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ABSTRACT

By a graph G = (V,E) we mean a finite undirected graph

with neither loops nor multiple edges. The order |V | and size |E|
of G are denoted by p and q respectively. For graph theoretic ter-

minology, we refer to Chartrand and Lesniak [24].

In Chapter 1, we collect some basic definitions and theo-

rems on graphs which are needed for the subsequent chapters.

A (p, q)-graph G = (V,E) is said to be k-hypergraceful

if there exists a decomposition of G into edge induced subgraphs

G1, G2, . . . , Gk having sizes m1, m2, . . . , mk respectively, and an

injective labeling f : V (G) → {0, 1, . . . , q}, such that when each

edge uv ∈ E(G) is assigned the absolute difference |f(u) − f(v)|,
the set of integers received by the edges of Gi is precisely {1, 2, . . . ,
mi} for each i ∈ {1, 2, . . . , k}. The decomposition {Gi}, if it exists,
is then called a hypergraceful decomposition of G and f is called a k-

hypergraceful labeling of G. Further, G is said to be hypergraceful if

it possesses a hypergraceful decomposition. When k = 1, the above

definition yields the well known notion of graceful graphs and k = 2

corresponds to the extension of the notion of graceful graphs to the

realm of sigraphs as studied in ( [10–12, 55]). Chapter 2 deals with

k-hypergraceful complete graphs. We discuss the existance of k-

hypergraceful labeling of the complete graph Kp where k = (p−4) if
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and only if p ≥ 8. We also give a (p−3)-hypergraceful decomposition

of Kp for p ≥ 4. We prove that Kp is (p − 2)-hypergraceful for

p ≥ 3 and finally show that Kp is (p − 1)-hypergraceful for p ≥ 2.

In this chapter, we also provide all nonisomorphic 3-hypergraceful

decompositions of the complete graph of order 5.

In Chapter 3 we define (k, d)-Skolem graceful graph as fol-

lows: A graph G = (V,E) is said to be (k, d)-Skolem graceful if there

exists a bijection f : V (G) → {1, 2, . . . , |V |} such that the induced

edge labeling gf defined by gf(uv) = |f(u) − f(v)|, ∀uv ∈ E, is a

bijection from E to {k, k + d, . . . , k + (q − 1)d}, where k and d are

positive integers. Such a labeling f is called (k, d)-Skolem grace-

ful labeling of G. We present several basic results on (k, d)-Skolem

graceful graphs and prove that nK2 is (2, 1)-Skolem graceful if and

only if n ≡ 0 or 3(mod 4). We prove that nK2 is (1, 2)-Skolem

graceful. Finally, we close the chapter with the observation that a

(1, 1)-Skolem graceful labeling of G gives a Skolem graceful label-

ing. A Skolem graceful labeling of nK2 gives the Skolem sequence,

a (2, 1)-Skolem graceful labeling of nK2 gives the (2, n) Langford se-

quence and a (k, 1)-Skolem graceful labeling of nK2 gives a perfect

sequence.

In Chapter 4, we introduce the notion of (k, d)-hooked

Skolem graceful graph as follows: A (p, q) graph G = (V,E) is

said to be (k, d)-hooked Skolem graceful if there exists a bijection

f : V (G) → {1, 2, . . . , p − 1, p + 1} such that the induced edge

labeling gf : E → {k, k + d, k + 2d, . . . , k + (q − 1)d} defined by
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gf(uv) = |f(u) − f(v)|, ∀uv ∈ E is also bijective, where k and

d are positive integers. Such a labeling f is called (k, d)-hooked

Skolem graceful labeling of G. We observe that when k = d = 1,

this notion coincides with that of hooked Skolem graceful labeling of

the graph G ( [57]). It follows from the definition that if a graph G

is (k, d)-hooked Skolem graceful, then q ≤ p−1. In this chapter, we

give a necessary condition for a graph G to be (k, d)-hooked Skolem

graceful. We prove that nK2 is (2, 1)-hooked skolem graceful if and

only if n ≡ 1 or 2(mod 4).

The gracefulness grac(G) of a graph G with V (G) = {v1,
v2, . . . , vp} and without isolated vertices is defined as the small-

est positive integer k for which it is possible to label the vertices

of G with distinct elements from the set {0, 1, . . . , k} in such a

way that edges receive distinct labels ( [24]). In Chapter 5, we

define a new measure of gracefulness of graphs as follows: Let

G = (V,E) be a (p, q) graph. Let f : V (G) → N ∪ {0} be an

injection such that the edge induced function gf defined on E by

gf(uv) = |f(u) − f(v)| is also injective. Let c(f) = max {i :

1, 2, . . . , i are edge labels under f}. Let m(G) = maxfc(f), where

the maximum is taken over all f . Then m(G) is called the m-

gracefulness of G. This new measure m(G) determines how close G

is to being graceful. Note that ifG is a graceful graph,m(G) = q and

grac(G) = q. One may observe that grac(G) measures gracefulness

of the graph G from above q, whereas m(G) measures gracefulness

of G from below q. In this chapter we prove that there are infinitely
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many nongraceful graphs G with m(G) = q−1, we determine m(G)

for a few families of non-graceful graphs. We give necessary con-

ditions for a (p, q)-eulerian graph and the complete graph Kp to

have m-gracefulness q − 1 and q − 2. Using this, we prove that K5

is the only complete graph to have m-gracefulness q − 1. We also

give an upper bound for the highest possible vertex label of Kp if

m(Kp) = q− 2. We have proved that m(K6) = 13 = q− 2, which is

also shown in optimal Golomb ruler ( [20, 21]).

In Chapter 6, we extend the notion of additively graceful

graphs to sigraphs as follows: Let S = (V,E) be a (p,m, n)-sigraph

with E = E+∪E−, Assume |E+| = m and |E−| = n where m+n =

q. Let f : V → {0, 1, ...,m+⌈ (n+1)
2 ⌉} be an injective mapping and let

the induced edge function be defined as gf−(uv) = f(u)+f(v) ∀ uv ∈
E− and gf+(uv) = |f(u)−f(v)| ∀ uv ∈ E+. If gf−(uv) = {1, 2, ..., n}
and gf+(uv) = {1, 2, ...,m}, then f is called an additively graceful

labeling of S. The sigraph which admits such a labeling is called an

additively graceful sigraph. One can easily see that when n = 0, f is

a graceful labeling of S, and when m = 0, f is an additively graceful

labeling of S. We give some necessary or sufficient conditions for a

sigraph to be additively graceful. We give a necessary and sufficient

condition forK4 to be additively graceful. We obtain some necessary

conditions for eulerian sigraphs, complete bipartite sigraphs and

complete sigraphs to be additively graceful.

In Chapter 7, we give an efficient method of embedding

any connected graph G of order p as an induced subgraph of an
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eulerian graceful graph H whose order is O(p2). We also consider

the following analogous problem for sigraphs: Given a sigraph S

and a graph theoretic property P, is it possible to embed S in a

graceful sigraph S1 having the property P? We prove the existence

of such an embedding where S1 is eulerian, hamiltonian, planar or

triangle-free. We prove that every signed tree can be embedded in

a graceful signed tree.

Chapter 8 gives a conclusion of the study carried out and

a brief summary of areas and problems for further research.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

This chapter is a collection of some basic definitions,

literature review of the research topic which contains definitions

and theorems on graphs which are useful for the subsequent chap-

ters, some of the gaps in existing research and our objective for

research. We also give an overview of the remaining chapters. For

graph theoretic terminology, we refer to Chartrand and Lesniak [24].

In Section 1.2 we give a brief outline of the basic defi-

nitions in graph theory. Section 1.3 presents a review of several

variations of graph labelings and known results, based on which we

identify certain gaps in existing research and we give our objectives

for present research. Finally an overview of the organization of the

remaining chapters of the thesis is given in Section 1.4.



1.2 BASIC GRAPH THEORY

In this section we present the basic definitions and theorems in graph

theory.

Definition 1.2.1. A graph G is a finite nonempty set of objects

called vertices together with a set of unordered pairs of distinct

vertices of G called edges. The vertex set and the edge set of G are

denoted by V (G) and E(G) respectively. The edge e = {u, v} is

said to join the vertices u and v. We write e = uv and say that u

and v are adjacent vertices or u is a neighbor of v in G; u and e are

incident, as are v and e. If e1 and e2 are distinct edges of G incident

with a common vertex, then e1 and e2 are adjacent edges.

The set of all neighbors of v is the open neighborhood of

v and is denoted by N(v); the set N [v] = N(v) ∪ {v} is the closed

neighborhood of v in G. If S ⊆ V , then N(S) =
⋃

v∈S
N(v) and

N [S] = N(S) ∪ S. We observe that N [v] 6= N(v) but we can have

N [S] = N(S) such as in the case where S is the set of two vertices

from K3.

The number of vertices in G is called the order of G and

the number of edges in G is called the size of G. A graph of order

p and size q is called a (p, q)-graph. A graph is trivial if its vertex

set is a singleton.

Definition 1.2.2. The complement G of a graph G is the graph

with vertex set V (G) such that two vertices are adjacent in G if and
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only if they are not adjacent in G.

Definition 1.2.3. The degree of a vertex v in a graph G is defined

to be the number of edges incident with v and is denoted by deg(v).

A vertex of degree zero in G is an isolated vertex and a vertex of

degree one is a pendent vertex or a leaf. An edge e in a graph G is

called a pendent edge if it is incident with a pendent vertex. Any

vertex which is adjacent to a pendent vertex is called a support

vertex.

The minimum of {deg(v) : v ∈ V (G)} is denoted by δ(G)

or simply δ and the maximum of {deg(v) : v ∈ V (G)} is denoted

by ∆(G) or simply ∆.

A graph G is called r-regular if every vertex of G has degree

r. A graph is said to be regular if it is r-regular for some nonnegative

integer r. In particular, a 3-regular graph is called a cubic graph.

Definition 1.2.4. A graph H is called a subgraph of G if V (H) ⊆
V (G) and E(H) ⊆ E(G). A subgraph H of a graph G is a proper

subgraph of G if either V (H) 6= V (G) or E(H) 6= E(G). A spanning

subgraph of G is a subgraph H of G with V (H) = V (G).

For a set S of vertices of G, the induced subgraph is the

maximal subgraph of G with vertex set S and is denoted by 〈S〉.
Thus two vertices of S are adjacent in 〈S〉 if and only if they are

adjacent in G. The induced subgraph 〈S〉 is also denoted by G[S].

3



Similarly, for a subset E ′ of E(G), the edge induced subgraph 〈E ′〉
is the subgraph of G whose vertex set is the set of end vertices of

edges in E ′ and whose edge set is E ′.

Let v be a vertex of a graph G and |V (G)| ≥ 2. Then

the induced subgraph 〈V (G)\{v}〉 is denoted by G− v and it is the

subgraph of G obtained by the removal of v and the edges incident

with v. If e ∈ E(G), the spanning subgraph with edge set E(G)\{e}
is denoted by G − e and it is the subgraph of G obtained by the

removal of the edge e.

For any two disjoint subsets A, B in V , let [A,B] denote

the set of all edges with one end in A and the other end in B.

Definition 1.2.5. A graph G1 is isomorphic to a graph G2 if there

exists a one-to-one mapping φ, called an isomorphism, from V (G1)

onto V (G2) such that φ preserves adjacency; that is, uv ∈ E(G1) if

and only if φuφv ∈ E(G2).

If G1 is isomorphic to G2, then we say G1 and G2 are

isomorphic or equal and write G1 = G2.

It is easy to see that isomorphism is an equivalence relation

on graphs; hence, this relation divides the collection of all graphs

into equivalence classes, two graphs being nonisomorphic if they

belong to different equivalence classes.

Definition 1.2.6. A graph G is said to be embedded in a graph G′

if there exists an induced subgraph of G′ which is isomorphic to G.
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If G is embedded in a graph G′, it is sometimes convenient to regard

G itself as an induced subgraph of G′.

A subset S ⊆ V is said to be independent if no two vertices

in S are adjacent. The independence number β0(G) is the maximum

cardinality of an independent set in G. The clique number ω(G) of

a graph G is the maximum order among the complete subgraphs of

G. Clearly ω(G) = β0(G) for every graph G.

Definition 1.2.7. A subset M ⊆ E is said to be an independent

set of edges or a matching if no two edges in M are adjacent. The

edge independence number β1(G) is the maximum cardinality of a

matching in G. If M ⊆ E(G) is a matching in a graph G with the

property that every vertex of G is incident with an edge of M , then

M is called a perfect matching in G.

Clearly, if G has a perfect matching M , then G has even

order and 〈M〉 is a 1-regular spanning subgraph of G.

Definition 1.2.8. A walkW in a graph G is an alternating sequence

u0, e1, u1, . . . , un−1, en, un of vertices and edges of G, beginning and

ending with vertices, such that ei = ui−1ui, for 1 ≤ i ≤ n. We

denote the walk simply by the sequence of vertices, so that W =

(u0, u1, . . . , un−1, un). This walk joins u0 and un, and it is sometimes

called a u0-un walk. A u0-un walk is closed or open depending on

whether u0 = un or u0 6= un. A u0-un trail is a u0-un walk in which

no edge is repeated. A nontrivial closed trail of a graph G is referred
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to as a circuit of G. A u0-un walk is called a u0-un path if all the

vertices u0, u1, . . . , un are distinct. The vertices u0 and un are called

origin and terminus of the path respectively and u1, u2, . . . , un−1 are

called its internal vertices. A path on n vertices is denoted by Pn.

Definition 1.2.9. A cycle of length n ≥ 3 in a graphG is a sequence

(u0, u1, . . . , un−1, u0) of vertices of G such that for 0 ≤ i ≤ n − 2,

the vertices ui and ui+1 are adjacent, un−1 and u0 are adjacent and

u0, u1, . . . , un−1 are distinct. A cycle on n vertices is denoted by Cn.

A cycle Cn of length n is called even or odd according as n is even

or odd. A cycle of length n is an n-cycle.

The graph Fk, obtained by identifying one vertex of each

of the k copies of C3, is called friendship graph or Dutch k-windmill.

A triangular snake is the graph obtained from a path

v1, v2, . . . , vn by joining vi and vi+1 to a new vertex wi for i =

1, 2, . . . , n− 1.

Definition 1.2.10. A graphG is said to be connected if every pair of

vertices of G are joined by a path. A maximal connected subgraph

of G is called a component of G.

A graph G having more than one component is called a

disconnected graph. An edge e of a connected graph G is called a

cut-edge if G − e is disconnected. A vertex v of a connected graph

G is called a cut-vertex if G− v is disconnected.
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Definition 1.2.11. A connected acyclic graph is called a tree. A

graph having exactly one cycle is called a unicyclic graph. A discon-

nected graph in which each component is a tree is called a forest.

Definition 1.2.12. An eulerian trail of a graph G is an open trail

of G containing all of the edges of G, while an eulerian circuit of G

is a closed eulerian trail. A graph possessing an eulerian circuit is

called an eulerian graph.

The following theorem gives a characterization of eulerian

graphs.

Theorem 1.2.13. [24] A nontrivial connected graph G is eulerian

if and only if degree of every vertex of G is even.

Definition 1.2.14. A cycle of a graph G containing every vertex

of G is called a hamiltonian cycle of G; thus, a hamiltonian graph

is one that possesses a hamiltonian cycle.

A graph is planar if it can be embedded in a plane and

nonplanar otherwise.

Definition 1.2.15. A bipartite graph is a graph G whose vertex set

V (G) can be partitioned into two nonempty subsets X and Y such

that each edge of G has one end in X and the other end in Y . The

pair (X, Y ) is called a bipartition of G. If further, every vertex in X
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is adjacent to all the vertices of Y , then G is called a complete bi-

partite graph. The complete bipartite graph with bipartition (X, Y )

such that |X| = r and |Y | = s is denoted by Kr,s. In particular, the

graph K1,n is called a star.

Definition 1.2.16. A graph G is complete if every pair of distinct

vertices of G are adjacent in G. A complete graph on p vertices is

denoted by Kp.

Definition 1.2.17. Let G1, G2, . . . , Gk be a set of k disjoint graphs.

Then the join graphG1+G2+· · ·+Gk is obtained fromG1, G2, . . . , Gk

by joining every vertex of Gi with every vertex of Gj, whenever

i 6= j.

For n ≥ 4, the wheel on n vertices, denoted by Wn, is

defined to be the graph K1 + Cn−1.

Definition 1.2.18. A proper coloring of a graph G is an assignment

of colors to the vertices of G in such a way that no two adjacent

vertices receive the same color. The chromatic number χ(G) is the

minimum number of colors required for a proper coloring of G.

Definition 1.2.19. A vertex v in a graph G is said to dominate

itself and each of its neighbors, that is, v dominates the vertices in its

closed neighborhood N [v]. A set S of vertices of G is a dominating

set of G if every vertex of G is dominated by at least one vertex of

S.
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Equivalently, the set S of vertices of G is a dominating set

if every vertex in V (G)− S is adjacent to at least one vertex in S.

The minimum cardinality among the dominating sets of G is called

the domination number of G and is denoted by γ(G). A dominating

set of cardinality γ(G) is then referred to as a minimum dominating

set.

Definition 1.2.20. A decomposition of a graph G is a collection

{Hi} of nonempty subgraphs such that Hi = 〈Ei〉 for some

(nonempty) subset Ei of E(G), where Ei is a partition of E(G).

Thus no subgraph Hi in a decomposition of G contains isolated

vertices.

Definition 1.2.21. A signed graph S (or simply sigraph) is a graph

G = (V,E) together with a function s : E → {+,−} called its

signing function, which assigns a sign + or − to each edge. The

graph G is called the underlying graph of the sigraph S. The set

of all positive and negative edges of S are denoted by E+ and E−

respectively so that E+ ∪E− = E(S) is the edge set of S. Further,

if |E+| = m and |E−| = n so that m + n = q, then S is called a

(p,m, n)-sigraph. An all-positive sigraph S is one in which E+(S) =

E(S) and an all-negative sigraph is one in which E−(S) = E(S).

A sigraph is said to be homogeneous if it is either all-positive or

all-negative, and heterogeneous otherwise.

By Zk, we mean a (k,m, n)-signed cycle. For a sigraph S,

η(S) is a sigraph obtained from S by changing the sign of each edge
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of S to its opposite and is called the negation of S.

1.3 LITERATURE REVIEW OF RESEARCH TOPIC

In this section we give a review of several variations of graph

labelings, definitions and known results.

1.3.1 GRAPH LABELING PROBLEMS

One of the most active fields of current research in the subject

of Discrete Mathematics is the theory of graphs. Graph labeling is

one of the fastest growing research areas within graph theory. New

results are being discovered and published at a rapidly increasing

rate. Further we have an enormous number of conjectures and open

problems in graph labelings. For an excellent and up to date dy-

namic survey on graph labeling we refer to Gallian [29]. Unless

mentioned otherwise, all graphs considered here will be finite and

simple.

Very commonly encountered instances of a graph in the

above sense are a road network (in certain restricted sense) where

we ignore multiple road-connections between any two junctions, one-

ways, loop-ways, etc. [28], the electricity or water supply network

in a city; ( [23, 25, 65]), the railway or communication network in

a country [28], chemical bond structure of a molecule [15], com-

puter network in an organization [25], even a social network that

represents a group of persons and interpersonal relationship exist-
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ing amongst them [2]. The structure or the topology of such net-

works may be represented by graphs for analytical purposes when a

problem related to their structures is encountered in practice [60].

For such applied aspects of graph theory, one may consult spe-

cialized references such as Acharya ( [3, 4, 6]), Balaban [15], Char-

trand [23], Chen [25], Harary et al. [33], Jensen and Gutin [36],

Roberts [49]; it would be rather unwieldy to provide such references

exhaustively as they are quite numerous.

Often, one encounters a need to label the elements (i.e.,

vertices or edges or both) of a given graph G = (V,E). For in-

stance, in the road network of a city the junctions (represented by

vertices) and the roads (represented by edges) are generally named

(labeled) for one to locate them for various practical purposes. A

sociogram, as another instance, is a graph whose edges are labeled

as being positive or negative according to whether the two inter-

acting persons forming a given edge have a qualitatively positive

or negative type of interpersonal relationship; such a network has

been called a signed graph or simply, a sigraph in the literature

( [2, 6, 16, 17, 33, 63]). In fact, sigraphs were first discovered by

Harary [33] as appropriate prototype models to represent structures

of cognitive interpersonal relationships in a social group. Ever since,

sigraphs have received much attention in social psychology because

of their extensive use in modeling a variety of cognition-based so-

cial processes ( [1, 2, 4, 17, 27, 33]). Further intensive study of the

topic has been due to their subsequently discovered strong connec-

tions with many classical mathematical systems ( [4,61–64]) used in
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solving a variety of problems of theoretical and practical interest.

There are basically two types of labelings of graphs, namely;

• Quantitative Labelings (Assignment of some numbers to the

elements of graph): Let N be any set with a binary operation

∗ defined on it. If an injection f : V (G) → N induces f ∗ :

E(G) → N where f ∗(uv) = f(u) ∗ f(v), ∀u, v ∈ V (G), then

such a labeling f is called a vertex labeling of G.

