7.2. Model Description

Theorem 1: The working-vacation-breakdown-repair queueing model with the gener-

ator given in (7.2) is stable if and only if

§+ 0y
{+

A< p : (7.13)

Proof: Based on Theorem 3.2.1 in the book by He [168], the () BD—process is stable if
and only if
wAge < wAse, (7.14)

where ™ = (7, 7, 2) is given in equation (7.6).

Substituting the vector 7r from equation (7.6) into inequality (7.14) gives

S+ Oyp

p(B(=S) @) (I, @ Di)e < < s

) (B(—9) 28)(8°Ba e (1.15)
Note that A = 8 D,e and de — 1. Using u = [B(—S5) 'e] !, the above inequality yields

<€u%97u
<—

—1 0
- )5(3) S°3e. (7.16)

The stated result in (7.13) now follows using
Be =1 and Se + S° = 0. (7.17)

O

The stability condition in above theorem can be explained intuitively. Towards this
end, we rewrite the equation in (7.13) as

A< % + ;f:—fty (7.18)

The effective service rate is the quantity on the right-hand side of (7.18), which is ob-

tained as the sum of the rates of the services offered by the main and the backup servers.

Obviously, the arrival rate has to be less than the effective service rate in order for the

queue to be stable.
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7.3 The Stationary Probability Vector

Letx = (xo, 1, X2, -+ ), where xy is of dimension 2m and @y, x5, - - - are of dimension
3mmn, satisfy

Q) — 0, re=1. (7.19)

When the working-vacation-breakdown-repair queue under study is stable (i.e., condition

in (7.13) is satisfied), the stationary probability vector x is derived as (see, Neuts [184]):
x, =x R i> 1. (7.20)

The matrix F is the minimal non-negative solution to
R*Ay + RA, + Ag = 0, (7.21)

and x( and & are found by solving

:13031 -+ :E]Bg = 0,

(7.22)
2By +x1(A + RA) =0,
subject to the (normalizing) condition
zoe + (I, — R) 'e = 1. (7.23)

For later use, the vectors are partitioned as xq = (vg, wy), and x; = (w;, v;, w;), 7 > 1,
such that vy and W are of dimension m and ., v; and w; are of dimension mn.

The following are the interpretations of the vectors in steady-state.

* v : the main server is on vacation with no one in the system and the arrival is in

one of m phases.

* wy : the main server is under repair with no one in the system and the arrival is in

one of m phases.
* u,; : the system has exactly ¢ customers with the main server busy serving with the
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arrival and services are in various phases.

* v, : the system has exactly ¢ customers with the main server on vacation with the

arrival and services are in various phases.

* w, : the system has exactly 7 customers with the main server under repair with the

arrival and services are in various phases.

The steady-state equations given in (7.19) can be rewritten as

vo Do + Ewo + w1 (8° @ I,) + v1(08° @ 1,,,)) = 0, (7.24)

wo(Dy — L) + w1 (08° & I,,) = 0, (7.25)

wi (S @ Do — Ylnn) + 1oy + Ewy + ue(S°B @ 1) = 0, (7.26)

vo(B ® Dy) + v1(0S © Dy — nln,) + v2(08°8® 1,,) = 0, (7.27)

wo(B @ Dy) + vy + w08 ® Dy — ELnn) + we(0S°B® 1,,) = 0, (7.28)

;1 D1 + ui(S @ DO — ’}/Imn) -+ nv; -+ ng + uiJrl(SOB o) Im) = 0, 1 > 2, (729)
v, 1Dy + v (0S ® Dy — nly) + v41(08°8 0 1,) =0, i > 2, (7.30)

along with the (normalizing) restriction

(up + vp)e + 2:(11,z + v, +w;)e = 1. (7.32)

=1
The rate matrix /7 can be computed using a number of well-known techniques in the
queueing literature. For example, with m and n to be relatively reasonable, F can be
obtained using, say, logarithmic reduction (see e.g., LLatouche and Ramaswami [170]).
Otherwise, one should employ (block) Gauss-Siedel iteration. For this, it may be worth
to exploit the special structure of the coefficient matrices Ay, Ay, and A,, considering that
these are of dimension 3mn. For example, the structure of the matrix 7 as presented in

the following theorem can be exploited when m and n are reasonably large.
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Theorem 2: The structure of K is such that

Ry 0 Rys
= Roy Ry Ros |- (7.33)
Rz 0 Rss

Proof: From the probabilistic interpretation of R matrix, it is clear that R should have the
form as given in (7.33). For example, noting that away from the boundary states (which
is what one is interested when computing £), the (main) server when busy serving cus-
tomers cannot go on vacation without visiting the boundary states. However, the (main)
server can go under repair through an arrival of a shock but in this case, the server has to
get back to being busy through repair completion. This results as zero in the intersection
of the first (block) row and second (block) column. Similarly one sees the other zero

block. However, another proof that is constructive in nature is given here.

