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ABSTRACT 

A downlink wireless system features a centralized basestation communicating to a 

number of users physically scattered around the basestation. The purpose of resource 

allocation at the basestation is to intelligently allocate the limited resources, e.g. total 

transmit power and available frequency bandwidth, among users to meet users' service 

requirements. Channel-aware adaptive resource allocation has been shown to achieve 

higher system performance than static resource allocation, and is becoming more 

critical in current and future wireless communication systems as the user data rate 

requirements increase. Adaptive resource allocation in a multichannel downlink 

system is more challenging because of the additional degree of freedom for resources, 

but offers the potential to provide higher user data rates. Multiple channels can be 

created in the frequency domain using multiple carrier frequencies, a.k.a. multicarrier 

modulation (MCM), or in the spatial domain with multiple transmit and receive 

antennas, also known as multiple-input multiple-output (MIMO) systems. This thesis 

aims to study the system performance, e.g. total throughput and/or fairness, in 

multiuser multicarrier and multiuser MIMO systems with adaptive resource 

allocation, as well as low complexity algorithms that are suitable for cost-effective 

real-time implementations in practical systems. 

First contribution of this thesis is the use of Particle Swarm Optimization (PSO), a 

stochastic optimization technique, for sub-channel allocation in downlink of OFDMA 

systems followed by power allocation using water filling algorithm. In PSO aided 

subchannel allocation the search and subchannel allocation is performed 

simultaneously as compared to traditional methods where the subchannels are first 

sorted in accordance of their gains and then allocation is performed. This significantly 

reduces the complexity of PSO aided allocation. This fact makes PSO aided 

subchannel allocation a suitable choice for practical wireless systems like WiMAX 

(802.16e) where the convergence rate plays a very important role as the wireless 

channel changes rapidly. 

The second contribution to this thesis is a novel genetic algorithm adaptive resource 

allocation in MIMO OFDM systems. We impose a set of proportional fairness 

constraints to assure that each user can achieve a required data rate, as in a system 

with quality of service guarantees. With the proposed algorithm, the sum capacity can 
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be distributed fairly and flexibly among users. Since the optimal solution to the 

constrained fairness problem is extremely computationally complex to obtain, we 

propose a suboptimal algorithm that separates subchannel allocation and power 

allocation. In the proposed algorithm, subchannel allocation is first performed using 

novel Genetic Algorithm, assuming an equal power distribution. An optimal power 

allocation algorithm then maximizes the sum capacity while maintaining proportional 

fairness. 

Finally, we present a joint solution to subchannel, bit and power allocation problem 

for downlink of MIMO OFDM systems. Using SVD, the MIMO fading channel of 

each subchannel is transformed into an equivalent bank of parallel Single Input Single 

Output (SISO) sub-channels. To achieve the capacity bound, one must solve a 

multiuser subchannel allocation and the optimal bit allocation jointly. We propose the 

use of Non-dominated Sorting Genetic Algorithm (NSGA) – II, which is a Multi-

Objective Genetic Algorithm (MOGA), for joint allocation of bits and subchannels, in 

the downlink of MIMO OFDMA system. NSGA – II is intended for optimization 

problems involving multiple conflicting objectives. Here the two conflicting 

objectives are Rate Maximization and Transmit Power Minimization. 
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Chapter-1 

Introduction 

1.1. Introduction 

The advent of new generation of communication technologies has ushered in an era of 

high data rates and better reliability. The next generation wireless communication 

systems are expected to provide data services with rate requirements ranging from a few 

Kbit/s up to several Mbits/s. The reliability expected of these systems is also very high. 

According to Shannon [Sha48] for such a reliable, high data rate transmission the 

bandwidth required is also very high. Due to scarcity of frequency spectrum, these 

systems also need to be extremely efficient in terms of the spectrum usage. 

High data rate wireless systems with very small symbol periods usually face unacceptable 

Inter-Symbol Interference (ISI) because of multipath propagation and their inherent delay 

spread. As applications move to higher and higher data rates over wireless channels, ISI 

becomes more of a problem. The interference goes from being identified as fading to 

frequency selective fading (when delay spread td exceeds the bit time) as the data rate 

increases in multipath environment. The multipath components begin to interfere with 

later symbols, resulting in irreducible error floors. 

Orthogonal frequency division multiplexing (OFDM) is the extension of the frequency 

division multiplexing (FDM) technique. The use of orthogonal subchannels allows the 

subchannels’ spectra to overlap. Due to the orthogonality it is possible to recover the 

individual subchannels’ signals despite the overlapping spectra and thus there is no need 

of guard bands as in FDM. OFDM is essentially a type of multicarrier modulation 

scheme. OFDM works on the concept of dividing a given high-bit-rate data stream into 

several parallel lower bit-rate streams. Each bit stream is then modulated on separate 

carriers often called subchannels, or tones. In FDM each subchannel needs a separate pair 

of matched filters at the transmitter and the receiver to make it possible to eliminate the 

inter-carrier interference (ICI). OFDM eliminate or minimize ISI by making the symbol 

time large enough to ensure that the channel induced delays are an insignificant fraction 

of the symbol duration.  
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The idea of using orthogonal subchannels was suggested more than 40 years ago [FL61, 

Cha66, Sal67] but in practice it was not used for a long time mostly due to its complexity. 

Simple OFDM-based transceivers can be efficiently implemented using the Fast Fourier 

Transform (FFT). Since with OFDM the channel transfer function of each subchannel 

becomes non-frequency-selective, sophisticated equalization structures are not needed 

[NP00, LL05, FKKC06]. Moreover, OFDM system can be used to provide rate flexibility 

and services with different rate requirements by allocating variable number of 

subchannels to a given radio link [LL05]. 

At the physical layer, Multiple Input Multiple Output (MIMO) technologies have 

received increasing attentions in the past decades [CLC10, ASC11, CLL11, PB10, HK10, 

LTC10]. Many broadband wireless networks have now included the MIMO option in 

their protocols. Compared to Single Input Single Output (SISO) system, MIMO offers 

better resistance against fading. In addition, the greater diversity can potentially lead to a 

multiplicative increase in capacity. 

Equipped with multiple antennas at the transmitter and receiver, MIMO systems fully 

utilize the spatial dimension to improve the transmission reliability and/or the system 

throughput. Huge multiplexing gains can be achieved by transmitting multiple data 

streams separated in space over the same radio channel [Tel95, FG98]. In this way, high 

spectral efficiency values can be achieved without requiring additional frequency 

resources [FGH05, MK06, DSK+06]. The Base Station (BS) can transmit data streams to 

different Mobile Stations (MSs) sharing the same radio resource in space. Such a sharing 

of radio resource in space which adds a spatial component in the multiple access schemes 

is called as Space Division Multiple Access (SDMA) [LR99, Tre02, PNG03]. The 

multiple antenna systems employed at the BS and MSs are usually called as Antenna 

Arrays (AAs). The individual antennas of the AAs are termed AA elements [LR99, 

Tre02]. 

The rest of this chapter presents a brief review of the existing literature and parallel work 

within the scope of the thesis.  
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1.2. Adaptive modulation for SISO fading channels 

Information theory was introduced by Shannon in [Sha48], where he derived the general 

theory on reliable communication and, in particular, the capacity of the additive white 

Gaussian (AWGN) channel. In [Sha49], Shannon also showed that the capacity-achieving 

power allocation for a time-invariant spectrally shaped channel corresponds to a water-

filling (WF) distribution [CT91]. Since Shannon capacity is the maximum data rate that a 

communication system can achieve with near zero error probability, the data rate 

achieved in a practical system is inevitable lower than the Shannon capacity due to the 

limitation of channel bandwidth and signal power. In other words, Shannon capacity is 

generally used as an upper bound on the achievable data rate in a real system. 

 The capacity of time-varying frequency-flat fading channels with full Channel State 

Information (CSI) was later analyzed by Goldsmith and Varaiya in [GV97], where they 

demonstrated that the Shannon capacity for a fading channel can be achieved by varying 

both the transmission rate and the power [GV97]. Caire and Shamai [CS99] showed that 

variable-rate variable-power coding schemes are not needed to achieve the capacity of 

this channel, and a simple single codebook scheme with dynamic power allocation may 

be a more viable solution, when the power allocation is of the WF type. In, the low 

Signal-to-Noise Ratio (SNR) case, adaptive systems yields both higher capacity and a 

lower complexity than non-adaptive transmission that do not exploit channel knowledge 

at the transmitter [GV97, CS99].  

However, in high SNR case, the gain obtained from WF is reduced to zero. These 

capacity results can also be extended to the under spread (delay spread much smaller than 

the coherence time) time-variant frequency-selective case with multi-carrier modulation, 

where the optimal solution is WF over time and frequency [TV05]. 

However, it was shown in [CG01] that, for a large class of modulation techniques and 

general fading distributions keeping the rate or power the adaptive modulation to be 

constant achieves near optimal performance. Thus, even by using only one or two 

degrees of freedom in adaptive modulation can yield similar spectral efficiency obtained 

by utilizing all degrees of freedom.  
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For flat-fading SISO with more practical constraints, a large number of adaptive 

modulation schemes have been proposed [Hay68, Cav72, AK94, Vuc91, USMH98, 

WS95, GC97, GC98, VG03]. Practical adaptive transmission schemes with CSI feedback 

were first proposed by Hayes [Hay68] and Cavers [Cav72]. Hayes, in [Hay68] proposed 

an adaptive scheme in which the transmission power was varied in accordance with the 

CSI while maintaining a fixed target quality of service (QoS). On the other hand, in 

Cavers scheme [Cav72] the transmission symbol rate was varied while maintaining a 

fixed transmit power. After almost 20 years of inactivity, several proposals were made to 

adapt, e.g. the constellation size [USMH98, WS95], or the coding rate or scheme [AK94, 

Vuc91] in accordance with the instantaneous channel conditions.  

Goldsmith and Chua in [GC97] proposed an optimal uncoded variable-rate variable 

power using M-ary Quadrature Amplitude Modulation (MQAM) modulation in order to 

maximizing spectral efficiency (bps/Hz) subject to the constraints of average power and 

Bit Error Rate (BER) requirements. It was shown in [GC97] that the same power 

adaptation can be used for both the capacity optimal transmission scheme [GV97] and the 

adaptive MQAM [GC97]. It was also shown in [GC97] that there was a constant gap 

between the channel capacity and the maximum efficiency of adaptive MQAM which is a 

simple function of the target BER. It is important to note that, in one of the first studies 

on dynamic power allocation for discrete subchannel in [Kal89] similar results were 

obtained for the case of wired multitone channel. Therein the WF was performed over a 

time-invariant wired multitone channel instead of a flat-fading time-variant channel. The 

variable rate variable power MQAM technique was further extended to the case of coded 

modulation in [GC98, VG03], resulting in further reduction in the gap to the capacity.  

All the optimal adaptive loading algorithms proposed in [GC97, Kal89] were based on 

the assumption of continuous rate allocation implying infinite granularity in constellation 

size over subchannels or fading states. However, practical systems, no such continuous 

constellations are available.  An optimal discrete bit and power loading algorithm was 

proposed by Hughes-Hartogs [HH87]. Therein an iterative approach to obtain the optimal 

power allocation to each subchannel was patented. Later Chow et al. in [CCB95] 

presented one of the first faster algorithms compared to the Hughes-Hartogs approach, 
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with the aim to minimize the transmit power. Therein, the approach was to start with an 

equal power distribution and then alter this distribution in order to reach the required rate. 

These algorithms were originally developed for wired (twisted pair lines) frequency 

selective channels employing multicarrier modulation. However, these adaptive loading 

principles can be applied to wireless communication employing OFDM modulation. In 

general, adaptive loading algorithms employ different modulation and coding scheme for 

each OFDM subchannel based on their corresponding SNR. 

Apart from these fully adaptive schemes, there exist two special cases for the power 

distribution in OFDM systems. In the first case, the transmit power is simply distributed 

statically. As the attenuation values might differ strongly, the resulting SNR per 

subchannel varies, too. These varying SNR's motivate the idea to adapt the modulation 

types solely, referred to as adaptive modulation. Given a certain target BER, for each 

modulation type a SNR range can be obtained. Then for each subchannel the modulation 

type is simply adapted according to the SNR ranges. An excellent, in depth discussion of 

adaptive modulation for multi-carrier systems is given in [KH00]. 

The second specific approach to power loading is to vary the transmit power exclusively 

while considering an OFDM system with a single modulation type. This has been 

suggested by Hunziker et al. in [HD03]. As the throughput is fixed in such a case (for 

each OFDM symbol the same number of bits is transmitted), the objective is to minimize 

the BER subject to a total transmit power budget. Since the transmit power is varied 

whereas only one modulation type is available, the respective optimization problem 

becomes a non-linear, continuous problem. The authors obtain an analytical expression 

for the BER of each bit in an OFDM symbol depending on the subchannel attenuations 

and the transmit power per subchannel. Then, using the Lagrange multiplier technique, 

they obtain an expression for the optimal power allocation, assuming perfect channel 

knowledge at the transmitter. 

Fading channels, common in wireless systems, are a particularly hostile environment for 

reliable communications and can adversely affect achievable capacity. The transmitted 

signal is scattered, in a time-varying manner, along the transmission path resulting in 

random fluctuations in the received power level, or fading. Until recently, the fading in a 
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wireless communication channel was considered as an adverse phenomenon. This is due 

to the fact that the BER in fading channel is significantly higher than in a non-fading 

AWGN channel [Skl97a, Pro01, Skl97b]. Such disadvantages make the design of a 

digital communication system over a wireless channel more challenging and interesting 

compared to the design for a traditional AWGN channel. An effective way to mitigate the 

adverse effects of fading is to apply diversity techniques. The basic idea of all diversity 

techniques is to send separate copies of the same information over multiple independently 

faded paths in order to increase reliability and the probability of successful transmission.  

Time diversity (e.g., channel coding) is obtained via the interleaving of coded symbols 

over transmission blocks, whereas frequency diversity is achieved from multipath 

combining by using, e.g. the rake receiver or the equalizer. Multiple antennas at the 

receiver and/or the transmitter have traditionally been used to provide space or spatial 

diversity, i.e. redundancy across independently fading antennas [Gol06, Pro01, TV05]. 

Typically, several types of diversity can be combined and incorporated in wireless 

systems to further improve the overall performance of the systems.  

In case perfect CSI is available at transmitter and the receiver, high system throughput 

can be achieved by exploiting multiuser (MU) diversity [KH95, KH97]. This is achieved 

by the adaptive allocation of resources among multiple users, transmitting at a high rate 

when the channel is good and vice versa [KH95, RC03, WCLM99]. By taking the 

variance of channel fading, interference scenario and traffic load into account, adaptive 

resource allocation yields higher system performance than fixed resource allocation, and 

is becoming more important in wireless communication systems while the user data rate 

requirements keep increasing. The purpose of the resource allocation is to allocate the 

limited resources, e.g. total transmit power, available time slot and frequency bandwidth, 

to users to meet the users’ QoS requirements, e.g. data rate and delay. However, The 

problem of resource allocation in OFDM systems is an nondeterministic polynomial time 

(NP) hard combinatorial optimization problem [WSEA04] with non-linear constraints. It 

involves both continuous variables and binary variables. Such an optimization problem is 

called a mixed binary integer programming problem and such type of problems might 

even be nondeterministic polynomial time complete (NP-C) problems. 
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For single-antenna systems, the optimum strategy for maximizing the capacity is to allow 

only the user with the best instantaneous channel gain to transmit at any time [KH95, 

KH97, CV93]. This extends straightforwardly to the frequency-selective fading channel 

as well. It has been shown that the total capacity is maximized when each subchannel is 

assigned to the user with the highest channel gain and the transmit power is then 

distributed according to the WF algorithm WF over time and frequency [TV05, CV93]. 

However, such approach does not ensure any fairness among users, because it always 

selects users supporting the highest data rate and may leave out users with bad channel 

conditions, typically located at the cell edge. Similarly, discrete loading algorithms, such 

as the Hughes-Hartogs algorithm [HH87], can be applied to single antenna systems to 

maximize the spectral efficiency.  

Another useful optimization criterion is to find an optimal subchannel, bit and power 

allocation to minimize the total transmission power while satisfying a minimum rate 

constraint per user [WCLM99]. This is, however, a far more complicated combinatorial 

problem with integer constraints. Wong et al. [WCLM99] reformulated the original 

problem as a convex problem with relaxed non-integer constraints, and provided a close-

to-optimal allocation algorithm based on the achieved lower bound solution.  

From the above discussion it follows that three different metrics can be considered for the 

optimization of practical systems: Maximizing the data rate for a given power budget and 

a target BER (called the bit rate maximization problem (RA)) [Kal89], minimizing the 

transmit power for a certain given rate and a target BER (called the margin maximization 

problem (MA)) [CCB95] and minimizing the BER for a given bit rate and power budget 

[FH96]. 

1.3. Multiple Antenna System 

The use of multiple transmit and receive antennas, as shown in Fig.1.1, opens a new 

dimension (i.e. antenna or spatial domain) that has previously been unnoticed. Winters et 

al. [Win84, Win87] in their pioneering work proposed the use of SDMA to boost up the 

capacity of wireless communication systems. In addition to this capacity advantage, 

communication over multi-antenna channels presents two main practical advantages with 
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respect to traditional communication over single antenna channels. These gains are 

usually referred to as diversity and multiplexing gains. A brief review of the gains 

available in a MIMO system is given in the following: 

Diversity leads to improved link reliability by rendering the channel “less fading” and by 

increasing the robustness to co-channel interference. Diversity gain is obtained by 

transmitting the data signal over multiple (ideally) independent fading dimensions in 

time, frequency, and space and by performing proper combining in the receiver. Spatial 

(i.e., antenna) diversity is particularly attractive as compared to time or frequency 

diversity, as it does not incur any expenditure in transmission time or bandwidth, 

respectively. Diversity can be employed in the communication link to combat channel 

fading. In [Jak75] it was shown that multiple receiver antennas can be used to exploit the 

spatial diversity. The transmission reliability can be significantly improved by optimally 

combining the signals received from multiple antennas. Further, multi-antenna systems 

can even suppress co-channel interference thanks to additional degree of freedom in the 

spatial domain [RPK87, Win84]. Space-time coding [TSC98] realizes spatial diversity 

gain in systems with multiple transmit antennas without requiring channel knowledge at 

the transmitter. 

Spatial multiplexing yields a linear (in the minimum of the number of transmit and 

receive antennas) capacity increase, compared to systems with a single antenna at one or 

both sides of the link, at no additional power or bandwidth expenditure [Tel95, Fos96]. 

Spatial multiplexing can be obtained by decomposing the wide band MIMO channel into 

parallel narrow band channels and multiplexing different data streams onto these 

channels. The corresponding gain is available if the propagation channel exhibits rich 

scattering and can be realized by the simultaneous transmission of independent data 

streams in the same frequency band. The receiver exploits differences in the spatial 

signatures induced by the MIMO channel onto the multiplexed data streams to separate 

the different signals, thereby realizing a capacity gain. 

However, the SNR associated with each of these parallel narrow band channels depends 

on the singular values of the MIMO channel matrix. In capacity analysis this should be 

considered by assigning a relatively low rate to these channels. However, practical 
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signaling strategies for these channels will usually exhibit poor performance, and require 

powerful channel coding techniques to be employed. As an alternative, channel gains can 

be coherently combined using beamforming, which provides a very robust channel with 

high diversity gain.  

Moreover, it is not necessary that the antennas be used purely for multiplexing or 

diversity. Some of the space-time dimensions can be used for diversity gain, and the 

remaining dimensions used for multiplexing gain. A fundamental design question in 

MIMO systems arises as a consequence of this: should the antennas be used for diversity 

gain, multiplexing gain, or both? 

The diversity/multiplexing tradeoff or, more generally, the tradeoff between data rate, 

probability of error, and complexity for MIMO systems has been extensively studied in 

the literature [Gol06], from both a theoretical perspective as well as in terms of practical 

space-time code designs [FKKC06, PNG03, ZT03]. Some of previous works have 

primarily focused on block fading channels with receiver CSI only. When full CSI is 

available at both transmitter and receiver the tradeoff is relatively straightforward: 

antenna subsets can be first grouped to obtain diversity gain and then the multiplexing 

gain corresponds to the new channel with reduced dimension because of grouping. In 

case of block fading model with CSI at the receiver only, as the blocklength grows 

asymptotically large, both full diversity gain and multiplexing gain can be achieved 

simultaneously with reasonable complexity by encoding diagonally across antennas 

[Fos96]. Diagonal Bell Laboratories Layered Space-Time Architecture (D-BLAST) is an 

example of this type of encoding. On the other hand if blocklength is finite it is not 

possible to achieve full diversity and multiplexing gain simultaneously, in such a case a 

tradeoff between these two gains occurs. Authors in [SGGP99, ZT03] proposed a simple 

characterization of this tradeoff for the case of block fading channels with MT transmit, 

MR receive antennas’ and blocklength T ≥ MT + MR − 1 in the limit of asymptotically 

high SNR. The diversity and multiplexing gains can also be adapted in accordance to 

channel conditions. Specifically, when channel states are poor more number of antennas 

can be used to provide diversity gain, whereas use more antennas for multiplexing when 

channel state is good. Investigation has been carried out on adaptive techniques that can 
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change antenna uses to trade off diversity and multiplexing depending on current channel 

conditions [HP05].  

In summary, MIMO technologies provide the diversity and multiplexing opportunities to 

improve communication reliability and spectral efficiency [FG98]. A theoretical study on 

the tradeoff between diversity and multiplexing of MIMO systems was presented in 

[SGGP99], and a practical algorithm on the switching between diversity and multiplexing 

was proposed in [HP05]. 

Thus when combined with advanced signal processing and coding techniques, MIMO 

systems can be used to provide higher data rates and/or more robust communications. 

The multiple antennas in the Uplink (UL) enable spatial separation of the signals from the 

different users, and hence, allow several users to simultaneously communicate with the 

BS. By mid-nineties this concept was transferred to point-to-point communication with 

multiple antennas at both the transmitter and the receiver [FG98, Tel95, Tel99]. It was 

noticed that SDMA with single transmit antennas is in fact similar to point-to-point 

MIMO communications without CSI at the transmitter, i.e. users/antennas cannot co-

operate. This resulted in large potential for the use of the angular or space domain to 

convey multiple independent data streams from a single user (SU) to the BS. However, as 

stated earlier, in MIMO communications, the signals transmitted from co-located 

antennas can still be separated at the receiver provided that the scattering environment is 

rich enough. A Minimum Mean Square Error (MMSE) receiver with Successive 

Interference Cancellation (SIC) was shown to be an information theoretically optimal 

solution for both SDMA with single transmit antennas and MIMO without CSI [TV05].  

1.4. Point-to-point MIMO communications 

Point-to-point (SU) MIMO communication involves a BS supporting only one MS as 

shown in Fig.1.1. The research on point-to-point MIMO communications was pioneered 

by Telatar [Tel95, Tel99] and Foschini [FG98, Fos96]. Foschini considered the case 

where the CSI of the MIMO channel is only available at the receiver and not at the 

transmitter. For such a case, he also proposed a capacity achieving transmission 

architecture called the Bell Labs space-time architecture (BLAST) in [Fos96].  
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In addition to the analysis without any CSI at the transmitter, Telatar [Tel95, Tel99] 

showed that with perfect CSI at the transmitter, the MIMO channel can be decomposed in 

to parallel, non-interfering SISO subchannels using Singular Value Decomposition 

(SVD) of the channel matrix. The number of parallel subchannels or data streams, also 

known as singular value channels (SV channels) or known as Eigenmode channels, is 

dictated by the rank of the MIMO matrix. The maximum rank is given by minimum of 

transmit and receive antennas. Assuming R denotes the rank of channel matrix and a 

MIMO channel is decomposed R parallel independent channels, an R-fold dada rate 

increase can be achieved by multiplexing different data onto different channels in 

comparison with the SISO system. The optimal capacity achieving transmission is then 

carried out by pre (transmit precoding) and post processing (receiver shaping) each 

stream with the right and left singular vectors of the channel matrix, respectively. 

Optimal transmit power allocation is achieved via WF algorithm [CT91] over the parallel 

SISO subchannels with gains corresponding to the Eigen-values of the channel matrix 

[Tel95, Tel99]. Furthermore, the capacity-optimal transmission strategy requires a 

Gaussian codebook with continuous rate allocation among the parallel subchannels 

[CT91, Tel95, Tel99].  

 

Figure 1.1: Point to Point MIMO System 



12 

 

Extensions of the MIMO capacity to multipath channels were provided in [RC98a]. The 

SVD based transmission is very similar to the OFDM system, where the frequency 

selective (multipath) channel is transformed into a set of parallel independent 

subchannels. In [RC98a] a spatio-temporal vector-coding (STVC) communication 

structure was suggested as a means for achieving MIMO channel capacity. Moreover, 

joint WF over space and frequency was sown to be capacity optimal power allocation for 

a MIMO OFDM [RC98a, CT91]. This achieves the capacity of the frequency selective 

MIMO channel as the number of subchannels approaches infinity [RC98a]. An overview 

of the Shannonian capacity limits of MIMO channels is provided in [GJJV03]. In 

[GJJV03], it was shown that for SU systems the capacity under perfect CSI at the 

transmitter and receiver is relatively straightforward and predicts that capacity grows 

linearly with the number of antennas. However, diverting from the perfect CSI 

assumption makes the capacity calculation much more difficult and the capacity gains are 

highly dependent on the nature of the CSI, the channel SNR, and the antenna element 

correlations. Other general overviews on MIMO communications are included in 

[PGNB04, STT+02, GSS+03, SBL+87, VY03] As mentioned above, the MIMO capacity 

depends heavily on the available channel knowledge at both the receiver and the 

transmitter, the signal-to-noise-plus-interference ratio (SINR) and the underlying channel 

properties, e.g., the correlation between the antenna elements. The large capacity gains 

associated with MIMO channels are based on the assumption that each transmit-receive 

antenna pair experiences independent identically distributed (i.i.d.) fading. This can be 

only achieved in a rich scattering environment [GJJV03]. MIMO transmission and the 

capacity available in non-ideal conditions, e.g. correlated fading channels, were studied 

in [CFGV02, CTKV02, TLV05]. In [CFGV02] it was shown that degenerate channel 

phenomena, called “keyholes” may arise under realistic assumptions which have zero 

correlation between the entries of the channel matrix and yet only a single degree of 

freedom. Decorrelation is therefore not a guarantee of BLAST performance. Authors in 

[TLV05] used random matrix theory to obtain analytical characterizations of the capacity 

of correlated multiantenna channels. Herein it was shown how antenna correlation 

impacts the tradeoffs among power, bandwidth, and rate. 



13 

 

For MIMO OFDM systems, Bölcskei et al. [BGP02] analyzed the influence of physical 

parameters such as the amount of delay spread, cluster angle spread, and total angle 

spread, and system parameters such as the number of antennas and antenna spacing on 

ergodic capacity and outage capacity. It was shown in [BGP02] that, in the MIMO case, 

unlike the SISO case, delay spread channels may provide advantages over flat fading 

channels not only in terms of outage capacity but also in terms of ergodic capacity. 

Therefore, MIMO delay spread channels will in general provide both higher diversity 

gain and higher multiplexing gain than MIMO flat-fading channels. 

Thus it can be concluded that the optimal transceiver design with ideal CSI at the 

transmitter is rather simple [Tel95, Tel99], the case without CSI at the transmitter is less 

straightforward. In general, multiple antennas can be used for increasing the amount of 

diversity or the number of spatial multiplexing dimensions in wireless communication 

systems [Pro01]. There is a large amount of different techniques available in literature 

designed for extracting the maximal diversity gain or the maximal spatial multiplexing 

gain of a channel. 

Based on the original BLAST scheme by Foschini [Fos96], several other spatial 

multiplexing schemes were proposed in [BGP02, BTT02, FGVW99]. Authors in 

[BTT02] proposed a coding/decoding scheme matched to a “vertical” BLAST (V-

BLAST) architecture; every code had its words evenly split among the transmit antennas. 

The subcodes so transmitted by each antenna were decoded in sequence so as to cancel 

the spatial interference while a final decoding step was performed on the whole code. 

Herein, the behavior of zero-forcing (ZF) and MMSE BLAST was also examined by 

comparing their error probabilities with those resulting from optimum, i.e., maximum-

likelihood (ML), processing.  

In [FGVW99] a simplified space–time communication processing method was presented. 

The user’s bit stream was mapped to a vector of independently modulated equal bit-rate 

signal components that were simultaneously transmitted in the same band. A detection 

algorithm similar to multiuser detection (MUD) was employed to detect the signal 

components in AWGN. It was proved that for a large number of antennas, a more 
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efficient architecture can offer no more than about 40% more capacity than the simple 

architecture presented.  

Different multi-antenna schemes aiming at maximizing the available diversity have been 

proposed in [Ala98, HM00, NTSC98, TJC99a, TJC99b, TSC98]. Alamouti [Ala98] 

proposed a simple but elegant space-time coding technique, which turned out to be 

optimal from both the diversity and multiplexing perspectives for the case with two 

transmit and one receive antennas. It was also shown in [Ala98] that using two transmit 

antennas and one receive antenna the scheme provides the same diversity order as 

maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive 

antennas. Later, in [TJC99a] the Alamouti scheme was generalized to orthogonal designs 

with any number of transmit antennas. Unlike the Alamouti scheme, the coding structure 

from the orthogonal design [TJC99a], while indeed achieving the full diversity order, 

reduces the achievable spatial multiplexing gain. Further, the best tradeoff between the 

decoding delay and the number of transmit antennas was also presented [TJC99a] and it 

was shown that many of the codes presented were optimal in this sense as well. Zheng 

and Tse in [ZT03] showed that a part of the diversity and multiplexing gains can be 

obtained simultaneously. Furthermore, they characterized the optimal diversity–

multiplexing tradeoff achievable by any scheme and used it to evaluate the performance 

of many existing schemes. Since then, several trade-off optimal space-time codes have 

been proposed in the literature. See, for example, [BRV05, DV05, GCD04], and the 

references therein.  

In real systems it is often difficult to get perfect CSI at the transmitter. It is possible to 

achieve full CSI at the transmitter in Time Division Duplex (TDD) systems, where the 

reciprocal UL and Downlink (DL) channels are time-multiplexed on the same physical 

wireless channel [GSS+03, SBL+87]. The transceiver can extract the CSI from the 

information received in the current time slot and the same CSI can be used for 

transmission in the next time slot. This is possible as long as the TDD frame length is 

shorter than the channel coherence time. In general, this can be guaranteed in low 

mobility environments for practical system parameters [LGF05]. However, in high 

mobility environments, the CSI quickly becomes outdated as the terminal velocity 
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increases due to a time delay between the estimation of the channel and the transmission 

of the data. Normally, CSI is obtained through channel estimation, by sending known 

training symbols to the receiver. A channel estimate always contains some noise along 

with the real channel. Training based channel estimation schemes, the losses due to 

estimation errors and the pilot overhead were studied in [HH03]. It was shown in [HH03] 

that, when the training and data powers are allowed to vary, the optimal number of 

training symbols is equal to the number of transmit antennas—this number is also the 

smallest training interval length that guarantees meaningful estimates of the channel 

matrix. However, when the training and data powers are instead required to be equal, the 

optimal number of symbols may be larger than the number of antennas. Furthermore, the 

impact of the errors in channel estimates at both the transmitter and the receiver on the 

capacity was studied in [YG06a]. Optimizing the transmitter with noisy channel estimates 

is still largely an unresolved research problem. However, a few solutions exist where it 

has been proposed to use worst case design criteria to guarantee robust performance for 

any realization of the actual and estimated channels, e.g. worst-case mean square error 

(MSE) precoder design [GL06, VGL03], or to combine robust beamforming with space-

time coding [PPP+06].  

In frequency division duplex (FDD) systems, in order to have full CSI at the transmitter it 

is required to have a dedicated feedback channel from the terminal(s). This, however, 

results in a massive overhead due to the large number of channel coefficients which need 

to be quantized and sent back to the transmitter over a limited bandwidth feedback 

channel. Hence, a dedicated feedback is impractical for FDD systems with any mobility. 

In cases where some statistical information only is available about the MIMO channel 

(distribution, mean, covariance) at the transmitter, the transmission strategy must be 

designed in accordance to the statistical information instead of the instantaneous 

information [RC03, GJJV03, JG04, JG05a, JB04a, JB04b, SM03, TLV06, VM01, JG04, 

ZG03]. It was shown in [RC03, GJJV03, JB04a, JB04b, SM03,VM01, JG04, ZG03] that 

for FDD based system the capacity-achieving eigenvectors should correspond to the 

eigenvectors of the statistical covariance matrix of the channel. Expectedly this finding is 

so similar to the solution with instantaneous channel information at the transmitter 
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[Tel95, Tel99]. However, the optimal power allocation in the transmit directions requires 

the use of numerical techniques and resemble WF with consideration to inter-stream 

interference due to non-orthogonal transmission [JG04, JB04a, TLV06, VM01]. 

Authors in [JG04, JSO02, LJ05, VP06, XZG04] proposed to couple the statistical 

beamforming with space–time block codes as a mechanism to improve the reliability of 

system with statistical or noisy channel information  

A large number of solutions exist in literature for a FDD system which utilizes a very low 

rate feedback from the receiver to transmitter. A simple solution is to select a subset of 

transmit antennas in order to maximize the available rate (RA) or to minimize the power 

(MA) with fixed user rate requirements [HL05, HSP01], or to switch between spatial 

multiplexing and transmit diversity following instantaneous channel conditions (rank, 

correlation between antennas, etc.) [HP05, LH05a]. Another solution proposed in [CH05, 

LH05b,LHS03, MSAE03] is to report an index of a transmission strategy (precoder) 

which matches best with the instantaneous channel state. The idea is to choose a transmit 

precoder from a finite set of predefined precoding matrices known at both the receiver 

and the transmitter end. Kim and Skoglund [KS07] characterized the diversity-

multiplexing tradeoff in MIMO channels with quantized CSI at the transmitter. 

1.5. Multiuser MIMO communications 

The capacity region for the Gaussian multiple access channel (MAC), i.e. the UL 

(Fig.1.2) channel with multiple users/transmitters and a single receiver, has been known 

for quite a while [Gal85]. The capacity region of MIMO MAC is achieved by successive 

decoding [CT91] (also known as SIC). Following the pioneering work on the use of 

multiple receive antennas in the UL by Winters [Win84, Win87, WSG94], the scalar 

Gaussian MAC capacity region was extended to ISI [CV93] and MIMO channels in 

[Tel99, YRBC04].  

MIMO broadcast channel (BC) structure is similar to that of MIMO MAC (with the 

communication direction being reversed as shown in Fig.1.3). Surprisingly, the capacity-

related problems in MIMO BC turn out to be much harder than those in MIMO MAC. 