This labeling has inspired research in a wide variety of appli-

cations in radio-astronomy, development of missile guidance

codes, spectral characterization of materials using X-ray crys-

tallography etc., under certain constraints.

• Qualitative Labelings (Assignment of qualitative nature to

the vertices or edges of graph): If σ : V (G) → {+,−}, then we

have marked graph as mathematical model and is denoted by

S = (G, σ). If ρ : E(G) → {+,−} then we have signed graph

as mathematical model [51] and is denoted by S = (G, ρ).

These labelings have inspired research in unrelated areas of

human enquiry such as conflict resolutions in social psychology,

electrical circuit theory, energy crises etc., ( [2,6,23,25,49,65]).

Thus utilization of labeled graph models require impos-

ing of additional constraints which characterize the problem being

investigated. The necessary constraints arise naturally in study-

ing the wide variety of seemingly unrelated practical applications
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for which labeled graphs provide underlying mathematical models.

Some embodiments of this theory are as follows:

• The design of certain important classes of good non periodic

codes for pulse radar and missile guidance is equivalent to la-

beling the vertices of a complete graph such that all the edge

labels are distinct. The vertex labels then determine the time

positions at which pulses are transmitted. Corresponding radar

pulse and missile-guidance code problems have been the sub-

ject of investigation for several years.

• Determination of crystal structures from X-ray diffraction data

has long been a concern of crystallographers. The ambiguities

inherent in this procedure are now beginning to be understood.

In some cases, the same diffraction information may correspond

to more than one structure. This problem is mathematically

equivalent to determining all labelings of the appropriate graph

which produce a pre-specified set of edge numbers.

• Methods of encoding the integers from 0 to bn−1 using n digit

vectors from the b-symbol alphabet have been devised to mini-

mize the seriousness of errors occurring in a single digit. These

encodings have been extensively investigated. The correspond-

ing graph problem involves labeling the vertices of the square

lattice grid, b on a side in n dimensions with integers from 0

to bn − 1, in a way that optimizes some statistical function

(typically the mean or the variance) of the edge numbers.
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Most graph labeling methods trace their origin to the one

introduced by Rosa [50].

Definition 1.3.1. Let G be a graph of order p and size q. A grace-

ful labeling of G is an injection f : V → {0, 1, . . . , q} such that

when each edge uv is assigned the label gf(uv) = |f(u)− f(v)|, the
resulting edge labels are all distinct. Such a function gf is called the

induced edge function and a graph which admits such a labeling is

called a graceful graph.

Rosa [50] called such a labeling as a β-valuation and Golomb

[31] subsequently called it graceful labeling.

The following result is due to Golomb.

Theorem 1.3.2. [31] A necessary condition for a (p, q)-graph G =

(V,E) to be graceful is that, it be possible to partition its vertex set

V (G) into two subsets V0 and Ve such that there are exactly ⌈q/2⌉
edges each of which joins a vertex of V0 with one of Ve.

The following is a necessary condition for graceful graphs.

Theorem 1.3.3. [31] Suppose that integers, not necessarily distinct

are assigned to the vertices of a graph G, and that each edge of G is

given an edge number equal to the absolute difference of the vertex

numbers at its end points. Then the sum of the edge numbers around

any circuit of G is even.
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Graceful labeling is reported to have come from a problem

in mechanical engineering which requires notching a bar so that dis-

tances between any two notches are all distinct. A problem modeled

by Golomb [31] as one on nonredundant distance measurement [20]

using what is known as a ‘nonredundant ruler’: It is a ruler with

p marks placed on it end-to-end so that all the
(

p
2

)

distances that

can be measured by the calibration are distinct. If the maximum

distances measured by such a ruler is least possible then the ruler is

called a Golomb ruler after its discoverer ( [20, 21]). Furthermore,

if the distances measured by the ruler are all the first
(

p
2

)

natural

numbers then it is called graceful. It is well known that a grace-

ful Golomb ruler with more than four marks does not exist. It is

equivalent to the following statement.

Theorem 1.3.4. [31] A complete graph Kp is graceful if and only

if p ≤ 4.

Rosa [50] determined the graceful cycles.

Theorem 1.3.5. [50] A cycle Cn of order n is graceful if and only

if n ≡ 0 or 3(mod 4).

The following theorem determines the graceful friendship

graphs.

Theorem 1.3.6. [18, 37] A friendship graph Fk on k triangles is

graceful if and only if k ≡ 0 or 1(mod 4).
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A necessary condition for an eulerian graph to be graceful

was discovered by Rosa [50].

Theorem 1.3.7. [50] If G is a graceful eulerian graph of size q,

then q ≡ 0 or 3(mod 4).

All the graceful Golomb rulers with less than five marks

are known in the literature. In general, nonredundant rulers of

least length (i.e., a Golomb ruler) with more than 26 marks are

yet to be found and the problem of generating all of them having

a given length is known to be computationally hard ( [20, 21, 32,

44]). However, the actual story of representing the first p natural

numbers as differences of pairs of terms of an integer sequence of

shortest possible length (called difference basis of p) appears to have

started much earlier in the works of Singer [54] and Brauer [22]

from pure combinatorial number theoretic considerations. One of

the still unsolved problems on graceful graphs is the now famous

Ringel-Kotzig Conjecture ( [?, 19, 38, 48]):

Conjecture 1.3.8. All trees are graceful.

Several classes of graceful and nongraceful graphs have

been reported in the literature. For more details see Gallian [29].

Definition 1.3.9. [24] The gracefulness grac(G) of a graph G with

V (G) = {v1, v2, . . . , vp} and without isolated vertices is defined as

the smallest positive integer k for which it is possible to label the
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vertices of G with distinct elements from the set {0, 1, . . . , k} in such

a way that edges receive distinct labels.

Such a vertex labeling always exists. One of which is to

label vi by 2i−1. Hence for every graph G of order p and size q

without isolated vertices, q ≤ grac(G) ≤ 2p−1. If G is a graph of

size q with grac(G) = q, then G is graceful. However Golomb [31]

has proved the existance of such a labeling in which the maximum

vertex label is O(p2).

Theorem 1.3.10. [31] For the complete graph Kp, there exists an

injection f : V (Kp) → N such that the induced edge function gf is

also injective and with maximum vertex label O(p2).

Remark 1.3.11. For any graph G of order p, the injection function

f : V (Kp) → N with maximum vertex label O(p2), gives an injection

on V (G) such that gf is injective and the maximum vertex label is

O(p2).

Acharya et al. [7] have proved the following.

Theorem 1.3.12. [7] Any graph G can be embedded as an induced

subgraph of a graceful graph.

The above theorem shows the impossibility of obtaining a

forbidden subgraph characterization for graceful graphs.
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Corollary 1.3.13. [7] The problem of deciding whether chromatic

number χ ≤ k, where k ≥ 3 is NP complete even for graceful graphs.

Acharya et al. [7] have also considered the following problem:

Problem 1.3.14. Let P be a graph theoretic property. Given a

graph G having the property P , is it possible to embed G as an

induced subgraph of a graceful graph H having the property P?

They presented an affirmative answer to the above problem

for some graph theoretic properties such as planarity, triangle-free

graphs etc. We list their results below.

Theorem 1.3.15. [7] Any triangle-free graph G can be embedded

as an induced subgraph of a triangle-free graceful graph.

Theorem 1.3.16. [7] Any planar graph G can be embedded as an

induced subgraph of a planar graceful graph.

Theorem 1.3.17. [7] Any connected graph can be embedded as an

induced subgraph of a hamiltonian graceful graph.

Theorem 1.3.18. [7] Any tree T can be embedded in a graceful

tree T1.

As stated in [7] these results are particularly important,

especially in the context of an unpublished result of Erdös which

states that most graphs are nongraceful ( [29], page 4).
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In most of the above embedding results, to get any missing

edge label we add a pendent vertex with that label as vertex label

and join it to a vertex with label 0. Thus the graceful graph into

which G is embedded is mostly a noneulerian graph. Hence the

following problem naturally arises.

Problem 1.3.19. Can every connected graph be embedded as an

induced subgraph in an eulerian graceful graph?

Rao and Sahoo [47] obtained an affirmative answer for the

above problem. However, in their proof the number of vertices in

the eulerian graceful graph is O(3p).

The notion of graceful labeling has been extended to

sigraphs by Acharya and Singh [10].

Definition 1.3.20. Let S be a (p,m, n)-sigraph. For any injection

f : V (S) → {0, 1, . . . , q = m + n}, the induced edge labeling gf is

defined by gf(uv) = s(uv)|f(u)−f(v)|, ∀u, v ∈ V (S). The function

f is said to be a graceful labeling of S if gf(E
+) = {1, 2, . . . ,m} and

gf(E
−) = {−1,−2, . . . ,−n}. A sigraph which admits a graceful

labeling is called a graceful sigraph.

We observe that if E− = φ, the graceful labeling of S is

simply the graceful labeling of the underlying graph G.

Acharya and Singh [9] have proved the following result.
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Theorem 1.3.21. [9] Every sigraph can be embedded in a graceful

sigraph.

For further results on graceful sigraphs, one may refer to

Acharya and Singh ( [8–14,55, 56, 58]).

The study of graph decomposition has been one of the

most important topics in graph theory and also play an important

role in the study of Combinatorial designs. In this connection Rosa

proposed the following conjecture.

Conjecture 1.3.22. K2n+1 can be cyclically decomposed into 2n+1

subgraphs isomorphic to a given tree with n edges.

Intuitively, such a cyclic decomposition is accomplished by

• arbitrarily choosing tree Tn with n edges;

• identifying the edges of Tn with a suitable set of edges in K2n+1;

• rotating each vertex and edge of Tn, 2n times from its original

position.

Definition 1.3.23. [46] A (p, q)-graph G = (V,E) is said to be k-

hypergraceful if there exists a decomposition of G into edge induced

subgraphs G1, G2, . . . , Gk having sizes m1, m2, . . . , mk respectively,

and an injective labeling f : V (G) → {0, 1, . . . , q}, such that when

each edge uv ∈ E(G) is assigned the absolute difference |f(u) −
f(v)|, the set of integers received by the edges of Gi is precisely {1,
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2, . . . , mi} for each i ∈ {1, 2, . . . , k}. The decomposition {Gi},
if it exists, is then called a hypergraceful decomposition of G and f

is called a k-hypergraceful labeling of G. Further, G is said to be

hypergraceful if it possesses a hypergraceful decomposition.

If f is a hypergraceful labeling of a graph G, then f ∗ de-

fined by f ∗(u) = q−f(u), ∀u ∈ V (G) is also a hypergraceful labeling

of G and is called the complement of the hypergraceful labeling of

f . We have (f ∗)∗ = f . Also, it is clear, in general that in the above

definition G1, G2, . . . , Gk may be replaced by Gσ(1), Gσ(2), . . . , Gσ(k)

for any permutation σ of the set {1, 2, . . . , k}. As such, in a more

general setting, the notion of hypergraceful decomposition of graphs

was first introduced by Acharya [5].

It is immediate that the case k = 1 in the above definition

yields the well known notion of graceful graphs. The case k = 2

corresponds to the extension of the notion of graceful graphs to

the realm of sigraphs as studied in ( [8–14, 46, 55, 56, 58]). For the

case k = 2, k-hypergraceful labelings of complete graph has been

investigated by Rao et al. [46].

Theorem 1.3.24. [46] A necessary condition for a (p, q)-graph

G = (V,E) to be k-hypergraceful is that it be possible to partition its

vertex set V into two subsets Vo and Ve such that for each integer

i = {1, 2, . . . , k} there are exactly ⌊mi+1
2 ⌋ edges of Gi each of which

joins a vertex of Vo with one of Ve, where ⌊x⌋ denotes the greatest

integer not greater than the real number x.

21



Lemma 1.3.25. [46] If for no integer j, 0 ≤ j ≤ k, p − 2j is a

perfect square, then Kp is not k-hypergraceful with respect to any

decomposition of Kp.

Remark 1.3.26. If for some integer j, there exists a k-hypergraceful

decomposition of Kp, for which p − 2j is a perfect square, then j

represents the number of Gi’s with odd size.

By the negation of a sigraph S, we mean a sigraph η(S)

which is obtained from S by changing the sign of every edge to its

opposite. If a sigraph S is graceful with a graceful labeling f , then

the negation of the sigraph S is also graceful under the same f .

Lemma 1.3.27. [46] If any integer p is such that none of p, p− 2,

p− 4 is a perfect square, then no sigraph on Kp is graceful.

Theorem 1.3.28. [46]

1. No sigraph on Kp, p ≥ 6 is graceful.

2. Every sigraph on Kp, p ≤ 3 is graceful.

3. A sigraph on K4 is graceful if and only if the number of negative

edges in it is not three.

4. A sigraph S on K5 is graceful if and only if S satisfies one of

the following statements:

(a) The number n of negative edges in S is 1,
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(b) n = 3 and the three negative edges in S are not incident at

the same vertex,

(or) η(S) satisfies similar conditions with n replaced by m, the

number of positive edges in S.

A Steiner triple system S(2, 3, n) is an n-element set S

together with a set of 3-element subsets of S called blocks, with the

property that each 2-element subset of S is contained in exactly one

block.

While studying the structure of Steiner triple systems,

Skolem [59] considered the following problem: Is it possible to dis-

tribute the numbers 1, 2, . . . , 2p into p pairs (ai, bi) such that bi−ai =

i for i = 1, 2, . . . , p?

In the sequel, a set of pairs of this kind is called 1, +1

system because the difference bi− ai begins with 1 and increases by

1 when i increases by 1.

Theorem 1.3.29. [59] A 1, +1 system exists if and only if p ≡
0 or 1(mod 4).

A 1, +1 system is also known as Skolem sequence, which

is defined as follows:

Definition 1.3.30. Let 〈Ci〉 be a sequence of 2p terms, where 1 ≤
Ci ≤ p. If each number i occurs exactly twice in the sequence and

|j2 − j1| = i if i = Cj1 = Cj2 then 〈Ci〉 is called a Skolem sequence.
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This concept was used by Lee and Shee [41] to introduce

the notion of Skolem gracefulness of graphs.

Definition 1.3.31. A Skolem graceful labeling of a graph G =

(V,E) is a bijection f : V → {1, 2, . . . , p} such that the induced

labeling gf : E → {1, 2, . . . , q} defined by gf(uv) = |f(u) − f(v)|,
∀uv ∈ E, is also a bijection. If such a labeling exists, then the graph

G is called a Skolem graceful graph.

If a graph G with p vertices and q edges, is graceful then

q ≥ p − 1, while if it is Skolem graceful, then q ≤ p − 1. Thus, as

noted in [41], Skolem graceful labelings nearly complement graceful

labelings, and a graph with q = p− 1 is graceful if and only if it is

Skolem graceful.

Theorem 1.3.32. [41] The graph nK2 is Skolem graceful if and

only if n ≡ 0 or 1(mod 4).

O’Keefe [43] extended the methods of Skolem sequences

for k ≡ 2 or 3(mod 4) by showing that the numbers 1, 2, . . . , 2k −
1, 2k + 1 can be distributed into k disjoint pairs (ai, bi) such that

bi = ai+i for i = 1, 2, . . . , k. Motivated by this, Shalaby [42] defined

the notion of hooked Skolem sequences.

Definition 1.3.33. A hooked Skolem sequence of order k is a se-

quence (c1, c2, . . . , c2k+1) of 2k + 1 integers satisfying the following

conditions:

1. For every r ∈ {1, 2, . . . , k} there exist exactly two elements ci

and cj such that ci = cj = r.
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2. If ci = cj = r with i < j, then j − i = r.

3. c2k = 0.

A hooked Skolem graceful graph [57] is defined as follows:

Definition 1.3.34. A (p, q) graph G = (V,E) is said to be hooked

Skolem graceful if there exists a bijection f : V (G) → {1, 2, . . . , p−
1, p+1} such that the induced edge labeling gf : E → {1, 2, 3, . . . , q}
defined by gf(uv) = |f(u)− f(v)|, ∀uv ∈ E is also bijective. Such

a labeling f is called hooked Skolem graceful labeling of G.

A sequence (a1, a2, . . . , an) of integers 1, 2, . . . , n is called

a (2, n) Langford sequence if for ai appearing first at the ith place,

the next appearance of ai is at (ai + i+ 1)th place (see [40]) .

Priday [45] and Davies [26] have proved that a (2, n) Lang-

ford sequence exists if and only if n ≡ 0 or 3(mod 4). Gillespie and

Utz [30] generalized the concept of Langford sequence as follows:

Definition 1.3.35. Let k and n be positive integers with k ≥ 2.

The sequence α = (b1, b2, . . . , bkn) is a (k, n) Langford sequence (or

a (k, n)-sequence) provided that it consists of k appearances of i

(1 ≤ i ≤ n) and consecutive occurrences of i are separated by i

elements of the sequence.

Priday [45] and Davies [26] introduced the concept of a

perfect sequence as follows:

Definition 1.3.36. A sequence of m consecutive positive integers

{d, d+1, . . . , d+m−1} is said to be perfect if the integers {1, 2, . . . , 2m}

25



can be arranged into disjoint pairs {(ai, bi) : 1 ≤ i ≤ m} so that

{bi − ai : 1 ≤ i ≤ m} = {d, d+ 1, . . . , d+m− 1}.

Following Davies, Simpson [53] defined hooked sequence

as follows:

Definition 1.3.37. A sequence of m consecutive positive integers

{d, d + 1, . . . , d + m − 1} for which there is a partition of the set

{1, 2, . . . , 2m − 1, 2m + 1} into m pairs (ai, bi) such that the m

numbers bi−ai, 1 ≤ i ≤ m are all of the integers d, d+1, . . . , d+m−1

is called a hooked sequence.

Hegde [34] introduced the notion of additively graceful

graph as follows:

Definition 1.3.38. A (p, q) graph G = (V,E) with q ≥ 1 and p ≥ 2

is said to be additively graceful if it admits an injective function

f : V → {0, 1, . . . , ⌈ (q+1)
2 ⌉} such that {f(u) + f(v) : uv ∈ E} =

{1, 2, . . . , q}.

Hegde [34] proved the following results.

Theorem 1.3.39. [34] If G is an additively graceful (p, q)-graph

then q ≥ 2p− 4 and this bound is the best possible.

Theorem 1.3.40. [34] The complete graph Kp is additively graceful

if and only if 2 ≤ p ≤ 4.
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Theorem 1.3.41. [34] An additively graceful graph is either K2 or

K1,2 or has a triangle.

Theorem 1.3.42. [34] If an eulerian (p, q)-graph G is additively

graceful then q ≡ 0 or 3(mod 4).

Theorem 1.3.43. [34] A unicyclic graph G is additively graceful

if and only if G is isomorphic to either C3 or to the graph obtained

by joining a unique vertex to any one vertex of C3.

1.3.2 GAPS IN EXISTING RESEARCH

Based on the literature survey on graph labeling problems

given in Section 1.3.1, we identify certain gaps in the existing re-

search.

Many graphs are known to be nongraceful. One can look

into computing grac(G) for certain classes of nongraceful graphs.

Decomposition of complete graphs into some specific class

of graphs have many applications in coding theory, so one can char-

acterize graphs having the hypergraceful decompositions and find

hypergraceful labeling of certain classes of graphs like complete bi-

partite graph, complete graph, eulerian graph, hamiltonian graph,

planar graph etc.

Given a sigraph S and a graph theoretic property P, is it

possible to embed S in a graceful sigraph S1 having the property P?
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The sigraph S1 could be eulerian, hamiltonian, planar or triangle-

free etc. The problem of embedding any graph into an eulerian

graceful graph is recently solved by Rao [47], but the complexity of

the algorithm is O(3p), however one can look for a simpler labeling.

The concept of Skolem graceful graphs was introduced by

Lee and Shee [41] and characterization of Skolem graceful graphs is

still an open problem.

The concept of additively graceful labeling of graphs was

introduced by Hegde [34], one can introduce a similar concept for

sigraphs.

1.3.3 OBJECTIVES

Our objective is to find hypergraceful labeling of complete

graphs. We study the various labelings of graphs like graceful la-

beling, Skolem graceful labeling, additively graceful labeling etc.

We give a method for embedding a sigraph into a graceful sigraph

having a specific property, like planarity, eulerian, triangle-free and

hamiltonian, we also give an efficient method for embedding any

graph into an eulerian graceful graph. We study Skolem graceful

graphs in a more general setup as (k, d)-Skolem graceful graphs and

(k, d)-hooked Skolem graceful graphs. We also introduce the con-

cept of m-gracefulness of graphs motivated by gracefulness grac(G)

of a graphG. Motivated by the concept of additively graceful graphs

introduced by Hegde [34], we generalize this concept to the realm
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of sigraphs.

1.4 ORGANIZATION OF THE THESIS

In Chapter 1 we give some basic definitions, literature review

of the research topic, some of the gaps in existing research and our

objective for research.

