Page No.

Certificat	e		i
Acknowle	edgements		ii
Abstract			vi
List of Ta	bles		xiv
List of Fig	gures		xvii
List of Sc	hemes		xxvi
List of Al	breviation	s & Symbols	xxvii
Chapter	1: Introdu	iction	1
1.1 GENE	ERAL INT	RODUCTION	2
1.1.1	Transitio	n metal Schiff-base complexes as catalysts	4
1.1.2	Zeolites:	Structure and composition	6
1.1.3	Heteroge	nization of transition metal complexes	8
	1.1.3.1	Flexible ligand method	9
	1.1.3.2	Template synthesis method	11
	1.1.3.3	Zeolite synthesis method	12
1.1.4	Zeolite e	ncapsulated metal complexes as heterogeneous catalysts	14
1.1.5	Zeolite e	ncapsulated metal complexes: structural aspects	19
1.2 SCOF	E OF THE	E PRESENT STUDY	24
1.3 REFE	RENCES		27
Chapter	2: Experin	nental and Theoretical Methods and Characterization Techniques	30
2.1 MAT	ERIALS		31
2.2 EXPE	RIMENT	AL METHODS	32
2.2.1	Synthes	is of Schiff-base ligands (L1, L2, L3, L4, L5, L6)	32

2.2.2	Synthesis of Schiff-base ligands (L1', L2', L3', L4', L5', L6')	32
2.2.3	Synthesis of Metal (Cu, Co, Pd and Ni) Schiff-base complexes	33
2.2.4	Preparation of M(II) exchanged zeolite-Y	34
2.2.5	Preparation of encapsulated M(II)-Schiff base complexes in zeolite Y	34
2.2.6	Oxidation of styrene	35
2.2.7	Degradation of Rhodamine B	36
2.2.8	Heck coupling reaction	37
2.2.9	Oxidation of phenol	38
2.3 CHAR	ACTERIZATION TECHNIQUES	38
2.3.1	Powder X-ray diffraction (XRD)	38
2.3.2	Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDX)	40
2.3.3	BET surface area analysis	41
2.3.4	Thermal analysis	42
2.3.5	Fourier Transform Infrared Spectroscopy (FTIR)	43
2.3.6	X-ray Photoelectron Spectroscopy (XPS)	44
2.3.7	UV-Visible/Diffuse Reflectance Spectroscopy(UV-Vis/DRS)	45
2.3.8	Atomic Absorption Spectroscopy (AAS)	46
2.3.9	Superconducting quantum interference device (SQUID)	47
2.3.10	Gas chromatography (GC)	48
2.3.11	Theoretical Methods	49
2.4 REFERENCES 5		50
Chapter 3: Studies of Guest Copper Schiff-base Complexes Entrapped in Zeolite Y 5 and their Catalytic Activity for the Styrene Oxidation Reaction		

3.1 INTR	ODUCTION	53
3.2 RESU	LTS AND DISCUSSION	56
3.2.1	Elemental analysis	56
3.2.2	X-Ray Diffraction and Scanning Electron Microscopy Analysis	57
3.2.3	IR Spectroscopic study	58
3.2.4	X-Ray Photoelectron Spectroscopy (XPS)	60
3.2.5	Thermogravimetric Analysis (TGA)	64
3.2.6	BET surface area analysis	65
3.2.7	UV-Visible Study	66
3.2.8	Catalytic Study	69
3.2.9	Structural and functional Correlations	75
3.3 CONC	CLUSION	79
3.4 REFE	RENCES	80
-	4: Studies of Guest Cobalt Schiff-base Complexes Entrapped in Zeolite Y Catalytic Activity for the Degradation of Rhodamine B dye	83
4.1 INTR	ODUCTION	85
4.2 RESU	LTS AND DISCUSSION	87
4.2.1	Elemental analysis	87
4.2.2	X-Ray Diffraction (XRD) studies	88
4.2.3	Scanning Electron Microscopy (SEM)	89
4.2.4	BET surface area analysis	90
4.2.5	Thermal analysis	92
4.2.6	Fourier Transform Infrared spectroscopy (FTIR)	93
4.2.7	X-ray Photoelectron Spectroscopy (XPS)	95
4.2.8	UV-Vis/Diffuse Reflectance Spectroscopy (UV-Vis/ DRS)	98
4.2.9	Catalytic Study	103
4.2.10	Structural modification and photochemical performance	105
4.3 CONC	CLUSION	107
4.4 REFE	RENCES	107

