Chapter 1

Introduction



1. Background: Diabetes mellitus
Diabetes mellitus (DM) is a category of metabolic disorders characterized by hyperglycemia

due to deficiencies in insulin secretion, insulin action or both.! As a result of ageing, urbanization
and associated lifestyle changes, the global prevalence of DM is increasing rapidly.? DM is
recognized as the eighth leading cause of death worldwide and is spreading very rapidly,
particularly in low- and middle-income countries, with an overall prevalence rate of 8.5 percent
in adults.®> According to the International Diabetes Federation, the number of people diagnosed
with diabetes worldwide increased explosively from 151 million in 2000 to 463 million in 2019
and this number is projected to reach 578 million by 2030, and 700 million by 2045.% In 2019,
more than one million children and adolescents were reported to have type 1 diabetes mellitus
(T1DM). Total healthcare spending on diabetes in 2019 was USD 760 billion and is expected to
increase to USD 845 by 2040.%7 Such soaring figures need aggressive research not only to
develop new molecules for efficient diabetes treatment, but also to develop alternative
therapeutic approaches through the use of nanotechnology to overcome the problems associated

with traditional approaches to the drug delivery.

In the development of DM multiple pathogenic processes are involved. This range from
autoimmune disruption of the pancreatic PB-cells with consequent deficit of insulin to
abnormalities that result of insulin resistance. Deficient insulin action on target tissues is the
cause of these metabolic anomalies.® Deficient insulin action results from inadequate insulin
secretion and/or diminished tissue responses towards insulin at one or more steps in the complex
pathways of hormone action. Impairment of insulin secretion and defects in insulin action

frequently coexist in the same patient, and it is often unclear which abnormality, if either alone
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or both, is the primary cause of the hyperglycemia.’ There are four clinical classes of diabetes
including type 1, type 2, other specific types of diabetes (genetic defects in B-cell function or
insulin action, disease of exocrine pancreas, drug- or chemically induced diabetes) and
gestational diabetes mellitus (GDM).!%!! Majority of diabetes cases fell into two broad groups of
etiopathogens. In one type, TIDM, the cause is an absolute insulin secretion deficiency.
Individuals at increased risk of developing this type of diabetes can often be identified by
serological evidence of an autoimmune pathological process occurring in the pancreatic islets
and by genetic markers.!? In the other, far more predominant category, type 2 diabetes mellitus
(T2DM), the cause is a combination of insulin resistance and an insufficient compensatory
insulin secretory response.!!* For the purpose of this thesis, discussion will be mainly focused on

T1DM.

2. T1DM: causes, current status and treatment

T1DM is triggered by an autoimmune reaction in which the body's immune system
damages the insulin-producing B cells of the pancreas.'* This results in either little or no insulin
being released by the body. The origins of this inflammatory mechanism are not well known but
a probable scenario is that the combination of genetic vulnerability (conferred by a wide number
of genes) and an environmental stimulus, such as a viral infection, initiates the autoimmune
reaction.””> Once stimulated, macrophages secrete multiple inflammatory cytokines including
interleukin-1pB (IL-1p), interleukin-12 (IL-12) and tumor necrosis factor o (TNF-a) arising from
stimulated T cells. !¢ Such cytokines destroy the B-cells by causing oxygen-free radicals, nitric

oxide and lipid peroxides within the B-cells and enhance Thl cell-mediated inflammatory
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responses.!” Toxins, or certain dietary factors, were also associated with development of TIDM.

The condition can occur at any age although T1DM is more severe in children and adolescents.

Strong glycemic regulation in T1DM decreases the risk of development and progression of
late diabetic microvascular complications and also has long-term beneficial effects on the
development and progression of nephropathy, hypertension, cardiovascular diseases and
atherosclerosis.!® Existing therapies have limited effectiveness, limited tolerability and
substantial mechanism-based side effects such as weight gain and episodes of hypoglycemia.
Moreover, only a handful of the treatments available which can sufficiently tackle underlying
risks, such as obesity and/or insulin resistance. Thus, newer approaches are the need of the hour
with greater emphasis on exploring delivery approaches that rely on physiological responses

(e.g., glucose-mediated insulin secretagogues) without substantial weight gain.!*?

