TABLE OF CONTENTS

Chapter No.	Title	Page no.
	Certificate	i
	Acknowledgments	ii
	Abstract	iv
	Table of Contents	viii
	List of Figures	xiii
	List of Tables	xv
	Abbreviations	xvii
Chapter 1	Introduction	1-9
	1.1 Introduction	1
	1.2 Research Motivation	5
	1.3 Objectives of the Study	6
	1.4 Research Significance	6
	1.5 Organization of Thesis	7
Chapter 2	Literature Review	10-27
	2.1 Introduction	10
	2.2 Groundwater Quality	11
	2.3 Remote Sensing, GIS, and FuzzyMulticriteria Decision Making	22
	2.4 Groundwater Sustainability Index	23
	2.5 Life Cycle Assessment	25
	2.6 Research Gap	26
Chapter 3	QUALITATIVE ANALYSIS OF GROUNDWATER IN HYPER ARID REGION	28-65
	3.1 Introduction	28
	3.2 Literature Summary	33
	3.3 Study Area	34

	3.3.1 Location and Extent	34
	3.3.2 Climate and Rainfall	34
	3.3.3 Physiography and Geomorphology	35
	3.3.4 Land Use	35
	3.3.5 Geology	36
	3.4 Research Methodology	37
	3.4.1 Data Collection and Standardization	37
	3.4.2 Principal Component Analysis	39
	3.4.3 Hierarchical Cluster Analysis	40
	3.5 Results and Discussion	41
	3.5.1 Principal Component Analysis	41
	3.5.2 Hierarchical Cluster Analysis	45
	3.5.3 Hydro-geochemical Plotting of Water Samples	48
	3.6 Assessment Using Fuzzy Multi Criteria Decision Making	52
	3.6.1 Research Approach	53
	3.6.1.1 Sampling Wells	54
	3.6.1.2 Water Quality Parameters Considered for the Study	55
	3.6.1.3 Normalization of Data Values	55
	3.6.1.4 Fuzzy Inference Rules Using Fuzzy Operators	59
	3.6.2 Application Of MATLAB Based Fuzzy Inference System	59
	3.6.3 Results and Discussion	61
	3.7 Evaluation and Recommendation	63
	3.8 Summary	64
Chapter 4	REMOTE SENSING AND GIS IN GROUNDWATER MANAGEMENT STUDIES	66-95
	4.1 Introduction	66
	4.2 Materials and Method	68
	4.2.1 Planning	69
	4.2.2 Data Collection	69

	4.2.2.1 Conventional Data Collection from Groundwater Department	71
	4.2.2.2 Offline Survey Instrument to Obtain Input for Weighted Overlay Technique	71
	4.2.2.3 Collection of Remotely Sensed Data from Satellite Landsat 8	72
	4.2.2.4 Soil Data Collection	75
	4.2.2.5 Rainfall Data Collection	75
	4.2.2.6 Digital Elevation Model (DEM) Data Collection	75
	4.2.3 Data Analysis	76
	4.2.3.1 Weighted Overlay Analysis	81
	4.3 Results and Discussion	86
	4.3.1 Groundwater Potential Zones	87
	4.3.2 Groundwater Suitability for Drinking	88
	4.3.3 Suitability of Groundwater for Irrigation	89
	4.3.4 Salinity Hazard	90
	4.3.5 Sodium Absorption Ratio (SAR)	91
	4.3.6 Sodium Percentage (Na%)	92
	4.3.7 Mg-Ca Ratio	93
	4.4 Summary	94
Chapter 5	DEVELOPMENT OF GROUNDWATER SUSTAINABILITY INDEX FOR HYPER ARID REGION OF RAJASTHAN, INDIA	96-128
	5.1 Introduction	96
	5.2 Research Methodology	98
	5.2.1 Selection of Sustainability Assessment Indicators	100
	5.2.2 Defining the Dimensions and Indicators of the Groundwater Sustainability Index (GSI)	103
	5.2.3 Groundwater Resources	104
	5.2.3.1 Availability of Groundwater	104
	5.2.3.2 Supply of Groundwater	105
	5.2.3.3 Demand of Groundwater	106
	5.2.4 Ecosystem Health	107