In Chapter 2 we prove that the complete graph Kp is (p−
4)-hypergraceful if and only if p ≥ 8, (p−3)-hypergraceful for p ≥ 4,

(p− 2)-hypergraceful for p ≥ 3 and (p− 1)-hypergraceful for p ≥ 2.

We also give all nonisomorphic 3-hypergraceful decompositions of

K5.

In Chapter 3 we define (k, d)-Skolem graceful graph as

follows: A graph G = (V,E) is said to be (k, d)-Skolem graceful

if there exists a bijection f : V (G) → {1, 2, . . . , |V |} such that the

induced edge labeling gf defined by gf(uv) = |f(u)−f(v)| ∀uv ∈ E,

is a bijection from E to {k, k+d, . . . , k+(q−1)d}, where k and d are

positive integers. Such a labeling f is called (k, d)-Skolem graceful

labeling of G. In this chapter we present several basic results on

(k, d)-Skolem graceful graphs and prove that nK2 is (2, 1)-Skolem

graceful if and only if n ≡ 0 or 3(mod 4). We also prove that

nK2 is (1, 2)-Skolem graceful. We finally close the chapter with the

observation that (1, 1)-Skolem graceful labeling of nK2 produces a

Skolem sequence, (2, 1)-Skolem graceful labeling of nK2 produces a

(2, n) Langford sequence and (k, 1)-Skolem graceful labeling of nK2
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gives a perfect sequence.

In Chapter 4 we introduce the notion of (k, d)-hooked

Skolem graceful graph as follows: A (p, q) graph G = (V,E) is

said to be (k, d)-hooked Skolem graceful if there exists a bijection

f : V (G) → {1, 2, . . . , p − 1, p + 1} such that the induced edge

labeling gf : E → {k, k + d, k + 2d, . . . , k + (q − 1)d} defined by

gf(uv) = |f(u) − f(v)|, ∀uv ∈ E is also a bijection, where k

and d are positive integers. Such a labeling f is called (k, d)-hooked

Skolem graceful labeling of G. We observe that when k = d = 1,

this notion coincides with that of hooked Skolem graceful labeling

of the graph G. We present some basic results and prove that nK2

is (2, 1)-hooked Skolem graceful if and only if n ≡ 1 or 2(mod 4).

In Chapter 5 we define a new measure of gracefulnessm(G)

of a graph G and determine the same for some families of nongrace-

ful graphs. LetG = (V,E) be a (p, q) graph. Let f : V (G) → N∪{0}
be an injection such that the edge induced function gf defined

on E by gf(uv) = |f(u) − f(v)| is also injective. Let c(f) =

max {i : 1, 2, . . . , i are edge labels under f}. Letm(G) = maxfc(f),

where the maximum is taken over all f . Then m(G) is called

the m-gracefulness of G. This new measure m(G) determines how

close G is to being graceful. We prove that there are infinitely

many nongraceful graphs G with m(G) = q − 1, we prove that for

n ≡ 1 or 2(mod 4), m(Cn) = n − 1 and grac(G) = n + 1. We also

show that m(Fk) = 3k − 1 = q − 1 and grac(Fk) = 3k + 1 = q + 1

for k ≡ 2 or 3(mod 4), where Fk is the friendship graph with k
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triangles. We give necessary conditions for a (p, q)-eulerian graph

and the complete graph Kp to have m-gracefulness q− 1 and q− 2.

Using this, we prove that K5 is the only complete graph to have m-

gracefulness q−1. We thus prove that m(K6) = 13 = q−2, which is

also shown in optimal Golomb ruler. We also give an upper bound

for the highest possible vertex label of Kp if m(Kp) = q − 2.

The concept of additively graceful graphs is extended to

the realm of sigraphs in Chapter 6. Let S = (V,E) be a (p,m, n)

sigraph with E = E+ ∪ E−, assume |E+| = m and |E−| = n where

m + n = q. Let f : V → {0, 1, ...,m + ⌈ (n+1)
2 ⌉} be an injective

mapping and let the induced edge function be defined as gf−(uv) =

f(u) + f(v) ∀ uv ∈ E− and gf+(uv) = |f(u)− f(v)| ∀ uv ∈ E+. If

gf−(uv) = {1, 2, ..., n} and gf+(uv) = {1, 2, ...,m}, then f is called

an additively graceful labeling of the sigraph S. The sigraph which

admits such a labeling is called an additively graceful sigraph. One

can easily see that when n = 0, f is a graceful labeling of S, and

when m = 0, f is an additively graceful labeling of S. This chapter

gives some necessary or sufficient conditions for additively graceful

sigraphs and some results on eulerian sigraphs, complete bipartite

sigraphs and complete sigraphs.

In Chapter 7 we consider the following problem: Given a

sigraph S and a graph theoretic property P, is it possible to embed

S in a graceful sigraph S1 having the property P? We give the

existence of such an embedding where S1 is eulerian, hamiltonian,

planar or triangle-free. This chapter also proves that every signed
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tree can be embedded in a graceful signed tree. We also give an

efficient procedure of embedding a graph G of order p as an induced

subgraph of an eulerian graceful graph H whose order is O(p2).

In Chapter 8, we give a summary of all the results obtained

by us and indicate scope for further research.
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CHAPTER 2

ON k-HYPERGRACEFUL COMPLETE

GRAPHS

2.1 INTRODUCTION

The notion of hypergraceful decomposition of graphs was

first introduced by Acharya [5]. A (p, q)-graph G = (V,E) is said

to be k-hypergraceful if there exists a decomposition of G into edge

induced subgraphs G1, G2, . . . , Gk having sizes m1, m2, . . . , mk re-

spectively, and an injective labeling f : V (G) → {0, 1, . . . , q}, such
that when each edge uv ∈ E(G) is assigned the absolute differ-

ence |f(u)− f(v)|, the set of integers received by the edges of Gi is

precisely {1, 2, . . . , mi} for each i ∈ {1, 2, . . . , k}. The decompo-

sition {Gi}, if it exists, is then called a hypergraceful decomposition

of G and f is called a k-hypergraceful labeling of G. Further, G

is said to be hypergraceful if it possesses a hypergraceful decompo-

sition. When k = 1, the above definition yields the well known

notion of graceful graphs and k = 2 corresponds to the extension of

the notion of graceful graphs to the realm of sigraphs as studied in

( [10–12,55]).



Note that, in the definition of k-hypergraceful labeling, if

G is a complete graph on p vertices, then the injective labeling f

is a function f : V (G) → {0, 1, . . . , q∗}, where q∗ = max{mi : 1 ≤
i ≤ k}. Characterization of k-hypergraceful complete graphs for

k = 2 and some partial results for k ≥ 3 are obtained by Rao et

al. [46]. They have proved that no sigraph on the complete graph

Kp, p ≥ 6, is graceful and also have given a characterization of

graceful sigraphs on Kp, p ≤ 5.

Following are examples of k-hypergraceful graphs.

Example 2.1.1. The graph in Figure 2.1 is k-hypergraceful, where

k = 1, 2, 3 and 4.
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Figure 2.1: k-hypergraceful labeling of graph

Example 2.1.2. The friendship graph F3 is known to be nongrace-

ful, it is also known that no sigraph on F3 is graceful. Therefore
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F3 is not 1-hypergraceful nor 2-hypergraceful. Figure 2.2 gives the

3-hypergraceful and 4-hypergraceful labelings of F3.
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Figure 2.2: k-hypergraceful labeling of F3 for k = 3, 4

In this chapter, we prove that the complete graph Kp is

(p− 4)-hypergraceful if and only if p ≥ 8, (p− 3)-hypergraceful for

p ≥ 4, (p− 2)-hypergraceful for p ≥ 3 and (p− 1)-hypergraceful for

p ≥ 2. We also determine all possible nonisomorphic hypergraceful

decompositions of the complete graph of order 5.

2.2 k-HYPERGRACEFUL LABELINGS OF COMPLETE

GRAPHS

In this section we discuss the existance of k-hypergraceful

labelings of the complete graph Kp where k = (p− 4) if and only if

p ≥ 8, k = (p− 3) for p ≥ 4, k = (p− 2) for p ≥ 3 and k = (p− 1)

for p ≥ 2. We present our results through a series of lemmas. We

use the following notations in the proof of the lemmas.
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Let π = (a1, a2, . . . , at) be a sequence of positive integers

with a1 ≤ a2 ≤ · · · ≤ at. If ai occurs ri times in the sequence, then

we write the sequence as π = (ar11 , a
r2
2 , . . . , a

rs
s ) where 1 ≤ s ≤ t

and
s
∑

i=1

ri = t.

Lemma 2.2.1. The complete graph Kp is (p − 4)-hypergraceful if

p ≥ 8 and p is even.

Proof. It is sufficient to provide a hypergraceful labeling for one

possible decomposition of Kp, when p is even and p ≥ 8. We label

the vertices of Kp as {0, 3, 4, 6, 8, 9, . . . , p + 3} and the edge

labels of Kp are obtained as the absolute difference of its end ver-

tex labels from {1, 2, 3, . . . , p + 3}. Let πp denote the sequence

of the corresponding edge labels. One can easily verify that π8 =

(14, 24, 34, 43, 53, 63, 72, 82, 91, 101, 111) and π10 = (16, 26, 36, 45, 54, 64,

73, 83, 93, 102, 111, 121, 131). The sequence π8 determines the follow-

ing 4-hypergraceful decomposition of K8 given in Figure 2.3.
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Figure 2.3: 4-hypergraceful decomposition of K8
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The sequence π10 determines the following 6-hypergraceful decom-

position of K10 given in Figure 2.4.
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Figure 2.4: 6-hypergraceful decomposition of K10

For p ≥ 12, we claim that:

πp = (1r1, 2r2, 3r3, . . . , (p+ 3)rp+3), (2.1)

where ri =























































































p− 4, 1 ≤ i ≤ 3;

p− 5, i = 4;

p− 6, i = 5, 6;

p− 8, i = 7;

p− i, 8 ≤ i ≤ p− 4;

4, i = p− 3;

3, i = p− 2, p− 1;

2, i = p;

1, i = p+ 1, p+ 2, p+ 3.
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We prove this by induction on p.

From the vertex labels of K12, we have π12 = (18, 28, 38, 47,

56, 66, 74, 84, 94, 103, 113, 122, 131, 141, 151), which is the same as Equa-

tion 2.1 when p = 12. Thus the result is true for p = 12.

We now assume that the result is true for p − 2. That

is, πp−2 = (1p−6, 2p−6, 3p−6, 4p−7, 5p−8, 6p−8, 7p−10, 8p−10, 9p−11, 10p−12,

. . . , (p−6)4, (p−5)4, (p−4)3, (p−3)3, (p−2)2, (p−1)1, p1, (p+1)1).

Now consider Kp, since Kp = Kp−2+K2, and the labels of

the two new vertices are (p + 2) and (p + 3), the sequence of edge

labels of the additional 2p− 3 edges is given by (12, 22, 32, . . . , (p−
6)2, (p− 5)1, (p− 4)1, (p− 3)1, (p− 2)1, (p− 1)2, p1, (p+2)1, (p+3)1).

Thus πp = (1p−4, 2p−4, 3p−4, 4p−5, 5p−6, 6p−6, 7p−8, 8p−8, 9p−9, . . . , (p −
6)6, (p − 5)5, (p − 4)4, (p − 3)4, (p − 2)3, (p − 1)3, p2, (p + 1)1, (p +

2)1, (p+ 3)1). This proves Equation 2.1.

If ri denotes the number of repetitions of the label i in πp,

then we have p−4 = r1 ≥ r2 ≥ r3 ≥ · · · ≥ rp+3 = 1 and
p+3
∑

i=1

ri =
(

p
2

)

.

Further, the maximum repetition of an edge label is p−4. Therefore

πp determines a (p− 4)-hypergraceful decomposition of Kp, p ≥ 12.

Hence Kp is (p− 4)-hypergraceful for p ≥ 8 and even.

Lemma 2.2.2. The complete graph Kp is (p − 4)-hypergraceful if

p = 4t+ 1 for every positive integer t ≥ 2.

Proof. We provide a hypergraceful labeling for one possible decom-

position of Kp, where p = 4t + 1 for every positive integer t ≥ 2.
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We label the vertices of Kp as {0, 2, 4, 5, 8, 9, . . . , p + 3} and

the edge labels of Kp are obtained as the absolute difference of its

end vertex labels from {1, 2, 3, . . . , p + 3}. Let πp denote the

sequence of the corresponding edge labels. One can easily verify

that π9 = (15, 25, 34, 44, 53, 63, 73, 83, 92, 102, 111, 121). The sequence

π9 determines a 5-hypergraceful decomposition of K9 as given in

Figure 2.5.

For p ≥ 13, we claim that:

πp = (1r1, 2r2, 3r3, . . . , (p+ 3)rp+3), (2.2)

where ri =



































































































p− 4, i = 1, 2;

p− 5, i = 3, 4;

p− 6, i = 5;

p− 7, i = 6;

p− 8, i = 7;

p− i, 8 ≤ i ≤ p− 4;

4, i = p− 3, p− 2;

3, i = p− 1;

2, i = p, p+ 1;

1, i = p+ 2, p+ 3.

We prove this by induction on p.

For p = 13, from the vertex labels of K13, we have π13 =

(19, 29, 38, 48, 57, 66, 75, 85, 94, 104, 114, 123, 132, 142, 151, 161), which is
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Figure 2.5: 5-hypergraceful decomposition of K9

the same as Equation 2.2 when p = 13. Thus the result is true for

p = 13.

We now assume that the result is true for p− 4. That is,

πp−4 = (1p−8, 2p−8, 3p−9, 4p−9, 5p−10, 6p−11, 7p−12, 8p−12, 9p−13, . . . , (p−
8)4, (p− 7)4, (p− 6)4, (p− 5)3, (p− 4)2, (p− 3)2, (p− 2)1, (p− 1)1).

Consider Kp, since Kp = Kp−4 +K4, and the labels of the

four new vertices are p, p+1, p+2 and p+3, the sequence of edge

labels of the additional 4p− 10 edges is given by (14, 24, 34, . . . , (p−
8)4, (p−7)3, (p−6)2, (p−5)2, (p−4)2, (p−3)2, (p−2)3, (p−1)2, p2, (p+

1)2, (p + 2)1, (p + 3)1). Thus πp = (1p−4, 2p−4, 3p−5, 4p−5, 5p−6, 6p−7,

7p−8, 8p−8, 9p−9, . . . , (p−4)4, (p−3)4, (p−2)4, (p−1)3, p2, (p+1)2, (p+

2)1, (p+ 3)1). This proves Equation 2.2.

If ri denotes the number of repetitions of the label i in πp,
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then we have p−4 = r1 ≥ r2 ≥ r3 ≥ · · · ≥ rp+3 = 1 and
p+3
∑

i=1

ri =
(

p
2

)

.

Further, the maximum repetition of an edge label is p − 4. Hence

πp determines a (p − 4)-hypergraceful decomposition of Kp, where

p = 4t+ 1 for every positive integer t ≥ 2.

Lemma 2.2.3. The complete graph Kp is (p − 4)-hypergraceful, if

p = 4t+ 3 for every positive integer t ≥ 3.

Proof. It is sufficient to provide a hypergraceful labeling for one

possible decomposition of Kp, where p = 4t + 3 for every positive

integer t ≥ 3. We label the vertices of Kp as {0, 3, 4, 6, 8, 9,

. . . , p + 3} and the edge labels of Kp are obtained as the absolute

difference of its end vertex labels from {1, 2, 3, . . . , p+ 3}.
We claim that the sequence of the corresponding edge labels

πp = (1r1, 2r2, 3r3, . . . , (p+ 3)rp+3), (2.3)

where ri =























































































p− 4, 1 ≤ i ≤ 3;

p− 5, i = 4;

p− 6, i = 5, 6;

p− 8, i = 7;

p− i, 8 ≤ i ≤ p− 4;

4, i = p− 3;

3, i = p− 2, p− 1;

2, i = p;

1, i = p+ 1, p+ 2, p+ 3.
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We prove this by induction on p.

From the vertex labels we have π15 = (111, 211, 311, 410, 59,

69, 77, 87, 96, 105, 114, 124, 133, 143, 152, 161, 171, 181), which is the

same as Equation 2.3 when p = 15. Thus the result is true for

p = 15.

We now assume that the result is true for p− 4. That is,

πp−4 = (1p−8, 2p−8, 3p−8, 4p−9, 5p−10, 6p−10, 7p−12, 8p−12, 9p−13, . . . , (p−
8)4, (p− 7)4, (p− 6)3, (p− 5)3, (p− 4)2, (p− 3)1, (p− 2)1, (p− 1)1).

Since Kp = Kp−4 + K4, and the labels of the four new

vertices are p, p+ 1, p+ 2 and p+ 3, the sequence of edge labels of

the additional 4p− 10 edges is given by (14, 24, 34, . . . , (p− 8)4, (p−
7)3, (p−6)3, (p−5)2, (p−4)2, (p−3)3, (p−2)2, (p−1)2, p2, (p+1)1, (p+

2)1, (p+ 3)1). Thus πp = (1p−4, 2p−4, 3p−4, 4p−5, 5p−6, 6p−6, 7p−8, 8p−8,

9p−9, . . . , (p−4)4, (p−3)4, (p−2)3, (p−1)3, p2, (p+1)1, (p+2)1, (p+

3)1). This proves Equation 2.3.

If ri denotes the number of repetitions of the label i in πp,

then we have p−4 = r1 ≥ r2 ≥ r3 ≥ · · · ≥ rp+3 = 1 and
p+3
∑

i=1

ri =
(

p
2

)

.

Further, the maximum repetition of an edge label is p − 4. Hence

πp determines a (p − 4)-hypergraceful decomposition of Kp, where

p = 4t+ 3 for every positive integer t ≥ 3.

Lemma 2.2.4. The complete graph K11 is 7-hypergraceful.

Proof. In this case, we shall provide a hypergraceful labeling of the

complete graph K11 with respect to the 7-hypergraceful decompo-
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sition G1, G2, G3, G4, G5, G6 and G7. The hypergraceful labeling

of K11 is {0, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15} and the edge labels

obtained as the absolute differences of its end vertices are as follows:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},

{1, 2, 3, 4, 5, 6, 7, 8, 9},

{1, 2, 3, 4, 5, 6, 7},

{1, 2, 3, 4, 5, 6},

{1, 2, 3, 4} and

{1, 2, 3}.

Hence, K11 is 7-hypergraceful.

Lemma 2.2.5. The complete graph K7 is not 3-hypergraceful.

Proof. By Lemma 1.3.25 and Remark 1.3.26, it is easy to check that

the only possible 3-hypergraceful decompositions G1, G2, G3 of K7

with sizes (m1,m2,m3) are (1, 1, 19), (1, 3, 17), (1, 5, 15), (1, 7, 13),

(1, 9, 11), (3, 3, 15), (3, 5, 13), (3, 7, 11), (3, 9, 9), (5, 5, 11), (5, 7,

9) and (7, 7, 7). We prove that none of these twelve decompositions

have a 3-hypergraceful labeling of K7.

Case 1: (1, 1, 19).

In this case, we have to assign the labels to the vertices of

43



K7 from the set {0, 1, . . . , 19} such that the sequence of edge labels

is (13, 21, 31, . . . , 191). A possible set of labels of the vertices of K7

could be one from the two sets given in Table 2.1.

Vertex labels Edge labels Repetitions
{0, 1, 2, 6, 7, 16, 19} 6 2
{0, 1, 2, 6, 12, 16, 19} 10 2

Table 2.1: Vertex labeling of K7 for the decomposition (1, 1, 19)

In both the cases shown in Table 2.1, the number in the third column

violates the definition of 3-hypergracefulness of a graph.

Case 2: (1, 3, 17).

We have to assign the labels to the vertices of K7 from

the set {0, 1, . . . , 17} such that the sequence of edge labels is

(13, 22, 32, 41, 51, . . . , 171). A possible set of labels of the vertices of

K7 could be one from the five sets given in Table 2.2.

Vertex labels Edge labels Repetitions
{0, 1, 2, 8, 11, 14, 17} 9 2
{0, 1, 2, 6, 10, 14, 17} 4 3
{0, 1, 2, 6, 7, 14, 17} 6 2
{0, 1, 2, 3, 8, 13, 17} 5 2
{0, 1, 2, 3, 9, 13, 17} 8 2

Table 2.2: Vertex labeling of K7 for the decomposition (1, 3, 17)

In each of the cases shown in Table 2.2, the number in the third

column violates the definition of 3-hypergracefulness of a graph.

Case 3: (1, 5, 15).

In this case, we have to assign the labels to the vertices

of K7 from the set {0, 1, . . . , 15} such that the sequence of edge
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labels is (13, 22, 32, 42, 52, 61, 71, . . . , 151). A possible set of labels of

the vertices of K7 could be one from the four sets given in Table

2.3.

Vertex labels Edge labels Repetitions
{0, 1, 2, 4, 9, 12, 15} 11 2
{0, 1, 6, 8, 11, 13, 15} 7 3
{0, 1, 4, 5, 6, 13, 15} 9 2
{0, 1, 4, 5, 7, 13, 15} 8 2

Table 2.3: Vertex labeling of K7 for the decomposition (1, 5, 15)

In each of the cases shown in Table 2.3, the number in the third

column violates the definition of 3-hypergracefulness.