Despite the development of active anti-hyperglycemic agents, the major challenges in
successful diabetes treatment include improving the existing therapies to maintain an acceptable

and controlled glucose level and resolving the long-term complications associated with diabetes.

2.1. T1IDM and insulin: treatment and limitations
The gold standard in TIDM therapy is functional insulin therapy with a system in basal-

bolus insulin. Different insulin regimens used for treating T1DM patients include short-acting,
long-acting, and premixed human insulin and insulin analog preparations. Short-acting analogs
of insulin include Insulin lispro (Humalog ®), Aspart (Novorapid ®) and Glulisine (Apidra ®)
that work for up to 3-5 hours. Long-acting analogs of insulin include Insulin Glargine (Lantus ®)
and Detemir (Levemir ®) with an effect lasting less than 24 hours.?! However, intense insulin

therapy also raises the risk of hypoglycemia. Despite the emergence of modern insulin analogs
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with physiologically appropriate absorption profiles and less routine bioavailability differences
relative to older insulin preparations; varying blood glucose levels, which often raise the risk of
hypoglycemia, remain a serious threat. There are shortcomings in TIDM treatment with
prolonged insulin therapy and many patients do not obtain the required blood glucose levels and
metabolic targets.?>?* Firstly, insulin tackles only partly the paradoxical and pathophysiological
glucagon abundance. Secondly, in individuals with TIDM, the gastric emptying rate is changed
and even the fastest acting mealtime insulin peaks are too late to balance postprandial glucose
absorption, leading to significant postprandial glucose excursions.?** Thirdly, intense insulin
therapy is often associated with weight gain, potentially increasing cardiovascular risks, leading
to hyperglycemia.?® Obesity is a massive problem in TIDM, with an approximate prevalence of
about 50 percent in some developing countries.?” Thus, novel non-insulin adjunct therapies need

to be explored in patients with TIDM.

2.2. Conventional oral anti-diabetic formulations. treatment and limitations

The best treatment for TIDM is currently combination therapy using medications with
actions complementary to insulin that can boost glycated hemoglobin (HbAlc), reduce the risk
of hypoglycemia, cardiovascular disorders and weight loss. Glucagon-like peptide-1 (GLP-1)
receptor agonists and pramlintide inhibit glucagon secretion, and slow gastric emptying.?®*’
Dipeptidyl peptidase-4 (DPP-4) inhibitors raise endogenous GLP-1 concentration by 2-3 times,
potentiating glucose-dependent insulin release and glucagon inhibition.** Insulin resistance is
evident in even lean T1DM patients. Thiazolidinedione primarily enhances insulin sensitivity

and this effect is also associated with weight gain, while sulfonylureas only potentiate insulin

secretion and therefore no significant impact on glucose levels or insulin dose will be expected in
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patients without B-cell function with these medications. Metformin also decreases the production
of hepatic glucose and causes a minor weight loss, but its treatment for TIDM patients is not
recommended in any international guidelines as it raises the risk of adverse gastrointestinal
events.’! Sodium-glucose co-transporter-2 (SGLT2) inhibitors reduce reabsorption of renal
glucose, resulting in substantial glucose excretion in urine. Since the mode of action of SGLT2
inhibitors is insulin independent, if used in patients with TIDM a significant impact of these

drugs on glucose regulation can be anticipated.>?

These oral anti-diabetic medications have some drawbacks and are usually used in
combination with insulin in the treatment of T1DM patients. Solubility and permeability
challenges are quite popular among these anti-diabetic drugs which are already present in the
market. Some oral anti-diabetics like sulfonylureas, have poor solubility which contributes to
less bioavailability and hence a frequent dosage regime that results in non-compliance by the
patient due to the missed dose.>® At the other hand, metformin, frequently used as a first-line
medication for T2DM, belongs to the Biopharmaceutical Classification System (BCS) class III
and is thus highly soluble but poorly permeable leading to its slow and insufficient
absorption.***> Shortcomings seen with several other anti-diabetic medications are short half-life
(3-5 h) with thiazolidinedione like pioglitazone resulting in poor bioavailability and decreased
therapeutic efficacy.33" Repaglinide, often used as an alternative drug as an adjunct therapy,
also has a limited half-life (~1 h) and has to be given three times a day, frequently contributing to
patient non-compliance.® The marketed formulations of GLP-1 agonists that is Byetta® for
exenatide and Victoza® for liraglutide, have a limited half-life and are given solely by s.c. route

