TABLE OF CONTENTS

List of Conten	ts	Page No.
Certificate		
Acknowledgen	nents	i
Abstract		iii
Table of conter	nts	V
List of Tables		vii
List of Figures		viii
List of Abbreviations and Symbols		xiv
Chapter 1: A I	Brief Overview: Imidazolium- and Pyridinium-based Metal C	atalysts and
Chemosensors	3	
1.1	Imidazolium-based metal catalyst	1
1.1.1	Imidazolium-based Schiff base metal catalyst	3
1.1.2	Imidazolium-based NHC metal catalyst	9
1.2	Imidazolium- and pyridinium-based chemosensors	18
1.2.1	Imidazolium- and pyridinium-based chemosensors for metal	22
	ions and nitroaromatic compounds (NACs) detection	
1.3	Aim of present study	26
1.4	References	27
Chapter 2: Ma	aterials, Methods and Instrumentation	
2.1	Chemicals and reagents	35
2.2	Methods	36
2.3	Instrumentation	39
2.4	References	47
Chapter 3: S	ynthesis, Characterization and Catalytic Application of Ir	nidazolium-
based Nickel (Complex for C-S Cross-Coupling Reaction in Water	
3.1	Introduction	49
3.2	Results and discussion	60
3.3	Experimental	73
3.4	Conclusion	79
3.5	References	79

Chapter 4:	Synthesis, Characterization and Catalytic A	Application of Abnormal N-
heterocyclic	Carbene/CNN Pincer Palladium(II) Compl	lex for the Suzuki-Miyaura
Reaction in V	Water	
4.1	Introduction	85
4.2	Results and discussion	93
4.3	Experimental	108
4.4	Conclusion	114
4.5	References	115
	Exploration of Fluorescence Behavior of Imidanton's Response for Al ³⁺ in Pure Aqueous Me	
	•	
5.1	Introduction	119
5.2	Results and discussion	128
5.3	Experimental Conclusion	148
5.4		149
5.5	References	150
-	Fluorescence Detection of Nitroexplosiv based Chemosensor in Pure Aqueous Mediun	• •
6.1	Introduction	155
6.2	Results and discussion	164
6.3	Experimental	184
6.4	Conclusion	185
6.5	References	186
Chapter 7: F	Final Conclusions and Future Scope	
7.1	General conclusion	191
7.2	Specific conclusions	192
7.3	Future scope of the research work	196
Appendices		
List of public	eations	A-1
•	s presented in conferences	A-2
	bhy of the candidate	A-3
Brief biography of the supervisor		A-4

LIST OF TABLES

No.	Title	Page No.
3.1	Optimization of the reaction conditions	66
3.2	Substrate scope for sulfenylation reaction using L1Ni	67
4.1	¹ H and ¹³ C chemical shifts of L2PdBr	98
4.2	Crystal data and structure refinement for L2PdBr	99
4.3	Bond Lengths for L2PdBr	100
4.4	Bond Angles for L2PdBr	101
4.5	Optimization of the Suzuki-Miyaura coupling reaction	103
4.6	The Suzuki-Miyaura coupling reaction of aryl chlorides with arylboronic acids	105
5.1	Crystal data and structure refinement of ImSB	129
5.2	Hydrogen Bonds of ImSB	130
5.3	Fluorescence lifetime measurement data of ImSB and ImSB -Al ³⁺ in solution	138
5.4	Comparison of some selected geometrical parameters of ImSB (keto form) by single crystal XRD and theoretical calculations	142
5.5	Selected bond lengths (Å) and bond angles (°) of DFT optimized structure of ImSB and its aluminium complex	144
5.6	Recovery study of spiked Al ³⁺ in water samples	147
5.7	A comparative study of \textbf{ImSB} with some literature reported chemosensors for Al^{3+} detection	148
6.1	Single Crystal XRD Data and Structure Refinement for IPy and BZQZPy	168
6.2	Detection of TNP in real water samples by BZQZPy	183
6.3	A comparative study of BZQZPy with some literature reported chemosensors for TNP detection	183

