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8.1. Introduction  

optimize Pavement Management Systems (PMS). Assuming that poor structural health would be 

eventually reflected by the deterioration in functional performance indicators, the consideration of 

structural aspect is often ignored. In real field conditions, visual distresses usually get reflected 

after a major portion of the pavement structure is deteriorated. In such cases, any sort of 

maintenance or rehabilitation activity would be expensive and would require a substantial amount 

of time, resources, and efforts. On the other hand, the prior inclusion of structural condition during 

any decision-making process would provide warning signs during the early stages of pavement 

deterioration and addressing them may demand only minor repairs which would save huge funds. 

Applications of non-destructive testing devices such as Falling Weight Deflectometer (FWD) 

provide crucial estimates of structural health of pavements. FWD assesses not only the structural 

adequacy but also provide substantial information about pavement layers and its subsurface 

conditions, including subgrade. Thus, most of the highway agencies prefer FWD testing as a part 

of their routine pavement assessment procedures that are usually scheduled at periodic intervals. 

However, the estimation of layer moduli demands back-calculation of FWD data, and its accurate 

analysis requires technical expertise with exact estimates of pavement layer thicknesses, which is 

either done through coring or Ground-Penetrating Radar (GPR) scans. The use of GPR is not a 

common practice in India, and coring practices require considerable time and resources. 

Furthermore, the practice of data acquisition at frequent intervals is indeed time-consuming, labor-

intensive, interrupts traffic, and expensive, hence, it is difficult to be performed repeatedly. These 

are possibly a few of the contributing reasons in neglecting the structural aspect of pavements 

during the selection of maintenance or repair decisions. Therefore, to cope up with these 
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limitations, application of Deflection Basin Parameters (DBP) that are indicative of pavement 

deflection basin, and eventually its strength is highly useful. 

Although a lot of research has been done, the studies on the inclusion of diversified factors with 

techniques of computational intelligence to address the real-life challenges of field testing in 

pavement prioritization are limited. Therefore, an attempt to explore the amalgamation of DBP 

with neural networks to ease the task of data analysis is developed in this chapter. It offers an 

attractive way to inspire the practice of incorporating strength parameters in pavement 

prioritization projects. A thorough review of literature helped to ascertain typical deflection basin 

parameters and range of their values, as proposed by the researchers (Chang et al., 2014). To 

inculcate the effect of upper as well as lower pavement layers, two DBP, namely Surface Curvature 

Index (SCI), and Base Curvature Index (BCI) are used in conjunction with eight decision variables 

in this work.  

SCI is defined as the difference between the deflections measured by the sensor located at the 

center of the load plate and another sensor located at 300 mm from the center. This is a measure 

of the structural quality of the upper pavement layers, specifically asphalt layers (Kim, 2000). 

Similarly, BCI infers the quality of lower layers and subgrade. It is defined as the difference 

between the deflections measured by the sensor located 600 mm and 900 mm from the center of 

the load plate. Thus,  

SCI = D0 - D300 

BCI = D600 - D900 

where, D represents the deflection measured at sensor locations (in mm) indicated at the subscript 

of D. Table 8.1 enlists threshold range of DBP used in this study, as found in the literature.  

Table 8.1. Threshold ranges of layer condition for SCI and BCI 

Parameter Concerned layer 
Layer condition threshold range (mils) 

Very good Good  Fair  Poor  Very poor 
SCI Asphalt layer <4 4-6 6-8 8-10 >10 
BCI Base layer <2 2-3 3-4 4-5 >5 

Source: Compiled from Chang et al. (2014). 
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This chapter presents an alternative means for more efficient usage of DBP, and the potential of 

Artificial Neural Networks (ANN) modeling to predict DBP and ascertain the structural condition 

of pavements is investigated. Four basic requirements for developing reliable prediction models 

are adequate database, factors affecting performance, form of model, and a method to assess the 

precision and accuracy of the model. In accordance with this, the database consisting of different 

performance parameters has been sufficiently obtained through FWD testing. The models are 

developed using artificial neural networks and assessed on the basis of coefficient of determination 

along with mean square error estimates. The superiority of ANN models is highlighted by 

comparing their results with the multiple linear regression approach.  