which often causes discomfort to the patient like injection site (ISR) reactions such as swelling,
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pruritus, local pain and chances of infection. In fact, these medications induce nausea and
vomiting t00.***' In addition to the aforementioned issues, some of the well-known and
commonly used anti-diabetic drugs often cause serious hypoglycemia and weight gain.
Moreover, such a therapeutic approach does not allow for completely controlled homeostasis of
glucose and may result in disorders of the cardiovascular system over time. Hence it is of utmost
importance for diabetic patients to find alternative and better therapies using novel drug delivery

systems (NDDS).

3. Nanomedicinesfor diabetes: significance and status

NPs are colloidal drug delivery systems that involve nanocrystals, polymeric nanoparticles,
polymeric micelles, solid lipid NPs, nanosuspensions, and multilayer nanoparticles in the size
range of 10-1000 nm in diameter. They can be in the form of a matrix system in which the drug
is dispersed all across the particles, or as a reservoir system in which the drug is enclosed to a
cavity covered by a polymeric membrane. 4>

Nano formulations not only enhance the drug's solubility but can have many other
advantages such as decreased dosage, rapid onset of action, controlled release of drugs,
minimized side effects, targeted drug distribution, enhanced half-life of the drug, decreased
patient to patient variability as well as improved bioavailability, and thereby can solve several of
the drawbacks of existing anti-diabetics.***® To mention a few examples; many studies indicated
an increased area under curve (AUC) and higher bioavailability of sulfonylureas when delivered

49-51

by nanoformulations due to its enhanced solubility. Several sustained release

nanoformulations were also reported to address the permeability problems of metformin.>>->*

Hasan et al. observed a two-fold improvement in AUC of metformin niosomes relative to pure
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drug solution.>> Nanotherapy has found a way to overcome the short half-life obstacle;
pioglitazone nanostructured lipid carriers embedded in a transdermal patch (TDP) substantially
reduced BGL to 24 hr relative to the commercial formulation (6 hrs).>® Nanoformulations have
also been effective in addressing limitations linked to high dose frequency by allowing the
medication to be released sustainably. A sustained release of the repaglinide from its
nanoformulations revealed a robust hypoglycemic effect relative to the already marketed
preparations.’®>7 Furthermore, when delivered orally, nanoformulations of GLP-1 analogs
demonstrated an improved hypoglycemic effect with comparable AUC compared to s.c.

administration of drug solution.*%>8

Most interestingly, nano formulations often act at the molecular level to facilitate cellular
drug uptake or block efflux pathways such as P-glycoprotein (P-gp) pump or via targeting
specific receptors, thus further improving the pharmacokinetic and pharmacodynamic profile of
anti-diabetic drugs. TPGS-based repaglinide nanocrystals inhibited the P-gp efflux pump by
rigidizing the membrane lipid bilayers as well as inhibited the CYP3A4 enzyme which is
responsible for metabolizing the drug in the liver, contributing to a substantial improvement in
repaglinide bioavailability.’>®® Glibenclamide's bioavailability has also been enhanced by
formulating SLNs containing Compritol 888 ® ATO which form chylomicrons and thus enhance
the drug's lymphatic transport. Improved surface area and decreased efflux transport by these
SLNs are also responsible for the drug's improved bioavailability.®! In another study on
preventing drug efflux from the cells, glibenclamide SNEDDS showed better uptake and
therefore higher bioavailability of the drug by inhibiting efflux transporters of ATP-binding

cassette (ABC) that are known to transport glibenclamide out of the cells. This was because of

Page | 7



the presence of Tween 80, Cremophor RH, TPGS and Brij 30 in glibenclamide SNEDDS.*® Up
on oral administration of Fc receptor targeting exenatide NPs showed increased hypoglycemic
activity compared to pure drug injection by s.c route and greater gastrointestinal retention
compared to unmodified NPs. Fc receptors exist in the small intestine as well as colon and have
an expanded surface region for NP absorption.®? In addition, exenatide loaded albumin and
dextran NPs demonstrated higher oral relative bioavailability (77%) due to higher lymphatic
absorption of dextran effectively binding to the dendritic cell-specific intercellular adhesion
molecule 3-grabbing nonintegrin (DC-SIGN) receptor family.*® Table 1.1 discusses different

types of nanoformulations for treatment of DM.