-	A: Palladium Schiff-Base Complexes Encapsulated in Zeolite-Y H ty Controlled by the structure of guest complex	Iost: 109
5A.1 INTRO	ODUCTION	111
5A.2 RESU	ILTS AND DISCUSSION	114
5A.2.1	Elemental analysis	115
5A.2.2	X-ray Diffraction and Scanning Electron Microscopy analysis	115
5A.2.3	BET surface area analysis	117
5A.2.4	Thermal analysis	119
5A.2.5	IR spectroscopic study	121
5A.2.6	X-Ray Photoelectron Spectroscopy (XPS)	123
5A.2.7	UV-Vis/ Diffuse Reflectance Spectroscopy (UV-Vis/ DRS)	127
5A.2.8	Theoretical Methods	131
52	A.2.8.1 Structure of neat Pd-complexes	131
52	A.2.8.2 Structure of Pd-complexes in neat and encapsulated states	131
54	A.2.8.3 TD-DFT spectra of the ligands (L1', L5', L6')	134
54	A.2.8.4 TD-DFT spectra of the complexes (neat PdL1', PdL5', PdL6')	140
54	A.2.8.5 Frontier molecular orbitals of the Pd-complexes	141
5A.2.9	Catalytic Study	146
5A.2.10	Correlation between structural modification and modified functionality	150
5A.3 CONC	CLUSION	153
5A.4 REFE	RENCES	153
-	B: Palladium Schiff-Base Complexes Encapsulated in Zeolite-Y H ty Controlled by the structure of guest complex	Iost: 156
5B.1 INTRO	ODUCTION	158
5B.2 RESU	ILTS AND DISCUSSION	159

	5B.2.1 Elemental Analysis, Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) studies	159
	5B.2.2 BET surface area analysis	162
	5B.2.3 Thermal analysis	164
	5B.2.4 IR spectroscopic study	165
	5B.2.5 X-ray Photoelectron Spectroscopy (XPS)	167
	5B.2.6 UV-Vis/ Diffuse Reflectance Spectroscopy (UV-Vis/ DRS)	173
	5B.2.7 Theoretical Methods	177
	5B.2.7.1 Frontier Molecular orbitals of PdL2' complex and calculated TD- DFT spectra	182
	5B.2.8 Catalytic study	188
	5B.2.9 Correlation between structural modification and modified functionality	193
5B.3	CONCLUSION	196
5B.4	REFERENCES	197
_	oter 6: Studies of Zeolite Encapsulated Ni(II) Schiff-Base Complexes: Improved lysis and Site Isolation	199
6.1	INTRODUCTION	201
6.2	RESULTS AND DISCUSSION	203
	6.2.1 Elemental Analysis	204
	6.2.2 X-ray Diffraction (XRD) studies	204
	6.2.3 Scanning Electron Microscopy (SEM)	205
	6.2.4 BET surface area analysis	207
	6.2.5 Thermal analysis	208
	6.2.6 Fourier Transform Infrared spectroscopy (FTIR)	209
	6.2.7 X-ray Photoelectron Spectroscopy (XPS)	211

	6.2.8 UV-Vis/ Diffuse Reflectance Spectroscopy (UV-Vis/ DRS)	217
	6.2.9 Magnetic study	221
	6.2.10 Catalytic study	223
	6.2.11 Structural modification and modified functionality	229
6.3	CONCLUSION	232
6.4	REFERENCES	233
Cha	pter 7: Conclusion and Future Scope	235
7.1	SCOPE AND NATURE OF PRESENT STUDY	236
7.2	OVERALL CONCLUSION OF PRESENT WORK	243
7.3	FUTURE SCOPE	244
]	LIST OF PUBLICATIONS	A-1
]	LIST OF POSTERS PRESENTED IN CONFERENCES	A-2
]	BRIEF BIOGRAPHY OF THE CANDIDATE	A-3
]	BRIEF BIOGRAPHY OF THE SUPERVISOR	A-4

LIST OF TABLES

Table No.	Caption	Page No.
2.1	List of the chemicals used in current thesis along with the name of their suppliers	31
3.1	FTIR spectral data (in cm ⁻¹) for neat and encapsulated state complexes	60
3.2	Binding energy (eV) of free and encapsulated complexes	63
3.3	Thermogravimetric analysis data of free and encapsulated complexes	65
3.4	BET surface area and pore volume of pure zeolite Y and encapsulated complex CuL5-Y	66
3.5	Solid-state UV-Visible spectroscopic data of complexes in free and encapsulated state	69
3.6	Amount of Cu-atom (mmol) for all catalysts	72
3.7	Conversion of styrene after 8 h reaction time with H_2O_2 as oxidant	73
3.8	Comparison of catalysts performances for the oxidation of styrene	75
4.1	Concentration of cobalt (wt %) content in the different Samples	88
4.2	BET surface area and pore volume of pure zeolite Y and encapsulated cobalt complex (CoL5-Y)	91
4.3	FTIR data of free-state and zeolite encapsulated complexes	94
4.4	Binding energy (eV) of neat and encapsulated complexes	98
4.5	Solution UV-Visible data of ligand and neat complexes	100
4.6	Solid-state UV-Visible data of neat and encapsulated complexes	103
4.7	$\%$ degradation of rhodamine B after 1.5 h reaction time with H_2O_2 as oxidant	105
5A.1	Concentration of palladium (wt %) content in the different Samples	115
5A.2	BET surface area and pore volume of pure zeolite Y and encapsulated complexes PdL1'-Y, PdL5'-Y and PdL6'-Y	118
5A.3	FTIR data of neat and encapsulated complexes	123