The capacity region for the Gaussian degraded BC has been also known for more than 
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thirty years [CT91, Cov72]. The degraded BC channel implies that the Gaussian channel 

has a scalar input and scalar outputs, i.e. a single-antenna transmitter and several 

receivers. For such a case, the capacity region is achieved by using superposition coding 

at the transmitter and interference subtraction at the receivers [CT91, Cov72]. However, 

for the non-degraded BC channel, where the transmitter has a vector input, i.e. multiple 

transmit antennas, the superposition coding no longer achieves the capacity. 

 

Figure 1.2: Multiuser MIMO MAC (Uplink)  

 

Figure 1.3: Multiuser MIMO Broadcast (Downlink) 
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The foundation for the information theoretic studies on the capacity of the non-degraded 

Gaussian MIMO BC channel was laid in Costa’s landmark paper [Cos83], where he 

studied the capacity of a BC channel with both AWGN and additive Gaussian 

interference, and where the interference is non-causally known at the transmitter but not 

at the receiver(s). Costa [Cos83] concluded that the effect of the interference can be 

completely cancelled out at the transmitter by using specific precoding called dirty paper 

coding (DPC). Consequently, the capacity is identical to the case when the interference 

was known also at the receivers. However, unlike MIMO MAC, the DPC rate region is 

non-convex, making most optimization problems over the DPC rate region very difficult 

to solve.  

Caire and Shamai [CS03] investigated the achievable throughput (sum rate) of a 

generally nondegraded broadcast Gaussian channel where the transmitter has multiple 

antennas and the receivers have one antenna each, subject to the assumption that the 

channel is perfectly known to all terminals. Therein, they proposed the use Costa’s 

precoding for transmitting over the MIMO BC. They compared DPC with Sato’s 

cooperative upper bound [Sat78] for the case of two users with single-antenna receivers 

and demonstrated that DPC achieves the sum capacity. However, because DPC is 

difficult to implement in real systems, a practical precoding techniques based on DPC 

was also proposed in [CS03]. ZF-DPC exploits the DPC principle, which is a nonlinear 

suboptimal implementation of DPC. For any given user, the ZF part completely 

suppresses interference caused by subsequently encoded users while the DPC coding is 

applied to the previously encoded users. In other word, any interference caused by data 

stream j > i on each data stream i is forced to zero by pre-subtraction at the transmitter. 

Due to the pre-subtraction of interference, the transmit power of ZF-DPC increases, 

which may not be feasible in practical implementation. However, this strategy was shown 

to be asymptotically optimal for both high and low SNR regions. The proposals in 

[CS03] sparked off a number of new studies    [VJG03, VT03, YC04], where the results 

of [CS03] were generalized to any number of users and an arbitrary number of receive 

antennas. 
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The duality between the DPC region for the MIMO BC and the capacity region of the 

MIMO MAC was established in [VJG03, VT03]. This duality allows expressing the 

capacity region of the Gaussian BC in terms of the Gaussian MAC, and vice versa. It was 

also shown that this duality extends to fading channels. In both these research the 

reciprocity of the UL and DL channels [Tel99] combined with the previously established 

duality between the scalar Gaussian BC and MAC [JVG04] was utilized. It was also 

shown that due to the MAC-BC duality, the sum-rate capacity of the MIMO BC is equal 

to the sum-rate capacity of the dual MAC with sum power constraint. Unlike for DPC 

region, the MIMO MAC rate maximization can be formulated as a concave function of 

the covariance matrices, for which efficient numerical algorithms exist. Therefore, the 

DPC-MAC duality allows the DPC region to be found using standard convex 

optimization techniques [GBY06, Stu99]. Furthermore, the explicit transformations of 

transmit covariance matrices from MAC to BC and vice versa were demonstrated in 

[VJG03]. A somewhat different approach in order to obtain the results in [VJG03, VT03] 

was used in [YC04]. Herein, the sum-rate optimal precoding structure was shown to 

correspond to a decision-feedback equalizer. In addition, the results in [YC04] laid the 

foundation for the studies on the more general case with arbitrary convex input 

constraints [WSS06, Yu06a, YL07]. 

 Yu [Yu06a] established a connection between the duality approach [VJG03, VT03] and 

the decision-feedback approach [YC04], and generalized UL-DL duality to BC channels 

under arbitrary linear covariance constraints, e.g. per-antenna power constraints. It is 

shown that the UL-DL duality between a BC and a MAC can be derived as a special case 

of the minimax duality. It was also shown that the minimax expression for the sum 

capacity of the BC channel is a more general expression than UL-DL duality. The 

original DL optimization problem with linear covariance constraints was transformed into 

a dual UL minimax optimization with uncertain noise. The sum capacity result of 

[Yu06a] was extended to the entire BC capacity region with per-antenna power 

constraints in [YL07]. The DPC region was finally shown to be indeed the capacity 

region of the entire non-degraded Gaussian MIMO BC by Weingarten et al. [WSS06]. 

This result proved the conjecture of the DPC optimality which was already reported in 
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[TV03, VKS+03]. The capacity region for MIMO BC was characterized under a wide 

range of input constraints, accounting, as special cases, for the total power and the per-

antenna power constraints. In general, it was shown that obtained results apply to any 

input constraint such that the input covariance matrix lies in a compact set of positive 

semidefinite matrices. For that purpose, a new notion of an enhanced channel was 

introduced. Using this enhanced channel, the Bergmans’ proof [Ber74] was modified to 

provide converse for the capacity region of an aligned and degraded Gaussian vector BC 

channel. Thus, [WSS06] parallels the work on the sum capacity and the capacity region 

with linear covariance constraints reported in [Yu06a, YL07]. 

Even though the sum capacity and any point on the boundary of the MIMO BC capacity 

region can be computed by any standard interior point convex optimization technique 

[GBY06, Stu99], there exists a few methods in the literature that propose iterative 

computation of the sum capacity [CJL07, JRV+05, Yu06b] or any point on the boundary 

[KC06, VVH03] without explicitly using convex optimization techniques. Based on the 

iterative WF algorithm for MIMO MAC [YRBC04], Jindal et al. [JRV+05] proposed a 

sum power iterative WF algorithm for Gaussian MIMO BC. This simple algorithm 

exploits the structure of the dual sum power MAC problem and provides the optimum 

transmission policies for the MAC, which can easily be mapped to the optimal BC 

policies by the MAC-BC transformation [VKS+03]. An alternative approach based on 

dual decomposition was proposed by Yu in [Yu06b]. Herein, the BC channel was first 

transformed into a sum-power constrained Gaussian vector MAC, for which an iterative-

WF based algorithm was proposed to compute its sum capacity. The main feature of this 

algorithm [Yu06b] was a dual decomposition approach that decouples the sum-power 

constraint. Despite being less complex than the standard interior point solutions, the 

convergence of these algorithms can be rather slow, especially for a large number of 

users. Codreanu et al. in [CJL07] proposed a random user pairing technique which was 

shown to greatly improve the convergence of the iterative WF algorithm. The key idea of 

the algorithm [CJL07] was to iteratively maximize the sum capacity for randomly 

selected pairs of users, while considering the other users’ signals as noise. Viswanathan 

et al. in [VVH03] proposed a steepest descent method which makes it possible to 
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calculate the weighted rate sum for a given set of weights, i.e. to find any point on the 

boundary of the BC capacity region [VVH03]. The algorithm was used to determine 

potential capacity enhancements to a cellular system through known-interference 

cancellation. Both the circuit data scenario in which each user requires a constant data 

rate in every frame and the packet data scenario, in which users can be assigned a 

variable rate in each frame so as to maximize the long-term average throughput, were 

considered. Further, the ZF beamforming technique was generalized to the multiple 

receive antennas case and was used as the baseline for the packet data throughput 

evaluation [VVH03]. 

The iterative WF approach was also later extended to a more general case with weighted 

rates by Kobayashi and Caire [KC06]. A simple iterative WF algorithm for the weighted 

rate sum maximization in the Gaussian MIMO BC (or MIMO MAC under sum-power 

constraint) was proposed in [KC06]. Jindal and Goldsmith [JG05b] analyzed the 

asymptotic gains from the optimal DPC compared to the SU capacity with Time Division 

Multiple Access (TDMA) in a MIMO BC multiple-antenna broadcast channel. They 

showed that, the sum capacity of a MIMO BC, achievable using DPC, is at most min(MT; 

K) times larger than the maximum achievable sum rate using TDMA, where MT is the 

number of transmit antennas (BS antennas) and K is the number of users. This bound 

applies at any SNR and for any number of receive antennas (MR), and also generalizes to 

frequency-selective and time-selective channels. For Rayleigh-fading channels, the bound 

tightens to max (min (MT/MR,K),1) at high SNR, for a large number of transmit antennas, 

or for a large number of users. As a conclusion, the highest DPC gain is achieved with a 

large number of users, and when the ratio of transmit and receive antennas is high. On the 

other hand, the DPC gain converges to unity for both low and high SNRs when the 

number of receive antennas is higher than or equal to the number of transmit antennas. 

Furthermore, they demonstrated that transmit beamforming always performs better than 

or equal to the TDMA, and its achievable rate is upper bounded by the DPC rate.  
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1.6. Resource allocation for multiuser MIMO systems 

MU MIMO OFDM systems benefit from the combined frequency and space domain 

freedom as well as MU diversity. Moreover, allowing intracell bandwidth reuse by means 

of SDMA is an advantage of multi-antenna systems over other systems. It greatly 

enhances the spectrum efficiency if the bandwidth is shared by spatially separable users. 

However, a major challenge for wireless communication systems is how to allocate 

resources among users across the space (including different cells), frequency and time 

dimensions with different system optimization objectives. In MIMO OFDM systems, this 

leads to an Orthogonal Frequency Division Multiple Access (OFDMA) solution with a 

three-dimensional subchannel and power allocation problem, i.e. how many subchannels 

should be allocated to each user in different dimensions. The problem remains unresolved 

for a large variety of optimization criteria, especially when combined with practical 

modulation and coding schemes [LZ06].  

The problem of resource allocation in MU MIMO OFDM systems is more difficult to 

solve due to the following reasons. First of all, CCI caused by subchannel reuse makes 

the optimization problem combinatorial and non-convex. Adapting the transmission of 

one user affects the interference of other co-channel users, which in turn affects the 

optimal transmission schemes for all users. Second, the achievable signal-to-interference 

ratio (SIR) is a function of the set of users that share the subchannel. In order to 

maximize system capacity while maintaining sufficient SIR, it is required to identify 

optimal sets of co-channel users for every subchannel based on their spatial correlations 

and power distributions. Third, MIMO OFDM systems are able to multiplex the users in 

both the space and frequency domains. As a result, it is required to identify which 

dimension should be occupied by which set of users. Finally, QoS requirements impose 

additional constraints on the optimization problem.  

For a single-cell MU MIMO system, the optimal sum capacity achieving allocation of 

resources across different dimensions (users, space, frequency) is given by the actual sum 

rate capacity of the frequency-selective MIMO BC as discussed in [VJG03, WSS06, 

YC04]. However, the computation of the sum capacity achieving covariance matrices 

requires solving the convex optimization problem in dual MAC and transforming the 
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solution back to BC [VJG03]. Especially for frequency selective case with OFDM, the 

computational complexity becomes very high with increase in number of subchannels, 

users and antennas. Therefore, sub-optimal but less complex allocation techniques [CS03, 

TB03, TUBN06] are required. 

MU diversity for the dirty paper approach with ZF-DPC was studied by Tu and Blum in 

[TB03], where they proposed a greedy scheduling algorithm for the selection of users and 

their encoding order for maximizing the sum rate. The greedy user selection and ordering 

algorithm combined with ZF-DPC was shown to have a sum rate very close to the 

capacity. Tejera et al. [TUBN06] investigated different subchannel allocation methods 

with the aim to maximize the sum rate of the MU MIMO BC with reduced complexity. 

They extended the sub-optimal ZF-DPC with single-antenna users from [CS03] to a more 

general case with multiple receive antennas per user. Moreover, the greedy approach was 

extended for the case of multiple receive antennas and it was utilized for allocating user 

beams on different subchannels in the space and frequency domains. Through simulation 

it was show that this technique tightly approaches the performance of the optimum 

solution that is; complexity reduction comes at almost no cost in terms of sum capacity. 

The sum rate maximizing solutions can occasionally result in a very non-uniform rate 

allocation between users, leaving some of the users with no subchannels allocated at all. 

Therefore, other transmitter design criteria should be considered in order to guarantee, for 

example, fairness or the instantaneous QoS for all users. The symmetric or balanced 

capacity providing absolute fairness between users becomes an important performance 

metric for delay constrained applications [LJ06, SVL05]. The weighted symmetric 

capacity refers to the situation where the weighted user rates are equal, while their rates 

belong to the boundary of the capacity region [LJ06]. This enables the system to control 

the rates assigned to users that belong to distinct service priority classes. An iterative 

algorithm aiming at finding the weighted symmetric capacity for MIMO BC with a sum 

power constraint was proposed in [LJ06]. In addition, the difference between the 

symmetric and sum capacity, termed the fairness penalty, was studied in [LJ06]. While in 

[SVL05], the MAC and BC balanced capacities of wireline multiple access networks 

were computed and compared for an arbitrary number of users. 
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The capacity achieving schemes generally require very complex nonlinear precoding 

based on the DPC [VT03, WSS06]. Therefore, it is required to develop less complex 

transmission techniques, which may be suboptimal. Linear beamforming [God97a, 

God97b], also known as SDMA, is a sub-optimal transmission strategy which enables the 

spatial separation of several concurrent users. Channel gains can be coherently combined 

using beamforming, which provides a very robust channel with high diversity gain. Each 

user stream is encoded independently and spread over multiple antennas by a 

beamforming weight vector. Mutual interference between multiple streams is controlled 

or even completely eliminated by the proper selection of weight vectors. Adaptive 

beamforming when employed at the transmitter end is known as precoding. The weights 

applied to a transmitted signal are usually organized in a vector, known as a precoding 

vector [Gol06, PNG03, SSH04, MBQ04, JUN05, BHV06, Rap99, LTC10]. Thus, the BS 

is able to multiplex the signals intended for different MSs on the same subchannel, 

separating different signals in space through precoding. However, unlike the sum-rate 

capacity of MIMO BC using the DPC, the sum rate achieved by optimal beamforming 

cannot be written as a convex optimization problem [SH07]. 

Therefore, the throughput comparison between the DPC and beamforming is 

computationally intensive, especially for a large number of users. In spite of its sub-

optimality, beamforming combined with a proper grouping of users has been shown to 

have the same asymptotic sum-rate as the DPC, when the number of users approaches 

infinity [SH05, SH07, YG06b]. This is due to a MU diversity effect [KH95, KH97, 

CV93], i.e. the probability of finding a set of close-to-orthogonal users with large channel 

gains increases for a large number of users.  

Authors in [TJ05, TUBN05, B+06, TUBN06], considered multiple antennas at the 

receivers side. Therein, the vectors containing the beamforming weights were used at the 

transmitter side during SDMA grouping as well at the receiver AAs. Block 

Diagonalization (BD) [SSH04] with transmit-receive cooperation was used as linear 

precoding in [TJ05]. In [TUBN05, B+06, TUBN06], SVD based adaptive beamforming 

was carried out at the receiver side and was accounted for at the transmitter side by the 

null space Successive Projections (SPs). DPC techniques were then used in a way similar 
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to [CS03]. Authors in [DS04a, DS05], through simulations, proved that the combination 

of group capacity as grouping metric with Best Fit Algorithm (BFA) as SDMA grouping 

algorithm, can achieve sum rate up to 87% of the value achieved by the DPC. The results 

were reconfirmed through independent investigation carried out by authors in [MK06] 

and [FGH07]. The authors in [FGH07], used a projection-based group capacity in 

contrast to the conventional group capacity employed in [DS05, MK06]. It was found 

that, SDMA algorithm based on projection based group capacity is less complex as 

compared to the one based on conventional group capacity. 

In general, the solution for any sub-optimal allocation problem can be divided into two 

phases. Firstly, a set of users is selected for each orthogonal dimension 

(frequency/subchannel, time). Secondly, the transceiver is optimized for the selected set 

of users per orthogonal dimension. The optimal SDMA grouping is a difficult non-

convex combinatorial problem with integer constraints [SH05, SH07, YG06b]. 

Consequently, finding the optimal solution requires an exhaustive search (ExS) over the 

entire user set which is computationally prohibitive for a large number of users. 

Several scheduling algorithms based on, e.g. best user selection, largest Eigen value 

selection and greedy user/beam selection, have been proposed for DL beamforming, e.g. 

in [YG06b, Maz05, MK04, PSS05, ZCL05, DS05].  

Dimic and Sidiropoulos [DS05] utilized the sub-optimal greedy user selection algorithm 

from [TB03] for the ZF beamforming with single antenna receivers. Yoo and Goldsmith 

[YG06b] also used the greedy algorithm with an additional semi-orthogonality test 

between users and showed that the performance of the ZF beamforming with sub-optimal 

user selection is still asymptotically optimal. Since the performance of the ZF 

beamforming is always inferior to optimal linear beamforming, the result in [YG06b] 

proves the asymptotic optimality of linear beamforming in general. 

Often, the allocation problems have been addressed for systems with users having a 

single receive antenna. When the users are equipped with multiple receive antennas, 

receiver antenna coordination further enhances the data rates.  

The signal space of each user has multiple dimensions, allowing for multiple beams to be 

allocated per user. Therefore, the receiver signal space has to be considered when 
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selecting the optimal sets of users, as well as the dimension and orientation of the signal 

subspace used by each selected user, for each orthogonal dimension. This further 

complicates the optimization problem. Since the transmitter vectors, and, thus, the 

corresponding receiver vectors at each user are affected by the set of selected users, it is 

impossible to know the actual receiver structure at the transmitter before the final beam 

allocation. An apparent candidate for a smart initial guess of the receiver matrix is the 

optimum SU receiver that is the left singular vectors of the user channel matrix. This 

decomposes the system into a MIMO BC with virtual single-antenna users with 

corresponding channel gains. The Eigen values of the equivalent channel matrices of 

each user are sorted and at most MT beams providing the maximum sum rate are selected 

for the transmission at any time instant. This type of approach has been taken by the 

author of this thesis, as well as in related works such as [YG06b, PSS05]. It was 

demonstrated in [YG06b] that, for large number of users the performance penalty from 

non-coordination reduces. Thus, it can be concluded that antenna coordination is not 

requisite for achieving the asymptotically optimal sum rate. 

There are several instances available in literature where low complex sub-optimal 

solutions were adopted in order to solve the general MIMO OFDMA resource allocation 

problem [WCLM99, LZ06, CC07, LCL+07, PLC04, SS04, WML01, ZL04, ZL05, 

SCA+06, FGH07, HMT04]. The relaxation may involve, for example, ZF transmission 

which allows separate beamformer design and power allocation, reducing the complexity 

of the problem [CC07]. Grouping users according to their spatial separability or 

compatibility (their channels are spatially uncorrelated) for maximizing the system 

throughput is another way adopted for simplification of the resource allocation problem 

in MIMO OFDMA systems [SS04, ZL05, SCA+06, FGH07].  

Several researchers have recognized the importance of the availability CSI at the 

transmitter for MU MIMO BC channels [SH05, JG05b, HMT04, Jin06, VTL02, KG05]. 

Hochwald and Marzetta [HMT04] studied the MU diversity gains achievable from 

MIMO channels in absence of CSI at transmitter using simple user scheduling method 

based on TDMA. It was shown in [HMT04] that, in such a scenario, the scheduling gains 

(MU diversity) decrease rapidly with the increase in number of antennas. The reason for 



27 

 

reduced MU diversity was shown to be the reduction in mutual information fluctuation 

between the channels of different users. In contrast to the point-to-point MIMO capacity, 

where the transmitter CSI availability only affects the SNR offset to the capacity and not 

the multiplexing gain [Tel95, Tel99 ], both the multiplexing gain and the rate achievable 

from the MU MIMO BC are greatly affected by the level of CSI available at the 

transmitter. Jindal [Jin06] demonstrated that the throughput of the MU MIMO DL with 

linear transmit beamforming becomes saturated with imperfect or noisy transmitter CSI. 

This is due to increased MU interference. However, full multiplexing gain can be 

achieved if the quality of CSI is increased linearly as a function of SNR [Jin06]. 

Random opportunistic beamforming and nulling is a simple but remarkable limited 

feedback strategy for MIMO DL channels [SH05, VTL02]. Multiple random orthonormal 

beams are formed at the BS, and multiple users are simultaneously scheduled on these 

beams. Each user reports the channel quality metric, i.e. SINR for the strongest beam(s), 

and the users with the highest instantaneous metric value are scheduled at a time. The 

opportunistic transmission strategy relies on the fact that with a large number of users, 

the probability of finding a set of nearly orthogonal users with high channel gains is high 

[SH05, VTL02]. This has been shown to achieve asymptotically the performance of 

linear beamforming [VTL02] and to have the same capacity scaling obtained with perfect 

CSI using the DPC [SH05, SH07] as the number of user’s approaches infinity. However, 

it may result in very poor performance from both the capacity and fairness point of views, 

when applied in a system with a low or medium number of users. Therefore, the 

transmitter CSI is important for systems with a low to moderate number of users, and 

especially with a large number of transmit antennas [Jin06].  

In a realistic network with multiple users, the assumption of having full CSI from all 

users may be overly optimistic. This is due to the excessive overhead required for 

providing the transmitter with instantaneous CSI. The combination of opportunistic 

beamforming for the initial user selection from a finite user set and the use of 

supplementary CSI feedback for the selected users has been proposed in [CTAL07, 

KG05] allowing for improved optimization of linear transmit and receive beamformers at 

the BS and MSs, respectively. It was shown in [CTAL07], co-authored by the author of 
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this thesis, that the supplementary CSI for the selected users greatly improves the 

performance of the opportunistic beamforming, especially for a low number of users.  

1.7. Open Problems 

The key challenge faced by future wireless communication systems is to provide high-

data-rate wireless access at high QoS. Combined with the facts that spectrum is a scarce 

resource and propagation conditions are hostile due to fading (caused by destructive 

addition of multipath components) and interference from other users, this requirement 

calls for means to radically increase spectral efficiency and to improve link reliability. 

MIMO wireless technology seems to meet these demands by offering increased spectral 

efficiency through spatial multiplexing gain, and improved link reliability due to antenna 

diversity gain. MIMO communication systems have been attracting considerable research 

attention from both academia and industry. Topics of research include channel modeling, 

capacity limits, coding, modulation, receiver design and multi-user communication. In 

this section, some open problems and important aspects for investigation are discussed. 

From an implementation viewpoint practical MIMO systems present a plethora of 

challenges in such areas as synchronization, channel estimation, training, power 

consumption, complexity reduction and efficiency. From the review of the resource 

allocation strategies in previous sections it is clear that a considerable number of 

proposals have already been suggested. 

However, there are still open problems which could be characterized as follows: 

1. Combined channel covariance information and channel mean information: capacity 

under transmitter channel distribution information and perfect receiver channel state 

information is unsolved under combined channel covariance information and channel 

mean information distribution model even with a single receive antenna. With perfect 

Receiver channel state information and transmitter channel distribution information 

capacity is not known under the channel covariance information model for completely 

general (i.e. non-separable) spatial correlations. Capacity bounds, for almost all cases 

with channel distribution information at receiver only are required to be investigated. 



29 

 

2. Most results for channel distribution information only at either the transmitter or 

receiver are for ergodic capacity. Capacity versus outage has proven to be less 

analytically tractable than ergodic capacity and contains an abundance of open problems 

to be addressed.  

3. There are a large number of suboptimal resource allocation strategies, which follow the 

most varied approaches to solve the resource allocation problem. This complicates their 

comparison and a model is required in order to identify the main elements of the resource 

allocation strategies and to help classifying and comparing them. 

4. For the case of MIMO BC with perfect receiver channel state information and 

transmitter channel distribution information, capacity is only known when the channels of 

all users have the same distribution. When this condition is not met, however, little is 

known regarding the capacity. 

5. Since perfect CSI is rarely possible, a study of capacity with channel distribution 

information at both the transmitter(s) and receiver(s) for both MACs and BCs is of great 

practical relevance. 

6. In order to reduce complexity suboptimal SDMA algorithms are usually employed. An 

important issue which requires attention is to determine whether such methods are 

capable of achieving near optimal capacity.  

7. DPC is a very powerful capacity-achieving scheme, but because of high complexity, it 

appears to be practically infeasible. Thus, non-DPC MU transmission schemes for the DL 

MIMO systems are also of practical relevance. In addition, performing DPC (or some 

variant) with imperfect transmitter channel state information or transmitter channel 

distribution information is still challenging. 

8. In literature, a large number of resource allocation schemes have been proposed for the 

case of DL single antenna MU OFDM/OFDMA systems. However, most of these studies 

had one crucial limitation of heavy computational complexity, which makes them 

impractical for real-time implementations. Thus, in recent years, many algorithms have 

been proposed to reduce the implementation complexity [HZ06], [AMH+08]. However, 

most of these initial studies either tried to maximize the throughput or minimize the total 

transmit power. The fairness among users was not considered in any of these algorithms.  
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The problem of maximizing total system capacity with a proportional fairness constraint 

was first proposed in [SAE05], which was later extended in [HZ06], [DK07]. The 

complexity of fair resource allocation algorithm in [SAE05] was further reduced in 

[WSEA04] through relaxation in fairness constraint. A low complexity algorithm based 

on [SAE05] was proposed in [WSEA04] and was shown to achieve higher spectrum 

efficiency than the algorithm in [SAE05]. Furthermore, a priority-based sequential 

scheduling criteria [HZ06] was shown to obtain even higher spectrum efficiency than 

those achieved in [SAE05, WSEA04] at the cost of severely losing affecting fairness 

among users. However, all these traditional algorithms for DL resource allocation either 

adhere to enhance user fairness or to enhance system capacity. In many applications, 

fairness and capacity should be considered simultaneously. Thus it is important to study 

the possibility of developing low complexity solutions which can maintain fairness 

among users without sacrificing the system efficiency significantly  

9. Although many dynamic resource allocation algorithms [LZ06, PLC04] have been 

proposed to adaptively allocate radio resources to users in MIMO OFDMA systems, 

these algorithms seldom consider user fairness or do not have a flexible control on the 

data-rate distribution. As a result, it becomes important to develop low complexity 

proportional fair algorithms for MIMO OFDMA systems. 

10. In order to achieve the capacity bound, one must solve a MU subchannel allocation, 

optimal power allocation and the optimal bit allocation jointly. The computational cost 

for finding the optimal solution is exponential with respect to the number subchannels 

and polynomial with respect to the number of users. In [KPL06] it was shown that this 

problem can be solved sub-optimally by separating Subchannel, Power and Bit Loading. 

Thus it becomes important to investigate possibility of developing low complexity 

optimal solutions for joint subchannel, power and bit allocation. 

1.8. Contents and Contributions of the Thesis 

This thesis consists of eight chapters, whose contents and contributions are briefly 

described in this section. In this chapter, a framework for suboptimal resource allocation 

strategies intended for MIMO OFDMA systems was discussed. This provided some 



31 

 

insight into the overall problem of maximizing the sum rate of the system, the problem 

complexity, the component subproblems and their interdependencies. With help of this 

framework several suboptimal resource allocation strategies have been put together in 

Table 1.1 and Table 1.2 and have been discussed in Section 1.3. 

Assumptions in the Thesis 

 Perfect CSI for all MSs available at the BS: When the instantaneous channel gains, 

also called the CSI, are known perfectly at both the transmitter and the receiver, the 

transmitter can adapt its transmission strategy (rate and/or power) relative to the 

instantaneous channel state. Thus user CSI plays a crucial role in order to exploit MU 

diversity in MU wireless communication systems. 

In this thesis, we assume that users are capable of perfectly estimating and sending their 

channel information to the BS. However, the amount of feedback information increases 

the overhead of the system. Moreover in MIMO systems where each user's channel is 

represented by a matrix the overhead may become very large. Techniques like limited 

feedback [CH05, LW05] or channel prediction [SAE03, WFHE04] can be used in order 

to reduce the amount of feedback overhead. 

 Continuous Shannon channel capacity formula as a measure of system sum rate: 

The capacity of a channel, denoted by C, is the maximum rate at which reliable 

communication can be performed, without any constraints on transmitter and receiver 

complexity. The Shannon capacity, which is a continuous function, is used as the user 

throughput in this thesis. However, in practical systems, because of different modulation 

and coding schemes, user data rates assume discrete values. The continuous Shannon 

capacity formula, however, provides an upper bound on the achievable throughput. 

Moreover it simplifies the analysis of adaptive resource allocation. To model the SNR 

degradation similar to real scenarios, a SNR gap can be included in the Shannon capacity 

formula [CDEF95a, CDEF95b]. This gap is widely used in digital subscriber line 

standards [DC96, AEK01]. 

 Single cell environment: In this thesis, resource allocation in a single cell environment 

is considered. Hence, interference because of other cells is not modeled. However, when 

the users are at the cell edges, interference due to other cells is not negligible as it may 
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significantly affect the user SINR. In order to schedule users lying at cell edges or during 

soft handover, BS cooperation or static frequency planning techniques can be used. There 

are several instances where researchers have proposed resource allocation for multi-cell 

environment or considering inter-user interference [YGC02, ZL04]. Resource allocation 

in multi-cell environment is usually much more complex to solve as compared to single 

cell environment. The resource allocation algorithms proposed in this thesis can be used 

for users with AWGN dominating other-cell interference. 

 Flat power spectrum density mask: The transmit power budget available at the BS is 

usually limited by a power spectrum density mask. Due to the limitation of bandwidth, 

multiple standards may co-exist within the same frequency range. In order to minimize 

the interference to nearby systems, the transmit power allowed for every communication 

system is usually limited to maximum value by a power spectrum density mask defined 

by the standards. In order to reduce complexity, in this thesis, we assume a flat power 

spectrum density mask. Separate power constraints for different subchannels can be 

added in problem formulation in order to incorporate a non-flat power spectrum density 

mask.  

 Infinitely backlogged user queues: The aim of resource allocation proposed in this 

thesis is to maximize the sum rate considering various constraints. The user queues are 

assumed to be infinitely backlogged. In other words, whenever a user is scheduled for 

transmission, that user always has some data to transmit. However in actual scenarios the 

amount of data a user needs to transmit is limited, but there always exist a subset of users 

who require an opportunity to transmit there data. Hence, the resource allocation 

algorithms proposed in this thesis can be used to transmit the data of these active users.  

1.9. Organization of the Thesis 

Fundamentals of Multicarrier wireless communication systems are discussed in Chapter 

2. Chapter starts with the discussion on types of wireless propagation models and 

describes how the wireless channel is different from wired channels. The use of OFDM 

and MIMO OFDM to counter the adverse effects of wireless channels are then discussed 
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briefly. Concept of adaptive modulation to use the bandwidth effectively is also discussed 

briefly. 

Chapter 3 presents the concepts of Evolutionary Algorithms (EAs) in optimization. 

Various EAs are discussed in brief. Finally the use of single objective and multiobjective 

Genetic Algorithms (GAs) in solving engineering optimization problems is discussed. 

First contribution of this thesis is presented in Chapter 4, where we have proposed the use 

of Particle Swarm Optimization (PSO), a stochastic optimization technique, for 

subchannel allocation in DL of OFDMA systems followed by power allocation using 

WFA. In PSO aided subchannel allocation the search and subchannel allocation is 

performed simultaneously as compared to traditional methods where the subchannels are 

first sorted in accordance of their gains and then allocation is performed. This 

significantly reduces the complexity of PSO aided allocation. This fact makes PSO aided 

subchannel allocation a suitable choice for practical wireless systems like Worldwide 

Interoperability for Microwave Access (WiMAX) and Third Generation Partnership 

Project Long Term Evolution (3GPP LTE) where the convergence rate plays a very 

important role as the wireless channel changes rapidly. 

In Chapter 5, we present a novel GA adaptive resource allocation in MIMO OFDM 

systems. We impose a set of proportional fairness constraints to assure that each user can 

achieve a required data rate, as in a system with quality of service guarantees. With the 

proposed algorithm, the sum capacity can be distributed fairly and flexibly among users. 

Since the optimal solution to the constrained fairness problem is extremely 

computationally complex to obtain, we propose a suboptimal algorithm that separates 

subchannel allocation and power allocation. In the proposed algorithm, subchannel 

allocation is first performed using novel GA, assuming an equal power distribution. An 

optimal power allocation algorithm then maximizes the sum capacity while maintaining 

proportional fairness. 

In Chapter 6, we present a joint solution to subchannel, bit and power allocation problem 

for DL of MIMO OFDM systems. Using SVD, the MIMO fading channel of each 

subchannel is transformed into an equivalent bank of parallel SISO subchannels. To 

achieve the capacity bound, one must solve a MU subchannel allocation and the optimal 
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bit allocation jointly. We propose the use of Non-dominated Sorting Genetic Algorithm 

(NSGA) – II, which is a multi-objective Genetic Algorithm (MOGA), for joint allocation 

of bits and subchannels, in the DL of MIMO OFDMA system. NSGA – II is intended for 

optimization problems involving multiple conflicting objectives. Here the two conflicting 

objectives are Rate Maximization and Transmit Power Minimization.  

In Chapter 7, we summarize the contributions of this thesis. Future research topics are 

discussed in Chapter 8.  
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Chapter-2 

Fundamentals of Multicarrier Wireless Communication   

2.1. Introduction 

The wireless propagation channel constrains the information communication capacity 

between a transmitter and a receiver. The design of a wireless communication system’s 

coding, modulation, signal processing schemes and multiple access schemes is based on 

the channel models. Unlike the wired channel, the wireless channel can vary from LoS to 

one that is severely obstructed by buildings, mountains, etc. Due to multiple propagation 

paths, the received signal is a composite of multiple delayed and attenuated copies of the 

transmitted signal. In addition, the wireless channel is time variant due to the motion of 

the mobile users or the changes in the surroundings. Typically, there are two types of 

propagation models: large-scale propagation loss and small-scale multipath fading model. 

Large-scale propagation loss is caused by path loss and shadowing, which usually 

fluctuates slowly and can be compensated by power control. Small-scale multipath 

fading, or simply fading, characterizes the variation of the received signal strength, which 

is caused by the constructive or destructive effects of the multiple paths depending on the 

time varying path attenuation and delay. 

2.1.1. Large-Scale Propagation Loss 

Both theoretical and measurement-based propagation models indicate that the average 

received signal power decreases logarithmically with distance in outdoor or indoor radio 

channels [Rap99]. The average large-scale path loss ( LP ) for an arbitrary Transmitter-

Receiver (T-R) separation (d) is expressed as a function of distance by using a path loss 

exponent n. That is, 
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where n is the path loss exponent which indicates the rate at which the path loss increases 

with distance, d0 denoting the close-in reference distance which is determined from 

measurements close to the transmitter, and d is the T-R separation.  

