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one to take retrial policy for SUs into account. Sun et al. [122] modeled the CRN as
a multi-channel queueing model of the M M AP/M,/N/N type, where M M AP stands
for marked Markovian arrival process. Therein, a retrial orbit is employed for the SUs
and with the aim to enhance their throughput, access of the SUs is restricted via threshold
mechanism. The optimal value of the threshold is also obtained then. Gao [123] inves-
tigated a single channel retrial queueing model with general retrial times. He showed
the application of the proposed model in CRNs, with PUs having preemptive priority
over SUs. Further, Dudin et al. [71] generalized the results of retrial queue obtained by
Sun et al. [122]. They assumed service times of priority users have much more gen-
eral, phase type distribution in contrast to the exponential distribution. Additionally, they
took different bandwidth requirements into consideration by providing a whole channel
to the PU and a sub-channel to the SU for service. Recently, Zhao and Yue [124] pro-
posed a spectrum sharing strategy with a returning threshold and a returning probability
to dynamically control the retransmissions of interrupted SUs. In this strategy, when the
number of SUs already in the SU buffer reaches a predefined returning threshold, then an
interrupted SU will be admitted to the buffer for later retransmission with an adjustable
returning probability. To make the proposed strategy more adaptive, this probability is

assumed to be inversely proportional to the total number of users in the system.

1.6.3.3 Queues with Working Breakdowns and Vacations

Queueing systems with server breakdown and vacations have also been investigated in
different frameworks in recent years. The server can take vacations after being busy for a
certain period of time or after serving a (fixed or random) number of customers or pack-
ets as discussed by Doshi [125]. An example of a vacation model in telecommunication
applications involves the ever-increasing use of wireless cellular networks, which trig-
gers a huge consumption of energy. In order to develop energy efficient wireless cellular
networks, researchers proposed hibernation (or sleeping) of a BS in the absence of an
active user in the network. A sleeping BS is similar to a server on a vacation. There are a

few vacation based BS sleeping models available in the literature. For instance, Marsan
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et al. [126] studied the energy-aware management of cellular networks with simple an-
alytical models to optimize the energy saving. When other cells are switched off, they
assume that the cells that remain active take care of radio coverage and service provi-
sioning, to ensure that service is available over the whole area. Moreover, according to a
deterministic traffic variation pattern over time, they gave a static BS sleep pattern. While
based on the traffic variation with respect to certain blocking probability constraint, Gong
et al. [127] proposed an energy saving algorithm that dynamically adjusts BSs” working
modes (active or sleeping). Later on, Wu et al. [128] surveyed BS sleep mode techniques
and their applications to mobile networks under different assumptions on system and
power model. They have shown that the advantages of sleep mode strategies are greatly
affected by the assumptions. Recently, Feng et al. [129] identified the challenges of
designing BS ON-OFF switching (also known as BS sleep control) strategies in 5G wire-
less networks. They also presented an overview of recent advances on different switching
mechanisms.

The assumption that the service environment to be one hundred percent reliable can
be impractical, especially in communication systems. The frequency channel can fail due
to signal fading, channel interference, weak transmission power, path loss, etc. leading to
the study of stochastic models with server subject to random breakdowns and repairs. For
instance, Cao and Singhal [130] proposed a fault-tolerant channel allocation algorithm,
which is responsible for collecting information from other cells to find the available chan-
nels while guaranteeing that the channel assignment does not interfere with other cells.
In the algorithm, a borrower need not receive a response from every interference neigh-
bor rather from a small portion of them and hence the algorithm can tolerate network
congestion and communication link failures. The performance of the algorithm was eval-
uated under both environments i.e., with and without failures of communication links or
mobile hosts. Later, a fault-tolerant dynamic channel allocation scheme for cellular net-
works was developed by Boukerche et al. [131], which can handle mobile host failures,
BS failures as well as communication link failures under both uniform and non-uniform

call arrival distributions. Sattiraju and Schotten [132] introduced a new framework for
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modeling and analyzing reliability of the wireless link under the effects of channel fad-
ing and retransmissions by considering the channel as a non-repairable system. Recently,
Nemouchi and Sztrik [133] presented a finite-source retrial queueing system for CRNs
congsisting of two interconnected, not independent sub-systems. In the first part, the PU
requests with preemptive priority are sent to a single server unit or Primary Channel Ser-
vice (PCS) and the second sub-system is for SU requests at Secondary Channel Service
(SCS). Therein, both servers are subject to random breakdowns and repairs. The failure
and repair times are assumed to be generally distributed, in particular hypo-exponentially
and hyper-exponentially distributed for simulation results. Further, Zaghouani et al. [134]
extended the analysis of Nemouchi and Sztrik [133] by allowing Gamma distributed fail-
ure and repair times in addition to the Hypo-Exponential and Hyper-Exponential ones
with the same mean and variance. This enables them to capture the effect of the distribu-
tions contrary to that of only the first two moments.

Additionally, in order to avoid excessive delays, many authors have considered the
provision of a backup server to serve at a reduced rate during the absences (caused by
vacations and breakdowns) of the main server, referred as working vacation and working
breakdown. The detailed study of these models can be found in the works of Chan-
drasekaran et al. [135] and Deepa and Kalidass [136]. Servi and Finn [137] were the
first to introduce an M /M /1 queueing system with working vacations (WV). Wu and
Takagi [138] extended the M /M /1/WV queue to an M/G/1/WV queue. Authors like
Zhang and Hou [139], Arivudainambi et al. [140], Gao et al. [141], Zhang and Liu [142],
Rajadurai et al. [143] and Rajadurai [144, 145] analyzed queueing systems with working
vacations. Kalidass and Kasturi [146] were the first to introduce the concept of working
breakdowns. For unreliable queueing systems, working breakdown service is consid-
ered as a more reasonable repair policy as it can decrease complaints from the users who
should wait for the main server to be repaired and reduces the cost of waiting users. Kim
and Lee [147] studied an M /G /1 queueing system with working breakdown services.
Recently, Rajadurai et al. [148] investigated an M /G/1 retrial queue with negative cus-

tomers (disasters) under working vacations and working breakdowns.
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1.6.3.4 Queues with Varying Arrival and Service Processes

To develop a detailed analytical model for mobile and wireless cellular systems, the call
arrival process and the call holding times (CHT) are the two main characteristics. Differ-
ent models are derived based on different assumptions for the distribution of inter-arrival
times and call durations. For instance, a working vacation model wherein there are two
types of priority customers, a possibility of interrupting the vacations, and with CHT fol-
lowing a phase type (PH—) distribution was studied by Goswami and Selvaraju [149].
Later, Goswami and Selvarju [150] analyzed a P H /M /c queue, wherein servers can go
for multiple working vacations that is, the (main) server keeps on taking working vaca-

tions until the server finds no customers after returning from a vacation.