LIST OF TABLES

5A.4	Binding energy (eV) of neat and encapsulated complexes	127
5A.5	Solution UV-Visible data of ligand and neat complexes	128
5A.6	Solid-state UV-Visible data of neat and encapsulated palladium complexes	130
5A.7	Important structural parameters from DFT for neat and encapsulated Pd- complexes	134
5A.8	Coupling reaction between bromobenzene and styrene catalyzed by palladium complexes	150
5B.1	Concentration of palladium (wt %), BET surface area and pore volume of different samples	164
5B.2	FTIR data of neat and encapsulated complexes	167
5B.3	Binding energy (eV) of neat and encapsulated complexes	173
5B.4	Solution UV-Visible data of ligand and neat complexes	175
5B.5	Solid-state UV-Visible data of neat and encapsulated complexes	177
5B.6	Important structural parameters from DFT for neat and encapsulated PdL2' complex	180
5B.7	Important structural parameters and HOMO, LUMO energies of neat PdL2', PdL3' and PdL4' complexes obtained from DFT studies	181
5B.8	Coupling reaction between bromobenzene and styrene catalyzed by palladium complexes	191
5B.9	Catalytic activity of the present catalyst in comparison to some reported catalysts for the Heck coupling reaction between bromobenzene and styrene	193
6.1	Concentration of nickel (wt %) content in the different Samples	204
6.2	BET surface area and pore volume of pure zeolite Y and encapsulated nickel complexes (NiL1-Y and NiL1'-Y)	208
6.3	FTIR data of neat and encapsulated complexes	211
6.4	Binding energy (eV) of neat and encapsulated complexes	217

6.5	Solution UV-Visible data of ligand and neat complexes	219
6.6	Solid-state UV-Visible data of neat and encapsulated complexes	221
6.7	Oxidation of phenol by nickel exchanged zeolite Y and neat and encapsulated nickel salophen complexes in presence of H_2O_2 as oxidant	227
6.8	Comparison of zeolite based catalysts performances for the phenol hydroxylation reaction	229

Figure No.	Caption	Page No.
1.1	Schematic representation of different structural parts of Zeolite-Y	7
1.2	Framework of Zeolite –Y showing sodalite cages and supercages	8
1.3	Synthesis of M/Na-Zeolite –Y and encapsulation of 'ship-in-a-bottle' metal complex in void of zeolite via 'flexible ligand method'	10
1.4	Synthesis of M/Na-Zeolite –Y and encapsulation of 'ship-in-a-bottle' metal complex in void of zeolite via 'template synthesis method	12
1.5	Encapsulation of 'ship-in-a-bottle' metal complex in void of zeolite via 'zeolite synthesis method'	13
1.6	Structural architecture of the zeolite-Y encapsulated iron phthalocyanine complex (FePcY-PDMS) incorporated in a polydimethylsiloxane membrane	15
1.7	Schematic representation for the conversion of 2-naphthol to binaphthol (BINOL) catalyzed by Fe(III) Schiff-base complexes encapsulated in zeolite-Y	18
1.8	Schematic representation for the conversion of allyl alcohol into glycidol catalyzed by Cu(II) phthalocyanine complex encapsulated in zeolite	19
1.9	Schematic representation for the Tris(2,2,-bipyridine)cobalt(II) Complexes in Zeolite Y	20
1.10	Schematic representation for (A) cobalt phthalocyanine (CoPc) complex and (B) nickel Schiff-base complex encapsulated in zeolite-Y and MCM-41	21
1.11	Schematic representation for the Bis(ethylenediamine)Cu(II) complex encapsulated in the faujasite zeolite	22
1.12	Schematic representation for the Pt(II)tetraammine complex encapsulated in the different zeolite framework (LTL, MWW and zeolite Y)	23
1.13	Schematic representation for the degradation of methylene blue catalyzed by zeolite encapsulated hexaazacyclotetradecane nickel(II) complex	24
1.14	Schematic representation of the M(II) Schiff-base complexes with different- different molecular dimensions (end-to-end distance)	26
2.1	Photograph of the powder X-ray diffractometer (RIGAKU MiniFlex II)	39