First, equation (7.21) can be rewritten as
R — (R2A2 + Ao)(*A1 )71 . (734)

From the structure of A, (see equation (7.5)), it is easy to verify that

[ o0 0
AT =1 Oy Oy s | (7.35)
Gy 0w
where
Chr = (VLo — S @ Dy — €9(€Lm — 05 ® Do) 5 Cao — (I — 05 @ Do),

(7.36)
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7.3. The Stationary Probability Vector

—1

Cs3 = |Eln — 05 @ Do — Ey(Vhmn — S & Do) |, (7.37)
Cis = v(VLyn — S ® D) 'Cy3, Cy = NNl — 05 @ Dy) 'O, (7.38)
Cos — NN ln — 0S & Do) 'Cs, Cs1 — E(ELpn — 0S5 ® Do) ' Cyy. (7.39)

Note that pre-multiplying (—A;)"! by a diagonal (block) matrix will not destroy the
structure as seen in (7.35). Thus, the matrices Ao(—A) ! and Ag(— A1) ! will have the
same structure as (—A;)~". Also, the structure is retained by matrix powers. That is, if
I has that structure, then /', n > 1, also retains that structure. These are the keys to the

proof of this theorem.

It is well-known (see e.g., Neuts [184]) that the sequence { R*) k& = 0,1,2, ..} defined
by
RUFD — [(RY2 A, + Agl(— A", k=0,1,2, .., (7.40)

with () = ( monotonically converges to the minimal non-negative solution to (7.21).
Noting that at each iterate the structure of R¥) remains same as that of —(A4;)~", the

stated result is clear. O

Suppose, the state space is reordered such that the first two sets of states (of order
2mmn,) correspond to the server is either serving or under repair, and the last set of states
(of order mn) corresponds to the server being on vacation. Accordingly, we rearrange the
entries of Ag, A1, Ay, and R. Note that the entries of Ag and A, remain the same, while

R and A are to be rearranged.

Suppose, the matrix R is rewritten based on the reordering of the states and if R

denotes the rate matrix of the reordered one. That is,

~ Ry 0 Ry Ris
R— , with R, = , and Ry =

Ry Ry R31 Ras

Roy  Ros (7.41)
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Similarly, if fh denotes the rearranged A;, such that

_ AH 0
Al )
A]Q QS @ DO * nImn
_ S @ DO - fYImn fYImn _
with A]] = R and A]Q = nImn 0 .
(7.42)

In the following theorem, it will shown that /7 can be decomposed into three components.
One component corresponds to the rate matrix, say, 1, for the queueing model in which
the server is busy serving at a normal rate or the server is under repair in which case
the backup server is serving at a lower rate; the second component, say, /75, corresponds
to connecting R; and Ry, matrices; and finally, the third component, Fao, satisfies the

matrix-quadratic equation of the corresponding to vacation model.

Theorem 3: The rate matrix 1 has the following decomposition. The matrices R, and
Ry, are obtained as solutions to matrix-quadratic equations and R, is obtained explicitly

in terms of K, and Es, as follows.

R%Am + Ry Ay + Iy, ©@ Dy =0,

OR3,(8°B @ 1) + Rao(0S © Dy — nlpy) + (I, @ Dy) = 0, (7.43)

T(R2) = *7(322%112) (I ® 31%121) + (R @ A21) + (L ® All) )

178



7.3. The Stationary Probability Vector

where 7(B) denotes the direct sum of the rows B (see e.g., Horn and Johnson [172]).

Proof: First note that we can rewrite (7.21) as

R%Am + 31;‘11 + Iy, @ Dy =0,

(Ro Ry + R22R2)A21 + RyAy + Rap Ay = 0, (7.44)

eRgQ(SO/B ® Im) + RQ?(QS D DO - nImn) + (In ® D]) = 0.