The model in equation.2.1 and equation.2.2 does not consider the fact that the 

surrounding environmental clutter may be vastly different at two different locations 

having the same T-R separation. Measurements have shown that at any value of d, the 

path loss PL(d) at a particular location is random and distributed log-normally about the 

mean distance-dependent value ( )LP d ). That is, 
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 (2.3)

where  is a zero-mean Gaussian distributed random variable (in dB) with standard 

deviation   (also in dB). This phenomenon is referred to as log-normal shadowing. 

2.1.2. Small-Scale Multipath fading 

In this subsection, we will describe the characteristics of the wireless channels subject to 

multipath fading. The three most important effects of the small-scale fading are [Rap99, 

Pro01, Suz77]: 

• Rapid changes in signal strength over a small travel distance or time interval; 

• Random frequency modulation due to varying Doppler shifts on different 

multipath signals; and 

• Time dispersion caused by multipath propagation delays. 

Assume that ( )bs t  is the baseband signal to be transmitted and cf  is the carrier frequency. 

The corresponding Radio Frequency (RF) signal transmitted over the wireless channel 

can be written as 

2( ) Re ( ) cj f t
bs t s t e      (2.4)

Let ( )l t and ( )l t  denote the amplitude and the propagation delay for the lth path. Then, 

the received bandpass signal is given by 
( ) ( ( ))l l

l

r t s t t    
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where the AWGN is ignored for simplicity. It is apparent from equation.2.5 that the 

equivalent baseband signal is 

2 ( ) ( )( ) ( ( ))c lj f t t
b l b l

l

r t e s t t     (2.6)

It can be concluded from equation.2.6 that the multipath channel can be regarded as a 

time-variant finite impulse response (FIR) system. We have 

( ) ( ) ( , )b br t s t h t    (2.7)

where 
2 ( ) ( )( , ) ( ( ))c lj f t t

l l
l

h t e t t        
(2.8)

is the impulse response of the channel at time t to an impulse input applied at time t  . 

In most wireless communication systems, the total number of multipath is usually very 

large. According to the central limit theorem [Pro01], the time-variant impulse response 

( , )h t  may be modeled as a complex-valued Gaussian random process in the t variable. 

When the modulated symbol duration is much greater than the largest path delay, all the 

paths cannot be resolved. In this case, all the frequencies in the transmitted signal 

bandwidth will go through almost the same random attenuation and phase shift. This is 

known as flat fading and the channel impulse response is expressed as 

( )( , ) ( ) ( )j th t t e       (2.9)

On the other hand, when the propagation delay is larger than the symbol duration, the 

frequency components in the transmitted signal will go through different attenuations and 

phase shift along the different path delays. This is called frequency-selective fading. In 

such a channel, some of the multipath can be resolved and the channel can be expressed 

as 

( )
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j t

l l
l

h t t e t    

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where L is the number of resolvable paths. 

In equation.2.9 and equation.2.10, ( )t is the channel gain and ( )t is the channel phase 

shift. When there is no LoS, ( )t will be Rayleigh distributed with  
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where 22 is the time average power of the received signal before envelope detection 

given the transmitted signal strength is unity.  

When there is a direct path (case of Line of Sight (LoS)), ( )t will be of Rician 

distribution with  
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where dA  is the amplitude of the dominant path and 0 ( )I   is the modified Bessel 

function of the first kind and zero-order. When 0dA  , the Rician distribution 

degenerates to a Rayleigh distribution.  

Delay spread and coherence bandwidths are the parameters that describe the time 

dispersive nature of the channel in a local area. The mean excess delay is the first 

moment of the power delay profile and is defined to be  
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The root mean squared (rms) delay spread (  ) is the square root of the second central 

moment of the power delay profile and is defined to be  
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The coherence bandwidth is a range of frequencies over which two frequency 

components have strong potential for amplitude correlation. If the coherence bandwidth 

is defined as the bandwidth over which the frequency correlation function is above 0.9, 

then the coherence bandwidth (Bc) is approximately [Lee89] 
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Likewise, Doppler spread and coherence time are parameters which describe the time 

varying nature of the channel in a small-scale region. Doppler spread is defined as the 

largest frequency shifts of the various paths of the multipaths in the wireless 

communication channel. If we assume that the channel is wide sense stationary, the 

Doppler power spectrum ( )D f of a mobile channel for an omni-directional mobile 

antenna and the received plane wave with uniformly distributed arrival angle can be 

given by  
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where a is a constant and df is the maximum Doppler spread. If the receiver and 

transmitter are in relative motion with constant speed, the received signal will be 

subjected to a constant frequency shift called Doppler spread. The Doppler spread is 

given as 

d cf f
c


  (2.18)

where is the velocity at which a mobile is moving,  fc is the carrier frequency and c is 

the velocity of light.  

Coherence time Tc is a statistical measurement of the time duration over which the 

channel impulse response is essentially invariant, and quantifies the similarity of the 

channel response at different times.  In other words Coherence time is measure of the 

expected time duration during which the channel response is approximately constant. 

Coherence time is also defined as the inverse of the Doppler spread. That is,  
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c

d
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To summarize, 

 Frequency selective fading occurs if the bandwidth of the transmitted signal (Bs) 

is large compared with coherent bandwidth of the channel (Bc), that is Bs>Bc. In 
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other words the symbol duration, Ts is less than the delay spread of the channel 

Td. Under these circumstances, the channel’s output signal that arrives at the 

receiver will include multiple versions of the transmitted signal, which are faded 

and delayed in time, resulting in ISI problem. As such, different frequency 

components of the transmitted signal would then undergo different degrees of 

fading. This channel effect can be avoided by transforming the wideband signal 

into parallel narrowband signals with bandwidth smaller the channel’s Bc. 

 Frequency dispersion results from different frequencies propagating at different 

speeds. It smears the signal spectrum in the frequency domain. Also, because of 

time selectivity the rate of the variation in signal is higher than the rate at which 

the channel can be accurately estimated. This can be taken care of by considering 

CSI inaccuracy. 

 Large distance propagation attenuates the received signal strength. Thus, it 

reduces the rate at which the data can be transmitted by limiting modulation 

schemes which can be used. The adoption of cooperative relay technologies 

combats large scale fading. 

Fig.2.1 shows the graphical representations of the mean delay and toot mean squared 

delay spread. When the channel delay dispersion is greater than the signal reciprocal 

bandwidth, i.e., the symbol duration Ts<< τrms, the transmitted train of symbols overlaps 

at the receiver. This phenomenon is known as ISI which is illustrated in Fig.2.1. 

 

Figure 2.1: Wireless channel effect: delay dispersion  

The coherence bandwidth Bc measures the spectral width over which the channel is 

considered frequency flat. Note that the frequency selectivity is relative to the 

transmitted signal bandwidth. In particular, if the channel’s Bc is less than the transmitted 

signal bandwidth, the channel distorts the received signal at selected frequencies, as 
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shown in Fig.2.2. On the other hand, the channel does not affect the received signal, if its 

Bc is greater than the transmitted signal bandwidth. 

 

Figure 2.2: Wireless channel effect: frequency selectivity 

2.2. Orthogonal Frequency Division Multiplexing  

Based on the discussions in the previous section it is clear that, the channel impairments 

significantly degrade the performance of Broadband wireless access networks. Doelz et 

al. [DHM57] in 1957 first proposed the concept of parallel data transmission over 

dispersive channels. Later, Chang [Cha66] and Saltzberg [Sal67] in 1960s, proposed the 

concept of OFDM. In these papers, a new concept of simultaneous transmission of 

signals over a band limited channel while eliminating ICI and the ISI was presented. 

Since, the early OFDM schemes required large number of sinusoidal subchannel 

generators both at the transmitter and receiver; their use was limited to military 

applications. However, Weinstein and Ebert [WE71] in 1971 suggested the use of 

Discrete Fourier Transform (DFT) matrix for the OFDM modulation and demodulation 

processes. The use of DFT matrix significantly reduces the implementation complexity of 

OFDM.  

OFDM is basically FDM scheme, utilized as a digital multicarrier modulation method. 

Similar to any other modulation technique, multicarrier technologies try to approach the 

channel’s capacity. For specific channel condition and network architecture, one of the 

available techniques may perform better than others. The multicarrier transmission is 

selected among others as a promising technique for future communication due to: 

 Robustness against frequency selectivity for high speed data communication. 

  Maturity through the research and development for wireless LAN and terrestrial 

digital video transmission [HP03].  
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FDM first appeared in 1950s [HP03], however its implementation required multiple 

analog RF modules in each transceiver that made FDM impractical [LL05]. Recently, the 

implementation of FFT and FDM ability in mitigating the channels ISI brought FDM 

back under the limelight. While FDM’s major advantage is eliminating the ISI effect, it 

does not eliminate the ICI that rises due to closely packed multicarriers. Alternatively, 

data symbols can be modulated on orthogonal multiple carriers to reduce ICI, which is 

termed OFDM [CMS02]. 

High-data-rate communications are limited not only by noise but often more significantly 

by the ISI due to the time dispersive nature of the wireless channels.  Multi-carrier 

modulation divides a broadband channel into narrowband subchannels. OFDM uses a 

large number of closely-spaced orthogonal narrowband subchannels instead of a single 

wideband carrier to transport data. The data is divided into several parallel data streams 

or channels, one for each subchannel. In an OFDM system, a single data-stream is 

transmitted over lower data rate subchannels as a coded quantity at each carrier frequency 

in the same bandwidth. OFDM is easy to implement and efficient in dealing with multi-

path. OFDM is robust against narrowband interference and frequency selective fading. 

Generally, the effects of ISI are negligible as long as the delay spread is significantly 

smaller than the symbol duration. This implies that the symbol rate of communication 

systems is practically limited by the channel’s memory. For high data rate transmission 

where symbol rates exceed this limit, some sort of mechanisms is required to combat the 

effects of ISI [FK03]. 

OFDM is considered as an extremely promising solution for supporting high-data-rate 

transmission in future broadband wireless communication systems. The key concept in 

OFDM is to split a wide band signal into several orthogonal narrow band signals for 

transmission. In other words, instead of transmitting a volume of bits over short time 

duration and on a wide frequency band, it is transmitted over long time duration and on 

several narrow frequency bands. This allows us to design a system supporting high data 

rates while maintaining symbol durations much longer than the channel’s delay spread. 

By doing so, each subchannel experiences almost a flat fading, and the detrimental 
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effects of the multipath channels are reduced to a multiplication of each subchannel by a 

complex transfer factor. A schematic diagram of an OFDM system is shown in Fig.2.3. 

 

Figure 2.3: OFDM system model 

Data to be transmitted is first arranged in parallel for each subchannel and modulated 

independently. The complex numbers (Xk) which represent the signal constellation of 

each subchannel are transformed into the time domain by performing an Inverse Fast 

Fourier Transform (IFFT). Assuming that we have N subchannels, the output of the IFFT 

which consists of N samples xn is 
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In order to ensure that the received time-domain OFDM symbol is demodulated from the 

channel’s steady-state response, each time-domain OFDM symbol is extended by the so-

called cyclic extension or guard interval of Ng samples duration, as shown in Fig.2.4. If 

the cyclic prefix is longer than the impulse response of the channel, the inter-OFDM 

symbol interference due to the channel memory is completely eliminated.  
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Figure 2.4: The cyclic prefix of an OFDM symbol 

After removing the cyclic prefix at the receiver, we retrieve the complex number Xk by 

FFT. As we have inserted a cyclic prefix, the received signal is the result of a circular 

convolution between xn and the channel response h. The result of the FFT on the received 

signal is then merely a product of Xk and Hk. Where, Hk is the frequency response of the 

channel on kth subchannel. By including the channel noise, we have 

ˆ
k k k kX H X    

(2.21) 

 

where  ηk is the additive white noise in the frequency domain. In addition, the frequency 

response of the channel at time t can be calculated as: 
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and Hk is obtained by substituting f with the frequency of the kth subchannel. 

2.3. Orthogonal Frequency Division Multiple Access  

Despite the advantages of OFDM in mitigating the channels’ impairments as mentioned 

before, it suffers from disadvantages like under-utilization of transmitter power and 

network subchannels. Particularly, when an OFDM transmitter accesses the channel in a 

time division manner (e.g., TDMA) the transmitter is forced to transmit on all available 

subchannels N, although it may require a less number of subchannels to satisfy its 

transmission rate requirement. Thus, the transmitter power requirement increases with the 

number of subchannels. This disadvantage motivates the development of a physical layer 

technology where transmitters are multiplexed in time and frequency, i.e., OFDMA. In 

this technology, the subscribers are exclusively assigned only a subset of the network 

available subchannels in each time slot [LL05], [APC05]. OFDMA typically uses FFT 
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size much higher than OFDM, and divides the available subchannels into logical groups 

called subchannel. Unlike OFDM that transmits the same amount of energy in each 

subchannel, OFDMA may transmit different amounts of energy in each subchannel. The 

number of time slots as well as the subchannels can be dynamically assigned to each 

subscriber. Such a dynamic assignment is referred to as dynamic subchannel assignment 

and introduces multiuser diversity. The multiuser diversity gain arises from the fact that 

the utilization of given resources varies from one subscriber to another. In the dynamic 

subchannel assignment case, channel information is used to assign the subchannels best 

suited for each user. This is advantageous in the sense that users at different locations 

have different channel conditions, and most likely different optimal subchannels. The 

benefit is that high throughput rate can be obtained, the disadvantages are that; channel 

information is needed, subchannels must be reassigned whenever conditions change, 

leading to additional signaling overhead whenever subchannels are reassigned. 

OFDMA can support a number of identical down-streams, or different user data rates, 

(e.g. assigning a different number of subchannels to each user). Based on the subchannel 

conditions, different baseband modulation schemes can be used for the individual 

users/subchannels, e.g. Quadrature Phase shift Keying (QPSK), 16-QAM and 64-QAM 

and so on. This has been investigated in number of researches [AK94, WS95, GC97, 

CG01, GC98, QC99, VG03] and is referred to as adaptive subchannel, bit, and power 

allocation or QoS allocation. 

2.4. Multiple Input Multiple Output Antenna System 

2.4.1. MIMO Structure 

MIMO/multiantenna systems are one of the most popular areas that have drawn 

enormous attention in recent years [ML02, RC98a, WSG94, MM80, Fos96, FG98]. 

Multi-antenna is one of the key technologies for mitigating the negative effects of the 

wireless channel, providing better link quality and/or higher data rate without consuming 

extra bandwidth or transmitting power. The usage of multiple antennas at either receiver, 

transmitter or at both locations provides different benefits, namely array gain, 

interference reduction, diversity gain and/or multiplexing gain. MIMO is a smart antenna 
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technology that uses AAs for the transmitter and receiver. MIMO systems use multiple 

inputs and multiple outputs for each channel. In such systems, the use of multiple 

antennas at both the transmitter and receiver helps to exploit the spatial dimension 

freedom and combat the harmful effects in mobile radio communication and therefore 

improve the system performance. Besides the performance enhancement, deploying 

multiple antennas can bring a huge increase in the system capacity, which is one of the 

most critical issues for current wireless communication services. 

Diversity is one of the most effective techniques to combat fading in wireless 

communications. The main idea behind diversity is to send multiple copies of the 

transmitted signal via multiple (presumably independent) channels to the receiver. When 

the channels have low, or ideally zero, cross-correlation, the probability that all of them 

fall into deep fading simultaneously is very low [HT01]. That means if one radio path 

undergoes a deep fade at a particular point in time and/or frequency and/or space, another 

uncorrelated path may have a strong signal at that point. By having more than one path to 

select from, both the instantaneous and average SNR at the receiver can be greatly 

improved. Parallel to diversity techniques, a recently new approach in multi antenna 

transmission systems is spatial multiplexing. With respect to diversity technique, spatial 

multiplexing aims at increasing data rate of the system. Spatial multiplexing techniques 

require that multiple antennas be present at both transmitter and receiver. Such antenna 

arrangement is often referred to as MIMO. 

MIMO increases channel capacity by transmitting multiple data streams over one 

frequency. With Spatial Multiplexing, the spatial data throughput of the channel is 

increased. Alternatively, MIMO system can provide Spatial Diversity, which improves 

signal quality by transmitting redundancy, e.g., using Alamouti Space-Time code 

[PNG03]. Spatial multiplexing is suitable for near-field communication and spatial 

diversity for far-field communication. With higher spectral efficiency and reduced fading, 

a MIMO system is able to increase link range and data throughput of the communication 

without additional power and bandwidth. 

The block diagram of a MIMO system is shown in Fig.2.5. At the transmitter side, the 

input data stream is demultiplexed into j parallel substreams.  
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Figure 2.5: Block diagram of MIMO systems 

Each substream is transmitted over all transmit antennas in the same frequency band with 

different transmit antenna weights (T1, T2, …,Tj). At the receiver, the multiple antennas, 

using suitable corresponding weights (W1, W2, …,Wj), can separate the substreams and 

give an estimation of the original data stream. 

Let H denote the channel matrix, with the (MR, MT)-th element being the channel 

coefficient between the MT transmit antenna and the MR receive antenna. Typically, the 

channel matrix is related to the channel fading, angles of arrival and departure, and the 

AA response. That is, 

   
1

  


H α α
Q

TRx Rx Tx Tx
q q q

q

 (2.23)

where Q is the total number of paths in space (i.e., from different angles of arrival), and 

βq is the corresponding fading coefficient. Likewise,  Rx Rx
qα and  α

TTx Tx
q are the array 

responses for arrival angle  Rx
q and departure angle Tx

q  , respectively.  

Let jx denote a data symbol of the jth substream and jP denote the amount of transmit 

power allocated to jx . Then, the data received by the MR receive antennas are given by 

   r
R

T

1 2 Mr,r ,.....,r  
(2.24)
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J

j j j
j

P x


 H t n  

 where n is the noise vector with i.i.d, complex Gaussian entries each having variance σ2. 

After receive weight combining, we get  

H
j jy  w r  

                                      
1

J
H H
j j j j j

j

P x


= w H t w n  

 

(2.25)

2.4.2. MIMO Multiplexing using Singular Value Decomposition  

SVD of the channel characteristic matrix is used in precoding, equalization and 

beamforming for MIMO and OFDM communication systems (e.g., Institute of Electrical 

and Electronics Engineers (IEEE) 802.11n). Pre-coding schemes of MIMO and OFDM 

systems require complex SVD. 

Precoding consists of all spatial processing that occurs at the transmitter to maximize the 

signal power at the receiver input. The system requires the knowledge of the CSI at the 

transmitter. SVD-based pre-coding techniques make use of the fact that a column of V is 

an eigenvector of HHH, which corresponds to an Eigenmode of the communication 

channel. (For instance, singular value si defines the quality of the ith Eigenmode).  

It was proved in [RC98a] that SVD based STVC allows the collection of the signal power 

in space and is a theoretical means to achieve high capacity for MIMO systems. By SVD, 

the MT×MR channel matrix can be decomposed into 

( )

1

rank

j

 
H

H = USV u vH H
j j js  (2.26) 

where 

   1 2U u ,u , .....,u
RM  

denotes the left singular vectors and 

   1 2V v , v , ....., v
TM  

represents the right singular vectors. s1,s2,….,srank(H) are singular values, and are arranged 

in descending order, without loss of generality. It was pointed out in [RC98a] that by 

configuring the transmit antenna weights using right singular vectors v and receive 
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antenna weights using left singular vectors u, up to rank(H) parallel channels are 

constructed. By doing so, the received vectors in equation.2.25 can be written as  

1

J
H H

j j j j j j
j

y p x


 u H v u n  

H
j j j js p x u n   

 

 

(2.27) 

given that J ≤ rank(H). 

2.4.3. SVD-Based SDMA 

The use of multiple antennas also enables SDMA, which allows intra-cell bandwidth 

reuse by multiplexing spatially separable users [MM80]. If the transmitters have 

knowledge of the channel, SVD in conjunction with multiuser detection (MUD) is a 

straightforward method to configure the transceivers [KC00a, KC00b, WMCL00].  

It was pointed out in [KC00a] that most of the signal power is collected by the maximum 

singular value, especially in an outdoor environment. Therefore, data are transmitted on 

the maximum singular mode in our work by configuring the antenna weights using the 

largest singular vectors for each user. The block diagram of MIMO SDMA is presented 

in Fig.2.6.  

 

Figure 2.6: Block diagram of MIMO SDMA systems 

Define xk to be the data to be transmitted by user k and Pk to be the corresponding 

transmit power. Let Hk denote the channel matrix between user k and the BS and uk, sk, 

and vk be the corresponding singular vectors and singular value relevant to the maximum 
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singular mode, respectively. The signals received by the MR receive antennas are given 

by 

   r
R

T

1 2 Mr,r ,....,r   

  
1

K

k j j
k

p x


 H v nk   

 

 

(2.28) 

                                                             US Px + n  

where 

                                                           1 2U = u ,u , ....,uk  

 1 2, ,....,
T

kx x xx =  

 1 2, ,...., Kdiag s s sS  

1 2( , ,......, )Kdiag p p pP  

The output of the receive weight combining then becomes 

MF Hy U r  

                                                              H H= U US Px + U n   (2.29) 

                                                                                       H= S Px + U n  

where H U U is the correlation matrix with the (k, k’)th entry being the correlation 

between the two users’ singular vectors, i.e., 

, ' '
H

k k k k  u u . (2.30) 

For such a simple receiver, which is referred to as the matched filter (MF) receiver, 

MFy includes the desired signal, Multiple Access Interference (MAI) from co-channel 

users, as well as additive noise. It is well known that such a receiver has many problems, 

especially, when MAI increases. As a result, a MUD needs to be applied to jointly 

estimate the transmitted signal for all users and suppress the MAI. 

The optimal ML MUD tries to jointly minimize the bit error probability. By finding the 

most probable transmitted data symbol for all users, the detector separates the signals 

from simultaneous users in an optimal way, in the sense of the aposteriori probability. It 
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is easily derived that the ML metric for a combination of transmitted symbols 

 1 2, ,...., kx x xx =  is given by  

2

1

( )
K

k k k k
k

p x


 x r H v  (2.31) 

where   denotes the Frobenius norm. The optimal solution can be obtained as 

 ˆ arg min ( ) xx x  (2.32) 

The ZF receiver is one of the most popular linear receivers. It applies the inverse of the 

correlation matrix to the output of the MF receiver to decouple the data. The decision 

statistics become  

1ZF MF y y  

                            1 1 1 2 2 2, ,......,   
'n

T

k k ks p x s p x s p x  

 

(2.33) 

where n’ is a K × 1 noise vector which is equal to -1( )U U U nH H . The covariance matrix 

of the noise vector is  

2 -1( ) η  (2.34) 

Subsequent to the ZF filter, ZFy is fed into a slicer, which determines the nearest 

constellation points and generates a hard decision, x̂ .  

The ZF detector completely cancels the MAI at the cost of enhancing the noise term. 

Furthermore, the performance will be severely degraded when the correlation matrix, , 

becomes near singular [KC00a].  

The MMSE receiver is another linear MUD type. Such a receiver takes into account both 

the MAI and the noise term. The designing criteria of the MMSE receiver is to minimize 

the mean square error  

2
MSE E  

 = x - x  

It can be shown that the mapping is given by 

 (MMSE MF 
-1

2 -2y S P ) y  
(2.35) 

Parallel interference cancellation (PIC) is one of the most widely used nonlinear decision 

feedback detectors. Generally the researchers adopt a multistage detection approach as is 
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the case in PIC. The ZF filter is employed as the initial stage to get a tentative decision x̂ . 

And, then proceed by regenerating the interference to the kth user and then subtract it 

from the received signal to obtain more reliable bit decisions. These steps are performed 

for all users in a multistage fashion. Considering the dth stage, we have the decision 

statistic  

' ' ' '

'

'

( 1)

1

ˆ( )
K

PIC H d
k k k k k k

k
k k

y d s p x 




 
   
 
 

u r u  (2.36) 

where '

( 1)ˆ d

k
x  is the tentative estimated decision of user k of the (d-1)th stage, which is 

obtained from ( )PIC
ky d . 

2.5. Adaptive Modulation 

The basic idea of adaptive modulation is to take advantage of the variation of the fading 

channel. Instead of maintaining a fixed transmit rate at a given time, adaptive modulation 

adjust the transmit rate and power according to the channel situation. The water pouring 

principle [Bla87] gives a theoretical explanation of this idea. The water pouring criterion 

states that under a certain power constraint, the overall information rate of an arbitrary 

channel is maximized by transmitting more power where the attenuation and noise are 

smaller. In other words, a higher transmission rate should be used when the channel is 

under a good condition and vice versa. Many algorithms have been proposed to use 

adaptive modulation in the time domain to exploit the time-variant channel capacity 

[AK94, WS95, GC97, CG01, GC98, QC99, VG03]. They gave impressive result in 

increasing the transmission rate or improving the system performance. 

The notion of adaptive modulation in the context of OFDM was proposed as early as 

1989 by Kalet [Kal89], which was further developed by Chow et al [CCB95] and was 

refined for duplex wireless links, for example in [KH00a]. The basic idea of such 

algorithms is to apply high modulation levels on the subchannels with favorable channel 

conditions to improve the spectral efficiency, while transmitting few bits on the 

subchannels in deep fades to avoid bit errors. 
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In order to allocate appropriate modulation modes to the subchannels, three allocation 

criterions were investigated in the literature. They are the fixed-threshold controlled 

algorithm, upper bound BER algorithm, and fixed-throughput adaptation algorithm 

[KH00b]. In these criterions, transmission modes are adapted in order to maximize the 

data rate given a fixed long-term or instantaneous BER, or to minimize the bit errors 

given a fixed data rate. 

Adaptive transmission is only applicable to duplex communication systems, since the 

transmission parameter adaptation relies on some form of channel estimation and 

signaling. In order to efficiently react to the changes in channel quality, the following 

steps have to be taken [KH00a]: 

• Channel quality estimation; 

• Choice of appropriate parameters for the next transmission; and 

• Signaling or blind detection of the employed parameters. 

2.6. Conclusion 

In this chapter, we attempted to understand and characterize the challenging and 

multifaceted broadband wireless channel.  

 In order to calculate the average value of the channel power one can use a model 

based on the distance between the transmitter and the receiver, the carrier 

frequency, and the pathloss exponent. 

 The large-scale changes from the average channel power are characterized as 

lognormal shadowing. 

 The small-scale changes in the channel power are known as fading. 

Autocorrelation function provides an insight about the behavior of Broadband 

wireless channels. 

 A number of diversity-achieving techniques are available for both narrowband 

and broadband fading. 

 OFDM can be used as modulation technique in order to overcome the effects of 

ISI inherent in broad band channels. 
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 Although it is possible to use any multiple-access techniques—FDMA, TDMA, 

Code Division Multiple Access (CDMA), Carrier Sense Multiple Access (CSMA) 

— along with OFDM. But the OFDMA which is basically FDMA-TDMA hybrid 

provides best results. 

  OFDMA is capable of providing high capacity and flexible accommodation of 

many users through multiuser diversity and adaptive modulation. 

 Spatial diversity can provide significant reduction in BER without needing power 

to be increased by considerable amount.  

 Further reduction in BER can be achieved through, diversity gains provided by 

the use of multiple receive antennas, multiple transmit antennas, or a combination 

of both. 
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Chapter 3 

Evolutionary Algorithms 

3.1. Introduction 

Optimization, stated simply, is the process of finding the minimum or maximum of some 

mathematical function. An optimization problem involving a single variable can usually 

be easily solved. Taking the derivative of an analytical function, setting it equal to zero 

and solving, results in the critical points of that function, including the optimal minimum 

and maximum values. Functions of two or more variables can be solved in a similar 

method. However, functions of multiple variables can prove very difficult to solve. When 

many hundreds or thousands of variables exist in a problem, classical optimization 

methods are simply not powerful enough and new approaches are required.  

Functions may also have multiple local maximum or minimum points. Some common 

optimization techniques such as hill-climbing [Dav91], have difficulty locating multiple 

maxima or minima. For example, consider a function with three maxima of equal value. 

In trying to locate the peaks of the function, standard hill-climbing techniques would start 

at some initial location and climb to the top of one of the peaks.  

This single peak would be declared as the maximum. Searching with this approach 

provides no information about the other peaks of equal value, nor does it prove anything 

about the global maximum. The global maxima could be located somewhere else entirely 

in the design space and the same problem exists when locating the minima. The choice of 

where to start the search has a large impact on the final answer when using gradient 

search methods. 

It is possible to write optimization algorithms that perform global, rather than local 

searches. One example of a global optimization algorithm is the EA [Gol89, Hol75]. 

Work by Mitchell and Holland [MH93] has shown that EAs can outperform hill-climbing 

techniques. 

This section looks at modern techniques that fall within the area of computational 

intelligence (sometimes called soft computing). Computational Intelligence is an 
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umbrella term that groups together many different types of computer based 

methodologies and algorithms. 

 

 

 

 

 

 

 

Figure 3.1: Computational Intelligence Techniques. 

Fig.3.1 shows three common areas within Computational Intelligence. These three main 

areas are fuzzy logic, EAs and ANNs. Fuzzy logic and ANNs are mapping (classifier) 

methods, rather than optimization tools, but they have been applied in the field of array 

pattern optimization. Fuzzy logic [Zad65] is a method for processing uncertain or noisy 

input data into crisp decisions or control signals for a system. While it is a powerful 

technique in its own right, it has limited applicability in MIMO-OFDM optimization 

where the input parameters (such as excitation sets) are more certain. It is not uncommon 

for the actual design of fuzzy systems to require optimization before good results are 

obtained [Soe03, Ala95]. 

ANNs [BJ90, Lip87, Koh88] or simply Neural Networks refer to a group of algorithms 

that typically operate on a large number of simple interconnected components (or 

neurons). This networking enables the entire algorithm to perform much more powerful 

computations by combining the limited processing power of the separate components. It 

is basically an information-processing paradigm that is inspired by the way biological 

nervous systems, such as the brain, process information. The key element of this 

paradigm is the novel structure of the information processing system. It is composed of a 

large number of highly interconnected processing neurons working in unison to solve 

specific problems. ANN learns by examples in a way similar to human learning system. 

ANNs are configured for a specific application, such as pattern recognition or data 

classification through a learning process. ANNs are very popular in the research 
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community and their main strength lies in their ability to identify patterns or trends in 

data. 

ANNs have been used in some wireless application like antenna performance 

optimization although a literature search only uncovered a small number of examples. 

Aboul-Dahab et al [DHK98] used an ANN in the receive chain of a linear array antenna 

to weight a received pattern to reduce sidelobe levels. The results were very impressive - 

low sidelobe patterns were produced with up to -80dB sidelobes. A similar technique 

proposed by Reza and Chrostodulou [RC98b] trained an ANN, that took a radiation 

pattern as an input and as an output, produced a design for a linear array and a set of 

weights to achieve the pattern.  

Wireless Sensor Network (WSN) have a fuzzy nature and different parameters are 

involved in it's behavior, ANNs through dimensionality reduction, obtained simply from 

the outputs of the neural-networks clustering algorithms, leads to lower communication 

costs and energy savings[KTD05]. Moreover due to centralized nature of WSNs in which 

all data from the sensor nodes often have to be sent to a (usually external) BS, Neural 

Networks capability in prediction of sensor readings at BS, can highly decrease unneeded 

communications and save considerable energy. 

From the above examples, it is clear that ANNs have application in wireless 

communication area and that they can be formulated to model non-linear problems. 

Unfortunately, ANNs themselves are not optimizers. One disadvantage of ANNs is the 

fact that individual relations between the input and the output variables are not developed 

by engineering judgment. Consequently, the ANN tends to be a ‘black box’ system or 

input/output table without analytical basis. As such ANNs does not prove understandable 

insight on how a problem is solved. Also the computation time to develop and train a 

neural network can be demanding, particularly for problems with large number of 

parameters. 

The other important subset of computational intelligence is the area of EAs. EA is 

actually an umbrella term used to describe a number of computer based problem solving 

approaches. EAs are stochastic optimization techniques based on the principles of natural 

evolution. EAs, as we know them now, began their existence during the late 1960s and 

early 1970s (some earlier references to the topic exist though; see [Fog98]). In these 
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years and almost simultaneously scientists from different places in the world began the 

task of putting Nature at work in algorithmic, and more precisely in search or problem 

solving duties.  

 EAs use computational models based on some sort of the known mechanisms of 

evolution as key elements in their design and implementation. The use of EAs for 

optimization tasks has become very popular in the last few years, spanning virtually 

every application domain.  

A variety of EAs are in existence. The most popular of them are Genetic Algorithms, 

Evolutionary Programming (EP), Differential Evolution (DE), Evolution Strategies (ES), 

Genetic Programming (GP), Population Based Incremental Learning (PBIL), Particle 

Swarm Optimization and Ant Colony Optimization (ACO). The basic concept of all the 

above listed EAs is to simulate the evolution of individual structures via processes of 

selection, reproduction and mutation. The processes depend on the perceived 

performance of the individual structures as defined by an environment.  

To be precise, EAs maintain a population of structures, which evolve according to 

predefined rules of selection and ‘genetic operators’. Examples of genetic operators 

include ‘crossover’ and ‘mutation’. The algorithm manipulates a collection P of 

individuals (the population), each of which comprises one or more chromosomes. These 

chromosomes allow each individual represent a potential solution for the problem under 

consideration. Initially, the population is generated at random or by means of some 

heuristic seeding procedure. Each individual in P receives a fitness value: a measure of 

how good the solution it represents for the problem being considered. Subsequently, this 

value is used within the algorithm for guiding the search. Reproduction focuses attention 

on high fitness individuals, thus exploiting the available fitness information. 

Recombination and mutation perturb those individuals, providing general heuristics for 

exploration of the search space. More precisely, the process comprises three major stages: 

selection (promising solutions are picked from the population by using a selection 

function), reproduction (new solutions are created by modifying selected solutions using 

some reproductive operators), and replacement. If imperfect reproduction is added the 

population can begin to explore the search space and will move to individuals that have 

an increased selection probability and that inherit this property to their descendants. 



59 
 

These population dynamics follow the basic rule of the Darwinistic evolution theory, 

which can be described in short as the “survival of the fittest” [Dar59].  The common EA 

variants are shown below in Fig.3.2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Overview of EAs 

3.1.1. Genetic Algorithm 

The GAs are possibly the most widespread variant of EAs. GA is a replica of machine 

learning which derives its behavior from a metaphor of some of the mechanisms of 

evolution in nature [Gol89, Hol75]. GA exhibit the clearest mapping from the natural 

process of evolution onto a computer system, because they stress on the coding of 

attributes into a set of genes. 