8.2. Data collection using FWD testing 

In order to create robust models using neural networks, a comprehensive and accurate database is 

a prerequisite. Therefore, for this study, a vast road network of 124 km was selected for testing 

and modeling purpose in India. The selection was primarily done on the basis of pavement 

condition, and observation of visual distresses such as fatigue cracking, raveling, rutting, and 

lane/shoulder drop off. After the selection of pavement sections, detailed field surveys and testing 

were performed to collect the required data.  

Field tests to measure structural adequacy were conducted in accordance with the standards of 

Indian road congress using Dynatest model 8000 FWD and load plate of diameter 300 mm (IRC 

115, 2014). The geophone configuration is decided as per the need at the location and standards, 

which is taken to be 0, 200, 300, 600, 900, and 1200 mm in this study (IRC 115, 2014). Three 

drops of mass were taken at each testing point with loading time for each drop generally in the 

range of 0.015-0.050 s, and the first drop being the seating load, was not recorded. The deflection 

data has been normalized as per the standard load, and suitable corrections for temperature have 

been applied. FWD testing was carried out at every 100 m intervals approximately. At a few 

locations where pavement condition was poor, the testing interval was reduced to incorporate 

greater number of testing points to gain a better understanding of the pavement structure. This 

resulted in a total of 1452 test records. In-situ asphalt surface temperature and air temperature were 

recorded at the time of FWD testing. 
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Further details of the FWD and testing procedure can be found elsewhere in the literature (ASTM 

D4694-09, 2015; ASTM D4695-03, 2015; IRC 115, 2014). Figure 8.1 shows a typical FWD 

deflection basin obtained from data recorded at a test location. The position of load drop, radial 

geophone offsets, and deflections (D0 to D5) measured at the corresponding positions of sensor 

locations are also shown along with the expressions for estimation of SCI and BCI. 

 

Figure 8.1. A typical FWD deflection basin and geophone spacing used in this study 

International Roughness Index (IRI) is a standardized roughness measurement of the longitudinal 

profile of a traveled wheel path, and it is commonly measured in the unit m/km (Papagiannakis & 

Masad, 2008). The data was collected using a bump integrator. A high value of IRI indicates 

increased roughness level and vice-versa. Subgrade soil parameters, including California Bearing 

Ratio (CBR) and Maximum Dry Density (MDD), were determined through the laboratory tests on 

soil samples collected from test pits. CBR test is a penetration test which intends to determine the 

strength of subgrade soil, as compared to standard crushed rock (AASHTO T 193, 1993). High 

CBR value indicates a high strength of the soil. Soaked CBR values at 56 blows are taken in this 

study. MDD is the value of dry density corresponding to optimum moisture content. Table 8.2 

summarizes a sample of laboratory testing results conducted on the subgrade soil. Coring 

operations along with test pits and field surveys were performed to collect the facts about the type 

and thickness of layers, crack propagation and de-lamination (if any), characterization of materials, 
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and subsurface drainage conditions. Measurement of deflections, IRI, and distresses was 

performed at the same location to maintain uniformity and reliability in the results. The points at 

which data was missing, linear interpolation was adopted.  

Table 8.2. A sample of laboratory testing results on subgrade soil 

Test pit 
number 

Grain size analysis 
Atterberg 
limits  

Soil 
class 

 
Field 
moisture 
content 
(%) 

 
Field 
dry 
density 
(g/cm3) 

Heavy 
compaction test 

CBR 
(%) 4.75 

mm IS 
Sieve 

425 
mic IS 
Sieve 

75 mic 
IS 
Sieve 

LL PI 
MDD 
(g/cm3) 

OMC 
(%) 

1 92 84 78 26 20 CL 8.98 1.70 1.95 11.00 29.2 
2 100 93 88 30 14 CL 8.53 1.70 1.98 9.70 14.6 
3 93 89 84 25 6 ML-CL 19.11 1.83 1.97 10.00 46.7 
4 93 88 69 33 9 ML 1.54 1.85 1.88 10.50 21.5 
5 100 94 71 24 6 ML-CL 10.57 1.84 1.99 10.50 46.7 

