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Chapter 3

Global Stability and Hopf-bifurcation of Prey-predator
System with Two Discrete Delays Including Habitat
Complexity and Prey Refuge !

3.1 Introduction

The dynamics of prey-predator relationship is recognized as an important focus in an ecological
system [16]. The important part of modelling in ecological system is to examine and validate
whether the proposed mathematical model can demonstrate the proper behavior for the system
under consideration. Predator’s functional response, defined as the amount of prey catch per
predator per unit of time, plays an important role to understand the complex dynamical be-
havior of the system. Stability and bifurcation dynamics of a system are also determined by
a functional response. Different types of prey-predator models have been discussed by sevral
researchers [43, 127, 29, 207].

On the other hand, to control the over exploitation of the biological resources, researchers
have used many tools like reserve area/refuge, time delay, stage structure, harvesting etc. The
hiding behavior of prey to escape from predation is common in nature. The effect of refuges
on the dynamics of prey-predator interaction can be seen in two ways: Firstly, the effect is
positive on the growth of prey and negative on the predator. It reduces the prey mortality due
to decrease in the predation success. Secondly, the birth rate of prey population may reduce,
because feeding and mating opportunities are also reduced in safe refuges. Thus, the idea of
prey refuge is an important factor and it has received a great attention [29, 174, 203, 207, 184,
68, 119, 150]. Most of the researchers have shown that refugia have a stabilizing effects on

predator-prey model.

I'A considerable part of this chapter is published in Communications in Nonlinear Science and Numerical
Simulation, 67, 528-554, 2019.
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A Holling type II predator-prey model with a constant prey refuge has been presented by
Tang et al. [203]. They have proved a global qualitative analysis to determine the global dy-
namics of the model. Tripathi ef al. [207] discussed a prey-predator model with reserve area.
They investigated the role of reserved region and degree of mutual interference among preda-
tors. Their results indicate that the predator species exist so long as prey reserve value does
not cross a threshold value and after this value the predator species extinct. Ghosh et al. [68]
investigated the impacts of additional food for predator on the dynamics of a prey-predator
model with prey refuge. They observed that predator extinction possibility in high prey refuge
ecological systems may be removed by supplying additional food to predator population. Some
studies have been conducted on prey-predator model with two factors: refuge and harvesting
[204, 177, 77]. The stage-structure prey-predator model with refuge region has also been stud-
ied [225, 224, 102]. A Leslie-Gower predator-prey model with disease in prey incorporating
prey refuge has been discussed by Sharma and Samanta [190].

Habitat complexity plays a major role in the distribution and structure of population. It pro-
vides refuge from predation and that can reduce the probability of capturing prey by reducing
the searching efficiency of predators. Thus by decreasing encounter rates between prey and
predator, the structurally complex habitats may reduce predation rates. So complexity of the
prey habitat can affect predator functional response [218, 67, 49]. By reducing predators forg-
ing efficiency, the structural complexity of the habitat stabilizes the predator-prey interaction
[11]. Ghorai and Poria [67] considered a predator-prey model with habitat complexity in the
presence of cross diffusion. They observed that cross-diffusion, habitat complexity, birth rate
of prey and mortality rate of predator play a significant role in the pattern formation.

Time delay occurs in every biological situation. It makes the model more realistic. Delay
differential equation exhibits much more complicated behavior than ordinary differential equa-
tion. When delay crosses its critical value, we observe limit cycle through Hopf-bifurcation and
then the system becomes unstable. Thus time delay makes a stable equilibrium to become un-
stable and the population to fluctuate. The conversion of prey population to predator population
is not instantaneous, there is some time lag i.e. gestation delay. The prey-predator population
model with different types of discrete gestation delay [71, 66, 144, 234, 27, 92, 130, 20, 140,
136] and feedback delay [61, 142, 229, 91, 46] has been studied. Some researchers have
considered different types of delays together [120, 231, 64, 229, 51, 232, 91, 235, 157, 230,
122]. They studied local stability, Hopf-bifurcation, Stability and direction of Hopf-bifurcation
with the help of Centre manifold theory and Normal form theory. Li ef al. [117] investigated
the stability and Hopf-bifurcation of a delayed density dependent predator-prey system with
Beddington-DeAngelis functional response. The Beddington-DeAngelis functional response
is similar to Holling type-II functional response and have an extra term describing mutual in-
terference among predators. Several studies have been done involving this type of functional
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response [118, 129, 75, 207].

The degree of habitat complexity and gestation delay on the stability of a predator prey
model has been performed by Bairagi and Jana [11]. They observed that stability switches,
and Hopf-bifurcation occurs when delay crosses its critical value. They proved that the fluctu-
ations in the population levels can be controlled completely by increasing the degree of habitat
complexity.

Tripathi et al. [208] described a predator-prey model incorporating prey refuge. They
investigated the role of prey refuge and degree of mutual interference among predator. Then
they analysed the dynamical behavior of the delayed system introducing discrete gestation delay
of the predator. A delayed prey-predator model with Crowley-Martin type functional response
including prey refuge has been considered by Maiti er al. [136]. They further modified the
model incorporating gestation delay of the predator. They have also discussed the influence of
prey refuge on densities of prey and predator species.

To the best of the knowledge of the authors, double delayed prey-predator model with habi-
tat complexity and refuge with Holling type-II functional response has not been studied. Keep-
ing all these in mind, we first modify Holling type-II functional response to incorporate the
effect of habitat complexity and refuge. Then we consider a prey-predator model, where both
prey and predator grow logistically. Predator partially depends on prey with Holling type-II
functional response. Then we introduce two delays: one is negative feedback delay for prey
population and another one is gestation delay for the predator population. The rest of this chap-
ter is organized as follows. In the next section 3.2, we discuss formulation of the model. In
section 3.3, we consider non-delayed system. In this section, we discuss positivity, bounded-
ness, existence of equilibrium points and their local and global stability. Section 3.4 is devoted
to delayed system. Here, we discuss Hopf-bifurcation through local stability of the positive
equilibrium point, considering delay as a bifurcation parameter. In section 3.5, we analyze the
stability and direction of Hopf-bifurcation using Normal form theory and Centre manifold the-
ory. In section 3.6, we perform the global stability of delayed system. The influence of prey
refuge is discussed in section 3.7. An extensive numerical simulation experiments have also

been conducted to illustrate the theoretical results in section 3.8.

3.2 The Model Construction: Non-delayed Model

A general two dimensional model of interaction between prey and a generalist predator is rep-

resented by
du

o — uf ()~ vg(w),
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L~ v(h(v) + Ba(w),
where u and v are the densities of prey and predator population respectively, f(u) and h(v) are
per capita growth rate of prey and predator respectively. Here g(u) and Bg(u) are functional and
numerical responses of predator for a particular prey, where B(0 < B < 1) is the conversion
coefficient denoting the number of newly born predator for each captured prey.
If the number of prey consumed by a predator per unit time is a linear function of prey, then

we have
g(u) = au,

which is known as linear mass-action law, @ > 0 is capture rate. This is traditional functional
response. The feeding rate is proportional to the product of prey and predator populations.
Mathematically, this represents a straight line which passes through the origin but this func-
tional response has some drawbacks. In case of super abundant supply of food, predators will
feed at maximum rate per individual predators and hence further increase in food supply will
not be able to increase the feeding rate further. There are some biological factors (such as
handling time, encounter rate, prey escape ability, searching efficiency, structure of the prey
habitat) which affect the predator’s functional response and hence the dynamics of the sys-
tem also diverts. In linear mass-action law, it has been assumed that predator’s handling time
for prey is zero. It has been observed that predators often become saturated in nature. This
phenomenon is described by Holling type /I functional response in which the number of prey
consumed per predator initially increases very fast as the density of the prey increases then it
settle down at its steady state. In this case the feeding rate of predator increases with prey den-
sity and then attains its maximum saturated level. This type of response function is represented

as follows:
ou

glu) = 1+ how’
where « is attack or capture rate and 4 is the handling time required per prey. But in above

expression, the effect of habitat complexity of the prey is not considered. In this chapter we
will show the effect of complex habitats of prey, so above formula cannot be used directly, and
thus a modified form is required. According to Winfield [226], the habitat complexity is more
likely to affect the attack coefficient than the handling time for search, so the attack coefficient
o has to be replaced by a(1 —c¢), 0 < ¢ < 1. Then according to Bairagi and Jana [11], the
modified Holling type II functional response including the effect of complex habitat of prey

can be written as follows:

ol —c)u
1+ ho(l—c)u’

g(u)
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where ¢(0 < ¢ < 1) is a dimension less parameter that measures the strength of habitat
complexity.