The algorithm creates a population of individuals represented by chromosomes. The 

chromosome is a string of variables that is analogous to the chromosomes present in 

nature. The individuals in the population then go through a process of simulated 

evolution modeled on the Darwinian theory of natural selection. 

The main feature of GAs is the use of a recombination (or crossover) operator as the 

primary search tool. The rationale is the assumption that different parts of the optimal 

solution can be independently discovered, and be later combined to create better 

solutions. Additionally, mutation is also used, but it was usually considered a secondary 

background operator whose purpose is merely `keeping the pot boiling' by introducing 
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new information in the population (this classical interpretation is no longer considered 

valid though). 

GAs are used in a number of different application areas. One example is in 

multidimensional optimization problems in which the chromosome can be used to encode 

the values for the different parameters being optimized.  

In practice the genetic model of computation can be implemented by having arrays of bits 

or real valued numbers to represent the chromosomes. During the evolutionary model, the 

genetic operators of crossover and mutation modify the chromosomes.  

One iteration of this algorithm is referred to as a generation. The first generation of this 

process operates on a population of randomly generated individuals. From there on, the 

genetic operations, in concert with the fitness measure that defines the measure of success 

of each individual, operate to improve the population.  

A selection mechanism is used to choose individual members from the current generation 

as parent solutions for the subsequent generation. Solutions with the highest fitness tend 

to be selected more often and hence pass on their genetic information to their offspring. 

This exchange strengthens the population over time until it converges on a solution. 

3.1.2. Evolutionary Programming  

The term EP was originally conceived by Lawrence J. Fogel in the 1960s [FOW66]. 

Although the general idea of using a computer to simulate evolution appeared in 

primitive forms throughout the 1950s [Fog98]. EP focuses on the adaption of individuals 

rather than in the evolution of their genetic information. This implies a much more 

abstract view of the evolutionary process, in which the behavior of individuals is directly 

modified (as opposed to manipulating its genes). 

 It is basically a stochastic optimization strategy similar to GAs, but instead places 

emphasis on the behavioral linkage between parents and their offspring, rather than 

seeking to emulate specific genetic operators as observed in nature. Traditionally, EP 

uses asexual reproduction (also known as mutation), i.e. introducing slight changes in an 

existing solution-and selection techniques based on direct competition among individuals. 

 Evolutionary programming is similar to evolutionary strategies, although the two 

approaches were developed independently.  
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In all Evolutionary Programming methods, each member of the current population is used 

to generate an offspring, therefore the selection mechanism used to choose parent 

solutions in the GA is not used. Each offspring is placed into a new population. When all 

offspring have been generated, the current population is merged with the new population 

of offspring, and a separate selection procedure is used to generate a current population 

for the next generation. 

In EP and GAs, there is an underlying assumption that a fitness landscape can be 

characterized in terms of variables, and that there is an optimum solution (or multiple 

such optima) in terms of those variables. For example, if one was trying to find the 

shortest path in a Travelling Salesman Problem, each solution would be a path. The 

length of the path could be expressed as a number, which would serve as the solution's 

fitness. The fitness landscape for this problem could be characterized as a hyper-surface 

proportional to the path lengths in a space of possible paths. The goal would be to find 

the globally shortest path in that space, or more practically, to find very short tours very 

quickly. 

The basic EP method involves 3 steps: 

(Repeat the steps until a threshold for iteration is exceeded or an adequate solution is 

obtained): 

(1) Randomly choose an initial population of solutions. The number of solutions 

in initial population greatly affects the speed of optimization, but no definite 

answers are available as to how many solutions are appropriate. 

(2) Each solution is replicated into a new population. Each of these offspring 

solutions are mutated in accordance of distribution of mutation types. Mutation 

types may range from minor to extreme with a continuum of mutation types in 

between. The severity of mutation is judged on the basis of the functional change 

imposed by it on the parents in the population. 

(3) Suitability of each offspring solution is assessed by computing its fitness. 

Typically, a stochastic tournament is used to determine N solutions to be retained 

in the next population of solutions. Although the retention of offspring’s for the 

population is sporadically deterministic. There is no requirement to keep the 
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population size constant, nor it is required that only a single offspring be 

generated from each parent. 

It should be pointed out that EP typically does not use crossover as a genetic operator. 

Although mutation is used but it simply changes the aspects of the solution according to a 

predefined statistical distribution. This distribution weights minor variations in the 

behavior of the offspring as highly probable and substantial variations as increasingly 

unlikely. Further, the severity of mutations is often reduced as the global optimum is 

approached (similar to the reduction in temperature of simulated annealing). 

3.1.3. Differential Evolution 

The main idea behind DE [SP95] is a scheme for generating trial parameter vectors. The 

basic strategy is that the weighted difference between two randomly selected solutions 

from the population is used as the source of a random variation for a new trial solution. 

DE has been shown to outperform variants of EAs on certain test cases. 

3.1.4. Genetic Programming 

GP provides a method for automatically creating a working computer program from a 

high-level problem statement of the problem [Koz89, Koz90]. Essentially, GP could be 

viewed as an evolution program in which the structures evolved represent computer 

programs. Such programs are typically encoded by trees. The final goal of GP is the 

automatic design of a program for solving a certain task, formulated as a collection of 

(input, output) examples. 

GP achieves this goal of automatic programming (also sometimes called program 

synthesis or program induction) by genetically breeding a population of computer 

programs using the principles of Darwinian natural selection and biologically inspired 

operations. The operations include reproduction, crossover, mutation, and architecture-

altering operations patterned after gene duplication and gene deletion in nature. GP can 

search the space of possible computer programs for an individual computer program that 

is highly successful in solving (or approximately solving) the problem at hand. 

GP is the extension of the genetic model of learning into the space of programs. That is, 

the objects that constitute the population are not fixed-length character strings that encode 
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possible solutions to the problem under consideration. The population actually is made up 

of programs that, when executed, are the candidate solutions to the problem. These 

programs are expressed in GP as parse trees, rather than as lines of code. Using parse 

trees has advantages since it prevents syntax errors, which could lead to invalid 

individuals, and the hierarchy in a parse tree resolves any issues regarding function 

precedence. Thus, for example, the simple program " a + b*c " would be represented as 

shown in Fig.3.3: or to be precise, as suitable data structures linked together to achieve 

this effect.  

 

Figure 3.3: Tree Structure of GP 

The programs in the population are composed of elements from two sets known as the 

function set and the terminal set. These sets typically contain fixed symbols selected to be 

appropriate to the solution of problems in the domain of interest. 

In GP the crossover operation is implemented by taking randomly selected subtrees in the 

individuals (selected according to their fitness) and exchanging them. GP usually does 

not use mutation operators.  

Although GP was initially based on the evolution of parse trees the current scope of GP is 

much broader. In [BNKF98] Banzhaf et al. described several GP systems using either 

trees, graphs or linear data structures for program evolution and in [Lan98] Langdon 

discusses the evolution of data structures. 
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3.1.5. Evolutionary Strategies 

GAs and EP are not the only type of evolutionary computing methods. Modeling 

biological evolution on a computer began in the 1960s. ES were introduced in the 1960s 

by Rechenberg [Rech65] and further developed by Schwefel [Sch95]. His first versions 

of the algorithms used real-valued parameters and began with a parent and a mutated 

version of a parent. Whichever had the highest cost was discarded. The winner produced 

a mutated version and the process repeated. Populations and crossover were not 

incorporated until later years. A general version of the algorithm, known as the (µ + λ) 

evolution strategy, was developed by Back [Bac97] in 1997. In this strategy, µ parents 

produce λ offspring. In succeeding generations only the best µ of the λ offspring and µ 

parents are allowed to survive until the next generation. The first attempts at using ES to 

solve discrete optimization were also made by Schwefel [BS02]. 

ES are in many ways very similar to EP and to GAs. As their name implies, ES also 

simulate natural evolution. The differences between EPs and ES arise primarily because 

the original applications for which the algorithms were developed are different. Similarly, 

while GAs were applied to solve discrete or integer optimization problems, ES were 

applied first to continuous parameter optimization problems associated with laboratory 

experiments.  

In a GA, mutation is usually a secondary operator, fixed in value and applied with low 

probability, while crossover is the primary search operator. In ES each variable has an 

adaptive mutation rate that is usually normally distributed with a zero mean. Therefore 

when trying to optimize five values, a further five mutation rate variables are required. 

Such a mutation mechanism enables the ES to evolve its own mutation strategy 

parameters in accordance with the problem under consideration as the search progresses 

through generations, a process termed self-adaptation by Schwefel [Sch87]. Like EP, 

considerable effort has focused on adaptive mutation as the algorithm progresses. Unlike 

EP, however, recombination has an important role in ES, especially in adapting mutation. 

A variety of recombination operators have been used in ES. Some of them are similar to 

GA crossover operator, which combine components from two randomly selected parents. 

Some of the other recombination operators allow components to be taken directly from 

any of the solutions in the parent population without any change in them.  
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Recombination is applied not only to the control variables but also the strategy 

parameters. Indeed, in some ES implementations different recombination operators are 

applied to different components of the solution representation.  

3.1.6. Population Based Incremental Learning 

Population-based incremental learning (PBIL) algorithms were first proposed by Baluja 

[Bal94] as an abstraction of GAs, which explicitly maintain the statistics contained in a 

GA’s population. As a class of EAs, PBILs have proved to be very successful on 

numerous stationary benchmark and real-world problems. The PBIL algorithm is a 

combination of evolutionary optimization and competitive learning. PBIL is basically a 

guided search algorithm that obtains its directional information from the previous best 

solutions. Typically a binary string is used to encode the optimization variables and a 

real-valued second string, known as the prototype vector is generated of the same length 

as the binary string. The standard PBIL starts from a probability vector that has a value of 

0.5 for each bit location. This probability vector is called the central probability vector 

since it falls in the central point of the search space. Sampling this initial probability 

vector creates random solutions because the probability of generating a 

1 or 0 on each locus is equal. As the search progresses, each element of the probability 

vector is updated by small increments so as to favor the generation of either a one or a 

zero for the corresponding bit in a trial solution vector. The initial value of 0.5 provides 

zero bias. To avoid the chances of being trapped in local minima the probability vector is 

allowed to mutate by a small amount at each generation of the algorithm. A number of 

empirically derived tuning parameters are required in order to promote good 

performance. For example, the number of trial vectors that are generated and evaluated 

before updating the probability vector must be chosen (typically 100). 

A term known as the learning rate determines the probability vector update increment 

(typically 0.1). Smaller values result in wider searches, but slower convergence.  

Similarly a negative learning rate can be used to distance the probability vector from the 

worst performing solutions (typically 0.075). The probability and amount of mutation 

must also be set for the probability vector. The search progress stops when some 

termination condition is satisfied, e.g., the maximum allowable number of iterations is 



66 
 

reached or the probability vector is converged to either 0.0 or 1.0 for each bit position. It 

is possible to implement a PBIL algorithm using only twenty lines of code (excluding the 

objective function evaluation) [Hug98].  

3.1.7. Particle Swarm Optimization 

PSO algorithm was introduced by Russel Eberhart (an Electrical Engineer) and James 

Kennedy (a Social Psychologist) in 1995 [KE95]. PSO belongs to the categories of 

Swarm Intelligence techniques and EAs for optimization. It was inspired by the social 

behavior of birds, which was studied by Craig Reynolds (a biologist) in late 80s and early 

90s. He derived a formula for representation of the flocking behavior of birds. The 

formula was later used in computer simulations of virtual birds, known as Boids. 

Ebenhart and Kennedy recognised the suitability of this technique for optimization and 

came up with the Particle Swarm Optimiser. 

The representation of the optimization problem is similar to the encoding methods used 

in GAs. The main difference is in the search mechanism. In PSO, the variables are called 

dimensions that create a multi-dimensional hyperspace. "Particles" fly in this hyperspace 

and try to find the global minima/maxima, their movement being governed by a simple 

mathematical equation. PSO has no evolution operators such as crossover and mutation. 

Each particle has a position and velocity associated with it and hence requires the same 

storage as ES. 

PSO has been successfully applied in many areas: function optimization [FY01], ANN 

training [KM02] and fuzzy system design [EAT02].  

3.1.8. Ant Algorithms 

Ant algorithms (or Ant Systems) are a novel technique first developed by Dorigo et al. in 

1991 [DMC91]. The Ant System is a population-based approach. In this respect it is 

similar to GAs although there is not a population of solutions being maintained.  

Rather, there is a population of ants, with each ant finding a solution and then 

communicating with the other ants in the hope it will help them find even better 

solutions. 
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Ants can find the shortest path to food by laying a pheromone (chemical) trail as they 

walk. This pheromone is detected by other ants which in turn follow the trail. If one 

imagines an ant’s nest and a source of food some distance from the nest, the ant has many 

routes it can follow to get from the nest to the food source. Ants that happen to pick the 

shorter path will create a strong trail of pheromone faster than the ones choosing a longer 

path. Since stronger pheromone attracts ants better, more and more ants choose the 

shorter path until eventually all ants have found the shortest path. If a single ant takes a 

long route to the food source, its pheromone trail will be weaker than if it were to take a 

short route, as pheromone intensity reduces with time (evaporates). If more ants are 

introduced, over time, the shorter route will be followed more often than the weaker route 

as the pheromone builds up on it. Over time, the route will become the major path to the 

food. The first ACO algorithms were designed to solve the traveling sales person problem 

[PFTV92], because this problem closely resembles finding the shortest path to a food 

source [DM97]. Initial attempts at an ACO algorithm were not very satisfying until the 

ACO algorithm was coupled with a local optimizer. One problem is premature 

convergence to a less than optimal solution because too much virtual pheromone was laid 

quickly. To avoid this stagnation, pheromone evaporation is implemented. In other 

words, the pheromone associated with a solution disappears after a period of time.  

Some of the finer details of the algorithm are left out here for brevity, but there are many 

sources of literature available on the internet at the time of writing [DS04b, Cha07].  

3.2. Evolutionary Algorithm  

This section and the remainder of this chapter contains an introduction to the basic EAs 

and outlines the procedures for solving problems using the simple GA. 

EAs are becoming very popular with the electromagnetic community. The reason for the 

sudden popularity of EAs is simple - the gradient optimization methods that were most 

popular in engineering disciplines have not performed consistently across the variety of 

electromagnetic design problems. The global search conducted by EAs is proving much 

more capable in this field of design. 

EAs are designed to search a much wider area of the design space, and could potentially 

provide a set of optimal solutions to a given problem. The EA approach was selected for 
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this research because many different solutions can be expected to be found for resource 

allocation in MIMO OFDMA systems, and it is important for the designer to explore as 

much of the potential decision space as possible, before selecting a single design or 

control solution. Often with complicated designs, an ExS of the entire design space is not 

feasible due to the high computational burden. EAs can help find good solutions in a 

much shorter time. 

The purpose of an EA is to search a problem's decision space in order to find its optimal 

solutions in objective space, as shown in Fig.3.4. 

 

Figure 3.4: Decision and Objective Space  

The EA is a stochastic global search method that mimics Charles Darwin’s evolutionary 

theories of natural selection (survival of the fittest) [Dar59]. EAs operate on a population 

of potential solutions, applying the principle of survival of the fittest to produce 

increasingly better approximations to a solution. In theory, it is possible for them to find 

true globally optimum solutions provided they exist within the decision search space and 

if certain optional genetic operators are included for example “Mutation”. 

At this point it is worth summarizing some of the analogous terms, see Table 3.1. 

In each generation (iteration), a new set of individuals (chromosome) is created by the 

process of selecting individuals (solutions) in accordance to their level of fitness 
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(success) in the problem domain and 'breeding' them together using operators similar to 

natural genetics. This process leads to the evolution of populations of individuals that are 

better suited to their environment than the individuals that they were created from, in 

other words, better solutions to a problem. 

Table 3.1: Evolutionary/Genetic Analogies. 

Optimization Term Evolutionary/Genetic Analogy 
Variable Gene 

String or vector of variables Chromosome 
Set of variables that represent a

single solution. 
Individual (defined by one or more 

chromosomes) 
Set of solutions Population 

Iteration Generation 
Success or performance Fitness 

3.2.1. Encoding 

In GAs, each possible solution of the optimization problem under consideration should be 

encoded as a finite-length string over some alphabet. The coding techniques used can be 

classified into the following two categories: a binary coding and a permutation coding. 

The binary representation is mostly preferred for the coding of the solutions. For 

example, a problem with two variables, x1 and x2, may be mapped onto the chromosome 

structure as: 

1, 0, 1, 1, 1,  0, 1, 1, 1, 0, 1, 0, 0
  
 
  1 2x x
 

 

In the above example, a binary chromosome has been used, where x1 contains 5 bits and 

x2 uses 8 bits. The number of bits used affects the level of accuracy or the range of 

individual decision values that are required. A consequence of increasing the number of 

bits used to represent a parameter is the expansion of the decision search space size. In 

such a case EA is required to search a much larger solution space, thus slowing down 

convergence rate. The increased chromosome length forces a problem specific trade-off 

between the probability of finding a globally optimal solution and the overall algorithm 

run time. 

The EA search process is capable of operating on a coded decision variables rather than 

the decision variables itself. This encoding is the main strength of an EA - the genotype 
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need not to contain numerical optimization values directly and can instead contain 

complex encoding of systems, processes or methods, the result of which represent a 

solution to a problem.  

The second coding scheme, the permutation coding, is used for sequencing problems 

such as scheduling problems and traveling salesman problems. This type of encoding is 

useful when individual fitness depends on positions of genes in the chromosome. For 

such type of problems, permutation strings of a set of integers are more natural 

representation than binary strings. Fig.3.5 shows examples of strings generated by the 

binary coding and by the permutation coding. The string generated by the binary coding 

consists of binary “0s” and “1s”.  

 

Figure 3.5: Genotype and phenotype. 

The binary string after being treated by GAs is often decoded to the parameter value in 

integer, real number, and so on. The permutation string on the other hand consists of 

numerals “1” to “n”. Each numeral in the string corresponds to a job in scheduling 

problems or to a city in traveling salesman problems, while n is the total number of jobs 

or cities. Then jobs are processed according to their order in the permutation when 

scheduling problems are considered, or cities are visited according to their order in the 

permutation in traveling salesman problems. 

As shown in Fig.3.5, strings which consist of binary or numeral elements are called 

genotype, and solutions which are decoded from strings are called phenotype. GAs acts 

over the strings in genotype domain and return the solution strings which are then 

decoded to phenotype domain. That is, the users of GAs get final solutions of their 
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optimization problems after the strings obtained by GAs are decoded into the solutions in 

the phenotype domain.  

3.2.2. Initial Population 

The GA starts with a group of chromosomes known as the population. Once the 

chromosome encoding is defined, the next stage is to generate a set of random 

chromosomes. Each chromosomes worth is assessed by the cost function. So at this point, 

the chromosomes are passed to the cost function for evaluation. 

The size of the initial population is a user defined parameter and should be decided upon 

with reference to the number of variables to be optimized and the total number of 

solutions in the decision space. If the initial population is too small it may not reach to 

efficient solution. On the other hand if the population is too large the algorithm might not 

converge or may take long time to find a solution. The chromosomes in later generations 

will largely be formed using the genes contained in the initial population and so the 

diversity of the initial ‘building blocks’ can influence the exploration of the search space 

[GSL01]. 

Population sizes of 30, 60 or 100 are common, but some researchers use population sizes 

of several hundred or more. The final choice is often decided by time taken to evaluate a 

single solution. In real time applications like resource allocation in MIMO-OFDM 

systems where the wireless channels changes within very short duration, the time taken 

by algorithm to converge becomes a very important criterion. This becomes even more 

crucial when the channel is assumed to be constant during the period of allocation. 

    There exist some variants of EAs known as Micro-GAs that use a very small 

population size of around 10 individuals in order to speed up convergence and are 

suitable to operate in real-time applications [Kri89]. 

3.2.3. Objective Functions and Fitness Assessment 

Once the chromosome(s) belonging to each individual in the population have been 

decoded into the phenotypic domain, it is possible to assess the performance, or fitness, 

of each of them. 
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This assessment is done through a fitness function which characterizes an individual’s 

performance in the problem domain under consideration. In the natural world, the 

performance would be an individual’s ability to survive in its present environment. 

Depending on its environment, there can be several traits which an individual is desired 

to possess. This is easily realized using the following example of herbivores: 

Example 3.1 (Herbivores): In nature, an herbivore needs to be able to find food at the 

same time should be able to either avoid or defend itself against hungry carnivores. Only 

the ability to find food is not sufficient, as the appearance of a carnivore could be fatal to 

the herbivore. Similarly, the ability to defend itself from being killed by a carnivore is 

also not sufficient without the ability to find food; in such a case herbivore would starve 

to death. If no carnivores had been present in the environment, it would suffice for the 

herbivores to be able to find food in order to ensure its survival. 

The example clearly illustrates how the desired traits of the individuals depend primarily 

on its environment. Those who are fitter for survival in an environment will have a higher 

probability of continued survival. Based on this fitness, the individuals are selected for 

inclusion in the next generation. 

EAs rely on many evaluations of the fitness function to guide their search and so it is 

important that the functions are as efficient as possible. To illustrate the point, consider 

an EA with a initial population size of 40, and is allowed to evolve for 50 generations. If 

there is no other stopping criterion used, there will be 2000 fitness function evaluations. 

Suppose the EA takes 1 second to evaluate the fitness of a solution, then all the 

evaluations would require more than half an hour to get over. 

GAs actually searches for a string (chromosome) representing one of the possible 

solutions, with a better fitness value in the genotype domain. For example, in case of 

function optimization problems, the objective function value f (x) is calculated by 

substituting the solution x decoded from the corresponding binary string obtained by 

GAs. When the function value f (x) is better, the string in the genotype domain which 

corresponds to the solution x is assigned better fitness value. For example, in a 

maximization problem, a fitter individual will have a higher fitness value than a weaker 

solution.  
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Since the EAs are guided by a single fitness value so the objectives in case of more than 

one objective, have to be combined in some way. The combination is achieved by using a 

fitness function that is simply some function of the objective values. Common fitness 

functions include sum of objectives (equation.3.1) or weighted sums (equation.3.2). 

F f1 f2 f3.... fn (3.1) 

F w1 f1 w2 f2 w3 f3.... wnfn (3.2) 

There can be many possible variants of fitness functions and some degree of 

experimentation is required to determine the one which is most suitable for a particular 

problem type. The assignment of fitness values establishes the basis for selection of pairs 

of chromosomes that will undergo crossover during reproduction. In order to keep the 

analogy with the process of natural selection, the fitter solutions must be selected for 

reproduction more often than the weaker solutions. 

3.3. Selection Operator 

This operator selects individuals in the current generation to be used for constructing the 

next generation. This operator in GAs is analogous to the process of natural selection in 

biology. Fitter individuals are more capable of survival and breeding. In GAs, selection 

allows the search to move towards better solutions as long as the fitness is measured in 

terms of the objective function of the problem at hand. Therefore, the first step in 

selection is evaluation of fitness. 

 The evaluation of the fitness is performed in such a way that it can be decided to which 

extent different individuals should survive. In this "survival of the fittest" approach some 

individuals with very good fitness would in general be preferred to individuals with low 

fitness. At the same time low fitness individuals could be lucky to survive. The set of 

selected individuals is usually referred to as the mating pool. In general, the purpose of 

the selection operation is to emphasize fit individuals in the population by giving them 

more chance to breed than less fit individuals. 

 In case, when a few individuals with low fitness survive, they allow for a continued 

exploration of the search space for more fruitful regions. An example of this kind of 

selection can be seen from Darwin's finch: 



74 
 

Example 3.2 (Darwin's finch) Droughts that affect plants producing small seeds will 

tend to favor those finches with large beaks. Since the finches with smaller beaks finds it 

more difficult to handle large seeds. However, even though the smaller beaked finches 

are less fit than the finches with large beaks, some of them manage to survive. In such a 

case, the finches with small beaks that survive the drought can replenish their numbers 

when the drought has ended. In case a drought then affects the plants producing large 

seeds, the finches with smaller beaks will be better fit for this environment than finches 

with larger beaks. Thus, had the lesser fit finches not survived the drought, and then the 

droughts could most likely have eradicated both the small and large beaked finches. 

The example above describes the effect of changes in the environment on the different 

populations. For a fixed environment also, the same considerations is equally valid. In 

such a case, one area of the environment may not be suitable for some individuals, but the 

other parts of the environment may be better suitable for the same individuals. In the 

above example, this would correspond to a migration of the affected finches to another 

area not affected by droughts. 

Selection on its own will not allow the full potential of evolution to occur. If only 

selection took place, the result would be that the best individual of the initial population, 

which may be far from optimal, would quickly dominate the entire population. As such, 

selection corresponds to an exploitation of the existing individuals. However, in order to 

evolve there is a need for discovery or exploration as well. The exploration will allow for 

new individuals with different features to emerge, which may or may not prove better 

than those already present in the population. This makes it a necessity to perform some 

alterations on the population in order to explore for new and better features for the 

individuals.  

Selection preserves characteristics of fit individuals to be used to construct new offspring, 

and also removes bad individuals so that the overall population fitness improves over 

successive generations.  The following subsections describe the most common selection 

schemes used in GAs, with a brief analysis of the selection pressure imposed by the 

selection scheme. 
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3.3.1. Elitist Selection 

Elitism basically refers to carrying over good performing chromosomes from the old 

generation to new generation without change. This prevents the possibility of losing good 

chromosomes from one generation to the next. 

 Elitism is a general concept and there exists a number of ways to employ elitism in GAs 

[Deb01]. One of the ways to realize elitism is to favor the top individuals and to ignore 

the weaker ones. According to this selection scheme, individuals in the population are 

sorted according to their fitness values. The best n individuals are included in the 

selection process and the remaining are discarded. The selection among the best n 

individuals is realized just in the way as it is done in uniform selection. That is, each 

individual that belongs to top n has a probability of (1/n) of getting selected. The pseudo-

code given in Fig.3.6 illustrates the mechanism: 

ElitistSelection (Population p, Integer n) : returns an Individual 
begin 

sort population p according to fitness values 
of individuals in descending order; 
assign Integer i a random number from the range [0, n-1]; 
return the ith individual of population p; 

end; 
Figure 3.6: Elitist Selection Algorithm 

This selection method is widely used for its contributions in the speed of convergence, 

because of obvious reasons. However, it should be used carefully, in order not to 

encounter premature convergence. Using elitism has also been shown to guarantee a 

global convergence under some assumptions since the best chromosome in the population 

is monotonically improved. The assumption is that any chromosome must be reachable 

from any other chromosome by means of mutation and recombination. 

3.3.2. Roulette Wheel Selection 

The simplest selection scheme is roulette-wheel selection, also called stochastic sampling 

with replacement [Bac97]. Because of its simplicity, roulette wheel selection scheme is 

often used as a selection operator. Let Npop be the number of strings in each population in 

GAs, that is, Npop is the population size. We denote Npop strings in the current generation 

by ψ ={x1, x2, ..…,xNpop}. Each solution xi is selected as a parent string according to the 
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selection probability Ps(xi). In the roulette wheel selection scheme, the selection 

probability Ps(xi) is defined as follows: 

1
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where f (·) is the fitness value of the solution x.  

The individuals are mapped to contiguous segments of a line, such that each individual's 

segment is equal in size to its fitness. A random number is generated and the individual 

whose segment spans the random number is selected. The process is repeated until the 

desired number of individuals is obtained (called mating population). This technique is 

analogous to a roulette wheel with each slice proportional in size to the fitness. 

Obviously, this selection mechanism cannot be used directly with a GA where negative 

fitness values are allowed. In order to employ roulette wheel selection in such situation, a 

transformation over the fitness values can be applied. Fig.3.7 shows an example of the 

proportional representation for a selection pool of ten individuals. Pseudo code for 

Roulette wheel algorithm is given in Fig.3.8.  

 

Figure 3.7: Roulette Wheel Selection  
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RouletteWheel (Population p) : returns an Individual 

Begin 

// first of all, calculate the sum of fitness values of all 

// individuals, if it is not known beforehand 

initialize Real fitnessSum as 0.0; 

for all Individual ind of population p, increase  

fitness Sum with the fitness value of ind; 

// randomly assign a value to determine 

// how much the wheel will turn 

assign Real threshold a random turn amount by 

fitnessSum * (a random real number from range 

[0.0, 1.0]); 

// find the partition where the ball on the wheel 

will stop 

initialize Real cumulative as 0.0; 

for each Individual ind of population p do 

begin 

increase cumulative by the fitness value of ind; 

if cumulative >= threshold then 

return ind; 

else 

continue with other individuals in p; 

end; 

end; 

 Figure 3.8: Roulette Wheel Selection Algorithm  
The basic advantage of roulette wheel selection is that it does not discard any of the 

individuals in the population and provides a chance to all of them to get selected. Thus, it 

preserves the diversity in the population. That is, the individuals with not so high fitness 

also get a chance to transfer their genetic content to next generations. Some of these 

individuals may be hiding very valuable alleles. If it was not so, none of the gamblers 
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would put their money into danger by selecting a slice on the wheel other than the widest 

one. 

3.3.3. Tournament Selection 

Tournament selection runs a "tournament" among n randomly chosen individuals in the 

population. The individuals are then ranked and one individual is selected based on a 

given probability distribution. That is, with probability p1 choose the best individual in 

the tournament, with probability p2 choose the second best, and so on. The parameter n 

represents the tournament size.  

A variant of this method, referred to as deterministic tournament selection, always selects 

the best individual in any tournament. 

Tournament Selection (Population p, Integer tournament Size) : 

returns an Individual 

begin 

// select an individual randomly as the current winner 

assign Integer i a random number in the range [0, (size of p) - 1]; 

initially set Individual winner as the ith individual of population p; 

// at each remaining tournament step, select an individual 

// randomly. If it is better, update the the winner 

initialize Integer tournamentStep as 1; 

while tournament Step < tournamentSize do 

begin 

assign Integer i a random number in the range [0, (size of p) - 1]; 

if fitness value of the ith individual of population p is better than 

fitness of the current winner then change winner as the ith individual 

of p; 

increment tournamentStep by 1; 

end; 

return winner; 

end; 

Figure 3.9: Tournament Selection Algorithm 
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The pseudo-code given in Fig.3.9 illustrates this selection technique. In the pseudo-code 

given in Fig.3.9, an individual can be compared with itself, although this may sound 

weird in a real tournament. However, among all randomness in GA processes, this 

situation can simply be ignored. 

Fig.3.10 shows an illustration of binary tournament selection. Two individuals are chosen 

randomly from the population to become competitors in a tournament selection. When 

maximizing, the individual with the higher fitness value becomes the contest winner and 

is selected as a parent. The procedure is repeated if two parents are required to form 

offspring solutions (the number of parents required is dependent on the exact formulation 

of the EA - an offspring solution could be produced by just one parent). 

 

Figure 3.10: Binary Tournament Selection  

3.4. Genetic Operators 

Once two individuals have been selected as parents, a number of genetic operators are 

applied to their chromosomes to form new offspring.  

The basic genetic operator is known as crossover or recombination. Like its counterpart 

in nature, crossover produces new individuals that have some parts of both parents' 

genetic material. Recombination through crossover can be severely disruptive to the 
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candidate solutions and for that reason many researchers avoid the use of crossover 

altogether for some problems. 

 In nature, the features of an individual are contained in the genome. Since the genes 

interact with each other to create the different features, the genes themselves can be 

considered as Building Blocks [Gol02]. These building blocks can be recombined to form 

new and perhaps better features. Based on the fact that superior individuals must have 

had features that were superior, the building blocks of those individuals, must have been 

better than average. 

Recombining these better than average building blocks should thus on average yield 

increasingly better features in the resulting individuals. This can also be realized from the 

following example: 

Example 3.3 (Recombination) In a group of herbivores, the individuals with the 

features such as primitive sight and/or smell would be better fit for finding food and 

avoiding predators than those without such abilities. If one of these herbivores with only 

primitive sight were to mate with an herbivore with a primitive sense of smell, they could 

give birth to an offspring with both those features which would make it more fit than 

either of the parents. 

3.4.1. Single/Multi-point Crossover 

A basic type of crossover is known as ‘single-point’ crossover. A single-point crossover 

forces a break in the chromosomes of the parents so that each child obtains genetic 

information from each parent. In order to keep the population size constant, two children 

are produced from two parents. 

The break is made randomly and one child gets the binary code of one parent to the left 

of the break, while the binary code to the right of the break comes from the other parent. 

The other child gets the opposite. Each child inherits certain traits from both parents in 

this manner. The procedure is best explained diagrammatically as in Fig.3.11. 

In the chromosome shown, each gene has two possible values, 0 and 1, the set of valid 

values for each gene is known as the alleles. There are other types of crossover – 

multipoint crossover allows multiple breaks in the chromosome instead of a single break 

and uniform crossover gives a 50% chance of each allele coming from either parent. The 
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disruptive nature of multi-point crossover appears to encourage the exploration of the 

search space, rather than favoring the convergence to highly fit individuals early in the 

search, thus making the search more robust [SJ91a].  

 

Figure 3.11: Single point crossover 

Both single and multi-point schemes are equally applicable to both real valued and binary 

chromosomes. Many studies have demonstrated that single point crossover, although 

simple, does not perform well as the first and last genes can never be passed together to a 

child solution [Neu97]. 

3.4.2. Uniform Crossover 

Another obvious alternative, which removes any bias, is to make the crossover process 

completely random—the so-called uniform crossover. Uniform crossover [Sys89] is a 

simple recombination scheme that makes every bit or value a potential crossover point. A 

binary string with the same length as the chromosome structures is created at random and 

the parity of the bits in the string indicates which parent will supply the offspring with 

which bits. Consider the following two parents P1 and P2, binary string S, and resulting 

offspring C1 and C2: 

P1 = 1 1 0 0 1 1 0 1 0 1 

P2  =  1  0 1  0 1 0 1 0 1 0 

S  = 1 0 0 1 1 1 0 0 1 1 

C1  = 1  1 0 0 1 1 0 1 1 0 

C2  = 1 0 1 0 1 1 1 0 0 1 
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DeJong and Spears [SJ91b] produced a theoretical analysis that was able to characterize 

the amount of disruption introduced by a given crossover operator exactly. In particular, 

the amount of disruption in uniform crossover can be tuned by choosing different values 

of probability p, for the swapping of bits.  This extra parameter can be used to control the 

amount of disruption during recombination without introducing a bias towards the length 

of the representation used. When uniform crossover is used with real-valued genes, it is 

usually referred to as discrete recombination. 

Recombination is, however, not the only alteration that needs to be performed on the 

individuals. 

This would only lead to an exploitation of building blocks already present in the initial 

population and not allow for new discoveries to take place. The issue can be solved by 

introducing mutations. 