Case 4: (1, 7, 13).

Here, we have to assign the labels to the vertices of K7

from the set {0, 1, . . . , 13} such that the sequence of edge labels

is (13, 22, 32, 42, 52, 62, 72, 81, 91, . . . , 131). A possible set of labels of

the vertices of K7 could be one from the seven sets given in Table

2.4.

Vertex labels Edge labels Repetitions
{0, 1, 2, 3, 6, 9, 13} 3 3
{0, 1, 2, 6, 7, 10, 13} 6 3
{0, 1, 6, 7, 9, 11, 13} 6 3
{0, 1, 4, 6, 8, 11, 13} 7 3
{0, 1, 4, 5, 8, 11, 13} 3 3
{0, 1, 4, 5, 6, 11, 13} 5 3
{0, 1, 4, 5, 7, 11, 13} 6 3

Table 2.4: Vertex labeling of K7 for the decomposition (1, 7, 13)

In each of the cases shown in Table 2.4, the number in the third

column violates the definition of 3-hypergracefulness of a graph.
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Case 5: (1, 9, 11).

In this case, the available vertex labels for K7 is from the

set {0, 1, . . . , 11}, so that the sequence of edge labels is (13, 22, 32, 42,
52, 62, 72, 82, 92, 101, 111). A possible set of labels of the vertices of

K7 could be one from the four sets given in Table 2.5.

Vertex labels Edge labels Repetitions
{0, 1, 2, 6, 8, 9, 11} 2 3
{0, 1, 2, 5, 8, 9, 11} 3 3
{0, 1, 2, 3, 7, 9, 11} 2 3
{0, 1, 2, 3, 4, 9, 11} 2 3

Table 2.5: Vertex labeling of K7 for the decomposition (1, 9, 11)

None of the cases shown in Table 2.5, satisfy the definition of 3-

hypergracefulness of K7.

Case 6: (3, 3, 15).

In this case, we have to assign the labels to the vertices of

K7 from the set {0, 1, . . . , 15} such that the sequence of edge labels

is (13, 23, 33, 41, 51, . . . , 151). A possible set of labels of the vertices

of K7 could be one from the two sets given in Table 2.6.

Vertex labels Edge labels Repetitions
{0, 1, 2, 5, 9, 12, 15} 10 2
{0, 1, 2, 3, 7, 11, 15} 8 2

Table 2.6: Vertex labeling of K7 for the decomposition (3, 3, 15)

In both the cases shown in Table 2.6, the number in the third column

violates the definition of 3-hypergracefulness of a graph.

Case 7: (3, 5, 13).

In this case, the vertices of K7 can be labeled from the set
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{0, 1, . . . , 13}, so that the sequence of edge labels is (13, 23, 33, 42, 52,
61, 71, . . . , 131). A possible set of labels of the vertices of K7 could

be one from the four sets given in Table 2.7.

Vertex labels Edge labels Repetitions
{0, 1, 2, 3, 4, 9, 13} 9 2
{0, 1, 2, 3, 5, 9, 13} 8 2
{0, 1, 4, 6, 9, 11, 13} 9 2
{0, 1, 2, 5, 6, 10, 13} 8 2

Table 2.7: Vertex labeling of K7 for the decomposition (3, 5, 13)

In each of the four cases shown in Table 2.7, the number in the third

column violates the definition of 3-hypergracefulness of a graph.

Case 8: (3, 7, 11).

In this case, we have to assign the labels to the vertices of

K7 from the set {0, 1, . . . , 11} such that the sequence of edge labels

is (13, 23, 33, 42, 52, 62, 72, 81, 91 . . . , 111). A possible set of labels of

the vertices of K7 could be one from the four sets given in Table

2.8.

Vertex labels Edge labels Repetitions
{0, 1, 2, 5, 7, 8, 11} 6 3
{0, 1, 2, 4, 6, 8, 11} 2 4
{0, 1, 2, 6, 7, 8, 11} 6 3
{0, 1, 4, 6, 7, 9, 11} 5 3

Table 2.8: Vertex labeling of K7 for the decomposition (3, 7, 11)

In each of the cases shown in Table 2.8, the number in the third

column violates the definition of 3-hypergracefulness of a graph.

Case 9: (3, 9, 9).

In order to get the sequence of edge labels as (13, 23, 33, 42,
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52, 62, 72, 82, 92), we have to assign the labels to the vertices of K7

from the set {0, 1, 2, . . . , 9}, which is not possible as we cannot get

two edges with label 9.

Case 10: (5, 5, 11).

In this case, in order to get the sequence of edge labels as

(13, 23, 33, 43, 53, 61, 71, . . . , 111), we have to assign the labels from

the set {0, 1, . . . , 11} to the vertices of K7. A possible set of labels

of the vertices of K7 could be one from the two sets given in Table

2.9.

Vertex labels Edge labels Repetitions
{0, 1, 2, 3, 5, 7, 11} 2 4
{0, 1, 4, 6, 7, 9, 11} 6 2

Table 2.9: Vertex labeling of K7 for the decomposition (5, 5, 11)

In both the cases shown in Table 2.9, there is repetition of edge

labels and hence K7 is not 3-hypergraceful in this case also.

Case 11: (5, 7, 9).

To get the sequence of edge labels as (13, 23, 33, 43, 53, 62, 72,

81, 91), we have to assign the labels from the set {0, 1, . . . , 9} to the

vertices of K7. A possible set of labels of the vertices of K7 could

be one from the four sets given in Table 2.10.

Vertex labels Edge labels Repetitions
{0, 1, 2, 3, 4, 7, 9} 1 4
{0, 1, 2, 3, 5, 7, 9} 4 4
{0, 1, 2, 4, 6, 7, 9} 2 4
{0, 1, 2, 5, 6, 7, 9} 1 4

Table 2.10: Vertex labeling of K7 for the decomposition (5, 7, 9)
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In each of the cases shown in Table 2.10, the number in the third

column violates the definition of 3-hypergracefulness of a graph.

Case 12: (7, 7, 7).

In this case, to get the sequence of edge labels (13, 23, 33, 43,

53, 63, 73), we have to assign the labels to the vertices of K7 from

the set {0, 1, 2, . . . , 7}. One can easily see that no labeling from

this set can give three edges with label 7.

Thus we see that none of the above decompositions have a

3-hypergraceful labeling ofK7. HenceK7 is not 3-hypergraceful.

Theorem 2.2.6. The complete graph Kp is (p− 4)-hypergraceful if

and only if p ≥ 8.

Proof. Let p ≥ 8, then by Lemmas 2.2.1−2.2.4 the result follows.

Conversely, suppose Kp is (p − 4)-hypergraceful and let p < 8.

Therefore p = 5, 6 or 7. By Theorem 1.3.4, K5 is nongraceful;

by Theorem 1.3.28, K6 is not 2-hypergraceful and by Lemma 2.2.5,

K7 is not 3-hypergraceful. This gives a contradiction to our as-

sumption that Kp is (p − 4)-hypergraceful. Therefore p ≥ 8. This

completes the proof.

Lemma 2.2.7. The complete graph Kp is (p− 3)-hypergraceful, for

p ≥ 7.

Proof. We provide a hypergraceful labeling for one possible decom-

position of Kp, where p ≥ 7. We label the vertices of Kp as {0, 2, 5,
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6, 7, 8, 9, . . . , p+ 2} and the edge labels of Kp are obtained as the

absolute difference of its end vertex labels from {1, 2, 3, . . . , p+2}.
Let πp denote the sequence of the corresponding edge labels. We

claim that:

πp = (1r1, 2r2, 3r3, . . . , (p+ 2)rp+2), (2.4)

where ri =



















































p− 3, i = 1, 2;

p− 4, i = 3;

p− 5, i = 4;

p− i, 5 ≤ i ≤ p− 2;

2, i = p− 1, p;

1, i = p+ 1, p+ 2.

We prove this by induction on p.

From the vertex labeling we have π7 = (14, 24, 33, 42, 52, 62,

72, 81, 91), which is the same as Equation 2.4 when p = 7. Thus the

result is true for p = 7.

We now assume that the result is true for p − 1. That

is, πp−1 = (1p−4, 2p−4, 3p−5, 4p−6, 5p−6, 6p−7, 7p−8, . . . , (p − 3)2, (p −
2)2, (p− 1)2, p1, (p+ 1)1).

Now consider Kp, since Kp = Kp−1 +K1, and the label of

the new vertex is (p+2), the sequence of edge labels of the additional

p− 1 edges is given by (11, 21, 31, . . . , (p− 4)1, (p− 3)1, p1, (p+ 2)1).

Thus πp = (1p−3, 2p−3, 3p−4, 4p−5, 5p−5, 6p−6, . . . , (p−3)3, (p−2)2, (p−
1)2, p2, (p+ 1)1, (p+ 2)1). This proves Equation 2.4.
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If ri denotes the number of repetitions of the label i in πp,

then we have p−3 = r1 ≥ r2 ≥ r3 ≥ · · · ≥ rp+2 = 1 and
p+2
∑

i=1

ri =
(

p
2

)

.

Further, the maximum repetition of an edge label is p − 3. Hence

πp determines a (p − 3)-hypergraceful decomposition of Kp, where

p ≥ 7.

Lemma 2.2.8. The complete graph K6 is 3-hypergraceful.

Proof. We provide one 3-hypergraceful labeling of K6, given by {0,
1, 3, 4, 5, 7}. One can easily verify that the corresponding sequence

of induced edge labels is (13, 23, 33, 43, 51, 61, 71). Therefore the de-

composition G1, G2 and G3 of K6 with sizes (m1,m2,m3) is (4, 4,

7) and hence the proof.

Theorem 2.2.9. The complete graph Kp is (p−3)-hypergraceful for

p ≥ 4.

Proof. By Theorems 1.3.4, 1.3.28 and Lemmas 2.2.7 and 2.2.8, the

result follows.

Theorem 2.2.10. The complete graph Kp is (p− 2)-hypergraceful,

for p ≥ 3.

Proof. It is sufficient to provide a hypergraceful labeling for one

possible decomposition of Kp, where p ≥ 3. We label the vertices of

Kp as {0, 2, 3, 4, 5, . . . , p} and the edge labels of Kp are obtained
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as the absolute difference of its end vertex labels from {1, 2, 3, . . . ,
p}. Let πp denote the sequence of the corresponding edge labels.

We claim that:

πp = (1r1, 2r2, 3r3, . . . , (p+ 2)rp), (2.5)

where ri =



















p− 2, i = 1;

p− i, 2 ≤ i ≤ p− 1;

1, i = p.

We prove this by induction on p.

From the vertex labels we have π3 = (11, 21, 31), which is

the same as Equation 2.5 when p = 3. Thus the result is true for

p = 3.

We now assume that the result is true for p− 1. That is,

πp−1 = (1p−3, 2p−3, 3p−4, . . . , (p− 2)1, (p− 1)1).

Since Kp = Kp−1+K1, and the label of the new vertex is p,

the sequence of edge labels of the additional p− 1 edges is given by

(11, 21, 31, . . . , (p−3)1, (p−2)1, p1). Thus πp = (1p−2, 2p−2, 3p−3, 4p−4,

. . . , (p− 3)3, (p− 2)2, (p− 1)1, p1). This proves Equation 2.5.

If ri denotes the number of repetitions of the label i in πp,

then we have p− 2 = r1 ≥ r2 ≥ r3 ≥ · · · ≥ rp = 1 and
p
∑

i=1

ri =
(

p
2

)

.

Further, the maximum repetition of an edge label is p − 2. Hence

πp determines a (p − 2)-hypergraceful decomposition of Kp, where

p ≥ 3.
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Theorem 2.2.11. The complete graph Kp, p ≥ 2 is (p− 1)-hyper-

graceful.

Proof. It suffices to provide a (p−1)-hypergraceful labeling ofKp, p ≥
2. We label the vertices of Kp from the set {0, 1, 2, . . . , p − 1}.
It can be easily verified that the sequence of edge labels πp =

(1p−1, 2p−2, 3p−3, . . . , (p− 2)2, (p− 1)1). Hence Kp, p ≥ 2 is (p− 1)-

hypergraceful.

2.3 3-HYPERGRACEFUL DECOMPOSITION OF K5

In this section, we shall provide all nonisomorphic

3-hypergraceful decompositions of the complete graph of order 5.

By Lemma 1.3.25 and Remark 1.3.26, the possible 3-hypergraceful

decompositions G1, G2, G3 of K5 with sizes (m1,m2,m3) are (1, 1,

8), (1, 2, 7), (1, 3, 6), (1, 4, 5), (2, 2, 6), (2, 3, 5), (2, 4, 4) and (3,

3, 4). Out of these the possible four decompositions of K5 having a

3-hypergraceful labeling are given in Table 2.11.

Case Decomposition 3-Hypergraceful labeling
1 (1, 2, 7) {0, 4, 5, 6, 7}
2 (1, 3, 6) {0, 3, 4, 5, 6}
3 (1, 4, 5) {0, 1, 3, 4, 5}
4 (2, 3, 5) {0, 2, 3, 4, 5}

Table 2.11: 3-hypergraceful labeling of K5

In each of these cases, it is easy to check that the given

labeling of K5 is a 3-hypergraceful labeling.
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Case 1: (1, 2, 7).

Since m1 = 1, m2 = 2 and m3 = 7, the corresponding edge

sequence is given by (13, 22, 31, 41, 51, 61, 71). Hence, there are three

ways to get edge label 1; two ways to get edge label 2; one way to

get edge labels 3, 4, 5, 6 and 7, so there are six ways to get the edge

labels of G3. Having chosen the graph G3, now there are two ways

to get edge label 1 and one way to get edge label 2, so there are two

ways to get edge labels 1 and 2 of G2. Having chosen the graphs

G3 and G2, there is only one way to get the graph G1. Therefore

there are in all twelve possible 3-hypergraceful decompositions of

K5. Out of these only three are nonisomorphic. The only possible

nonisomorphic 3-hypergraceful decompositions (1, 2, 7) of K5 with

hypergraceful labeling is shown in Figure 2.6.

b
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b b
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4 7

5 6

b
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4 7

5 6
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b b

0

4 7

5 6

Figure 2.6: Nonisomorphic 3-hypergraceful labelings of K5 for (1, 2, 7)

Figure 2.7 gives the possible nonisomorphic decomposi-

tions G1, G2, G3 of K5 with sizes (1, 2, 7).

Case 2: (1, 3, 6)

Here m1 = 1, m2 = 3 and m3 = 6 and the corresponding

sequence of edge labels is (13, 22, 32, 41, 51, 61). Therefore, there are

three ways to get edge label 1; two ways to get edge label 2; two
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Figure 2.7: Nonisomorphic 3-decompositions of K5 with sizes (1, 2, 7)

ways to get edge label 3 and one way to get edge labels 4, 5 and

6, so there are twelve ways to get edge labels of G3. Having chosen

the graph G3, there are now two ways to get edge label 1; one way

to get edge labels 2 and 3 so there are two ways to get edge labels

1, 2 and 3 for G2. Having chosen the graphs G3 and G2, there is

only one way to get the graph G1. Therefore, in this case, there are

twenty-four possible 3-hypergraceful decompositions of K5. Out of

these only nine are nonisomorphic. The only possible nonisomorphic

3-hypergraceful decompositions (1, 3, 6) of K5 with hypergraceful

labeling is shown in Figure 2.8.

Figure 2.9 gives the possible nonisomorphic decomposi-

tions G1, G2, G3 of K5 with sizes (1, 3, 6).

Case 3: (1, 4, 5)

In this case, the edge sequence is given by (13, 22, 32, 42, 51).

Hence, there are forty-eight ways to get the edge labels of G1,

G2 and G3. Out of these there are only fifteen nonisomorphic 3-

hypergraceful decompositions of K5.
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Figure 2.8: Nonisomorphic 3-hypergraceful labeling of K5 for (1, 3, 6)
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Figure 2.9: Nonisomorphic 3-decompositions of K5 with sizes (1, 3, 6)

The possible nonisomorphic decompositions G1, G2, G3 of

K5 with sizes (1, 4, 5) is shown in Figure 2.10.
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Figure 2.10: Nonisomorphic 3-decompositions of K5 with sizes (1, 4, 5)

Case 4: (2, 3, 5)

In this case, the corresponding edge sequence is (13, 23, 32,

41, 51). Therefore, there are seventy-two ways to get the edge la-

bels of G1, G2 and G3. Out of these there are only twenty-seven

nonisomorphic 3-hypergraceful decompositions of K5.
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The possible nonisomorphic decompositions G1, G2, G3 of

K5 with sizes (2, 3, 5) is shown in Figure 2.11.
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Figure 2.11: Nonisomorphic 3-decompositions of K5 with sizes (2, 3, 5)

Remark 2.3.1. In general finding nonisomorphic k-hypergraceful

decompositions of Kp, p ≥ 5 seems to be a difficult problem.
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CHAPTER 3

ON (k, d)-SKOLEM GRACEFUL GRAPHS∗

3.1 INTRODUCTION

While studying the structure of Steiner triple systems,

Skolem [59] considered the following problem: Is it possible to dis-

tribute the numbers 1, 2, . . . , 2n into n pairs (ai, bi) such that we

have bi − ai = i for i = 1, 2, . . . , n?

In the sequel, a set of pairs of this kind is called a 1, +1

system because the difference bi− ai begins with 1 and increases by

1 when i increases by 1.

Example 3.1.1. For n = 5 the set of numbers is {1, 2, . . . , 10}.
Now {(1,2), (4,6), (7,10), (5,9), (3,8)} is a 1, +1 system.

One can see easily that such a system does not always exist.

∗The content of this chapter has been published in Electronic Notes in Discrete Mathematics

48 (2015) 81–88.



Example 3.1.2. When n = 3, the set of numbers is {1, 2, 3, 4, 5,
6}, then possible number of pairs are as follows, showing that 1, +1

system does not exist for n = 3.

(1,2), (3,4), (5,6) and the corresponding differences are 1, 1, 1.

(2,3), (4,5), (1,6) and the corresponding differences are 1, 1, 5.

(1,3), (4,6), (2,5) and the corresponding differences are 2, 2, 3.

(2,4), (3,6), (1,5) and the corresponding differences are 2, 3, 4.

(3,5), (1,4), (2,6) and the corresponding differences are 2, 3, 4.

Hence the following question naturally arises: For which n

such a 1, +1 system of pairs exist?

Skolem [59] proved that a 1, +1 system exists if and only

if n ≡ 0 or 1(mod 4). A 1, +1 system is also known as Skolem

sequence, which is defined as follows: Let < Ci > be a sequence of

2n terms, where 1 ≤ Ci ≤ n. If each number i occurs exactly twice

in the sequence and |j2 − j1| = i if i = Cj1 = Cj2 then < Ci > is

called a Skolem sequence.

This concept was used by Lee and Shee [41] to introduce

the notion of Skolem gracefulness of graphs. A Skolem graceful

labeling of a graph G = (V,E) is a bijection f : V → {1, 2, . . . , p}
such that the induced labeling gf : E → {1, 2, . . . , q} defined by

gf(uv) = |f(u) − f(v)| ∀uv ∈ E is also a bijection. If such a

labeling exists, then the graph G is called a Skolem graceful graph.
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If a graph G with p vertices and q edges is graceful, then q ≥ p− 1,

while if it is Skolem graceful, then q ≤ p− 1. Thus, as noted in [41],

Skolem graceful labelings nearly complement graceful labelings, and

a graph with q = p−1 is graceful if and only if it is Skolem graceful.

A sequence (a1, a2, . . . , an) of integers 1, 2, . . . , n is called

a (2,n) Langford sequence if for ai appearing first at the ith place,

the next appearance of ai is at (ai + i+ 1)th place [40].

Example 3.1.3. The (2, 3) Langford sequence is (3, 1, 2, 1, 3, 2) and

the (2, 4) Langford sequence is (4, 1, 3, 1, 2, 4, 3, 2).

Priday [45] and Davies [26] have proved that a (2, n) Lang-

ford sequence exists if and only if n ≡ 0 or 3(mod 4). Gillespie

and Utz [30] generalized the concept of Langford sequence as fol-

lows: Let k and n be positive integers with k ≥ 2. The sequence

α = (b1, b2, . . . , bkn) is a (k, n) Langford sequence (or an (k, n)-

sequence) provided that it consists of k appearances of i (1 ≤ i ≤ n)

and consecutive occurrences of i are separated by i elements of the

sequence.

Priday [45] and Davies [26] introduced the concept of a per-

fect sequence. A sequence of m consecutive positive integers {d, d+
1, . . . , d+m− 1} is said to be perfect if the integers {1, 2, . . . , 2m}
can be arranged into disjoint pairs {(ai, bi) : 1 ≤ i ≤ m} so that

{bi − ai : 1 ≤ i ≤ m} = {d, d+ 1, . . . , d+m− 1}.

