy(1+a(1—9)( 1+byt 7)) }
xy(14+a(l—=0)x*)(1+by*) \x(t—1)y(t —7)(1+a(l—0)x)(1+Dby)
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: co(1-0)x . co(1-0)x"y* *
Noting that (1+a(?79)x)(1y+by) = (1+a(?79)x*)(1y+by*) at £, we have
dv, dv co(1—0)x"y* X1y —1) (1+a(1—06)x)(1+by)
dt — dt  (1+a(1—0)x*)(1+by") Xy (I+a(l1—0)x(t—1))(1+by(t—1))

x(t — T)y(e = T)(1 +a(1 - 0)x)(1+by)
+m<wu+ﬂu—ena—wX1+mw—r»>}

Using n = 1 in the result obtained by Manna and Chakrabarty [139], it follows that

{l_x(t—r)y(t—f) (I+a(1—06)x)(1+by)
Xy (I+a(l1—0)x(t—1))(1+by(t—1))
x(t—1)y(t—7)(1+a(l—0)x)(1+by)
e (a0 o )| <O

Thus % < 0 with equality iff x = x*, y = y*. The invariant subset S within the set § =
{(x,y)|x =x",y =y*}. Thus S = {E*}. Using LaSalle invariance principle, E* is globally
asymptotically stable under condition (2.10). (I

Remark 2.4.3. E* is globally asymptotically stable for delayed system (2.2) if it is globally
asymptotically stable for non-delayed system (2.1).

2.5 Direction and Stability of Hopf-bifurcation

In the previous section, we have obtained that when gestation delay 7 crosses the thershold
value 7y, the model (2.2) becomes unstable and system undergoes a hopf-bifurcation. In this
section, we will discuss the properties of the bifurcated periodic solutions using the center
manifold theorem and normal form theory [80].

Let us assume that T = 7o+ U, U € R, so that the Hopf-bifurcation occurs at yt = 0. Con-

sidering the transformation

*

x1 (1) = x(1) =x7, y1(1) = y(1) =",

and still denote x;(¢),y;(¢) by x(¢),y(t), respectively, our delayed model (2.2) is transformed
into the following functional differential equation in C = C([—1,0],R?)

Ur) = ’L'(PU(I) +OU(t—1) +f(x,y)), (2.17)
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where U(r) = (x(1),y(1))",
. ay ap . 0 0 X _ f]
P= [0 a4] 2= [ca3 ca5]  fE3) [fj .
The nonlinear term f;, f> are given by
20a(1— 6)3y* 2k>x*
fi = =2rx*(1) + (+al —G)x*)3(1+by*)x2(t)+my2(t)
2ab(1 — 0)x* rk o(1—0)x(1)y(z)
Tra e O T 0 e e 1y
6aa’(1—0)3%y* 6k3x* 6ab*(1—0)x*
~Trai=e e O G O (rat-omi e
20a(1—0)? 2rk?
T i{e()x*)3<)1 Toy OO )
20b(1 —0)
AT — o) P gy O O+
2caa(l —6)%y* 2cob(1—0)x*
fa==281y(1) (1 +a(l—6)x p(1 +by*)x2<t_f)_ (1 +a(l—6)x (1 +by*)3y2(t_f)

co(1—6)
(1+a(1—6)x")>(1+by*
6cob?(1— 6)x*
(1+a(1—0)x")(1+by")
2cob(1—0)
" UTai—ew ) 0oy P~ DY —T) ...

The linearization of equation (2.17) around the origin is given by

6caa*(1—0)3y*
1+a(1—0)x")*(1+by*)
2caa(l —6)?
1+a(1—0)x*)3(1+by*)?

)zx(t—f)y(t—f)—k ( S(t—1)

(=1~ ( (1= 1)y(t — 1)

U(t)=t(PU(t)+QU(t—1)).
For ¢ = (¢1,02)" € C([—1,0],R?), we define
Ly(¢) = (T+ 1) (PP(0) + 09 (~1)).