3.4.3. Mutation 

After selection and crossover, mutations are also permitted in order to explore regions of 

the design space that may have already become extinct or have never been explored. 

In GAs, mutation is randomly applied with low probability, typically in the range 0.001 

and 0.05, and modifies elements in the chromosomes. Binary mutation is quite simple; it 

is done by flipping a bit from 0 to 1, or the other way around, according to a specific 

probability. 

 Mutation is often seen as a mechanism for ensuring the probability of searching any 

given string will never be zero. It also acts as a safety net to recover good genetic 

material that may be lost through the action of selection and crossover [Gol89]. Each new 

child solution is a candidate for mutation. 

Example 3.4 (Mutation) For an animal living in a dry environment, such as a desert, a 

mutation that will allow an individual to conserve water better or more efficiently would 

help in aiding the chances of survival. Counter to that is the case where a mutation could 

require the individual to use more water or at a faster rate, which would render the 

individual more vulnerable to the scarce presence of water in the dry environment. 

A creep mutation as shown in Fig.3.12, randomly selects a single bit to be changed (child 

1) and a jump mutation swaps two random bits within the child’s binary string (child 2). 
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Mutation is to be used cautiously as it can prevent population convergence if it is applied 

too often. It is important to mention that low mutation rate results in less exploration, 

while high mutation rate could be disruptive. With real-valued encoding, a mathematical 

operation is performed on values within the chromosome. The operation may be a simple 

multiplication or division and again, there are many different schemes available. For 

example one scheme may take a single value and change it to the maximum (or 

minimum) possible according to the range bounds for the variable. Others are subtler and 

may apply only a small change to the variable value. 

 

Figure 3.12: Illustration of mutation operation 

Wright [Wri91] demonstrated how real-coded GAs may take advantage of higher 

mutation rates than binary-coded GAs, increasing the level of possible exploration of the 

search space without adversely affecting the convergence characteristics. Similarly, Tate 

and Smith [TS93] argued that for any genotypic coding containing alphabets more 

complex than binary, high mutation rates can be both desirable and necessary. They gave 

examples of how high mutation rates and non-binary coding yielded significantly better 

solutions than the normal, more conservative approach to mutation. 

The exact mathematical operation (or inversion of bits) used is best chosen with regard to 

the type of chromosome encoding scheme used and the size of the search space.  

It is often suggested that mutation has a somewhat secondary function, that of helping to 

preserve a reasonable level of population diversity-an insurance policy which enables the 

process to escape from sub-optimal regions of the solution space, but not all authors 

agree. Proponents of EP, for example, consider crossover to be irrelevant, and mutation 

plays the major role. 
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The advantage and the drawback of mutations is the unpredictability. Even though 

mutations can create new or improve on existing good features, they can also result in 

destruction of useful features or create unwanted features. 

3.5. Reinsertion and Elitism 

It is common to see fixed population sizes in EAs as they are easy to implement. 

Typically, the original population is completely replaced by the new offspring solutions 

and the EA is described as being steady-state [Sys91].  

If fewer individuals are produced by recombination than the size of the original 

population, then the fractional difference between the new and old population sizes is 

termed a generation gap [JS93]. If one or more of the highest fitness individuals are 

deterministically allowed to propagate through successive generations, the GA is said to 

use an elitist strategy. 

Elitist strategies compare the fitness values of a new generation with those of the 

previous generation. If the highest solution from the previous generation is higher than 

the best solution from the new generation, an individual from the new generation is 

removed and the previous best is inserted to replace it. This ensures the survival of the 

fittest rule applies between generations as well as within them. Haupt [HMM93] ensured 

elitism to occur by keeping the top 50% of each population during each generation, but 

this approach does not make an efficient search as their will be fewer new chromosomes 

contributing to the search in each generation. 

Elitism is a useful function, particularly when search spaces are large and good solutions 

prove difficult to find and maintain in the population.  

3.5.1. Termination 

There are no set rules for termination of an EA. Termination criteria may be set at some 

given number of generations, or after some measure of convergence has been reached. 

Eventually, the population will tend to converge to a common point. The choice depends 

on the problem at hand. The basic termination criterion is when a user-specified 

computational budget is consumed. This budget can be measured in terms of the number 
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of iterations or CPU time. This criterion of termination does not guarantee that a global 

optimum is found; it only returns the best solution found for the given budget. 

 An illustration of this convergence can be seen in human biological evolution. The 

Europeans and Africans each progressed down separate paths. The Europeans developed 

pale skin, while the Africans developed dark skin. These isolated populations are said to 

have converged because each individual, within the separated populations, holds a 

common trait. Technically, while Europeans lost the dark pigments from their skin, 

Africans maintained it – it helps to prevent sunburn and also reduces production of 

vitamin D. 

The GA, as an optimization tool, can also arrive at this kind of convergence in design 

within its encoded design parameters. In practice, a standard GA should be run several 

times to account for this convergence and the inherent random processes. The initial 

creation of individuals, selection of parents, crossover reproduction, and child mutations 

are all based on random number draws. Different results can be expected between one 

initial randomization seed and another. On the other hand, these differences are not 

guaranteed and different seeds could end with the same results. It is good practice to 

record the seeds used to initialize random number generators so that the results found are 

repeatable. 

It is common to simply stop a GA once a certain number of generations have been 

completed. Stopping the GA raises the question “Has the GA found the best possible 

solution to my problem?” and unfortunately, the only way to answer the question is to 

perform an ExS. A good practice to follow when deciding upon termination of the 

algorithm is to ask the question “Has the GA found a good solution?” 

3.6. GA Flow Chart 

The diagram shown in Fig.3.13 presents the steps involved in a basic GA. When applying 

a GA to a new problem, it is necessary to fine-tune some of the important settings in 

order to improve the overall performance. The number of individuals in a population is 

one such parameter. Too few individuals will restrict the search while too many will slow 

it down. The population size is usually balanced against acceptable run times. The other 
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settings that influence performance are the probabilities of occurrence of the genetic 

operators (crossover and mutation).  

 

Figure 3.13: GA Flow Chart 

Crossover and mutation occur with distinct probabilities defined at the start of the 

algorithm. Probability of crossover is usually kept at higher side as crossover is the main 

mechanism for exploration, set typically at 60 to 80%. Without crossover, the offspring 

created will be exact copies of their parents. 

On the other hand probability of mutation is kept much lower as it can disrupt 

convergence. Typical values of probability of mutation are 1% to 5%. It should be noted 

that 100% mutation level will turn the algorithm into a random search.  

3.7. Multi-Objective Genetic Algorithm  

In this section, we consider an extension of GAs from single-objective optimization 

problems to the case of multi-objective optimization problems. Since Schaffer’s work 
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[Sch85], extensions of GAs to multi-objective optimization were proposed in several 

manners (e.g., see Fonseca & Fleming [FF93, FF95], Horn et al.[HNG94], Kita et 

al.[KYMN96], Kursawe [Kur91], Murata & Ishibuchi [MI95], and Tamaki et al. 

[TMA+94], TMA95]). The Italian economist Vilfredo Pareto in 1896 first stated the 

concept of ‘Pareto optimality’, which constitutes the origin of research in multiobjective 

optimization [Par96]. According to this concept, the solution to a multiobjective 

optimization problem is normally not a single value, but instead a set of values called the 

Pareto set. Many real-world problems involve simultaneous optimization of several 

incommensurable and often contradicting objectives. Examples of conflicting objectives 

may include maximizing speed and safety in a car, or keeping costs low and quality high 

in manufacturing. The problem considered in Chapter-6 is also a multiobjective variant of 

resource allocation problem in MIMO-OFDM systems. The two contradicting objectives 

here are rate maximization and power minimization. Application of a single objective GA 

that combines objectives in a single fitness function can only be expected to converge to 

a single solution.  

When there is only one fitness function, it is possible to use the relations <, > and = to 

distinguish if one fitness value is better than another or if they are equal. As such, it is 

possible for the single fitness case to perform this comparison for all combinations of 

fitness values and based on this it can be determined which solution is better than others. 

However, as soon as each solution is assigned more than one fitness value, it is no longer 

possible to use these simple one dimensional relations and it is thus necessary to 

introduce a new way of determining which fitness value is better than another. This is 

where dominance comes into the picture.  

In most of the cases, there is no single optimal solution to a problem, but instead a set of 

alternative solutions. These solutions are optimal in the wider sense such that no other 

possible solution in the search space is superior to them, considering all objectives. One 

can find some solutions which are good for one objective, but bad for another. This 

forces the designer to make a tradeoff from between the objectives. The set of all the 

possible optimal solutions is often called as a trade-off surface, or more precisely, a 

Pareto optimal set.  
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The basic scheme of GAs for single-objective optimization problems remains the same 

even for multi-objective optimization problems. That is, the coding method used for 

multi-objective optimization problems is exactly the same as described for single 

objective problems in Subsection 3.2. Genetic operators such as the crossover and the 

mutation also remain same as in Subsections 3.4. Only, the genetic operators such as 

evaluation, selection, and elitist strategy are required to be modified for multi-objective 

optimization problems. Before we describe modified genetic operators for multi-objective 

optimization problems, we first explain the background of multi-objective optimization 

problems followed by description of a MOGA. 

3.8. Background of multi-objective genetic algorithms 

The basic idea of MOGAs is to find set of all non-dominated solutions of an optimization 

problem with multiple objectives. Let us consider the following multi-objective 

optimization problem with n objectives:  

Maximize f1(x), f2(x),..., fn(x) (3.4)

where x is a vector to be determined, and f1(⋅), f2(⋅), ..., fn(⋅) are n objective functions to be 

maximized. A particular solution which is not dominated by any other feasible solutions 

of the multi-objective optimization problem is known as a non-dominated solution. 

Solution x is said dominated by the solution y if they satisfy following in-equalities  

∀i : fi(x) ≤ fi(y) and ∃	j : fj(x) <fj(y).  (3.5)

Fig.3.14 depicts examples of non-dominated solutions. In Fig.3.14 open circles represent 

a set of dominated solutions while filled circles represent a set of non-dominated 

solutions, in a two-dimensional objective space, respectively. The two-dimensional 

objective space of Fig.3.14 corresponds to the following two-objective optimization 

problem: 

Maximize f1(x) and f2(x).  (3.6)

It can be observed from Fig.3.14 that, multi-objective optimization problems usually have 

more than one number of non-dominated solutions. 
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Figure 3.14: Non-dominated solutions (filled circles) and dominated solutions (open 

circles). 

The purpose of any MOGAs is not to determine a single optimal solution but to find all 

the non-dominated solutions of the problem under consideration (equation.3.4). Since it is 

not possible to choose a single optimal solution for a multi-objective optimization 

problem without iterative interaction with the decision maker, generally the set of non-

dominated solutions is shown to the decision maker. Then depending on the requirements 

the decision maker can chose one of the non-dominated solutions. Since Schaffer’s work 

[Sch85], extensions of GAs to multi-objective optimization problems have been proposed 

in several manners. Fonseca & Fleming [FF95] have published an excellent survey of 

GAs for multi-objective optimization. Almost all the multiobjective optimization 

approaches which have been proposed till date can be categorized into two broad classes: 

a “population-based non Pareto approach” or a “Pareto-based approach” on the basis of 

their selection schemes [FF95].  

An early GA application on multiobjective optimization by Schaffer [Sch85] opened a 

new avenue of research in this field. The algorithm, called vector evaluated genetic 

algorithm (VEGA), performs the selection operation based on the objective switching 

rule (population-based non Pareto approach), i.e., selection is done for each objective 

separately, filling equally portions of mating pool. Afterwards, the matting pool is 

shuffled, and crossover and mutation are performed as usual. 

Fonseca and Fleming [FF95] proposed a Pareto-based ranking procedure (MOGA), 

where the rank of an individual is equal to the number of solutions found in the 
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population where its corresponding decision vector is dominated. The fitness assignment 

is determined by interpolating the fitness value of the best individual (nondominated) and 

the worst one (most dominated). 

Kursawe [Kur91] has also proposed a “population-based approach” where he suggested 

an idea to choose one of the n objectives according to the user-definable probability 

assigned to each objective.  

Thus GAs have n search directions in Schaffer [Sch85] and Kursawe [Kur91]. We show 

the search directions of these approaches in Fig.3.15 for the case of the two-objective 

optimization problem in equation.3.6. It is clear from Fig.3.15 that, these approaches can 

easily find the solutions A and D, but it is not easy to find the solutions B and C. 

 

Figure 3.15: The search directions in Schaffer’s approach and Kursawe’s approach. 

In order to make a GA to find all the possible non dominated solutions, it is required to 

keep a variety of individuals (i.e., solutions) in each generation.  

The Niched Pareto genetic algorithm (NPGA) proposed by Horn, Nafpliotis, and 

Goldberg uses the concept of Pareto dominance and tournament selection in solving multi 

objective problems [HNG94]. In this method, a comparison set of Tdom individuals is 

randomly picked from the current population before the selection procedure. In addition, 

we choose two candidates from the current population that will compete to survive to the 

selection operation. For selecting the winner, these two candidates are compared with 

those Tdom of the comparison set using a non domination criterion given by the 

inequalities in equation.3.5 (when all objectives are to be maximized). If one candidate is 
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dominated by the comparison set but the other is not dominated, the latter is selected for 

the crossover operation. If neither or both are dominated by the comparison set, a fitness 

sharing technique is adopted (for details, see [HNG94]). 

3.8.1. Evaluation 

The values of n objective functions are required to be evaluated, in order to find solutions 

of an n-objective optimization problem using GA. Using these values of n objective 

functions, the fitness value of each chromosome string is assigned. Here, GA is used to 

search a string with a higher fitness values in the genotype domain in way similar to 

single-objective optimization problems. A way to transform the values of objective 

functions to the fitness value of each string in the genotype domain is to combine the n 

objective functions into a scalar function as follows:  

f(x)=w1f1(x)+w2f2(x)+ ... +wnfn(x) (3.7)

where f(x) is the fitness function of x, and w1,...,wn are non-negative weights for the n 

objectives. These weights satisfy the following relations: 

wi ≥ 0 for i = 1,2,...,n  (3.8)

w1+w2+…+wn =1  (3.9)

If we use constant weight values for the problem in equation.3.6 with two-objective 

functions, the direction in which GAs will search for solutions is fixed (Fig.3.16).  

 

Figure 3.16: The search direction determined by the constant weight vector (w1,w2)= 
(0.5, 0.5). 
From the above discussions, we can see that neither the constant weight value approach 

nor the choice of combining the objectives in to one objective is appropriate for finding 
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all possible non-dominated solutions of the multi-objective optimization problem in 

equation.3.4. This is because a GA is required to search in various search directions in 

order to find a variety of non-dominated solutions. In order to realize various search 

directions, one can use randomly assigned weight values. The weight values can be 

assigned using following fuction: 

wi = randomi / (random1 + ...  + randomn ),  i = 1, 2, ... , n (3.10) 

where random1, random2, ..., randomn are non-negative random real numbers (or non-

negative random integers). The fitness function with various weights is utilized in the 

selection operator.  

3.8.2. Selection 

In order to select a pair of parent strings from current population Ψ for mating to generate 

an offspring, the n weight values (w1, w2, ...,wn) are randomly generated using 

equation.3.10. Then the fitness value corresponding to each solution x in the current 

population Ψ is calculated as the weighted sum of the n objectives using equation.3.7. 

The selection probability Ps(xi) of each string x, based on the linear scaling is defined by 

the roulette wheel selection as follows: 
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where fmin(Ψ) is the minimum fitness value (i.e., the worst fitness value) in the current 

population Ψ . According to this selection probability, a pair of parent strings is selected 

from the current population Ψ. 

An offspring (i.e., a child string) is generated by crossing over of the selected pair of 

parent strings. Then a mutation operator is applied to this child string. For another pair of 

selected parent strings, separate n random weight values (w1, w2, ...,wn) are used. That is, 

a different weight vector is used for each selection. Thus the selection in MOGA will 

have different search directions as shown in Fig.3.17. 
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Figure 3.17: Various search directions of the MOGA. 

3.8.3. Elitist strategy 

During each execution of GAs for multi-objective optimization, two sets of solutions are 

usually stored: a current population and a tentative set of non-dominated solutions. After 

evaluating all the strings in the current population, the tentative set of non-dominated 

solutions is updated by the current population. That is, if any string in the current 

generated population is not dominated by any other strings in both the currently stored 

population and the tentative set of non-dominated solutions, then this string is added to 

the tentative set. This step is followed by elimination of all the solutions dominated by 

the newly added solution from the tentative set. In this manner, the tentative set of non-

dominated solutions is updated in every generation of GAs for multi-objective 

optimization problems. From the tentative set of non-dominated solutions, a few 

solutions are randomly selected and added to the current population. The randomly 

selected non-dominated solutions may be viewed as a kind of elite solutions because they 

are added to the current population with no genetic operations applied on them. Update 

procedure of the current population and the tentative set of non-dominated solutions is 

illustrated in Fig.3.18. 
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Figure 3.18: Update of the two sets of strings stored in the MOGA [MI95] 

3.9. MOGA Flow Chart 

In the previous section we considered some modified genetic operations such as 

evaluation, selection, and elitist strategy in order to construct a GA for multi-objective 

optimization problems. We can now construct MOGA by employing those operations for 

multi-objective optimization. The outline of the MOGA (Fig.3.19) can be written as 

follows: 

Step 0 (Initialization): Randomly generate an initial population of Npop strings where Npop 

is the population size. 

Step 1 (Evaluation): Decode strings to solutions in the phenotype world. Next calculate 

the values of the n objectives for each solution. Then update the tentative set of non-

dominated solutions. 

Step 2 (Selection): Repeat the following procedure to select parent strings to generate 

Npop strings. 

(i) Randomly specify the weight values w1, w2, ...,wn in the fitness function 

equation.3.7 by equation.3.10. 
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(ii) According to the selection probability in equation.3.11, select a pair of parent strings. 

 

  

Figure 3.19: Outline of the MOGA.[Deb01] 

Step 3 (Crossover): Apply a crossover operator to each of the selected pairs in Step 2, 

with crossover probability Pc. 

Step 4 (Mutation): Apply a mutation operator to each of the generated strings with 

mutation probability Pm . 

Step 5 (Elitist strategy): Randomly remove Nelite solutions from the generated Npop 

solutions, and add Nelite solutions that are randomly selected from the tentative set of non-

dominated solutions. 

Step 6 (Termination test): If a pre-specified stopping condition is satisfied, stop this 

algorithm. Otherwise, return to Step 1. 
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3.10. Conclusion 

Optimization tools must be flexible, robust and acceptably efficient in order to tackle real 

world problems. In this chapter the basics of EAs as optimization tool were discussed. 

Potential of EAs and there comparisons with other optimization techniques for solving 

real world problems was discussed in detail. It was shown through examples that EAs can 

be adapted to perform numerical optimization tasks in situations where conventional 

approaches have proven inadequate. Specifically GAs were shown to be flexible with 

many different representations and operator sets developed, and to be sufficiently robust 

and reliable to allow their use in real world applications.   

Since the problem at hand is a multiobjective problem with the two contradictory 

objectives. It was discussed how the usual practice of treating multi-objective 

optimization problems by scalarizing them into a single objective is not always suitable 

for real world problems. It was also discussed in detail that a multiple objective problem 

will not result in a single optimal solution but a number of Pareto-optimal solutions. In 

this chapter, we compared the methodology adapted in MOGA in comparison to single 

objective GA. 

With this foundation, it is thus possible for the reader to get a better understanding of 

why EA is such a promising tool when it comes to solving real world engineering 

problems.  
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Chapter-4 

Resource Allocation in OFDMA Systems using PSO 

4.1. Introduction 

OFDM is a promising modulation technique which mitigates the effect of frequency 

selective fading, inherent in high data rate environments. OFDM is essentially a type of 

multicarrier modulation scheme based on the idea of dividing a given high-bit-rate data 

stream into several parallel lower bit-rate streams, and modulating each stream on 

separate carriers-often called subchannels or tones. Multicarrier modulation schemes 

eliminate or minimize ISI by making the symbol time large enough so that the channel-

induced delays would be an insignificant fraction of the symbol duration. Therefore, in 

high-data-rate systems in which the symbol duration is small, being inversely 

proportional to the data rate, splitting the data stream into many parallel streams would 

increase the symbol duration of each stream such that the delay spread is only a small 

fraction of the symbol duration.  

OFDM is used in WLANs, and can support high data rate transmission. It can also be 

used for multiple accesses [TV05, Law99]. Multiuser OFDM also known as OFDMA 

adds multiple access to OFDM by allowing a number of users to share an OFDM symbol. 

OFDMA can take advantage of channel diversity among users in different locations by 

adaptively assigning subchannels depending on channel characteristics. This approach 

allows efficient use of all the subchannels. 

Resource allocation in OFDMA [WCLM99, WSEA04, KPL06, JL03, SRDS08, GAS07, 

Red07, TZWZ07, SAE05, SAE03, HA10, HA11, Isl11] includes subchannel allocation, 

power allocation, and bit loading. The development of efficient resource management 

techniques for such a setup has drawn enormous attention in recent years. Solutions to the 

resource allocation problem in OFDMA have been broadly divided into two categories: 

Margin Adaptive (MA) and Rate Adaptive (RA) [SAE03]. Resource allocation was 

tackled in [WCLM99] using the MA scheme, wherein an iterative subchannel and power 

allocation algorithm was proposed to minimize the total transmit power, given a set of 

fixed user data rates and the BER requirements. In [JL03] the rate adaptive method was 
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used, wherein the objective was to maximize the total data rates over all users subject to 

power and BER constraints. It was shown in [JL03] that in order to maximize the total 

capacity, each subchannel should be assigned to the user with best gain on it. However, 

no consideration was given to the fairness of allocation among the users, which could 

leave some users with low channel gains, without any channel being allocated to them. In 

[WSEA04, SAE05, SAE03], proportional fairness was incorporated by imposing a set of 

nonlinear constraints into the optimization problem. GAs, which are a class of EAs, were 

used in [SRDS08, GAS07, Red07, TZWZ07] for resource allocation. In this chapter the 

use of the PSO technique, which is a bio-inspired EA, has been proposed for subchannel 

allocation followed by WFA [PF05] for power allocation among the users.                       

4.2. OFDMA Model 

We considered an OFDMA system with K users and N subchannels, shown in Fig.4.1. 

Serial data from all the users was fed into the resource allocation block at the transmitter, 

which then allocated bits from different users to different subchannels. It was assumed 

that each subchannel would have a bandwidth that is much smaller than the coherence 

bandwidth of the channel and that the instantaneous channel gains on all the subchannels 

of all the users would be known to the transmitter. Using this channel information, the 

transmitter would apply the subchannel, bit, and power allocation algorithm to assign 

different subchannels to different users and the number of bits/OFDM symbol to be 

transmitted on each subchannel. Depending on the number of bits assigned to a 

subchannel, the adaptive modulator would use a corresponding modulation scheme, and 

the transmit power level would be adjusted according to the subchannel, bit, and power 

allocation algorithm. The principle behind adaptive modulation is simple: transmit at as 

high a data rate as possible when the channel is good, and at a lower rate when the 

channel is poor, thus limiting the number of dropped packets. Each user’s data would be 

distributed across the set of subchannels assigned to the user. The assumption was that 

each subchannel would be uniquely assigned to a single user and two or more users 

would never share the same subchannel.  
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Figure 4.1: OFDMA system Model 

The optimization problem was formulated on the same lines as in [SAE03]. The 

subchannels and power would be allocated in such a way that the total error free capacity 

would be maximized while satisfying the total power constraint (Ptot).   

The optimization problem could hence be postulated as follows:  
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In equation.4.1 No is the power spectral density of AWGN, B is the total available 

bandwidth and hk,n is the channel gain for user k in subchannel n. In C1, Ptot is the total 

available power and pk,n is the power allocated for user k in the subchannel n. According 

to C3, ρk,n can only be either 1 or 0, indicating whether subchannel n is allocated to the 

user k or not. C4 restricts allocation of one subchannel to one user only. C5 is the 
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proportional rate constraint where 1 2 3: : : ........ : kΦ Φ Φ Φ  are normalized proportionality 

constants and
1
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Φ . We relaxed this fairness criteria with more emphasis on the 

fact that all users should get at least one channel, so that k,n1
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Note here that the rates defined in equation.4.1 and equation.4.2 are rates per Hertz of 

bandwidth, i.e. they have units of bits/sec/Hz. 

4.3. Related Work 

The resource allocation problem in equation.4.1 is an NP-hard combinatorial 

optimization problem with non-linear constraints. Hence, it is highly improbable that the 

problem could be solved optimally using polynomial time algorithms. An optimal 

solution would require joint allocation of power and subchannels to the users. There are 

few instances where subchannel and power were jointly allocated using MOGAs like 

NSGA-II [SRDS08]. Because of high computational complexity involved, such multi-

objective algorithms may not be suitable for real time applications. Furthermore, the BS 

would have to rapidly compute the optimal subchannel and power allocation if the 

wireless channel changes quickly. Hence suboptimal algorithms with lower complexity 

would be preferred for cost-effective implementations. Separating the subchannel and 

power allocation is a way to reduce the complexity since the number of variables in the 

objective function is almost reduced by half.  

In this chapter we propose the use of PSO algorithm, which belongs to the class of 

heuristic search algorithms. To justify the use of PSO as compared to GAs for the 

resource allocation problem under consideration, we shall briefly introduce and compare 

them on the basis of their working principle. 
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PSO is a population based stochastic optimization technique developed by Dr. Eberhart 

and Dr. Kennedy in 1995, inspired by the social behavior of bird flocking or fish 

schooling [KE95]. The primary motivation of GAs has been the principles of evolution 

and genetics.  PSO shares many similarities with evolutionary computation techniques 

such as GAs. The system is initialized with a population of random solutions and 

searches for optima by updating generations using a combination of deterministic and 

probabilistic rules. However, unlike GA, PSO has no evolution operators such as 

crossover and mutation. In PSO, the potential solutions, called particles, fly through the 

problem space by following the current optimum particles. PSO has been successfully 

used to solve highly non-linear mixed integer optimization problems in various domains 

of engineering. In [AK12] and [RNS09], two swarm intelligence based algorithms, a 

modified version of the Artificial Bee Colony algorithm and Gravitation Search 

Algorithm (GSA), were introduced respectively. In GSA the members of the population 

interact with each other based on the Newtonian gravity and the laws of motion. The 

algorithm in [AK12] was used efficiently for solving real-parameter optimization 

problems. The authors in [SLGZ10] proposed a novel variant of PSO called cellular 

particle swarm optimization, and explored how particle swarm works in the view of 

cellular automata. Extensive use of ACO, another bio-inspired algorithm, has been done 

at the network layer of communication systems for solving routing problems. However 

implementation of such algorithms has not been done extensively in the physical layer. 

MOGA was used in [SRDS08] to solve the resource allocation problem. However its 

high computational cost has been its major drawback. It was statistically proven in 

[HCWV05], that PSO is computationally more efficient than GA for similar results. This 

is primarily because PSO has fewer parameters to adjust. In PSO, the population size, the 

inertial weight and the acceleration constants summarize the parameters to be selected 

and tuned, whereas in GA the population size, the selection, crossover and mutation 

strategies, as well as the crossover and mutation rates influence the results. In [CMM+10] 

it was shown that PSO outperforms GA in a practical engineering application pertaining 

to trajectory tracking controller. 
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Wireless channels are highly dynamic, thus resulting in the channel characteristics 

changing in short intervals of time. Thus the channel gains of users for various 

subchannels change frequently. This demands a new allocation pattern of subchannels in 

order to maximize the sum capacity. Thus quick allocation of the subchannels is a highly 

desired characteristic of the allocation algorithm. Being computationally less expensive 

than GA, PSO is better placed to quickly arrive at an optimal allocation. PSO has been 

used earlier in [AZC+11] for adaptive equalization of channels and in [KS10] for 

interference reduction through beam-forming and power control in wireless 

communication systems. 

The PSO algorithm was used to solve the Resource allocation problem in [GAS07] 

through MA allocation. However, fairness among the users was not considered. In the 

case of large path loss differences among users, it is possible that the users with higher 

average channel gains will be allocated most of the resources, i.e. subchannels and 

power, for a significant portion of time. Because of this, the users with lower average 

channel gains may not be able to transmit any data due to non allocation of subchannels 

to them. In this chapter, the use of PSO for RA resource allocation has been proposed. 

The proportional fairness among the users is also enforced by ensuring that at least one 

subchannel is made available to each user. 

As compared to other optimization techniques, the Swarm intelligence based systems are 

very flexible and robust with respect to environmental constraints and disturbances which 

make them very attractive for technical realizations [RW03]. Moreover, swarm 

intelligence inherits some important advantages such as:  

• Scalability: The number of individuals can be adapted to the network size. 

• Fault tolerance: Since the behavior of a swarm is not controlled by a centralized 

entity, the loss of a few individuals does not cause catastrophic failure. 

• Adaptation: The swarm can react to environmental changes due to the fact that 

each individual has the ability to adapt. This leads to a high value of flexibility. 

• Speed: Changes in the network can be spread very quickly among network users. 

• Modularity: Individuals act independently of other network layers. 
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• Autonomy: Little or no human control is required. This decentralized or agent-

based aspect leads to a much greater speed of convergence. 

• Parallelism: Operations of individuals are executed in a parallel manner.  

4.4. Resource allocation in OFDMA system using PSO  

PSO is a bio-inspired algorithm which derives its core motivation from the concept of 

Swarm intelligence. In nature we find many insects which live in colonies and carry out 

complex social activities in an efficient and highly optimized pattern. This bio-

intelligence is referred to as Swarm intelligence, which forms the core of PSO. These 

algorithms are particularly used when the solution space to be scanned is huge and the 

time constraint to arrive at near optimal solution is rigid. Linear search of the entire 

solution space would not be computationally feasible because of the time constraint. 

Hence these algorithms are particularly efficient when the parameters in problem are 

highly dynamic. Swarm intelligence techniques have already effectively been used in 

other fields of engineering [TY09]. Comparing to other algorithms, PSO has higher 

global-optimization capability, depends on less parameters and is computationally 

efficient in solving large scale mathematical optimization problems. PSO also has faster 

astringency in most optimization problems [KE01]. In the PSO algorithm a set of virtual 

particles are initialized to a set of solutions in the hyperspace. The hyper space is a 

geometrical visualization of the solution space with various variable parameters 

corresponding to the various dimensions. The movement of these particles in the 

hyperspace leads to their convergence to the most optimal position. The maximum 

capacity is achieved when each channel is assigned to the user having maximum gain for 

that channel but the fact that channel gains, especially in wireless applications, are highly 

dynamic with respect to user as well as time, makes rapid optimum allocation infeasible 

when using the traditional methods. The PSO algorithm does not search the solution 

space linearly [GAS07]. Therefore the possibility of finding an optimum solution before 

exhausting all possibilities is high. Assuming that the order of iterative optimization for E 

elements in the average case consists of two parts O(E)*O(ξ(E)), the complexity order 

using PSO [GAS07] will reduce to O(LogE)*O(ξ(E)), where the O(LogE) corresponds to 
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number of iterations required to reach optimal solution and the O(ξ(E)) corresponds the 

complexity of the optimization logic applied. Our customized PSO aided algorithm 

arrives at a near optimum solution with acceptable computational complexity. 

The algorithm is initialized with a population of Np particles which are capable of 

spanning the hyperspace. Each particle is defined by a position vector and velocity vector 

in the hyperspace and also carries with it the memory of its best position so far (local 

best) and also the best position taken by the entire population so far (global best). Each 

position is a possible input to the fitness function. Consequently, a position yielding a 

higher fitness value is deemed better than one giving a lower value. The guiding 

equations of the algorithm attempt to converge the particles towards the global maximum 

and one shift of each member of the population is considered as one iteration. 

The PSO algorithm in [Yhe08] was customized to make it feasible for application in the 

OFDMA system model. It assumes a continuous hyperspace with all positions of the 

particle being acceptable. However in our customized algorithm the position vector of 

each particle represents an allocation of subchannels. For example, a position vector [a b 

c d] would mean that the first channel is allocated to the user ‘a’ and the second channel 

to user ‘b’ and so on. All such position vectors represent feasible solution points in 

hyperspace of N dimensions and are discrete in nature. So in each generation, the particle 

would be moved to the discrete position nearest to itself in the hyperspace after updating 

the position vector. Also the criteria of fairness would ensure that in each solution at least 

one subchannel is granted to each user. The velocity of the particles represented the speed 

with which the particles converged (referred to as swarming) to the global optimum point 

(allocation). This has a direct bearing on the computational complexity of the algorithm.  

Notations used are as follows: 

D: The total number of dimensions. Each particle is defined by a position and velocity 

vector consisting of the values in all dimensions. Since each position vector is a possible 

subchannel allocation the number of dimensions is equal to the number of subchannels. 

So D = N (total number of subchannels). 

Np: The number of particles (population). It is also referred to as the number of bees.  

T: The number of generations (iterations).  
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rp,i,j and rg,i,j : The random number uniformly distributed in [0, 1] used for the jth 

dimension of ith particle i=1,2,….Np ; j=1,2,……D. 

cp, cg: The cognition learning factor and the social learning factor.    

w: The inertia weight function. Takes value between 0.1 and 0.9.  

xt,i,j: The jth  dimension of the position of particle i, at iteration t where t=1,2,……T; 

i=1,2,….Np and j=1,2,……D. 

Xt,i : Xt,i = (xt,i,1 ,……..xt,i,D) is the position vector of particle i at iteration t. Each position 

vector has the values of all dimensions of that particle, where t=1,2,…T,  i=1,2,….Np and 

j=1,2,……D.  Each position vector represents a possible allocation of subchannels.  

vt,i,j : the jth dimension of the  velocity vector  of particle i at iteration t, where 

t=1,2,……T ; i=1,2,….Np and j=1,2,……D. 

Vt,i : Vt,i = (vt,i,1, …… vt,i,D)    is the velocity vector of particle i at iteration t, which also 

has D  dimensions, where t=1,2,……T ; i=1,2,….Np  and j=1,2,……D. 

Pt,i: Pt,i= (pt,i,1, ……. pt,i,D) is the best position of particle i so far until                                    

iteration t, called the Pbest for that particle, i.e. it gives highest value of                           

fitness function among all positions taken so far where t=1,2,……T; i=1,2,….Np and 

j=1,2,……D . 

tG : Gt= (gt,1,…..gt,D) the best solution among Pt,1, Pt,2, …. Pt, Np at iteration T. It is called 

Gbest. Hence Gbest is position vector that gives highest value of fitness function attained so 

far in all particles and in all iterations up to current iteration (iteration t) where 

t=1,2,……T. 

F(): The fitness function value of . The  is a position vector of the particle whose 

fitness function is to be calculated. Fitness function is sum rate of OFDMA system. 