Empirical studies have shown that the interarrival times of a communication sys-
tem demonstrate significant correlation as mentioned by Klemm et al. [151]. From this
point of view, there are some queueing models that consider MAP arrivals to capture
the correlation effect. For instance, Banerjee et al. [152] studied a finite buffer single
server queue with MAP arrivals where service times, which depend on the batch size, are
generally distributed. The queue length distribution for M AP/G /1 working-vacation-
interruption queue was derived by Zhang and Hou [153]. The steady-state analysis of
multiclass M AP/ P H /c retrial queueing system with acyclic PH-—retrials was studied by
Dayar and Orhan [154], where acyclic PH—distribution is a subclass of PH—distribution.
Vadivu [155] investigated a finite buffer M AP/G /1 queue with an additional second
phase of optional service under vacation policy. Based on queueing system models con-
sidered in the survey by Vishnevskii and Dudin [156], recently it was shown that the pres-
ence of a positive correlation significantly deteriorates the characteristics of a queueing
system. Further, Ye and Liu [157] studied M AP/M /1-type queue with working break-
downs and repairs. In addition, the theory of queueing systems with correlated arrival
processes developed in the works of M.F. Neuts, D.M. Lucantoni, V. Ramaswami, S.R.
Chakravarthy, A.N. Dudin, V.I. Klimenok and others, has had numerous applications in

the telecommunication networks, in particular for cellular networks, see e.g., the works
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of Lee et al. [158], and Zhou and Zhu [159].

1.7 Research Gaps and Contributions

Based on the above discussions, several research gaps are revealed which are addressed
with our proposed solutions throughout this thesis. This section summarizes those re-
search contributions made by the proposed solutions.

There are a number of CAC schemes proposed by various researchers based on dif-
ferent aspects of service management in cellular networks. However, the literature survey
identifies that not much focus has been stressed upon the quality of signal. Since deteri-
oration in the quality of received signals may result in call drop therefore, in CAC it is
of paramount importance to control the quality of signal for better performance. In view
of this, we have designed two CAC schemes to quantify the impact of signal quality on
cellular networks that are elaborated in Chapter 3. To support the mobility of users and
further enhance the system performance, FGC policy with queueing of handoff requests
is taken into consideration in the proposed scheme. Moreover, an algorithm is developed
to determine the optimal value of new call acceptance probability associated with the
FGC policy.

As mentioned earlier, spectrum sensing plays a significant role in enabling the uti-
lization of spectrum holes by (unlicensed) SUs in CRNs. From the literature survey, it
is revealed that most of the works concerning spectrum sensing has focused on sensing
carried out by (only) incoming SUs aiming at locating spectrum opportunities. However,
in order to appropriately protect licensed PUs, SUs should continuously perform spec-
trum sensing during their ongoing transmissions as well. False alarm rate (FAR) is an
important issue associated with continuous sensing, which is defined as the average num-
ber of false alarms per unit of time and can severely degrade the QoS. Motivated by these
issues, a queueing analysis of opportunistic access in CRNs is performed in Chapter 4
to examine the effect of sensing errors including the FARs on the performance of CRNs.
To gain further insight, system-centric performance metrics such as capacity, blocking

probability and forced termination probability are explored by employing queueing and
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handoff schemes.

The gap between research work and real implementation of cellular networks exists
due to various assumptions made during system modeling for the purpose of analysis
convenience. For instance, the homogeneity of traffic that is assumed in many analytical
models is not observed in practice since CR users are diverse in traffic types with distinct
QoS requirements. With this motivation, Chapters 4 to 6 analyze a CRN with hybrid SU
traffic considering both elastic/non-real time and real-time SU services.

In addition, the assumption of Poisson arrival process and/or exponential service times
is widely adopted in the literature due to its simplicity and analytical tractability. How-
ever, a Poisson arrival process or an independent renewal process cannot capture the
correlation of packets in a network. For high speed networks, data, video or voice traffic
is seldom uniform and characterized by periods of burstiness i.e. packets are bursty and
significantly correlated (see e.g. Jian and Dovrolis [160]). Inspired by this observation,
we have studied a queueing model with MAP and phase type distributed service times.
In Chapter 7, we model a working-vacation-breakdown-repair queue which incorporates
these characteristics.

The popularity of stationary analysis comes from its simplicity and thus the available
results of the transient (time-dependent) regime in the literature are usually restricted due
to its complexity, as discussed by Parthasarathy and Dharamraja [161] and Legros [162].
However, considering the fact that the duration of a network connection is finite and
steady-state might never be attained, it is required to investigate the transient behavior due
to the real-time nature of the mobile traffic so as to know how the system will operate up to
some specified time. Thereby, the transient analysis of CRNs is carried out in Chapters 5
and 6.

In real-life networks, a wireless link encounters a certain probability of channel failure
due to various reasons. The impact of these failures and recoveries on the performance
of CRNs is an overlooked area in existing research work due to the complexity of anal-
ysis. Indeed, the ignorance of the effect of link failures and recoveries in mathematical

modeling generally overestimates the performance measures. Besides, the dependability
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aspect of CRNs is also an overlooked topic even though a tremendous amount of research
efforts have been made in the area of CRNs. When analyzing CRN performance, moti-
vated by these observations, Chapters 5 and 6 attempt to model a more realistic network
scenario from the perspectives of dependability theory by considering channel failures
and repairs with the aim of achieving Ultra-Reliable Communication (URC) in 5G and

beyond networks.

1.8 Organization of the Thesis

In general terms, the study of this thesis is devoted to develop an analytical framework for
analyzing the performance of future cellular networks including CRNs. More specifically,
it contributes towards a better understanding of cellular mobile networks and provides a
new insight into their operation. The thesis consists of eight chapters. The first chap-
ter provides an introduction, a summary of the research area and the performed work,
together with the importance of performance analysis using queueing theory.

Chapter 2 provides an overview of a number of concepts in Markov modeling and
analysis, useful for understanding the subsequent chapters. It also summarizes the perfor-
mance metrics and the available solution methods for the proposed mathematical models.

Chapter 3 proposes two CAC schemes taking handoff prioritization and signal quality
into account. A non-linear optimization problem is also formulated to minimize the new
call blocking probability under a hard constraint on handoff dropping probability.

Chapter 4 presents a CTMC-based model for analyzing the steady-state performance
of CRNs by addressing the issue of sensing errors. The study focuses on the joint analysis
of spectrum access and continuous spectrum sensing by employing call buffering and
handoff strategies.

Chapters 5 and 6 present transient analysis on reliability and availability performance
of CRNs from dependability theory’s perspective. The proposed analytical model in
Chapter 5 incorporates channel reservation, handoff capability, retrial phenomenon and
heterogeneous SU traffic support in a single model. Chapter 6 then presents a CTMC

model using different channel modes and distinct failure rates. The proposed model
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therein explores the multi-channel reservation scheme for heterogeneous SU traffic.

Chapter 7 discusses a queueing model with server breakdowns, repairs, vacations,
and backup server under the steady-state. Using Neuts’ versatile point process for the
arrivals and modeling the service times with phase type distributions, the proposed model
generalizes some of the previously published ones in the literature. Additionally, the
decomposition results for the rate matrix and the mean number in the system are proved
under some special cases.

Finally, Chapter 8 provides a conclusive summary, highlights the specific contribu-
tions of the work and points out a few potential extensions of the proposed schemes and
models.