Now we consider another important factor from ecological point of view, If all amount of
prey is available for predation then prey spices might be at the brink of extinction. To avert this
situation and maintain the balance between prey and predator, we divide the prey population
into two regions: reserved region for prey where predator access is prohibited and unreserved
or open access region in which predation is allowed. But the migration of the prey between
these two regions is allowed. Suppose mu number of prey are reserved and (1 — m)u number
of prey are available for predation. The functional response in presence of complex habitat of

prey and refuge factor will be represented by

o o(l=c)(1—m)u
1 +ho(l—c)(1—m)u’

g(u)

where m(0 < m < 1) is refuge parameter.

It is to be noted, when ¢ = 0 and m = 0, i.e. when there is no complexity and no refuge for
predator, we get back the original Holling type /1 functional response. Therefore, this modified
functional would be suitable for prey-predator interaction with habitat complexity and refuge
parameter.

Now consider an ecological system where we wish to model the interaction of a prey
biomass with density u(¢) and a generalist predator biomass with density v(¢), both growing
logistically in absence of each other. The dynamics of the system can be governed by the

following differential equations:

du u o(l—c)(1 —m)uy

dar ””(1 B E) T 1tha(l—c)(1—m)u’
dv v Boa(l—c)(1—m)uv 3.1
E_Sv<l_z>+1+hoc(1—c)(1—m)u’ D

u(0) >0, v(0) > 0.

In the above model r,s, K and L are positive constants that stand for specific growth rates of
prey and predator respectively and their respective carrying capacities. B (0 < B < 1) is the
conversion coefficient denoting the number of newly born predator for each captured prey.
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3.3 Dynamics of Non-delayed Model

3.3.1 Positivity and boundedness of the solution

Positivity refers that the population survives and boundedness repersents as a natural restric-
tions to growth as a consequence of limited resources. As system (3.1) represents densities of
populations, so it is important to show positivity and boundedness.

The model (3.1) can be written in the matrix form

u o(l—c)(1—m)uv
G(X) — Gi(X)| | 1_?> = Trha(l—o)(1—m)u
( ) G (X) - 1_v Bo(l—c)(1—m)uv
2 sV _Z>+1+ha(1fc)(1fm)u

Since G(X) and ‘3—?( is continuous in R%r, G: R%r — R? is locally Lipschitz. By the standard
theory of ODE system, it follows that model (3.1) has a unique solution for any initial condition
X(0) = Xy = (u(0),v(0)) € R%.

Further model (3.1) can be re-written as

du dv

E:ud)](uvv)v —:V(Pz(l/t,\/),

where
. u 1—c)(1—m)v . v (I—c)(1—m)u
O (u,v) = r<1 - f) - 1—}—0;1((1(17)(6)(17)111)14’ ¢2<u7v) - S<1 B Z) + 1—[}5—7106(176)(17m)u'
It follows that

u(t) = u(O)ef5 1(u(s).v(9))ds >

v(t) = v(())eféﬁbz(u(S)N(S))ds > 0.
Thus, the solution X (¢) = (u(t),v(¢)) with initial condition X(0) = Xo = (u(0),v(0)) € R%
remains positive throughout the region Ri-

In the following lemma, we show that all solutions of model (3.1) are bounded which im-

plies that the model is biologically well behaved.
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Lemma 3.3.1. The set Q = {(u,v) : 0 <u < K,0 <v <v,} is a region of attraction for all
solutions initiating in the positive quadrant, where
L Bo(l—c)(1—m)K

Vm:_

s l+ha(l—c)(1-m)K |

Proof. From the first equation of model (3.1), we have

@ < ru(l — Z),
dt K
which yields

limsupu(t) < K.
f—yo0

Now from the second equation of the model (3.1), we have

R

dt = 1+ha(l—c)(1—-m)K| L

which implies

_ L Ba(l—c)(1—-m)K
1 1) < — = V.
lfisfpv< = s {S—Fl—kha(l—c)(l—m)l( Y
This proves the Lemma. ]

3.3.2 Persistence

Ecologically, permanence or uniform persistence of a system implies that all species will be
present in future and none of them will become extinct if they are initially present. System
(3.1) is said to be uniformly persistence if there are positive constants M; and M, such that

each positive solution (u(t),v(r)) of the system with positive initial conditions satisfies:

M, <liminfU () <limsupU(t) < M>,

where U(f) = (u(t),v(t)).

The following theorem gives the criteria for the uniform persistence of the model (3.1).

Theorem 3.3.2. Assume that Lemma 3.3.1 holds true. Then system (3.1) is uniform persistence
if the following condition holds:

r> a(l—c)(1—m)vy,.
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Proof. Keeping in view Lemma 3.3.1, we define
M, = max{K,vn},

then it follows that
limsup U (t) < M.

t—so0

This also shows that for any sufficiently small & > 0, there exista 7; > 0, such thatu(r) < K+
g forallt > Ty, v(t) < vy +& forallt > T5. Taking € = max €, T =max T;,i = 1,2; one can
say that for any € > 0, there existsa 7" > 0 such that for all # > T, the following holds:

ut) < K+e, v(t) < vy +e.

Now from the first equation of model (3.1), for all# > T, we can write

d 2
d—? > ru— % —a(l—=c)(1—=m)(vy +€)u,
which implies
K
liminfu(t) > —[r—o(1—¢)(1 —m) (v +€)].

t—oo r

This is true for every € > 0, thus

o K
htrgglfu(t) > 7[r— o(l1—c)(1—m)vy] = ug.
Clearly u, > 0 under the condition mentioned in Theorem 3.3.1. From the second equation of
model (3.1), forall# > T, we have
sV Bo(l—c)(1—m)ugy

1%
s 2
=T L T Txha(l—o)(I—myuy’

which gives
- L Ba(l—c)(I —m)u,
1 fv(t) > —
pae vit) 2 s st l+ha(l—c)(1—m)u,

pu— a-
Taking M| = min{ug,v,}, the theorem follows. O

Remark 3.3.1. The above theorem shows that the system is persistence if intrinsic growth rate
of prey population greater than a threshold value. This threshold value depends on habitat
complexity and refuge of prey also.
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3.3.3 [Equilibrium points and their stability analysis

3.3.3.1 Existence of equilibrium points

Model (3.1) has four non-negative equilibria, namely, E(0,0),E;(K,0),E>(0,L) and E* (u*,v").
Ey, E; and E, always exist. From ecological and biological point of view, it is important to
study the uniqueness of positive equilibrium point E*(u*,v*). It may be seen that u* and v* are

the positive solution of the following algebraic equations:

*

r(l—u—>— o(l—c)(1—m)y* _
K l+ha(l—c)(1 —m)u*

(3.2)

v Ba(l—c)(1-mu*
S<1_Z>+1+ha<1—c)(1—m)u* =0 G-3)

From equation (3.3), we have

. L Bo(l—c)(1—m)u*
V=5 (s 1+ha(1—c)(1—m)m>' S

Substituting the above value of v* in equation (3.2), we obtain

*

r<1_u_> o(l—c)(1—m) L<s+ Bo(l—c)(1—m)u* ):

K/ T1+ho(l—c)(I1—mu s\" " T+ha(l—c)(1—m)u*

which implies
w3+ P+ P+ P =0, (3.5)

where

_ 1-2ha(l—c)(1-m)K

_ 2
P = a(1—c)(1—m)h —K, = oa2(1—c)2(1—m)2h?