2.2	Photograph of Scanning Electron Microscope (Zeiss EVO 40)	40
2.3	Photograph of the surface area analyzer (Quantachrome instrument-Autosorb iQ3).	41
2.4	Photograph of the thermogravimetric analysis (TGA) instruments - TGA 4000 PerkinElmer and TGA-50, SHIMADZU apparatus	42
2.5	Photograph of the simultaneous thermogravimetric and differential thermal analyzer (SHIMADZU DTG-60H)	43
2.6	Photograph of the Fourier Transform Infrared spectrometer - ABB FTIR and SHIMADZU IRAffinity-1S	44
2.7	Photograph of the X-ray photoelectron spectrophotometer (Omicron EA 125)	45
2.8	Photograph of the UV-Vis spectrophotometers - Shimadzu with model UV-2450 and JASCO with model V-650	46
2.9	Photograph of atomic absorption spectrophotometer (Shimadzu AA-7000)	47
2.10	Photograph of SQUID magnetometer Quantum Design MPMS XL Ever Cool	48
2.11	Photograph of gas chromatography (GC Shimadzu-2014)	49
3.1	Schematic representation of copper Schiff-base complexes	55
3.2	Powder XRD patterns of (a) pure zeolite-Y (b) Cu- exchanged zeolite-Y, (c) CuL1-Y, (d) CuL2-Y, (e) CuL3-Y and (f) CuL5-Y.	57
3.3	SEM images of CuL5-Y sample with different resolution; (A-C) before Soxhlet extraction, and (D-F) after Soxhlet extraction	58
3.4	(A) FTIR spectra of free-state copper salophen complexes (a) CuL1, (b) CuL2, (c) CuL3 and (d) CuL5. (B) FTIR spectra of encapsulated copper salophen complexes (a) CuL1-Y, (b) CuL2-Y, (c) CuL3-Y, (d) CuL5-Y and (e) pure zeolite-Y	59
3.5	XPS survey spectra of (a) CuL1 and (b) CuL1-Y	61
3.6	High-resolution XPS spectra for the Cu $2p_{3/2}signal$ (A) CuL1 and (B) CuL1- Y	62
3.7	High-resolution peak fitted XPS spectra of (A) C (1s), (B) N (1s) and (C) O (1s) for CuL1	62

3.8	High-resolution XPS spectra of (A) C (1s), (B) N (1s), (C) O (1s), (D) Si (2p) and (E) Al (2p) for CuL1-Y	63
3.9	TGA curves of pure zeolite-Y, CuL5 and CuL5-Y	64
3.10	BET isotherms for pure zeolite-Y and zeolite encapsulated complexes: (a) pure zeolite Y and (b) CuL5-Y	66
3.11	(A) The solid-state UV-Vis spectra of copper salophen complexes (a) CuL1, (b) CuL2, (c) CuL3 and (d) CuL5. (B) The solid-state UV-Vis spectra of encapsulated copper salophen complexes in zeolite Y (a) CuL1-Y, (b) CuL2-Y, (c) CuL3-Y and (d) CuL5-Y	68
3.12	Calibration curve of (A) styrene, (B) benzaldehyde and (C) styrene oxide	70
3.13	% Conversion of styrene for encapsulated copper complex with respect to (A) amount of catalyst, (B) temperature of reaction and (C) different time duration	72
3.14	Recyclability of CuL5-Y catalyst for the styrene oxidation reaction	74
3.15	A mechanism for the oxidation of styrene	77
3.16	Effect of substituent's on the geometry of complex around the metal and its effect on the transition state (T.S.) during the nucleophilic attack	77
4.1	Schematic representation of cobalt Schiff-base complexes	87
4.2	Powder XRD patterns of (a) pure zeolite-Y (b) Co- exchanged zeolite-Y, (c) CoL1-Y, (d) CoL2-Y, (e) CoL3-Y, (f) CoL4-Y and (g) CoL5-Y	89
4.3	SEM images before Soxhlet extraction (A-B) CoL5-Y with different resolution, and after Soxhlet extraction (C-D) CoL5-Y	90
4.4	BET isotherms for pure zeolite-Y and zeolite encapsulated complex CoL5-Y	91
4.5	(A) TGA curves of (a) free-state CoL4 and (b) zeolite encapsulated CoL4-Y and (B) Enlarged view of TGA curves of (a) free-state CoL4 and (b) CoL4-Y	92
4.6	(A) FTIR spectra of (a) free-state cobalt salophen complex CoL1, (b) pure zeolite-Y and (c) encapsulated cobalt salophen complex CoL1-Y. (B) Enlarged view of FTIR spectra of (a) free-state CoL1 complex, (b) pure zeolite-Y and (c) encapsulated complex CoL1-Y	94
4.7	XPS survey spectra of (a) CoL5 and (b) CoL5-Y	96