LIST OF FIGURES

Figure No.	Caption	Page No
1.1	Properties of imidazolium-based catalysts	2
1.2	Selected examples of imidazolium-based catalysts	3
1.3	Pictorial representation of a chemosensor response on analyte binding	19
1.4	Selected examples of imidazolium- and pyridinium-based chemosensors for various anion detection	20
1.5	Selected examples of imidazolium- and pyridinium-based chemosensors for biologically relevant analytes	21
1.6	Pyridinium-based Schiff base (23) and porphyrin (24) chemosensors	22
1.7	Dicationic chemosensors (25a-b) and (26a-b)	23
1.8	Tri-imidazolium-based chemosensor (27)	23
1.9	Imidazolium-based tripodal chemosensor (28)	24
1.10	Imidazolium-based thiocyanate (29) and styrylpyridinium (30) chemosensors	24
1.11	Bisimidazolium-based pyrenesulfonamide chemosensors (31) and (32)	25
1.12	Imidazolium-based amide (33), lanthanide (34a-b) and anthracene (35a-b) chemosensors	26
2.1	Photograph of the FTIR spectrometer (a) ABB Bomen MB 3000 and (b) Perkin Elmer Spectrum 100	40
2.2	Photograph of the UV-visible spectrophotometers (a) Shimadzu UV-2450 (b) JASCO V-650	41
2.3	Photograph of 400 MHz NMR spectrometer (Bruker Ascend TM 400)	42
2.4	Photograph of spectrofluorometer (Horiba Jobin Yvon Fluoromax-4)	43

2.5	Photograph of Fluorescence Lifetime Spectrometer (Edinburgh FL920)	43
2.6	Photograph of mass spectrometer (6545Q-TOF LC/MS)	44
2.7	Photograph of Single-crystal X-ray diffractometer (Rigaku-Oxford XtaLAB)	45
2.8	Photograph of microwave synthesis reactor (Monowave 300, Anton Paar)	46
3.1	Selected examples of biologically active organosulfur derivatives	50
3.2	Schiff base (1) NNN (2a-h) PCP (3a-d) SPS (4a-f) and POCSP (5) pincer Ni(II) complexes	52
3.3	Ni(II) PNP (6a-h), SNS (7a-c) and Pd(II) SCS (8a-c) pincer complexes	53
3.4	POP pincer (9a-b) Ni(II) complex	53
3.5	NHC (10-14) and diradical (15) Ni(II) complexes	54
3.6	Ni (II) coordination polymers 16a-b	55
3.7	IR Spectra of L1H ₂ and L1Ni	61
3.8	UV-visible spectra (a) L1H ₂ and L1Ni in DMSO (10 ⁻⁵ M) (b)	62
	L1Ni in solid-state	
3.9	¹ H Spectrum of L1H ₂ (DMSO- <i>d</i> ₆)	63
3.10	¹ H NMR Spectrum of L1Ni (DMSO- <i>d</i> ₆)	63
3.11	¹³ C NMR Spectrum of L1H₂ (DMSO- <i>d</i> ₆)	64
3.12	¹³ C NMR Spectrum of L1Ni (DMSO- <i>d</i> ₆)	64
3.13	HRMS of L1H ₂	65
3.14	HRMS of L1Ni	65
3.15	¹ H NMR Spectrum of 19b (CDCl ₃)	68
3.16	¹³ C NMR Spectrum of 19b (CDCl ₃)	68
3.17	Recyclability of the catalyst L1Ni	69
3.18	Mass spectra of reaction mixture (step 1)	71
3.19	Mass spectra of reaction mixture (step 2)	71
3.20	Mass spectra of species 23	71