Motivated by this, we define (k, d)-Skolem graceful graph as follows:
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Definition 3.1.4. A graph G = (V,E) is said to be (k, d)-Skolem

graceful if there exists a bijection f : V (G) → {1, 2, . . . , p} such that

the induced edge labeling gf defined by gf(uv) = |f(u)−f(v)| ∀uv ∈
E, is a bijection from E to {k, k+ d, . . . , k+(q− 1)d}, where k and

d are positive integers. Such a labeling f is called (k, d)-Skolem

graceful labeling of G.

In this chapter, we observe that a (1, 1)-Skolem graceful

labeling of G is a Skolem graceful labeling. A (1, 1)-Skolem graceful

labeling of nK2 gives a Skolem sequence, a (2, 1)-Skolem graceful

labeling of nK2 gives a (2, n) Langford sequence and a (k, 1)-Skolem

graceful labeling of nK2 gives a perfect sequence. We present several

basic results on (k, d)-Skolem graceful graphs and prove that nK2

is (2, 1)-Skolem graceful if and only if n ≡ 0 or 3(mod 4). We also

prove that nK2 is (1,2)-Skolem graceful.

3.2 (k, d)-SKOLEM GRACEFUL GRAPHS

It follows from the definition that if G is (k, d)-Skolem grace-

ful, then q ≤ p− 1. For any two disjoint subsets A and B of V , we

denote by m(A,B) the number of edges of G with one end in A and

the other end in B. Following is a necessary condition for a graph

G to be (k, d)-Skolem graceful.

Theorem 3.2.1. Let k and d be two positive integers which are not

simultaneously even. If G is (k, d)-Skolem graceful, then V (G) can
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be partitioned into two subsets Vo and Ve satisfying the following

conditions.

1. m(Vo, Ve) = ⌊q+1
2 ⌋ if k and d are both odd.

2. m(Vo, Ve) = ⌊q2⌋ if k is even and d is odd.

3. m(Vo, Ve) = q if k is odd and d is even.

Proof. Let f be a (k, d)-Skolem graceful labeling of G. Let Vo =

{u ∈ V (G) : f(u) is odd} and Ve = V (G) − Vo. Then ∀uv ∈ E,

gf(uv) is odd if and only if u ∈ V0 and v ∈ Ve or vice versa. Hence

the result follows.

Definition 3.2.2. A graph G is said to be arbitrarily Skolem grace-

ful if G is (k, d)-Skolem graceful for all possible values of k and d.

In the following theorem we investigate the existence of

(k, d)-Skolem graceful labeling for nK2.

Theorem 3.2.3. If the graph nK2 is (k, d)-Skolem graceful, then

one of the following holds.

1. If n ≡ 0(mod 4), then k and d can be even or odd.

2. If n ≡ 1(mod 4), then k is odd.

3. If n ≡ 2(mod 4), then d is even.

4. If n ≡ 3(mod 4), then k + d is odd.
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Proof. Let f be a (k, d)-Skolem graceful labeling of nK2. Let ei =

uivi be the components of nK2 and let f(ui) = ai, f(vi) = bi and

bi > ai, 1 ≤ i ≤ n. Since the set of vertex labels is {1, 2, . . . , 2n} and

the set of edge labels is {k, k + d, . . . , k + (n− 1)d}, we have

n
∑

i=1

(bi − ai) = k + (k + d) + · · ·+ k + (n− 1)d. (3.1)

n
∑

i=1

bi +
n

∑

i=1

ai = 1 + 2 + · · ·+ 2n = n(2n+ 1). (3.2)

On adding (3.1) and (3.2) we have

n
∑

i=1

bi =
1
4 [2n(2n+ 1) + 2nk + n(n− 1)d].

Thus 4 divides [4n2+2n+2nk+n(n−1)d] and the result follows.

Theorem 3.2.4. The graph nK2 is (1, 2)-Skolem graceful.

Proof. Let ei = aibi be the edges of nK2 with bi > ai, 1 ≤ i ≤ n. We

define the vertex labeling f as follows: For i = 1, 2, . . . , n,

f(ai) = i

and

f(bi) = 2n+ 1− i.

The edge induced function gf is defined by gf(ei) = bi − ai = 2n +

1 − 2i for 1 ≤ i ≤ n. It can be easily verified that gf(E) has

the required properties to qualify f to be a (1, 2)-Skolem graceful

labeling of nK2. This completes the proof.

64



Example 3.2.5. In Figure 3.1 we give a (1, 2)-Skolem graceful la-

beling of 6K2 and 7K2.
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b

b

b

b

b

1 2 3 4 5 6

789101112

1 2 3 4 5 6 7

891011121314

6K2

7K2

Figure 3.1: (1, 2)-Skolem graceful labeling of 6K2 and 7K2

Theorem 3.2.6. The graph nK2 is (2, 1)-Skolem graceful if and

only if n ≡ 0 or 3(mod 4).

Proof. If nK2 is (2, 1)-Skolem graceful, then it follows from Theo-

rem 3.2.3 that n ≡ 0 or 3(mod 4). Conversely, let n ≡ 0 or 3(mod

4). Let ei = aibi be the edges of nK2 with bi > ai, 1 ≤ i ≤ n.

Case 1. n ≡ 0(mod 4).

We define the vertex labeling f as follows:
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f(ai) =























i, for 1 ≤ i ≤ n
2 ;

n
2 − 2 + i, for n

2 + 1 ≤ i ≤ 3n
4 ;

n
2 − 1 + i, for 3n

4 + 1 ≤ i ≤ n;

f(bi) =















































































n− 1− i, for 1 ≤ i ≤ n
4 − 1;

5n
4 , for i = n

4 ;

n− i, for n
4 + 1 ≤ i ≤ n

2 − 1;

3n
2 − 1, for i = n

2 ;

2n, for i = n
2 + 1;

5n
2 − i, for n

2 + 2 ≤ i ≤ n− 1;

2n− 1, for i = n.

Case 2. n ≡ 3(mod 4).

In this case, we define the vertex labeling f as follows:

f(ai) =























i, for 1 ≤ i ≤ n+1
2 ;

n+1
2 − 2 + i, for n+3

2 ≤ i ≤ 3(n+1)
4 ;

n+1
2 − 1 + i, for 3(n+1)

4 + 1 ≤ i ≤ n;
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f(bi) =



































































n− i, for 1 ≤ i ≤ n−3
4 ;

5n+1
4 , for i = n+1

4 ;

n+ 1− i, for n+1
4 + 1 ≤ i ≤ n−1

2 ;

3(n+1)
2 , for i = n+1

2 ;

3n+1
2 , for i = n+3

2 ;

5(n+1)
2 − i, for n+3

2 + 1 ≤ i ≤ n.

In each case, it can be easily verified that the induced edge function

gf defined by gf(ei) = bi−ai has the required properties to qualify f

to be a (2, 1)-Skolem graceful labeling of nK2 and the cases exhaust

all the possibilities. This completes the proof.

Based on the (k, d)-Skolem graceful labeling of nK2, we

define a (k, d)-Skolem sequence as follows:

Definition 3.2.7. Consider the (k, d)-Skolem graceful labeling of

nK2 and construct a sequence 〈si〉, 1 ≤ si ≤ 1 + (n − 1)d, of 2n

terms as follows: If |j2 − j1| = l, where j1 and j2 are the vertex

labels of a component of nK2, then let sj1 = sj2 = l− (k− 1). Such

a sequence is called a (k, d)-Skolem sequence.

From the above construction, we observe that a (1, 1)-

Skolem sequence corresponds to a Skolem sequence, a (2, 1)-Skolem

sequence corresponds to a (2, n) Langford sequence and a (k, 1)-

Skolem sequence is a perfect sequence.
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Example 3.2.8. Figure 3.2 gives (2, 1)-Skolem graceful labeling of

7K2 and 8K2.
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Figure 3.2: (2, 1)-Skolem graceful labeling of 7K2 and 8K2

Thus the (2,7) Langford sequence is (4, 6, 1, 7, 1, 4, 3, 5,

6, 2, 3, 7, 2, 5) and the (2,8) Langford sequence is (4, 6, 1, 7, 1, 4,

8, 5, 6, 2, 3, 7, 2, 5, 3, 8).

68



CHAPTER 4

ON (k, d)-HOOKED SKOLEM GRACEFUL

GRAPHS

4.1 INTRODUCTION

Skolem [59] proved that a Skolem sequence does not exist

if n ≡ 2 or 3(mod 4). O’Keefe [43] extended the concept of Skolem

sequence for n ≡ 2 or 3(mod 4) by showing that the numbers

1, 2, . . . , 2n−1, 2n+1 can be distributed into n disjoint pairs (ai, bi)

such that bi = ai + i for i = 1, 2, . . . , n. Motivated by this, Shal-

aby [42] defined the notion of hooked Skolem sequences. A hooked

Skolem sequence (HS) of order n is a sequence (c1, c2, . . . , c2n+1) of

2n+ 1 integers satisfying the following conditions:

1. For every r ∈ {1, 2, . . . , n} there exist exactly two elements ci

and cj such that ci = cj = r.

2. If ci = cj = r with i < j, then j − i = r.

3. c2n = 0.



In [53], a hooked sequence is defined as a sequence of m

consecutive positive integers {d, d + 1, . . . , d + m − 1} for which

there is a partition of the set {1, 2, . . . , 2m−1, 2m+1} into m pairs

(ai, bi) such that the m numbers bi − ai, 1 ≤ i ≤ m are all of the

integers d, d+ 1, . . . , d+m− 1. Where ai and bi are interpreted as

the two positions in the sequence where bi−ai appears. For example

48574365387 ∗ 6 and 64758463573 ∗ 8 are hooked sequences where

d = 3 and m = 6.

In [57], a hooked Skolem graceful graph is defined as fol-

lows: A (p, q) graph G = (V,E) is said to be hooked Skolem graceful

if there exists a bijection f : V (G) → {1, 2, . . . , p − 1, p + 1} such

that the induced edge labeling gf : E → {1, 2, 3, . . . , q} defined by

gf(uv) = |f(u)− f(v)|, ∀uv ∈ E is also bijective. Such a labeling

f is called hooked Skolem graceful labeling of G.

In this chapter, we introduce the notion of (k, d)-hooked

Skolem graceful graph as follows:

Definition 4.1.1. A (p, q) graph G = (V,E) is said to be (k, d)-

hooked Skolem graceful if there exists a bijection f : V (G) →
{1, 2, . . . , p− 1, p+1} such that the induced edge labeling gf : E →
{k, k + d, k + 2d, . . . , k + (q − 1)d} defined by gf(uv) = |f(u) −
f(v)|, ∀uv ∈ E is also bijective, where k and d are positive integers.

Such a labeling f is called (k, d)-hooked Skolem graceful labeling of

G.
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We observe that when k = d = 1, this notion coincides

with that of hooked Skolem graceful labeling of the graph G [57].

In the next section we present some basic results and prove

that nK2 is (2, 1)-hooked Skolem graceful if and only if n ≡ 1 or 2( mod

4).

4.2 (k, d)-HOOKED SKOLEM GRACEFUL GRAPHS

It follows from the definition that ifG is (k, d)-hooked Skolem

graceful, then q ≤ p − 1. For any two disjoint subsets A and B of

V , we denote by m(A,B) the number of edges of G with one end in

A and the other end in B. Following is a necessary condition for a

graph G to be (k, d)-hooked Skolem graceful.

Theorem 4.2.1. Let k and d be two positive integers which are

not simultaneously even. If G is (k, d)-hooked Skolem graceful, then

V (G) can be partitioned into two subsets Vo and Ve satisfying the

following conditions.

1. m(Vo, Ve) = ⌊q+1
2 ⌋ if k and d are both odd.

2. m(Vo, Ve) = ⌊q2⌋ if k is even and d is odd.

3. m(Vo, Ve) = q if k is odd and d is even.

Proof. Let f be a (k, d)-hooked Skolem graceful labeling of G. Let

Vo = {u ∈ V (G) : f(u) is odd} and Ve = V (G)−Vo. Then ∀uv ∈ E,
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gf(uv) is odd if and only if u ∈ Vo and v ∈ Ve or vice versa. Hence

the result follows.

In the following theorem, we investigate the existence of

(k, d)-hooked Skolem graceful labeling for nK2.

Theorem 4.2.2. If nK2 is (k, d)-hooked Skolem graceful, then one

of the following holds.

1. n ≡ 1(mod 4), then k is even.

2. n ≡ 2(mod 4), then d is odd.

3. n ≡ 3(mod 4), then both k and d are even or they are odd.

Proof. Let f be a (k, d)-hooked Skolem graceful labeling of nK2. Let

ei = uivi be the components of nK2 and let f(ui) = ai, f(vi) = bi

and bi > ai, 1 ≤ i ≤ n. Since the set of vertex labels is {1, 2, . . . , 2n−
1, 2n+ 1} and the set of edge labels is {k, k + d, . . . , k + (n− 1)d},
we have

n
∑

i=1

(bi − ai) = k + (k + d) + · · ·+ k + (n− 1)d (4.1)

n
∑

i=1

bi +
n

∑

i=1

ai = 1 + 2 + · · ·+ (2n− 1) + (2n+ 1)

= n(2n− 1) + (2n+ 1)

(4.2)
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On adding (4.1) and (4.2) we have,

n
∑

i=1

bi =
1

4

{

2nk + 4n2 + 2n+ 2 + n(n− 1)d
}

Thus 4 divides
{

2nk + 4n2 + 2n+ 2 + n(n− 1)d
}

and the

result follows.

The following theorem gives the necessary and sufficient

condition for nK2 to be (2, 1)-hooked Skolem graceful.

Theorem 4.2.3. The graph nK2 is (2, 1)-hooked Skolem graceful if

and only if n ≡ 1 or 2(mod 4).

Proof. If nK2 is (2, 1)-hooked Skolem graceful, then it follows from

Theorem 4.2.2 that n ≡ 1 or 2(mod 4).

Conversely, let n ≡ 1 or 2(mod 4). Let ei = aibi be the edges of

nK2 with bi > ai, 1 ≤ i ≤ n.

Case 1: n ≡ 2(mod 4).

Let n = 4r− 2, where r is a positive integer. For r = 1, 2

and 3, the (2, 1)-hooked Skolem graceful labeling of 2K2, 6K2 and

10K2 are given in Figure 4.1.
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Figure 4.1: (2, 1)-hooked Skolem graceful labeling of 2K2, 6K2 and 10K2

For r ≥ 4, we define the vertex labeling f as follows:

f(ai) =



















































i, for i = 1, 2;

i+ 1, for 3 ≤ i ≤ 2r − 2;

n+4
2 , for i = 2r − 1;

3n+2
4 , for i = 2r;

n−4
2 + i, for 2r + 1 ≤ i ≤ n.
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f(bi) =



























































































































3, for i = 1;

n+2
2 , for i = 2;

n+ 2− i, for 3 ≤ i ≤ r;

n+ 1− i, for r + 1 ≤ i ≤ 2r − 3;

3n
2 , for i = 2r − 2;

3n−2
2 , for i = 2r − 1;

7n−2
4 , for i = 2r;

2n+ 1, for i = 2r + 1;

5n+4
2 − i, for 2r + 2 ≤ i ≤ 3r;

5n+2
2 − i, for 3r + 1 ≤ i ≤ n.

Case 2: n ≡ 1(mod 4).

Let n = 4r − 3, where r is a positive integer. For r = 1

and 2 the (2, 1)-hooked Skolem graceful labelings of K2 and 5K2 are

given in Figure 4.2.

For r ≥ 3, we define the vertex labeling f as follows:

f(ai) =























i, for 1 ≤ i ≤ 2r − 1;

n−3
2 + i, for 2r ≤ i ≤ 3r − 2;

n−1
2 + i, for 3r − 1 ≤ i ≤ n;
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Figure 4.2: (2, 1)-hooked Skolem graceful labeling of K2 and 5K2

f(bi) =



































































n− i, for 1 ≤ i ≤ r − 1;

n− 1 + i, for i = r, n;

n+ 1− i, for r + 1 ≤ i ≤ 2r − 2;

3n+1
2 , for i = 2r − 1;

2n+ 1, for i = 2r;

5n+1
2 − i, for 2r + 1 ≤ i ≤ n− 1.

In each case, it can be easily verified that the induced edge function

gf defined by gf(ei) = bi−ai has the required properties to qualify f

to be a (2, 1)-hooked Skolem graceful labeling of nK2 and the cases

exhaust all the possibilities. This completes the proof.
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CHAPTER 5

A NEW MEASURE FOR GRACEFULNESS

OF GRAPHS∗†

5.1 INTRODUCTION

Bloom and Golomb considered two interesting and signifi-

cant problems. One is to find largest graceful subgraph of the com-

plete graph, which led to the limitation of the Design of a Commu-

nication Network and the other is to increase the maximum vertex

label so that the induced edge labels are distinct, which resulted in

finitely many counter examples to a “theorem” of S. Picard which

was relied upon (erroneously) for some 35 years in the field of X-ray

diffraction crystallography [35].

The second problem led to the concept of gracefulness of a

graph. In [24], the gracefulness grac(G) of a graph G with V (G) =

{v1, v2, . . . , vp} without isolates is defined as the smallest positive

integer k for which it is possible to label the vertices of G with
∗The content of this chapter has been published in Electronic Notes in Discrete Mathematics

48 (2015) 275–280.
†The content of this chapter to appear in Lecture Notes in Computer Science.



distinct elements from the set {0, 1, . . . , k} in such a way that when

an edge is labeled with the absolute difference of the labels of its

end vertices, then distinct edges receive distinct labels. Obviously

grac(G) ≥ q and grac(G) = q if and only if G is graceful. Thus

grac(G) gives a measure of gracefulness of G.

Motivated by this, in this chapter, we define a new mea-

sure of gracefulness of graphs and determine the same for some

families of nongraceful graphs. We prove that there are infinitely

many nongraceful graphs G with m(G) = q − 1. We give necessary

conditions for a (p, q)-eulerian graph and the complete graph Kp to

have m-gracefulness q − 1 and q − 2. Using this, we prove that K5

is the only complete graph to have m-gracefulness q − 1. We also

give an upper bound for the highest possible vertex label of Kp if

m(Kp) = q − 2 and hence prove that m(K6) = 13 = q − 2, which is

also shown in optimal Golomb ruler [21].

Definition 5.1.1. Let G be a (p, q) graph. Let f : V (G) → N∪{0}
be an injection such that the edge induced function gf defined on

E by gf(uv) = |f(u) − f(v)| is also injective. Let c(f) = max {i :
1, 2, . . . , i are edge labels under f}. Let m(G) = maxfc(f), where

the maximum is taken over all f . Then m(G) is called the m-

gracefulness of G, the labeling f is called the m-graceful labeling of

G and the graph G is said to be m-graceful.

Example 5.1.2. Consider the triangular snakeHk on 2k+1 vertices

where k is a positive integer. It is known that Hk is nongraceful
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for k ≡ 2 or 3(mod 4). The labelings of Hk in Figure 5.1 gives

m(Hk) = 3k − 1 = q − 1 and grac(Hk) = 3k + 1 = q + 1 for k =2,

3, 6.

b b b

b b

b b b

b b

b

b

b b b

b b

b

b

b b

b b

b

b

1 0 7

4 5

7 0 10 4

3 8 5

8 3 6 0 19 18 5

15 14 16 2 4 9

H2

H3

H6

Figure 5.1: m-graceful labelings of triangular snakes Hk for k = 2, 3, 6

This new measurem(G) determines how closeG is to being

graceful. We denote by MG(f) and MG(gf), the largest vertex label

and the largest induced edge label respectively, received by G under

f . Note that the function h : V → N defined by h(v) = MG(f) −
f(v) ∀v ∈ V (G) is also an injective vertex labeling of the graph G,

with the same set of induced edge labels gf(E). We therefore assume

without loss of generality that 0 ∈ f(V ). Also note that, MG(f) ≥
grac(G) and ifG is a graceful graph, thenm(G) = q,MG(f) = q and

MG(gf) = q. One may observe that grac(G) measures gracefulness
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of the graph G from above q, whereas m(G) measures gracefulness

of G from below q.

5.2 m-GRACEFULNESS OF A GRAPH

In this section, we focus our study on m(G) for nongraceful

graphs.

All connected graphs of order at most four are known to

be graceful. There are exactly three connected nongraceful graphs

of order five and for each of them m(G) = q−1 and it is known that

grac(G) = q+1. These three graphs with appropriate labelings for

grac(G) and m(G) are given in Figure 5.2. If the label of a vertex is

(a, b), then a is the label corresponding to m(G) and b is the label

corresponding to grac(G).

b b

b bb

b
(0,0)

(2,1) (11,11)

(7,4) (8,9)

b b

b bb

b
(0,0)

(3,1) (6,6)

(4,5) (2,3)

K5 C5

b

b

b

b

b

(0,0)

(1,1) (7,3)

(4,7) (2,5)

F2

Figure 5.2: The three connected nongraceful graphs of order 5
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The following theorem shows that there are infinitely many

nongraceful graphs G with m(G) = q − 1.

