
Chapter 5

Indoor Self-Localization of Robots

5.1 Introduction

Autonomous mobile robots are promising candidates in several applications such as greenhouse

monitoring, as tour guides, personal assistant for elderly people in an Ambient Assisted Living

System (AALS), etc. In addition to the several technological issues which are yet to be resolved

before the robots can be reliably employed in human-friendly applications, the cost associated

with the design, construction and maintenance of these robots pose a serious threat to their

widespread usage. For robots in SRS andMRS, operating in indoor environments where GPS is not

accessible, relative localization is an essential capability required for cooperative task completion.

Beacon based localization as presented in Chapter. 4 can be employed for localization in indoor

environments. However, a large number of beacons may be required to ensure complete coverage

in an indoor environment. In a large scale or medium scale multi-robot or swarm robotic system, if

all the robots rely only on beacons for localization, as the number of robots in the system increases,

the wireless channel will be extensively utilized for only localization and the channel will not be

available for other communications required for co-operative task completion. Hence, to reduce

the overall cost of implementation of the system and also for the effective utilization of wireless

channel, it is essential that the robots have the capability to localize themselves for at least smaller

distances.
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5.2 Problem Formulation

As discussed in the previous section, to reduce the overall cost of localization hardware and to

ensure that the wireless channel is free for other robotic functions, the mobile robots should

be able to localize themselves in the indoor environments for at least smaller distances without

the assistance of reference or beacon nodes. For short-term relative localization, robots may

utilize odometry based dead reckoning. Odometry based localization techniques are prone to the

systematic and non-systematic errors as mentioned in Chapter. 2. Once a precise error model

of the system is developed and its parameters are determined, the accuracy of odometry can be

remarkably improved by suitable control techniques based on the kinematics of the robot [72–74].

However, this requires a detailed understanding of the kinematics of the robot. In addition to

this, if odometry based localization is utilized, any error in localization might lead to error in the

navigation of robot and vice versa. It is desired that a localization system is developed, that does not

utilize explicit inputs from the navigation system so that the localization module can independently

provide inputs to the navigation system to achieve the desired movement of the robot.

For cooperative task completion in SRS, it is required that the robots move towards other robot(s)

for appropriate pattern formations for performing tasks beyond their individual capabiities. In such

scenarios, the robots may inform each other about their current position obtained via beacon based

localization. After this, in most cases, the robots estimate their shortest path to the destination,

which is often a straight line and then navigate towards the destination. Even though the robots

may localize using image processing techniques or using Lidars as mentioned in Chapter 2, these

techniques are not cost-effective. Also, the image processing techniques can be effectively utilized

only in known environments. In SRS systems, aggregation or pattern formation of the robots can

be performed using low cost cameras and suitable image processing techniques, if the robots are

within a range of few centimeters. However, the accuracy of image processing based localization

will deteriorate significantly if the robots are seperated by a distance in the range of a few meters

or utilized for applications which require continous tracking or continous localization of the robot.

A cost-effective scheme for self-localization has to be designed such that a wheeled robot can

estimate its two dimensional position (x1, y1) relative to the last known position (xr, yr). It is

desired that localization scheme can be reused for two-dimensional localization of any kind of

wheeled robot without the need of calibration to suit the specific robotic structure. With the
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advancements in MEMS technology, the inertial measurements units (IMU) can serve as a suitable

substitute for motion sensor in the place of position or wheel encoders. In this chapter, the work

carried out to evaluate the feasibility of utilizing IMU for self-localization of robots for short

distances in terms of a few meters is presented. The scope of the current work is to design an

IMU based self-localization scheme and evaluate the feasibility of IMU based localization system

to localize the robot between the start and stop activities of the robot. Following assumptions are

made for the design of the localization scheme.

• The robot is programmed to move towards the destination along straight line paths.

• Any change in direction of movement of robot is allowed through right angled movements

only.

5.3 Introduction to Inertial Measurement Unit

An inertial measurement unit typically consists of the following.