4.8	High-resolution XPS spectra for the Co (2p) signal (A) CoL5 and (B) CoL5- Y	96
4.9	High-resolution peak fitted XPS spectra of (A) C (1s), (B) N (1s) and (C) O (1s) for CoL5	97
4.10	High-resolution XPS spectra of (A) C (1s), (B) N (1s), (C) O (1s), (D) Si (2p), (E) Al (2p) and (F) Na (1s) for CoL5-Y	97
4.11	The solution UV-Vis spectra of Schiff-base ligands and Co(II) Schiff-base complexes (A) (a) L1 and (b) CoL1, (B) (a) L2 and (b) CoL2, (C) (a) L3 and (b) CoL3, (D) (a) L4 and (b) CoL4 and (E) (a) L5 and (b) CoL5	99
4.12	The Solid-state UV-Vis spectra of free-state and encapsulated Co(II) Schiff- base complexes (A) (a) CoL1 and (b) CoL1-Y, (B) (a) CoL2 and (b) CoL2-Y, (C) (a) CoL3 and (b) CoL3-Y, (D) (a) CoL4 and (b) CoL4-Y and (E) (a) CoL5 and (b) CoL5-Y	102
4.13	(A) and (B) Graphs of time vs. % degradation, and (C) and (D) kinetic plots for free-state and zeolite encapsulated cobalt complexes	104
5A.1	Schematic representation of palladium Schiff-base complexes	114
5A.2	XRD pattern of (a) Pure zeolite-Y, (b) Pd-exchanged zeolite -Y, (c) PdL1'-Y, (d) PdL5'-Y and (e) PdL6'-Y.	116
5A.3	SEM images (A) PdL5'-Y (before Soxhlet extraction) and (B) PdL5'-Y (after Soxhlet extraction).	117
5A.4	BET isotherms for pure zeolite-Y and zeolite encapsulated complexes: (a) pure zeolite Y, (b) PdL1'-Y, PdL5'-Y and PdL6'-Y.	118
5A.5	Thermogravimetric analysis (TGA) and Differential thermal analysis (DTA) results for (A) pure zeolite-Y, (B) PdL6' and (C) PdL6'-Y	120
5A.6	TGA and DTA curves for (A) PdL1', (B) PdL5', (C) PdL1'-Y and (D) PdL5'-Y	121
5A.7	FTIR spectra of (A) (a) pure zeolite-Y, (b) PdL1' and (c) PdL1'-Y, (B) (a) zeolite-Y, (b) PdL1'-Y, (c) PdL5'-Y and (d) PdL6'-Y and (C) Enlarged view of FTIR spectra in the range of 500 cm^{-1} to 2000 cm^{-1} for (a) pure zeolite-Y, (b) PdL1'-Y, (c) PdL5'-Y and (d) PdL6'-Y	122

- 5A.8 (A) XPS survey spectra for (a) PdL1' and encapsulated complexes (b) PdL1'-Y and (c) PdL5'-Y. High-resolution XPS signals of Pd (3d) for (B) PdL1', (C) PdL1'-Y and (D) PdL5'-Y complex
- 5A.9 High resolution XPS spectra of C (1s), N (1s) for PdL1', PdL1'-Y and PdL5'- 126 Y
- 5A.10 High resolution XPS spectra of O (1s) for PdL1', PdL1'-Y and PdL5'-Y, A1 126 (2p), Si(2p) and Na(1s) for PdL5'-Y
- 5A.11 Solution UV-Vis spectra of (A) (a) L1' and (b) PdL1', (B) (a) L5' and (b) PdL5' 128 and (C) (a) L6' and (b) PdL6'.
- 5A.12 Solid-state UV-Vis spectra of (A) (a) PdL1 and (b) PdL1'-Y, (B) (a) PdL5' and 130 (b) PdL5'-Y and (C) (c) PdL6 and (b) PdL6'-Y
- 5A.13 (a) Ligand N, N'-bis(5-methoxysalicylidene)phenylene-1,3-diamine, frontal and side views are shown. Above figure shows the -OMe group marked by red circle for L5', which is replaced by -NO₂ for L6' and H for L1'. (b) The neat, singlet state of PdL5' complex, frontal and side views are shown. (c) The encapsulated and extracted, triplet state of PdL5' complex, frontal and side views are shown to understand the position of the central ring with respect to the plane of the molecule. The distances d₁, d₂ and d₃ are marked on the Pd-complex and are explained in the text. (d) PdL5' complex encapsulated within zeolite pore, two different views are shown.
- 5A.14 Comparison of optical spectra for L1' and PdL1', L5' and PdL5', L6' and PdL6' 136
- 5A.15 The Molecular orbitals of the free ligands L1', L5' and L6' 137
- 5A.16 Comparison of optical spectra for PdL1'-Y, PdL5'-Y and PdL6'-Y in 141 encapsulated and extracted triplet state
- 5A.17 Frontier molecular orbitals of PdL1' and PdL5', Energies are reported in eV 138
- 5A.18 Frontier molecular orbitals of PdL6', Energies are reported in eV 139
- 5A.19 Frontier molecular orbitals of PdL1' in encapsulated, extracted and triplet state 143
- 5A.20 Frontier molecular orbitals of PdL5' in encapsulated, extracted and triplet state 144
- 5A.21 Frontier molecular orbitals of PdL6' in encapsulated, extracted and triplet state 145