3.21	Mass spectra of species 24	72
3.22	¹ H NMR Spectrum of isolated 21 (CDCl ₃)	72
3.23	¹³ C NMR Spectrum of isolated 21 (CDCl ₃)	73
3.24	HRMS of isolated 21	73
4.1	Normal (1) and abnormal (2 and 3) NHCs	87
4.2	Imidazolium-based picolyl functionalised (4a-b) and without orthometallation generated (5a-b) NHC-Pd(II) catalysts	88
4.3	Bis- and PEPPSI-type NHC-Pd(II) catalysts (6a-e)	88
4.4	Benzoxazole- or benzothiazole- (7a-d) and Biphenyl-based (8a-c) NHC-Pd(II) catalysts	89
4.5	Sulfonated (9a-d) and Halobridged C-H activated (10a-b) aNHC-Pd(II) catalysts	90
4.6	C2-arylated imidazolium-based aNHC-Pd(II) catalyst (11a-h)	90
4.7	CNC pincer type NHC Pd(II) catalyst (12a-c) and (13a-b)	91
4.8	Acetyl-protected D-glucopyranosyl-based CCN/CNC (14a-b) and Bis-imidazolium derived CNC (15a-b) pincer NHC Pd(II) catalysts	92
4.9	¹ H NMR spectrum of L2H (DMSO- <i>d</i> ₆)	94
4.10	¹ H NMR spectrum of L2PdBr (DMSO- <i>d</i> ₆)	94
4.11	¹³ C NMR spectrum of L2H (DMSO- <i>d</i> ₆)	95
4.12	¹³ C NMR spectrum of L2PdBr (DMSO- <i>d</i> ₆)	95
4.13	COSY spectrum of L2PdBr (DMSO-d ₆)	96
4.14	HSQC NMR spectrum of L2PdBr (DMSO- <i>d</i> ₆)	97
4.15	HMBC NMR spectrum of L2PdBr (DMSO-d ₆)	97
4.16	DEPT NMR spectrum of L2PdBr (DMSO-d ₆)	98
4.17	ORTEP diagram of L2PdBr drawn with a 50% ellipsoidal probability	100
4.18	Unit cell packing of L2PdBr	100
4.19	HRMS data of L2H	102

4.20	HRMS data of L2PdBr	102
4.21	¹ H NMR spectrum of 19b (CDCl ₃)	106
4.22	¹³ C NMR spectrum of 19b (CDCl ₃)	106
4.23	HRMS spectrum of 20a and 20b	107
4.24	HRMS spectrum of 22b	108
5.1	Schematic representation of PET process	120
5.2	Schematic representation of C=N isomerization and CHEF	120
	processes	
5.3	Tripeptide- (1) and Chalcone- (2) based chemosensors	121
5.4	Azo- (3 and 4) and Hydrazide- (5) based chemosensors	122
5.5	Hydrazone- (6) and Phenazine- (7) based chemosensors	122
5.6	β -cyclodextrin-based chemosensors (8a and 8b)	123
5.7	Anthracene- (9), Coumarin- (10), o-vanillin- (11) and	124
	Naphthalimide- (12) based Schiff base chemosensors	
5.8	Hydrazinopyrimidine- (13), Naphthalene sulfonic acid- (14a-b),	125
	Benzophenone- (15), Rhodamine B- (16) based Schiff base	
	chemosensors	
5.9	Aminoquinoline-based Schiff base chemosensors (17-20)	126
5.10	Benzothiazole- (21) and Cyclophane-based (22a-c)	127
	chemosensors	
5.11	IR spectrum of ImSB	128
5.12	ORTEP diagram of ImSB drawn with 50% ellipsoidal probability	130
5.13	Unit cell packing of ImSB	130
5.14	Crystal description of ImSB (a) asymmetric unit (b) packing	131
	arrangement of molecules (c) $\pi \cdots \pi$ interaction between the	
	centroids of two molecules (d) staircase or ladder-type packing of	
	molecules	
5.15	¹ H NMR spectra of ImSB (DMSO- <i>d</i> ₆)	132
5.16	¹³ C NMR spectra of ImSB (DMSO- <i>d</i> ₆)	132
5.17	HRMS spectra of ImSB	133