KB p, Kot

+

From Descarte’s rule of sign, equation (3.5) has a unique solution # = u* in the interval
0 < u* < K if any one of the following holds.

I: P >0P >0P <0,
Im: p > 0P <0,P5 <0, (3.6)
Ir: P <0, <0,P5 <O.

Equation (3.5) has one or three positive solutions in #* in the interval (0, K) if

P <0, >0P <0, (3.7)



5g‘hazpter 3. Global Stability and Hopft-bifurcation of Prey-predator System with Two Discrete
Delays Including Habitat Complexity and Prey Refuge

holds true.
We also note that equation (3.5) has no solution or two positive solutions in u#* in the interval
(0,K) if any one of

I: P >0P <0, >0,
I1: P <0,P >0,P >0, (3.8
Ir: P < 0,Ph <0,P5 >0,

holds.
The value of v* can be calculated easily from equation (3.4).
Thus, we can state the following theorem.

Theorem 3.3.3. (i) The model (3.1) has a unique positive equilibrium if any one of three con-
ditions in (3.6) holds.

(ii) The model (3.1) has either one or three positive equilibria if condition (3.7) holds.

(iii) The model (3.1) has no positive equilibrium point or two positive equilibria if any one of
three conditions in (3.8) holds.

3.3.3.2 Local stability analysis

To investigate the local stability of the equilibria whenever they exist, we compute the varia-
tional matrix for model (3.1). This matrix is further computed at each of equilibria. Then using
Routh-Hurwitz criterion, we observe the following:

i Ep(0,0) is unstable equilibrium point,

ii E(K,0) is saddle point with stable manifold in « direction and with unstable manifold in v
direction,

iii (a) E»(0,L) is locally asymptotically stable in the uv plane if
r < a(l—c)(1—m)L.

(b) E>(0,L) is saddle point with unstable manifold in « direction and with stable manifold in
v direction if
r> a(l—c)(1—m)L.

This shows that stability of equilibrium point E, (0, L) dependents on habitat complexity, prey
refuge and carrying capacity of the predator.
In order to study the stability behavior of E*, let M(E™) denotes the variational matrix evaluated
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at E*. Then the characteristic equation of M(E™) is given by
A2+ AL +4L =0, (3.9)
where

. ha?(1—c)2(1—m)?u*v*
[1+ha(1—c)(1—m)u*]?’
r £\ * rut  ha(1—c)?(1—m)?u*v* Bo2(1—c)?(1—m)?u*v*
Ay =det(M(E")) = =" | = & + Tt o (oma |+ [rhali—o) (T
Using the Routh-Hurwitz criterion, all the eigenvalues of M(E*) have negative real part if and

Al = —tr(M(E*)) = 1 4"

only if following conditions hold:
A}l > 0, A, > 0. (3.10)

Thus, we can state the following theorem.

Theorem 3.3.4. The positive equilibrium point E* is locally asymptotically stable in the uv
plane if and only if (3.10) holds true.

We can easily note that (3.10) holds true if

ha?(1—c)2(1 —m)*v'K
i [1+ha(l—c)(1 —m)u*)?’ (3.11)

i.e. intrinsic growth rate of the prey greater than a threshold value.

Thus, we will state the following theorem:

Theorem 3.3.5. The positive equilibrium point E* is locally asymptotically stable in uv plane
under condition (3.11).

In equation (3.9), if A, < 0 then one eigenvalue is real and positive and other eigenvalue

is real and negative thus, the following theorem follows.
Theorem 3.3.6. IfA, < 0, then the positive equilibrium point E* is a saddle point.

Now assume that A} < 0and A} > 0, then both eigenvalues are either positive or complex

conjugate having positive real part. Hence the following theorem follows:

Theorem 3.3.7. IfA| < 0and A, > 0, then the positive equilibrium point E* is unstable.

3.3.3.3 Global stability analysis

In this section, we will prove the global asymptotic stability of E;(0, L) and the unique positive

equilibrium E*(u*,v") by constructing a suitable Liapunov function.
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Theorem 3.3.8. The equilibrium point E>(0,L) is globally asymptotically stable if the following

inequality holds:

o(l—c)(1—m)L
TS Trha(i—o(0=—mK’ (3.12)

Proof. Consider a positive definite function

Vi = +1< L—L1 v>
f— JR— J— J— n_ .
1=u B %

Differentiating V| with respect to time, we get

Ll S o(1—c)(1—m)uL
K BL 1+ha(1—c)(1—mu’

It is easy to note that % is negative definite under the condition (3.12), hence the theorem
follows. O

Theorem 3.3.9. The positive equilibrium point E* is globally asymptotically stable if

a’(1—c)*(1—m)*hv'K
" T ha(l— (1 —mu G

holds.

Proof. Choosing a positive definite function

u v
Vo=u—u"—u'ln— —H/(v—v* —v*ln—),
u* V¥
where 7 is a positive constant to be chosen suitably.

Differentiating V> with respect to time along the solution of system (3.1), we get

dV * * *
d_tz = ay(u—u*)* +ap(u—u)(v—v")+anv—v")>?
oy o(1—c)2(1—m)2hv*
where a11 = — % + a0 mw (T ha(l o) (T —ma)
_ a(l—c)(1—m) Ba(l—c)(1—m)
A2 = ~ TTha(i o mu) T Y Tl o _mu)(Iha(l o)l _mu)

. N
ay = —Yr-
Y is arbitrary positive real number, so we choose

(I+ho(1—c)(1—m)u®)
ﬁ )

such that ay», becomes zero. Then % is negative definite under condition (3.13). Hence E* is

globally asymptotically stable under condition (3.13). U
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Remark 3.3.2. As long as E* exists, it is interesting to note here that condition (3.13) implies
condition (3.11) because 1 +ho (1 —c)(1 —m)u* > 1 holds.

3.4 The Delayed Model

Delayed models are much more realistic in nature. They occur in every biological moment. De-
lay differential equation exhibits more complicated behavior than ordinary differential equation.
It makes a stable equilibrium to become unstable and then population starts regular fluctuation.
In this section, we modify our model (3.1) in the presence of two types of discrete time delays.
First we consider the effect of negative feedback, in which the system responds in an oppo-
site direction to population. Initially, density of prey population decreases due to its predation.
This causes reduction in the predator population, and thus less prey are consumed. This causes
an increase in the prey population. Therefore, reduction in the prey population results in its
increase. This mechanism is described as negative feedback. In order to study the effect of
density dependent feedback mechanism, we consider a time delay 7; in the specific growth rate
of the prey species. This feedback mechanism takes 7; units of time to respond to changes in
the prey population. In such a case, the dynamics of prey species in the absence of predator is

governed by
du

== ru(t) (1 — w>
Again the reproduction of predator after consuming prey is not instantaneous. There is some
time lag 7, required. This delay 7, can be regarded as gestation period of predator or reaction
time of predation. Here it is assumed that change rate of predators depends on the number of
prey and predators present at some previous time [107]. Thus, the second delay 7, is considered
in the numeric response only. So for more realistic situations, we are showing the effect of both
of the time delays in our model (3.1). Then the delayed prey predator model (3.1) takes the

form

du ut =)y ol —c)(1—mu(t)v(r)
o =01 ) - 1+ha(l—c)(1—mu(t)’
v v(1)y |, Bl =) (1 —mult — To)v(t — 7o)
E:SV@O_ L )+ 1+h06(1—0)(1—m)”‘2<t_72)2 |

(3.14)

subject to the non negative conditions u(x) = {;(x) > 0, v(x) = §(s) > 0,x € [-7,0],7 =
max(7;, T ), where §;(x) € C([—7,0] = Ry), (i=1,2), where 7, and 7, denote feedback time
delay of the prey and gestation time delay of the predator respectively. For this model, we
shall discuss local stability, Hopf-bifurcation and global stability. In the next section, we will
analytically prove the existence of Hopf-bifurcation taking delay as a bifurcation parameter.
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3.4.1 Local stability and Hopf-bifurcation

Theorem 3.4.1. All the solutions of model (3.14) with initial conditions that initiate in Ri are

positive invariant and uniformly bounded.