The structure of this thesis is also illustrated in Figure 1.5 where the connections

among the research topics are highlighted.
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Figure 1.5: The structure of the thesis.
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Chapter 2

Analysis and Modeling of Mobile
Traffic

“Intellectual growth should commence at birth and cease only at death.”

— Albert Einstein

2.1 An Overview of Markov Modeling

Markov analysis has been and continues to be the method of choice for modeling in many
diverse fields such as biology, physics, electrical engineering, finance, manufacturing,
agriculture, and so on. It is often possible to analyze the behavior of a physical system by
describing all the possible states the system may occupy and indicating the evolution of
the system by transitions from one state to another in time. The scope of applications of
Markovian models to the field of wireless communications and Internet traffic modeling
has been on the increase. Because of the memoryless property of Markovian models,
these models are amenable to analysis. Markov models attempt to model the activities
of a traffic source on a network, by a finite number of states. If the underlying traffic
models do not efficiently capture the characteristics of the actual traffic, the result may be

the under-estimation or over-estimation of the performance of the network. This would
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totally impair the design of the network. Accurate modeling of network events is thus
essential to the understanding of system dynamics and to analyze the performance of
networks as discussed by Konrad et al. [163].

This chapter gives an overview of Markov processes that are used to model the cellular
systems involved in this thesis. The techniques and methods that are utilized to derive the
probability vector and the performance measures of interest are provided in the latter
part of this chapter. More in-depth treatments of the topics covered here can be found in
classical queueing theory books, including by Kleinrock [164], Karlin and Taylor [165],
Medhi [166] and Shortle et al. [167].

2.1.1 Markov Chains

A family of random variables { X (¢),¢ € T}, defined on a given probability space and
indexed by the parameter ¢ € I’ is called a stochastic process (or random process, or
random function). The parameter space or index set T” C R is sometimes also called the
time range. If the parameter space T’ is countable, for e.g., if we let ¢ = 0,1, 2, ..., then
we have a discrete-(time) parameter stochastic process while on the other hand, if 7" is an
interval or an algebraic combination of intervals, we call the process as continuous-(time)
parameter stochastic process.

The values assumed by the random variable X (¢) denotes the state of the process
(observation) at time ¢ and the set of possible states of the process constitutes its state
space, S. Again, the (real valued) state space can also be either discrete if it is countable
(finite or countably infinite); otherwise, it is continuous. Accordingly, a stochastic process
can be classified based on the continuous or discrete nature of its parameter space and
state space.

So far we have discussed about one-dimensional processes, but the values assumed by
the random variable X (#) may be multi-dimensional, and hence one can similarly have
multi-dimensional processes. In many queueing systems, multi-state, multi-dimensional
Markov chains are required to accurately model the queueing dynamics. An example of

a two-dimensional stochastic process in continuous time having continuous state space
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is X(t) = (Xi(t), Xo(t)) where X, (¢) represents the minimum and X, (#) represents the

maximum temperature at a particular place in an interval of time (0, ¢).

Any stochastic process satisfying the so-called “Markov property” is said to be a
Markov process. Specifically, a continuous-time stochastic process is a Markov process
if for all integers k& > 1,11 < t; < --- < t; in the index set and for any real numbers

r1, T2, ..., Tk, WE have

Pri{X(t) < x| X(t1) = x1, ..., X(tso1) = 261} = Pr{X(tx) < 2| X (tg—1) = w11}

(2.1
The above equation (2.1) is called as Markov property which says that given the current
state of the process, the next state is independent of any past state taken by the process,

and the process thus is said to exhibit memoryless property.

In case the state space of a Markov process is discrete, the Markov process is referred
to as a Markov chain. Again, depending on the nature of the time range, the Markov
chain is classified as a discrete-time Markov chain (DTMC) or continuous-time Markov

chain (CTMC), and the latter is utilized for the analysis of cellular systems in this thesis.

Furthermore, for a Markov chain to satisfy the Markov property, the time spent in
any of its states (generally referred to as the sojourn time) must possess the memoryless
property. That is, at any time ¢, the remaining time until the event occurs must be inde-
pendent of the time already spent in that state. It follows that for CTMCs, the sojourn
time must be exponentially distributed as exponential distribution is the only continuous

distribution to possess memoryless property.

2.1.2 Relevant Probability Distributions

In this section, probability distributions that are used in most stochastic models are de-

fined and their associated basic properties are presented.
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2.1.2.1 Exponential Distribution

A continuous random variable X has an exponential distribution with parameter A > 0,
denoted by Exp()) if its probability density function (pdf) is given as
el >

J(t) = (2.2)
0; t <.

The mean and variance are then given by

B(X)=pux =~, Var(X) = 0% = — (2.3)

and hence the coefficient of variation, cxy — % — 1.

An important property for an exponential random variable X is the memoryless prop-

erty. Mathematically, this property states that for £ > 0 and s > 0,
P{X >t+s|X >s} — P{X > t}. (2.4)

Suppose that X denotes the time. Intuitively, the memoryless property says that given
X > stheresidual time X — s is independent of the time s that has elapsed. For instance,
He [168] discussed that a used (but not too old) light bulb may be as good as a new
one, as long as it still works. This implies that the lifetime of a light bulb may possess
the memoryless property. Consequently, the lifetime distribution of a light bulb can be
approximated by the exponential distribution. Other examples of the exponential distri-
bution include the lifetime of electronic components (e.g., resistors) and the interarrival
times of customers at a service facility.

Note that exponential random variables are the only continuous random variables that
possess the memoryless property. Further, the following result also plays a key role for
stochastic systems in which exponential distribution is involved.

If {X;,7 = 1,...,n} are independent exponential random variables with parameters
{A;,j = 1,...,n}, respectively, then min{ X7, ..., X, } is exponentially distributed with

parameter Ay + - - - + A,.
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2.1.2.2 Erlang-£ Distribution

A continuous random variable X is referred to as a k-th order Erlang (or Erlang-k) ran-
dom variable with parameters (A, k), denoted by Erl-k()\) for A > O and k € {1,2,...}, if
its pdf is given by

Megh—1 ¢ t>0;

fy = 0 2.5)
0, t < 0.
For this distribution, we have
fix = § o*(X) = % (2.6)
and the coefficient of variation cx is always less than or equal to 1.
The Erlang random variable X is the sum of & independent random variables X, ..., X},

having a common exponential distribution with mean 1/A. For instance, in VoIP the ser-
vice process consists mainly in transferring the information of caller to another end user.
This service process of VoIP proceeds through three phases (k = 3): (i) connection es-
tablishment, (ii) transferring information, and (iii) accessing differentiated services thus,
can be modeled using Erlang-3 distribution. Note that when & = 1, the Erlang and expo-

nential distribution coincides.
2.1.2.3 Hyperexponential-% Distribution

A continuous random variable X follows a k-phase hyperexponential distribution with
parameters (o, A;), denoted by Hyp-k(a;, A;), fori = 1,2, ...,k and ZL a; — 1, if it
has the pdf as

ZL et 1> 0,05 >0, >0
ft) = 2.7)
0; t<0.