Theorem 5.2.1. There exist infinitely many nongraceful (p, q)-graphs

having m-gracefulness q − 1 and grac q + 1.

Proof. Consider the cycle C5 having vertex set {v1, v2, v3, v4, v5} with
two chords v1v3 and v3v5 as shown in Fig. 5.3.

b

b b

b b

v3

v1

v2 v4

v5

Figure 5.3: C5 with 2 chords at a common vertex

For k = 1, 2, . . . , construct graphs Gk by inserting (2k−1)

vertices v6, v7, . . . , v2k+4 and joining each of them to v1 and v5. Then

Gk is an eulerian graph with order 2k+4 and size 4k+5 as shown in

Fig. 5.4 and by Theorem 1.3.7, it is nongraceful. Hence m(Gk) < q.

Now consider the labeling f : V (Gk) → N defined by

f(vi) =



















































i− 1 if i = 1, 2

2k + 4 if i = 3

k + 2 if i = 4

4k + 6 if i = 5

i− 4 if 6 ≤ i ≤ k + 5

i− 3 if k + 6 ≤ i ≤ 2k + 4
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b

b b

b b

v3

v1

v2 v4

v5
b

b

b

b

b

...

v6

v7

v8

v2k+3

v2k+4

Figure 5.4: Nongraceful eulerian graph

It can be easily verified that the set of induced edge labels

is gf(E) = {1, 2, . . . , 4k + 3, 4k + 4, 4k + 6}. Hence m(Gk) = q − 1

and grac(Gk) = q + 1.

In the following theorem, we give a necessary condition for

an eulerian (p, q)-graph to have m-gracefulness q − 1.

Theorem 5.2.2. Let G be a (p, q)-eulerian graph with m(G) = q−1.

Then q ≡ 2k or (2k − 1)(mod 4), where k = MG(gf)− q.

Proof. Let T be the sum of the edge labels of G. Then by Theorem

1.3.3, since G is eulerian and can be decomposed into cycles, T is
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an even number. Since m(G) = q − 1, T = q(q−1)
2 + (q + k) and this

is even only when q ≡ 2k(mod 4) or q ≡ (2k − 1)(mod 4).

We denote by M ′
G(gf), the second largest edge label re-

ceived by G under f . Note that if G is a graceful graph, then

M ′
G(gf) = q − 1.

The following theorem gives a necessary condition for an

eulerian graph to have m-gracefulness q − 2.

Theorem 5.2.3. Let G be a (p, q)-eulerian graph with m(G) = q−2

under a labeling f. Then q ≡ (2s + 1) or (2s + 2)(mod 4), where

k = MG(gf)− q and s = q + k −M ′
G(gf).

Proof. Let T be the sum of the edge labels of G. Since G can be

decomposed into cycles, it follows from Theorem 1.3.3 that T is an

even number. Further m(G) = q − 2 implies T = (q−1)(q−2)
2 + (q +

k − s) + (q + k) and this is even only when q ≡ (2s+ 1)(mod 4) or

q ≡ (2s+ 2)(mod 4) where 1 ≤ s ≤ k.

It is known that if n ≡ 1 or 2(mod 4), then the cycle Cn

is nongraceful and in the following theorem we determine m(Cn).

Theorem 5.2.4. Let n ≡ 1 or 2(mod 4). Then m(Cn) = n− 1.

Proof. Let n = 4x+ 2 or 4x+ 1 according as n ≡ 2(mod 4) or n ≡
1(mod 4). Let Cn = (a1, b1, a2, b2, . . . , a2x+1, b2x+1) if n ≡ 2(mod 4)

and let Cn = (a1, b1, a2, b2, . . . , a2x, b2x, a2x+1) if n ≡ 1(mod 4).

83



Let f : V (Cn) → {0, 1, . . . , n+ 1} be defined as follows:

f(ai) =







0, for i = 1;

i, for 2 ≤ i ≤ 2x+ 1.

and f(bi) =







n+ 2− i, for 1 ≤ i ≤ x;

n+ 1− i, for i ≥ x+ 1.

It can be easily verified that f is injective, the induced edge function

gf is also injective, the highest vertex label used is n + 1 and the

set of induced edge labels is {1, 2, . . . , n − 2, n − 1, n + 1}. Hence

m(Cn) = n − 1 and the highest vertex label used to achieve this is

n+ 1.

Corollary 5.2.5. grac(Cn) = n+ 1 for n ≡ 1 or 2(mod 4).

Example 5.2.6. Consider C21 and label its vertices as follows:

f(a1) = 0,

f(ai) = i for i = 2, 3, . . . , 11

and f(bi) =







23− i, for i = 1, 2, . . . , 5;

22− i, for i = 6, 7, . . . , 10.

It is easy to check that the set of induced edge labels is {1, 2, 3,
. . . , 19, 20, 22}. Hence m(C21) = 20 and grac(C21) = 22.

Figure 5.5 gives the graph representation of m-graceful

labeling of C21.
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b
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16
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22

Figure 5.5: m-graceful labeling of C21

Example 5.2.7. Consider C22 and label its vertices as follows:

f(a1) = 0,

f(ai) = i for i = 2, 3, . . . , 11

and f(bi) =







24− i, for i = 1, 2, . . . , 5;

23− i, for i = 6, 7, . . . , 11.

It is easy to check that the set of induced edge labels is {1, 2, 3,
. . . , 20, 21, 23}. Hence m(C22) = 21 and grac(C22) = 23.

Figure 5.6 gives the graph representation of m-graceful

labeling of C22.
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20
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Figure 5.6: m-graceful labeling of C22

Let Fk denote the friendship graph consisting of k triangles

(a, ui, vi, a), 1 ≤ i ≤ k. By Theorem 1.3.6, Fk is nongraceful if k ≡
2 or 3(mod 4) and in the following theorem we determine m(Fk)

for this k.

Theorem 5.2.8. For the friendship graph Fk, m(Fk) = 3k−1 where

k ≡ 2 or 3(mod 4).

Proof. Let f(a) = 0 where a is the central vertex of Fk. We have

the following two cases:

Case 1: k ≡ 2(mod 4).

For F2, F6, F10 and F14 the labeling is given in the following tables.

86



ui 1 2
vi 4 7

Table 5.12: m-graceful labeling of F2

ui 1 2 3 4 5 6
vi 15 19 11 13 12 16

Table 5.13: m-graceful labeling of F6

b

b

b

b

b

b

bb

b

b

b

b

b

0

1

15

2

19

3
11

4

13

5

12

6
16

Figure 5.7: m-graceful labeling of F6

ui 1 2 3 4 5 6 7 8 9 10
vi 13 31 14 25 22 26 23 27 24 28

Table 5.14: m-graceful labeling of F10

ui 1 2 3 4 5 6 7 8 9 10 11 12 13 14
vi 19 43 35 26 36 23 37 24 38 25 39 33 40 34

Table 5.15: m-graceful labeling of F14

For k ≥ 18, we define f as follows:

f(ui) = i, for i = 1, 2, . . . , k;

f(v1) =
5k + 6

4
;

f(v2) = 3k + 1;

f(vk) =
5k − 2

2
;
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f(vk−2) =
5k − 4

2
;

f(vk−1−2i) = 3k − 2− i, for i = 0, 1, . . . ,
k − 4

2
;

f(v2i) =



















3k
2 + i, for i = 2, 3, . . . , k−10

4 ;

2k − 2, for i = k−6
4 ;

3k−2
2 + i, for i = k−2

4 , k+2
4 , . . . , k2 − 2.

It can be easily verified that f is injective, the induced edge labeling

gf is also injective, the highest vertex label used is 3k + 1 and

m(Fk) = 3k − 1.

Case 2: k ≡ 3(mod 4).

For F3, F7 and F11, the labeling is given in the following tables.

ui 1 2 3
vi 6 10 7

Table 5.16: m-graceful labeling of F3

b
b

b

b
b

b b

0

1
6

2

10
3

7

Figure 5.8: m-graceful labeling of F3

ui 1 2 3 4 5 6 7
vi 9 22 17 15 18 16 19

Table 5.17: m-graceful labeling of F7
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ui 1 2 3 4 5 6 7 8 9 10 11
vi 14 34 27 19 28 18 29 25 30 26 31

Table 5.18: m-graceful labeling of F11

For k ≥ 15, we label the vertices as follows:

f(ui) = i, for i = 1, 2, . . . , k;

f(v1) =
5k + 1

4
;

f(v2) = 3k + 1;

f(vk−1) =
5k − 3

2
;

f(vk−3) =
5k − 5

2
;

f(vk−2i) = 3k − 2− i, for i = 0, 1, . . . ,
k − 3

2
;

f(v2i) =



















3k−1
2 + i, for i = 2, 3, . . . , k−7

4 ;

2k − 3, for i = k−3
4 ;

3k−3
2 + i, for i = k+1

4 , k+5
4 , . . . , k−5

2 .

It can be easily verified that f is injective, the induced edge function

gf is also injective, the highest vertex label used is 3k + 1 and

m(Fk) = 3k − 1.

Corollary 5.2.9. grac(Fk) = 3k+1 = q+1 for k ≡ 2 or 3( mod 4).

5.3 m-GRACEFULNESS OF COMPLETE GRAPH Kp

In this section, we focus our study on the complete graph Kp.

By Theorem 1.3.4, Kp for p > 5 is a nongraceful graph. Notice that
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for p even, Kp is noneulerian and as p increases, the task of finding

the m-gracefulness of Kp is a difficult problem. We now proceed to

investigate complete graphs Kp for which m(Kp) = q − 1.

Lemma 5.3.1. If m(Kp) = q−1 under a labeling f with MG(gf) =

q+ k, k ≥ 1, then none of the vertices of Kp can be assigned a label

t, where 0 < t < k + 1 or q − 1 < t < q + k.

Proof. Since m(Kp) = q − 1, the set of induced edge labels is given

by

gf(E) = {1, 2, . . . , q − 1, q + k}. (5.1)

Let u and v be vertices of Kp for which f(u) = 0 and f(v) = q + k.

If there exists a vertex w with f(w) = t, where 0 < t < k + 1

or q − 1 < t < q + k, then either q − 1 < gf(vw) < q + k or

q − 1 < gf(uw) < q + k, a contradiction to the set of induced edge

labels given in (5.1).

Observation 5.3.2. Let f be a m-graceful labeling of Kp. If 0

and 2t are vertex labels, then t and 4t cannot be vertex labels, since

otherwise the edge label t or 2t is repeated. Hence it follows that if

m(Kp) = q − 1 under a labeling f, then MG(f) 6= 2(q − 1).

Lemma 5.3.3. If m(Kp) = q−1 under a labeling f with MG(gf) =

q + k, k ≥ 1, then no two vertices of Kp can be labeled k + t and

q − t, where 1 ≤ t ≤
⌊

q−k−1
2

⌋

.
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Proof. Since MG(gf) = q + k, there exist two vertices u and v ∈
V (Kp) with f(u) = 0 and f(v) = q + k. If there exist x and y ∈
V (Kp) such that f(x) = k+ t and f(y) = q− t for 1 ≤ t ≤

⌊

q−k−1
2

⌋

,

then gf(uy) = gf(vx) = q − t, which is a contradiction.

The following theorem gives an upper bound for the high-

est vertex label MG(f) that can be used for the vertices of Kp if

m(Kp) = q − 1.

Theorem 5.3.4. If m(Kp) = q−1 under a labeling f , then MG(f) ≤
2(q − p) + 3.

Proof. Let m(Kp) = q − 1 with MG(f) = q + k, k ≥ 1. By Lemma

5.3.1, f(V ) ⊆ A = {0, k + 1, k + 2, . . . , q − 2, q − 1, q + k} and by

Lemma 5.3.3, the set

B =







A− {0, q + k} if q + k is odd

A− {0, q+k
2 , q + k} if q + k is even

can be partitioned into
⌊

q−k−1
2

⌋

disjoint pairs of labels {k+ t, q− t},
1 ≤ t ≤

⌊

q−k−1
2

⌋

such that only one of the labels from each pair

can be used for the remaining (p − 2) vertices of Kp. Therefore
⌊

q−k−1
2

⌋

≥ p− 2. It follows that k ≤ q− 2p+3 and hence MG(f) =

q + k ≤ 2(q − p) + 3.

Observation 5.3.5. It follows from the above theorem that if m(Kp) =

q − 1 under the labeling f , then q + 1 ≤ grac(Kp) ≤ MG(f) ≤
2(q − p) + 3.
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Theorem 5.3.6. The m-gracefulness of the complete graph Kp is

q − 1 if and only if p = 5.

Proof. Let p = 5, if we label the vertices of K5 from the set

{0, 3, 4, 9, 11}, then the set of induced edge labels obtained is {1, 2,
. . . , 8, 9, 11}. Hence m(K5) = 9 = q − 1.

Conversely, let m(Kp) = q − 1 under the labeling f and

let MG(f) = q + k. By Theorem 5.3.4, 1 ≤ k ≤ q − 2p + 3.

Suppose p 6= 5. Let {v1, v2, . . . , vp} = V (Kp), with f(v1) = 0 and

f(v2) = q + k. Since m(Kp) = q − 1, there exists a vertex say,

v3 ∈ V (Kp) such that, either f(v3) = k+1 or f(v3) = q−1. Without

loss of generality, let f(v3) = q− 1. Hence {0, q+ k, q− 1} ⊂ f(V ).

Consider Fig. 5.9 for the graphical representation of all the possible

vertex labelings of Kp.

q − 2

q − 3

1

k + 3

q − 4 k + 4

q − 5 k + 5

1 2

1

v7 . . .

v6 . . .

v5 . . .

v4 . . . b

b

b

b b

b

b

k + 2

k + 3

1

q − 3

q − 4 k + 4

q − 5 k + 5

1 3

2

b

b

b

b b

b

b

bb

b b
k + 4 q − 4

q − 5 k + 5

1 3

b0
v1, v2, v3 . . . bb

q + k q − 1

Figure 5.9: Graphical representation of possible vertex labels of Kp if m(Kp) =
q − 1

In the figure, the number above the vertex vi, 1 ≤ i ≤ 7

is its label under f . If by assignment of this label to vi, any edge
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label is repeated, then that edge label is indicated under vi. At

each level, having assigned a label to the vertex vi, 3 ≤ i ≤ 6, note

that q − (i− 1) is not an induced edge label. As a consequence, by

Lemma 5.3.3, either f(vi+1) = q − (i − 1) or f(vi+1) = k + (i − 1)

for 3 ≤ i ≤ 6. Also note that, the vertex v7 cannot be assigned any

label without resulting in repetition of edge labels. Hence p ≤ 6.

By our assumption, p 6= 5 and since Kp is graceful if and only if

p ≤ 4, p must be 6. Hence q = 15 and since grac(K6) = 17, by

Theorem 5.3.4, 2 ≤ k ≤ 6.

Figure 5.9 gives f(v6) = q−4. Therefore the set of possible

vertex labels of K6 are as follows:

f(V ) = {0, q + k, q − 1, q − 2, k + 3, q − 4} (5.2)

f(V ) = {0, q + k, q − 1, k + 2, q − 3, q − 4} (5.3)

and

f(V ) = {0, q + k, q − 1, k + 2, k + 3, q − 4, } (5.4)

Tables 5.19, 5.20 and 5.21 give the vertex labelings of K6

for 2 ≤ k ≤ 6 corresponding to (5.2), (5.3) and (5.4) respectively.

k Vertex labels Edge labels No. of Repetitions
2 {0, 5, 11, 13, 14, 17} 3,6 2
3 {0, 6, 11, 13, 14, 18} 5,7 2
4 {0, 7, 11, 13, 14, 19} 6,7 2
5 {0, 8, 11, 13, 14, 20} 3,6 2
6 {0, 9, 11, 13, 14, 21} 2 2

Table 5.19: Vertex labeling of K6 with f(v4) = q − 2 and f(v5) = k + 3
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k Vertex labels Edge labels No. of Repetitions
2 {0, 4, 11, 12, 14, 17} 3 2
3 {0, 5, 11, 12, 14, 18} 6, 7 2
4 {0, 6, 11, 12, 14, 19} 5, 6, 8 2
5 {0, 7, 11, 12, 14, 20} 7 2
6 {0, 8, 11, 12, 14, 21} 3, 4 2

Table 5.20: Vertex labeling of K6 with f(v4) = k + 2 and f(v5) = q − 3

k Vertex labels Edge labels No. of Repetitions
2 {0, 4, 5, 11, 14, 17} 3, 6 2
3 {0, 5, 6, 11, 14, 18} 5, 6 2
4 {0, 6, 7, 11, 14, 19} 5, 7, 8 2
5 {0, 7, 8, 11, 14, 20} 3, 6, 7 2
6 {0, 8, 9, 11, 14, 21} 3 2

Table 5.21: Vertex labeling of K6 with f(v4) = k + 2 and f(v5) = k + 3

The last column of each of the tables, gives a contradiction

to the fact that m(Kp) = q − 1. Hence p 6= 6, so that p = 5. From

Fig. 5.9, f(V ) = {0, q+k, q−1, k+2, k+3} for k = 1 is a m-graceful

labeling of K5.

We now give some necessary conditions for the m-gracefulness of

Kp to be q− 2, using which we find an upper bound for the highest

vertex label of Kp.

Lemma 5.3.7. If m(Kp) = q − 2 under a labeling f , MG(gf) =

q + k, k ≥ 1 and M ′
G(gf) = q + k − s, 1 ≤ s ≤ k, then none

of the vertices of Kp can be assigned a label t where 0 < t < s,

s < t < k + 2, q − 2 < t < q + k − s or q + k − s < t < q + k.

Proof. Since f is a m-graceful labeling of Kp, the set of induced
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edge labels is given by,

gf(E) = {1, 2, 3, . . . , q − 2, q + k − s, q + k}. (5.5)

Therefore, there exist vertices u and v of Kp for which f(u) = 0 and

f(v) = q+ k. Suppose there exists x ∈ V (Kp) with f(x) = t, where

0 < t < s, s < t < k+2, q−2 < t < q+k−s or q+k−s < t < q+k.

If 0 < t < s or s < t < k + 2, then q + k − s < gf(vx) < q + k or

q − 2 < gf(vx) < q + k − s respectively, if q − 2 < t < q + k − s

or q + k − s < t < q + k, then q − 2 < gf(ux) < q + k − s or

q + k − s < gf(ux) < q + k respectively. Either of the cases give a

contradiction to the set of induced edge labels given in (5.5).

Lemma 5.3.8. If m(Kp) = q−2 under a labeling f with MG(gf) =

q + k, k ≥ 1 and M ′
G(gf) = q + k − s, 1 ≤ s ≤ k, then no two

vertices of Kp can be labeled k+ t and q− t, where 2 ≤ t ≤
⌊

q−k−3
2

⌋

.

Proof. Sincem(Kp) = q−2, the set of induced edge labels is gf(E) =

{1, 2, 3, . . . , q − 2, q + k − s, q + k} and by Lemma 5.3.7, f(V ) ⊆
{0, s, k+2, k+3, . . . , q−2, q+k−s, q+k}. Since q+k ∈ gf(E), there

exists two vertices u and v of Kp with f(u) = 0 and f(v) = q + k.

Now, if there exist two vertices, w and x with f(w) = q − t and

f(x) = k + t for 2 ≤ t ≤
⌊

q−k−3
2

⌋

, then gf(uw) = q − t and

gf(vx) = q − t, which is a contradiction to the fact that f is an

m-graceful labeling. Therefore only one of the vertex labels from

each pair {k + t, q − t} for 2 ≤ t ≤
⌊

q−k−3
2

⌋

can be assigned to the

vertices of Kp.
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Theorem 5.3.9. If m(Kp) = q−2 under a labeling f , then MG(f) ≤
2(q − p) + 1.

Proof. LetMG(gf) = q+k, k ≥ 1 andM ′
G(gf) = q+k−s, 1 ≤ s ≤ k.

Since f is a m-graceful labeling of Kp, the set of induced edge labels

is gf(E) = {1, 2, . . . , q − 2, q + k − s, q + k}. Let u and v ∈ V (Kp)

such that f(u) = 0 and f(v) = q + k = MG(f). Let w ∈ V (Kp)

with f(w) = q + k − s. By Lemma 5.3.7, f(V ) ⊆ A = {0, s, k +

2, k + 3, . . . , q − 3, q − 2, q + k − s, q + k} and by Lemma 5.3.8, the

set

B =







A− {0, s, q + k − s, q + k} if q + k is odd

A− {0, s, q+k
2 , q + k − s, q + k} if q + k is even

can be partitioned into
⌊

q−k−3
2

⌋

disjoint pairs of labels {k+ t, q− t}
for 2 ≤ t ≤

⌊

q−k−3
2

⌋

such that only one of the labels from each of

these pairs can be used for the remaining (p − 3) vertices of Kp.

Therefore
⌊

q−k−3
2

⌋

− 1 ≥ p − 3. It follows that k ≤ q − 2p + 1 and

hence MG(f) = q + k ≤ 2(q − p) + 1.