• Two or three axis gyroscope and accelerometer to sense the angular velocity and linear

acceleration respectively along the six degrees of freedom. IMU units may also incorporate

two or three axis magnetometer which measures the strength and direction of the Earth’s

magnetic field to provide information about orientation

• Core logic, which mostly includes a digital signal processor which performs digital signal

filtering and sensor data enhancement through calibration, thermal compensation, and data

formatting

• An analog front end that filters and digitizes the accelerometer, gyroscope and magnetometer

readings for further processing by the core logic

• A precision temperature sensor for internal temperature compensation

• Serial Peripheral Interface (SPI), Universal Asynchronous Receiver Transmitter (UART) or

Inter-Integrated circuit (I2C) interface for connectivity to host microcontroller/processor for

the configuration of IMU and also for the access of data measured by the IMU
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5.3.1 Sources of Error in IMU Measurements

Accelerometer, gyroscope and magnetometer are designed to measure linear acceleration, angular

velocity and orientation of the object on which the sensor is mounted [110]. Even while the object

(and hence IMU) is stationary, accelerometer and gyroscope still measures forces due to gravity and

rotation of the earth respectively. The Earth moves through the inertial frame and can be seen as

experiencing motion compared to the inertial frame. The rotation of the earth through the inertial

framemay be observed also in the gyroscopemeasurements. As the IMUmoves through the Earth’s

coordinate system, these forces must be removed from the measurements, leaving only the forces

due to motion over the Earth’s surface. Most common sources of error in IMU are mentioned in

this section [111]. These errors should be carefully removed from the IMU measurements before

the data provided by IMU can be utilized for localization. All the errors may not be relevant for

any given IMU, as some of the error components may be too small to create a significant difference

in the result.

Bias: For a given physical input, a sensor output may be offset by the bias. For example, if the

IMU is stationary and horizontal to ground, the vertical axis measures the effect of gravitational

acceleration. Gravity has a nominal acceleration of 9.81 m/s2, however with bias, the IMU may

report 9.81±δm/s2. The difference between themeasurement corresponding to the input applied to

the sensor and the output provided by the sensor is referred to as bias. In an IMU, the accelerometer,

gyroscope and the magnetometer readings may be offset by the bias. Also, the initial bias may

be different after each power up of the device and is generally referred as "Turn-on to Turn-on

Bias". This is mainly due to change in the physical properties of the IMU and initial conditions of

signal processing within the core logic. The initial bias may change over time due to the changes

in temperature, and/or mechanical stress on the system and is referred as "In-run Bias". IMUs are

often manufactured with temperature compensation mechanisms to compensate for the In-run bias.

Scale Factor or Linearity : Scale-factor error is the ratio of the output error (deviation from the

fitted straight line slope) over the input and is typically expressed as a percentage or ppm (parts

per million). For eg, if the input is 10m/s2, and if there is a 6% scale factor error, the output

measurement reported by the sensor will be 10.6 m/s2. Scale factor effects are most significant

during times of high acceleration and rotation. This deterministic error can be removed from the

measurements at run time suitable programming.

Random Walk (Sensor Noise): If a sensor measures a constant signal for a longer period of time,
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a random noise (error) may be present in the measurement. The integration of the random walk

errors in the measurements can lead to significant errors in measurements.

Sensor Non-orthogonality (Misalignment): A 9-axis IMU consists of, three axis gyroscope,

accelerometer and magnetometer mounted orthogonal to each other. Errors in mounting of the

sensors may lead to error in sensor measurements. For example, for a 3-axis acceleromeer, if

one axis is pointed perfectly up and the IMU is kept horizontal to ground, only the vertical axis

measurement must measure gravity. However, if there is nonorthogonality among other two axes,

then those axes also measure gravity, leading to a correlation in the measurements. The non-

orthogonality may also be observed between the accelerometer and gyroscope readings as well.

Although misalignment is a manufacturing error, factory and runtime calibration can be performed

to minimize this error.

It is therefore important to select an IMU module which allows removal of different errors and

run-time calibration as mentioned in this section. The same algorithm can deliver better results

using calibrated sensors when compared to the ones without calibration.

5.4 Overall Architecture of the two-dimensional Self-

localization System

An Inertial Measurement Unit (IMU) based scheme for the continous localization of the robot for

short distances is presented in this section. The localization system is developed as a stand-alone

system and does not receive any input from the robot on which it is mounted (Appendix C). As

the robot starts moving, the localization system estimates the position of the robot until it stops.

If the robot stops, then a new localization cycle is started. The localization module consists of

an Arduino Mega 2560 microcontroller board, MPU-9255 IMU unit, HC-06 Bluetooth module

and the associated powering circuitry. The Arduino Mega2560 is interfaced with MPU-9255 and

HC-06 module via the I2C and UART interface respectively.