With the knowledge of i, and R,,, the matrix K is explicitly obtained using the Sylvester
matrix equation of the form BXC + EXF + H = 0, where only the matrix X is
unknown. The stated result follows immediately by applying the result 7(BX(C) =
T(X)(B' @ C). O

Note: (a) It is worth pointing out that such a decomposition result for /2 has been reported
in the past (see e.g., Alfa [265]; Chakravarthy et al. [266]).

(b) In view of the decomposition result, the computation of X may be reduced to dealing
with matrices of smaller dimension. This is accomplished by first computing the subma-
trices f7; and Ry, and then obtaining R, through taking advantage of the sparsity of the
coefficient matrices.

The results in the following three lemmas have nice probabilistic interpretations. Further,

they help to verify the accuracy in numerical computation.

Lemma 2: The following result holds

vy + wy + [Z(uiJrv,;er,;)(e@Im) =9, (7.45)

=1

where 4 is given in (7.1).
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Proof: Post-multiply each one of the equations in (7.24 -7.31) by e ® I,,, and verify (after

some elementary manipulations) that

vo Do + woDo + w1 (8° @ I,) + 0v1(S° @ I,) + 0w, (S° @ I,,) = 0,

oDy + weDy — u (S° @ 1,) + ui(e @ Dy) — 0v,1(8° @ 1,) + vi(e @ Dy) — 0w (S° @ 1,,,)
+wi(e® Ny) +ux(8° @ L,) + 0vy(S° @ I,,) + 0w, (S° @ I,,) = 0,

u;_1(e@ D) +v,_1(e@ D) +wi_1(e® D) —u(S°® L,) +u(e® Dy) — v, (8° 1,
+vi(e ® Dy) — 0w;(8° @ I,) + wi(e @ Do) + w1 1(8° @ I,,)

+ (9'l)i+1(SO & Im) + QwiH(SO (029) Im) = O, 1 Z 2,

(7.46)
from which we immediately obtain
[fvo + gy + (Z(“’i +v, +w)(e® Im)ﬂ (Do + Dy) = 0. (7.47)
i=1
The above equation coupled with the uniqueness of § yields the claimed result. U
Lemma 3: The following result holds
D (ui o+ Ov; o+ 0w;) (S @ e) = A, (7.48)
=1
and hence
> (i + Ovi + 0w (I, @ €) = AB(—S) . (7.49)

=1

Proof: The result (7.48) is intuitively obvious since in steady-state the rate at which the
customers depart the system should be equal to the arrival rate. Now, post-multiply each

one of the equations in (7.24) through (7.31) by I @ e and verify, after some simple
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manipulations, that

vooe +woDoe +u(S° @e) + v (S° @ e) +ow (8" ©e) =0,

vo(B @ Die) + wo(B @ Die) + ui (S @ e) + 0v,(S @ e) + 0w (S @ e) + ui (I, @ Dye)+
v1(L, @ Doe) + wi (L, @ Doe) + ux(8°B @ e) + 0vy(8°B @ e) + dwy(S°Boe) =0,

(w; ++v;, 1 +w; 1), ®De)+ (u; + v, + 0w,;)(S @ e) + (u; + v, + w;) (L, @ Dye)

-+ (uz'Jrl + (9'Uz'+1 + Qwiﬂ)(SOB ® 6) — 0, 7 Z 2.

(7.50)
Adding the above two equations and noting that
(vo + wo)(B @ Dye) = (uy + Ovy + 0w, ) (S°B @ e), (7.51)
we get
Z(ui + Ov; + 0w ) (S°B © e) = Z(ui + Ov; + Ow;)(—S @ e). (7.52)
i=1 i=1
The claimed result in (7.49) follows by using (7.48). [l

7.4 Distribution of the Effective Service

In the working-vacation-breakdown-repair queueing model under study in this chapter, a
customer can be served by the main server or by the backup server or by both, depending
on various scenarios. Hence, it is of interest to see the distribution of the effective service
time of a customer. Noting that there is no need to track the arrival process once the

service begins, the following theorem establishes an explicit result for this distribution.