By the Riesz representation theorem, there exists a 2 x 2 matrix {(6,u), (—1 < 6 <0) whose

elements are of bounded variation function such that

Li(0)= [ at(0.0)0(6) for g €C((-1,0L).
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In fact, we can choose

§(6,1) = (0 +1)[P6(6)—Q5(60+1)],

where 0 is the Dirac-delta function.
For ¢ € C'([—1,0],R?), we define

) TR
AWo(0) = ¢ |
ffl[dC(inu)](b(é)’ lerO,

and
R(1)9(6) = {0’ roel-10)
h1.0), if60 =0,

where

h(p,¢) = (70 + K1) Z;] , ¢ =(91,62)" € C([~1,0],R?),

e BT O T OO e £
Al T O R O a2 F
i +a(12 i{i)()lx*_)f <)12+ by*)2x2<0)y O+5 ir:yz*ﬁx(o)yz(o)

i +a(12—ag§)lc*_)29(i Ty OO+
by = 28,2(0) - 20a =0y 5 2ab(l-8) 5

(14+a(1—6)x*)3(1+by*) (14+a(1—6)x*)(1+by*)3

co(1-6) 6caa2(1—9)3y*
+(1+a(1—9)x*)2(1+by*)2x<_f)y<_f)+ (1+a(1—6)x")? <1+by*)x3<—f)
6cab?(1— 0)x* 2caa(l—6)?
(1+a(1—G)X*)(1+by*)4y3<_f)_ (1+a(1—6)x*)3(1+by*)? 3% (=T(=7)
2cab(1—6)

(=) (1) +....

" (I+a(1—0)x)2(1+by*)3

Then system (2.2) is equivalent to the following operator equation

Uy =A(W)U; +R(1)U; ,
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where U; =U(t+0) for 6 € [-1,0].
For y € C!([0,1], (R?)*), we define

—dwls) if s € (0,1])
Ay(s) =1

fgl W(_g)dCT<§70)7 if s=0,

and a bilinear form
0 6
(W(5).9(6)) =T(©0)9(0) = [ [ W(E—0)dL(6)9(8)dE

where £(0) = {(6,0), A=A(0) and A* are adjoint operators. From the discussion in the previ-
ous section, we know that i@y 1y are the eigenvalues of A(0) and therefore they are also eigen-
values of A*. Tt is not difficult to verify that the vectors ¢(8) = (1,0;)7e/®%® (6 € [—1,0])
and g*(s) = D(1, ;" )e'®™ (s € [0,1]) are the eigenvectors of A(0) and A* corresponding to
the eigenvalue iwy Ty and —iwy Ty respectively, where

(q"(s),q(8)) =1, {g"(5),q(6)) = 1,

o caze '™ o ar
1= = —- ~
! iy + a4 +ase %’

iy — as — case 1%’
1

D= _ - - .
[1 +aoq + T (cas o +casoy (x]*)eﬂa)o’co}

Following the algorithms explained in Hassard ef al. [80] and using a computation process
similar to thatin Song and Wei [195], which is used to obtain the properties of Hopf-bifurcation,

we obtain

— 1 .
820 =27%D {—roclkjt EWz(g)(O) —r—o(1—8)oy +co(l1—86)oy aye 2N _ §, oclzocl*} ,

g1 = 0D {—k(Oﬁ +0o7)—2r1—oa(1-0)(a;+0a;)+ca(l— 9)06_]*(061 +0q)—29 (X]*Oﬂm} ,

— 1 , —
g02 = 270D {— rok+ EW()(zl)(O) —r—a(l—0)o +ca(l—0)a;age? ™™ — § oclzocl*} )
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_ 1 I
a1 = 26D | = WP (0) = kW 0) - Skl )~ ke (0) - 2w, 0

W) (0) — (1 - 8) (W[ (0) + S WA (0) + Joa Wiy (0) + cu Wi (0)
+a(1—0)(oy+ap)(a(l—8)+bay)+a(l—0)oy(a(l —8)+bay) + a;ca(l — 0)

1 . .
(W (=i Swid (~ 1) —W2”< el 4 oW} (—1)e %)
—ajco(l—0)e " @N(qq + ) (a(l—0)+ab) — afca(1—8)e “Pq (a(1— 0) +0rb)
. 6105_]*(2051 W (0)+ awi ><0)),

where

W. (9) __ g0 (0) T8 802 _(0)€7iw0709—}—E 20700
20 @0 T oo d 3(00T0q ! :

Wl](e) = (’j)lz_loq(())elwofoe_i_ (l;)il; q<0) —iwyT6 + By,

| = (El( ),E( )) €R’and E; = (E é ), éz))T € R? are constant vectors, computed as:

Ey =2

—1
2imy — ay —ay r—ri—a(l—0)a
—cazne 2N 2iay — a4 — case 2P0% co(l—0)oye ™% |’
—1

—a —ay r—rl—— (1—9)(061—}—7])—6106]2
E, = o o .