MPU-9255 is a MEMS-based, 9-axis inertial measurement unit manufactured by Invensense that

includes a 3-axis gyroscope, 3-axis accelerometer and 3-axis magnetometer [112]. MPU-9255

features three 16-bit Analog-to-Digital Converters (ADCs) for digitizing the gyroscope outputs,

three 16-bit ADCs for digitizing the accelerometer outputs, and three 16-bit ADCs for digitizing
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the magnetometer outputs, thus providing high resolution measurements. The gyroscope within

MPU-9255 can be user programmed to a full-scale range of ±250, ±500, ±1000, and ±2000°/sec

(dps), the accelerometer can be programmed to a full-scale range of ±2g, ±4g, ±8g, and ±16g, and

the magnetometer can be programmed to a full-scale range of ±4800µT. MPU 9255 is selected

for this work as the range of accelerometer and gyroscope is sufficient to track both fast and slow

motions as is indicated by their full-scale range as mentioned above. MPU-9255 provides pro-

grammable digital filters, a precision clock with a maximum clock drift of only 1% for a operating

temperature range of 40°C to 85°C, and an embedded temperature sensor for compensating the

"In-run bias" components as mentioned in Section 5.3.

Another significant feature of MPU-9255 is that it incorporates a Digital Motion Processor (DMP),

which offloads the task of maintaining the timing requirements from the host processor, while

capturing the real-time motion data. The DMP acquires data from accelerometers, gyroscopes,

magnetometers, and stores the data in a 512- byte FIFO. The data can be read from the DMP’s

registers by the host processor/controller. The DMP will raise an interrupt to the host processor/-

controller, when the FIFO gets filled beyond the required threshold. MPU 9255 device provides

both Inter-Integrated circuit (I2C) and SPI serial interfaces for capturing data and for the device con-

figuration. Communication with all configuration and data registers of the device can be performed

using either I2C at 400kHz or SPI at 1MHz. For applications requiring faster communications, the

sensor and interrupt registers may be read using SPI at 20MHz. The MPU 9255 is a low power

consuming device which operates at a typical voltage range of 2.4V to 3.6V.

To develop a localization technique and to analyze the feasibility of IMU-only localization, it was

necessary to analyze the information provided by the IMU, independent of the restrictions imposed

by the processing capabilities of the microcontroller or microprocessor on which the algorithm is

implemented. Hence, in this work, the information provided by the IMU is processed in MATLAB

to develop a suitable localization technique. Arduino Mega 2560 based on Atmega 2560, a simple

8-bit microcontroller, is utilized to read the accelerometer, gyroscope and magnetometer values

and transmit the data to a laptop via the Bluetooth interface. The Arduino module also supports

a real-time visualizer software to assist visualization of data from Arduino thereby facilitating

support for quick debugging of errors. Arduino Mega 2560 is henceforth mentioned in the thesis

as Arduino module.
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5.4.1 Software Architecture of Proposed 2D self-localization Scheme.

Figure. 5.1, provides an overview of the self-localization scheme. The self-localization is achieved

via the following steps.

• Raw Signal Conditioning of the IMU data

• Instantaneous Activity Detection

• Activity Correlation

• Velocity and Heading Estimation

• Position Updation

The major contribution of this chapter is the design of the instantaneous activity detection unit and

the activity correlation. The steps involved in localization are explained in detail in this section.

5.4.1.1 Input Conditioning

Necessary steps for intializing the IMU and conditioning of the accelerometer, gyroscope and the

magnetometer outputs as mentioned in the data sheet of MPU-9255 module were performed using

Arduino module [112]. The gyroscope’s full range is set to 250°/sec (dps) and accelerometer’s

full range is set to ±2g. The module contains bias registers for accelerometer, gyroscope and

magnetometer which are reset to zero during power up. The ‘bias’ values are measured based

on the proceedure mentioned in datasheet and the measured bias values are written into the

corresponding bias registers. The MPU-9255 will automatically subtract the bias from the further

readings before outputting the data. MPU 9255 implements internal temperature compensation

mechanism to minimize the ‘In-run’ bias in measurements. The module is factory calibrated for

scale factor compensation. The 3-axis accelerometer, gyroscope and magnetometer readings are

read from the corresponding data registers by reading the 16-bit data registers ofMPU-9255 via I2C

interface of the Arduino at an interval of 0.2 seconds. The 16-bit data registers of MPU-9255 are

read as two 8-bits read operations via I2C. The two 8-bit data values are then concatenated together

to form 16-bits of information. This process is repeated on the 3 sets of data from accelerometer,
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gyroscope and magnetometer along the x,y and z axis. The calibration of the magnetometer is

performed to compensate for magnetic declination. The effect of gravity component has to be

removed from the z-axis component of accelerometer. To compensate for the effect of gravity,

the bias value is measured after the reset proceedure of the IMU and is programmed into the

bias register meant for the z-axis accelerometer readings to ensure that the gravity component is

automatically removed from the data provided by the IMU.

The raw accelerometer readings along the 3-axes under static conditions of the robot, before input

conditioning and the corresponding readings after input conditioning are shown in Figure 5.2 and

Figure 5.3 respectively. Figure 5.3, shows that the input conditioning is accurately performed.