8.2.1. Selection of decision variables 

In this work SCI and BCI are taken as output, and input variables include pavement structure-

related factors such as thickness of asphalt layer (La), thickness of base layer (Lb), and total 

thickness of pavement (Lt); functional performance factor such as IRI; subgrade soil strength 

depicting factors such as MDD and CBR; lastly environmental factors including atmospheric 

temperature (Ta), and asphalt pavement surface temperature at the time of testing (Ts). Review of 

literature helped to ascertain the domains which directly or indirectly affect the structural condition 

of pavements (Sollazzo et al., 2017). Accordingly, the input variables are selected from the wide 

spectrum of important attributes. The selection also depends upon the availability and ease of 

collecting data for these attributes. Pertaining to the ease of conducting FWD or CBR test, it should 

be noted that FWD is limited in its availability while CBR is widely available. Due to the limited 

availability of FWD for conducting field inspections anywhere in the country, it needs to be 

transported from place to place. Performing this task repeatedly is neither easy nor economical, 

and needs proper planning along with sufficient funds. On contrary, conducting CBR tests is 

relatively easy and economical since it can be performed at multiple places due to its wide 

availability. The advantage of developing a prediction model is that in case of difficulty in 

procuring any particular device or conducting test, the particular parameter can be dropped off 
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from the model whereas field tests including FWD, do not avail such flexibility and entire testing 

procedure from data collection to its analysis, needs to be followed every time. The present study 

aims to provide an approach to alleviate the need of conducting FWD tests repeatedly. It offers an 

idea to incorporate the parameters from diverse field to develop the robust prediction models which 

are highly flexible in nature since its parameters can be suitably varied or modified according to 

the intended problem. The complete methodology is demonstrated by using the selected set of 

parameters. However, the input variables can be always varied according to the scope of work, 

equipment availability, ease, and time constraints. 

To simplify the research, the dataset does not include the particulars of maintenance or 

rehabilitation activities. In addition to this, due to the limited accessibility to the previous records, 

time constraint, and scope of work; pavement construction history data, and estimation of traffic 

loading could not be included in the work, which can be taken in future studies. Nevertheless, with 

the available resources itself, significant information was collected, and a substantial amount of 

dataset for modeling purposes could be generated. 

8.3. Development of ANN prediction model  

ANN models work on the principle of the biological neural network of the human brain and 

analogous to its thought process, which has the capability to learn and compensate for errors 

(Karayiannis & Venetsanopoulos, 1993). The central processing units of ANN networks are called 

neurons which have weighted connections between them to receive input data, process and transfer 

the data as output to other neurons. They can learn input-output mapping and provide an easy 

approach to estimate solutions of complex and non-linear problems without any need for 

preliminary conjectures. Improved performance of these models could be attained by defining 

more levels of input processing based on trial-and-error methods, and repeatedly training the 

networks. Further, accurate results can be obtained by comparing outputs from different training 

algorithms. However, generating a realistic ANN network requires empirical experiences; its 

effectiveness is entirely based on the trial-and-error process, and repeatability of results is not 

assured (Zain et al., 2010). Despite the fact that the development of these models is trial-and-error 

based, it is still essential to carefully select the critical governing parameters according to the nature 
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of the problem. ANN follows the black-box approach and therefore, the nature of the prediction 

equation is not known (Sollazzo et al., 2017). 

8.3.1. Selection of ANN model parameters 

8.3.1.1. Network 

A set of layers and nodes form the major components of an ANN network structure. Commonly, 

a multilayer feed-forward neural network is used. The network consists of an input layer, one or 

more hidden layers which act as a boundary layer between the input and output layers and contains 

computational nodes called neurons, activation functions, bias, and output layer. The type of 

network structure adopted in this study is exemplified in Figure 8.2. It has 8 neurons in the input 

layer corresponding to 8 decision variables (X): La, Lb, Lt, Ts, Ta, CBR, MDD, and IRI; used in 

this study, m, n, and p represents neurons in the first, second, and ith hidden layer, respectively, 

and finally one neuron in the output layer corresponding to SCI or BCI, as per the case under 

consideration. Assuming the multilayer feed-forward network, its structure could be defined as 8-

m-n-p-1 structure. Figure 8.2 also depicts the processing inside a neuron, wherein the net input 

along with their respective weights (W) is summed with respective biases, and the selected transfer 

function is applied over it (logsig transfer function in the present study). The arrows show the 

forward flow of information and back-propagation of errors during the training phase. The back-

propagation mechanism propagates the errors in the reverse direction, updates biases and weights, 

and minimizes error after every iteration (Karayiannis & Venetsanopoulos, 1993). 