The mean and variance are given by

k 2
o (6% 2 2(J/i (6%
e D ok 27<ZA—> , (2.8)
and the coefficient of variation cy of this distribution is always greater than or equal to 1.
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If a process consists of parallel phases, instead of sequential phases and the system
randomly selects one of the phases to process each time according to specified probabil-
ities, each of which has exponential distribution, then the resulting distribution is hyper-
exponential. For instance, in the context of telephony, where, if someone has a modem
and a phone, their phone line usage could be modeled as a hyperexponential distribution
where there is probability o of them talking on the phone with rate A; and probability

(1 — «ap) of them using their Internet connection with rate .

2.1.2.4 Phase Type Distribution

Phase type (PH—) distributions were introduced by Neuts [169] as a generalization of the
exponential distribution. The above three discussed probability distributions are special
cases of PH—distributions that are useful in queuing theory. The primarily theoretical
utility of PH—distribution is that any distribution on non-negative real numbers can be
approximated by a PH—distribution and the resulting queueing models can be analyzed

without losing computational tractability.

For PH—distribution, one can think of a queueing model with finite capacity. Here,
customers which upon arrival find no waiting space in the system, are blocked and are
called lost customers. We define the state when the arriving customer is blocked as an
absorbing state. Now, from the system administrator’s viewpoint, in order to keep track
of the blocking of a customer, it is required to know the distribution of the time till the
first loss, i.e., the time until the system enters the absorbing state. This problem can be

addressed by the concept of PH—distribution.

Consider a CTMC { X (¢), t > 0} with finite state space of m transient states and one
absorbing state {1, 2,...,m,m + 1} and infinitesimal generator
T T°
Q@ — ) (2.9)
0 0
where T is a square matrix of order m and satisfies (7); < 0, for 1 < ¢ < m and

(I);; > 0,for 1 <i+# j < m. Since the row sums of an infinitesimal generator are zero,
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the column vector T is such that T° = —Te, where the vector e is a column of 1°s of
appropriate dimension. The assumption that the first m states are transient implies that the
matrix '/’ is non-singular, as mentioned in the study of Latouche and Ramaswami [170].
Note that starting from any initial state, the absorption into the state m + 1 is certain if
and only if the matrix 7’ is non-singular (see e.g., Asmussen [171]).

Let the initial distribution for the CTMC is (a, 1) With ¢ being a row vector of

dimension m and ;11 = 1 — aee. Define
Z=min{t: X({t)=m+1, t >0}, (2.10)

which denotes the absorption time of state m + 1 of the CTMC {X (¢), ¢t > 0}. Then Z
is a continuous random variable taking nonnegative values with probability distribution

function F'(t) given by
Ft)=P{Z <t} — P{X{t)=m+1} =1 —ac’e, t > 0. (2.11)

Such a variable 7 denoting time until absorption is said to follow a PH—distribution with

representation (a, T').

The dimension m here is said to be order of the distribution P H(a,T). The states
{1,2,...,m} are called phases and the CTMC { X (¢), t > 0} is usually called the under-

lying Markov chain. The density function of 7 is given by
f(t) = ae™T° t >0 (2.12)

where the matrix exponential of matrix 7" is given by

>

tTL
eIt — Z . (2.13)

n!
n=0

The &% (noncentral) moment of /'(¢) can be obtained by
E(Z%) = w, = Kla(—T) e, k> 0. (2.14)
Moreover, the distribution /'(¢) has a jump of height o, 1 at ¢ = 0, but in most cases,
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it is assumed that the probability of process starting in the absorbing state is zero i.e.,

F(0) =0 = Q1.

Next, we discuss some particular cases of PH—distribution and their corresponding

PH-—representations.

When «« = 1,7 = —X and m = 1, the underlying PH—distribution becomes expo-
nential. The Erlangian distribution where there are & phases in series is a PH—distribution

with representation (a,T) where

a=(1,0,..0)and T — : (2.15)

kxk

A hyperexponential of order % is a PH—distribution with representation («,T) with

Y
EW
a= (ay,ay,...,ar) and T — _ ) (2.16)

f)\k

Note: The missing elements in matrix 7" are all zeros. Throughout this thesis, if an ele-

ment or a block of elements is missing in a matrix, then it is zero or a block of zeros.

Kronecker compositions

The Kronecker composition of matrices has been researched since the nineteenth century.
A lot of interesting properties about its trace, determinant and other decompositions have
been discovered, many of them are stated and proven in the basic literature about matrix
analysis (see e.g., Horn and Johnson [172, Chapter 4]). Here we provide some details on

Kronecker composition of matrices, mainly on Kronecker product and Kronecker sum,
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which will then be employed to solve matrix equations in Chapter 7.
If A= (a;;)is anm x n matrix and B = (b;;) is a p x ¢ matrix, then the Kronecker

product of A and B, denoted byA @ B, is the mp x ng block matrix given by

(IHB NN (IlnB
A® B= : : . (2.17)
B ... GpnDB

If A and B are square matrices i.e., m = n and p = ¢, then the Kronecker sum of A and
B, denoted by A ¢ B, isdefined as A @ B = (A ® Lxp) + (Inuxm @ B), where the first
identity matrix of dimension p and the second of dimension m ensures that both terms
are of dimension mp and can thus be added. For matrices A, B, C and D, Kronecker

composition possesses a few useful properties listed below as derived by Graham [173].
1. A® B# B® A, for Apxn, Bpxg:
2. (A0B)@C—A®(BaC)=A® B®C, for Anxn, Bpxg, Crxs;
3. (A@ BY(C @ D)= AC @ BD, for Apsxn, Bpxg: Coxrs Dyxs;
4. A (BE£C)=(A®B)x (A®C), for Amxn, Bpxg, Coxgs
5 (A B)@C=(A0C)£(B®C),for Ansxns Brxns Cpxqs
6. (aAd)® B — A® (aB) = a(A® B), for scalar o, and A,5n, Bpxgs
7. trace(A @ B) = trace(B @ A) = trace(A)trace(B), for A, xm, Bpxp;
8. (A®@ B)'=A""® B, if A,xm and By, are invertible;
9. (A@ B)T = AT @ BT, for Ayxn, Bpxas

10. M98 — e4 @ eB for Aun, Bpxg-
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2.1.3 Birth-Death Process

A birth-death (BD) process is an important sub-class of CTMCs, often used to model a
broad class of simple queueing systems and is very well studied in the probability theory
subject (see e.g., Feller [174]). It consists of state space, S as the set (or a subset) of
non-negative integers, typically denoting the number of customers in the system. ‘Birth’
corresponds to customer arrival which increases the state variable by one and ‘death’
corresponds to customer departure which decreases the state by one. More specifically,
after the process finishes its stay in state 7 > (), the process transits from state 7 to 7 + 1
upon occurrence of an arrival or transits to 7 — 1 at a departure. The process is specified

by birth rates A; and death rates z;. This leads to the following rate transition matrix of

the BD process:
0 —Xo Ao
1 pr — (M) A1
Q= 2 L2 —(A2+p2) A ) (2.18)

where the unspecified elements are zero. The sojourn time in state 7 is the minimum of
the time until the next arrival or the next departure. Since the time until the next arrival
and, independently, the time until the next departure is exponentially distributed with rate
A; and p; respectively thus, the sojourn time is exponentially distributed with parameter
Ai + ;. The rate transition diagram of the BD process is given in Figure 2.1.