4. Lisofylline (L SF) asa potential moleculefor treatment of autoimmune disorders

LSF was originally developed and tested to reduce cellular damage due to autoimmunity,
hypoxia and ischemic reperfusion.®> LSF has been used to overcome morbidity and mortality
during serious infections associated with cancer chemotherapy and for treatment of acute lung
injury after severe trauma.®* It has also been reported for its therapeutic efficacy in early

treatment of diabetes wherein, it enhances glucose-stimulated insulin secretion,%®%’

causes
reversal of insulin insensitivity and glucose-induced phosphorylation of the insulin receptor.®
The protective role of LSF in diabetes is mainly attributed to the promotion of mitochondrial
metabolism in -cells, normalizing the membrane potential of mitochondria and thus stimulating
energy production.®>’”® Mitochondrion controls cell apoptosis’' and regulates B cell insulin

secretion.'* This broad spectrum of activity suggests that LSF bears significant clinical utility in

preventing both TIDM and T2DM.”%”? Considering the immense therapeutic potential and
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multiple pharmacological activities of LSF as stated above, appropriate and improved therapy of

LSF is of paramount significance.

5. LSF: Currently under development for treatment of diabetes
LSF has well reported benefit in TIDM. Striffler and Nadler have demonstrated that LSF

decreased IL-1pB induced islet dysfunction in isolated pancreatic islets along with maintaining
insulin secretion. Furthermore, co-incubation of LSF with insulin secreting, rat insulinoma cells,
INS-1 in the presence of pro-inflammatory cytokines, IL-1p, TNF-a and TFN-y, restored glucose-
stimulated insulin secretion and mitochondrial metabolism to control levels.”> LSF treatment in
the non-obese diabetic (NOD) mouse model of TIDM delayed the onset of diabetes.”® In T2DM
prediabetic mice, LSF administered at 25 mg/kg, intraperitoneally (IP), twice daily potentiated
glucose-mediated insulin secretion possibly by stimulating the functioning of residual p cells.”*
LSF administration in obese Zucker rats that are well known models for obesity and
insulin resistance, reduced p-STAT4 in visceral adipose tissues and showed improvement in
metabolic profile of zucker rats by reducing fasting plasma glucose and improving insulin
sensitivity. LSF treatment increased feed efficiency with concomitant increased lipid storage in
adipose tissue, which may be beneficial in preventing deposition of ectopic (nonadipose) lipids.
> Yang et al. investigated LSF and exendin-4 (Ex-4) combination (LSF (27 mg/kg/day) and Ex-
4 (18 nM/day) were delivered by the Alzet osmotic minipumps to provide a 28 day consistently
systemic administration by s.c. route) simultaneously block the autoimmune cytokine damage
along with simultaneously supplying a growth-promoting stimulus for B-cells in the non-obese
diabetic (NOD) mouse model. The results demonstrated that LSF and exendin-4 combined

therapy could effectively and efficiently reverse insulin-dependent autoimmune diabetes in the
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NOD mouse model. Although, actual mechanism behind synergistic effect of LSF and Ex-4 was
not known. Here, Ex-4 works as an activator of the GLP-1 receptor by activating cyclic AMP
and protein kinase A while LSF improves mitochondrial function and blocks the expression of
STAT-4 activation in target tissues.’®

Several researchers have demonstrated the efficacy of LSF in diseases that are either
mediated by altered lipid profile or induced by pro-inflammatory cytokines including diabetes.
Nonetheless, the low potency, poor oral bioavailability, and short half-life of LSF hinder its
clinical translation. Research efforts aiming at improving these shortcomings of LSF are still in
infancy.”’