U(), L(): A vector (of length D) specifying upper and lower bounds for all dimensions 

of . Here  stands for position vector or velocity vector. In case of the position vector, 

the lower and upper bounds of the dimensions are equal to 1 and the number of users (K) 

respectively. 
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Figure 4.2: PSO Algorithm Flow chart 
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The steps in the algorithm are as follows: 

STEP 1: Initialize parameters and population with random positions and velocities such 
that each position gives a particular allocation of all the subchannels. 

STEP 2: Evaluate the fitness value (the desired objective function giving sum rate of 
OFDMA system) for each particle. 

STEP 3: Find the Pbest: If the fitness value (sum rate) of particle i is better than its best 
fitness value (Pbest) in history, then set the Pbest to the current fitness value. Repeat this 
step for all particles. 

STEP 4: Find the Gbest: If any Pbest is updated and is better than the current Gbest then 
update Gbest. 

STEP 5: Calculation of velocity vector: Calculate velocity vector for each particle 
according to following equation:  

, , 1, , , , 1, , 1, , , , 1, 1, ,( ) ( )        t i j t i j p p i j t i j t i j g g i j t j t i jv wv c r p x c r g x  (4.3)

Adjust the velocity vector to meet its range if necessary using L(V) and U(V). 

STEP 6: Calculation of position vector: Using the corresponding velocity vector move  
 each particle to the next position according to the following equation.  

, , 1, , , ,t i j t i j t i jx x v   (4.4)

Adjust the position vector to meet their range if necessary using L(X) and U(X). Move 
the particle in the N dimensional hyperspace to a discrete position nearest to itself. On 
ensuring that the position of each particle of population is discrete, go to step 7.  

STEP 7: After step 6, certain particles may represent solutions which are feasible but still 
unacceptable due to the fairness criteria. The fairness criteria was relaxed with more 
emphasis on the fact that all users should get at least one channel. Hence to ensure 
fairness in the algorithm the following steps were taken for each particle of current 
generation: 

a) Define  following sets for each particle using its position vector : 

A: {i | i is the user having no subchannel allocated to it} 

B: {j | j is the user having more than one subchannel allocated to it} 

Ck :{ s | s is the subchannel allocated to user k} 

b) While A Θ (null set) 
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i) Find  k satisfying  / /      k k j jR Φ R Φ j B    

ii) For the found k, find n satisfying , ,k n k s kh h    s C    

iii) For the found n, find m satisfying , ,   im n i nh h A     

iv) For the found k, n and m, { }k kC C n  ,  { }m mC C n   and 

{ }A A m  update set B 

v) Update the position vector by setting xt,u,n= m, where u is the particle for 

which the steps are being currently implemented (u=1, 2, 3……Np ) 

Carrying out the above steps for all particles ensured that they moved in the hyperspace 

to points which are both feasible and acceptable locations. 

STEP 8: Stopping criterion: If the maximum number of iterations is reached, then stop; 

otherwise go back to STEP 2. 

4.5. Results 

Assumptions and Constants:  

For various constants required in the calculation, their accepted values [SAE03] were 

used: 

N (Number of subchannels) 64 

No(Power Spectral Density of Noise) 1.1565 x 10-8 W/Hz; 

B(Bandwidth) 1 MHz; 

Ptot(Total Power) 1W 

Channel gains of the users on the subchannels have a Rayleigh distribution [SAE03]. 

This channel gain matrix is generated once and kept constant throughout the simulations.  

PSO Parameter Tuning  

The main parameters of the canonical PSO model are w, cp, cg, maximum velocity Vmax 

and the population size (swarm size) S. The fine tuning of these parameters determine 

how it optimizes the search-space. For instance, one can apply a general setting that gives 

reasonable results on most problems, but seldom is very optimal. Since the same 

parameter settings not at all guarantee success in different problems, we must have 
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knowledge of the effects of the different settings, so that we can pick suitable parameters 

for any problem. 

For instance, the inertia weight w controls the momentum of the particle: if w << 1, only 

little momentum is preserved from the previous time-step; thus quick changes of 

direction are possible with this setting. The concept of velocity is completely lost if w = 

0, and the particle then moves in each step without knowledge of the past velocity. On the 

other hand, if w is high (>1) we observe the same effect as when cp and cg are low: 

Particles can hardly change their direction and turn around, which of course implies a 

larger area of exploration as well as a reluctance against convergence towards optimum. 

Usually cp equals to cg and ranges from [0, 4]. 

The maximum velocity Vmax determines the maximum change one particle can undergo in 

its positional coordinates in each iteration. Usually we set the full search range of the 

particle’s position as the Vmax. However, with the use of w in the velocity update formula 

(as in equation.4.3), tuning Vmax to some extent has become unnecessary; at least 

convergence can be assured [CK02] without proper tuning of Vmax. 

It is quite a common practice in the PSO literature to limit the number of particles in the 

range 10–60. Van den Bergh and Engelbrecht [BE01] have shown that though there is a 

slight improvement of the optimal value with increasing swarm size, a larger swarm 

increases the number of function evaluations to converge to an error limit. Eberhart and 

Shi [ES00] illustrated that the population size has hardly any effect on the performance of 

the PSO method. This fact was verified through simulation and the detailed analysis is 

presented in section 4.5.4. 

Considering the above facts, we applied parameter tuning only for w, cp and cg. 

Following ranges, based on literature survey were used for these parameters: 

_w three levels: (0.2, 0.4 and 0.6)  

_cp = cg three levels: (1, 2 and 3)  

Based on the range of parameters selected, PSO algorithm effectively has two 

parameters, and each parameter has three levels; hence, we have 09 different conditions.  

In order to have more comprehensive analysis, each of these 09 conditions for PSO, were 

simulated 10 times each, for all cases of the problem set under consideration.  
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Each set of simulations was allowed to run for 100 iterations. The simulation results 

showed that the PSO algorithm performs better in terms of convergence and capacity for 

cp =cg =2 and w = 0.2. Moreover, there was very slight improvement in capacity after 40 

iterations, when these parameters were used for simulation. Hence these parameters were 

used for the rest of the simulations. 

4.5.1. Sum Capacity vs. Number of Users 

Table 4.1 and Fig.4.3 show the variation of average sum capacity with the number of 

users, for a fixed number of subchannels (N=64). The Population (set of possible 

subchannel allocations) size was also fixed to 12 bees and maximum number of iterations 

was restricted to 40. The algorithm was executed 100 times for each set of users and then 

the average of sum capacity was calculated. It is evident from Fig.4.3 that the use of PSO 

for subchannel allocation for OFDMA systems has consistently higher sum capacity than 

the method in [SAE03]. The average capacity gain of about 20% was obtained over 

method in [SAE03]. 

Table 4.1: Variation of sum capacity with number of users 

 

 

Moreover, as the number of users increases, the sum capacity also increases; this is 

because of added multiuser diversity gain. Multiuser diversity is obtained by 

opportunistic user scheduling at either the transmitter or the receiver. The effect of 

Users(K) 
Sum capacity (bits/s/Hz) 

PSO (32) PSO (64) [SAE03](64) PSO (128) 

2 4.62 4.59 4.42 4.57 

4 4.69 4.68 4.50     4.65 

6 4.77 4.75 4.57     4.72 

8 4.87 4.82 4.96   4.79 

10 4.89 4.87 4.62   4.85 

12 4.93 4.92 4.64    4.89 

14 4.99 4.98 4.65 4.94 

16 5.07 5.00 4.66 4.99 



111 

 

multiuser diversity is predominant in systems with large number of users, as with the 

increasing number of users in the system, the probability that a given subchannel is in a 

deep fade for all users’ decreases. 

On the other hand, keeping all other parameters fixed when we increased the number of 

subchannels to 128 the sum capacity decreased slightly as compared to the sum capacity 

with 64 subchannels. Similarly, when the number of subchannels were reduced to 32 the 

sum capacity obtained was slightly better than that with 64 subchannels. Since a the 

subchannel bandwidth of each subchannel is equal to the total bandwidth divided by the 

number of subchannels, the bandwidth of each subchannel is reduced and increased with 

increase in the number of subchannels and reduction in the number of subchannels 

respectively. Moreover, since the total bandwidth and power were kept constant, each 

subchannel was then left with either less power and less bandwidth or more power and 

more bandwidth respectively. This was verified (Table 4.1, Fig.4.3) with the slight 

decrease/increase in sum capacity with increase/decrease in the number of subchannels. 

 

Figure 4.3: Sum capacity versus Number of users 

The complexity analysis PSO aided subchannel allocation and its comparison with the 

method in [SAE03] is presented in following sub section. 
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4.5.2. Complexity Analysis 

In order to analyze the computational complexity of the algorithm, recall that K refers to 

the total number of users in the system. N on the other hand refers to the number of 

subchannels, which is a power of 2 and much larger than K.  

The subchannel allocation method proposed in [SAE03] is basically a three step process. 

Step 1 of the algorithm calculates number of subchannels to be allocated to each user 

while taking care of proportional fairness. This step requires 1 division and K 

multiplications, and thus has a complexity of O(K). 

The actual subchannel assignment is done in step 2, which involves sorting the 

subchannel gains Hk,n for each user k, therefore requiring O(K N log2 N) operations. The 

user with best gain on a particular subchannel is then allocated that subchannel. It then 

searches for the best user k among K users for the remaining N - K unallocated 

subchannels, thus requiring another O((N - K)K) operations. In Step 3, it allocates the 

remaining N* subchannels to the best user, and thus requires O(K) operations. These 

operations pertain to the subchannel allocation, and the asymptotic complexity is 

O(KNlog2N). 

Calculating the number of subchannels to be allocated to each user before actual 

allocation on the basis of SNR introduces extra overhead. In step 2 sorting of subchannels 

on the basis of gains is another overhead. In the proposed PSO aided subchannel 

allocation, these overheads are removed by relaxing the proportionality constraint such 

that each user should get at-least one subchannel while searching and allocation of 

subchannels is performed simultaneously. 

In each iteration the fitness function is evaluated for each particle with a complexity of 

O(N). The double summation, over all subchannels and users, involved in the sum 

capacity calculation using equation.4.1 reduces to a single summation, over all 

subchannels only. This is due to two reasons: Firstly, due to the constraints (C3 & C4) that 

each subchannel should be assigned to a unique user and is not shared among users. 

Secondly, the user to which that subchannel is assigned is known to us from the particle 

position for each iteration. This reduces the overhead of having to sort through the gains 

of different users on a particular subchannel as required in [SAE03].Then the fitness 
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value of particle i is compared with its previous best fitness value (Pbest) in history, with a 

complexity of O(1). This step is repeated for each particle, if we represent number of 

particles by M, this step requires M comparisons. Hence the complexity of this step is 

O(M). If the value of Pbest is updated in previous step and is found to be better than the 

current Gbest then Gbest is updated. In worst case scenario when all Pbest were updated, it 

will again require M comparisons with complexity of O(M). Similarly the updating 

velocity vector and position vector for each particle will have maximum complexity of 

O(M). 

In the light of the above discussion, it is clear that the main complexity lies in calculation 

of fitness function for each particle in each iteration. If we represent maximum number of 

iterations by I, the complexity of our algorithm will be O(NMI). It is quite a common 

practice in the PSO literature to limit the number of particles to the range 10–60 

[KE01].Though there is a slight improvement in the optimal value with increasing swarm 

size, a larger swarm increases the number of function evaluations to converge to an error 

limit. Hence for a fixed population size and number of iterations the complexity of our 

algorithm can be written as O(N).  

Moreover, for actual scenarios where the number of subchannels and users will be very 

large the complexity O(NMI) will be much less than O(KNlog2N) in [SAE03]. 

Furthermore it is evident from Fig.4.4 and Fig.4.5 that PSO attains much higher sum 

capacity as compared to method in [SAE03] for a population size and number of 

iterations as low as 2 and 10 respectively. So the assumption of neglecting population 

size M and number of iteration I in complexity calculation for actual scenarios is 

justified.  

Thus the PSO aided subchannel allocation outperformed the results in [SAE03] by 

obtaining better sum capacity without being computationally expensive. 

In order to show that the algorithm was robust we studied the effect of variations of 

number of iterations and population size on sum capacity. The following sections discuss 

the results we obtained for these simulations. 
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4.5.3. Sum capacity obtained vs.  Number of iterations 

In order to study the effect of number of iterations on sum capacity, we fixed the number 

of users to 16 and population size to 12 bees. As it is evident from Fig.4.4 the sum 

capacity initially increased with the number of iterations and then gradually saturated for 

the higher values. This showed that, initially the particles were consistently moving to 

new positions giving higher values of fitness function and then slowly converged to a 

near optimal point.  

It is also evident from Fig.4.4 that proposed method provided significant gain in sum 

capacity over method in [SAE03] for number of iterations as low as 10. Moreover after 

few more iterations the sum capacity saturated to near optimal value, which reaffirms the 

fact that PSO aided subchannel allocation, is capable of providing higher sum capacities 

for significantly less number of iterations. 

 

Figure 4.4: Sum capacity versus number of Iterations 

4.5.4. Sum Capacity vs. Population size 

 In order to study the effect of population size (number of bees) on sum capacity, we 

fixed the number of users to 16 and maximum number of iterations to 40. As it is evident 
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from Fig.4.5 the sum capacity initially increased with the number of bees and then 

rapidly saturated to near optimum value. It is also evident from Fig.4.5 that even for very 

low value of number of bees the proposed method provided significant capacity gain over 

method in [SAE03]. The sum capacity obtained saturates to near optimum value for a 

population size of as low as 16. 

This reaffirms the fact that PSO aided subchannel allocation in OFDMA systems is 

capable of providing significant capacity gains even with very low population size and 

number of iterations, without being computationally expensive. 

 

Figure 4.5: Sum capacity versus population size (Bees) 

4.6. Conclusion 

In this chapter, we have proposed the use of PSO, a stochastic optimization technique, for 

subchannel allocation in downlink of OFDMA systems followed by power allocation 

using WFA. The results produced by the simulations indicate that the algorithm performs 

better in terms of sum capacities as compared to [SAE03]. The sum capacity increases 

with the increase number of users. The sum capacity also increases initially with the 
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increase in number of iterations and population size but rapidly saturates to a near 

optimal value. 

This result suggests that PSO aided subchannel allocation can provide significant gain in 

capacity even with very small population size and number of iterations. Moreover in PSO 

aided subchannel allocation the search and subchannel allocation is performed 

simultaneously as compared to traditional methods where the subchannels are first sorted 

in accordance of their gains and then allocation is performed. This significantly reduces 

the complexity of PSO aided allocation.  

The complexity of our algorithm was assessed to be O(N) as compared to O(KNlog2N) 

for that of method in [SAE03]. Hence it may be concluded that the proposed algorithm is 

order of magnitude faster as compared to the method in [SAE03]. This fact makes PSO 

aided subchannel allocation a suitable choice for practical wireless systems like WiMAX 

(802.16e) where the convergence rate plays a very important role as the wireless channel 

changes rapidly. The fact that the channel is assumed to be constant during allocation 

makes convergence rate a very important parameter for wireless systems.  
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Chapter-5 

Resource Allocation in OFDMA Systems using Novel 

Genetic Algorithm 

5.1. Introduction 

The advent of new generation of communication technologies has ushered in an era of 

high data rates and better reliability. Spatial Multiplexing offers high channel 

capacities or transmission rate for the same bandwidth with no additional power 

requirements by employing multiple antennas at the transmitter and receiver. 

However, high data transmission is limited by ISI. OFDM uses the spectrum 

efficiently by spacing the channels closer together as well as it has the ability of 

reducing ISI. The combination of these two technologies has been researched for the 

most promising candidate technique for the next generation wireless systems. 

Users of multiuser OFDM system observe multipath fading but have independent 

fading parameters due to their different locations. The probability that a subchannel 

has been in deep fade for one user may also be in deep fade for other users is quite 

low. Hence, in multiuser system the channel diversity increases as the number of user 

increases. Therefore, in multiuser OFDM environment, the system needs to allocate 

bits as well as subchannels adaptively to the users. There are two classes of resource 

allocation schemes; fixed and adaptive resource allocation. Fixed allocations use 

TDMA or FDMA to allocate each user an independent time slot of subchannel. But 

fixed schemes do not consider the current channel condition for each user, in order to 

enhance the system performance. 

Adaptively assigning resources to each user based on the channel condition can 

improve system performance when compared to fixed scheme, this is called multiuser 

diversity. 

Adaptive subchannel and modulation for multiuser OFDM systems with SISO has 

been extensively studied [Law99, RABT02, WCLM99, JL03].  

Adaptive subchannel allocation algorithm for MU MIMO OFDM has been at the 

centre of current research [CLC10, PB10, ASC11, CLL11]. This is due to the large 

system capacity that is produced by using adaptive algorithms for resource allocation 

in such systems. Subchannel allocation algorithms that maximize the capacity of each 

user have been studied in [Red07, TZWZ07, KPL06, SA11b]. 
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As discussed in Chapter-4, there are two broad classifications for resource allocation 

problem for multiuser OFDM systems: MA and RA [KPL06, STTA12, SA11a]. In 

MA approach the emphasis is on minimizing the total transmit power subject to the 

constraints of data rate and BER. Authors, in [WCLM99] proposed a MA scheme, 

wherein an iterative subchannel and power allocation algorithm was proposed. RA 

approach, on the other hand tries to maximize the total throughput of the system while 

taking in to consideration the constraints of power budget and/or BER. Authors in 

[JL03], proposed a RA method to maximize the total data rates over all users subject 

to power and BER constraints. It was shown in [JL03] that in order to maximize the 

total capacity each subchannel should be assigned to the user with best gain on that 

subchannel. 

The MA Optimization technique has been dealt with efficiently in [Red07, TZWZ07]. 

GA has been used here for resource allocation and has been shown to provide better 

results than normal iterative algorithms. In [KPL06], it was shown that RA 

optimization can be solved sub-optimally by separating Subchannel and Bit Loading 

Allocation. The RA optimization problem is a mixed binary integer programming 

problem. In [WSEA04], the proportional rate constraint is added to the existing RA 

optimization problem. However, the introduction of this constraint makes the 

optimization problem non-linear thus increasing the difficulty in finding the optimal 

solution because the feasible set is not convex. 

Rate maximization and satisfying total power constraints are two seemingly 

conflicting objectives [SRDS08] with a lot of trade-offs. To simplify the problem, 

both of them are dealt with separately. In this chapter, we propose the use of a 

modified GA to allocate subchannels in a downlink OFDMA system, with the aim to 

maximize total capacity. The same algorithm is then extended and applied to 

downlink MIMO OFDMA system for obtaining subchannel allocation. The proposed 

GA is used to generate the subchannel allocation assuming equal power to all users. 

After the subchannel allocation, the bit loading can be performed using equation.5.12 

(section 5.3). 

5.2. System Model and Problem Formulation 

A MIMO OFDMA system model is shown in Fig.5.1. Subchannel information is sent 

back to the BS from all users through an individual feedback channel. The BS of a 

downlink MIMO OFDMA system applies the combined subchannel and power 
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allocation algorithm to assign subchannels to different users. It also provides the 

number of bits/OFDM symbol from each user to be transmitted on each subchannel. 

Depending on the number of bits assigned and the corresponding modulation scheme, 

the power allocated to each subchannel is determined. This subchannel and bit 

allocation information is then transmitted to the receiver along with each OFDM 

symbol. Separate control channels are used for transmitting this information. 

Therefore each user needs to decode the bits on its respective assigned subchannel. 

The BS is updated every time the subchannel information changes. 

 

Figure 5.1: MIMO OFDMA system block diagram 

We consider a system having K users and N subchannels, with maximum power 

constraint of Ptot. It is assumed that the BS has perfect information about CSI through 

feedback channels. Furthermore it is assumed that no two users can share same 

subchannel.  

In order to support the assumption of perfect CSI at the transmitter, the wireless 

channel is considered to be slowly time-varying, frequency-selective Rayleigh faded 

with a total bandwidth of B. Each user is assumed to experience independent fading 

and the channel gain of kth user in nth subchannel is denoted by gk,n , with AWGN σ2= 

No B/N where No is the noise power spectral density. SNR for corresponding 

subchannel is thus denoted as hk,n=gk,n/ σ
2 and the kth user’s received SNR on nth 

subchannel is γk,n=pk,n hk,n, here pk,n is power allocated to kth user on nth sub carrier. 
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In practical modulation schemes, the transmit power pk,n and hence the SNR have to 

be adjusted according to the required BER. In [WCLM99], the required receive power 

for supporting rk,n bits per symbol in the case of M level QAM with square signal 

constellations at a given BER pe, is given by: 
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However, as in [WSEA04], to formulate the resource allocation problem, the 

approximate expression is used for BER. The BER of a square MQAM with Gray bit 

mapping in AWGN as a function of received SNR γk,n and number of bits rk,n has been 

approximated tightly to within 1 dB for rk,n ≥ 4 and BER ≤10-3 as: 
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Solving for  ,k nr , we have  
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Where Γ≈ -ln(5BER)/1.6 is a constant SNR gap, and Hk,n≈ hk,n / Γ  is the effective sub 

channel SNR. 

The objective function of resource allocation problem in multiuser OFDM systems 

with proportional rate constraint is formulated as [WSEA04]:  

, ,

, , ,
2

1 1 o

max log 1
N / 

 
 

 


k n k n

K N
k n k n k n

c p
k n

c p H

N B N
 (5.4)

Subject to constraints: 

 1 ,: 0,1 , k nC c k n  

2 ,: 0 , k nC p k n  

3 ,
1

: 1


 
K

k n
k

C c n  

4 , , tot
1 1

: P
 


K N

k n k n
k n

C c p  

 5 : : , 1,.... ,   i j i jC R R Φ :Φ i j K i j  



121 
 

Where ck,n is the subchannel allocation indicator such that ck,n= 1 if and only if 

subchannel n is assigned to user k, and Ptot is the transmit power constraint. In C5    

, ,
1

K

k k n k n
k

B
R c r

N 

   (5.5)

is the total data rate for user k and Ф1:Ф2:…:ФK are the normalized proportionality 

constants where 
K

k 1
1


 kΦ . 

Note that constraints C1 and C2 ensure the correct values for the subchannel allocation 

indicator and the power respectively. C3 imposes the restriction that each subchannel 

can only be assigned to one user, and C4 and C5 are the power and proportional rate 

constraints respectively.  

The optimization problem in equation.5.4 is generally very hard to solve. It involves 

both continuous variables pk,n and binary variables ck,n. Such an optimization problem 

is called a mixed binary integer programming problem. Furthermore, the nonlinear 

constraints in equation.5.4 increase the difficulty in finding the optimal solution 

because the feasible set is not convex. 

Extending the above problem formulation for OFDMA [WSEA04] to MIMO 

OFDMA systems, with the same assumption of each subchannel can be used only by 

one user at each time. Then each subchannel has a narrowband channel with MT and 

MR antennas at the transmitter and the receiver respectively, which can be modeled by 

an MT    MR channel matrix: 
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If we can extract some suitable parameters from Hk,n, then we can use same algorithm 

to solve the problem for both OFDMA and MIMO OFDMA.  

For the MIMO OFDMA system, the optimization problem can be formulated as: 
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Where M = min (MR, MT), λk,n,i is the ith
 Eigen-value of matrix , ,

H
k n k nH H .According to 

Jensen in-equation: 
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We can see that the Frobenius-norm of Hk,n can represent the channel condition of 

user k in subchannel n. If the SNR is high enough, the left side of in equation.5.8 can 

be rewritten as: 
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So in high SNR case, the determinant of H

k,n k,nH H  is also a suitable parameter. 

In a system with K users and N subchannels, there are KN possible subchannel 

allocations, since it is assumed that no subchannel can be used by more than one user. 

For a certain subchannel allocation, an optimal power distribution can be used to 

maximize the sum capacity, while maintaining proportional fairness. The maximum 

capacity over all KN subchannel allocation schemes is the global maximum and the 

corresponding subchannel allocation and power distribution is the optimal resource 

allocation scheme. However, it is prohibitive to find the global optimizer in terms of 

computational complexity. A suboptimal solution using GA is proposed in this 

chapter to reduce the complexity significantly while still delivering performance close 

to the global optimum. 

5.3. Proposed Solution 

Assuming low SNR and N1:N2:….:Nk=Ф1:Ф2:…:Фk in the sub channel allocation 

algorithm. The second assumption above holds true and is a valid assumption as used 

in [WSEA04]. The proposed steps (Fig.5.2) are as follows: 
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Step 1: Input number of generations (G), Channel gain matrix (H), Total Power (Ptot), 

Bandwidth (B), number of channels (N), number of users (K), and Proportional 

fairness ratio Ф1:Ф2:…:Фk . 

Step 2: Create initial population of chromosomes (possible subchannel allocation) and 

calculate their capacities using either 
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Step 3: Sort all chromosomes in the increasing order of their capacities. 

Step 4: Generate probability levels for each chromosome based on their total 

capacities that is, the chromosome with highest capacity has highest probability of 

selection for crossover. 

Step 5: Select two chromosomes from the entire population based on their fitness 

values (sum capacity). 

Step 6: Select two points randomly on the parent chromosome for crossover (Two 

point crossover). 

Step 7: Generate two child chromosomes (new subchannel allocation) by swapping 

parent chromosomes from starting to first random point and from second random 

point to end of chromosome. 

Step 8: Replace the two chromosomes of lowest capacities with the two new child 

chromosomes. 

Step 9: Select a chromosome from the entire population for mutation. 

Step 10: Flip the channels allocated to users in the selected chromosome.   

Step 11: If user has more channels than he should, corresponding channel (based on 

channel gain) is allocated to the user with less number of channels. 

Step 12: If any user has less number of channels, unallocated channel with highest 

channel gain is allocated to that user. 

Step 13: Calculate capacities for each chromosome using equation.5.10. 

Step 14: Decrement G. 

Step 15:  If G = 0 select the chromosome with highest capacity, otherwise go back to 

Step 4. 
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Power Allocation 

With subchannel allocation having been carried out, i.e.   1

K

k k
η  (η  represents set of 

all subchannels) have been determined, a power fine-tuning can be carried out in 

order to further improve the system capacity. For SISO case, the optimal power 

allocation with known subchannel allocation is provided in [WSEA04]. It is important 

to note that the system capacity is not sensitive to the power allocation [JL03, BC07, 

KHK05] at high SNR condition due to the logarithmic calculation in the objective 

function (equation.5.4). Thus, we used equal power allocation for faster results. 

Similarly for MIMO with subchannel allocation known, the optimization problem in 

equation.5.7 reduces equivalent to maximizing the following cost function by using 

Lagrangian relaxation: 
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where 1 and k are Lagrangian multipliers. Differentiating L with respect to pk,n ,and 

setting each derivative to 0, we can obtain the optimal power distribution for a single 

user:  
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for , kn mη and k=1,2,…,K.  

Note that the function f(x)=x/(1+px) is monotonically increasing and tends to  1/p i.e. 

 
x
lim x /(1 x) 1/p p


  . Thus, an approximation to equation.5.12 can be obtained 

under high SNR as: M/Pk,n= M/Pk,m . 

That is equivalent to Pk,n = Pk,m for , kn mη ,  n m  and k=1,2,…,K. Due to no 

subchannel sharing among users, it can be concluded that power could be 

approximately distributed across all subchannels of each user in an equal manner. 

Obviously, this equal power allocation is not optimized to improve fairness. However, 

it achieved near optimal proportional fairness for our problem when combined with 

the proposed subchannel allocation. 
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Figure 5.2: Flow chart representation of proposed steps 
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5.4. Simulation Results 

The frequency selective multipath channel had been modeled as consisting of six 

independent Rayleigh multipaths, with an exponentially decaying profile. A 

maximum delay spread of 5µs and maximum Doppler of 30 Hz has been assumed. 

The channel information is sampled every 0.5 ms to update the subchannel and power 

allocation. The total power was assumed to be 1 W, the total bandwidth as 1 MHz, 

and total subchannels as 64. The average subchannel SNR is 38 dB, and BER ≤10-3, 

giving an SNR gap Γ= -ln (5 x 10-3)/1.6 = 3.3. This constant is used in the calculation 

of the rate rk,n of user k in subchannel n given in equation.5.10. 

For selecting the probabilities of crossover and mutation, we considered three set of 

each of these parameters. The set of values of probability of crossover and mutation 

considered were 0.7, 0.8, 0.9 and 0.01, 0.02, 0.03 respectively. Each of these 09 

possible combinations was simulated for each problem set. In each of these 

simulations the population size and number of iterations were fixed to 100 each. The 

best results were obtained for probability of crossover as 0.9 and that of mutation as 

0.03. Hence these values were used for all simulations later. 

The performance of proposed algorithm is presented in two parts. In the first part, we 

present the explanation of the simulation results obtained for different set of users. In 

the second part we compare the results obtained by proposed method with that of 

[WSEA04]. 

In the first part of simulation, the proportional rate constraint 

Ф1:Ф2:…:Фk=1:2:4..:1:2:4 was strictly enforced. The number of users considered was 

12, 16, 20 and 24. The simulation results obtained using GA for subchannel allocation 

and allocating power using optimal power allocation in [WSEA04]/eqn5.12 for 

SISO/MIMO are shown in Fig.5.3-5.5/Fig.5.6-5.8 respectively. The algorithm was 

executed 100 times for each set of number of users. The best, average and worst 

results were selected manually on the basis of final proportionality obtained. In each 

figure the three graphs in part (a), from left to right depicts the initial capacity of each 

user before applying GA, the capacities obtained in each generation of GA and the 

final capacity of each user after the sub channel allocation using GA. While part (b), 

from left to right shows power allocated using optimal power allocation and final 

capacity allocated after power and subchannel allocation.  
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(a) 

 

(b) 

Figure 5.3.(a,b): Best Case simulation results, SISO system with 12 users (a) 
Capacity after Subchannel allocation using GA (b) Capacity after Subchannel 
allocation using GA and Power allocation using Optimal Power allocation. 



128 
 

 

(c) 

 

(d) 

Figure 5.3.(c,d): Best Case simulation results for SISO system with 16 users (c) 
Capacity after Subchannel allocation using GA (d) Capacity after Subchannel 
allocation using GA and Power allocation using Optimal Power allocation. 
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(e) 

 

(f) 

Figure 5.3.(e,f): Best Case simulation results SISO system with 20 users (e) Capacity 
after Subchannel allocation using GA (f) Capacity after Subchannel allocation using 
GA and Power allocation using Optimal Power allocation. 
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(g) 

 

(h) 

Figure 5.3.(g,h): Best Case simulation results SISO system with 24 users (g) 
Capacity after Subchannel allocation using GA (h) Capacity after Subchannel 
allocation using GA and Power allocation using Optimal Power allocation. 
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(a) 

 

(b) 

Figure 5.4.(a,b): Average Case simulation results for SISO system with 12 users (a) 
Capacity after Subchannel allocation using GA (b) Capacity after Subchannel 
allocation using GA and Power allocation using Optimal Power allocation. 
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(c) 

 

(d) 

Figure 5.4.(c,d): Average Case simulation results for SISO system 16 users (c) 
Capacity after Subchannel allocation using GA (d) Capacity after Subchannel 
allocation using GA and Power allocation using Optimal Power allocation. 
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(e) 

 

(f) 

Figure 5.4.(e,f): Average Case simulation results for SISO system 20 users (e) 
Capacity after Subchannel allocation using GA (f) Capacity after Subchannel 
allocation using GA and Power allocation using Optimal Power allocation. 
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(g) 

 

(h) 

Figure 5.4.(g,h): Average Case simulation results for SISO system 24 users (g) 
Capacity after Subchannel allocation using GA (h) Capacity after Subchannel 
allocation using GA and Power allocation using Optimal Power allocation. 
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(a) 

 

(b) 

Figure 5.5.(a,b): Worst Case Simulation results for SISO system with 12 users (a) 
Capacity after Subchannel allocation using GA (b) Capacity after Subchannel 
allocation using GA and Power allocation using Optimal Power allocation. 
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(c) 

 

(d) 

Figure 5.5.(c,d): Worst Case Simulation results for SISO system with 16 users (c) 
Capacity after Subchannel allocation using GA (d) Capacity after Subchannel 
allocation using GA and Power allocation using Optimal Power allocation. 
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(e) 

 

(f) 

Figure 5.5.(e,f): Worst Case Simulation results for SISO system with 20 users (e) 
Capacity after Subchannel allocation using GA (f) Capacity after Subchannel 
allocation using GA and Power allocation using Optimal Power allocation. 
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(g) 

 

(h) 
Figure 5.5.(g,h): Worst Case Simulation results for SISO system with 24 users (g) 
Capacity after Subchannel allocation using GA (h) Capacity after Subchannel 
allocation using GA and Power allocation using Optimal Power allocation. 
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(a) 

 

(b) 
Figure 5.6.(a,b): Best Case Simulation results for MIMO system with 12 users (a) 
Capacity after Subchannel allocation using GA (b) Capacity after Subchannel 
allocation using GA and Power allocation using equation.5.12 
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(c) 

 

(d) 

Figure 5.6.(c,d): Best Case Simulation results for MIMO system with 16 users (c) 
Capacity after Subchannel allocation using GA (d) Capacity after Subchannel 
allocation using GA and Power allocation using equation.5.12 
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(e) 

 

(f) 

Figure 5.6.(e,f): Best Case Simulation results for MIMO system with 20 users (e) 
Capacity after Subchannel allocation using GA (f) Capacity after Subchannel 
allocation using GA and Power allocation using equation.5.12 
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(g) 

 

(h) 

Figure 5.6.(g,h): Best Case Simulation results for MIMO system with 24 users (g) 
Capacity after Subchannel allocation using GA (h) Capacity after Subchannel 
allocation using GA and Power allocation using equation.5.12 
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(a) 

 

(b) 

Figure 5.7.(a,b): Average Case Simulation results for MIMO system with 12 users 
(a) Capacity after Subchannel allocation using GA (b) Capacity after Subchannel 
allocation using GA and Power allocation using equation.5.12 
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(c) 

 

(d) 

Figure 5.7.(c,d): Average Case Simulation results for MIMO system with 16 users 
(c) Capacity after Subchannel allocation using GA (d) Capacity after Subchannel 
allocation using GA and Power allocation using equation.5.12 
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(e) 

 

(f) 

Figure 5.7.(e,f): Average Case Simulation results for MIMO system with 20 users (e) 
Capacity after Subchannel allocation using GA (f) Capacity after Subchannel 
allocation using GA and Power allocation using equation.5.12 
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(g) 

 

(h) 

Figure 5.7.(g,h): Average Case Simulation results for MIMO system with 24 users 
(g) Capacity after Subchannel allocation using GA (h) Capacity after Subchannel 
allocation using GA and Power allocation using equation.5.12 
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(a) 

 

(b) 

Figure 5.8.(a,b): Worst Case Simulation results for MIMO system with 12 users (a) 
Capacity after Subchannel allocation using GA (b) Capacity after Subchannel 
allocation using GA and Power allocation using equation.5.12 
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 (c) 

 

(d) 

Figure 5.8.(c,d): Worst Case Simulation results for MIMO system with 16 users (c) 
Capacity after Subchannel allocation using GA (d) Capacity after Subchannel 
allocation using GA and Power allocation using equation.5.12 
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(e) 

 

(f)  

Figure 5.8.(e,f): Worst Case Simulation results for MIMO system with 20 users (e) 
Capacity after Subchannel allocation using GA (f) Capacity after Subchannel 
allocation using GA and Power allocation using equation.5.12 
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(g) 

 

(h) 

Figure 5.8.(g,h): Worst Case Simulation results for MIMO system with 24 users (g) 
Capacity after Subchannel allocation using GA (h) Capacity after Subchannel 
allocation using GA and Power allocation using equation.5.12 



151 
 

It can be observed from the comparison of right most and left most graphs in part (a) 

that the capacities obtained after subchannel allocation using GA sticks closely to the 

proportional rate constraint for all the cases. It can also be observed that the sum 

capacity increases with the number of generation of the GA, which is in consistence 

with the expected performance of GA. 