Denote by P;(t) the probability that the process is in state 7 at time ¢ > 0. The

probabilities F;(t),7 > 0 satisfy the following system of linear differential equations:

/

Fo(t) = =X Fo(t) + pa Pu(t),
R/(f) =N+ )P+ N P () + i P (1), > 1

(2.19)

The BD process with constant birth and death rates as \; = X and p; = g for all

1 > 0, is referred to as homogeneous and inhomogeneous otherwise. In particular, the
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i 7\4+1

axaxe B B-

i Li+1 Lli+2

Figure 2.1: Rate transition diagram for a birth-death process.

pure birth process are such that ;; = 0 and pure death process are such that A\; = 0 for all
2 > 0. The (homogeneous) Poisson process can be seen as a simplest example of a pure
birth process where A; — A and y; = 0 for all 7 > (. Note that in any state, because of the
birth-death characteristic, transitions can be made only to the adjacent states however, for

more general Markovian models this is not necessarily true.

In order to analyze a stochastic queueing system, we require a useful tool that can provide
a good approximation of real-time arrival process and lead to analytically tractable mod-
els. The Poisson process and Markovian arrival process (MAP) have proven to be such
indispensable stochastic modeling tools. In the following sections, prior to the discussion

on MAP, Poisson process and its properties are briefly explained.

2.1.4 Poisson Process

The Poisson process is the simplest one and is most widely used in the modeling of cellu-
lar networks. This process is used to count the occurrences of a certain event (arrival) in
some time interval. A counting process refers to a non-negative, integer-valued, increas-
ing stochastic process.

Consider an arrival counting process { X (¢),¢ > 0}, where X (1) denotes the number
of arrivals occurring in [0, ¢], with X' (0) = 0. The process { X (¢),t > 0} is a Poisson

process with rate A > 0 if it satisfies the following three properties:

1. The probability of having one arrival between time ¢ and time ¢ + At that is, in

an interval of length At = P{X(At) = 1} = MAt + o(At), where At is an
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incremental element and
o(At)

——— = 0.
At

limag—o

2. The probability that more than one arrival occurs between time ¢ and time ¢ + At —

P{X(A1) > 2} = o(Al).

3. The number of arrivals in non-overlapping intervals are statistically independent;
that is, the process possesses the independent increment property. In particular,
let X(s,t) = X(t) — X(s) for t > s. The counting process { X (£),t > 0} is
said to have independent increments if the two increments X (s,¢) and X (u, v) are

independent for all non-overlapping intervals (s, ¢) and (u,v).

2.1.4.1 Properties

Assume that { X'(¢),¢ > 0} is a Poisson process with rate A\. Then the process exhibits

the following properties.

o P{X(t+s)— X(s) =n}=ceMM)"/n!, n=0,1,2,.., ie., the random vari-
able denoting the number of arrivals in an interval of duartion ¢ has the Poisson

distribution with a mean of A\t arrivals.

» The process has stationary increments; that is, the number of arrivals in intervals

of equal width are identically distributed.

* The time between successive arrivals called as interarrival times of the process are
independent and identically distributed (i.i.d) exponential random variables with
parameter A. Let 7" be the random variable associated with interarrival times, then
T has the exponential distribution with mean 1/, where A is the mean arrival rate

(arrivals per unit time).

2.1.5 Markovian Arrival Process

The idea of the MAP is to generalize the Poisson processes in ways that allow the inclu-

sion of non-exponential interarrival time distributions and dependent interarrival times
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but still keep the tractability for modeling purposes. As a first step to go beyond the
Poisson process, it seems natural to replace the exponential distribution of interarrival
times by a general probability distribution and this leads immediately to the class of re-
newal processes. A renewal process is a counting process with i.i.d inter-renewal times,
which describe an ordered set of points like, service completion epochs, arrival instants
and equipment failure instant on |0, oc|]. Their simplifying feature is the independence
and equidistribution of successive inter-renewal intervals. A renewal process with phase
type distributed inter-renewal intervals is called a PH renewal process. Note that the
Poisson process is a special PH renewal process where inter-renewal (inter-arrival) times

are exponentially distributed.

While in many practical applications, notably in modern communication systems like
Internet or other computer networks, arrivals do not usually form a renewal process as
there may be a strong correlation between successive interarrival times. In particular,
according to Breuer and Baum [175], the arrivals that tend to occur in bursts cannot be
modeled with the class of renewal processes. Thus, to introduce a dependence between
successive renewal intervals, the MAP as a generalization of the PH renewal process is

defined where the correlation aspect is not ignored.

Mathematically, recall from Section 2.1.2.4 and let in a PH renewal process, the inter-
renewal times follow a PH(«, T') distribution. Here, instantaneously after the occurrence
of an arrival (i.e., a renewal event), the process gets restarted by selecting a new initial
state (phase) which is independent of the past phase, using the same probability vector o

each time. We then get the infinitesimal generator of PH renewal process as

T B TOn
T B ' . T

Q= o , with B = T’a = _ : (2.20)
T o

m,

Relaxing this restriction, where choosing a new phase after an arrival depends on the one
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immediately before that arrival, we get the generator matrix as

T A Tlo(J/]
T A ) T3
O- with A= | (2.21)
TO A,
such that A is non-negative and o;e = 1,7 = 1,2, ..., m, so that still we have T° = —Te.

A Markov chain with such a generator () gives us a MAP.

MAP is a convenient tool to model both renewal and non-renewal arrivals. However,
different from that for a PH—distribution, an underlying Markov chain for a MAP has no
absorption state (phase). Here, the arrivals can also occur during the stay in each state of
the underlying Markov chain. To be more precise, for a MAP, the transition of states with
arrival, the transition of states without arrival and arrivals without a transition of state, are
all referred to as events. While MAP is defined for both discrete and continuous times,

here we discuss only the continuous-time case which is utilized in this thesis.

2.1.5.1 Construction of Continuous MAP

Let, the MAP is a bivariate Markov process {N(t),[(t);t > 0} with the state space
S — N x {1,2,...,m}, where N(t) records the number of arrivals up to time ¢, while
I(t) keeps the track of the state (phase) of the underlying Markov chain. Suppose that
D = (d;;) denotes the generator of the underlying Markov chain, which is assumed to be

irreducible.