Proof. Solutions of model (3.14) which starts in R%r are positive invariant as well as uniformly

bounded. The proof is straight forward and can be omitted. U
Rewritting model (3.14) as

dU(t)
dt

=FU®@),U(t—n),U(t— 1)),

where U(t) = [u(t),v(t)]T, U(t — ) = [u(t —©.),v(t— )], i=1,2.
Letu(t) =u"+u(t

librium solution E*

), v(t) =v*+V/(¢). Then linearizing system (3.14) about the interior equi-
( *

u,v"), we have

Y P20+ Q21— w) R 2~ ),
where
;L aF ;o 8F / 8F
) o ) - ),
and Z(t) = [ (1),v' ()]

Thus, the variational matrix of the system (3.14) at E* is given by
J=P+ Q/efm, —i—R'e*MZ-

After a little calculation, we obtain

@ +d e M b
- aze*m d> — by + by e M
where
. 1—c)(1—m)v*
a; =ho(l—c)(1—m)au*, a = (HZ&(]?C()(]TLV)M*)z, ay = Pa,

_ _a(—o(l-mu* o R g .
b= ]+ha(]ic)(1n1":)u*’ by = Bb, di = _%7 dy = _%7

and its corresponding characteristic equation is

A2 +AA+B+(CA+D)e Y 4 (EA+F)e *% 4 Ge *n+%2) =, (3.15)
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where

A=—(ay+dy—by), B=ai(d,—by), C=—di,
D:d](dz—b]), E:—b], F:a]b] _baz’ G:d]b].

Case (1):

Case (2):

71 = T = 0. Then equation (3.15) becomes
A2+ (A+CHEA+(B+D+F+G)=0. (3.16)

Remark 3.4.1. The characteristic equation (3.16) is same as the characteristic equation
(3.9) of the non-delayed model (3.1) studied earlier.

All the roots of equation (3.16) have negative real part if and only if

(H)): A+C+E > 0, B+D+F+G > 0.

So, the interior equilibrium point (u*,v") is locally asymptotically stable if and only if
(H) holds.

71 =0, 7p > 0. Then equation (3.15) becomes
A2+ (A+C)A+ (B4+D)+ (EA+F +G)e *2 =0. (3.17)
Letio (@ > 0) be aroot of equation (3.17), then it follows that

Ewsin(0n) + (F + G)cos(0n) = @* — (B+ D),

(3.18)
(F+G)sin(ot) —Eocos(wt) = (A+C)o,
which leads to a quadratic equation in ®?> as
4 2 27 32 2 2 _
0" +[(A+C)*-=2(B+D)—E*|o"+ (B+D)"—(F+G) =0. (3.19)

If we put ?* = z, then equation (3.19) becomes
2 _
+pz+qg=0,

where p= (A+C)>—2(B+D)—E? g= (B+D)*>— (F+G)>.
Let f(z) = 22 +pz+q,
(Hy): p>0,qg > 0.

Remark 3.4.2. 1. If (H,) holds, then equation (3.19) has no positive roots, therefore
all the roots of (3.17) have negative real parts and hence E*(u*,v") is asymptoti-
cally stable for all T, > 0 under (Hy) and (H,).
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Case (3):

2. If (Hy) fails and (Hy) holds true, then E*(u*,v*) is unstable for all T, > 0.

(H3) g < 0.
If (H;) and (H3) hold, then equation (3.19) have a unique positive root ®7. Substituting

(012 into equation (3.18), we obtain

2nm
0]

1 -1
Ty, = —— COS
0]

(F+G)(w?—B—D)— (A+C)Ew?
E2@? + (F +G)?

,n=0,1,2...

(Hy): p < 0,q >0, p* > 4q.
If (H;) and (H,) hold, then equation (3.19) have two positive roots ®? and ®?, substi-

tuting @? into equation (3.18), we have

(F+G)(®w? —B—D)— (A+C)Ew?
E207 + (F +G)?

1 _
Tzi:—COS !
k a)i

2%
L k=012,
o+

(Hs): f'(of) > 0.
Let A(1,) = %iw; be the root of equation (3.17), then the transversality condition can
be obtained under (Hs)

[d(Re /1)] -
d’L’z —

and we can obtain

d(Re ) o |4®ed) o
d’L’z " ’ dTZ _ .
D=1, O=0y D=1, , O=0_

Thus, we can state the following theorem:

Theorem 3.4.2. For system (3.14), with Ty =0 and assume that (H) and (Hs) hold, there
exists a positive number Ty, such that the equilibrium E* is locally asymptotically stable
when T, < T, and unstable when T, > 7T,. Furthermore system (3.14) undergoes a

Hopf-bifurcation at E* when T, = Ty,,.

=017 > 0.

Theorem 3.4.3. For, 7) = 0, the equilibrium point E* is locally asymptotically stable

when T < Ty, and unstable when Ty > T1,. Furthermore system (3.14) undergoes a
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Case (4):

Hopf-bifurcation at E* when T = Ty, where

1 | (D+G) (w3 —B—F)—(A+E)Cw?
Tj, = —— COS ) 3 .
(0)) C’w; 4+ (D+G)
Proof. Proof is similar as in Case (2). Il

T > 0, 7 > 0.
We consider the equation (3.15) with 7, as fixed in its stable interval (0, y,) and 7; as
a variable parameter. Let io(@ > 0) be a root of equation (3.15). Separating real and

imaginary parts, we have

— 0* 4B+ Ewsin(0n) 4+ Fcos(w1,) = sin(01))[Gsin(01,) — Ca)

(3.20)
—cos(071))[Gcos(w2) + D],
Aw—Fsin(on) + E®cos(0T;) = sin(o1;)[Geos(w1,) + D] (3.21)
+cos(@T)[Gsin(01,) — Col. '
On eliminating 71, we have
0)4+k]0)3+k20)2+k30)+k4 =0, (3.22)

where

ki = —2Esin(on),

ky =A%+ E?> — C* —2B+2(AE — F) cos(01),

k3 =2(BE —AF +CG)sin(01,),

ky = B>+ F? — D*> — G> +-2(BF — GD)cos(®1,).

Equation (3.22) is a transcendental equation in complicated form. It is not easy to predict
about the nature of roots. Without going detailed analysis with (3.22) it is assumed that

there exist at least one positive root @y. Equation (3.20) and (3.21) can be re-written as
Aj+Bjcos(aym) + Cy sin(wyt) = —Ej cos(wyty) + Fy sin(mp 1), (3.23)

D1+ B Sin(a)()’tz) +C COS(O)()TQ) =F Sin((l)()T]) + F COS((D()T] ), (3.24)

where
Al =—@3+B, Bi = F, C; = Ex, D; = Aay,
E| =Gcos(mym)+D, Fi = Geos(ayn) — Cay.
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Equation (3.23) and (3.24) leads to

1 1 {CzF] —BzE]} 2iT

T| = —cos ,i=0,1,2,...,
b E}+F}

o o
where

By = A+ Bjcos(mym) + Cy sin(an,),

Cy =Dy +B;sin(ayt) + C) cos(wpT),

and +iw* is purely imaginary root of equation (3.15) for 7, € [0, 7]

Now we will verify the transversality condition of Hopf-bifurcation. Differentiating
equations (3.20) and (3.21) with respect to 7; and substituting 7} = T . e obtain

dT]
d(Re A)} +P{dw*}
T1=1 T1=1]

. {d(Re ),)} ‘o {dw*} .
nr ar (3.25)

_ =S
Q{ dT] dT] ’

where

P=A+Ccos(0*t]) — Dt cos(0*1},) — Co* 1] sin(® 1] )+ E cos(®" 1) —
Frycos(0' 1) — E@* Tysin(@0" 1) — G(1], 4 T2) cos ©* (7}, + T2),

Q= —-20"—Dr1j sin(0 1)) +Csin(0 1] ) + Co" 1), cos(0 1] ) — Frysin(0" 1)+
Esin(0' 1) +E0 1 cos(0' 1) — G(1], + T2) sin 0" (1], + T2),

R=Do"sin(0"t] ) — Co*? cos(011,) + GO sinw" (1], + T2),

S=Do"cos(0'1 ) +Co**sin(0 7] ) + Go" cos 0 (], + T).

d(Re x)}
T

Solving equation (3.25) for | I

= , it is obtained
-

{d(Re ),)} _ PR-0S
dr 0=t . A=10" P24+ 0%’

(Hg) : PR— QS # 0.