—caz —ay— cas zca(l—e)(m—#a])—&a]a]
Consequently, g;; can be expressed by the parameters and delays 7). Thus, these standard
results can be computed as:

Re(cq1(0
<g20g11—2|g11| |g02| >—}—gﬂ .UZZ—M

c1(0)= 3 2 Re(X (1))’

2a0 7%
Im(q (0)) -|—[.Lzlm()yl(f()))

o To
These expressions give a description of the bifurcating periodic solution in the center manifold

ﬁz = 2R€(C] (0)), T2 = —

of system (2.2) at critical values T = 7y which can be stated in the form of following theorem:
Theorem 2.5.1. e Ifuy, > 0(< 0), then the Hopf-bifurcation is supercritical (subcritical).
e IfB > 0(< 0), then the bifurcated periodic solutions are unstable (stable).

e IfT, > 0(< 0), then the period increases (decreases).
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2.6 Numerical Simulation

In order to show the theoretical results derived in previous sections computationally, we carry
out numerical simulation over the following set of values of parameters corresponding to system
(2.1) and (2.2).

Table 2.1: List of parameters for model (2.1) and (2.2)

Parameters  Biological meaning Numerical ~ Unit Source
value

r Birth rate of prey popu- 3 day ! [138]
lation

ro Death rate of prey pop- 0.03 day ! -
ulation

1 Coefficient of in- 0.1 meter? -
traspecific interference day'individual !

among prey individuals

k Cost of fear 30 predator [220]
individual !

0 Prey refuge parameter 0.3 Constant [100]

a Handling time 0.2 day [135]

b Magnitude of interfer-  0.01 day ! -
ence among predators

a Attack rate 2 day ! [167, 461,

c Conversion effeciency 0.4 Constant [220, 155]
of yon x

O Death rate of predator 0.5 day~! [184]
population

5 Coefficient of in- 0.025 day~! -

traspecific interference
among predator indi-

viduals

For the above set of parameters, system (2.1) has three equilibrium points, namely triv-
ial equilibrium point Ey(0,0), axial equilibrium point E;(29.7,0) and positive equilibrium
point E*(1.0357,0.2174). The eigenvalues of the Jacobian matrices evaluated at Ey and E; are
(2.97,—0.5) and (—2.97,4.1064), respectively. Therefore Ej and E; both are saddle points.

Again the Jacobian matrix at the positive equilibrium E* has complex conjugate eigenvalues
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with negative real part as the inequalities given by (2.8) hold. Hence, the interior equilibrium
E* is locally asymptotically stable (Theorem 2.3.4). It is illustrated by Fig. 2.1.

prey | 091
predator

stable equilibrium point (1.0357,0.2174)

Fig. 2.1: Solution curves (left) and phase diagram (right) for the model system (2.1) for
the set of values of parameters chosen in Table 2.1.

Throughout in this chapter, the cost of fear k and prey refuse 0 are crucial parameters.
Therefore it seems reasonable to study the effect of variation of these two parameters on the
dynamics of system (2.1). In Theorem 2.3.7 we have shown analytically that system (2.1)
undergoes Hopf-bifurcation at k = k*. k* = 1.8998 is computed by formula, derived in section
2.3. To determine the direction of Hopf-bifurcation we computed the value of 6* by the formula
given in Wang et al. [220]. The value of 6* is —0.0759 < 0. By Perko [169] (Theorem 1 on
page 34), Hopf-bifurcation is supercritical as 6* < 0. The instable behavior of solutions and
existence of stable limit cycle at k = 1 < k* = 1.8998 is depicted in Fig. 2.2. In Fig. 2.3
we draw the bifurcation diagram for both the species with respect to fear parameter k. It can
easily be seen that oscillations move off from the system as we increase the value of k. For
k =30 > k*, time series of species and phase portrait are depicted in Fig. 2.1 which show the
stable behavior of the system around E™*.
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Fig. 2.2: Instable behavior of solutions and existence of stable limit cycle for k = 1(<
k*). Other parameteric values are same as in Table 2.1.