	5.2.4.1 Groundwater Stress	107
	5.2.4.2 Groundwater Quality	108
	5.2.4.3 Aquatic Life	108
	5.2.5 Availability of Infrastructure	109
	5.2.5.1 Existing Groundwater Demand	109
	5.2.5.2 Infrastructure Condition	110
	5.2.5.3 Treatment	111
	5.2.6 Human Health	112
	5.2.6.1 Accessibility	112
	5.2.6.2 Reliability	113
	5.2.6.3 Impact	113
	5.2.7 Competence	114
	5.2.7.1 Finance	114
	5.2.7.2 Education	115
	5.2.7.3 Training	116
	5.3 Groundwater Sustainability Index (GSI) Computation	117
	5.3.1 Data Collection and Analysis	117
	5.3.1.1 Analytical Hierarchical Process	117
	5.3.1.2 Data Collection for Various Indicators Under the Five Dimensions	120
	5.3.2 Groundwater Sustainability Index and Reporting	120
	5.4 Qualitative Aspects of Groundwater Sustainability	124
	5.4.1 Effect of Urabanization on Groundwater or Vice-Versa	124
	5.4.2 Effect of Climate Change on Groundwater Resources	125
	5.5 Summary	126
Chapter 6	LIFE CYCLE ASSESSMENT OF GROUNDWATER SUPPLY SYSTEM IN A HYPER-ARID REGION OF INDIA	129-145
	6.1 Introduction	129
	6.2 LCA and Water Resource Management	131
	6.3 Geographical Location of the Study Area	132

	6.4 Materials and Methods	133
	6.5 Goal and Scope Definition	134
	6.5.1 Functional Unit	134
	6.5.2 System Boundary	134
	6.5.3 Inventry Analysis	134
	6.6 Impact Assessment	137
	6.6.1 Midpoint Assessment Results	138
	6.6.1.1 Phase-wise Analysis	138
	6.6.1.2 Categorical Analysis	139
	6.6.2 Endpoint Assessment	141
	6.6.2.1 Phase-wise Analysis	141
	6.6.2.2 Categorical Analysis	142
	6.7 Summary	143
Chapter 7	CONCLUSIONS	146-155
	REFERENCES	156-187
	APPENDIX - A	188-194
	List of Publications	195
	Brief biography of the candidate	196
	Brief biography of the supervisor	196
	Brief biography of the Co-supervisor	197

Title of Figure	Page No.
Figure 1.1. Climatic Zones of Rajasthan	3
Figure 3.1 Summarized graphical representation of the present study	32
Figure 3.2. Location of the study area	34
Figure 3.3.Scree plots for a) pre-monsoon and b) post-monsoon	42
Figure 3.4. Dendogram using Ward's method for pre monsoon	46
Figure 3.5. Dendogram using Ward's method for post monsoon	47
Figure 3.6. Wilcox plots for a) pre-monsoon and b) post-monsoon of water samples	49
Figure 3.7.Piper plots for a) pre-monsoon and b) post-monsoon of water samples	50
Figure 3.8 a) Hierarchical structure of the objective, criteria, sub-	56
criteriaand decision alternatives considered in the study b) Locations of	
Sampling wells in Dungargarh block, Bikaner	
Figure 3.9 (a) Membership functions for input parameters; (b).	57
Membership functions for output parameters	
Figure 3.10 Methodology applied to obtain sustainability measure of well	60
Figure 3.11 a) Rankings of wells with respect to domestic usage, b)	61
Rankings of wells with respect to irrigationUsage	
Figure 4.1. Research methodology used for the current study	70
Figure 4.2. Study area selected from the Landsat 8 OLI	74
Figure 4.3. Landsat 8 enhanced image for the case study	74
Figure 4.4. Variation of soil types in the study area	76
Figure 4.5. Variation of rainfall (mm) in the study area	77
Figure 4.6. Illustration of spatial frequency patterns	78

LIST OF FIGURES

Title of Figure	Page No.
Figure 4.7. Basic steps involved in supervised classification	79
Figure 4.8. Landsat 8 Color Infrared (5-4-3 Band Scheme) showing	80
Built-Up areas, agriculture, water bodies and barren Land	
Figure 4.9. Land cover and land-use map for the case study	81
Figure 4.10. Variation of Slope in the study area	82
Figure 4.11. Variation of Drainage density in the study area	82
Figure 4.12. Groundwater Potential Zones	87
Figure 4.13. Groundwater Suitability for Drinking	88
Figure 4.14. Groundwater irrigation suitability	90
Figure 5.1. Research methodology used for the study	99
Figure 5.2. Selected groundwater sustainability assessment dimensions	103
and indicators	
Figure 5.3. The radar chart showing the performance of indicators	122
Figure 6.1. Map showing location Bikaner district and five blocks of the district	131
Figure 6.2. System boundary of the study	135
Figure 6.3. Basic material and energy flow model of the study	136
Figure 6.4. Phase-wise analysis of midpoint assessment	138
Figure 6.5. Category-wise analysis of midpoint assessment	139
Figure 6.6 (a-b). Analysis of NLT and FETP in midpoint assessment	140
Figure 6.7. Phase wise analysis of endpoint assessment	141
Figure 6.8. Category wise analysis of endpoint assessment	142
Figure 6.9. Categorical analysis after removing the major contributors	143
(copper, energy etc.)	