Theorem 3.4.4. For system (3.14), with 7 € (0,7y,) and assuming that (H,) and (He)
hold, there exists a positive number T| , suchthat E “is locally asymptotically stable when
T < 7 , and unstable when 1 > ’L'{O. Furthermore, system (3.14) undergoes a Hopf-

bifurcation at E* where 1\ = 1| .
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Remark 3.4.3. o [fwe fix T» beyond its stability interval, then system remains unstable for
all Ty > 0 and Hopf-bifurcation does not exist in the system. The region of stability and
instability has been drown in Fig.3.14.

i If 11 < 1, and T, < T, then system undergoes a Hopf-bifurcation.
ii If T > 11, or T > Ty, then system is unstable and Hopf-bifurcation does not occur.

o The analysis of system (3.14) for the case, when T, is fixed in its stable interval and 7, as

a variable parameter, can be done by adopting the same mechanism.

3.5 Direction and Stability of Hopf-bifurcation

In previous section, we have obtained the condition under which the system undergoes Hopf-
bifurcation for the different combination of the delay 7| and 7,. In this section we will determine
the direction , stability and period of the bifurcated periodic solutions at 7; = T , using center
manifold theory and normal form concept in Hassard et al. [80].

Without loss of generality, we assume that 7; < 7; , where 7; € (0,7y,). Let

and still denote u; (¢),vi (1) by u(t),v(t). Let 7y = )+, 4 € R so that Hopf-bifurcation occurs

at 4 = 0. We normalize the delay with scaling ¢ — (Ti]), then system (3.14) can be re-written as

*

Ut)=1 <A’U(t) +C'U <t— %) +BU({t—1) +f(u,v)> : (3.26)

where U (t) = (u(t),v(t))T

;e —b , |di O , 10 0 o A
A_lo d3]73_[0 0]7(;_[612 b]]7d3_d2 b]vf(uvv)_[le'

The nonlinear term f; and f, are given by

fi = gru(®)u(t — 1) + gou® (1) + gau(t)v(t) + gau (t) + gsu* (1)v(t) + ...,

T T T, T T T
=V () + o (1— 2) +hau(t— 2)v(t— 2) +ha (1 — 2) +hsu® (1 — 2 v (1 —-2) +...
o= 20) (= 2 ) sl = Bl ) g - B (- Eol- B o
where
_r . o(1—c)(1—m)v*h . o(1—c)(1—m) P13 (1-m)3nv*
81 = 7K 827 T rha(l—c)(—mu 13’ 83 = Trha(l—c)1—myu")2’ 8* = Utha(l—c)(1—myu")*’

_ a?(1—c)*(1=m)*h _ R S
85 = ~ (rha(i-o(muy M = —1, hi=Bgi, i=2,3,4,5.
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The linearization of equation (3.26) around the origin is given by

(3

Ult)=m1 <A’U(t)+C’U <t—7—5> +B'U(t - 1)> :
For ¢ = (¢1,9,)" € C([—1,0],R?), define
L) = (m+w) (400 +Co (-2 ) +Bo(-1).

By the Riesz representation theorem, there exists a 2 x 2 matrix (6, u), (—1 < 6 <0) whose

element are of bounded variation function such that
0
Lu(@)= [ dn(6.1)6(6) for ¢ € C((~1,0}.8). (3.27)

In fact, we can obtain

(77, tw)(A"+C'+B), if6=0

n(6.1) = (t{, +1)(C'+B), ifo c[—2,0)
(1], + WA, ifoe[—1,-2)
0, ife=—1.

Then equation (3.26) is satisfied.
For ¢ € C'([—1,0],R?), define the operator A(1) as

40(6) if 0 € [~1,0)
AW9(8) =4 T ’
g 10, (. w]o (&), if6—o,

and
0, if 6 € [—1,0)

R(u)o(6) = M8, if6=0

/

where

h

h(u, 9) = (71, + 1) h,]] , ¢ = (1,2)" € C([-1,0],R?),
2

iy = g1u(0)u(—1) + g2u? (0) + g3u(0)v(0) + ga1u*(0) + gs1® (O (0) + ..., *
Hy = v?(0) + hou? (= 2) +hau( — 2)v( = 2) +ha? (= Z) +hsi? (= Z)v(—=2) + ...

T

Then system (3.14) is equivalent to the following operator equation

U =AU +R(W)U;
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where U; =U(t+0) for 6 € [—1,0].
For y € C!([0,1], (R?)*), define

—dvs) if s € (0,1])
fgl ‘I/(—é)d'n (gvo)v ifs=0,

and a bilinear form
0 6
(W(5),9(0) =V(0)9(0)~ [ [ W(E—0)dn(®)0(£)dE .

where n(0) =1(0,0), A =A(0) and A* are adjoint operators. From the discussion in previous

section, we know that £iw" T , are the eigenvalues of A(0) and therefore they are also eigen-
values of A*. It is not difficult to verify that the vectors g(6) = (1, oy )Teiw*fio6 (6 € [—1,0])

l.(O*T;OS (

and ¢*(s) = 5 (1,0 )e s € [0,1]) are the eigenvectors of A(0) and A* corresponding to

the eigenvalue i@* 1, and —i®* 1] , respectively, where
Lo Lo

(q"(s),4(8)) =1, (q"(5),q(0)) = 1,

. —io*1] . i0*T!
io*—ay—die "© o i0* +ay+die® o
o) = b y O = — P )
- io* 7
are o
o* o*
* —io* * —iw* 2
_ —io*T T E— T T
D= |1+oa{+7] (die ' "o+afFae o400 =be )
0 TI TI
Lo lo

Following the algorithms explained in Hassard et al. [80] and using a computation process

similar to thatin Song and Wei [195], which is used to obtain the properties of Hopf-bifurcation,

we obtain
27! ek . o o
920=— o {Le io T'o+a(1—c)(1—m)061+£a1206*1—oc*1oc1[3a(1—c)(1—m)e*2’“’ 72}7
D | K L
T [r
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27:’ r 1 1 ko PR
g1 = —% {E{Wl(ll)(_l) +§W2(3)(—1) +§Wz%)(0)€lw flo +W1(11)(0)€ © T'O}
1
+au—mx1—no@m@«n—hau—cx1—mﬁn—amu1—cx1—mym+§wﬁkm
1 _ R _ —
+5w§me+m@mm@+iampmwﬁwn+mwﬁmﬁ_ammuLw)
(1—no@m@(—§%yf””%—hau—fx1—naaw*m“%—2mu1—cx1—mym
Lo
ekl 1 ’L'* sk ) 1_ ’L'* P ’L'* ekl
e M4 o ;g><—f_,2>e’“’ T'0+§a1W2(3)(—T—,2)e’w +oc1W1(1])(—T—,2)e o }}
]0 ]0 ]0
where
Wao(0) = 52-g(0)e"” 0”4 35-g(0)e " " By,
lo lo

W0 ()= 8 a(0) 4 B o) O 1,
0 0
b= <E](])’E1(2))T € R and B = <E2(1)7E§2))T € R? are constant vectors, computed as:

r k) —1 PN
P 2iw" —a; —dye 2 o b z€ 00 fo(l1—c)(1—m)ay
1= P .k ok ikl ,
I _azefzzw T 2im* _d3 _b]e—Zt(o T %(X]Z— (X(l —C)(l —m)ﬁ(X]e 2im Tl
- —1 PN k)
£ | @ —d b 3 (e O 4 T‘O) +a(l—c)(1—m)Re(ay)
2= .
| —ay —d3—b SJay | — a1 —¢)(1—m)BRe(ay)

Consequently, g;; can be expressed by the parameters and delays 7| o and 7,. Thus, these stan-

dard results can be computed as:

i

c1(0)= 2047
Ip

B M) 821 Re(c1(0))

2
<gzog11—2|811| 3 +7’u2:_—Re(),’(f’ )’
Lo

Im(c1(0)) + palm(A'(11,))
0Ty,

B2 = 2Re(c1(0)), T = —

These expressions give a description of the bifurcating periodic solution in the center manifold

of system (3.14) at critical values 7| = Ty, which can be stated in the form of following theorem:

Theorem 3.5.1.  [. uy determines the direction of Hopf-bifurcation. If i, > 0(< 0) then

the Hopf-bifurcation is supercritical (subcritical).