Inspite of being a potent molecule, LSF is quite less explored in research and very few
reports are available focusing on the physicochemical and pharmacokinetic issues associated
with LSF. In one such study reported in the year 2006, Cui et al. have synthesized 32 analogs
based on the structural motif of LSF wherein, only two of these analogs were found to be
effective in protecting B-cells from cytokine-induced injury and maintaining insulin secretory
ability in cell culture based evaluation.” Nonetheless, no in vivo pharmacokinetic and
pharmacodynamics data is reported on these analogs till date to determine if the synthesized
analogs improved the metabolic stability and oral bioavailability of LSF. We did not come across
any other study highlighting the approaches to modify LSF or deliver it by either conventional or

novel drug delivery systems.

6. Drugddivery challenges associated with L SF

The broad spectrum of activity of LSF suggests its significant clinical potential but inspite of

being a potent molecule it poses certain major challenges that limit its clinical development.
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6.1. High aqueous solubility

LSF has a high aqueous solubility (~60 mg/mL in water) which hinders its encapsulation
into any delivery system.”” Due to its hydrophilicity, it exhibits low intracellular absorption,
short half-life (~ 0.75-1.17 h), rapid -clearance, sub-optimal distribution and poor

pharmacokinetics.

6.2. Extensive first pass metabolism and short half-life

LSF undergoes rapid interconversion into PTX necessitating a high dose and frequent
dosing for its therapeutic action.”® LSF has a low (to non-existent) oral bioavailability in humans
(~5.9 %) due to its extensive first pass metabolism.®® Due to these pharmacokinetic issues, it is

required in high doses inspite of being potent.

Nadler et al. have reported the anti-diabetic potential of LSF in streptozotocin (STZ)
induced diabetic model at a dose of 25 mg/kg, i.p., twice daily.”? Similarly, Yang Z. et al.
reported the effectiveness of LSF in diabetes prevention in multiple low dose STZ induced
diabetic mice model at a dose of 25 mg/kg, ip. twice daily, for 14 consecutive days.”*
Combination delivery of LSF and B-cell growth factor, exendin-4 has been explored for reversal
of autoimmune diabetes in NOD mice wherein, LSF was administered at 27 mg/kg/day by s.c.
route using osmotic mini pump for 28 days.”® In clinical trials of LSF in TIDM, LSF has been
administered at a single dose of 9 mg/kg by continuous IV infusion or at 12 mg/kg by continuous
subcutaneous infusion over a 10 hour period during the alternate period 1 week apart.” Apart

from T1DM, in other ongoing clinical trials of LSF for treatment of allogeneic bone marrow

transplants®, acute lung injury and acute respiratory distress syndrome, the drug is administered
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at a dose of 3 mg/kg with a maximum of 300 mg intravenously (infusion) for 10 min for
every 6 h till 31 days.'!! These studies and reports prove the immense therapeutic potential of
LSF but also illustrate a difficult and patient non-compliant dosage regimen of LSF attributed
to its short half-life and rapid clearance. Thus, orally active formulation of the drug if

available could provide a major relief to patients with TIDM.

7. Drug-fatty acid conjugates and delivery systems

Oral drug delivery route is one of the most convenient and commonly used drug
administration routes. But there are several drugs that exhibit poor bioavailability upon
delivering them orally. One of the appropriate strategies used to address this problem is the
use of drug-fatty acid conjugates. Drug-fatty acid conjugates are the drug molecules which
have been covalently modified along with a fatty acids. Such conjugates have shown many
benefits including enhanced oral bioavailability, improved tumor targeting, decreased toxicity
and improved drug loading into delivery carriers.!'>!!* Fatty acids consist of hydrocarbon
chain and a reactive carboxylic acid group which have been conjugated with the drugs to
make them hydrophobic. The fatty acids are used because of their characteristic properties
such as biocompatibility, additional functional roles in drug targeting or self-assembly and
chemical flexibility for modification. The widely used technique is to conjugate the
carboxylic end of the fatty acid with a drug's hydroxyl or amine group to form a stable ester
or amide linkage .'!> Many fatty acids and their derivatives were used for the development of
conjugates (Table 1.2) and these conjugates have been delivered using different carriers
including self-assembled systems (without carriers), liposomes, emulsions, lipid

nanoparticles, micelles, and polymer NPs etc.
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Tablel1.2

Drug-fatty acid conjugates and their delivery systems.