5A.22	Experimental and DFT simulated UV-Vis spectra of (A) PdL1', (B) PdL1'-Y, (C) PdL5' and (D) PdL5'-Y complex	146
5A.23	Calibration curve of bromobenzene	147
5A.24	% Conversion of bromobenzene for PdL1'-Y complex with respect to temperature	148
5A.25	% Conversion of bromobenzene for PdL1'-Y complex with respect to mmol of catalyst	148
5A.26	Recyclability of the PdL1'-Y catalyst for Heck coupling reaction	149
5B.1	Schematic representation of zeolite-Y encapsulated palladium complexes	159
5B.2	SEM micrograph of the encapsulated PdL2' in zeolite Y, (A) and (B) (before Soxhlet extraction), (C) and (D) (after Soxhlet extraction)	161
5B.3	XRD patterns of parent zeolite-Y, Pd(II) zeolite-Y, PdL2'-Y, PdL3'-Y and PdL4'-Y	162
5B.4	BET isotherms for parent zeolite-Y and zeolite encapsulated complexes: (a) parent zeolite Y, (b) PdL2'-Y, PdL3'-Y and PdL4'-Y	163
5B.5	Thermo gravimetric analysis (TGA) results for (A) PdL2', (B) PdL2'-Y, (C) PdIA' and (D) PdL4'-Y	165
5B.6	FTIR spectra of (A) parent zeolite-Y, PdL2' and PdL2'-Y, (B) zeolite-Y, PdL2'-Y, PdL3'-Y and PdL4'-Y and (C) Enlarged view of FTIR spectra in the range of 500 cm ⁻¹ to 2000 cm ⁻¹ for (a) parent zeolite-Y, (b) PdL2'-Y, (c) PdL3'-Y and (d) PdL4'-Y	166
5B.7	XPS survey spectra for neat and encapsulated complexes (A) PdL2' and PdL3', and (B) PdL2'-Y, PdL3'-Y and PdL4'-Y	168
5B.8	High resolution XPS signals of Pd (3d) for (A) PdL2', (B) PdL3' (C) PdL2'-Y and (D) PdL3'-Y complex	169
5B.9	High-resolution XPS signals of Pd (3d) for PdL4'-Y complex	170
5B.10	High-resolution XPS spectra of C (1s), N (1s), and O (1s) for PdL2' and PdL3' complex	171
5B.11	High-resolution XPS spectra of C (1s), N (1s), O (1s), Si (2p), Al (2p) and Na (1s) for PdL2'-Y complex	171