Literature shows that researchers have applied various structures for the ANN model to obtain the 

best prediction performance (Amin & Amador-Jimenez, 2016; Shafabakhsh et al., 2015). The 

process of selection of the best network structure is usually done by varying the two important 

parameters, namely the number of hidden layers and number of neurons in the hidden layer(s), but 

it is subjected to the complexity of various other parameters including computation memory and 

time. Authors of similar previous studies varied the number of nodes of the hidden layer, such as 

5, 10, and 25, based on trial-and-error (Fakhri & Dezfoulian, 2019; Sollazzo et al., 2017). As far 

as this study is concerned, different network structures are developed by varying the two 

parameters mentioned above and their results are compared to obtain the optimum structure. The 
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best network structure is then recommended for such similar studies concerned with the 

computation of structural parameters of asphalt pavements. Following the recommendation 

regarding the number of nodes in hidden layer to be i/2, 1(i), 2(i), and (2i + 1), where i is the 

number of input nodes, different structures are tried with number of nodes as 8/2=4, 1(8)=8, 

2(8)=16 and (2*8+1)=17 (Zhang et al., 1998). For the sake of avoiding complexity in the 

architectures, the hidden layers are kept up to a maximum number of two. As depicted in Figures 

8.3 and 8.4, the different ANN architectures tried with one and two hidden layers are 8-4-1, 8-8-

1, 8-16-1, 8-17-1, 8-4-4-1, 8-8-8-1, 8-16-16-1 and 8-17-17-1. 

 

Figure 8.2. Illustration of ANN structure and its neuron 
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(a) 8-4-1 (b) 8-8-1 

 
 

(c) 8-16-1 (d) 8-17-1 

Figure 8.3. ANN architectures with one hidden layer 
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(a) 8-4-4-1 (b) 8-8-8-1 

  

(c) 8-16-16-1 (d) 8-17-17-1 

Figure 8.4. ANN architectures with two hidden layers 
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8.3.1.2. Training, validation and testing dataset 

Since ANN learns and adapts from the input data, a more accurate model will result from more 

number of training data points. This seems to be a feasible solution for a synthetic database where 

the dataset is generated from any simulation framework. However, the data used in the present 

study is taken from the actual pavement testing, which is subjected to cost and time constraints. 

Recent studies have helped to ascertain the division of input data (Fakhri & Dezfoulian, 2019; 

MATLAB & Simulink, 2020; Sollazzo et al., 2017). Accordingly, the input data is divided into 

three sets by considering a typical ratio of training (70%), validation (15%), and testing (15%) for 

124 km of pavement with total 1452 data points. Furthermore, it is advisable to perform 

normalization of the data before the training and testing process to bring the variables in the 

standard range of 0 to 1 or -1 to 1 in order to avoid computational problems. Therefore, in the 

initial step, all the raw data has been normalized, using Eq. (8.1) (Sanjay & Jyothi, 2006):  

  (8.1) 

where  and  are the maximum and minimum values of the data, respectively and  is 

the ith data point of the dataset. 

8.3.1.3. Network algorithm and its associated functions 

Many different network algorithms for ANN models are available, such as Radial Basis, 

Perceptron, Cascade-forward BP, Feed-forward time-delay, Feed-forward distributed time-delay, 

and self-organizing map (Demuth & Beale, 2004). Feed-forward Back-Propagation (BP) algorithm 

is widely used for its application in problems of pavement engineering (Elbagalati et al., 2018; Li 

& Wang, 2018; Sollazzo et al., 2017). For the feed-forward BP algorithm, the widely-adopted 

transfer functions are log-sigmoid transfer function (logsig), hyperbolic tangent sigmoid transfer 

function (tansig), and linear transfer function (purelin). Non-linear relationships between input and 

output variables would be better addressed by using non-linear transfer function such as sigmoid 

function. Therefore, the logsig transfer function is adopted in this study, as given by Eq. (8.2): 
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(8.2) 

where z is the output from the hidden layer neuron after sigmoid function, and y is the net input to 

the hidden layer neuron. 