2. B, determines the stability of bifurcated periodic solution. If Bo > 0(< 0) then the

bifurcated periodic solutions are unstable (stable).

3. Tr determines the period of bifurcating periodic solution. The period increases (de-
creases) if T, > 0(< 0).
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Remark 3.5.1. When 11 > 0 and 720 = 0 or 11 = 0 and 172 > 0, then under an analysis similar
to section 3.5, the corresponding values of Wy, Br and T» can be computed. Depending upon

the sign of o, B and T», the corresponding results can also be deduced.

3.6 Global Asymptotic Stability for the Delayed System

Before dealing with the global stability analysis for the delayed system (3.14), we present
some inequalities [95] which will be used in the proofs. Consider the function F(x) =x— 1 —
Inx, x > 0. We note that F(x) > 0, Vx and F(x) = 0 if and only if x = 1. Let x1,xp,...,x, be

positive numbers then,
l—xi+1Inx;=—F(x;)) <0,i=1,2,...,n.

Summing over i = 1,2,...,n, we obtain

n— ixi—klnﬁxi <0.
i=1 i=1

Choosing x; = %, where p; > 0, g; > Ofori=1,2,...,n, it follows that

3.6.1 Global stability of one delayed model (i.e. 7; > 0, 7, =0)

Theorem 3.6.1. The positive equilibrium point E* of the delayed system (3.14) for Ty > 0 s
globally asymptotic stable under condition (3.13).

Proof. We define a Liapunov function V3 as follows:

u v
* * * *
Vi=u—u" —u ln;—H/](v—v —v th)’

where 7, is a positive constant to be chosen suitably.
The derivative of V3 with respect to time ¢ along the solution of system (3.14) is given by

@ (=Dam(-0)g
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() e g ()

Bo(1—c)(1—m)u }
1+ha(l—c)(1—m)u]’

_|_

Al wa—o(—my v a(l—o(—my
= (u—u ){”(1—})_ 1+ha(1_c)(1_m)u_r(l_f) 1+hoc(1—c)(1—m)u*}
. v Ba(l—c)(1—m)u v Ba(l—c)(1—m)u*
nlv—v ){S“_ZH Crha(i—o—mu U "7)~ 1+ha(1—c)(1—m)u*}

—%u(r—’cl)(u—u*)—k%u(u—u*),
- (1 =1 —m)v |-
K (14+ha(l- c)( m)u)(1+ha(l —c)(1—m)u*)
—{a(l—c)(l m)+ha®(1—c)*(1—m)*u* —p Bo(l — )(l—m)}x
(u—u*)(v—v ) . i(V—V*)z
(T+ho(l—)(1—mu) (1 +ha(l—)(1—mu) "L

— ot =) (u— )+ ulu— ).

Since 7; is a arbitrary positive real number, so we choose 7,

_ (1+ha(1*[§)(1*m)”*). Then we

have
avs  [r ha?(1—c)>(1 —m)?v* 2
F O (F T (B (R e v (e L
_%(14—}106(1 ﬁc)(l m)u )(v—v*)z—%u(t—ﬁ)(u—u )_'_%u(u_u*)
Define ,
V3':V3+%u*/tﬁ {u(s)—u*—uﬁﬂhl%} ds,
which yields
avi  [r ha?(1—c¢)?(1 —m)v* )2
dr {E ~ (T+ha(l—c)(1—m)u)(1+ha(l1—c)(1 —m)u*)} =4)
%(1"‘}1“(1 ;)(1 m)u )(v_v*)z_%uu<t_fl)_|_£u*u([_f])—|——u2
% uu’” +Ku {u u(t—1)— uﬁﬁln(u(r—n))}’

ha?(1—¢)?(1 —m)?v* h .
T+ ha(1—o)(1—mu)(1 +ha(1—)(1—myu) | "
Lha(l ;)(1_m)u*)(V—v*)z—F%uu(t—’L'])—F%uz—F%u*zln(

I
|
1

u(t—ﬁ)

u

[}

t~ I

).
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Noting that £u* = Ir(u* at E*(u™,v"),
avs  [r ha?(1—¢)>(1—m)?v* 2
ar K (1+ha(1_c)(1—m)u)(1+ha<1—c)(l—m)u*)}(”_” )
s (14+ho(l1—c)(1—m)u®) . ro2 u u(t—1) u(t—1)
- 5 (v—v )z—l—Eu {1—; = ] —|—1n< ” ] )}

Using n=1, it follows that

1_%u(t—*’51) —Hn(u(t_ﬁ)) <o0.
u u u
< 0 and we have dﬂx =0if and only if u = u*, v =v*. We now look for the invariant

* U M(l‘*Tl)
Yur T Ut

Thus, dt
subset M within the set M = {(u,v) |[u=u",v=v
set M is M = {(u*,v")}. Using LaSalle invariance principle [139], E* is globally asymptotic

= 1}. Hence the only invariant

stable whenever condition (3.13) holds true. O

3.6.2 Global stability of two delayed model

Theorem 3.6.2. The positive equilibrium point E* of the delayed system (3.14) is globally
asymptotic stable under condition (3.13).

Proof. We define a Liapunov function Vj as follows:

u v
V4:u—u*—u*ln——H/z(v—v*—v*ln—),
u* v*

where 7 is a positive constant to be chosen suitably.
The derivative of V, along the solution of system (3.14) is

(-t (1 T

:(u—u*){r(p”(“’“))— a(l—c)(l—m)v) }H’z(l

K l+ha(l—c)(1—m)u
Ba(l—c)(1 —mju(t —13)v (f—fz)}
l+ha(l—c)(1—mu(t—1w) |’

r ha?(1—¢)?>(1 —m)?v* 02 s )2
:_{E_ (1 +ha(l —o) (1 —m)u)(1 +ha(l —c)(1 - )u*)h”_”) A
Ba(l—c)(1—m)u(t —m)v(t— 1)

l+ha(l—c)(1 —m)u(t — )

*

)l(1-3)

_|_

r

—Eu(t—’cl)(u—u*)—kéu(u—u*)—ky (1—7>

vy Boa(l—c)(1—m)uy
_72<1 - 7) 1+ha(l—c)(1—mu’
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Define

t

V4—V4+Eu - {u(s)—u*—u*ln%}ds + ppo(l—c)(1—m)x

/f { u(s)v(s) _ uv
o | 1+ha(l—c)(l—m)u(s) 14+ho(l—c)(1—m)u*

uv' (I+ho(l—c)(1—m)u)u(s)
C1+ha(l—c)(1—m)u 1“((1+ha(1—c)(1—m)u(s))u*ﬂds'

Then we have

dv, r ho? (1 —c)*(1 —m)>v* . .
- _{E_ (1+ha(1—c)(1Em)ug(i—kha)(l—c)(l—m)u*)} (—u) =y (v —v)?
)
viBa(l—co)(1l —mu(t —n)v(t —n) Ba(l—c)(1—m)uv
v ditha(l—o(—muli—5)  21+ha(l—o)(1—mu
Ba(l—c)(1—m)u*v* ln< uv(14+ho(1—c)(1—m)u(t — 1)) )
( Ju)

l+ha(l—c)(1—m)u* \u(t—n)v(t— ) (1 +ho(l—c)(l —m)u

— N

+7

1—c)(1—m)uv Bo(1—c)(1—m)u™v* *
lﬁffga(lz(c)(lfm)u 1+aha(1 o —my ALE"(u",v"), then we have

av, [r a’(1—c)*(1—m)?v . s .