The optimal power allocation also closely follows the rate constraints and hence the 

final capacities for all set of users are also in proportion. A comparison of simulation 

results for 12 and 16 users with that of 20 and 24 users reveals the fact that the sum 

capacities sticks closely to the proportionality constraints with the increase in number 

of users.  

The strict adherence to proportionality constraints with increase in number of users 

can also be attributed to the expected performance of GA, the GA tends to perform 

better as the search space becomes complex.  

 These results reaffirm the fact that, the proportional rate constraints can be strictly 

enforced in resource allocation algorithms using GAs. The cost of strictly enforcing 

proportionality is slight reduction in capacity. 

In the second part, we compared the results obtained by proposed method with those 

obtained by the method used in [WSEA04]. For this comparison, in place of using 

exact expression for power allocation in optimal power 

allocation[WSEA04]/equation.5.12, we used the equal power allocation 

approximation discussed in section 5.3. 

Table 5.1 and Fig.5.9 shows the comparison of total capacity obtained by the 

proposed method with the capacity obtained by method in [WSEA04].We also 

compared the total capacity which can be obtained by method in [WSEA04], when 

used for MIMO OFDMA. The number of users was varied from 2-16 in increments of 

2. A total of 1000 different channel realizations and 100 time samples for each 

realization were used for each of the number of users.  

The total capacity obtained by the proposed method is consistently higher than that 

obtained by [WSEA04]. It can be observed that proposed algorithms provided an 

approximate capacity gain of 21% for SISO case and about 70% for MIMO case, over 

the method in [WSEA04]. Also the total capacity increases with the number of users 

which is the effect of diversity gain. The capacity obtained for MIMO is almost 2 

times the capacity obtained in [WSEA04], this is in consistence with the fact that with 
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the fact that MIMO systems have additional  spatial multiplexing gain of order of 

min(MT,MR). 

Table 5.1: Total capacity versus number of users 

S.No 
Users 

(K) 

Sum Capacity (SISO) 

Bits/Sec/Hz 

Sum Capacity (MIMO) 

Bits/Sec/Hz 

[WSEA04] Proposed [WSEA04] Proposed 

Best Avg. Worst Best Avg. Worst

1 2 4.52 4.74 4.78 4.80 8.52 8.85 8.92 8.98 

2 4 4.57 4.79 4.81 4.83 8.57 9.09 9.11 9.18 

3 6 4.62 4.83 4.84 4.86 8.62 9.25 9.27 9.28 

4 8 4.65 4.86 4.88 4.89 8.65 9.38 9.41 9.42 

5 10 4.665 4.885 4.89 4.895 8.70 9.45 9.46 9.48 

6 12 4.70 4.90 4.913 4.92 8.75 9.54 9.55 9.56 

7 14 4.71 4.915 4.915 4.915 8.80 9.67 9.73 9.75 

8 16 4.72 4.92 4.928 4.931 8.90 9.80 9.84 9.87 

 

 

Figure 5.9: Total capacity versus number of users. 
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In order to analyze the computational complexity of the algorithm, recall that K refers 

to the total number of users in the system. N on the other hand refers to the number of 

subchannels, which is a power of 2 and much larger than K. 

The subchannel allocation method proposed in [WSEA04] is basically a three step 

process. Step 1 of the algorithm calculates number of subchannels to be allocated to 

each user while taking care of proportional fairness. This step requires 1 division and 

K multiplications, and thus has a complexity of O(K). 

The actual subchannel assignment is done in step 2, which involves sorting the 

subchannel gains Hk,n for each user k, therefore requiring O(KNlog2N) operations. The 

user with best gain on a particular subchannel is then allocated that subchannel. It 

then searches for the best user k among K users for the remaining N-K unallocated 

subchannels, thus requiring another O((N-K)K) operations. In Step 3, it allocates the 

remaining N* subchannels to the best user, and thus requires O(K) operations. These 

operations pertain to the subchannel allocation, and the asymptotic complexity is 

O(KNlog2N). 

Calculating the number of subchannels to be allocated to each user before actual 

allocation on the basis of SNR introduces extra overhead. In step 2 sorting of 

subchannels on the basis of gains is another overhead. In the proposed GA aided 

subchannel allocation, these overheads are removed by relaxing the proportionality 

constraint such that each user should get at-least one subchannel while searching and 

allocation of subchannels is performed simultaneously. 

In each generation the fitness function is evaluated for each individual with a 

complexity of O(N). The double summation, over all subchannels and users, involved 

in the sum capacity calculation using equation.5.10 reduces to a single summation, 

over all subchannels only. This is due to two reasons: Firstly, due to the constraints 

(C3 & C4) that each subchannel should be assigned to a unique user and is not shared 

among users. Secondly, the user to which that subchannel is assigned is known to us 

from the fitness function for each iteration. This reduces the overhead of having to 

sort through the gains of different users on a particular subchannel as required in 

[WSEA04].On the basis of fitness value two individual with lowest fitness values are 

replace by two child individuals with best fitness. Step 2 of proposed algorithm does 

not require sorting the individuals on the basis SNR but on the basis of their fitness 

function. This step is part of GA itself and hence reduces the overhead of having 
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sorted individuals on the basis of their SNRs. Rest of the procedure remains same for 

both the algorithms. 

In the light of the above discussion, it is clear that the main complexity lies in 

calculation of fitness function for each individual in each generation (G). The 

asymptotic complexity of our algorithm will be O(NG).Since number of generation is 

a user defined parameter, it can be set to small value to reduce the complexity. 

Defining the initial population randomly may require more number of generations for 

GA to converge. If, based on previous results the initial   population is defined close 

to the expected results, the number of generations can be reduced significantly. This 

reduction in number of generations will result in less complexity of the algorithm. 

5.5. Conclusion 

In this chapter, we proposed a novel GA for solving rate adaptive resource allocation 

problem with proportional rate constraints for downlink OFDMA systems. In Section 

5.4, we proposed a low complexity subchannel allocation scheme using GA to 

maximize the total throughput while maintaining rate proportionality among the users. 

Steps 11 and 12 in proposed algorithm, add deterministic component to otherwise 

probabilistic GA, and enhance the overall performance of the algorithm. 

The simulation results show that the proposed method strictly sticks to the 

proportional rate constraints. It was also shown that relaxing proportionality 

constraints achieves higher data rates and reduces the computational complexity of 

the algorithm.  

The proposed algorithm achieves 20 to 70 % higher data rates, and is computationally 

less expensive as compared to previous algorithms in this area. 
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Chapter 6 

Multi-Objective Resource Allocation using NSGA –II for 

OFDMA Systems 

6.1. Introduction 

This chapter investigates the problem of joint subchannel and bit allocation in downlink 

of OFDMA [Law99, RABT02, WCLM99, JL03, Red07, SA09, STTA12, SWA10, 

TZWZ07, KPL06, WSEA04, SRDS08, SAE03, RC00, SAE05] and MIMO OFDMA 

[SA11a, XHZL05, HYY06, GLX+09, CLC10, PB10, ASC11, CLL11] systems. Using 

SVD, the MIMO fading channel of each subchannel is transformed into an equivalent 

bank of parallel SISO subchannels. To achieve the capacity bound, one must solve a 

multiuser subchannel allocation and the optimal bit allocation jointly. To alleviate the 

computational complexity of joint subchannel and bit allocation, several suboptimal 

solutions have been proposed [Law99, RABT02, WCLM99, JL03, Red07, TZWZ07, 

KPL06, WSEA04, SRDS08, SAE03, RC00, SAE05, XHZL05, HYY06, GLX+09]. These 

suboptimal solutions handle subchannel and bits individually. We propose the use of 

NSGA – II [SRDS08, DPAM02, SD95] which is a MOGA, for joint allocation of bits and 

subchannels, in the downlink of OFDMA system. NSGA – II is intended for optimization 

problems involving multiple conflicting objectives. Here the two conflicting objectives 

are Rate Maximization and Transmit Power Minimization. The simulation results 

indicate remarkable improvement in terms of convergence over previous approaches 

involving EAs [GLX+09, TZWZ08]. At the same time capacity achieved by the proposed 

algorithm is found to be comparable with that of previous algorithms. 

6.2. System Model 

The system under consideration is a OFDMA/MIMO OFDMA system in downlink where 

the perfect CSI is assumed at both the receiver and transmitter. We assume that one 

subchannel can be used only by one user at each time. Then each subchannel has a 

narrowband channel with M antennas at both the transmitter and the receiver, which can 
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be modeled by an M x M channel matrix H=[hi,j], where hi,j is the channel gain at the 

receive antenna i from transmit antenna  j. The SVD of H can be written as: 

1/2 †H = UΛ V  (6.1)

Where U and V are unitary matrices, V† denotes the transpose conjugate of V, and Λ is a 

diagonal matrix. The elements of Λ = diag([λ1,…,λm ]) are real and ordered so that λ1≥ ... 

≥λm ≥0. Following the SVD analysis, the channel matrix H is decomposed into a number 

of independent orthogonal modes of excitation, which are referred to as eigen-modes of 

the Channel [XHZL05]. The parallel decomposition of the channel is obtained by 

defining a transformation on the channel input and output x and y through transmit 

precoding and receiver shaping respectively. In transmit precoding the input to the 

antennas x is generated through a linear transformation on input vector x as x = Vx . 

Receiver shaping performs a similar operation at the receiver by multiplying the channel 

output y with † U  

 m m m my x n ,          for m = 1,…,M. (6.2)

Here † Un n , and n refers to AWGN.  

In the transmitter, the serial data from the users are fed into the subchannel and bit 

allocation block which allocates bits from different users to different subchannels. We 

assume that each subchannel has a bandwidth that is much smaller than the coherence 

bandwidth of the channel and that the instantaneous channel gains on all the subchannels 

of all the users are known to the transmitter. Using the channel information, the 

transmitter applies the combined subchannel, bit, and power allocation algorithm to 

assign different subchannels to different users and the number of bits/OFDM symbol to 

be transmitted on each subchannel. Depending on the number of bits assigned to a 

subchannel, the adaptive modulator will use a corresponding modulation scheme, and the 

transmit power level will be adjusted according to the combined subchannel, bit, and 

power allocation algorithm.  

The bit allocation information is used to configure the demodulators while the subchannel 

allocation information is used to extract the demodulated bits from the subchannels 

assigned to the kth user.  
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In the frequency selective fading, different subchannels may have different MIMO 

channels. The MIMO channel matrix Hk,n for the kth user and the nth subchannel is 

decomposed into M parallel SISO channels, where channel gains are given by 

, , 'k n m s (λk,n,1 ≥ ... ≥λk,n,m ≥ 0) . We assume that the single-sided noise power spectral 

density is No for all the users. Furthermore, let fk(c) be the rate-power function which 

depends on the QoS requirements and modulation scheme of the kth user. In order to 

maintain the required QoS, the transmit power for the kth user and the mth eigen-mode of 

the nth subchannel must be equal to: 

, ,
, ,

, ,

( )


 k k n m

k n m
k n m

f c
P  (6.3)

Where , ,k n mc is the bits allocated for unit channel gain. The overall transmit power is given 

by  
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Where the subchannel allocation indicator ρk,n is defined as 

,

if the n-th subchannel is allocated to k-th user

otherwise
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For square M-QAM, ( )kf c can be expressed as: 
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ce
k

p k
f c Q  (6.5)

Where ( )ep k is the minimum BER requirement for the kth user, 0N / 2 is the variance of 

the AWGN, and ( )Q x is the Q -function 

6.3. Problem Formulation 

Problem for resource allocation in ODFMA systems is formulated [SRDS08] with the 

goal to maximize the minimum data rate among all the users subject to the constraint that 

the total power cannot exceed a given value. Here we modify the power objective slightly 

and assume that the total available transmission power is limited to a certain range with a 

typical value  PT .We then have a second objective to bring the total power as close to  

PT as possible.       
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The new multi-objective optimization problem is 
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where ,k n is the channel gain of user kth subchannel n. 

Subject to constraints: 
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The above resource allocation problem for OFDMA systems can be extended to MIMO 

OFDM systems as follows: 
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Subject to constraints: 
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where Rk, denotes the transmit bits per OFDM symbol for the kth user, D is a set of 

available bits in the adaptive modulation, and Dmax denotes the maximum value in the set 

D. Constraint C2 takes care of the fact that one subchannel is assigned to one user only. 

6.4. Allocation Using NSGA-II 

GAs [Gol89, Deb01, Red07, GLX+09, TZWZ08, DPAM02, Cha95, Cox05, SD95] are a 

class of EAs. They provide novel approaches to problem solving technique inspired by 

biological evolution. GAs enable efficient search in the solution space of any function so 

as to get a solution set that optimizes the function. This efficiency with GAs is due to 
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operators analogous to the ones found in natural evolution of species (to evolve better 

species): Selection, Crossover, and Mutation. Every solution in the population is 

evaluated by a “fitness function” and assigned a “fitness” value which indicates how 

favorable the various traits of that solution are, and how much the solution optimizes the 

fitness function. This fitness value decides the participation of a solution in evolving an 

optimum solution. Through crossover, fragments of the two different solutions are mixed 

to give rise to new offspring with combined traits of both parent solutions. Through 

mutation, a wider set of the actual solution space is explored (more than what is available 

in the initial population). Every intermediate solution set (population of chromosomes), 

called a generation, goes through fitness evaluation, crossover and mutation to evolve fit 

solutions. 

The basic GA works to optimize a single objective function. However, many 

optimizations and resource allocations involve tradeoffs between various objectives and 

parameters and therefore are multi-objective [Deb01, SRDS08, DPAM02, SD95]. For 

two conflicting objectives, each objective corresponds to a different optimal solution. 

Thus in multi-objective problems, there is no single optimum solution, but many 

acceptable solutions. The emphasis then shifts to finding a solution that – handling 

minimum conflicts – delivers a satisfactory solution for all objectives. A higher level 

qualitative choice can be made for one possible solution among the set of optimum 

solutions. 

 NSGA–II 

NSGA uses an effective non-domination sorting algorithm to optimize multiple objective 

functions [SD95]. NSGA-II improves the computational complexity of NSGA and also 

incorporates elitism [TZWZ08]. NSGA solves multi-objective problems by using the 

concept of domination. In NSGA-II the initial population is sorted into fronts [SD95]; 

where the individuals in the first front are not dominated by any other individuals in the 

current population, the individuals in the second front are dominated only by the 

individuals in the first front and so on. An individual solution is said to dominate another 

if its fitness values with respect to every objective fitness function is superior to the 

corresponding values for the other individual. The individuals in the rth front are assigned 
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a rank of r. In addition, crowding distance, a parameter that measures how close an 

individual is to its neighbors, is also calculated for each individual. A larger average 

crowding distance indicates a greater diversity in the population. 

In [Red07] the MA optimization problem was addressed using GA, where each 

individual chromosome was coded as an array of elements that represented subchannels. 

Here we extend the analogy to simultaneously allocate subchannels and bits, while taking 

constraint (C1 and C2) into consideration. Each individual chromosome is coded as an 

array of N(SC-1,….,SC-N) elements, where N is the number of subchannels (SC). Each 

of these N elements is binary coded with (log2K+log2D) bits, where the first (log2K) bits 

of the nth element represent the user to which the nth subchannel is assigned, and the next 

(log2D) bits represent the number of bits allocated to the nth subchannel. The size of each 

individual chromosome is given by 2 2(log log )N K D  . Keeping the value of D ≤ Dmax 

satisfies constraint (C1) and since each subchannel is assigned to exactly one user, 

constraint (C2) is satisfied. The last row of Fig.6.1 depicts how the chromosome would be 

considered for crossover and mutation. 

SC-1 SC-2 ……… SC-N 

K1                     C1 

001                    10 

K2                    C2

011                    01
………

K2                    C2 

101                    11 

00110 01101………………….10111 

Figure 6.1: Schematic representation of chromosome 

The standard NSGA-II algorithm is as follows (Fig.6.2): 

[Start] Generate a random population of N chromosomes (suitable solutions for the 

problem). 

[Fitness] Evaluate the multiobjective fitness of each chromosome x in the population. 

[Rank] Rank population by following steps: 

 [Domination Rank] Rank population by using Non-dominated sorting algorithm 

described in subsection 6.4.3. 

 [Crowding Distance] Calculate the crowding distance by using crowding 

distance calculation algorithm described in subsection 6.4.3. 
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[New population] Create a new population by repeating the following steps until the 

new population is complete.  

 [Selection] Select two parent chromosomes from a population based on the 

crowding selection operator which is described in subsection 6.4.4. 

 [Crossover] With a crossover probability cross over the parents to form new 

offspring (children). If no crossover was performed, offspring is the exact copy of 

parents. The single point binary crossover operator is explained in section 6.4.5. 

 [Mutation] With a mutation probability mutate new offspring at each locus (position 

in chromosome). Bit wise mutation operator is explained in section 6.4.5. 

 [Accepting] Place new offspring in the new population. 

[Replace] Use new generated population for a further run of the algorithm. 

[Test] If the end condition is satisfied (e.g. reaches a constant number of generations in 

this paper), stop, and return the best solution in current population. 

[Loop] Go to [Fitness]. 

The following sub-sections provide detailed description of the steps [Deb01, DPAM02, 

SD95] involved in multi-objective resource allocation in MIMO OFDMA system using 

NSGA-II algorithm: 

6.4.1. Population Initialization 

The number of individuals in the population, P and the number of generations, G are 

fixed beforehand and can be changed for different runs of the algorithm. The 2-D 

population consists of binary numbers (bits). The Population size (for some K, D, N and 

P) is 2 2( (log log ))P N K D   . Each individual is created by generating a random string 

of 0’s and 1’s. 

6.4.2. Evaluate Objective functions 

The fitness values of the objective functions equation.6.6.(a) and equation.6.6.(b) are 

calculated for each individual. The chromosome represents the subchannel number and 

the number of bits allocated to that individual. The value of gain corresponding to that 

subchannel and power required corresponding to the number of bits allocated is 
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substituted in equation.6.6.(a) and equation.6.6.(b)  respectively to calculate the fitness of 

each individual. 

 

Figure 6.2: Flow Chart NSGA-II Algorithm 
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6.4.3. Non-Dominated Sorting 

The population is now sorted into fronts based on non-domination and each individual is 

assigned a rank. Once the non-dominated sort is complete the crowding distance is 

assigned. Since the individuals are selected based on rank and crowding distance all the 

individuals in the population are assigned a crowding distance value.  

The fast non-dominated sorting algorithm and crowding distance calculation [SD95] is 

described below: 

Non-dominated sorting algorithm: 

 For each individual p in main population P do the following: 

 Initialize Sp = Θ(null set). This set would contain all the individuals that are 

being dominated by p. 

 Initialize np = 0. This would be the number of individuals that dominate p. 

 For each individual q in P 

 If p dominates q then 

o add q to the set Sp i.e. Sp = Sp  {q} 

 Else if q dominates p then 

o increment the domination counter for p i.e. np = np + 1 

 If np = 0 i.e. no individuals dominate p then p belongs to the first front. Set 

rank of individual p to one i.e prank = 1. Update the first front set by adding 

p to front one i.e F1 = F1  {p}. 

 This is carried out for all the individuals in main population P. 

 Initialize the front counter to one i.e. i = 1. 

 Following is carried out while the ith front is nonempty i.e. Fi  ≠ Θ(null set); 

 Q = Θ(null set); The set for storing the individuals for (i + 1)th front. 

 For each individual p in front Fi 

 for each individual q in Sp (Sp is the set of individuals dominated by p) 

o nq = nq - 1, decrement the domination count for individual q. 

o If nq = 0 then none of the individuals in the subsequent fronts 

would dominate q. Hence set qrank = i + 1. Update the set Q 

with individual q i.e. Q = Q  {q}. 
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 Increment the front counter by one i.e. i=i+1. 

 Now the set Q is the next front and hence Fi = Q. 

This algorithm is better than the original NSGA since it utilize the information about the 

set that an individual dominates (Sp) and number of individuals that dominate the 

individual (np). 

Crowding Distance calculation: 

Crowding distance is assigned front wise and comparing the crowding distance between 

two individuals in different front is meaningless. The crowding distance is calculated as 

below: 

 For each front Fi, l is the number of solutions in a non dominated set I. 

 Initialize the distance to be zero for all the individuals i.e. Fi(dj) = 0,where j 

corresponds to the jth individual in front Fi. 

 For each objective function m 

 Sort the individuals in front Fi based on objective m i.e. I 

=sort(Fi,m). 

 Assign infinite distance to boundary solutions (solutions with 

smallest and largest function values) for each individual in Fi i.e. 

I(d1) = ∞ and I(dl) = ∞.so that the boundary points are always 

selected for all other points. 

 For j = 2 to (l-1) 

 
max min

( 1).  - ( 1).
( )  ( )  

 j j
m m

I j m I j m
I d I d

f f

 
 


 

 I(j).m is the value of the mth objective function of the jth
 

individual in I. 

 max
mf  and min

mf are the maximum and minimum values of the 

mth objective function. 

The basic idea behind the crowing distance is finding the Euclidian distance between each 

individual in a front based on their m objectives in the m dimensional hyper space. The 

individuals in the boundary are always selected since they have infinite distance 

assignment. 
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6.4.4. Tournament selection 

Once the individuals are sorted based on non-domination and with crowding distance 

assigned, the selection is carried out using a crowded- comparison-operator ( n ).The 

crowded-comparison operator guides the selection process at the various stages of the 

algorithm towards a uniformly spread-out Pareto optimal front.  

Assume that every individual i in the population has two attributes: 

 Non-domination rank prank (individuals in front Fi will have their rank as prank 

= i). 

 Crowding distance Fi(dj) 

We now define a partial order n as: 

 p n  q 

 if prank < qrank 

 or if p and q belong to the same front Fi then Fi(dp) > Fi(dq) i.e. the 

crowing distance should be more. 

That is, between two solutions with differing non-domination ranks, we prefer the 

solution with the lower (better) rank. Otherwise, if both solutions belong to the same 

front, then we prefer the solution that is located in a lesser crowded region. The 

individuals are selected by using a binary tournament selection with crowded-

comparison-operator to fill the mating pool, which is taken to be of size P.  

6.4.5. Crossover and Mutation 

 As proposed by Deb [SD95] real-coded GA's use Simulated Binary Crossover (SBX) 

operator for crossover and polynomial mutation. Since our chromosome was binary 

coded, we used single point binary crossover with bit wise mutation. Single point binary 

crossover and bit wise mutation are explained in following paragraphs: 

Single point Binary Crossover: 

Crossover is the mechanism by which design characteristics between any paired 

individuals are exchanged to form two new (child) individuals. It is analogous to 

reproduction and biological crossover, upon which GAs are based. 
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In single point crossover a point on both parents’ organism strings is selected. All data 

beyond that point in either organism string is swapped between the two parent organisms.  

For example consider two parents as shown below, in single point crossover bits after the 

crossover point (shown by |) are swapped between two parents to get offspring 

chromosomes. 

Parent1: 011101|0101 Parent 2: 100111|0111 

Offspring 1: 011101|0111 Offspring 2: 100111|0101 

Bit wise Mutation: 

In GAs, mutation is a genetic operator used to maintain genetic diversity from one 

generation of a population of chromosomes to the next. It is analogous to biological 

mutation. The classic example of a mutation operator involves a probability that an 

arbitrary bit in a genetic sequence will be changed from its original state. A common 

method of implementing the mutation operator involves generating a random variable for 

each bit in a sequence. This random variable tells whether or not a particular bit will be 

modified. The probability of mutation is given by Pm which is usually at-least 100 times 

less than Pc. The purpose of mutation in GAs is to allow the algorithm to avoid local 

minima/maxima by preventing the population of chromosomes from becoming too 

similar to each other, thus slowing or even stopping evolution. This reasoning also 

explains the fact that most GA systems avoid only taking the fittest of the population in 

generating the next but rather a random (or semi-random) selection with a weighting 

toward those that are fitter. 

For example a parent 0111010101with the bit to be mutated represented in bold, after 

mutation will give an offspring 0111011101.That is the bit 0 in the parent is replaced by 

bit 1 in the offspring.  

6.4.6. Generation of new population 

An intermediate population consisting of the parents and offspring of the current 

population is created and is sorted using non-domination. The new population is filled up 

by taking the best individuals from the combined population based on rank and crowding 

distance. Steps 6.4.4, 6.4.5 and 6.4.6 are repeated for G number of generations. 
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In [TZWZ08] elitism was assured by using Largest Weighted Delay First, LWDF. Here 

since all the best individuals from the current and previous populations are added to the 

new population, elitism is guaranteed. The best individual chromosome from the final 

population gives the desired allocation of subchannels and bits per subchannel. 

6.5. Simulation and Results 

Assumptions and Constants 

For various constants required in the calculation, their accepted [SAE03, RC00] values 

were used, as given below : 

BER 10-3 

   N0(Power Spectral Density of Noise) -80dBW 

Dmax 8 (Low SNR) and 16 (High SNR) 

B (Bandwidth) 1 MHz 

The wireless channel [RC00] was modeled as a frequency-selective channel consisting of 

six independent Rayleigh multipaths. Each multipath component was modeled by 

Clarke’s flat fading model. The downlink OFDM/MIMO channel between any couple of 

transmitting and receiving antennas is assumed to have power delay profile which is 

exponentially decaying with e−2l, where l is the multipath index. Hence, the relative 

power of the six multipath components are [0, −8.69, −17.37, −25.06, −34.74, −43.43] 

dB. Channel gains generated using above described model were then kept constant 

throughout the simulations.  

Total Power (PT) was varied from -30 dB to +30dB, assuming the reference power level 

for dB calculations as 1W. Different permutations of probability of crossover (Pc) and 

that of mutation (Pm) were considered, for different runs of algorithm. For every run of 

the algorithm we also considered different permutations of the number of users K, for 

fixed number of subchannels N(64). For MIMO case the equal number of antenna at 

transmitter (MT) and receiver (MR) were assumed i.e. M=min(MT,MR)=2. 

NSGA-II Parameters tuning  

The effectiveness of any algorithms depends on the choice of its parameters. Selection of 

best parameters is required in order to avoid premature convergence, to ensure diversity 
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in the search space, to intensify the search around best solution regions, etc. Inappropriate 

choice of parameters may lead to premature convergence or stagnation.  

In this subsection we present an empirical testing approach to find the best tuning 

parameters of NSGA-II algorithm for the problem under consideration.  

In order to keep the number of combinations tractable, Population Size was fixed a priori 

to 50. We have applied parameters tuning only for the crossover probability (Pc) and 

mutation probability (Pm) and number of generations. We considered the following 

ranges for these parameters: 

_ Number of Generations: three levels (50, 80 and 100). 

_ Pc for both NSGA-II and SPEA-2: three levels (0.7, 0.8 and 0.9). 

_ Pm for both NSGA-II and SPEA-2: three levels (0.01, 0.02 and 0.03). 

Due to this fact, NSGA-II algorithm has three parameters, and each parameter has three 

levels; hence, we have 27 different conditions.  

In order to have more comprehensive analysis, each of these 27 conditions for NSGA-II, 

were simulated 10 times each, for two extreme cases of the problem set.  

The channel gain matrix once generated was kept constant during the tuning process. The 

number of subchannels was fixed to 64, bandwidth to 1MHz and BER to 10-3. For the 

number of users, Dmax and power, there two extreme levels were used. That is number of 

users considered was 2 and 16, Dmax was taken as 8 (Low SNR) and 16 (High SNR) 

while the power considered was -30 and +30 dB. 

NSGA-II worked well for all the parameters considered but the performance, in terms of 

CPU time and capacity was found to be slightly better for the following set of values: 

Set 1:  Pc = 0.9, Pm = 0.03; Set 2:  Pc = 0.8 Pm = 0.02, for all number of generation and all 

set of problem specific values. Thus these values were used for all problem sets 

considered in this chapter. 

Convergence Analysis 

The results (Table 6.1-6.2 and Fig.6.3-6.8) obtained for the various simulations 

reaffirmed that applying multi-objective optimization to resource allocation problems in 

OFDMA/MIMO OFDMA gives more efficient solutions in terms of convergence. By 

convergence here, we mean that the difference of transmitted power and typical total 
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power goes to zero and the minimum user data rate attains a constant value. Figs.6.3, 6.4 

and 6.5 depict the results obtained by best, average and worst chromosome respectively, 

for SISO case. While, Figs.6.6, 6.7 and 6.8 show the results obtained by best, average and 

worst chromosome respectively, for MIMO case. The worst, average and best values 

were manually selected out of 100 simulation runs performed for each set of data inputs 

in table 6.1 and 6.2. The number of generations required, even by the worst chromosome 

generated by applying NSGA-II, for convergence were substantially less than that by 

algorithms in [Red07, SWA10]. Even though we jointly optimize allocation of 

subchannels and power as compared to only power optimization in [Red07], our 

algorithm, in worst case took 40 (Fig.6.5(a)) for SISO and 49 (Fig.6.8(a)) generations for 

MIMO to converge as compared to 60 required in [Red07]. Furthermore, the NSGA-II 

required less number of generations to converge as compared to its multi-objective 

counterpart PAES [SWA10].The ACO based solution in [AC10] required around 52 

generations for convergence. 

Table 6.1: Maximum number of generations required for convergence for different set of 
experiments (SISO) 

S. 
No. 

User 
(K) 

Sub-
carries 

(N) 
Population 

Max. 
Generation 

Pc Pm Dmax
PT 

(dB) 

Max. Generation 
for Convergence 

Best Avg Worst 

1 2 64 50 80 0.8 0.02 8 20 34 36 40 

2. 4 64 30 100 0.8 0.02 16 -30 22 24 30 

3. 8 64 50 50 0.9 0.03 8 -10 26 26 31 

4. 16 64 30 50 0.9 0.03 8 0 26 31 34 

 

Table 6.2: Maximum number of generations required for convergence for different set of 
experiments (MIMO) 

S. 
No. 

User 
(K) 

Sub-
carries 

(N) 
Population 

Max. 
Generation 

Pc Pm Dmax
PT 

(dB) 

Max. Generation 
for Convergence 

Best Avg Worst 

1 2 64 50 80 0.8 0.02 8 20 41 44 49 

2. 4 64 30 100 0.8 0.02 16 -30 21 31 32 

3. 8 64 50 50 0.9 0.03 8 -10 28 28 27 

4. 16 64 30 50 0.9 0.03 8 0 22 26 26 
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(a) 

 

(b) 

Figure 6.3.(a-b): Simulation results for permutations of conditions in Table.6.1 (Row-1, 
Best Case) 
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(c) 

  

(d) 

Figure 6.3.(c-d): Simulation results for permutations of conditions in Table.6.1 (Row-2, 
Best Case) 
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(e) 

 

(f) 

Figure 6.3.(e-f): Simulation results for permutations of conditions in Table.6.1 (Row-3, 
Best Case) 
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(g) 

 

(h) 

Figure 6.3.(g-h): Simulation results for permutations of conditions in Table.6.1 (Row-4, 
Best Case) 
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(a) 

 

(b) 

Figure 6.4.(a-b): Simulation results for permutations of conditions in Table.6.1 (Row-1, 
Average Case) 
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(c) 

 

(d) 

Figure 6.4.(c-d): Simulation results for permutations of conditions in Table.6.1 (Row-2, 
Average Case) 
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(e) 

 

(f) 

Figure 6.4.(e-f): Simulation results for permutations of conditions in Table.6.1 (Row-3, 
Average Case) 
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(g) 

 

(h) 

Figure 6.4.(g-h): Simulation results for permutations of conditions in Table.6.1 (Row-4, 
Average Case) 



178 

 

 

(a) 

 

(b) 

Figure 6.5.(a-b): Simulation results for permutations of conditions in Table.6.1 (Row-1, 
Worst Case) 
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(c) 

 

(d) 

Figure 6.5.(c-d): Simulation results for permutations of conditions in Table.6.1 (Row-2, 
Worst Case) 
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(e) 

 

(f) 

Figure 6.5.(e-f): Simulation results for permutations of conditions in Table.6.1 (Row-3, 
Worst Case) 
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(g) 

 

(h) 

Figure 6.5.(g-h): Simulation results for permutations of conditions in Table.6.1 (Row-4, 
Worst Case) 
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(a) 

 

(b) 

Figure 6.6.(a-b): Simulation results for permutations of conditions in Table.6.2 (Row-1, 
Best Case) 
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(c) 

 

(d) 

Figure 6.6.(c-d): Simulation results for permutations of conditions in Table.6.2 (Row-2, 
Best Case) 
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(e) 

 

(f) 

Figure 6.6.(e-f): Simulation results for permutations of conditions in Table.6.2 (Row-3, 
Best Case) 
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(g) 

 

(h) 

Figure 6.6.(g-h): Simulation results for permutations of conditions in Table.6.2 (Row-4, 
Best Case) 
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(a) 

 

(b) 

Figure 6.7.(a-b): Simulation results for permutations of conditions in Table.6.2 (Row-1, 
Average Case) 
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(c) 

 

(d) 

Figure 6.7.(c-d): Simulation results for permutations of conditions in Table.6.2 (Row-2, 
Average Case) 
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(e) 

 

(f) 

Figure 6.7.(e-f): Simulation results for permutations of conditions in Table.6.2 (Row-3, 
Average Case) 
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(g) 

 

(h) 

Figure 6.7.(g-h): Simulation results for permutations of conditions in Table.6.2 (Row-4, 
Average Case) 
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(a) 

 

(b) 

Figure 6.8. (a-b): Simulation results for permutations of conditions in Table.6.2 (Row-1, 
Worst Case) 
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(c) 

 

(d) 

Figure 6.8. (c-d): Simulation results for permutations of conditions in Table.6.2 (Row-2, 
Worst Case) 
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(e) 

 

(f) 

Figure 6.8. (e-f): Simulation results for permutations of conditions in Table.6.2 (Row-3, 
Worst Case) 
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(g) 

 

(h) 

Figure 6.8. (g-h): Simulation results for permutations of conditions in Table.6.2 (Row-4, 
Worst Case) 
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(a) 

Figure 6.9.(a): Pareto fronts obtained for permutations of conditions in Table.6.1(Row-1, 
Best Case) 

 
(b) 

Figure 6.9.(b): Pareto fronts obtained for permutations of conditions in Table.6.1(Row-2,  
Best Case) 
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(c) 

Figure 6.9.(c): Pareto fronts obtained for permutations of conditions in Table.6.1(Row-3, 
Best Case) 

 
(d) 

Figure 6.9.(d): Pareto fronts obtained for permutations of conditions in Table.6.1(Row-4, 
Best Case) 
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(a) 

Figure 6.10.(a): Pareto fronts obtained for permutations of conditions in Table.6.1(Row-
1, Average Case) 

 
(b) 

Figure 6.10.(b): Pareto fronts obtained for permutations of conditions in Table.6.1 (Row-
2, Average Case) 
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(c) 

Figure 6.10.(c): Pareto fronts obtained for permutations of conditions in Table.6.1(Row-
3, Average Case) 

 
(d) 

Figure 6.10.(d): Pareto fronts obtained for permutations of conditions in Table.6.1(Row-
4, Average Case) 



198 

 

 
(a) 

Figure 6.11.(a): Pareto fronts obtained for permutations of conditions in Table.6.1(Row-
1, Worst Case) 

 
(b) 

Figure 6.11.(b): Pareto fronts obtained for permutations of conditions in Table.6.1(Row-
2, Worst Case) 
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(c) 

Figure 6.11.(c): Pareto fronts obtained for permutations of conditions in Table.6.1(Row-
3, Worst Case) 

 
(d) 

Figure 6.11.(d): Pareto fronts obtained for permutations of conditions in Table.6.1(Row-
4, Worst Case) 
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(a) 

Figure 6.12.(a): Pareto fronts obtained for permutations of conditions in Table.6.2(Row-
1, Best Case) 

 
(b) 

Figure 6.12.(b): Pareto fronts obtained for permutations of conditions in Table.6.2(Row-
2, Best Case) 
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(c) 

Figure 6.12.(c): Pareto fronts obtained for permutations of conditions in Table.6.2(Row-
3, Best Case) 

 
(d) 

Figure 6.12.(d): Pareto fronts obtained for permutations of conditions in Table.6.2(Row-
4, Best Case) 
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(a) 

Figure 6.13.(a): Pareto fronts obtained for permutations of conditions in Table.6.2(Row-
1, Average Case) 

 
(b) 

Figure 6.13.(b): Pareto fronts obtained for permutations of conditions in Table.6.2(Row-
2, Average Case) 



203 

 

 
(c) 

Figure 6.13.(c): Pareto fronts obtained for permutations of conditions in Table.6.2(Row-
3, Average Case) 

 
(d) 

Figure 6.13.(d): Pareto fronts obtained for permutations of conditions in Table.6.2(Row-
4, Average Case) 
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(a) 

Figure 6.14.(a): Pareto fronts obtained for permutations of conditions in Table.6.2(Row-
1, Worst Case) 

 
(b) 

Figure 6.14.(b): Pareto fronts obtained for permutations of conditions in Table.6.2(Row-
2, Worst Case) 



205 

 

 
(c) 

Figure 6.14.(c): Pareto fronts obtained for permutations of conditions in Table.6.2(Row-
3, Worst Case) 

 
(d) 

Figure 6.14.(d): Pareto fronts obtained for permutations of conditions in Table.6.2(Row-
4, Worst Case) 
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In the light of above discussion it can be concluded that the NSGA-II based solution is of  

the order of magnitude faster as compared to [AC10, Red07, SWA10], which is an 

important result as our assumption of perfect CSI is time dependent.  