Theorem 4: The distribution of the effective service time of a customer is of phase type
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with representation (e, T") of order 3m, where

S —~l, 0 vl
= ((],],&2,@3)@,6, T = T]Im es(—nlm 0 ) (753)
eI, 0 0S-—¢I,

where

1
XZEQ ui(SO @ 6), 7 =1,

a; = ;[(ul +63 7, m) (8° @ e) + 0w, (SO @ (§Im — DO)fleﬂ ] =2

f
L[S w80 0 e) twn (80 (el Do) Die)], =3
(7.54)

Proof: First, observe that the initial probability vector, «, has three components, each of
dimension n. The quantities, a;, as, and as, respectively, give the probabilities that the
service is initiated by the main server, by the backup server while the server is on vacation,
and by the backup server while the main server is under repair. These probabilities are
multiplied by 3 to initiate a service in one of n phases. Now looking at the various

possibilities of a customer to begin a service the claimed result follows. Ll

Corollary: (a) The mean, g7, of the effective service time of a customer is calculated

as

st — a(—T)*leA (755)

(b) The mean, pprs7, time spent by a customer with the (main) server is calculated as
HparsT — a(—T)*l(el(S) ® 6(77777)) (756)
(c) The mean, y sy, time spent by a customer with the (backup) server is given by

ppst = a(=T)""(e — e1(3) @ e(mn)) = psT — pLarst. (7.57)

182



7.5. Performance Measures of the System

(d) The fraction, f),g, of time a customer is with the main server is given by

HarsT
— . (7.58)
UsT

fus

7.5 Performance Measures of the System

Qualitative analysis of any stochastic model requires establishing key system perfor-

mance measures. In this section, we list a few in addition to the ones pointed out earlier.

1. P2US"™: This is the probability of the system having no customers and is calculated
as
System
Pae — = ®oe-
2. Pnp : This is the probability that the main server is busy serving and is calculated

as

0
PNB: E u;e.
i=1

3. Pwyv : This is the probability that the backup server is busy while the (main) server

is on vacation and is obtained as
[e o]
PWV - E V;€.
1=1

4. Pwp : This is the probability that the backup server is busy while the (main) server

is under repair and is obtained as

>

Pwp — E w;e.

i=1

5. puns : The average number in the system is derived as

0

=1
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7.6 Special Cases

The purpose of this section is to point out a number of models in the literature that can be

obtained as special cases of our model in this chapter.

7.6.1 M /M /1 model

For an M /M /1-type working-vacation-breakdown-repair queues, we set in our model:
m=mn=1Dy=—-\Dy =XB=1,and S = —p. This reduces Rtobe a 3 x 3
matrix and the scalar quantity Roo (see the third equation in (7.44)) is the unique solution

in (0,1):

A O — (O A+ n)® — AN

R
22 20,1

(7.59)

1) Ifn — oo

In this limiting case, there is no vacation for the server and hence n plays no role. This
case reduces to the classical M /M /1 queue with working breakdowns studied by Kali-
dass and Kasturi [146].

(i) If £ — oo
In this limiting case, there are no breakdowns and hence no repairs, and thus both £ and

~ play no role. This case reduces to the classical M /M /1 queue with working vacations

studied by Servi and Finn [137].

(i) If0 =0
This case corresponds to no backup server during a vacation or a repair. Thus, the
cases in (i) and (ii) above reduce, respectively, to the classical M /M /1—type vacation-

breakdown-repair studied extensively (see e.g., Shoukry et al. [267]).
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7.62 MAP/M/1

By letting 7 — coandn = 1,8 = 1,5 = —pu, the model analyzed here reduces to the
one studied by Ye and Liu [157].

7.63 MAP/PH/1:1— 00,0 =0

In this case, the server never takes a vacation and also there is no backup server to offer
services during the times the main server is incapable to serve. This case reduces to the
classical M AP/P H /1—type breakdown-repair queues. It is necessary and sufficient that

A < o in this case for the stability of the queue.

7.7 Decomposition Results for M /M /1 Case

The decomposition results for yy s in the special case of M /M /1—type working-vacation-
breakdown-repair queues are proved here. Hereafter, /.(z) will stand for the probability
generating function (PG F) of the number in the system. Then, using (7.20), it is easy to
see that

I(z) = xo + Z Frre — 1o+ v (I — 2R) e, |z| < 1. (7.60)
k=1

Case 1: The M /M /1 queue with exponential (non-working) vacations
If there is no backup server during vacation mode and no breakdown or repair, then by

letting v = 0,6 = 0, the elements in ) (see (7.2)) are:

e
BO — 0 X ) B] — - ) BQ — ) (761)
0
A0 “X— 0 w0
AO — ) A] — 5 AQ — . (762)
0 A n —A—n 0 0



Chapter 7. A MAP/PH/1 Queue with Working Breakdowns and Working Vacations

When the stability condition, p = A <1, holds good, then R (see (7.21)) is given by
i