At the end of a sojourn time in state (n,7) € S, which is exponentially distributed
with parameter \; > —d;, there occurs a transition to another or (possibly) the same
phase state. The transition may not correspond to an arrival epoch; that is, the only
possible transitions are to the states {(n + 1,7) : 1 < j < m} € S and to the states
{(n,7) : 1 <i # j <m} € S. The transition rates from state (n,) are independent
of n. More specifically, one of the two events could occur: with probability p;;(1) the

transition corresponds to an arrival and the underlying Markov chain is in state ;7 with
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1 <4, j < m; with probability p;;(0) the transition corresponds to no arrival and the state
of the underlying Markov chain is j, 7 # 4. Note that /(£) can go from state 7 to state i

only through an arrival. Also, we have

D (1) 1> pi(0) =1, 1<i<m. (2.22)

j=1 =1

J#i
For k = 0,1 and 1 < 4,7 < m, define the matrices D, = (d;;(k)) where the entries
dii(0) = —Ni; dii(0) = A\ipi;(0), for 7 # 4, and d;; (1) = A;ps;(1). By assuming 1y to be
a nonsingular matrix, the interarrival times will be finite with probability one and hence
the arrival process does not terminate. Thus, Dy is a stable matrix. It is clear that the

generator /) is then given by D — Dy + Dy.

The preceding construction shows that the bivariate process { N(t), [(t);1 > 0} is a

CTMC with infinitesimal generator

Q= R (2.23)

Note that denoting Dy = T and Dy = A, the generator of MAP in (2.21) coincides with
the one in (2.23). The matrices Dy and D, are called as rate matrices, where Dy consists
of the transition rates without arrivals (except for the diagonal elements) and /), consists
of the transition rates with arrivals. The sequence of matrices { Dy; k& = 0,1} contains
all information for @) and thus is usually called the characteristic sequence of the MAP. It

follows that the 2-tuple (g, D1 ) represents the MAP of order m.

If the process {/(t) : t > 0} is irreducible, then it has a unique stationary distribution

say, 7. It follows that 7 is the unique (positive) probability vector satisfying
™D =0,1te=1, (2.24)

and the fundamental rate of arrival is then defined by A = 7w D e, which gives the expected
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number of arrivals per unit of time in the stationary version of the MAP.

The construction of MAP is further extended to BMAP (Batch Markovian Arrival
Process), which allow arrivals in batches. In BMAP, we have a sequence [, of matrices
where entries of /)y again corresponds to transition without an arrival and those of 1)y
corresponds to transitions coupled with a batch arrival of size k (= 1,2, ...).

MAP is a rich class of point processes, which includes many well-known processes
such as Poisson process, Phase type renewal process and Markov-modulated Poisson pro-
cess (MMPP). Originally, this point process was introduced by Neuts [176] as a versatile
Markovian point process (VMPP) with complex notation, which was later simplified by
Lucantoni et al. [177]. For more details on MAP and BMAP, one may refer to Artalejo
& Gomez-Corral [178]; Chakravarthy et al. [179]; Chakravarthy [180]; Neuts [181]; Lu-

cantoni [ 182]. Some special cases of MAP are presented below.
2.1.5.2 Special Cases
The following are some well-known processes obtained as particular cases of the MAP.

1. Poisson process. The Poisson process with parameter A > 0 corresponds to the

simplest case where 1y = (—A), Dy = (A), D = (0) and m = 1.

2. PH renewal process. Suppose that the interarrival times in a renewal process are
independent and have a common PH—distribution (c, T’) with e = 1. Then that
renewal process is a MAP with )y — T"and 1)1 — —Tea.

Moreover, this class contains the familiar Erlang (I/x) and Hyperexponential (H})

arrival processes as well as finite mixtures of these.

2.1.6 Quasi-Birth-Death Process

The quasi-birth-death (QBD) process, a term that was coined by V. Wallace [183], can be
viewed as matrix generalization of (simple) BD process seen earlier. Consider a CTMC

{X(t), J(t), t > 0} with two-dimensional state space given by

£(0,1),(0,2), ., (0,mo)} U {{1,2, ..} x {1,2, ...,m}}, (2.25)
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where mg and m are positive integers. Here, the variable X (¢) is called the level variable
and J(t) the phase variable i.e., the first coordinate of a state (n, j) denotes the level and
the second coordinate j denotes the phase. The number of phases m in each level may
be either finite or infinite. The state space can also be partitioned on the basis of levels as
S = Upsol(n) where the vector I(n) = {(n,j),7 = 1,2,...,m} for n > 0 is called the

level n.

The CTMC is then called a continuous time QBD process if the variable X (¢) in-
creases or decreases its value by at most one at each transition. In other words, transition
from (n, ) to (n’, ) is not possible if |[n —n'| > 2. Besides, if the transition rates are level
independent i.¢., the transition from (n, j) to (n’, i) may depend on j, 4, and n — n’ butnot
on specific values of n and n’, then the resulting QBD process is called level independent
QBD process (LIQBD) (see e.g., Neuts [184]). Otherwise, the QBD process is called
as a level-dependent QBD process (see e.g., Bright and Taylor [185]). The infinitesimal

generator matrix of a LIQBD process has the following structure

BOO BOl
BlO A] AO
Q= Ay Ay A : (2.26)

where By, is a square matrix of dimension my; By and By are rectangular matrices of
dimension mg x m and m X mq respectively and Ag, A; and A, are square matrices of

order m. Also, we have
Booe -+ BOle = Bloe -+ A1e -+ Aoe — Age + A]e -+ Aoe =0. (227)

It is clear that the above generator matrix exhibits a block tridiagonal structure where the

block structures correspond to levels and the intra-block structure correspond to phases.

Note that for n = m = mg = 1, a QBD process reduces to a (simple) BD process

discussed in Section 2.1.3. For more details on the QBD process, one may refer to the
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book by Bini et al. [186].

2.2 Methodology

The performance evaluation of cellular mobile systems leads to the development of multi-
dimensional queueing models. Once the Markov model is developed, the probability vec-
tor can be obtained by using different methods. In the case of steady-state solutions, the
analysis often involves solving simultaneous linear-algebraic equations while for many
transient situations, we are often faced with solving a system of linear first-order differ-
ential equations. The following sections illustrate the techniques utilized in this thesis for

obtaining such solutions.

2.2.1 Steady-State Solutions

For queues in which a Markov analysis is possible, the steady-state solution can be ob-
tained by solving the stationary equations for a continuous-parameter (time) process. That
is, 7r satisfying,

w(Q =0, me =1, (2.28)

where 7r is the steady-state probability vector, () the infinitesimal generator of the CTMC,
and e is a column vector of ones. Letting w = (mg, 71, ...), 7; gives the (long-term)
fraction of time the process will be in state j at an arbitrary time. The {r;} here are

referred as limiting or steady-state probabilities of the Markov chain.

2.2.1.1 Product Form Approach

For the birth-death process, using the matrix ¢} given in (2.18), the vector-matrix equation

7() — 0 can be written in component form as

—(Aj )T+ XN+ pga =0, ) > 1,
(Xj + )5 + Xjamjo1 + T J (2.29)
*)\07T0+/L17T1 = 0.
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Then under the stability condition (which is both necessary and sufficient) given by

Z AoAr - < 0, (2.30)

1 il - - Ly

it follows that the steady-state probabilities of the process

= lim Bi(t), j >0, (2.31)
are calculated as
BV VR Y
T = e 1 (2.32)
Mo - -
with 1
AoA
1+Z “ , (2.33)
1 Hileg

where 7;, j > 0 (typically) denotes the probability of being 7 number of customers in

the system at an arbitrary time.