Similarly, the input conditioning of gyroscope and magnetometer is also performed. The heading

Figure 5.1. Flow chart depicting the steps involved in two-dimensional localization



Chapter 5. Indoor Self-Localization of Robots 142

� � � � � � � � � � � � � � � � � 	 �
 � � � �
 � 	 � �
 � 	 � �
 � � � ��� 
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � 	 �	 � �� � � �� � � �� 
� � � � � � � � � � � � � � � � � 	 �! � � " � � �� # � 	 �� # �� # � � �� # � ��$ � � %

Figure 5.2. Raw accelerometer readings along 3-axes under static conditions of robot

(θm) of the robot is measured using the magnetometer reading, along the y and x axis as follows.

θm = atan2(−my,mx) ∗ 180/3.14. (5.1)

i f (θm < 0)then θm = 360 + θm; (5.2)

The heading of robot can also be calculated from accelerometer readings as follows

θa = atan2(ax, ay); (5.3)

where ax and ay are the accelerometer readings in the x and y directions respectively. The

accelerometer readings are prone to random noise in short-term. The gyroscope values are

less noisy in short-term, however, will slowly drift away from the true value in the long-term.

Hence, a complementary filter may be utilized to stabilize the gyroscope readings with the help of

accelerometer readings. The stabilized gyroscope (angular turn) reading along the z-axis (angle)
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Figure 5.3. Accelerometer readings along 3-axes after input conditioning

can be calculated as follows.

angle = 0.98 ∗ (angle + θg) ∗ ∆T + .02 ∗ θa (5.4)

where ‘θg’ is the raw gyroscope reading along the z-axis and ∆T is the sampling interval. However,

in the present work, as only short term localization is attempted, ‘θg’ is directly utilized without

utilizing the complementary filter. The conditioned gyroscope and accelerometer measurements

along the three axis, the heading information (θm) and the time at which the data values are read

by the Arduino are transmitted to the basestation laptop via a Bluetooth module.

5.4.1.2 Activity Detection

IMU is widely used in human activity recognition [113, 114]. Inspired by the effectiveness of

IMU for activity recognition and based on the analysis of IMU data, it was concluded that if
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various activities of the robot can be detected accurately, the location estimation of the robot can

be achieved. Hence, in this thesis, activity recognition based on the accelerometer, gyroscope and

magnetometer readings from MPU-9255 is implemented as a crucial step towards localization of

robot.

Activity recognition of the robot may be implemented through several techniques. Activity recog-

nition of a robot may be attempted by representing the various motions of a robot and the possible

range of values represented by the accelerometer, gyroscope and magnetometer readings of IMU

mounted on the robot as a look-up table. During the run-time, the robot can then continuously

compare the measured readings against the table entries to identify the activity. The activity detec-

tion algorithm can scan the various entries of the look-up table, which has the record of the activity

for every input or combination of inputs. However, as the number of activities to be detected

increases, the size of the table also increases, leading to increased memory requirements for the

implementation of the system. In addition to this, the tabular approach may lead to incoherent

results especially in situations in which there can be several combinations of input readings leading

to the same activity. Tabular mechanisms may lead to incoherent activity detection due to the

discrete nature of input/output combinations that can be represented as a table. The alternative

to look-up tables, is to model the activity using mathematical formulae, i.e to have a controller

execute a set of equations that express the output as a function of the input. The formulas can be

very complex, and executing them in real-time may not be affordable on a low-cost microcontroller

or microprocessor.

Fuzzy Logic (FL) enables low-cost microcontrollers to perform advanced functionalities tradition-

ally performed by more powerful processors. FL, like the human brain, can make precise decisions

from imprecise information. One of the reasons for significant interest on fuzzy inference systems

is due to its ability to describe the behaviour of the system inorder to incorporate semantic knowl-

edge and intuition using FL logic. Human beings utilize this semantic knowledge to recognize an

activity accurately. For example, if walking and sleeping activities of a person are recognized at

the same time, it is implied that at least one of the recognition results is incorrect because people

generally do not walk while sleeping. If an activity recognition system incorporates semantic

knowledge about the activity, in addition to the information provided by the activity model (sen-

sors), the accuracy of activity detection can be improved. FL overcomes the disadvantages of both

table-based and formula-based systems. FL has limited memory requirements, when compared
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Figure 5.4. Structure of a Fuzzy inference system

to that of look-up table based activity recognition solutions, and have lesser processing capability

demands than formula-based solutions. FL does not require intricate mathematical modeling and

only requires a practical understanding of the overall system behaviour. FL can thus make control

and analysis of complex systems much simpler. FL can result in higher accuracy and smoother

control of systems as well.