Title of Table	Page No.
Table 1.1. Classification of the area based on average annual rainfall (in mm)	3
Table 2.1 A summarized existing literature review of groundwater/ surface water quality analysis	11
Table 3.1 Geological succession of Bikaner district	36
Table 3.2 GPS location of the villages in terms of longitude, latitude and average mean sea level	37
Table 3.3 Correlation criteria	42
Table 3.4 Pre-monsoon total variance explained	42
Table 3.5 Post-monsoon total variance explained	43
Table 3.6 Rotated component table for a) Pre-monsoon and b) post-monsoon	44
Table 3.7 Distribution of groundwater samples sites in different cluster	46
Table 3.8 Water quality status of the area under consideration	50
Table 3.9 Normalized values of parameters for Bana well	58
Table 3.10 Fuzzy inference rules used for domestic purposes	60
Table 3.11 Sustainability score at groundwater wells for domestic usage	61
Table 3.12 Sustainability score at groundwater wells for irrigation usage	63
Table 4.1. Four scenes used in the study (received from Landsat 8 OLI)	73
Table 4.2. Spectral range and application of Landsat 8	73
Table 4.3. Weighted overlay scheme for groundwater suitability (Irrigation)	84
Table 4.4. Weighted overlay scheme for groundwater suitability (Drinking)	84
Table 4.5. Weighted overlay scheme for groundwater potential mapping	86
Table 4.6. Groundwater quality classification on the basis of TDS values	89
Table 4.7. Groundwater salinity classification on the basis of TDS values	89
Table 4.8. Groundwater classification on the basis of TDS values	89
Table 4.9. Irrigation suitability based on Electrical Conductivity	91
Table 4.10. Irrigation suitability based on alkalinity hazard	91
Table 4.11. Groundwater classification on the basis of Na%	92
Table 4.12. Groundwater classification on the basis of Na%	92

LIST OF TABLES

Title of Table	Page No.
Table 4.13. Suitability based on Mg/Ca ratio for Irrigation water	93
Table 5.1. Brief summary of selected indicators and their dimensions	102
Table 5.2: Definition of Saaty Scale	118
Table 5.3. Pair wise comparison matrix for dimensions	119
Table 5.4. Weights obtained for the dimensions	120
Table 5.5. Groundwater sustainability index calculation	121
Table 6.1. List of main inventory analysis data used to model	136

Abbreviations

IWMI International Water Mana	agement Institute
NGWA National Ground Water Ass	0
CGWB Central Ground Water Bo	bard
BCM Billion Cubic Meter	
WHO World Health Organization	on
BIS Bureau of Indian Standard	
LCA Life Cycle Assessment	
SAR Sodium Absorption Ratio)
RSC Residual Sodium Carbon	
USSL US Salinity Laboratory S	taff
ANN Artificial Neural Network	ζ
ANFIS Adaptive Neuro-Fuzzy In	iference System
EC Electrical Conductivity	
TDS Total Dissolved Solid	
TH Total Hardness	
PCA Principal Component Ana	alysis
AHP Analytical Hierarchical P	rocess
FA Factor Analysis	
DA Discriminant Analysis	
CA Correspondance Analysis	3
HCA Hierarchical Cluster Anal	lysis
RIICO Rajasthan State Industrial	Development and Investment
Corporation	
USGS United States Geological	Survey
WQI Water Quality Index	
PI Permeability Index	
LULC Land Use and Land Cove	r
MCDA Multi-Criteria Decision A	Analysis
FWS Flood Water Spreading	

RS	Remote Sensing
FCA	Fuzzy Comprehensive Assessment
SSE	South South East
NNW	North North West
MSL	Mean Sea Level
BGL	Below Ground Level
GPS	Global Positioning System
КМО	Kaiser-Mayer-Olkin
FIS	Fuzzy Inference System
VES	Vertical Electrical Sounding
DEM	Digital Elevation Model
UEA	University of East Angelia
FAO	Food and Agricultural Organization of United Nations
SRTM	Shuttle Radar Topography Mission
OLI	Operational Land Imager
GWD	Ground Water Department
AOI	Area of Interest
UNSDG	United Nations Sustainable Development Goal
SDG	Sustainable Development Goal
OECD	Organisation for Economic Co-operation and
	Development
GSI	Groundwater Sustainability Index
TERI	The Energy and Resources Institute
UNEP	United Nations Environment Programme
CIA	Central Intelligence Agency
CEA	Central Electricity Authority
PVC	Polyvinyl chloride