2.2.1.2 Generating Function Method

Another method that is well suited for queueing models is probability generating function
(PGF) technique. It is a useful tool for dealing with discrete random variables. If the
sequence {7, } is the probability mass function of a random variable X on the nonnegative

integers (i.e. P(X — j) =7;, j = 0,1,2,...), then the PGF of {r;} is given by
Py(2) = B(z¥) =) m2. (2.34)
=0

The convergence of the PGF is guaranteed for all complex numbers z with |z| < 1. Here,

the probabilities {7, } can be extracted by using repeated differentiation, as

PY(0)
J!

, 72> 0. (2.35)

Ty —

Moreover, the PGF is useful for obtaining decomposition results since for two indepen-

dent random variables, X and Y, we have, Px v (z) = Px(z)Py(2).
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2.2.1.3 Matrix Inverse Method

Standard inversion techniques are quite adequate for moderately sized systems. Consider
the system of equations in (2.28), here one equation of the set 7w() = 0 is always redun-
dant. Incorporating the normalization condition, re = 1, the last column of the () matrix
can be replaced by a column of ones and the last 0 element of the vector 0 by a one. It is

then required to solve a system of the form
wA=0b, (2.36)

where A is the modified () matrix and b is the modified zero vector i.e., of the form

(0,0,...,0,1). It suffices to find A~" since the solution vector is then obtained as
m=DbA L (2.37)

In fact, the last row of the A~' matrix contains the steady-state probabilities {r;}.
2.2.1.4 Matrix-Analytic Method (MAM)

Since the introduction of the MAMs by M.F. Neuts [187] in the 1970s, they have be-
come an important tool to study the stochastic models, notably the queueing models and
reliability models.

Consider a QBD process, using the matrix () given in (2.26), let 7r be the steady-state
probability vector of A = Ay + A; + A,, which is assumed to be irreducible. That is, 7
satisfies,

wA—0, we—=1. (2.38)

Suppose that x, partitioned as * = (xg,xy, ...) is the steady-state probability vector of
the matrix (). That is,
xQ) =0, re=1. (2.39)

Then under the stability condition, w Age < m Ase, the solution probability vector is of
the form

r; = 2131Ri71,i Z 1, (240)
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where the matrix 1 is the minimal nonnegative solution to the matrix-quadratic equation:
R*Ay + RA, + Ay = 0, (2.41)

and x; and @ can be obtained by solving the first two equations of (2.39):

xoBoo + 1 B1g = 0,

(2.42)
moB(n + m1(A1 + RAQ) — 0,
subject to the (normalizing) condition:
xoe +x,(I — R) 'e = 1. (2.43)

2.2.2 Transient Solutions

For Markovian queues, if 7;(#) denotes the probability that the Markov chain with gen-
erator () is in state j at time ¢, and 7 (¢) is the vector of all such probabilities, then from

Chapman-Kolmogorov differential equations

(1) = w(t)Q, (2.44)

it can be obtained as

w(t) = m(0)e?, (2.45)

with 7r(0) being the initial probability vector. Here, e is the matrix exponential which

is defined by

& k
=3 (%) > 0. (2.46)
k=0 ”

As the complexity of the queueing system increases, one cannot obtain closed form ex-
pressions for the transient solution. Hence, the numerical techniques are used to solve the
resulting system of equations and to gain an insight into the behavior of system charac-

teristics.
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2.2.2.1 Uniformization Technique

Uniformization, also known as the method of randomization, was first described by
Jensen [188] in 1953. It is a powerful probabilistic method in the sense that it avoids
the use of differential equations as well as matrix exponentials to evaluate the transient
solution (see e.g., Neuts [189]). This numerical technique may be applied to the Markov
process on a countable state space S as long as the diagonal elements of the () matrix are

bounded, i.e., there exists a A such that
lgi]| < A <00, i €S (2.47)

Letting A = max;|q:;| and considering the (discretized) one-step transition probability

matrix as
R—1T+Q/A, (2.48)
gives
eQt — g At(ANE (2.49)
Substituting this into (2.45) yields
a (ADF
w(t) =Y m(0)Re AtT, t>0, (2.50)

k=0
which is called the uniformization equation. Moreover, while implementing this method,
it is required to truncate the above series, i.e., for a given ¢ > 0, choose k£* sufficiently

large such that

At)*
Ze*mu >1—e, (2.51)
k=0 !
so that for any consistent vector norm || - ||, we have
(A N
m(t) — ;W(O)Rke AtT <1- ZP At T (2.52)
=0 0 k=0
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After obtaining the probability distribution, regardless of the solution technique being

used, the next step is to derive the measures of interest.

2.3 Performance and Dependability Measures

When a cellular mobile system is being designed and implemented, it becomes essential
to answer “what-if”” questions and carry out trade-off studies to choose between a set of
contending design alternatives. The broad classes of measures that need to be evaluated

are:

* Dependability: Dependability evaluation typically accounts for failure and repair
characteristics of the system. Dependability analysis endeavors to answer the ques-
tion “Does the system work, and for how long ?”. Metrics that measure the avail-
ability and reliability aspects of a network from the dependability theory perspec-

tive include the following.

1. Channel Availability: The channel availability represents the probability with
which the network will allocate a channel to a new user arrival without block-
ing its request. Accordingly, it is considered as the main QoS measure for

newly arriving users.

2. Retainability: The probability of successful completion of an already com-
menced connection is referred to as service retainability. This metric is con-

sidered more important for ongoing users.

3. Unserviceable Probability: The network unserviceable probability is defined
as the probability that a (newly arriving or ongoing) service cannot be com-
pleted successfully. This metric is important to be determined to evaluate the

overall satisfaction of the network.

* Performance: Performance analysis involves the computation of system-centric
metrics. The issue addressed by performance measures is “Given that the system

works, how well does it work ?”. Different metrics may be relevant in the context
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of different systems. Metrics that measure system-centric performance include the

following.

1. Blocking Probability: The blocking probability is defined as the probability

that an incoming user will be denied service due to lack of idle channels.

2. Dropping Probability: The probability of dropping or forced termination rep-
resents the probability that a service in progress is forced to terminate before

its communication is finished.

3. Capacity: The capacity of a service in a network can be defined as the average

number of service completions per unit time.

4. Spectrum Utilization: The ratio of the average number of utilized channels to

the total number of channels available is referred to as spectrum utilization.

5. Mean Number in System: The average number of calls waiting in the queue
including the calls being served at a particular time represents the average

number of calls in the system.

6. Probability of Idle System: The probability of a system being idle is defined

as the probability of the system having no user requests.