Eventually, the BP algorithm reduces the error and finds its lowest possible value, which is 

represented by performance function. This includes Mean Square Error (MSE), Sum Square Error 

(SSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute 

Percentage Error (MAPE). Previous studies have mostly applied MSE performance function, and 

the same has been considered in this study. MSE of n data points is given by Eq. (8.3): 

   (8.3) 

where  are the observed and predicted values of any data point, respectively. 

In order to reduce the error, as the number of iterations proceeds, the weights and biases are 

continuously updated in which optimum values of learning rate, and momentum provides better 

accuracy as well as faster convergence. The default values of these parameters is adopted. Training 

function and learning function also govern the reduction in error. Training functions are based on 

gradient descent algorithm (traingd, traingda, traingdx), Bayesian regularization (trainbr) or 

Levenberg Marquardt BP (trainlm), and learning functions such as learngd (gradient descent 

weight/bias learning function), learngdm (gradient descent with momentum weight/bias learning 

function), etc. are used. In this work, trainlm and learngd are used as training and learning 

functions, respectively.  

Figure 8.5 presents the step-wise methodology for developing ANN models in this study based on 

the discussion presented in preceding paragraphs. 
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Figure 8.5. Flow chart showing ANN model development in the study 
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8.3.2. ANN Results  

In order to illustrate the efficacy of ANN models in predicting the structural parameters of asphalt 

pavements, eight different models each for the two output variables are trained, resulting in a total 

of sixteen models. The proposed structures differ in the number of hidden layers and neurons in 

these layers, with the input and output layer fixed with eight and one nodes, respectively 

corresponding to eight input and one output variable. The entire analysis is performed in MATLAB 

software, version R2017a (Demuth & Beale, 2004).  

The regression charts for training, validation, and testing phases along with error histograms for 

two model architectures 8-8-1 and 8-8-8-1, as an example, are presented in Figures 8.6 and 8.7 for 

SCI and BCI, respectively. The remaining charts are presented in Appendix-3. The error 

histograms plotted for each ANN architecture reveal that their average is very close to zero, and 

in almost all the cases, 80% of the errors or more are confined within one or two central bins. The 

performance of these models is summarized in Table 8.3. 

  

(a) 8-8-1  
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(b) 8-8-8-1  

Figure 8.6. Regression results and error histograms for SCI using 8-8-1 and 8-8-8-1 
network structures 

  

(a) 8-8-1  
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Table 8.3. Performance results of different ANN models 

Network 
Input 
variables Neurons 

Output 
variables MSE Stage              R2 

8-4-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

4 SCI 0.0860 

Training 0.719 
Validation 0.771 
Test 0.786 
Total 0.734 

8-8-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

8 SCI 0.0540 

Training 0.794 
Validation 0.840 
Test 0.875 
Total 0.813 

8-16-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

16 SCI 0.0140 

Training 0.789 
Validation 0.862 
Test 0.874 
Total 0.812 

8-17-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

17 SCI 0.0128 

Training 0.779 
Validation 0.846 
Test 0.853 
Total 0.798 

  

(b) 8-8-8-1  

Figure 8.7. Regression results and error histograms for BCI using 8-8-1 and 8-8-8-1 
network structures 
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Network 
Input 
variables 

Neurons 
Output 
variables 

MSE Stage              R2 

8-4-4-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

4 SCI 0.0960 

Training 0.789 
Validation 0.840 
Test 0.567 
Total 0.755 

8-8-8-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

8 SCI 0.0513 

Training 0.817 
Validation 0.706 
Test 0.571 
Total 0.754 

8-16-16-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

16 SCI 0.1130 

Training 0.773 
Validation 0.868 
Test 0.849 
Total 0.794 

8-17-17-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

17 SCI 0.0780 

Training 0.815 
Validation 0.747 
Test 0.765 
Total 0.795 

8-4-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

4 BCI 0.2790 

Training 0.702 
Validation 0.705 
Test 0.775 
Total 0.712 

8-8-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

8 BCI 0.1510 

Training 0.781 
Validation 0.642 
Test 0.778 
Total 0.746 

8-16-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

16 BCI 0.1780 

Training 0.802 
Validation 0.652 
Test 0.800 
Total 0.777 

8-17-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

17 BCI 0.0208 

Training 0.793 
Validation 0.662 
Test 0.681 
Total 0.762 

8-4-4-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

4 BCI 0.1480 

Training 0.738 
Validation 0.512 
Test 0.668 
Total 0.692 

8-8-8-1 
La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

8 BCI 0.2260 

Training 0.752 
Validation 0.775 
Test 0.727 
Total 0.753 
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Network 
Input 
variables 