A Fuzzy Inference System (FIS) is a system that uses fuzzy set theory to map inputs to outputs.

A Fuzzy set is a class of objects with a continuum of grades of membership. Such a set is

characterized by a membership (characteristic) function which assigns to each object a grade of

membership ranging between ‘0’ and ‘1’ [115]. FIS have been successfully applied in several fields

such as decision analysis, system modelling, system control, etc. In this work, a fuzzy inference

system (FIS) is utilized for recognizing the different patterns in movement of the robot for activity

detection.

5.4.1.3 Fuzzy Logic- A Brief Introduction

The typical structure of a fuzzy system consists of four major functional blocks (Figure 5.4) that

are as follows [116] :

• Fuzzifier: Both linguistic values (defined by fuzzy sets) and crisp (numerical) data can be

applied as inputs to a fuzzy inference system. If crisp data are applied as inputs, then the

inference process is preceded by fuzzification, which assigns the appropriate fuzzy set to the
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non fuzzy input. Fuzzifier converts the crisp input to a linguistic value using the membership

functions stored in the fuzzy knowledge base.

• Knowledge base: The rule base and the database are jointly referred to as the knowledge

base. Rule base contains the fuzzy IF–THEN rules. The membership functions of the fuzzy

sets used in the fuzzy rules form the database.

• Inference Engine: Using IF-THEN type fuzzy rules, fuzzy inference engine converts the

fuzzy input to the fuzzy output. Fuzzy inference engine combines the membership values

on the antecedent (input) part to calculate firing strength (degree of fulfillment) of each

rule. Inference engine generates the qualified consequents (outputs) which are either fuzzy

or crisp, for each rule depending on the firing strength.

• Defuzzifier: In addition to the linguistic values, the numerical data may be required as the

system output. In such cases defuzzifier assigns the representative crisp data to the resultant

output fuzzy set. Defuzzifier converts the fuzzy output of the inference engine to crisp

output.

The two main types of fuzzy inference methods/models are the Mamdani model and Sugeno or

Takagi-Sugeno model [117]. In the Mamdani model, a fuzzy system with two inputs ‘x1’ and ‘x2’

(antecedents) and a single output ‘y’ (consequent) are described by the following fuzzy IF-THEN

rule:

• IF x1 is A1 and x2 is A2, THEN y is B

where A1 and A2 are the fuzzy sets representing the antecedent pairs and B is the fuzzy set

representing the consequent. To compute the output of Mamdani FIS, given the numeric inputs,

the following steps are required.

1. Determination of the set of fuzzy rules

2. Fuzzifying the inputs using the input membership functions,

3. Combining the fuzzified inputs according to the fuzzy rules to establish a rule strength,
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4. Finding the consequence of the rule by combining the rule strength and the output member-

ship function,

5. Combining the consequences to obtain an output distribution, and

6. Defuzzifying the output distribution (if crisp output is required).

Sugeno, or Takagi-Sugeno-Kang method is similar to the Mamdani method in many respects. The

first three steps of fuzzy inference process are the same for both models. The main difference

between Mamdani and Sugeno model is that the Sugeno output membership functions are either

linear or constant. In Sugeno model, a fuzzy system with two inputs ‘x1’ and ‘x2’ (antecedents)

and a single output ‘y’ (consequent), then the fuzzy IF-THEN rule is as follows:

• IF x1 is A1 and x2 is A2, THEN y is f (x1, x2)

where y = f (x1, x2) is a crisp function which is usually a polynomial function, and A1 and A2 are

the fuzzy sets representing the antecent pairs.

A typical rule in a Sugeno fuzzy model has the form: If input 1 is ‘x’ and input 2 is ‘y’, then output

is z = ax + by + c. For a zero-order Sugeno model, the output level ‘z’ is a constant (a = b = 0).

Each rule weights its output level, zi, by the firing strength of the rule, Wi. For example, for an

AND rule with input 1 = x and input 2 = y, the firing strength is

Wi = AndMethod(F1(x), F2(y)) (5.5)

where F1(x), F2(y) are the membership functions for inputs 1 and input 2 respectively.

The final output of the system is the weighted average of all rule outputs, computed as

Output =

∑N
i=1

Wizi
∑N

i=1
Wi

(5.6)

where ‘N’ is the number of rules.