S.No. Fatty acid Drug Delivery system Ref.
1 (.:OHJ 1.1gate.d Paclitaxel Liposome 116
linoleic acid
5 o Gemitabine . l?olymer naI.loparti.cle 117,118,119
Stearic acid lipid nanoparticle, micelle
S-fluorouracil Lipid nanoparticle 120
3 Lauric acid Cytarabine Self-assembled nanofiber 121
4 o Docetaxel Nano structgred lipid 122
Oleic acid carrier
Paclitaxel Emulsion 123
Imiquimod Cream 124
5 Dexamethasone Emulsion 125
Paclitaxel Emulsion 126
Palmitic acid Doxorubicin Micelle 127
TGX-221 Micelle 128
siRNA Polymer nanoparticle 129
Capecitibane Lipid nanoparticle 130
6 Doxorubicin No carrier 131
Paclitaxel No carrier 132
DHA Lovastatin No carrier 133
10- No carrier 134
hydroxycamptothecin
7 Mystiric acid Cabotegravir Nanoparticles 135
Hexanoic acid, 136
8 Octar.101c E.lCId’ Entecavir No carrier
Decanoic acid, and
Dodecanoic acid
9 Octadecanoic acid Gemcitabine Nanoassembly 137

7.1. Lisofylline (LSF): suitable candidate for conjugate formation

LSF is a potent hydrophilic drug with reported benefit in TIDM and its aqueous
solubility is approx. 60 mg/mL which makes it difficult to be formulated into any nano drug
delivery system. Apart from solubility, major concern with LSF is its interconversion to its
parent drug pentoxifylline (PTX).!*® Delivery of LSF by any conventional approach fails to

solve the problems of drug metabolism and its poor PK parameters. Interconversion of LSF

Page | 20



and PTX is mainly attributed to free hydroxyl group found in LSF side chain which is gets
oxidized in the presence of oxidoreductase enzymes (Figure 1.1). Considering this,
conjugation of LSF with a hydrophobic moiety such as a fatty acid appears to be a preferable
strategy that could consume the free hydroxyl group of LSF and further it could be delivered
using a nano-formulation. Conjugation of LSF with hydrophobic moieties like polymer or
fatty acids can impart hydrophobicity to LSF, the resulting conjugate can be encapsulated
into any nano drug delivery system and can also reduce the excessive metabolism of LSF
providing an overall enhanced efficacy.
8. Objectives of the present resear ch and development endeavor

The objective of this work was to overcome the challenges associated with LSF by
synthesizing LSF-fatty acid conjugate and to deliver it by a suitable nanoformulation for
effective treatment of TIDM (Figure 1.1). The advantages of preparing a fatty acid conjugate
of LSF are, a) impart hydrophobicity to the drug to enable its efficient encapsulation into the
delivery system and, b) reduce drug metabolism by protecting its hydroxyl group and thus
prolonging its half-life. Further, an oral delivery system for LSF-fatty acid conjugate

nanoformulation was envisaged, developed and evaluated.

The specific goals of this research work are outlined below:
Analytical and bioanalytical method development and validation of LSF and PTX
Synthesis, characterization and evaluation of LSF-linoleic acid (LSF-LA) conjugate
i.  Synthesis and characterization of LSF-LA
ii.  Self-assembly of LSF-LA conjugate into micelles (LSF-LA SM)
iii.  In-vitro evaluation of LSF-LA SM in cell culture

iv.  Pharmacokinetics and in-vivo efficacy studies of LSF-LA SM in T1DM animal model
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3. Development and evaluation of polymeric nanoformulation of LSF-LA conjugate
i.  Development of polymeric micelle formulation of LSF-LA (LSF-LA PLM)
ii.  In-vitro evaluation of LSF-LA PLM in cell culture
iii.  Pharmacokinetics and in-vivo efficacy studies of LSF-LA PLM in TIDM animal
model
4. Designing of an oral tablet dosage form of LSF-LA PLM
i.  Scale-up and lyophilization of LSF-LA PLM
ii.  Preparation and characterization of LSF-LA PLM tablets

iii.  Pharmacokinetic studies of LSF-LA PLM tablets
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