5B.12	High-resolution XPS spectra of C (1s), N (1s), O (1s), Si (2p), Al (2p) and Na (1s) for PdL3'-Y complex	172
5B.13	High-resolution XPS spectra of C (1s), N (1s), O (1s), Si (2p), Al (2p) and Na (1s) for PdL4'-Y complex	172
5B.14	Solution UV-Vis spectra of (A) L2' and PdL2', (B) L3' and PdL3' and (C) L4' and PdL4'	174
5B.15	Solid state UV-Vis spectra of (A) PdL2' and PdL2'-Y, (B) PdL3' and PdL3'-Y and (C) PdL4' and PdL4'-Y	176
5B.16	(a) PdL2' complexes are shown in singlet state. The hydrogen bonded water molecules are also shown. The distances of hydrogen-bonded water molecules from -OH groups are marked. (b) Optimized structure of the hydrogen-bonded singlet, PdL2' complexes (three), mediated by two water molecules (c) triplet state of PdL2' complex, two views are shown, (d) The triplet PdL2' complex encapsulated in zeolite supercage	179
5B.17	The frontier molecular orbitals of singlet, PdL2' complex are shown	183
5B.18	The frontier molecular orbitals for PdL3' and PdL4'	184
5B.19	The frontier molecular orbitals of triplet, encapsulated and extracted PdL2' complex are shown	185
5B.20	Experimental and TD-DFT spectra for PdL2', PdL3' and PdL4' in neat, singlet state	186
5B.21	(a) The comparative TD-DFT spectra are shown for neat and water bound singlet PdL2' complexes. The structures of the singlet complexes studied are given below (b) no water (c) two water molecules hydrogen bonded to Pd complex (c) two water molecules hydrogen bonded to Pd complex in different configuration	187
5B.22	The TD-DFT spectra of the singlet, neat and triplet PdL2' complexes, which are encapsulated and then extracted	188
5B.23	Recyclabili1ty of the PdL2'-Y catalyst for Heck coupling reaction	190
5B.24	Thermo gravimetric analysis (TGA) results for (A) PdL2'-Y, (B) Recovered catalyst PdL2'-Y and (C) XRD patterns for PdL2'-Y and recovered PdL2'-Y	191
6.1	Schematic representation of Nickel Schiff-base complexes	203

- 6.2 (A) XRD patterns of pure zeolite-Y, Ni-exchanged zeolite -Y, NiL1-Y, NiL5-Y and NiL6-Y and (B) XRD patterns of pure zeolite-Y, Ni-exchanged zeolite -Y, NiL1'-Y, NiL5'-Y and NiL6'-Y
- 6.3 SE micrograph of the encapsulated NiL1 in zeolite Y, (A) and (B) (before 206 Soxhlet extraction), (C) and (D) (after Soxhlet extraction)
- 6.4 BET isotherms for pure zeolite-Y and zeolite encapsulated complexes: (A) pure 207 zeolite-Y, (B) NiL1-Y and NiL1'-Y
- 6.5 Thermogravimetric analysis (TGA) results for (A) NiL5 and NiL5' free state 209 complex and (B) NiL5-Y and NiL5'-Y encapsulated complex
- 6.6 FTIR spectra of (A) pure zeolite-Y, NiL1-Y, NiL5-Y and NiL6-Y and (B) pure 210 zeolite-Y, NiL1'-Y, NiL5'-Y and NiL6'-Y
- 6.7 XPS survey spectra of (A) neat complexes NiL1 and NiL1' (B) encapsulated 213 complexes NiL1-Y, NiL1'-Y, NiL5-Y and NiL5'-Y
- 6.8 High resolution XPS signals of Ni (2p) for (A) NiL1, (B) NiL1', (C) NiL1-Y 213 and (D) NiL1'-Y complex
- 6.9 High-resolution XPS spectra of C (1s), N (1s), and O (1s) for NiL1 and NiL1' 214 complex
- 6.10 High-resolution XPS spectra of C (1s), N (1s), O (1s), Si (2p), Al (2p) and Na 214 (1s) for NiL1-Y complex
- 6.11 High-resolution XPS spectra of C (1s), N (1s), O (1s), Si (2p), Al (2p) and Na 215 (1s) for NiL5-Y complex
- 6.12 High-resolution XPS spectra of C (1s), N (1s), O (1s), Si (2p), Al (2p) and Na 215 (1s) for NiL1'-Y complex
- 6.13 High-resolution XPS spectra of C (1s), N (1s), O (1s), Si (2p), Al (2p) and Na 216 (1s) for NiL5'-Y complex
- 6.14 Solution UV-Vis spectra of (A) L1 and NiL1, (B) L5 and NiL5 and (C) L6 and 218 NiL6, (D) L1' and NiL1', (E) L5' and NiL5' and (F) L6' and NiL6'
- 6.15 Solid state UV-Vis spectra of (A) NiL1 and NiL1-Y, (B) NiL5 and NiL5-Y, 220
 (C) NiL6 and NiL6-Y, (D) NiL1' and NiL1'-Y, (E) NiL5' and NiL5'-Y and (F) NiL6' and NiL6'-Y