a __{E (1+hoc(1—c)( )u)(l—kha(l—c)(l—m)u*)}(u_u J g vy’
+%u2{1—@+%m<@>}

Ba(l—c)(1—m)u*v* { u(t—m)v(t—mn)v'  1+ho(l—c)(1—mu’

1+ ho(l—c)(l —m)u* ut vi v I+ho(l—c)(1—mu(t—1)
ut—n)vit—n) 1+ho(l—c)(1—mu

—Hn( u 2 v : 1+ha(1—c)(1—m)u(t—r2)>}

Noting that

+7

We note that

NSRS

u* vi v l+ho(l—c)(1—mu(t— 1)
ut—n)vit—1n) 1+ho(l—c)(1—m)u
+ln< u : v : 1+hoc(1—c)(1—m)u(t—f2)>} =0,
and [l—ulu(t%‘)—kln(”(t;f‘))} <0.

Thus * = vy < 0 and with equality iff u = u*,v = v*. We now look for the invariant subset M within
the set M = {(u,v) |u=u*,v=v"}. Thus M = {E*}. Using LaSalle invariance principle [139],
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E™ is globally asymptotic stable whenever condition (3.13) is satisfied. U

Remark 3.6.1. If the system (3.1) is globally asymptotically stable, then it is also globally
asymptotically stable for one delay and two delays.

140 T T T T 70
2o ] 60} E'(115.72,58.18) ]
100
501
= 80f
z > a0}
@ eof ]
3 30t
40
R u(t)
20} | : ) 20
0 : 10 :
0 2 4 6 8 10 20
t u
Fig. 3.1: Time series of u and v for the set Fig. 3.2: Stable solution in uv- plane, sta-
of values of parameters given in (3.28). rting from different initial conditions.

3.7 The influence of prey refuge

To investigate the influence of prey refuge, we calculate the derivative of the prey and predator

along the positive equilibrium point with respect to refuge parameter m and we get

av LaB(1—e)[(1 —m) 2 — ]
dm ~ s[1+ho(l—c)(1—m)u*]

where
p(u’)=La(l—c)[l+ha(l —c)(1 —m)u"] > 0,

qu") = %{1 +ho(1—c)(1—mu*} — Lha®(1—¢)*(1—m)*{1 +ha(l —c)x

LBa*(1—c)*(1—m)? B Lho*(1—¢)*(1 —m)3u*

(1—m)u"}+

Now, we have ‘é—”g > 0if g(u*) > O0hence u* is a strictly increasing function of m. Suppose

R| = Z((Ziiu*, then ‘fi—f; > 0if0 < m < 1— Ry, which implies that v* is a strictly increasing
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functionon m € (0,1 —R;); When | —R; < m < 1, then ‘fi—f; < 0, which yields that v* is a
strictly decreasing function onm € (1 — Ry, 1).

This shows that increment of the amount to refuge is in the favor to promote prey density.
Predator density increases if amount of refuged prey is less than 1 — Ry and it decreases when
quantity of refuged prey crosses the value 1 — R;. When m = 1 — Ry, predator species reaches

its maximum.

Remark 3.7.1. Refuge affects predator species, but not such efficient to extinct them because

predators depend on other resources.
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Fig. 3.3: Behavior of u and v with time ¢ for different values of ¢ and other values are
same as in (3.28).
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Fig. 3.4: Behavior of u and v with time ¢ for different values of m and other values are
same as in (3.28).
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3.8 Numerical Simulation

In this section, we present numerical simulations to verify the analytical predictions obtained in
previous section using MATLAB 2017a. As this is not a case study, real data are not available
for this problem, so we consider some biologically feasible data.

3.8.1 Non-delayed system

For the model (3.1), parameters are chosen as follows:

r=10, K =150, s=4, L=40, h=0.1,

(3.28)
c=07, m=04, 0a=04, =04,

with initial conditions #(0) = v(0) = 1.
For the above set of values of parameters, second condition of (3.6) is satisfied. Thus, the

positive equilibrium point E*(u*,v") is given by
u' =115.72, v =58.18 .

It is also to be noted that the condition of Theorem 3.3.9 is satisfied for the set of parameters
chosen in (3.28). Hence, the equilibrium point E*(u*,v") is globally asymptotically stable.
The time series of u and v is presented in Fig. 3.1. This figure shows that the density of prey
species and predator species both increase with time and finally settle down at their steady state
level. But the predator population initially increases slowly and then goes to equilibrium level,
whereas the prey population increases fast and then slightly decreases and goes to the steady
state level. In Fig. 3.2, we plotted the trajectories of solution curves of u and v with different
initial conditions. From this figure, we observe that all the trajectories starting from the various
initial conditions converge to the equilibrium point E*(115.72,58.18), which shows that E* is
globally asymptotically stable.

We also observe that habitat complexity ¢ and refuge parameter m play an important role
to understand the dynamics of the model (3.1). We have examined the dynamics of the system
with respect to these parameters.

In Fig. 3.3, we show the behavior of # and v with time for three different values of the
parameter ¢ and rest of the parameters have the same values as that in (3.28). Here we note
that as the value of the c¢ increases, the density of u increases but the density of v decreases. u
increases with respect to time very fast, then decreases and after that goes to the equilibrium
level. When c is large (¢ = 0.8), u increases, then slightly decreases, and settles down at higher
equilibrium level. Whereas v increases with respect to time and then goes to their respective
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steady state level. The effect of m on the dynamics of u and v is similar to that of ¢, and it is
shown in Fig. 3.4.
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Fig. 3.5: E" is asymptotically stable when 7 =0 and 72 = 3.6 < T, (a-b) Time series
evolution of species, (c) phase-portrait in fuv-space, (d) phase-portrait in uv plane.

3.8.2 Delayed system

In order to illustrate the theoretical results derived above in case of delayed system (3.14), we
choose the parameters as follows:

r=8, K=200, s=5, L=120, h=0.1,

(3.29)
c=06,m=08, a=0.8, f=0.5.
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Then system (3.14) has a unique positive equilibrium E*(u*,v*) = E*(8.51,126.1981). The
complex dynamical behavior of the system has been observed with time delay.
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Fig. 3.6: £ is unstable when 7y = 0 and 7, =4 > T, (a-b) Time series evolution of
species, (c) phase-portrait in tuv-space, (d) existence of periodic solution.

Case (I): When 7y =0and 7, > 0, then we see that conditions (H; ) and (H3) are satisfied. Taking

n = 0, our computer simulation yields
o, = 0.3379, 1, = 3.8517,

and transversality condition is satisfied. Thus, the positive equilibrium E* is asymp-
totically stable for 7p < 7, = 3.8517 which are shown in Fig. 3.5 and unstable for
T > T, (Fig. 3.6). When 7, = 1, system undergoes a Hopf-bifurcation at the positive
equilibrium E* i.e. a small amplitude periodic solution occurs around E*. The time series

analysis has been shown in Fig. 3.6(a-b), phase portrait in the fuv space in Fig. 3.6(c)
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and phase-portrait in uv plane in Fig. 3.6(d). From Fig. 3.6(d), we note that a periodic
solution exists. Any solution trajectory initiating from inside (blue) or outside (red) the
closed trajectory, approaches towards the closed trajectory. This shows the existence of a

stable periodic solution. By the algorithm derived in previous section, we can obtain
c1(0) =—=0.0111-0.0139i, u, >0, B = —0.0221, T, = 0.022.

This shows that the nature of Hopf-bifurcation is supercritical, bifurcated periodic solu-

tion is stable and its period increases
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Fig. 3.7: E” is asymptotically stable when 7, =0 and 71 = 3.8 < T1,, (a-b) Time series
evolution of species, (c) phase-portrait in fuv-space, (d) phase-portrait in uv plane.