5.18	UV-visible spectra of ImSB (a) in different solvents at 10 ⁻⁴ M (b)	133
	at different concentrations in water	
5.19	Solution (10 ⁻⁴ M) and solid-state UV-visible spectra of ImSB	134
5.20	Fluorescence spectra at different concentrations of ImSB in water	134
5.21	Fluorescence spectra of ImSB in solid-state and its solution in	135
	water	
5.22	(a) (a) UV-visible and (b) fluorescence response of ImSB under	135
	different pH	
5.23	Visual colour change observed with the addition of different	136
	metal ions to ImSB (a) in natural light and (b) under 365 nm UV	
	lamp	
5.24	(a) UV-visible and (b) emission spectra ($\lambda_{ex} = 410 \text{ nm}$) of ImSB	136
	(10 μM) upon addition of 1 equiv. of different metal ions	
5.25	Selectivity of ImSB (10 μM) towards Al ³⁺ in the presence of	137
	different (a) metal ions and (b) anions	
5.26	(a) UV-visible and (b) fluorescence response of ImSB -Al ³⁺ under	138
	different pH	
5.27	Time-resolved fluorescence decay of ${\bf ImSB}$ in absence and presence of ${\rm Al^{3+}}$	138
5.28	(a) UV-visible and (b) emission spectra of ImSB in the presence	139
	of a varying amount of Al3+; inset: line graph of absorbance and	
	emission intensities of ImSB depending on the concentrations of	
	Al^{3+}	
5.29	(a) Job's plot and (b) Benesi-Hildebrand plot of ImSB vs Al ³⁺	139
	titration	
5.30	Detection limit calculation plot	140
5.31	(a) IR and (b) ¹ H NMR spectra of ImSB and ImSB -Al ³⁺ (DMSO-	140
	d_6)	
5.32	Mass spectra of ImSB -Al ³⁺	141

5.33	(a) Fluorescence spectra of ImSB in the presence of Al3+ and	141
	EDTA (0.0-2.0 equiv.) (b) Reversibility chart of ImSB after	
	sequential addition of Al3+ and EDTA	
5.34	(a) DFT optimized structure of keto form and (b) crystal structure	142
	of ImSB	
5.35	DFT optimized structures of (a) ImSB (enol form) and (b) ImSB -	144
	$Al(NO_3)_2$	
5.36	Energy level diagram of ImSB and its aluminium complex	145
	$ImSB^+$ -Al(NO ₃) ₂	
5.37	Energy of selected frontier molecular orbitals of \mathbf{ImSB}^+	145
5.38	Energy of selected frontier molecular orbitals of aluminium	146
	complex	
5.39	Pictorial representation of key transitions involved in the UV-	146
	visible spectra of ImSB ⁺	
5.40	Pictorial representation of key transitions involved in the UV-	147
	visible spectra of aluminium complex	
6.1	Examples of explosive nitroaromatic compounds	155
6.2	Mechanism of static and dynamic quenching	156
6.3	Pictorial representation of (a) ground-state complex formation	157
	(static quenching) (b) RET (dynamic quenching)	
6.4	Selected examples of fluorescent chemosensors for TNP	158
	detection	
6.5	Imidazolium-based cationic conjugated polyelectrolyte (1) and	159
	cationic bispyrene (2) chemosensors	
6.6	Imidazolium-based anthracene chemosensors (3a and 3b)	160
6.7	Imidazolium-based dansylamide (4) and coumarin (5a-c)	160
	chemosensors	
6.8	Imidazolium-based triethylbenzene (6a-b) and biphenyl (7a-c)	161
	chemosensors	
6.9	Benzimidazolium-based p -terphenyl (8) and dansyl (9)	162
	chemosensors	