20

5 .\\\
‘q\ 2
O ‘[ | O’_l——-—l——-‘l—-/-fl
0 0.5 1 15 2 25 3 35 4 0 0.5 1 15 2 25 3 35 4

Fig. 2.3: Bifurcation diagram of both the populations with respect to cost of fear k.

The effect of variation of refuge parameter 6 on the steady state level of prey and predator
species is shown in Fig. 2.4. It is observed that x* always increases with 8. On the other hand
y* increases initially with 6 but beyond a threshold value of 6 it starts decreasing and vanishes
at O = 1 which represents extinction of predators as a consequence of inaccessibility of food
resources. For the set of values of parameters chosen in Table 1, the threshold value of 6 is
computed as 0° = (0.5781. This shows that prey refuge makes the positive effect on both the

species if it is under the critical level. But beyond this level, it is harmful to predators.
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Fig. 2.4: Effect of refuge parameter 8 on the steady state level of populations.
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Fig. 2.5: Time evolution of x & y and phase portrait when T = 0.1(< t*). Figure shows
stable behavior of system (2.2) around E*.

In order to validate the analytical findings derived for delayed system (2.2), we consider
the same set of values of parameters given in Table 1. The introduction of gestation delay does
not affect the equilibrium point. Therefore E*(1.0357,0.2174) is an interior equilibrium point
of model system (2.2). For the chosen values of parameters, hypotheses (H;) and (H3) hold.
Apart from these, the transversality condition is also satisfied. Assuming i =0 in Eq. (2.16),

we obtain
wy = 0.4751, 15 =0.3609.

According to Theorem 2.4.1, system (2.2) undergoes a Hopf-bifurcation at T = 1y, E* is locally
asymptotically stable for T < 7y and unstable for T > 7y. In Fig. 2.5 we draw time series of
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solutions (left) and phase portrait (right) of the system at 7 = 0.1 < 7y, which shows stable
behavior of the system around E*. System remains stable unless the value of T does not exceed
Tp. The positive equilibrium point E* losses its stability at the critical value of T = 7y = 0.3609
and remains unstable for further increment in 7. Fig. 2.6 depicts the time series of solutions

and existence of stable limit cycle showing instable behavior of system at T = 0.4.

pery
predator| -

3 4

0 50
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Fig. 2.6: Oscillations of solutions x & y (left) and existence of stable limit cycle (right)
around E* when 7 = 0.4(> 7*). The other parameters are same as given in Table 2.1.

It is observed that model system (2.2) has chaotic solution for higher values of gestation
delay (7 > 12.6). The time series and chaotic attractor for T = 18 are presented in Fig. 2.7.
To explore the possibility of occurrence of chaos, bifurcation diagram is plotted with respect to
delay parameter 7 (see Fig. 2.8). The chaotic nature of the model system is again confirmed by
Maximum Lyapunov exponent in Fig. 2.9. It is the average exponential rates of divergence or
convergence of nearby orbits in phase space [176]. If it is positive then two nearby orbits move
too far apart with time, this implies chaotic behavior of solution. If Maximum Lyapunov ex-
ponent is negative then two nearby orbits converges to each other, this implies a stable solution
or a periodic attractor. In Fig. 2.9 it can be noted that Maximum Lyapunov exponent becomes

positive at T = 12.6.
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Fig. 2.7: Time evolution of x & y and chaotic attractor when 7 = 18.
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Fig. 2.8: Bifurcation diagram of prey population Fig. 2.9: Maximum Lyapunov exponent with
with respect to gestation delay 7. respect to T corresponding to Fig. 2.8.

Sensitivity to initial conditions is an elemental property of chaos. In a chaotic system small
perturbation of the current trajectory may lead to significantly different future behavior. In Fig.
2.10 the initial conditions for y are kept the same but those for x are different 0.1 and 0.11. As
can be seen, even the slightest difference in initial values causes significant changes in time
evolution of species.