ﬁ 0
R , (7.63)

A

A A
ro Atn

from which the solution to the equations (7.22) and (7.23) is obtained as

A (1 —p)n

Uy — pro, U1 — T nmo, To — N (7.64)
The special structure of B and (7 — zR) ™" for this case yields
(L—p)n pz pAZ° Az
L{z) = 1
() A7 +1—szr(l—pz)()\+77—)\z)+)\+n—)\z
_ e (7.65)
T—pz Atn— Az
= Lo(2)La(2),

where Lg(z) is the PG F of the stationary system size in corresponding classical M /M /1
queue without vacation and /.,4(z) is the PG F of the additional system size during a
vacation. It follows that pn ¢ 1s decomposed as the sum of the mean number in the system
in the corresponding classical M /M /1 queue and the mean number of arrivals during a

vacation. That is,

A
lins = % + 2 (7.66)
—p n

which is in agreement with the results obtained by Fuhrmann and Cooper [268].

Case 2: The M /M/1 queue with exponential (non-working) vacations and breakdowns

For this case, let & = 0 and verify that the (block) matrices in (7.2) are given by

w0
0 X 0 —A 0
By = , By = s Ba=1 0 0| (7.67)
0 0 A & —x=¢
0 0
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A0 0 e V' 0 vy w 0 0
Ao=10 X 0|, A= n A7 0 A= 100 0 0

0 0 A ¢ 0 A< 00 0

) ] ) ] ) (7.68)

Using the facts that (a) RAse = Ae and (b) the entries of R are scalars, the structure of R

in (7.33) yields Ry = Ry = Rs;. Hence, under the condition that A < "/M_fﬁ’ the entries

of R are given by

A Ay A Ay + )

Rit— Rot — Rs1 — 5 Ris — Ras — ————, Rag — ———, Ryg — ——2.

11 21 31 M’ng 23 M(A+€)7R22 )\“l‘n’ 33 /L()\+€)
(7.69)

Verify that the solution to the equations (7.22) and (7.23) is

A YA g — A~ Ay)

P N 0 W)
(7.70)

wo =0, uy = —vy, V1 =
I

Once again, the special structure (7 — zR)~! for this case also yields the PGF in a

compact form as

'Uo(l + ZR23 — ZR33)

L g — R 7.71
( ) [1 - ZRQQHl - ZR]] (1 + ZR23 - ZR33) - ZR33] ( )
Observe that jiys 1s calculated as
dL
MNS — &) =h a5y, (1.72)
dZ z=1
where
A A — A
=2, ZQ:L, Iy = 2, ZAZM’ p:M. (7.73)
n L—p ¢ L—p TS

It is worth pointing out that 1 y¢ 18 now decomposed as the sum of (i) the mean number
(I2) in the system of the corresponding classical M /M /1 queue; (ii) the mean number
(1) in the system due to a vacation; and (iii) an additional quantity (/3 - [4) obtained as the

product of the mean number (/3) arriving during a repair and the mean number (/) that
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arrived during a non-service time. This decomposition is in agreement with the one given

by Mary et al. [269] for the single arrival case.

Case 3: The M /M/1 queue with multiple working vacations

For this case, we set v = 0, & — oc. Verify the elements in (7.2) are obtained as

I
BO: [0 A ) Blf - ) BQZ ) (774)
Op
A0 —X— 0 w0
Ag — , A — , Ay — . (7.75)
0 A n —A—0u—n 0 Ou

Ifp— ﬁ < 1, then from Theorem 2, R (see (7.21)) is of the form

n_ , (7.76)

Ty T3
where r1 = p, 9 = p — Or,r3 = r, and r, the unique root in (0, 1) of the equation
Our® — (A + 0p+n)r + X =0, (7.77)

is obtained as

T

S _ 2 A0, .
QQM()\JrQqun VOt 0t ) )\Gu) (7.78)

The solution to the equations (7.22) and (7.23), is given by

11— 11—
Uy — ToXg, U1 — r'sTo, Lo — ( r( TS)A (7.79)
1*7"1 + 72
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The mean, 1 g, 18 given by

_ 1 re + T3 —T1
— (] — R 2%e — T , 7.80
ILLNS ]( ) 1—7"] (1—7"3)(1—7"] +T2) ( )
which can be further simplified as
p rs(1 —0)
= . 7.81
T T (o) D

The above shows that the decomposition is obtained as the sum of the mean number in
the system of the corresponding classical M /M /1 queue and the mean number in the sys-

tem due to the server on vacation. This again coincides with the results of Liu et al. [270].