The main difference between Mamdani type FIS and Sugeno type FIS is in the way how the

crisp output is generated from the fuzzy inputs. While Mamdani type FIS uses the technique
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of defuzzification of a fuzzy output, Sugeno type FIS uses the weighted average of rule outputs

to compute the crisp output. Hence, the Sugeno’s output membership functions are either linear

or constants. Sugeno fuzzy FIS is a more compact and computationally efficient system than

a Mamdani system. Sugeno method incurs lesser processing time, since the weighted average

replace the time consuming defuzzification process. The choice of membership functions, the

range and the parameters associated with membership functions and the rules are a few major

design decisions to be taken while designing fuzzy inference systems. The membership functions,

parameters and the range associated with membership functions are to be selected based on the

user’s interpretation of the characteristics of the input signal. The parameters associated with a

given membership function should be chosen so as to tailor the membership functions to account

for the variations in the input data for a desired output. Also, the Sugeno system lends itself to the

use of adaptive techniques such as Adaptive Neuro Fuzzy Inference Systems (ANFIS) which can

be utilized to customize the membership functions of FIS so that the fuzzy system best models the

data. Due to the above mentioned factors, a Sugeno fuzzy inference system is utilized for activity

detection of the robot in this thesis.

5.4.1.4 Instantaneous Activity Detection

The conditioned gyroscope and accelerometer measurements along three axis, the heading infor-

mation (θm) and the time at which the data values are read by the Arduino are transmitted to the

base station laptop via a Bluetooth module. A Sugeno Fuzzy Inference System based activity

recognition unit is designed for the instantaneous activity detection of the robot. As mentioned in

Section 5.4.1.3, to design a Fuzzy Inference system, the set of input/outputs should be selected, the

fuzzy rules should be defined and the inputs to FL systemmust be fuzzified using input membership

functions. The activity recognition is based on the instantaneous values of magnetometer heading

and gyroscope readings from the IMU mounted on the robot. The angular turn of the robot (θg)

obtained from the z-axis reading of the gyroscope and (θm), the heading of the robot measured from

the magnetometer (equation (5.1) ) are selected as the inputs to the FL based activity detection

unit. The heading of the robot ranges from 0-360◦. The Fuzzy Inference System is simulated

using MATLAB Fuzzy Logic tool box. The scope of the current work is to accurately localize the

robot between the start and stop activities of the robot. For a such a system, triangular membership
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would suffice to provide the reasonable accuracy. Triangular membership functions are also easier

to implement on low-cost microcontroller boards.

The Sugeno Fuzzy FIS was designed based on the following principle. The FIS system is utilized

to detect the instantaneous activity of the robot based on the receieved inputs. The FIS is used to

detect if the robot is moving straight, whether the robot is turning right, turning left or whether

robot has turned right or left. As the robot travels along the floor, the robot may slightly move to

the right or left (deviate from straight line path) due to the factors such as the friction on the floor,

slight imperfections in the odometry, etc. which can be observed from the gyroscope readings.

The magnetometer readings are utilized to distinguish the unintended turns of the robot from the

intended turns of the robot. The magnetometer (θm) reading is sampled when the robot starts

turning left/right ( ‘θg’ increases in positive or negative direction). Also the magnetometer reading

(θm) is sampled when the gyroscope readings returns back to zero. If there is a significant difference

in the heading measurement at these two instances, then a valid turn is detected. Else, the turn

observed by gyroscope is discarded as unintended turns. To implement this logic, five triangular

membership functions are selected for the magnetometer input which are referred to as Low1 (L1),

Low2 (L2), LowMotion1(LM1), LowMotion2 (LM2) and Turn as shown in Figure 5.5. The range

of the magnetometer input varies from [0 360]◦. Similarly, five triangular membership functions

are selected for the gyroscope input. The membership functions are Very Low (VL), Low Left

(LL), Low Right (LR), Right (R) and Left (L) as shown in Figure 5.6. The range of the gyroscope

input is restricted to [-90 90]◦ as the robot is allowed to change the direction only through right

angled movements. The output of the Sugeno fuzzy inference logic is configured to generate

crisp constant outputs of the range [0 1] corresponding to the activities detected. The crisp values

generated at the output of Sugeno Fuzzy logic on the detection of the different activities are as

follows- Straight, Start Right, Start Left, Turn Right, Turn Left. The input and output membership

functions and the parameter values of the membership functions are as shown in Table 5.1.

The rules for the fuzzy inference logic are defined using AND rules as shown in Table 5.2.