The faster convergence rate of the algorithms makes it suitable for practical wireless 

applications. Since the channel gains are assumed to be constant during the period of 

allocation and considering the fact that wireless channels tends to change quickly, a faster 

allocation algorithm is preferred. The faster convergence rate of the algorithms is because 

of relaxation in the power constraint. The algorithm can be made to work even faster if 

we can predict the expected power required to be transmitted in each allocation. 

Finally, in order to have a conceptual illustration of the non-dominated Pareto sets 

(fronts), Fig.6.9.(a-d) – Fig.6.11.(a-d) depicts the Pareto fronts obtained corresponding to 

best, average and worst chromosome respectively, for SISO case. While, Fig.6.12.(a-d)- 

Fig.6.14.(a-d) shows the Pareto fronts obtained corresponding to best, average and worst 

chromosome respectively, for MIMO case. 

From Figs.6.9-6.14 it is clear that most of the solutions obtained by the algorithm 

minimized the difference of Total power and power utilized to zero. The solution, with 

zero difference of two powers and final constant rate was selected as the best solution. 

Analysis of Results obtained for SISO System 

In this subsection we present analysis and comparison of various results obtained for 

SISO Systems.  

Sum Capacity versus Number of users 

The wireless channel is modeled as before, and the total transmit power available at the 

base station is 1 W. The power spectral density of additive white Gaussian noise is -80 

dBW/Hz, and the total bandwidth is 1 MHz, which is divided into 64 subchannels. The 

maximum path loss difference is 40 dB, and the user locations are assumed to be 

uniformly distributed.  

Table 6.3 show the variation of sum capacity obtained with the number of users, for a 

fixed number of subchannels (N=64). We considered many combinations of NSGA-II 

parameters as shown in Table 6.3. Table 6.3 also depicts the results obtained for average 

and worst chromosome generated by NSGA-II algorithm in each case. The comparison of 
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results for worst chromosome with that of best chromosome highlights the fact that the 

performance of NSGA-II for the worst case and best case are more or less same. In worst 

case the capacity obtained was slightly lower than the best and average case but it was 

still higher than that obtained by methods in [SAE03, WSEA04, GLX+09]. Fig. 6.15 

shows the comparison of worst case capacity obtained by NSGA-II with the capacity 

obtained by methods in [SAE03, WSEA04, GLX+09]. 

Table 6.3: Simulation results for various permutations of Population (Pop), Generations 
(Gen), Probability of Crossover (Pc) and Probability of Mutation (Pm) for fixed number of 
subchannels (64) , Maximum number of Bits (Dmax=8) and SNR (30 dB) and maximum 
power of 1W. 

S. No. 
Users 

(K) 

Sub 

carries 

(N) 

Sum Rate (Bits/sec/Hz) 

Pop =30,Gen=50 Pop =50,Gen=80 Pop =80,Gen=100 

PC=0.9, 
Pm=0.03 

PC=0.8, 
Pm=0.02 

PC=0.9, 
Pm=0.03 

PC=0.8, 
Pm=0.02 

PC=0.9, 
Pm=0.03 

PC=0.8, 
Pm=0.02 

Best Case 

1 16 64 5.15 5.18 5.21 5.19 5.26 5.24 

2. 8 64 5.10 4.97 5.15 5.12 5.19 5.16 

3. 4 64 4.99 5.03 5.09 5.05 5.14 5.17 

4. 2 64 4.78 4.69 4.76 4.79 4.91 4.94 

Average Case 

1 16 64 4.94 4.96 5.01 5.09 5.13 5.17 

2. 8 64 4.88 4.91 4.97 4.94 5.01 5.04 

3. 4 64 4.73 4.71 4.79 4.83 4.88 4.86 

4. 2 64 4.69 4.64 4.71 4.70 4.74 4.82 

Worst Case 

1 16 64 4.83 4.80 4.84 4.87 4.92 4.95 

2. 8 64 4.84 4.73 4.82 4.85 4.87 5.88 

3. 4 64 4.64 4.69 4.73 4.78 4.77 4.81 

4. 2 64 4.60 4.58 4.65 4.63 4.68 4.72 

The sum capacity increases with the increase in number of users which can be attributed 

to the effect of multiuser diversity. The sum capacity also increased with the increase in 

number of generations and population which is in consistence with the behavior of GAs. 

It is also possible to extract the random parameters generated by NSGA-II in any case 

and fix them for all set of simulations. All GAs are stochastic in nature, that is, they 
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makes random choices of their internal parameters. That is why we get slightly different 

results each time we run the GA. The GA uses the default MATLAB pseudorandom 

number stream. Each time GA calls the stream, its state changes. So that the next time 

GA calls the stream, it returns a different random number. This is why the output of GA 

differs each time we run it. If we need to reproduce our results exactly, we can call GA 

with an output argument that contains the current state of the default stream, and then 

reset the state to this value before running GA again. 

 

Figure 6.15: Sum Capacity versus Number of Users (SISO) 

Minimum user capacity versus number of users 

In this subsection, we compare the minimum user capacity achieved by the proposed 

algorithm with the method used in [SAE05] and [RC00]. The same simulation parameters 

were used as in the previous subsection. 

Fig.6.16 shows the comparisons of minimum user data rate obtained versus number of 

users for the SISO system. From Fig.6.16, it is evident that adaptive resource allocation 

achieves significant capacity gain over non-adaptive TDMA. Also the adaptive scheme 

with optimal power allocation proposed by Shen et al. [SAE05] achieves even higher 
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capacity than the scheme with equal power distribution [RC00]. Proposed algorithm 

outperforms both [SAE05] and [RC00] by consistently achieving higher minimum user 

data rates for all sets of users. Moreover since the algorithm maximizes the minimum 

user data rates fairness among the users is innately guaranteed. 

 

Figure 6.16: Minimum User Capacity versus Number of Users 

Capacity gain versus number of users 

Fig.6.17 shows the comparison of capacity gain over TDMA obtained by the proposed 

algorithm with that of methods in [SAE05] and [RC00]. 

From Fig.6.17 it can be observed that, the capacity gain over TDMA increases as the 

number of users increase; this is because of added multiuser diversity gain. Multiuser 

diversity is obtained by opportunistic user scheduling at either the transmitter or the 

receiver. The effect of multiuser diversity is predominant in systems with large number of 

users, as with the increasing number of users in the system, the probability that a given 

subchannels is in a deep fade for all users’ decreases. 
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In a system with 16 users and 64 subchannels, the proposed scheme achieves 31.6% and 

49% higher capacity than the scheme with optimal power distribution [SAE05] and equal 

power distribution [RC00] respectively, when compared to fixed TDMA. 

The main advantage of using NSGA-II algorithm provides better sum capacity together 

with joint allocation of subchannels and power. NSGA-II provides optimal solution to the 

problem of joint allocation of the subchannels and power to the users without being 

awfully complex. As in NSGA-II aided subchannels and bit (which in turn provides 

power allocation using equation.(6.5)), the search and allocation of the best subchannels 

and the number of bits on each subchannels is performed simultaneously. 

 

Figure 6.17: Percentage Capacity Gain over TDMA 

Analysis of Results obtained for MIMO System 

In this subsection we present analysis and comparison of various results obtained for 

MIMO Systems. We assumed two antennas each at transmitter and receiver side. The 

wireless channel is modeled as before, and the total transmit power available at the base 

station is 1 W. The power spectral density of additive white Gaussian noise is -80 

dBW/Hz, and the total bandwidth is 1 MHz, which is divided into 64 subchannels. 
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Sum Capacity versus Number of users 

Fig.6.18.(a) and (b) depicts the sum capacity obtained by NSGA-II for fixed SNR of 4.6 

dB and 24.6 dB respectively. It can be observed from Fig.6.18 that the sum capacity 

obtained using NSGA-II is significantly higher as compared to methods in [RC00, 

GLX+09]. For the low SNR case NSGA-II provided an approximate capacity gain of 70% 

and 90% over the algorithms used in [RC00] and [GLX+09] respectively. Similarly for 

high SNR case approximate capacity gain of about 28% and 48% was obtained. These 

capacity gains obtained prove the suitability of our algorithm for wide range of SNRs.  

Table 6.4: Simulation results for various permutations of Population (Pop), Generations 
(Gen), Probability of Crossover (Pc) and Probability of Mutation (Pm) for fixed number of 
subchannels (64) , Maximum number of Bits (Dmax=16) and SNR (30 dB) and maximum 
power of 1W. 

S. No. 
Users 

(K) 

Sub 

carries 

(N) 

Sum Rate (Bits/sec/Hz) 

Pop =30,Gen=50 Pop =50,Gen=80 Pop =80,Gen=100 

PC=0.9, 
Pm=0.03 

PC=0.8, 
Pm=0.02 

PC=0.9, 
Pm=0.03 

PC=0.8, 
Pm=0.02 

PC=0.9, 
Pm=0.03 

PC=0.8, 
Pm=0.02 

Best Case 

1 16 64 21.32 21.27 22.14 22.26 24.37 24.73 

2. 8 64 20.07 20.31 21.63 21.48 23.41 23.79 

3. 4 64 19.68 19.84 21.12 20.92 23.17 22.92 

4. 2 64 18.94 19.03 20.48 20.53 22.11 22.43 

Average Case 

1 16 64 21.08 21.03 21.91 21.97 23.91 24.21 

2. 8 64 19.85 19.94 21.21 20.92 23.04 23.16 

3. 4 64 19.14 19.32 20.81 20.22 22.86 22.32 

4. 2 64 18.42 18.73 19.97 20.23 21.86 21.98 

Worst Case 

1 16 64 20.87 20.73 21.82 21.77 23.87 23.93 

2. 8 64 19.72 19.81 21.05 20.75 22.93 22.97 

3. 4 64 19.02 19.18 20.72 20.07 22.73 22.12 

4. 2 64 18.27 18.62 19.83 20.15 21.77 21.81 
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Figure 6.18 (a): Sum Capacity versus Number of Users for SNR=4.6dB (MIMO) 

 

Figure 6.18 (b): Sum Capacity versus Number of Users for SNR=24.6dB (MIMO) 
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It is also evident from Fig.6.18. (a) and (b) that the sum capacity increases with number 

of users for fixed SNR which is effect of multiuser diversity gain. In wireless 

communications, diversity gain is the increase in SNR ratio due to some diversity 

scheme, or how much the transmission power can be reduced when a diversity scheme is 

introduced, without a performance loss. With the increase in number of antenna used at 

the transmitter and receiver this gain can be further increased at the cost of additional 

complexity 

Sum Capacity versus SNR 

The plots in Fig.6.19 of sum capacity versus SNR reaffirm the fact the proposed 

algorithm provides consistently higher capacities for wide range of SNRs. In the light of 

above discussion it can be concluded the proposed solution is valid for wide range of 

wireless environments. 

 

Figure 6.19: Sum Capacity versus SNR for MIMO system  

Furthermore, the results obtained were consistent and with-in the bounds with the 

expected results for K < N. We also observed that if we could estimate the maximum 

typical Total Power (< PT) that would be utilized, based on the channel conditions and 
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the data rate requirements, and if we set our constraint near to this value, the algorithm 

converges much faster than without this. It was also found that as the population size 

increased, there was a marked improvement in the performance of the GA, as is evident 

from Table 6.4 and the algorithm produced better results. This is in consistence with the 

expected performance of efficient GAs. 

In the case of K=N, the randomly generated initial population causes the algorithm to be 

stuck at the local minimum and tends to make RMIN=0. It can thus be inferred that the 

algorithm works best only for K<N. 

Complexity Analysis 

In [DPAM02], the complexity for various stages of the NSGA-II has been found out. The 

complexity of the fitness function is combined at each stage of the algorithm to calculate 

the overall complexity as listed in Table 6.5. Evaluating fitness function using 

equation.6.6.(a) and equation.6.6.(b) involves three loops to be executed for each 

individual. The loops involve summation over all the antennas (M), summation over all 

the users (K) and over all the subchannels (N). These calculation are repeated for each 

individual (P), hence involves a complexity of O(PKNM). 

Complexity of non dominated sorting part can be calculated realizing that the body of the 

first inner loop (for each ip F ) is executed exactly P times as each individual can be the 

member of at most one front and the second inner loop (for each pq s  ) can be executed 

at maximum (P-1) times for each individual [each individual dominates (P-1) individuals 

at maximum and each domination check requires at most J comparisons] results in the 

overall computations O(JP2).  

The complexity of this crowding distance calculation part is governed by the sorting 

algorithm. Since J independent sorting of at most P solutions (when all population 

members are in one front I) are involved, the above algorithm has computational O(J log2 

P)complexity. 

Finally the tournament selection algorithm requires to select two individuals randomly 

from the entire population, results in complexity of O(P).   

Certain operations like generation of random numbers, comparisons, accessing elements 

of array vectors and mathematical operations have been assumed to take constant time. 
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These operations occur for every generation. Hence the total Complexity can be 

calculated as: 

2
2[ ( ) ( ) ( log ) ( )]

(( )( ))

G O PKNM O JP O J P O P

O PG KNM JP

   
 

 (6.7)

Where G = Number of Generations, P = Population Size, K = Number of Users, N = 

Number of Subchannels, J = Number of Objectives = 2, M=Number of Antennas 

Table 6.5: Complexities of various operations in the algorithm (MIMO) 
Operation Complexity 

Evaluating fitness function for each individual O(PKNM) 

Non-Dominated Sorting O(JP2) 

Crowding Distance Calculation O(J log2P)  

Tournament Selection O(P) 

For some constant N and M, the complexity of the algorithms is O(GP2) which is better 

than that suggested in [TZWZ08]. 

6.6. Conclusions 

In this chapter, the use of NSGA-II has been proposed for simultaneous bit-loading and 

subchannel allocation in MIMO OFDMA. The solution generated by the algorithm is 

found to be suitable for different sets of users and subchannels taking multiple conflicting 

objectives into account. The simulation results indicate that the optimized Sum Rates 

obtained by proposed method are significantly higher than those obtained by [RC00, 

GLX+09]. Since the algorithm is used to maximize the minimum users capacity it 

guarantees fairness among the users. It is also shown that complexity of this algorithm is 

significantly lower than previous works in this area, which implies that the addition of 

another objective does not add complexity or computational overhead to the algorithm. 

Faster convergence of the algorithm to desired results confirms the conclusion of it being 

low complex. We have also proposed a method for faster convergence by reformulating 

the constraint of total power. 

In [SD95] it was shown that using diversity to adapt Genetic Operator values gives better 

results. NSGA-II calculates crowding distance as a measure of diversity, and this 
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calculation is a part of the algorithm and not an overhead operation. Therefore, the 

adaptability of operators based on diversity can be easily implemented using the 

crowding distance. This can be a possible extension of proposed algorithm in the future. 

Also modification of objective function to add some sort of proportional fairness among 

the users in place of max-min can be implemented to add to the sum capacity of the 

system.   
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Chapter 7  

Conclusions 

7.1. Introduction 

The increasing demand for wireless multimedia services requires reliable and high-rate 

data communications over a wireless channel. As the data rate requirements increase 

channel-aware adaptive resource allocation is becoming more critical to system 

performance. 

Enabled by multicarrier modulation and multi-antenna technologies, multiple parallel 

channels can be created in either the frequency or spatial domain. Compared to single 

channel systems, resource allocation in multiuser multichannel systems is more 

challenging because of the additional degree of freedom for resources. In this thesis, we 

study the performance of adaptive resource allocation in multiuser multichannel wireless 

communication systems. Adaptive resource allocation can usually be formulated as an 

optimization problem. The optimal solution is typically very difficult to obtain due to the 

large number of variables. Further, the wireless channel is time-varying, so adaptive 

resource allocation should be performed to match the channel variations.  

GAs are a class of evolutionary algorithms. They provide novel approaches to problem 

solving technique inspired by biological evolution. GAs enable efficient search in the 

solution space of any function so as to get a solution set that optimizes the function. This 

efficiency with GAs is due to operators analogous to the one’s found in natural evolution 

of species (to evolve better species): Selection, Crossover, and Mutation. 

This thesis presents resource allocation algorithms for both multiuser OFDM systems and 

multiuser MIMO OFDM systems. 

7.2. Summary of Contributions 

The first contribution of this thesis is a low complexity subchannel allocation algorithms 

using PSO. In Chapter-4 we proposed the use of PSO, a stochastic optimization 

technique, for subchannel allocation in downlink of OFDMA systems followed by power 

allocation using WFA [Bla87]. The results obtained by the simulations indicate that the 
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algorithm provides average capacity gain of about 20% over the method used in 

[SAE03]. It was also proved that, PSO aided subchannel allocation can provide 

significant capacity gain even with very small population size and number of iterations. 

Moreover in PSO aided subchannel allocation the search and subchannel allocation is 

performed simultaneously as compared to traditional methods where the subchannels are 

first sorted in accordance of their gains and then allocation is performed. This 

significantly reduces the complexity of PSO aided allocation. Calculating the number of 

subchannels to be allocated to each user before actual allocation on the basis of SNR 

introduces extra overhead. Moreover, sorting of subchannels on the basis of gains is 

another overhead. In the proposed PSO aided subchannel allocation, these overheads are 

removed by relaxing the proportionality constraint such that each user should get at-least 

one subchannel while searching and allocation of subchannels is performed 

simultaneously. The complexity of our algorithm was assessed to be O(N) as compared to 

O(KNlog2N) for that of method in [SAE03]. Hence it may be concluded that the proposed 

algorithm is order of magnitude faster as compared to the method in [SAE03]. This fact 

makes PSO aided subchannel allocation a suitable choice for practical wireless systems 

like WiMAX (802.16e) where the convergence rate plays a very important role as the 

wireless channel changes rapidly. The fact that the channel is assumed to be constant 

during allocation makes convergence rate a very important parameter for wireless 

systems.  

The second contribution of this thesis is a novel GA for resource allocation in multiuser 

OFDM systems, in which the tradeoff between total throughput and user fairness can be 

easily evaluated. In downlink multiuser OFDM systems, data streams from multiple users 

are multiplexed into each OFDM symbol. Hence, the basestation can serve multiple users 

simultaneously. While the channel conditions of different users are largely independent 

due to users' different locations, multiuser OFDM can exploit the multiuser diversity to 

improve the system performance. Previous works either maximize the total system 

throughput without consideration of user data fairness or provide maximum fairness 

among users with the sacrifice of system throughput. In this thesis, we propose to 

maximize the total throughput while maintaining user data rates proportional. With the 
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proportional rate constraints, the data rate fairness among users can be flexibly controlled 

by a set of parameters. Further, the total system throughput is also adjustable by varying 

the proportional fairness parameters. 

The formulated optimization problem for adaptive resource allocation in multiuser 

OFDM systems includes both continuous and binary variables and, hence, is difficult to 

solve. To lower the computational complexity, we propose a suboptimal algorithm that 

separates the subchannel and power allocation among users.  

The GA is used allocate subchannels among the users to maximize the total throughput 

while maintaining rate proportionality among the users. Steps 11 and 12 in proposed 

algorithm, add deterministic component to otherwise probabilistic GA, and enhance the 

overall performance of the algorithm. 

By separating the subchannel and power allocation, the number of variables each step has 

to optimized is almost reduced by half. First, the subchannels are allocated among users 

assuming equal power is distributed in each subchannel. Second, transmit power is 

optimally allocated among users and within each individual user according to the 

subchannel allocation scheme. In general, the optimal power allocation is the solution to 

a set of nonlinear equations, which can be found iteratively with the Newton-Raphson 

method. 

Further, with the proposed resource allocation algorithm, the sum capacity is distributed 

more fairly and flexibly among users than the sum capacity maximization algorithm. 

Since the proposed adaptive resource allocation applies to each channel realization, 

proportional data rates can be assured among users for any time scale of interest. Further, 

the proposed optimization framework allows different users request variable priorities of 

their services with different prices, which is suitable for systems with heterogeneous user 

services.  

Finally we extended the above problem to MIMO OFDMA system. The problem of 

resource allocation in MIMO OFDMA systems is more challenging as compared to 

SISO. Since each subchannel now has a narrowband channel with MT and MR antennas at 

the transmitter and the receiver respectively, which can be modeled as an MT x MR 

channel matrix, Hk,n.  
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If we can extract some suitable parameters from Hk,n, then we can use same algorithm to 

solve the problem for both OFDMA and MIMO OFDMA. We investigated two 

scenarios: High SNR case and Low SNR Case. 

The determinant of H

k,n k,nH H  and Frobenius-norm of Hk,n can represent the channel 

condition of user k in subchannel n, in high SNR and low SNR respectively. The 

simulation results for low SNR case show that the proposed method strictly sticks to the 

proportional rate constraints. It was also shown that relaxing proportionality constraints 

achieves higher data rates and reduces the computational complexity of the algorithm.  

The proposed algorithm achieves higher data rates, and is computationally less expensive 

as compared to previous algorithms in this area. 

The third contribution is a combined solution to both subchannel allocation and bit 

loading in the downlink of OFDMA and MIMO OFDMA system, using a MOGA i.e. 

NSGA-II.  

In order to achieve the capacity bound, one must solve a multiuser subchannel allocation 

and the optimal bit allocation jointly. To alleviate the computational complexity of joint 

subchannel and bit allocation, several suboptimal solutions have been proposed. These 

suboptimal solutions handle subchannel and bits individually. Our solution to the 

problem in Chapter-4 is one of the suboptimal solutions. In Chapter-4 only subchannel 

allocation was considered as an objective for GA and bit loading was done using Water-

filling Algorithm.  

Rate maximization and minimizing transmit power are two seemingly conflicting 

objectives. To solve such an RA optimization, we may combine them into a single 

objective. But the solutions will not be optimal considering all possible trade-offs. If they 

are considered as two separate objectives, then the solutions will cater to most of the 

trade-offs. We use NSGA-II to optimize RA considering two such objectives: Rate 

maximization and Minimizing Total Transmit power. We relaxed the power constraint 

such that the total power was limited to a small range with a specified typical value. We 

use NSGA-II as it combines the problem solving capability of GA without being 

constrained to use a single objective 
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In Chapter-5 we propose the use of NSGA–II, for joint allocation of bits and subchannels, 

in the downlink of OFDMA and MIMO OFDMA system. Using SVD, the MIMO fading 

channel of each subchannel is transformed into an equivalent bank of parallel SISO 

subchannels. Each user's signal is pre-multiplied by a precoding matrix before 

transmission. The precoding matrix of each user lies in the null space of all other users' 

channels, hence inter-user interference is completely eliminated if the channel state 

information of all users is available at the basestation. The effective channel for every 

user, therefore, is a point-to-point MIMO channel, rendering a simpler receiver structure.  

The resource allocation in multiuser MIMO systems aims to distribute the transmit power 

optimally such that a certain objective function, e.g. the sum capacity studied in this 

thesis, is optimized. Although it has been shown, that DPC is optimal for the sum 

capacity of downlink multiuser MIMO systems, cost-effective coding schemes that 

approach the DPC sum capacity, however, are still unavailable. 

In this thesis, we formulate an optimization problem for resource allocation with both 

transmitter precoding and receiver post-processing to maximize the total system 

throughput. While the optimal post-processing matrices at the receivers are difficult to 

obtain, we restrict ourselves to a set of selection matrices. The selection matrices allow 

each user to select a subset of receive antennas to use. Although for a particular user, 

his/her throughput may be reduced by using fewer receive antennas, the system 

throughput can increase because additional spatial dimension is saved for other users. 

Further, since the precoding and post processing matrices are designed at the basestation, 

the post-processing matrices should be conveyed to their own users, which increase 

system overhead. Due to the simple structure of the selection matrices, less system 

overhead is required for the selection matrices than the optimal post-processing matrices.  

The simulation results indicate remarkable improvement in terms of convergence over 

previous approaches involving EAs. At the same time capacity achieved by the proposed 

algorithm is found to be comparable with that of previous algorithms.  
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7.3. Comparison of proposed Algorithms 

In this section we present the comparisons of resource allocation algorithms presented in 

this thesis. The comparison is presented in tabular form as follows: 

Table7.1: Comparison of Proposed Algorithms 

Algorithm/Criteria PSO Novel GA NSGA-II 

Number of Objectives Single Single Two 

Objective Function Rate 
Maximization 

Rate 
Maximization 

Minimum User Rate 
Maximization and power 

Minimization 

Sum Capacity 
 

Best & flexible Good & 
flexible 

Low & inflexible 

Fairness 
 

Poor Good & 
flexible 

Best 

Complexity 
 

Lowest Low High 

Subchannel Sharing No No  No 

Constraint on 
number of users 

Nil Nil Can be in power of 2 only 
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Chapter 8 

Future Research 

In this section, we propose several future research topics for multicarrier and/or multi-

antenna wireless systems, potentially for other researchers interested in this area. 

 Semi-Adaptive Resource Allocation for Multiuser OFDM Systems 

For multiuser OFDM systems discussed in this thesis, it was assumed that adaptive 

resource allocation is performed as soon as the user channels are changed. The system 

overhead for conveying the channel state information from the users to the basestation 

and the resource allocation schemes from the basestation to the users has not been 

incorporated into the problem formulation. While this system overhead is negligible for 

slow varying channels, it may be large for systems with fast channel variations. One 

possible solution to reduce the system overhead is a semi-adaptive resource allocation, 

where the subchannel allocation among users is performed once and remains fixed 

throughout the whole transmission period, hence the subchannel allocation scheme only 

needs to be conveyed to users once. The subchannel allocation can be performed based 

on, e.g., the average channel condition of all users and/or the data rates, bit error rates, 

and service priorities required by different users. The subchannel allocation shall be 

carried out when one user's service is fulfilled or new service requests are admitted. 

Power allocation among the subchannels assigned to each user can still be adapted to the 

channel variations. Further, since the subchannel allocation is fixed, the resource 

allocation algorithm is much easier to realize in practical systems.  

 Implementing Adaptive Resource Allocation with Proportional Data Rate 

Constraints in Multiuser OFDM systems 

Several aspects on the proposed proportional data rate resource allocation algorithm need 

to be investigated before practical implementation. For example, the set of system 

parameters  
1

K

k
  should be determined based on users' target applications. A simple 

example is to let users choose their Φk from a set pre-determined discrete value to 

represent their service priorities. 
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The basestation, after receiving users' requests, can grant a subset of users for 

transmission based on the available resources. Other methods to determine the 

proportional data rate constraints need further study. Another implementation issue is on 

the solution to a system of non-linear equations, which is required for the optimal power 

distribution among users. In practical systems, the channel-to-noise ratio of different 

users can vary significantly, largely due to the different user locations and path loss, 

which could make the system of non-linear equations ill-conditioned. Hence efficient and 

accurate implementation of the proposed algorithm is very important to obtain the 

optimal power allocation. Grouping users with similar channel-to-noise ratios and 

performing the proposed algorithm to each user group is a possible solution to make the 

system of non-linear equations less ill-conditioned, as the channel-to-noise ratio in each 

user group is about the same value. Another method to lower the computational 

complexity is to allocate the subchannels such that the system of non-linear equations is 

reduced to the linear case. 

 Maximizing Ergodic Sum Capacity with Ergodic Proportional Rate Constraints in 

Multiuser OFDM Systems 

The adaptive resource allocation in multiuser OFDM systems proposed in this thesis was 

a static algorithm, i.e. for each channel realization, the algorithm should be carried out 

and the proportional rate constraints are strictly applied for each channel realization. 

Although the proposed algorithm guarantees proportional rates in any time scale, the 

ergodic sum capacity is not necessarily optimized. A future research is to optimize the 

ergodic sum capacity while maintaining users' ergodic rates proportional. Thus, multiuser 

diversity can be even further exploited to improve the ergodic sum capacity.  

 Impact of Imperfect Channel State Information for Adaptive Resource Allocation 

Users' channel state information (CSI) is required at the basestation for adaptive resource 

allocation in both multiuser OFDM and multiuser MIMO systems. In this thesis, it was 

assumed that channel station information is perfectly known at the basestation through a 

separate feedback channel. The CSI is usually estimated at the receivers and, hence, 

prone to estimation errors. Moreover, feedback delays may cause outdated CSI used by 
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the adaptive resource allocation algorithm. The impact of imperfect CSI to the system 

performance with adaptive resource allocation needs further study. Channel prediction 

and limited feedback techniques can be combined with adaptive resource allocation to 

combat the effects of feedback delay and reduce the amount of feedback information. 

 Fixed-Point Implementation of Adaptive Resource Allocation Algorithms 

Since adaptive resource allocation should be performed frequently to match the wireless 

channel variations, low complexity algorithms are desirable for practical 

implementations. However, even the low complexity algorithms require a certain amount 

of computational efforts. For example, the optimal power allocation for multiuser OFDM 

systems proposed in the thesis requires solving a set of nonlinear equations iteratively 

and Singular Value Decomposition is necessary for multiuser MIMO systems to find the 

spatial eigenmodes of different users. Currently these algorithms are implemented with 

floating-point arithmetic. Future research shall map the proposed low complexity 

algorithms into fixed-point implementations and lower the memory footprint. 

• Adaptive resource allocation for delay-sensitive applications in wireless packet 

networks  

This algorithm proposed in Chapter 6 is suitable for data services that are delay-insensitive 

but not tolerable of errors. In future communications systems, real-time services such as 

teleconferencing, video, wireless multimedia, etc. will become more and more popular. These 

applications impose a maximum allowable delay on each packet. When designing the 

resource allocation algorithms for such delay-sensitive applications, we should not only 

consider each user’s channel conditions and the reservation of the service share as the 

algorithm in Chapter 6 does, but also consider the waiting time and the maximum tolerable 

delay of the packets. This will add more constraints and considerations on the resource 

allocation algorithms. It is thus of interest to investigate the feasibility and realization of the 

resource management on delay-sensitive services.  

• Joint MAC-PHY design for rate adaptive PHY layer transmission  

In the algorithm proposed in Chapter 6, system service rate is fixed if there are enough 

packets to be transmitted. Resource allocation for wireless networks would be much more 
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complicated if rate adaptation, such as adaptive coded modulation, is involved. In this case, 

the service rate for multiple users on different subchannels will vary significantly from one to 

another, which introduces difficulties in resource management and performance analysis. 

Nonetheless, it is widely accepted that rate adaptation is able to greatly improve the system 

spectral/power efficiency. Therefore, it is worthwhile to study a practical resource allocation 

algorithm for wireless networks when rate adaptation is included.  

• Practical intelligent resource management implementation for wireless packet 

networks  

In the proposed algorithms, the optimization procedure in every frame is independent of each 

other. In real systems, the channel conditions and queueing states are correlated in 

consecutive frames. In order to reduce the computational complexity, it is of interest to 

develop a reduced-complexity algorithm in which the resource allocation scheme in one 

frame is obtained by updating the allocations in the previous frames. By doing so, the high 

computational complexity is relieved since we do not have to implement a complete 

optimization procedure for each frame.  
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