In this thesis, both system-centric metrics and dependability metrics are evaluated
considering different spectrum management schemes. However, there may exist some
other metrics which do not lie in any of the above two classes. Regarding system-oriented
metrics, more details are provided in Chapters 3, 4 and 7 while reliability-oriented metrics
are covered in Chapters 5 and 6. Moreover, we develop MATLLAB programs to obtain
such required metrics and the numerical results of the traffic models proposed in this
doctoral work. Note that the expressions for analyzing the performance measures for
each model are derived as general expressions and therefore they are applicable to any

scenario within the proposed paradigms.
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Chapter 3

Performance Evaluation of Admission

Control Based on Signal Quality

“Quality in a product or service is not what you put into it. It is what the client or cus-
tomer gets out of it.”

— Peter F. Drucker

3.1 Introduction

The evolving 5G and beyond cellular networks are envisioned to provide new outstanding
attributes such as higher mobility, higher support to traffic demands and higher levels of
the quality of service (QoS), as discussed by Ojijo and Falowo [190]. Accordingly, to han-
dle the tremendous growth in traffic with limited radio spectrum available, it is imperative
to develop efficient call admission control (CAC) schemes that can provide guaranteed
QoS to the end users. As we discussed in Chapter 1, in order to sustain the provided QoS
to the users and to support users’ mobility, the handoff (handover) mechanism is a key

element of wireless cellular networks. The mobility of users is primarily responsible for

This work (partially) has appeared in R, Kulshrestha, M. Jain and Shruti, Proceedings of the
National Academy of Sciences, India Section A: Physical Sciences, Springer, 90 (2020) 739-747.
(https://doi.org/10.1007/s40010-019-00635-2) and optimization part has been accepted
in R. Kulshrestha and Shruti, International Journal of Mathematics in Operational Research (2020).
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initiating a handoff, which makes a CAC much more challenging in cellular networks.

When the mobile terminal (MT) moves out of the coverage area of a particular base
station (BS), the received signal strength becomes weak and the present cell site requests
a handoff (see e.g., Lee [191]). Thus, for the successful implementation of the handoff
process, the system designers specify an optimum signal level, at which handoff is ini-
tiated. For the handoff decision mechanism, some measurements such as relative signal
strength (RSS), RSS with threshold, RSS with hysteresis and threshold are considered.
Several types and phases of the handoff procedure in cellular systems have been described
by Kumar and Purohit [75]. Recently, Al-Rubaye et al. [192] developed a CAC function
to adjust thresholds during handoff request signaling.

During mobility of an MT, it is possible that the BS system which is providing service
may no longer be capable to give desired signal quality for the service as compared to
another neighboring BS system. Therefore, the BS system may decide to handoff the call
to a neighboring BS system with good signal quality, instead of dropping the call. In the
mobile assisted handoff (MAHO) scheme, decision related to handoff is made based on
the received signal strength indicator (RSSI) and bit error rate (BER) of transmissions
from neighboring BS systems. The combined MAHO and guard channel (GC) scheme
presented by Madan et al. [193] ensures that the handoff call meets the acceptable signal
quality standard and availability of channels in the neighboring BS system. It is not
always possible to have adequate signal quality when an ongoing call is being handoff in
a cellular mobile system. As the MT approaches the BS, the weak signal quality handoff
request gets improved, as mentioned by Ujarari and Kumar [194]. The mobile controlled
handoff (MCHO) scheme provides the opportunity to the MT for choosing BS with good
quality signal out of neighboring BSs in its vicinity. This type of handoff has a short
reaction time and is easy to implement.

The evaluation of the performance of CAC schemes is usually done from the aspects
of call blocking probability, call dropping probability and bandwidth utilization. The
objective is to minimize new call blocking probability, to reduce handoff call dropping

probability and to maximize the utilization of limited available bandwidth. A lot of re-
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search has been carried out in the literature on the performance evaluation of prioritized
CAC schemes, including the works of Vazquez-Avila et al. [62], Jain and Mittal [195],
and Abdulova and Aybay [196]. However, the majority of CAC schemes proposed by
researchers do not take the quality of signal into account. Goswami and Swain [197] in-
vestigated the effect of signal quality while evaluating the network performance but in a
limited manner. In today’s cellular networks, the quality of communication mainly refers
to the measurement of a system with service availability, quality of signal captured and
minimum delay. Since deterioration in the quality of received signals may result in call
drop therefore, the significant impact of signal quality on the system performance cannot
be ignored. Consequently, in a good CAC design, it is of paramount importance to control

the quality of signal for better performance as suggested by Ahmed [68].

With this motivation, in this chapter, we propose two new CAC schemes to quan-
tify the impact of signal quality on cellular networks. The analytical models are devel-
oped utilizing continuous-time Markov chains (CTMCs) to evaluate the proposed CAC
schemes. We obtain explicit expressions for the stationary probabilities, which in turn,
yield performance measures. Additionally, a non-linear optimization problem is formu-
lated to determine the optimal value of new calls’ acceptance probability while satisfying

the QoS requirements simultaneously.

The rest of this chapter is organized as follows. In Section 3.2, the system description
of cellular network together with the assumptions is given. Section 3.3 presents analytical
Model I based on one-dimensional CTMC followed by important performance measures.
In Section 3.4, we obtain the stationary solution and derive the performance measures
for Model II based on two-dimensional CTMC. Following this, Section 3.5 describes an
optimization problem and presents an algorithm to find the optimal value of acceptance
probability. Numerical results are computed in Section 3.6 to validate the proposed mod-
els and to see the effect of various parameters on the performance measures. Finally,

Section 3.7 concludes the chapter.
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Chapter 3. Performance Evaluation of Admission Control Based on Signal Quality

3.2 System Description and Assumptions

In cellular networks, a given geographical area is divided into a certain number of cells.
We assume that the cells are statistically homogeneous. A particular cell with an infinite
population of users from a homogeneous cellular network (i.e., cells in the network with
the same capacity, performance and characteristics) is considered. The system model for
a single cell is given in Fig 3.1.

Many CAC schemes have been proposed in the literature which varies in terms of
complexity from simple non-prioritized schemes to more complex schemes that dynami-
cally assigns the priorities based on the measurements (e.g., see Cruz-Pérez et al. [198];
Tung et al. [199]). Due to the fact that a fixed number of channels are reserved for handoff
calls in the popular GC scheme, the handoff dropping and new call blocking probability
vary largely with the change in the number of reserved channels. Whereas the fractional
guard channel (FGC) policy also admits new calls with a certain probability depending
on the number of busy channels and accepts a handoff call as long as there are some va-
cant channels available. That is, it provides suitable QoS for handoff users while keeping
new call blocking probability at a reasonable level. Such a probabilistic call admission
prevents the system from approaching congestion and we, therefore, adopt the FGC pol-
icy in the present work. Moreover, for more realistic performance evaluation models, the
queueing scheme is coupled with the FGC policy. In case, all the channels are found
to be occupied, the handoff calls that would otherwise be forcibly dropped are allowed
to be queued with a certain probability for later transmissions and possibly served later.
Moreover, to develop the analytical models, the following assumptions are made as the

basis.

* The total S channels are allocated to each cell to serve the incoming calls and there
is also the provision of finite buffer of size /N to accommodate good quality handoff
calls.

* It is assumed that both new calls and handoff calls are generated according to a

64



[%] Win JPDF

This document was created with the Win2PDF “print to PDF” printer available at
http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/