6.10	Selected examples of pyridinium-based chemosensors	163
6.11	Pyridinium-based dansyl chemosensor (10)	163
6.12	1 H NMR Spectra of IPy (DMSO- d_{6})	165
6.13	¹ H NMR Spectra of BZQZPy (DMSO- <i>d</i> ₆)	166
6.14	¹³ C NMR Spectra of IPy	166
6.15	¹³ C NMR Spectra of BZQZPy	167
6.16	HRMS of IPy	167
6.17	HRMS of BZQZPy	168
6.18	ORTEP diagram of (a) IPy and (b) BZQZPy drawn with 50%	169
	ellipsoidal probability	
6.19	Unit cell packing of (a) IPy and (b) BZQZPy	170
6.20	Ring plane diagrams of (a) IPy and (b) BZQZPy	174
6.21	Photograph of the solution of BZQZPy (10 ⁻⁴ M) with organic	171
	analytes in water under a 365 nm UV lamp	
6.22	(a) UV-visible and (b) fluorescence spectra of BZQZPy (10 ⁻⁴ M)	171
	in water	
6.23	(a) Absorbance and (b) fluorescence response of BZQZPy (10 ⁻⁴	172
	M) towards organic analytes in water	
6.24	(a) Absorbance and (b) fluorescence response of BZQZPy (10 ⁻⁴	172
	M) before and after TNP addition in different solvents	
6.25	Titration spectra from (a) UV-visible and (b) fluorescence studies	173
	upon gradual addition of TNP to BZQZPy	
6.26	Stern-Volmer Plots in the response to increasing concentration of	174
	TNP in aqueous media. Inset: The Stern-Volmer plot at the lower	
	concentration of TNP	
6.27	Pictorial representation of ground state electron transfer from	174
	HOMO of picrate to LUMO of BZQZPy ⁺	
6.28	The LUMO-HOMO energy levels of BZQZPy ⁺	175
	and organic analytes	

6.29	Absorption spectra of different organic analytes and emission	176
	spectra of the $BZQZPy$ (10 ⁻⁴ M) in aqueous medium. UV-Visible	
	spectra: solid line, Fluorescence spectra: dotted line	
6.30	Lifetime decay profile of BZQZPy and BZQZPy-TNP	176
6.31	¹ H NMR spectra of BZQZPy with different equiv. of TNP	176
	$(DMSO-d_6)$	
6.32	¹ H NMR of BZQZPy-TNP complex (DMSO- <i>d</i> ₆)	178
6.33	HRMS of BZQZPy-TNP complex	179
6.34	Comparison of percentage fluorescence quenching on the	179
	addition of TNP, DNP and NP to the solution of BZQZPy in	
	water	
6.35	Fluorescence spectra of BZQZPy before and after addition of	180
	TFA (trifluoroacetic acid)	
6.36	Change in the fluorescence spectrum of BZQZPy (10 ⁻⁴ M) before	180
	and after TNP addition under different pH conditions	
6.37	Fluorescence quenching efficiency of BZQZPy (10 ⁻⁴ M) with	181
	and without TNP after the addition of (a) organic analytes	
	(b) metal ions and (c) anions	
6.38	UV light visualization of filter paper strips containing BZQZPy	182
	before and after addition TNP (10 ⁻³ -10 ⁻⁶ M) under 365 nm UV	
	lamp	
6.39	Fluorescence response of BZQZPy towards TNP in real water	182
	samples	
7.1	Diagrammatic representation of thesis chapters	192

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviation/Symbol Description

 η Refractive index σ Standard deviation

N Frequency

°C Degree centigrade

Å Angstrom
K Kelvin

E Energy

F Oscillator strength

% Percentage

ATP Adenosine Triphosphate

AMP Adenosine monophosphate

Ad Adamantyl

Ar Aryl

 $\begin{array}{ccc} acac & & Acetylacetone \\ K_B & & Binding \ constant \end{array}$

Bmim 1-Butyl-3-methylimidazolium

Boc ^tButoxycarbonyl

B3LYP Becke three-parameter exchange functional and Lee-

Yang-Parr correlation functional

Bn Benzyl
Bu Butyl

J Coupling constant

Calcd. Calculated
CHCl₃ Chloroform
COD Cyclooctadiene

CCD Charge coupled device

CHEF Chelation induced enhanced fluorescence

COSY Correlation spectroscopy

Cl-DNB 1-Chloro 2,4-dinitrobenzene

CDCl₃ Deuterated chloroform

D Doublet

dd Doublet of doublet
DCM Dichloromethane

DMF N,N-Dimethylformamide

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene

DCE 1,2-Dichloroethane
DCM Dichloromethane
DL Detection limit
DME Dimethoxyethane
DMSO Dimethylsulfoxide