5.4.1.5 Activity Correlation Unit

The Sugeno Fuzzy Inference logic produces a constant output which correspond to the recognized

activity, i.e, Start Right (output value=.2), Start Left (output value=.4), TurnRight (output value=.6),
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Figure 5.5. Membership function for the magnetometer input

Figure 5.6. Membership function for the Gyroscope input

Turn Left (output value=1) and Straight (output value=0). Crisp outputs as mentioned above are

generated when the inputs satisfy only one of the membership functions. For the inputs which

satisfy two membership functions, the output is generated according to equation (5.6). However

these output values are approximated to the closest value belonging to the 5 crisp outputs mentioned

above. As the name of the constant membership functions from the FIS implies, the FIS logic

will provide an output indicating whether the robot is moving straight, starts to turn left/right or

is moving left/right. However, it is not possible to ascertain whether the robot has actually turned

left/right or is moving straight, only from the instantaneous activity detection. The sequence of

outputs from the FIS logic is stored in the activity store buffer as indicated in Figure 5.1. Whether

the robot is in straight line motion, turning right or left or is in stop condition is ascertained only

after correlation of the various outputs from fuzzy logic and the accelerometer readings as indicated
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Table 5.1. Parameters for input and output membership functions

Gyroscope Gyroscope Magnetometer Magnetometer Output Parameter

Membership Parameter Membership Parameter Constant Value

Function Range Function Value

VL [-15 0 15] L1 [0 0 15] Straight 0

LL [10 20 35] L2 [345 360 360] Start Left 0.4

LR [-35 -20 -10] LM1 [315 331 360] Start Right 0.2

L [30 50 90] LM2 [10 30 50] Left 1

R [-90 -50 -30] Turn [45 230 320] Right 0.6

Table 5.2. Rules for Sugeno Fuzzy Inference System

Gyroscope Input Magnetometer Input FIS Output

VL L1 Straight

VL L2 Straight

LL LM1 Start Left

LL LM2 Start Left

LL Turn Start Left

LR LM1 Start Right

LR LM2 Start Right

LR Turn Start Right

L LM1 Left

L LM2 Left

L Turn Left

R LM1 Right

R LM2 Right

R Turn Right

in Table 5.3. Similarly, the state ‘Stop’ is assigned only if the net acceleration along the 3-axis is

lesser than 0.15 m/s2 for at least 5 sampling intervals.

5.4.1.6 Velocity Estimation

The next steps in the localization are the velocity estimation and the position updation of the robot.

The displacement of the robot is calculated by double integration of the acceleration. Hence, the
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Table 5.3. Output state determined by the Activity Correlation unit

Accelerometer Sequence of outputs from FIS Activity

unit

reading (output)

<0.15 - Stop (0)

- Staight->Straight Motion (1)

- Straight->Start Left->Left->Start Left-> Straight Left (3)

- Straight->Start Right->Right->Start Right->Straight Right (2)

- Straight->Start Left->Start Left-> Straight Motion (1)

- Straight->Start Right->Start Right->Straight Motion (1)

time at which the measurement of acceleration is made is very critical. It cannot be assumed that

the sampling interval will remain same. Hence, along with the IMU readings, the Arduino module

also transmits the timestamp at which the measurement was made. If any activity other than the

‘stop’ condition is detected, then the displacement of the robot relative to its starting point can be

calculated if the velocity of robot is determined. The velocity is determined from the accelerometer

readings of the IMU as follows. The net instantaneous acceleration ‘a’ of the robot is obtained

from the accelerometer readings along x, y, z axis, i.e ax, ay and az as

a =
√

ax ∗ ax + ay ∗ ay + az ∗ az (5.7)

If ∆ T is the interval at which the raw data from IMU is sampled, then the velocity V(i) is updated

at every sampling interval based on the net acceleration ‘a’ is as follows.

V(i) = (ai − ai−1) ∗ ∆T + V(i−1) (5.8)

In this work the Arduino module is programmed to sample IMU data at an interval of 0.2 seconds.

5.4.1.7 Position Estimation

Based on the four activities generated by the activity correlation unit (as indicated in Table 5.3),

the position (x,y) and the velocity ‘V’ of the robot is updated as shown below.
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Activity Detected by Activity Correlation unit = Stop

x(i) = x(i−1); y(i) = y(i−1); (5.9)

V(i) = 0; (5.10)

Activity Detected by Activity Correlation unit = Straight

y(i) = y(i−1); x(i) = x(i−1) + V ∗ ∆T ; (5.11)

or

x(i) = x(i−1); y(i) = y(i−1) + V ∗ ∆T ; (5.12)

Activity Detected by Activity Correlation unit = Right or Left

y(i) = y(i−1); x(i) = x(i−1) ± (V ∗ ∆T ∗ sin(θ)); (5.13)

or

x(i) = x(i−1); y(i) = y(i−1) ± (V ∗ ∆T ∗ sin(θ)); (5.14)

where ‘θ’ is the angle turned by robot. In this work if the ‘Right’ or ‘Left’ activity is detected by

the activity correlation unit, then ‘θ’ is assumed to be 90°.