In Fig. 2.11, stability and instability regions are depicted in kT—plane. In green region
of the plane, the system (2.2) is locally asymptotically stable (stable focus) around its positive
equilibrium and in white region the positive equilibrium is unstable and system has periodic
solutions. Fig. 2.12 shows the different type of stability behavior of system (2.2) for higher cost
of fear (k > 10) in kT—plane. In the lower region, the system is locally asymptotically stable
around its interior equilibrium. In green region the interior equilibrium is unstable and system
has periodic solutions. The separation curve of both the regions has the points where the system
undergoes Hopf-bifurcation. In white region system (2.2) has period doubling oscillations and

in orange region system shows higher periodic and chaotic oscillations.
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Fig. 2.10: Sensitivity of solutions of system (2.2) with respect to initial condition when
T=18.
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Fig. 2.11: Stability and instability regions of Fig. 2.12: Chaotic and non-chaotic regions of
equilibrium E* with respect to k and 7. model (2.2) in kT—plane.

2.7 Conclusion

In this chapter, a prey-predator model is proposed with the effect of fear in prey induced by
predators and prey refuge. It is assumed that prey population grows logistically and predators
consume prey population under Crowley-Martin type functional response. Further the gestation
delay is introduced in the system to get much rich dynamics.

In the non-delayed system, first we have proved that our proposed model is biologically
well behaved by showing the positivity of solutions, initiated from a positive initial pair and

boundedness of solutions in a compact region Q in R. Then we get some sufficient conditions



2.7. Conclusion 45

for persistence of the system. It is obtained that system (2.1) is persistent if growth rate of
prey population is greater than a threshold value and death rate of predator population is less
than a threshold value. These threshold values depend upon refuge factor as well as on the
fear parameter. In order to investigate the dynamics of system it is noted that system (2.1)
has three kind of equilibria. E(0,0) which exists trivially, E;(x.,0) exists if r > r( holds and
interior equilibrium point E*(x*,y") exists uniquely under conditions (2.5) and (2.6). The local
stability behavior is carried out of the system around each equilibria. It is observed that if
E(x.,0) exists (does not exist), then E((0,0) is a saddle point (locally asymptotically stable).
The unique interior equilibrium point E* is locally asymptotically under a sufficient condition
(2.9). Throughout in this chapter, the fear parameter is a crucial parameter. So we have done the
Hopf-bifurcation analysis of the system with respect to fear parameter and derived a formula
for critical value of the parameter k& where Hopf-bifurcation occurs and system switches its
stability behavior. The analysis of direction of Hopf-bifurcations shows that periodic solutions
exist on the side of k < k*. This implies that oscillations can be controlled from the system by
increasing the cost of fear k. We also performed the global stability of positive equilibrium by
choosing a suitable Lyapunov function. A brief discussion on the existence of limit cycles has
been done using Bendixson-Dulac criterion and Poincare-Bendixson Theorem. The impact of
refuge parameter on the dynamics of system is also investigated and we found that conservation
of prey individuals under 57.81% promotes both the species. But still if we keep conserving
them, then it produces a negative effect on predators.

Delay shows much more realistic dynamics as it is involved in most of the biological phe-
nomena. In our system, the reproduction of predators after consuming prey is not instanta-
neous. Therefore, to obtain some rich outcomes we have added the gestation delay into our
system. For the delayed system, we examined the local stability via Hopf-bifurcation and de-
rived a critical value 7y of T where Hopf-bifurcation occurs. System is stable if T < 7y and as
T crosses Ty system destabilizes and remains unstable for further increment in 7. This analysis
is demonstrated by Figs. 2.5 and 2.6. The global stability behavior of delayed system has been
discussed and it is observed that if the non-delayed system is globally asymptotically stable
then the delayed system is also globally asymptotically stable around the positive equilibrium.
We also observed the chaotic behavior of the system for the large values of the delayed pa-
rameter. Moreover chaotic behavior of delayed system is confirmed by evaluating maximum
Lyapunov exponent. In Figs. 2.11 and 2.12, we have drawn several regions in kT—plane that

show different stability nature of system (2.2).