6.16	Molar susceptibility vs. temperature plots in the range of 5 K $-$ 300 K of the complexes in free and encapsulated states (A) NiL1 and NiL1', (B) NiL1, NiL1-Y and NiL5-Y and (C) NiL1', NiL1'-Y, NiL5'-Y and NiL6'-Y	223
6.17	% Conversion of phenol oxidation with respect to temperature	224
6.18	% Conversion of phenol oxidation with respect to amount of catalyst	225
6.19	Calibration curve of phenol	226
6.20	Representation of middle phenyl ring arrangement in both $\{Ni(II) \text{ sal-1,2-phen}\}$ and $\{Ni(II) \text{ sal-1,3-phen}\}$ complexes	230
7.1	Encapsulation of copper complex enhance their reactivity towards the styrene oxidation reaction	239
7.2	Structural modifications make the more reactive metal center for the Heck coupling reaction	241
7.3	Encapsulation hinders the aggregation of Pd complexes and enhance the reactivity towards Heck coupling reaction	242
7.4	Encapsulation enhance the active site isolation and increase the reactivity towards phenol hydroxylation reaction	243

LIST OF SCHEMES

Scheme No.	Caption	Page No.
2.1	Synthesis of Schiff base Ligand L1, L2, L3, L4, L5, L6, L1', L2', L3', L4', L5' and L6'	33
2.2	Synthesis of metal Schiff base Complexes	34
2.3	(a) Synthesis of metal exchanged zeolite-Y and (b) synthesis of zeolite encapsulated metal Schiff base complexes via flexible ligand synthesis method.	35
2.4	Schematic representation for the oxidation of styrene	36
2.5	Schematic representation for the structure of Rhodamine-B dye	37
2.6	Schematic representation of the Heck coupling reaction	37
2.7	Schematic representation for the oxidation of phenol	38
6.1	A Plausible mechanism for conversion of phenol to catechol in the presence of nickel salophen complex and $\rm H_2O_2$	227

LIST OF ABBREVIATIONS & SYMBOLS

Abbreviation/Symbol Description

Å	Angstrom
$\mu_{\scriptscriptstyle B}$	Bohr magneton
AAS	Atomic Absorption Spectroscopy
BM	Bohr magneton
B3LYP	Becke Lee, Yang and Parr
3D	Three Dimensional
byp	Bipyridyl
Pc	Pthalocyanine
Phen	1,10 phenanthroline
PPh3	Triphenyl phosphine
Salen	Salicylidene ethylenediamine
Salophen	Salicylidene phenylenediamine
СТ	Charge transfer
DFT	Density Functional Theory
TDDFT	Time Dependent Density Functional Theory
bza	Benzeldehyde
SO	Styrene Oxide
ТВНР	Tertiary Butyl Hydrogen Peroxide
DCM	Dichloromethane
DMF	Dimethyl Formamide
en	Ethylene diamine

xxvii

LIST OF ABBREVIATIONS & SYMBOLS

FAU	Faujasite
FT-IR	Fourier Transform Infrared
FC	Field Cooling
GC	Gas Chromatography
НОМО	Highest Occupied Molecular Orbital
LUMO	Lowest Unoccupied Molecular Orbital
L1	N, N-bis(salicylidene)-1,2-phenylenediamine
L2	N, Ń-bis(5-hydroxysalicylidene)-1,2-phenylenediamine
L3	N, \acute{N} -bis(5-bromosalicylidene)-1,2-phenylenediamine
L4	N, Ń-bis(5-methylsalicylidene)-1,2-phenylenediamine
L5	N, \acute{N} -bis(5-methoxysalicylidene)-1,2-phenylenediamine
L6	N, N-bis(5-nitrosalicylidene)-1,2-phenylenediamine
L1'	N, N-bis(salicylidene)-1,3-phenylenediamine
L2'	N, \acute{N} -bis(5-hydroxysalicylidene)-1,3-phenylenediamine
L3'	N, N-bis(5-bromosalicylidene)-1,3-phenylenediamine
L4'	N, N-bis(5-methylsalicylidene)-1,3-phenylenediamine
L5′	N, \acute{N} -bis(5-methoxysalicylidene)-1,3-phenylenediamine
L6'	N, N-bis(5-nitrosalicylidene)-1,3-phenylenediamine
ML-Y	Metal complex encapsulated in zeolite Y
HS	High Spin
LS	Low Spin
XRD	X-ray diffraction
XPS	X-ray photoelectron spectroscopy
	xxviii

LIST OF ABBREVIATIONS & SYMBOLS

TGA	Thermo Gravimetric Analysis
DTG	Differential Thermo Gravimetric
SEM	Scanning Electron Microscopy
EDX	Energy dispersive X-ray
BET	Brunauer-Emmett-Teller
UV-Vis	Ultraviolet-Visible
SQUID	Superconducting quantum interference device
MCM-41	Mobile Composite Material-41
Na-Y	Sodium Zeolite-Y
TON	Turn Over Number
α	Alpha
β	Beta
δ	Delta
θ	Theta
λ	Lambda
ν	mu
φ	psi
ε	Epslon
°C	Degree centigrade