5.5 Experimental Validation of the IMU based Self-

Localization

The accuracy of the proposed system was tested in a indoor environment. Two specific test cases

are described in this section to illustrate the accuracy of the proposed scheme.

5.5.1 Validation of Self-Localization- Test Scenario-1

The robot was programmed as a black line follower robot, i.e to follow a black-line drawn along

the path to be travelled by the robot. The robot was programmed to travel from one room to
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Figure 5.7. Test scenario-1 for validation of Self-localization

another in an indoor environment. The desired path to be followed by robot is shown in Figure

5.7. The conditioned accelerometer, gyroscope, magnetometer readings from the IMU along with

the time at which the mesaurement were made is transmitted by the Arduino via Bluetooth module

and the path traveled by the robot is traced using MATLAB. The path travelled by the robot

and the estimated path is shown in Figure 5.8. Plot D and Plot E of of Figure 5.9 indicates the

various activities detected by the Instantaneous activity detection logic -Straight (output value=0),

Start Right (output value=0.2), Start Left (output value=0.4), Turn Right (output value=0.6), Turn

Left (output value=1). and the activity correlation logic -Stop (output value=0), Straight (output

value=1), Left (output value=3), Right (output value=2) respectively. Plot A of Figure 5.10, depicts

the x-axis coordinates and y-axis coordinates determined by the robot. Plot B of Figure 5.10 depicts

the angular turns traced by the robots to cover the path. Plot A of Figure 5.11 presents the measured

velocity of the robot. It can be observed from Plot A and B of Figure 5.10, that whenever the

robot turns by 90 degrees, the corresponding x-axis and y-axis distances are updated by the robot.
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Figure 5.8. Path estimated by the self-localization scheme and the Path traced by robot for Test

scenario-1

The experiment was repeated 10 times and the maximum error in position along the x and y-axis

reported for Scenario -1 less than to 8cm.

5.5.2 Validation of Self-Localization- Test Scenario-2

The self-localization scheme was also tested on a robot deployed in a 3m x 3m room. The robot

was programmed to move along a preplanned path as shown in the Figure 5.12. The robot was

programmed to operate as a black-line following robot in a rectangular section of area 2x1.5 m.

As in Test Scenario-1, the conditioned accelerometer, gyroscope, magnetometer readings from the

IMU along with the time at which the mesaurement was made is transmitted by the Arduino via

Bluetooth module and the path traveled by the robot is traced using MATLAB. The path traversed

by the robot and the estimated path is shown in Figure 5.12. Plot A of Figure 5.13 depicts the

x-axis coordinates and y-axis coordinates determined by the robot. Figure 5.13 Plot B depicts the

angular turns traced by the robots to cover the path. Plot A of Figure 5.14 depicts the estimated

velocity of the robot. It can be observed from Plot A and B of Figure 5.13 that whenever the robot

turns by 90 degrees, the corresponding x-axis and y-axis distances are updated by the robot. The
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Figure 5.9. Activity detection for Test Scenario-1

experiment was repeated 10 times and the maximum error in position reported in x-axis and y-axis

was less than 10cm for all trials. Since the localization was performed using timestamps obtained

at an interval of 0.2 seconds, it also indicates the hardware realization of the proposed logic is

feasible.

5.6 Conclusions

In this chapter, the design of an IMU based short-term, self-localization scheme for robots is

presented. The major conclusions based on the work presented in this chapter can be summarized

as follows.

• IMU based localization is a feasible solution for short-term indoor localization.
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Figure 5.10. Measured x-axis and y-axis displacement of robot- Test scenario 1
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Figure 5.11. Measured velocity and angular turns of the robot for Test Scenario-1
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Figure 5.12. Actual and Estimated path of robot for Test Scenario 2

• To perform the crucial step in self-localization, i.e the activity detection, a Sugeno-Fuzzy

Logic based activity detection unit was designed.

• It was observed during experimental validation that themaximum error in position estimation

during these observations were restricted to 10 cm along x or y-direction for distances upto

10.7 meters travelled by the robot. Hence the proposed scheme can be utilized for reliable

self-localization in indoor environments for short distance localization.

• The results obtained during the experiments are promising enough to extend the IMU-only

localization for applications which involves more complex type of robot movements.

• The beacon-based localization scheme proposed in Chapter 4, alongwith the self-localization

proposed in Chapter 5 together can be utilized as a cost-effective solution for accurate

localization of robots in indoor environments. Since the robots can self-localize for short

distances, the wireless channel can be optimally utilized for other robotic tasks.
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Figure 5.13. Measured x-axis and y-axis displacement of robot for Test scenario 2
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Figure 5.14. Velocity and angular turns of the robot measured for Test Scenario-2