Neurons 
Output 
variables 

MSE Stage              R2 

 
8-16-16-1 La, Lb. Lt, Tp, 

Ta, CBR, 
MDD, IRI 

 
16 

 
BCI 

 
0.0290 

Training 0.734 
Validation 0.737 
Test 0.720 
Total 0.730 

8-17-17-1 La, Lb. Lt, Tp, 
Ta, CBR, 
MDD, IRI 

17 BCI 0.2540 Training 0.797 
Validation 0.710 
Test 0.586 
Total 0.751 

 

8.3.3. Discussion of results 

The feed-forward BP-ANN approach in this study has satisfactorily demonstrated the correlation 

of input and output variables with varying coefficients of determination. It should be noted that 

the data set used for modeling purposes has not been taken from any synthetic database, rather it 

has been obtained experimentally by conducting extensive field testing which might have few 

manual or instrumental errors associated during testing. Therefore, the coefficient of determination 

(R2) values obtained in 0.7-0.8 range can be considered to be indicative of good correlation 

between the variables. Although it is concluded that the correlation fits well, the R2 values may be 

further improved by modifying the non-linearity aspects such as changing the transfer function or 

number of hidden layers and may be considered in future scope of the study. The intelligent 

approach of neural networks has been concluded to be felicitous for the complex problems of 

pavement response modeling, wherein numerous factors play prominent roles. The development 

of similar robust models would assist the highway agencies in easing the decision-making 

exercises of pavement maintenance and rehabilitation treatments in a short span of time. 

The large dataset and field testing outcomes assure the robustness of these models, and their 

implementation presents practical field implications. In a general sense, for a model with 

reasonable accuracy, the R2 value, which is a measure of the correlation between outputs and 

targets, is high (close to one), and MSE which is the average squared difference between outputs 

and targets, is low (close to zero). However, the acceptable values would differ from case to case 

and depend on the data availability and problem category. The R2 value of ANN models in this 

study is obtained to be as good as 0.875, with the average value for all the three samples (training, 
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validation, and test) being 0.784, 0.810, and 0.768 for SCI; and 0.762, 0.674, and 0.717 for BCI 

(refer Table 8.3). The R2 value in all the sixteen models proves that the 

correlation developed in this work is significant, which can be further attested by observing the 

low values of MSE, presented in Table 8.3. The error distribution plots help to visualize the 

possible trends and also confirm the results, with an average value close to zero. Another notable 

finding which compliments the outcomes from literature is that as compared to other pavement 

layers, properties of asphalt layer have a more profound influence on the condition of pavement 

(Schwartz et al., 2011). The finding is clearly evident from R2 values of SCI, which are higher than 

the R2 values of BCI. It is worth to note that for the accuracy and acceptability of the model, low 

values of MSE is not imperative since it is affected by the type of data, degrees of freedom, residual 

space, and regression. Meticulous investigation of regression, MSE, and error plots should be made 

before drawing any conclusion regarding the choice of the best network. Theoretically, as number 

of neurons increases, the ANN model achieves better precision and prediction proficiency, but on 

the contrary increases complexity and computation time. Nevertheless, with a view to select the 

best and optimum network architecture from the sixteen structures containing a different number 

of computational neurons, apart from R2 and MSE values, the simplicity and computational ease 

are also taken into consideration.  