Case (II): When 75 =0 and 7; > 0, by some computation, we obtain

@, = 0.3625, 171, = 4.0038,
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Case (III):

and transversality condition is satisfied. Thus, the equilibrium point E* is asymptotically
stable for 7; < T, = 4.0038, which is shown in Fig. 3.7 and unstable for 7, > 7,
(Fig. 3.8). When 71 = 7, system undergoes a Hopf-bifurcation at positive equilibrium
E* and a periodic solution occurs around E*. By the algorithm derived in section 3.5, we
can obtain

¢1(0) = —0.1032+0.8913i, 1, > 0, B, = —0.2064, T» = 0.1903.

Thus, the nature of Hopf-bifurcation remains same as in the previous case 1.

135

130

125

o

>
120
115
110
200 400 600 800 1000 0 200 400 600 800 1000
t t
(a) (b)
135
NN \i}\\
MR 130
\

125

120

115
15 1000
800

200 110
0

Fig. 3.8: E” is unstable when 7 =0 and 71 =4.2 > 71, (a-b) Time series evolution of
species, (c) phase-portrait in tuv-space, (d) existence of periodic solution.

71 > 0and 7 > 0.Let 73 =0.5 € (0,3.8517) and choose 7; as a parameter. We have
T , = 3.1302 (critical value). For 7y € (0, T ,); the system is asymptotically stable (Fig.
3.9). Butforty =3.3 > ’L'{O, the system becomes unstable (Fig. 3.10). Thus the model is
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asymptotically stable for 7} < T .- As 71 passes through T ,» the system loses its stability
and a Hopf-bifurcation occurs into the system. Fig. 3.10(d) shows the existence of a
periodic solution (closed trajectory). The blue trajectory represents any solution starting
from inside the closed trajectory and the red trajectory denotes any solution starting from
outside the closed trajectory. Both of the trajectories approach to the closed trajectory
which represents a stable periodic solution. By the algorithm derived in previous section,

we can obtain

d
{—Re(l)} =0.0715 > 0
dr 1=1],

c1(0) = —570.32 — 417.71i, = 7976.5, B> = —1140.6, T» = 842.3801.
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Fig. 3.9: E* is asymptotically stable when 7, =0.5and 7, =3 < Tl’o (a-b) Time series
evolution of species, (c) phase-portrait in fuv-space, (d) phase-portrait in uv plane.
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Since u; > 0, the Hopf-bifurcation is supercritical. f, < 0 implies that the bifurcated
periodic solution is stable. 7, > 0 shows that the period of bifurcated periodic solution

increases.

The bifurcating diagrams have been shown in Fig.(3.11-3.13) by taking 7| as a bifurcation
parameter and 7, = 0 in Fig. 3.11, by taking 7; as a bifurcation parameter and 7, = 0.5 in Fig.
3.12 and by taking 7, as a bifurcation parameter and 7; = 0 in Fig. 3.13. These figures depict
the dynamics of the system as the delay increases. From these figures, it is evident that for
small values of the delay, the system is stable but as the value of delay crosses its critical value,
the system loses its stability and undergoes Hopf-bifurcation. Thus the periodic solution exists
for T > 7T.iricar- In Fig.(3.14), the region of stability and instability has been drawn. It is to be
noted that if 7y < 7y, and 7, < Ty, then system undergoes a Hopf-bifurcation and if 7; > 7, or

T, > Tj,, then system is unstable and Hopf-bifurcation does not exist.
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Fig. 3.10: E* is unstable when 7, = 0.5 and 7; = 3.3 > T{O, (a-b) Time series evolution
of species, (c) phase-portrait in fuv-space, (d) existence of periodic solution.
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Fig. 3.11: Bifurcation diagram of the prey and predator population with respect to feed-
back time delay 7; when 7, = 0.
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Fig. 3.12: Bifurcation diagram of the prey and predator population with respect to feed-
back time delay 7; when 7, = 0.5.
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Instability Region

Fig. 3.14: Stability and instability regions of model (3.14) for the set of values of param-
eters in (3.29) with respect to 7; and 7;.

3.9 Conclusion

In this chapter, a non-linear mathematical model is proposed and analyzed to understand the
dynamics of prey-predator relationship. Here prey and predator both grow logistically. The
predator depends on prey for alternative food and that followed by Holling type-II functional
response. The Holling type-I functional response is linear mass action and the predator’s han-
dling time for prey is assumed to be zero. It has been observed that predator often becomes
saturated in nature. So, we considered Holling type-II functional response. In this response,
the number of prey consumed per predator initially increases very fast as the density of prey
increases, then it settle down at its steady state level. Again, the habitat complexity plays a
major role in the distribution and structure of population. It can reduce the probability of cap-
turing a prey by reducing the searching efficiency of predator. Predator’s functional response
is affected by the complexity of prey habitat [5, 8]. Refuge is also an important factor to main-
tain the balance between prey and predator. To control the over-exploitation of the biological
resources, refuge is one of the tools suggested by ecologists as a control variable. Thus, we
include these two factors in our model. Then we discussed the positivity, boundedness of the
solution, persistence, existence of equilibrium points and their stability analysis. The model is
confined within a compact set Q in the non-negative quadrant, which indicates that none of the
interacting species can grow exponentially or abruptly for a long period of time, which has a bi-
ological implications in the view of limited resources, species, the competition between species
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and natural calamity. The model is persistence if the intrinsic growth rate of prey is greater
than a threshold value. We also analyzed the local and global stability behavior of the model
around the positive equilibrium point. We observed that, if intrinsic growth rate is greater than
a threshold value, then the interior equilibrium point is globally stable.

Models with delay are much more realistic than ordinary differential equation. When preda-
tor consumes less prey, then prey population increases. Thus, the reduction in prey population
also causes an increase in its growth rate. This phenomenon known as negative feedback delay,
has been incorporated in our proposed model. Again, reproduction of predator after consuming
prey takes some time i.e. time lag for gestation. Therefore, to make this prey-predator model
biologically more realistic, we consider two delays: one for negative feedback delay of the prey
and other for gestation delay for predator.

Now we considered modified delayed prey-predator model. Here we discussed bound-
edness, Hopf-bifurcation through local stability taking delay as a bifurcation parameter. We
studied the existence of Hopf-bifurcation for possible combination of two delays. We dis-
cussed the sufficient conditions for the stability of interior equilibrium point and existence of
Hopf-bifurcation when Case (1): 71 =0, 7, > 0, Case 2): 71 > 0, 1o, =0, Case (3):
71 > 0, » > 0. As we know that the term ‘delay’ can destabilized the behavior of the system.
The positive stable equilibrium undergoes Hopf-bifurcation with respect to one of the delays
or both delays, when they cross their critical values. Thus, the quantitative level of abundance
of system populations depends on the delay parameter. The direction and stability of Hopf-
bifurcation are studied with the help of Centre manifold theorem and Normal form theory. The
global stability behavior of the system with one delay and two delays have been discussed. We
observe that if the intrinsic growth rate of the prey is greater than a threshold value, then the
system with one delay and two delays are globally asymptotically stable.

Our numerical simulation results are based on some biologically feasible data to illustrate
the analytical results. For a set of values of parameters, the system is stable, then introducing
delay, the system remains stable if the delay is less than their critical value. If we increase de-
lay, then the system becomes unstable (Hopf-bifurcation). We also proved that Hopf-bifurcated
periodic solution is supercritical with stable periodic solution. Bifurcation diagram (Figs.3.11-
3.13) with respect to delays 7| and 7, gives us information about the stable and unstable behav-
ior of the system.

As we discussed earlier, habitat complexity and refuge are two important factors of this
model. Fig. 3.3 and Fig. 3.4 show the behavior of the prey and predator with respect to ¢
and m respectively. As ¢ and m increase, the prey population increases but predator population
decreases. The study of this chapter is important to control the over-exploitation of prey popu-
lation from the predator population and to maintain their balance behavior. Here we have given
importance on both the delays.