Observation 5.3.10. If m(Kp) = q − 2 under a labeling f , then

q + 1 ≤ grac(G) ≤ MG(f) ≤ 2(q − p) + 1.

Theorem 5.3.11. For the complete graph K6 we have m(K6) =

13 = q − 2.

Proof. It is known that K6 is nongraceful and by Theorem 5.3.6,

m(K6) 6= q− 1. Hence m(K6) 6= 15 or 14. If we label the vertices of
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K6 either from the set {0, 1, 4, 10, 12, 17} or {0, 4, 6, 9, 16, 17}, then
the set of induced edge labels is {1, 2, 3, . . . , 12, 13, 16, 17}. Hence

m(K6) = 13 = q − 2 and the highest vertex label used is 17.

Corollary 5.3.12. grac(K6) = 17 = q + 2.

Problem 5.3.13. IsK6 the only complete graph withm-gracefulness

q − 2 ?

Problem 5.3.14. Determine the exact value of m(Kp) for p ≥ 7.

Observation 5.3.15. 1. From Theorem 5.2.1, we observe that,

there are infinitely many graphs with the property that grac(G)−
q = q −m(G).

2. From Theorem 5.2.4 we observe that, for n ≡ 1 or 2(mod 4),

grac(Cn)− q = q −m(Cn).

3. From Theorem 5.2.8 we observe that, for k ≡ 2 or 3(mod 4),

grac(Fk)− q = q −m(Fk).

4. Also from Theorem 5.3.6 and Theorem 5.3.11, we observe that,

grac(Kp)− q = q −m(Kp) for p = 5, 6.

Therefore the following problem naturally arises.

Problem 5.3.16. Is it true that grac(G)− q = q −m(G) ?
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CHAPTER 6

ADDITIVELY GRACEFUL SIGNED GRAPHS

6.1 INTRODUCTION

Hegde [34] introduced the notion of additively graceful

graphs. He characterized some additively graceful graphs, gave a

lower bound on number of edges of an additively graceful graph

and some necessary or sufficient conditions for a graph to be addi-

tively graceful. In this chapter, we extend this notion to the realm

of sigraphs as follows:

Definition 6.1.1. Let S = (V,E) be a (p,m, n)-sigraph with E =

E+ ∪ E−, Assume |E+| = m and |E−| = n where m + n = q. Let

f : V → {0, 1, ...,m + ⌈ (n+1)
2 ⌉} be an injective mapping and let the

induced edge function be defined as gf−(uv) = f(u) + f(v) ∀ uv ∈
E− and gf+(uv) = |f(u)−f(v)| ∀ uv ∈ E+. If gf−(uv) = {1, 2, ..., n}
and gf+(uv) = {1, 2, ...,m}, then f is called an additively graceful

labeling of S. The sigraph which admits such a labeling is called an

additively graceful sigraph.



Example 6.1.2. Figure 6.1 gives examples of additively graceful

sigraphs.
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Figure 6.1: Additively graceful sigraphs

One can easily see that when n = 0, f is a graceful labeling

of S, and when m = 0, f is an additively graceful labeling of S. In

this chapter, we give some necessary or sufficient conditions for a

sigraph to be additively graceful. We also obtain some necessary

conditions for eulerian sigraphs, complete bipartite sigraphs and

complete sigraphs to be additively graceful.

In a sigraph S, any maximal subgraph C in which all edges

are positive is called a positive section of C. Similarly we define a

negative section.

6.2 BASIC RESULTS

In this section, we present some basic results on additively

graceful sigraphs.

Theorem 6.2.1. If S is an additively graceful sigraph then there

exists a partition of V (G) into Vo and Ve such that m+(Vo, Ve) =
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⌊m+1
2 ⌋ and m−(Vo, Ve) = ⌊n+1

2 ⌋ where m+(Vo, Ve) and m−(Vo, Ve)

are the number of positive and negative edges of S respectively each

of which joins a vertex of Vo with one of Ve.

Proof. Let S be an additively graceful sigraph, with an additively

graceful labeling f . Let Vo = {u ∈ V (S) : f(u) is odd} and Ve =

V (S) − Vo. Therefore every edge receiving an odd label must join

a vertex of Vo with one of Ve. Since the number of edges of S with

odd positive labels is ⌊m+1
2 ⌋ and the number of edges of S with odd

negative labels is ⌊n+1
2 ⌋, it follows that m+(Vo, Ve) = ⌊m+1

2 ⌋ and

m−(Vo, Ve) = ⌊n+1
2 ⌋.

Theorem 6.2.2. If a (p,m, n)-sigraph S is additively graceful then

2m+ n ≥ 2p− 4 and this bound is the best possible.

Proof. Let f be an additively graceful labeling of S. Since the high-

est vertex label is m+ ⌈n+1
2 ⌉, we have

p− 1 ≤ m+

⌈

n+ 1

2

⌉

.

Now we have the following two cases:

Case 1: n is odd.

Then

p− 1 ≤ m+
n+ 1

2
.

Hence

2p− 2 ≤ 2m+ n+ 1.
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Therefore

2m+ n ≥ 2p− 3.

Case 2: n is even.

Then

p− 1 ≤ m+
n

2
+ 1.

Hence

p− 2 ≤ 2m+ n

2
.

Therefore

2m+ n ≥ 2p− 4.

The result follows from Case 1 and Case 2 and equality

holds for the sigraph in Figure 6.1(c) .

We have the following result from [34] as a corollary.

Corollary 6.2.3. If S is an all negative sigraph which admits an

additively graceful labeling then n ≥ 2p− 4.

Lemma 6.2.4. If a sigraph S is additively graceful, then the sum

of all edge labels of any circuit C in S is even.

Proof. Let S be an additively graceful sigraph with an additively

graceful labeling f . Let P1, P2, . . . , Pk and Q1, Q2, . . . , Qk denote the

positive and the negative sections of C respectively. For 1 ≤ i ≤ k,
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let Pi = (ai,1, ai,2, . . . , ai,ri), Qi = (bi,1, bi,2, . . . , bi,si). Where ai,j,

j = 1, 2, . . . , ri denote the vertices of the positive section Pi; bi,t, t =

1, 2, . . . , si denote the vertices of the negative section Qi; ai,ri = bi,1;

bi,si = a(i+1),1 and bk,sk = a1,1. Now, for 1 ≤ i ≤ k,
ri−1
∑

j=1

|f(ai,j) −

f(ai,(j+1))| ≡ [f(ai,1)−f(ai,ri)]( mod 2) and
si−1
∑

j=1

[f(bi,j)+f(bi,(j+1))] ≡

[f(bi,1) + f(bi,si)](mod 2). Hence if T denotes the sum of the edge

labels of the edges of C, then T ≡ {
k
∑

i=1

[f(ai,1)−f(ai,ri)]+
k
∑

i=1

[f(bi,1)+

f(bi,si)]}( mod 2) = 2(f(a1,1)+f(a2,1)+· · ·+f(ak−1,1)+f(ak,1))( mod

2) ≡ 0(mod 2). Therefore T is even.

We have the following result from [31] as a corollary.

Corollary 6.2.5. Let G = (V,E) be a graph and f : V → N be any

function. Let gf(uv) = |f(u)−f(v)| for any edge uv of G. Then the

sum of the edge labels of all the edges on any circuit of G is even.

Theorem 6.2.6. The sigraph S obtained from the all-negative cycle

C3 = (v1, v2, v3, v1) by adding k positive pendent edges v3w1, v3w2, . . . ,

v3wk is additively graceful.

Proof. Define f : V → {0, 1, . . . , k+2} by f(vi) = i−1 for i = 1, 2, 3

and f(wi) = i + 2 for 1 ≤ i ≤ k. This gives an additively graceful

labeling of S.

Theorem 6.2.7. Let S be an additively graceful sigraph and let H

be the subgraph induced by the set of all negative edges of S. If H

is connected then either H is a star or contains a triangle.
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Proof. Let f be an additively graceful labeling of S. Let uv1 be a

negative edge of S with label 1, so that f(u) = 0 and f(v1) = 1. If

all the negative edges of S are incident with u, then H is a star. If

not, let t be the least positive integer such that the negative edge

xy with label t is not incident with u. Hence all negative edges ei

with labels i, 1 ≤ i ≤ t − 1 are incident with u. Let ei = uvi and

f(vi) = i, 1 ≤ i ≤ t − 1. Since xy is a negative edge with label t,

1 ≤ f(x), f(y) ≤ t− 1. Hence x = vi and y = vj for 1 ≤ i, j ≤ t− 1

and {u, x, y} is a triangle in H.

6.3 ADDITIVELY GRACEFUL LABELINGS OF

COMPLETE SIGRAPHS, COMPLETE BIPARTITE

SIGRAPHS AND EULERIAN SIGRAPHS

In this section, we present some results on additively graceful

labeling of sigraphs on complete graphs, complete bipartite graphs

and eulerian graphs.

Theorem 6.3.1. Let S be a (p,m, n)-eulerian sigraph. A necessary

condition for S to be additively graceful is that m2 + n2 +m+ n ≡
0(mod 4).

Proof. Let f be an additively graceful labeling of a (p,m, n)-eulerian

sigraph. Then the m positive edges are labeled as 1, 2, . . . ,m and

n negative edges are labeled as 1, 2, . . . , n . Since sum of the edge

labels along the eulerian circuit is even, by Lemma 6.2.4, we have
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m(m+1)
2 + n(n+1)

2 ≡ 0(mod 2). Hence m2 + n2 + m + n ≡ 0(mod

4).

Corollary 6.3.2. If a (k,m, n)-signed cycle Zk, k = m + n ≥ 3 is

additively graceful, then m2 + n2 +m+ n ≡ 0(mod 4).

Corollary 6.3.3. If the signed cycle Zk, k = m+n ≥ 3 is such that

k ≡ 1(mod 4), then Zk is not an additively graceful sigraph.

Corollary 6.3.4. If S is a graceful eulerian all-positive (p,m)-

sigraph, then m ≡ 0 or 3(mod 4).

Corollary 6.3.5. If S is an additively graceful eulerian all-negative

(p, n)-sigraph, then n ≡ 0 or 3(mod 4).

Theorem 6.3.6. Let p ≥ 5 be a positive integer such that none of p,

p− 2, p− 4 is a perfect square. Then no sigraph on Kp is additively

graceful.

Proof. Suppose there exists a sigraph S on Kp which is additively

graceful. By Theorem 6.2.1, there exists a partition of the vertex

set V (S) into two subsets Vo and Ve such that |Vo| = a, |Ve| = b,

a+ b = p and

ab =

⌊

m+ 1

2

⌋

+

⌊

n+ 1

2

⌋

.

For different parities of m and n we have the following three cases:
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Case 1: m and n are odd.

In this case, we have

ab =
m+ 1

2
+

n+ 1

2
=

m+ n+ 2

2
.

Hence

2ab = m+ n+ 2 =
p(p− 1)

2
+ 2.

Now

a− b =
√

(a+ b)2 − 4ab =
√

p− 4.

Since a − b is an integer it follows that p − 4 is a perfect square,

which is a contradiction.

Case 2: One of m and n is odd and the other is even.

Without loss of generality, we assume that m is even and n is odd.

In this case, we have

ab =
m

2
+

n+ 1

2
=

m+ n+ 1

2
.

Hence

2ab = m+ n+ 1 =
p(p− 1)

2
+ 1.

Now

a− b =
√

(a+ b)2 − 4ab =
√

p− 2.

Since a − b is an integer it follows that p − 2 is a perfect square,

which is a contradiction.
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Case 3: m and n are even.

In this case, we have

ab =
m

2
+

n

2
=

m+ n

2
.

Hence

2ab = m+ n =
p(p− 1)

2
.

Now

a− b =
√

(a+ b)2 − 4ab =
√
p

Since a− b is an integer it follows that p is a perfect square, which

is a contradiction.

Lemma 6.3.7. All sigraphs on Kp, p ≤ 3 are additively graceful.

Proof. The additively graceful labeling of all sigraphs on Kp, p ≤ 3

are shown in Figure 6.2
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Figure 6.2: Additively graceful sigraphs on K2 and K3
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Lemma 6.3.8. A (p,m, n)-sigraph S on the complete graph K4 is

additively graceful if and only if either n = 0 or the subgraph H

induced by the set of all negative edges is isomorphic to K4, K4− e,

K3, P3 or P2.

Proof. If H is isomorphic to K4, K4 − e, K3, P3 or P2, then the

labeling of S is given in Figure 6.3.
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Figure 6.3: Additively graceful sigraphs on K4

Conversely, suppose S is additively graceful. If n = 0, then there

is nothing to prove. Hence we assume that n > 0. We claim that

n 6= 4. Suppose n = 4. It follows from Theorem 6.2.7 that H is

isomorphic to the graph given in Figure 6.4(a). There are exactly
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Figure 6.4: The subgraph H of K4 induced by 4 negative edges and the corre-
sponding labeling

two possible labelings which give the set of induced edge labels

{1, 2, 3, 4} for the negative edges in H and this labeling is given

in Figure 6.4(b) and (c) . The set of induced positive edge labels

is not equal to {1, 2}. Thus S is not additively graceful. Hence

n 6= 4. If n = 6, then H = K4 and if n = 5, then H = K4 − e.

If n = 3, then it follows from Theorem 6.2.7 that H = K1,3 or K3.

If H = K1,3, then the centre of the star gets the label 0 and the

3 pendent vertices receive the labels 1, 2, 3. But in this case the

set of labels of the positive edges is not equal to {1, 2, 3}. Hence, if
n = 3, then H = K3. If n = 2, then it follows from Theorem 6.2.7

that H = P3. If n = 1, then H = P2

Lemma 6.3.9. If a sigraph on K5 is additively graceful then the

number of its negative edges is odd.

Proof. Let S be an additively graceful sigraph on K5. Then by

Theorem 6.3.1, we have m2 + n2 + m + n ≡ 0(mod 4). Since q =

m+ n = 10 for K5, substituting m = (10− n) we get 2(n2 − 10n+
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55) ≡ 0(mod 4) which implies that n2 − 10n+ 55 is even. Hence n

is odd.

Example 6.3.10. Figure 6.5 gives the additively graceful labelings

for the sigraphs on K5 for n =1, 3, 5, 7, 9.
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n = 1 n = 3 n = 5
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Figure 6.5: Additively graceful sigraphs on K5 for n = 1, 3, 5, 7, 9

Theorem 6.3.11. Let G be the complete bipartite graph K2,t with

bipartition V1 = {v1, v2} and V2 = {w1, w2, . . . , wt}. Let S be the

sigraph obtained from G by assigning positive sign to all edges inci-

dent with v1 and negative sign to all edges incident with v2. Then

S is additively graceful.
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Proof. Define f : V → {0, 1, . . . , t + ⌈ (t+1)
2 ⌉} by f(v1) = t + 1 ,

f(wi) = i for i = 1, 2, . . . , t and f(v2) = 0. This gives an additively

graceful labeling of S.

Example 6.3.12. Consider the graph K2,6 with bipartition V1 =

{v1, v2} and V2 = {w1, w2, . . . , w6}. Let S be the sigraph obtained

from K2,6 by assigning positive sign to all edges incident with v1

and negative sign to all edges incident with v2. Figure 6.6 gives the

additively graceful labeling of S.

b b

b b b b b b

0 7

1 2 3 4 5 6

v2 v1

Figure 6.6: Additively graceful labeling of the sigraph on K2,6

Theorem 6.3.13. Let G be the complete bipartite graph K2,2s+1

with bipartition V1 = {v1, v2} and V2 = {w1, w2, . . . , w2s+1}. Let S
be the sigraph obtained from G by assigning positive sign to all but

one edge. Then S is additively graceful.

Proof. Let the negative edge be v1w1.
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Define f : V → {0, 1, . . . , 4s+ 2} by

f(v1) = 0, f(v2) = 2 and

f(wi) =



















1, for i = 1;

4s+ 9− 4i, for 2 ≤ i ≤ s+ 1;

8(s+ 1)− 4i, for s+ 2 ≤ i ≤ 2s+ 1.

It can be easily verified that f is an additively graceful labeling of S.

Example 6.3.14. Figure 6.7 gives additively graceful labeling of

the sigraph on K2,7 with one negative edge.

b b

b b b b b b b

0 2

1 13 12 9 8 5 4

Figure 6.7: Additively graceful labeling of the sigraph on K2,7

Theorem 6.3.15. Let G be a star K1,t with bipartition V1 = {u}
and V2 = {w1, w2, . . . , wt}. Let S be the sigraph obtained from G

by assigning positive sign to all but one edge. Then S is additively

graceful.
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Proof. Let the negative edge be uw1. Define f : V → {0, 1, . . . , t}
by f(u) = 1, f(w1) = 0 and f(wi) = i, for 2 ≤ i ≤ t. It can be

easily verified that f is an additively graceful labeling of S.

Example 6.3.16. Figure 6.8 gives additively graceful labeling of

the sigraph on K1,6 with one negative edge.

b

b b b b b b

u

w1

1

0 2 3 4 5 6

Figure 6.8: Additively graceful labeling of the sigraph on K1,6

112



CHAPTER 7

EMBEDDING OF GRAPHS INTO

GRACEFUL GRAPHS

7.1 INTRODUCTION

Acharya et al. [7] have considered the following problem:

Given a graph G, is it possible to embed G as an induced subgraph of

a graceful graph H having a graph theoretic property P? In [7], they

have answered the problem in an affirmative way for triangle-free

graphs, planar graphs, hamiltonian graphs and trees. In most of the

embedding results, to get any missing edge label we add a pendent

vertex with that label as vertex label and join it to a vertex with

label 0. Thus the graceful graph into which G is embedded is mostly

a noneulerian graph. Hence the following problem naturally arises.

Can every connected graph be embedded as an induced subgraph in

an eulerian graceful graph?

Rao and Sahoo [47] obtained an affirmative answer for the

above problem. However, in their proof the number of vertices in

the eulerian graceful graph is O(3p). In this chapter, we obtain a



more efficient embedding of a graph G of order p as an induced

subgraph of an eulerian graceful graph H whose order is O(p2).

In [31], Golomb has given an upper bound for the largest vertex

label for the complete graph Kp to be O(p2) such that the vertex

labels and the induced edge labels are distinct. Hence, one can easily

see that for any graph G of order p, the injection f : V (Kp) → N

with largest vertex label O(p2), gives an injection on V (G) such that

gf is injective and the largest vertex label is O(p2).

We also consider the following analogous problem for

sigraphs: Given a sigraph S and a graph theoretic property P, is

it possible to embed S in a graceful sigraph S1 having the property

P? We prove the existence of such an embedding where S1 is eu-

lerian, hamiltonian, planar or triangle-free. We prove that every

signed tree (in short sitree) can be embedded in a graceful sitree.

7.2 EMBEDDING OF GRAPHS

In this section, we give an efficient algorithm to embed a

connected graph as an induced subgraph of an eulerian graceful

graph.

Theorem 7.2.1. Every connected graph G can be embedded as an

induced subgraph of an eulerian graceful graph H.

Proof. Since any connected graph G can be embedded as an in-

duced subgraph of an eulerian graph, we may assume without loss
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of generality that G is eulerian. Let f : V (G) → N − {1} be an

injection such that the edge induced function gf is injective. Let

MG(f) = maxv∈V (G)f(v), let MG(gf) be the largest edge label in-

duced by f and let c ∈ V be such that f(c) = MG(f). Without loss

of generality we assume that MG(gf) and MG(f) are of same parity,

since otherwise we can replace f(v) by f(v)+1 for every v ∈ V (G).

Insert two vertices a and b in G with f(a) = 0 and f(b) = 1. Let

r = 1.

Let i be the first missing edge label. If i+1 is not a missing

edge label, we insert a new vertex ir with f(ir) = f(c) + i and join

ir to c. We replace r by r + 1. If i+ 1 is also a missing edge label,

we insert a vertex with label i + 1 if i + 1 is also a missing vertex

label and join it to a and b. If i+1 is a vertex label of G, then join

the vertex with label i+ 1 to both a and b. We repeat this process

until all the edge labels 1, 2, . . . , f(c)− 2 are created.

Now r − 1 is the number of pendent edges attached to c.

We denote the resulting graph by G1 and let the labeling of G1 be

f1.

If r = 1, then join c to a and b. If a and b both have

odd degree, then to make it even, we insert a vertex with label

MG1
(f1) + 2 and join it to a and b. The resulting graph is the

required eulerian graph with graceful labeling f1 having G as an

induced subgraph. Now suppose r > 1. If r is even then join c to

b. If r is odd, then join c to both a and b. Let G2 be the resulting

graph with order p2 and size q2 and labeling f2. Let k = 1. If q2
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and f2(ik) have same parity join ik to b and otherwise join ik to a.

If j = ⌊f2(ik)−q2−1
2 ⌋ > 0, then insert j vertices with labels q2 + 2t,

1 ≤ t ≤ j and join each of these vertices to a and b. Let k = k + 1.

Repeat this process until k = r. Finally if the vertex ir−1 was joined

to b, then insert a vertex labeled f2(ir−1) + 1 and join it to a and

b. If the degrees of a and b are odd then insert a vertex with label

MG2
(f2) + 2 and join it to a and b. This gives the required eulerian

graceful graph H having G as an induced subgraph.