DMSO-d₆ Deuterated dimethylsulfoxide

DNA Deoxyribonucleic acid

DEPT Distortionless enhancement by polarization transfer

DNSA 3,5-dinitrosalicylic acid
DFT Density functional theory
DNPH 2,4-dinitrophenylhydrazine
DABCO 1,4-Diazabicyclo[2.2. 2]octane

DTBP Di-*tert*-butyl peroxide
DNP 2,4-Dinitrophenol
3,4-DNT 3,4-Dinitrotoluene

DNBA 3,5-Dinitrobenzoic acid

3,5-DNT 3,5-Dinitrotoluene $\lambda_{\rm em}$ Emission wavelength $\lambda_{\rm ex}$ Excitation wavelength

Equiv. Equivalent

ESI Electron spray ionization

ESIPT Excited state intramolecular proton transfer

EtOH Ethanol

EtOAc Ethyl acetate

EDTA Ethylenediaminetetraacetic Acid

Et Ethyl

R₀ Förster radius

FT-IR Fourier-transform infrared spectroscopy

Glu Glutamate

GTP Guanosine-5'-triphosphate

h Hour

HSQC heteronuclear single quantum correlation
HMBC Heteronuclear multiple bond correlation
HETCOR Heteronuclear correlation spectroscopy
HOMO Highest occupied molecular orbital
HRMS High-resolution mass spectroscopy

HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

Hz Hertz

ICT Internal charge transfer

IEF-PCM Integral equation formalism- polarizable

continuum model

I Iso

τ Lifetime

LUMO Lowest unoccupied molecular orbital

LC-MS Liquid chromatography-mass spectrometry

 λ_{max} Maximum wavelength

 $egin{array}{lll} M & Molar \\ M & Multiplet \\ mmol & Millimole \\ M & Meta \\ \end{array}$

μM Micromolar
mp Melting point
MW Microwave
Mg Milligram
MHz Mega hertz
Min Minute
mL Milliliter

MeOH Methanol

MCPBA meta-Chloroperoxybenzoic acid

Mes Mesityl

N₂ Nitrogen gas

NAC Nitroaromatic compound
NHC N-heterocyclic carbene

NB Nitrobenzoic acid

nm Nanometer
nM Nanomolar

k_{nr} Non-radiative decay rate constant

NM Nitromethane

NMR Nuclear magnetic resonance spectroscopy

NMP N-Methyl-2-pyrrolidone

NMO N-Methylmorpholine N-oxide

NBA 4-Nitrobenzoic acid

NP 4-Nitrophenol
NT 4-Nitrotoluene
NB Nitrobenzene
NM Nitromethane

o Ortho

ORTEP Oak ridge thermal ellipsoid plot

1D One-dimensional

PA Picric acid

PEPPSI Pyridine enhanced precatalyst preparation

stabilization and initiation

PET Photo-induced electron transfer

ppb Parts per billion
ppt Parts per trillion
ppm Parts per million

PET Photoinduced electron transfer

Q-TOF Quadrupole time-of-flight

Q Quartet

k_r Radiative decay rate constant

RNA Ribonucleic acid

RET Resonance energy transfer

r.t. Room temperature

 J_{λ} Spectral overlap integral

Ksv Stern-Volmer quenching constant

s Singlet

SDS Sodium dodecyl sulfate

S-V Stern-Volmer

Ser Serine

2D Two-dimensional

TLC Thin layer chromatography

TMS Tetramethylsilane

Ts Toluenesulfonyl

t Triplet T Tertiary

TCSPC Time correlated single photon counting

TFA Trifluoroacetic acid
THF Tetrahydrofuran

TBHB Butylhydroperoxide
TNP 2,4,6-Trinitrophenol

PCy₃ Tricyclohexylphosphine

TNP 2,4,6-Trinitrophenol

UV Ultraviolet

v/v Volume per volume

XRD X-ray diffraction