8.3.3.1. Selection of the best network 

In accordance with the selection of the best network architecture, as seen from Table 8.3 and Figure 

8.8 the R2 values obtained for the network structure 8-8-1 and 8-16-1, i.e., for neurons equal to the 

number of input variables and twice of the number of input variables, are superior as compared to 

the R2 values obtained for all other network architectures. On further increasing the number of 

neurons or number of hidden layers, there is no significant improvement in the performance of the 

models. For one-layer models with SCI as an output parameter, increasing the number of neurons 

from 4 to 8, increases R2 value by 10.76%, whereas on further increment of neurons there is no 

significant change in R2 value, and it eventually decreases. With BCI as an output parameter in 

one-layer models, R2 value increases by about 4% on increasing the neurons from 4 to 8, and 8 to 

16 but decreases by additional neurons. The general trend of MSE values in both the cases is such 

that it is maximum for 4-neuron models and reduces (approximately by 37% for SCI and 45% for 
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BCI) with the increase of neurons number to eight. Additionally, it is evident from the R2 values 

of one-layer models and two-layer models that the overall performance of the two-layer models is 

less than the one-layer models. One of the important observation is that even for two-layer models, 

better performance (in terms of R2 and MSE values) is obtained for the 8-8-8-1, and 8-16-16-1 

structures, i.e., for neurons equal to the number of input variables and twice of the number of input 

variables but the two layers make the system much more intricate. However, since the results from 

both the structures are comparable and considering the need to maintain the simplicity of the 

models by keeping fewer neurons and hidden layers, the network configuration 8-8-1 can be 

selected as the best structure. 

 

(a) SCI 

 

(b) BCI 

Figure 8.8. Variation in regression and mean square error results for different ANN 

architectures 
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8.4. Comparison with multiple linear regression approach 

In order to further validate the superiority of ANN for such complex non-linear problems, the ANN 

results have been compared with multiple linear regression approach, with the same number of 

input records. Table 8.4 compares the results of multiple linear regression models for SCI and BCI, 

respectively, with that of the ANN model with 8-8-1 architecture. The R2 from these models for 

the same number of records and input variables are 41.60% and 44.10% lower for SCI and BCI, 

respectively than those obtained from ANN. However, the p-values are almost equal to zero and 

less than the significance level of 0.05, therefore, a significant linear regression relationship exists 

between the variables. This provides the evidence to the higher applicability of ANN models for 

dealing with such non-linear behaviors.  

Table 8.4. Comparison of results from artificial neural networks and multiple linear 
regression approaches 

 Model type 

 Artificial neural network (8-8-1 structure) Multiple linear regression 

Input variables La, Lb, Lt, Ts, Ta, CBR, MDD, IRI La, Lb, Lt, Ts, Ta, CBR, MDD, IRI 

Output variable SCI BCI SCI BCI 

R2 0.813 0.746 0.475 0.417 

MSE 0.054 0.151 0.032 0.055 

The highway agencies may work on a similar fashion by training their own ANN structures using 

the readily available or measurable data to obtain an accurate prediction of structural adequacy 

without entirely depending on the deflection tests. However, the results are highly dependent on 

the number, quality, and characteristics of the input variables. Therefore, the selection of these 

parameters should be made scrupulously by understanding their connections/relationships. 

8.5. Concluding remarks 

The preliminary approach presented in the study provides reliable correlations among the attributes 

reducing the frequency of 
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measuring pavement deflections. The ease of approach for data analysis minimizes the need to go 

through the cumbersome process of back-calculation. The predicted values of deflection basin 

parameters can be used suitably to draw productive and reliable conclusions regarding the possible 

structural condition of the pavement layers. This would foster the increased application of 

structural condition data in pavement maintenance and rehabilitation necessities. Furthermore, 

decisions about the necessity and suitability of maintenance or rehabilitation selections can be 

easily made. However, it does not intend to avoid conducting the deflection testing since the direct 

assessment of structural capacity would indeed increase the model accuracy. Accordingly, future 

studies can seek to incorporate other significant input parameters such as traffic-related (like 

annual average daily traffic, equivalent single axle load, etc.), additional climatic factors (like 

annual average daily temperature), rainfall data, and other functional performance indicators such 

as pavement condition index, and present serviceability index. The study can form a basis for 

future studies by incorporation of additional parameters listed above, particularly at network levels 

where deflection data acquisition and processing frequently is a challenge but the approach and 

methodology adopted could be similar. It is worth mentioning here that the trained ANN models 

should be adopted for similar cases only, otherwise the accuracy and quality of prediction could 

be affected significantly. 
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