We give an illustration of embedding a connected non-

graceful graph G as an induced subgraph of an eulerian graceful

graph H.

Illustration 7.2.2. Figure 7.1 gives a connected eulerian graph G

with an injective labeling f such that f(c) = 12 and MG(f) and

MG(gf) have the same parity.

b

b b

b b

2

5

108

12 c

10 3

5

2

4

Figure 7.1: Connected eulerian nongraceful graph G

The missing vertex labels and edge labels of G under f are respec-

tively, f(V ) = {0, 1, 3, 4, 6, 7, 9, 11} and gf(E) = {1, 6, 7, 8, 9, 11, 12}.
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Insert two vertices a and b in G with f(a) = 0 and f(b) = 1.

Let r = 1. For the first missing edge label i = 1, i + 1 is not

a missing edge label. Therefore, we insert a new vertex i1 with

f(i1) = f(c) + i = 13 and join it to vertex c. Replace r by r + 1,

that is, r = 2. Now, i = 6 and i+ 1 = 7 is a missing edge label and

also a missing vertex label, so we insert a vertex with label 7 and

join it to vertices a and b. Similarly, we insert a vertex with label 9

and join it to a and b. At this stage, we have the edge labels 1, 2, 3,

. . . , f(c)− 2 = 10 in G and there are r− 1 pendent edges attached

to c. Since r = 2 is even, we join vertex c to vertex b by an edge.

Let the resulting graph be G2 with labeling f2, order p2 and size q2

as shown in Figure 7.2.
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Figure 7.2: Graph G2 with labeling f2

Let k = 1, since q2 = 11 and f2(i1) = 13 have the same

parity, we join i1 to b. Notice that, j = ⌊f2(i1)−q2−1
2 ⌋ = 0 and by

incrementing k by 1, we have, k = r. Since the vertex ir−1 = i1 was

joined to b, we insert a vertex labeled f2(i1) + 1 = 14 and join it to

vertices a and b.
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Note that, we have obtained a graceful graph but it is not

eulerian as the degree of a and b is odd. Hence we insert a vertex

with label MG2
(f2) + 2 = 16 and join it to a and b. The graph thus

obtained, say H is eulerian and graceful as shown in Figure 7.3,

having G as an induced subgraph.
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Figure 7.3: Eulerian graceful graph H with G as an induced subgraph

Theorem 7.2.3. Let G be a connected graph of order p. Let H be

an eulerian graceful graph constructed in Theorem 7.2.1 having G

as an induced subgraph. Then the number of vertices in H is O(p2).

Proof. It follows from Remark 1.3.11 that we can choose an injection

f : V → N such that gf is injective and MG(f) is O(p2). Hence the

number of missing edge labels is MG(f) − q. In the worst case let

MG(f) − 2 be a missing edge label. By the construction given in

Theorem 7.2.1, we insert a vertex with label 2MG(f)− 2 and join it

to the vertex c with labelMG(f) and also to a or b. Now the number

of missing edge labels is 2MG(f) − q − 4. To obtain the required

eulerian graceful graph H we insert a maximum of 2MG(f)−q−4
2 + 5

vertices. Hence the number of vertices in H is O(p2).
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7.3 EMBEDDING OF SIGRAPHS

In this section, we prove that any sitree can be embedded in

a graceful sitree. We also prove that any connected sigraph can be

embedded as an induced subsigraph of an eulerian graceful sigraph

as well as hamiltonian sigraph.

Acharya and Singh [10], have shown that not every sitree

is graceful. The following theorem gives a method of embedding

any sitree into a graceful sitree.

Theorem 7.3.1. Every sitree can be embedded in a graceful sitree.

Proof. Let S be a sitree with an injection f : V → N ∪ {0} such

that the edge induced function gf is injective and let MS(f) =

max{f(v) : v ∈ V }. Let v0 ∈ V and let f(v0) = 0. Let m1 =

M−(S)+M+(S), where M−(S) is the absolute value of the smallest

negative edge label andM+(S) is the largest positive edge label. Let

l =











0, if MS(f) ≤ m1;

MS(f)−m1, if MS(f) > m1.

Let f(V ) denote the set of missing vertex labels of S, therefore

f(V ) = {0, 1, 2, . . . ,MS(f)} − f(V ). Let E1 = {1, 2, . . . ,M+(S) +

l} − gf+(S) and E2 = {1, 2, . . . ,M−(S)} −gf−(S), where gf+(S) =

{|f(u)− f(v)| : uv ∈ E+} and gf−(S) = {|f(u)− f(v)| : uv ∈ E−}.

For each r ∈ (E1 ∪ E2) ∩ f(V ), insert a vertex vr with
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f(vr) = r and join it to the vertex v0 using a positive edge if r ∈ E1

or using a negative edge if r ∈ E2.

Now, let j denote the smallest missing vertex label of S

and let i denote the largest number in the set E1 ∪E2. If j < i, let

k = i + j else let k = j − i. Insert a vertex vj with label j. If k is

not a vertex label of S, then insert another vertex vk with label k,

if there exists a vertex in S with label k, then call it vk. Join the

vertex vj to the vertex vk using a positive edge if i ∈ E1 or using

a negative edge if i ∈ E2. Repeat this process by taking j to be

the smallest missing vertex label if vk had not been inserted in the

previous step or by taking j = k otherwise, until there is no missing

vertex label. This gives the required graceful sitree.

Remark 7.3.2. In the above embedding if S is a sigraph which is

embedded in a graceful sigraph, we observe that if S is triangle-free

then S1 is also triangle-free and if S is planar then S1 is also planar.

Hence it follows that any triangle-free sigraph can be embedded

in a graceful triangle-free sigraph and any planar sigraph can be

embedded in a graceful planar sigraph.

We illustrate the procedure of embedding a sitree in a

graceful sitree as given in Theorem 7.3.1.

Illustration 7.3.3. Consider the sitree S with an injective labeling

f as shown in Figure 7.4. From the figure, f(v0) = 0, MS(f) = 18,

M+(S) = 6 and M−(S) = 7, therefore, m1 = 13 and hence l =
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Figure 7.4: Sitree S with an injective labeling f

5. The set E1 = {1, 4, 7, 8, 9, 10, 11}, E2 = {3, 4} and the set of

missing vertex labels is f(V ) = {4, 6, 7, 8, 10, 11, 14, 15, 17}. Since

(E1 ∪ E2) ∩ f(V ) = {4, 7, 8, 10, 11} = R (say), we insert |R| = 5

vertices v4, v7, v8, v10 and v11 with labels 4, 7, 8, 10, 11. We join each

of the vertices v7, v8, v10 and v11 to the vertex v0 by a positive edge

and the vertex v4 to v0 by a negative edge as shown in Figure 7.5.

Now, we have E1 = {1, 4, 9}, E2 = {3} and f(V ) =

{6, 14, 15, 17}. Therefore, j = 6 and i = 9, hence k = i + j = 15.

Insert a vertex v6 with label 6. Since 15 is not a vertex label of

S, we insert another vertex v15 with label 15 and join it to v6 by a

positive edge, as 9 ∈ E1. Now let j = k = 15, i is 4, hence k = 11.

Join v15 to v11 by a positive edge, as 4 ∈ E1. Similarly, we insert

vertices v14 and v17 and join v14 to v11 by a negative edge and v17 to

v16 by a positive edge. The resulting sigraph T is a graceful sitree

as shown in Figure 7.6, with S as an induced subsitree.
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Figure 7.5: The sigraph S1

Theorem 7.3.4. Every connected sigraph S can be embedded in a

graceful eulerian sigraph H.

Proof. Since any connected sigraph S can be embedded as an in-

duced subsigraph of an eulerian sigraph, we may assume without

loss of generality that S is eulerian. Let f : V → N − {1} be an

injective function such that the edge induced function gf is also in-

jective. Let MS(f) = max{f(v) : v ∈ V (S)} and let M−(S) be the

absolute value of the smallest negative edge label of S. Let c ∈ V (S)

be such that f(c) = MS(f). Without loss of generality we assume

that M−(S) and MS(f) are of same parity, since otherwise we can

replace f(v) by f(v) + 1 for every v ∈ V (S). Insert two vertices a

and b in S with f(a) = 0 and f(b) = 1.
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Figure 7.6: Graceful sitree T with S as an induced subsitree

Let r = 1. Let E1 = {1, 2, . . . , f(c) − 2} − gf−(S) where

gf−(S) = {|f(u)− f(v)| : uv ∈ E−} and let i be the smallest value

in E1. If i + 1 is not present in E1, we insert a new vertex ir with

f(ir) = f(c) + i and join ir to c by a negative edge. We replace r

by r + 1. If i + 1 is also in E1 and i + 1 is also a missing vertex

label, then we insert a vertex with label i + 1 and join it to a and

b by negative edges. If i + 1 is a vertex label, then join the vertex

with label i + 1 to both a and b by negative edges. We repeat this

process until E1 is empty.

Now r − 1 is the number of pendent edges attached to c.

We denote the resulting sigraph by S1 and let the labeling of S1 be
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f1. If r = 1, then join c to a and b by negative edges. If a and b both

have odd degree, then to make it even, we insert a vertex with label

MS1
(f1)+2 and join it to a and b using negative edges. The resulting

graph is an eulerian sigraph having edge labels −1,−2, · · ·−MS1
(f1)

and having S as an induced subsigraph. Now suppose r > 1. If r

is even, then join c to b by a negative edge. If r is odd, then join c

to both a and b by negative edges. Let S2 be the resulting sigraph

with labeling f2, let k = 1 and M−(S2) be the absolute value of the

smallest negative edge label of S2. If M
−(S2) and f2(ik) have same

parity, join ik to b by a negative edge and otherwise join ik to a by

a negative edge. If j = ⌊f2(ik)−M−(S2)−1
2 ⌋ > 0, then insert j vertices

with labels M−(S2)+2t, 1 ≤ t ≤ j and join each of these vertices to

a and b by negative edges. Replace k by k+ 1. Repeat this process

until k = r. Finally if the vertex ir−1 was joined to b, then insert a

vertex labeled f2(ir−1) + 1 and join it to a and b by negative edges.

If the degrees of a and b are odd then insert a vertex with label

MS2
(f2) + 2 and join it to a and b by negative edges.

Let the resulting sigraph be G∗ and let the labeling of G∗

be h∗. If MG∗(h∗) and M+(G∗) are of same parity, then we replace

h∗(v) by h∗(v)+ 2 for every v ∈ V (G∗). Otherwise we replace h∗(v)

by h∗(v) + 3 for every v ∈ V (G∗). Insert two vertices u and v

in G∗ with h∗(u) = 0 and h∗(v) = 1. Let w ∈ V (G∗) be such that

h∗(w) = MG∗(h∗). Let r = 1. Let E2 = {1, 2, . . . , h∗(w)−2}−gf+(S)

where gf+(S) = {|f(u)− f(v)| : uv ∈ E+} and let i be the smallest

value in E2. If i + 1 is not present in E2, we insert a new vertex

jr with h∗(jr) = h∗(w) + i and join jr to w by a positive edge. We
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replace r by r + 1. If i + 1 is also in E2 and i + 1 is also a missing

vertex label, then we insert a vertex with label i + 1 and join it to

u and v by positive edges. If i + 1 is a vertex label, then join the

vertex with label i+1 to both u and v by positive edges. We repeat

this process until E2 is empty.

Now r − 1 is the number of pendent edges attached to w.

We denote the resulting sigraph by G1 and let the labeling of G1 be

h1. If r = 1, then join w to u and v. If u and v both have odd degree

inG1, then to make it even , we insert a vertex with labelMG1
(h1)+2

and join it to u and v using positive edges.The resulting graph is the

required eulerian graceful sigraph with graceful labeling h1 having S

as an induced subsigraph. Now suppose r > 1. If r is even then join

w to v using a positive edge. If r is odd, then join w to both u and v

using positive edges. Let G2 be the resulting graph with labeling h2,

let k = 1 and let the largest positive edge label of G2 be M+(G2).

If M+(G2) and h2(jk) have same parity join jk to v, and otherwise

join jk to u using a positive edge. If d = ⌊h2(jk)−M+(G2)−1
2 ⌋ > 0, then

insert d vertices with labels M+(G2) + 2t, 1 ≤ t ≤ d and join each

of these vertices to u and v using positive edges. Replace k by k+1.

Repeat this process until k = r. Finally if the vertex jr−1 was joined

to v, then insert a vertex labeled h2(jr−1) + 1 and join it to u and v

using positive edges. If the degrees of u and v are odd then insert a

vertex with label MG2
(h2) + 2 and join it to u and v using positive

edges. This gives the required eulerian graceful sigraph H having S

as an induced subsigraph.
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We give an illustration of Theorem 7.3.4.

Illustration 7.3.5. Consider the sigraph S as shown in Figure 7.7.

We shall embed S in a graceful eulerian sigraph H.

b

b

b b

3

b

b

4 9

275

-1

-3

-2 -5

71 2

6

5 c

Figure 7.7: A connected sigraph S with an injective labeling f

From Figure 7.7, MS(f) = 9 and M−(S) = 5. Insert two

vertices a and b in S with f(a) = 0 and f(b) = 1. Let r = 1 and

E1 = {4, 6, 7}. Since i = 4 and 5 is not present in E1, insert a vertex

i1 with f(i1) = 13, join it to c by a negative edge and let r = 2.

Now, i = 6 and 7 ∈ E1, therefore we join the vertex with label 7 to

both a and b using negative edges. At this stage E1 is empty and

there is one pendent edge attached to c. Since r is even, we join c

to b by a negative edge. The resulting sigraph S2 with labeling f2

is shown in Figure 7.8.

Let k = 1. From Figure 7.8, M−(S2) = 8 and f2(i1) = 13,

therefore we join i1 to a by a negative edge. Since

j = ⌊f2(i1)−M−(S2)−1
2 ⌋ = 2, we insert two vertices with labels 10 and

12 and join each of them to a and b by negative edges and replace k

by k + 1. At this stage the degree of a and b is even. The resulting
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Figure 7.8: The sigraph S2 with labeling f2

graph G∗ with labeling h∗ is shown in Figure 7.9. In the figure,

h∗(v) has been replaced by h∗(v) + 2, since MG∗(h∗) and M+(G∗)

have the same parity.
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Figure 7.9: The sigraph G∗ with labeling h∗
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We insert two vertices u and v with h∗(u) = 0 and h∗(v) =

1. Since MG∗(h∗) = 15, we shall call the vertex i1 as w. Let r = 1

and E2 = {3, 4, 8, 9, 10, 11, 12, 13}. For i = 3, since 4 ∈ E2 is a

vertex label of G∗, we join the vertex with label 4 to u and v by

positive edges. Similarly, we join the vertices with labels 9 and 11

to vertices u and v by positive edges. For i = 12, since 13 is not

a vertex label of G∗, we insert a new vertex with label 13 and join

it to vertices u and v using positive edges. At this stage, r = 1,

so we join w to u and v and since the degree of u and v is odd,

we insert another vertex with label 17 and join it to both u and v

using positive edges. The resulting sigraph H as shown in Figure

7.10 is the required eulerian graceful sigraph having S as an induced

subsigraph.
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Figure 7.10: Eulerian graceful sigraph H having S as an induced subsigraph
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Theorem 7.3.6. Every sigraph can be embedded in a graceful hamil-

tonian sigraph.

Proof. Let S be a sigraph. By Theorem 1.3.21, S can be embedded

in a graceful sigraph H. Let p and q be the order and size of H

and let m and n be the number of its positive and negative edges

respectively. Let H∗ = (H ∪Kr) +Ks, where r = MH(f)− (p− 1)

and s = p+r and all the edges joining Ks and (H∪Kr) are positive.

Label the vertices of Kr from the set {0, 1, 2, . . . ,MH(f)} − f(V )

and label the vertices of Ks with s new labels (m + s) + is where

0 ≤ i ≤ (s − 1). It is easy to verify that the resulting sigraph is

hamiltonian as well as graceful.
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CHAPTER 8

CONCLUSION AND FUTURE SCOPE OF

WORK

Synch-set codes (designed by Simmons [52]) are used to

synchronize the relative annular positions of a photo-detector on

one side of a rotating disk with a stationary target light source on

the other side. A S(p, λ)-synch set is defined as a set of p distinct

nonnegative integers for which no more than λ pairs have the same

common difference and for which the maximum element is as small

as possible. A synch-set designates positions for the p holes so

that distance from the first to the last hole is minimized. Hence a

synch-set represents a labeling of Kp with distinct positive integers

such that the largest vertex label is minimized and an edge label

is repeated at most λ times. For λ = 1, this is rephrasing of the

Golomb ruler. For λ = 2, we get graceful labeling of complete signed

graph ( [46, 52]).

In Chapter 2, we have proved that the complete graph Kp

is (p − 4)-hypergraceful if and only if p ≥ 8, (p − 3)-hypergraceful

for p ≥ 4, (p− 2)-hypergraceful for p ≥ 3 and (p− 1)-hypergraceful



for p ≥ 2. The k-hypergraceful labeling of other classes of graphs

like eulerian graphs is an open problem. We have given all noni-

somorphic 3-hypergraceful decompositions of K5. The problem of

determining all nonisomorphic k-hypergraceful decompositions of

Kp seems to be a difficult problem.

In Chapter 3, we have defined (k, d)-Skolem graceful graphs

and given some necessary or sufficient condition for a graph G to be

(k, d)-Skolem graceful. We have proved that nK2 is (2, 1)-Skolem

graceful if and only if n ≡ 0 or 3(mod 4). We have proved that

nK2 is (1, 2)-Skolem graceful. Further we observe that (1, 1)-Skolem

graceful labeling of nK2 produces a Skolem sequence, (2, 1)-Skolem

graceful labeling of nK2 produces a (2, n) Langford sequence and

(k, 1)-Skolem graceful labeling of nK2 gives a perfect sequence. A

graph G is said to be arbitrarily Skolem graceful if G is (k, d)-Skolem

graceful for all possible values of k and d. Determining the value of

n for which nK2 is arbitrarily Skolem graceful is an open problem.

Hence another natural research area is to determine more families

of arbitrarily Skolem graceful graphs.

In Chapter 4, we have introduced the notion of (k, d)-

hooked Skolem graceful graphs and observe that k = d = 1 coincides

with the notion of hooked Skolem graceful labeling of a graph G.

We have given some necessary or sufficient conditions for a graph

G to be (k, d)-hooked Skolem graceful. We have proved that nK2

is (2, 1)-hooked Skolem graceful if and only if n ≡ 1 or 2(mod 4).

Determining the value of n for which nK2 is (k, d)-hooked Skolem
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graceful for given values of k and d is an open problem.

Chapter 5, introduces a new measure of gracefulness m(G)

of a graph G. This new measure m(G) determines how close G is to

being graceful. It can be easily noted that m(G) = q if G is graceful.

We have proved that there are infinitely many nongraceful graphs

G with m(G) = q−1, and for n ≡ 1 or 2(mod 4), m(Cn) = n−1 =

q − 1 and this is achieved with n + 1 as the highest vertex label,

therefore we conclude that for n ≡ 1 or 2(mod 4), grac(Cn) =

n + 1 = q + 1. We have also shown that m(Fk) = 3k − 1 = q − 1

and grac(Fk) = 3k + 1 = q + 1 for k ≡ 2 or 3(mod 4), where Fk

is the friendship graph with k triangles. We have given necessary

conditions for a (p, q)-eulerian graph and the complete graph Kp to

have m-gracefulness q−1 and q−2. Using this, we have proved that

K5 is the only complete graph to have m-gracefulness q − 1. We

have also given an upper bound for the highest possible vertex label

of Kp if m(Kp) = q − 2. We have proved that m(K6) = 13 = q − 2,

which is also shown in optimal Golomb ruler [21]. The problem of

determining m(G) for several other classes of nongraceful graphs

remains open. We also have the following question which arises

naturally: Is it true that grac(G)− q = q −m(G)?

Hegde [34] introduced the concept of additively graceful

graphs and gave some necessary or sufficient conditions for the same.

This concept is extended to the realm of sigraphs in Chapter 6 as

additively graceful sigraphs. We have obtained some necessary or

sufficient conditions for additively graceful sigraphs and some re-
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sults on eulerian sigraphs, complete bipartite sigraphs and complete

sigraphs have also been obtained. One can investigate other classes

of additively graceful sigraphs or characterize additively graceful

sigraphs.

In Chapter 7, we have obtained an efficient embedding

of a graph G of order p as an induced subgraph of an eulerian

graceful graph H whose order is O(p2). We have also considered

the following problem for sigraphs: Given a sigraph S and a graph

theoretic property P, is it possible to embed S in a graceful sigraph

S1 having the property P? We have proved the existence of such

an embedding where S1 is eulerian, hamiltonian, planar or triangle-

free. We have proved that every sitree can be embedded in a graceful

sitree. Investigation of other graph theoretic properties of the graph

H which is an optimal graceful embedding of any given graph G is

an interesting problem.
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