Case 4: The M /M /1 queue with (non-working) breakdowns
By letting # = 0 and n — oc, the (block) matrices in (7.2) are given by

v
BO* [)\ 0 ) Bli —A ) 327 ) (782)
0
A0 “A-p—y oy p 0
A(): y A] — 5 AQZ . (783)
0 A ¢ A& 0 0

Assuming the stability condition, A < E‘f;, holds good, we have with the fact that

RAse — Me, and with Theorem 2, £ is of the form
R — ) (7.84)

Verify that the solution (see (7.21)) yields the entries of R to be

- 3,T2 MM (7.85)

Atou  u(h+e
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The solution to the equations (7.22) and (7.23), is then given by

d
Uy — rirg, V1 — T2To, To T (7.86)
here d — (1 ( ) pE — AL — Ay
wnere a — — 7 — T *T1T2f7"3 e —
b p(A +8)
It is easy to verify for this case, the PG I is given by
d 1+ ZTry — ZT3
L — - . 7.87
(2) Ltrg—rs 1 —2r(1+2rg— 2r3) — 213 ( )
Thus, we have
dL(z) P Ap—(Mp)
- = — 7.88
KNS | 1—p+5 T, (7.88)
where p = % Note that this decomposition result agrees with the one by Kalidass

and Kasturi [146].

7.8 Illustrative Numerical Examples

In this section, to understand the qualitative aspects of the working-vacation-breakdown-
repair queueing model under study, we illustrate a few numerical examples. We analyze
different scenarios by varying the parameters of the model including the arrival processes
and service time distributions.

For the arrival process, we consider the following five sets of values for Dy and Dy,
which are considered as input data in many published works in the literature (see e.g.,
Chakravarthy et al. [266]; Chakravarthy [180,271,272]). For sake of completeness, we
display them here.

ERLA: This is Erlang distribution of order 2.
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EXPA: This is the classical exponential distribution.

() (1)

HEXA: This is the mixture of two exponentials.

—1.90 0 171 0.19

DO: 7D1:

0 —0.19 0.171 0.019

MNA: This one has a negative correlation (with a value of -0.4889) between two succes-

sive inter-arrival times.

~1.00222  1.00222 0 0 0 0
Do — 0 ~1.00222 0 , Dy 0.01002 0 0.9922
0 0 —9925.75 923.4925 0 2.2575

MPA: This one has a positive correlation (with a value of 0.4889) between two successive

inter-arrival times.

—1.00222  1.00222 0 0 0 0
Dy = 0 —1.00222 0 D=1 09922 0 0.01002
0 0 —225.75 2.2575 0 223.4925

Note that . RLA, EX PA, and HF X A, correspond to renewal processes. All five arrival
processes are qualitatively different. Verify that the ratio of the standard deviations of the

times between two successive inter-arrival times of these five processes with respect to

the Erlang one are, respectively, 1, 1.4142,3.1745, 1.9933, and 1.9933.

For service times with representation (3, S), the following three phase type distributions

are considered. Normalization of these representations will be done to get a desired p.
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ERLS : This is Erlang of order 2.

-2 2
B=(10), S—
0 -2
EXPS : This is an exponential one.
=1, S=(-1)
HEXS : This is the mixture of two exponentials.
—10 0
B =1(09,0.1), S—
0 -1

Irrespective of how these are normalized, the standard deviation of EX PS and HEX S
are, respectively, about 1.4142 and 3.1745 of that of ERLS.

Next, we define

- AE+Y) 7.89)
P u€+ o7y '

Example 1: The effect of the vacation rate, 5, on two performance measures, fy;s and
Ppp = Pywp+ Pwy is of focus here. Recall that f;¢ gives the fraction of time a customer
is served by the main server, and Pgpg is the probability that the backup server is busy
serving. We fix A = 1,4 = 1.372,0 = 0.8,& = 0.5, v = 0.4 and vary 5. In Fig. 7.2, we
display the two selected measures under various scenarios. Analyzing the graphs in the

figure, we notice the following.

* An increase in 7 causes an increase in fj;5, which is to be expected. However, the
rate of increase is higher for small values of 5. The type of arrival processes and

the service times distribution play a role in the rate of increase.

* Observe that among the renewal arrivals, the H E2X A process produces the highest
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