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ABSTRACT

The present thesis concentrates on the development and applications of Density Functional
Reactivity Theory (DFRT) based reactivity descriptors. The main aim of the thesis is to extend
Comprehensive Decomposition Analysis of Stabilization Energy (CDASE) scheme (P. Bagaria, et
al. Phys. Chem. Chem. Phys. 2009, 11, 8306), which is a modified form of Parr and Pearson
equation (R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 1983, 105, 7512), as a valuable and an
authentic tool for studying some chemical reactions. Apart from this, some modifications are made
in the already existing equations of CDASE scheme which are further tested on some chemical
reactions and correlated with experimental data.

In Chapter 1, an overview of literature, objectives and motivation behind the present thesis
is discussed. The theoretical developments of the DFRT based local as well as global reactivity
descriptors are thoroughly discussed in this chapter.

Chapter 2 introduces the new concept, ‘charge transfer limit’ and generates the full profiles
of the components of stabilization energy as well as of stabilization energy itself. This is executed
by choosing some adduct forming reactions, viz., Diels-Alder pairs and Charge transfer complexes
formed between NH3 and BH3 and their derivatives. Apart from this, a qualitative relationship is
developed in this chapter highlighting the role of non-bonding interactions (dipole—dipole, charge-
induced dipole and London dispersion interactions) rather than only charge-transfer, in stabilizing
the combined system at the initial stage of adduct formation. The analytical expression also helps
to draw a conjecture on the influence of solvent polarity in stabilizing the adduct.

The conjecture drawn on the influence of solvent polarity in stabilizing the adduct in
Chapter 2 is established in Chapter 3 by analytically introducing the thermodynamic parameter,
‘net desolvation energy’. This new parameter introduces the effect of solvent polarity in the
stabilization energy expression. Further, this formalism is tested on the two reactions viz., reaction
of methyltrioxorhenium (MTO) with pyridine and [3+2] Huisgen cycloaddition reaction. The
results generated are correlated with experimental formation constant (K) values for the former
reaction.

In Chapter 4, an analytical relation is derived between equilibrium constant (K) and DFRT
based stabilization energy with the help of chemical and statistical thermodynamics for reactions

of the type A + B AB. Further, CDASE scheme is applied on different sets of adduct

formation processes viz., (i) methyltrioxorhenium(MTO)-Ligand adduct formation, where MTO
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acts as an acceptor and a common species in all reactions and different mono- and bidentate N-
donor ligands (acting as donors) and (ii) semicarbazone formation from semicarbazide (acting as
a donor and a common species) and different ortho/para substituted benzaldehydes (acting as
acceptors). Further DFRT based stabilization energies are correlated with experimental formation
constant (K) values.

In Chapter 5, DFRT based Hammett equation from the kinetic component of CDASE
scheme is proposed and then tested on six reactions viz., (i) reaction of para-substituted
acetophenones with hydroxylamine, (ii) reaction of para-substituted cumenes with
dimethyldioxirane, (iii) reaction of para-substituted benzylbromides with diphenylamine, (iv)
reaction of 2,2,2-trifluroaceticacid with p-substituted ethanol, (v) reaction of norbornene with
meta-substituted arylazide and (vi) reaction of norbornene with para-substituted arylazide. Further,
a correlation is made between the experimentally generated Hammett plots and DFRT based
Hammett plots.

Chapter 6 summarizes the overall thesis in the form of conclusions with an outline of

probable future scope.
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Lfor the reaction of para-substituted acctophenones

(c). The values of charge transfer (AN) for the reaction of para-substituted
acetophenones with hydroxylamine in ethanol at B3LYP/6-31G(d,p) and MO6-
2X/6-31G(d,p) levels of theory. -X is the substituent on the para-position of
acetophenone. In all the cases with the substituents as shown, para-substituted
acetophenone acts as an electron acceptor (A) and hydroxylamine acts as an electron
donor (B).

(d). The values of ¢° for different substituents and log%
Epaly

reaction of para-substituted acetophenones with hydroxylamine in ethanol at
B3LYP/6-31G(d,p) and M06-2X/6-31G(d,p) levels of theory. -X is the substituent
on the para-position of acetophenone.

values for the
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(a). The values of AEg 4y, AE, gy and AEgg(apy (in keal mol™!) for the reaction of
para-substituted cumenes with dimethyldioxirane in acetone at B3LYP/6-31G(d,p),
LANL2DZ (for I atom) and M06-2X/6-31G(d,p), LANL2DZ (for I atom) levels of
theory. -X is the substituent on the para-position of cumene.

[2E (4]

(b). The values of log[ ]X ~———=2for the reaction of para-substituted cumenes with
Ep(a)

dimethyldioxirane in acetone at B3LYP/6-31G(d,p), LANL2DZ (for 1 atom) and
MO06-2X/6-31G(d,p), LANL2DZ (for I atom) levels of theory. -X is the substituent
on the para-position of acetophenone.

(c). The values of charge transfer (AN) for the reaction of para-substituted cumenes
with dimethyldioxirane in acetone at B3LYP/6-31G(d,p), LANL2DZ (for I atom)
and M06-2X/6-31G(d,p), LANL2DZ (for I atom) levels of theory. -X is the
substituent on the para-position of cumene. Dimethyldioxirane acts as an electron
acceptor (A) and para-substituted cumene acts as an electron donor (B) when the
substituents (-X) are from entry 1 to entry 6. When the substituent (-X) on para-
position of cumene is -COCH3, it acts as an electron acceptor (A).

[AEp(a))
[a EB(A)]H
reaction of para-substituted cumenes with dimethyldioxirane in acetone at
B3LYP/6-31G(d,p), LANL2DZ (for 1 atom) and MO06-2X/6-31G(d,p),
LANL2DZ(for 1 atom) levels of theory. -X is the substituent on the para-position of
cumene.
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53
(a). The values of AEg 4y, AE4 gy and AEgp4py (in kcal mol™) for the reaction of

para-substituted benzylbromide with diphenylamine in methanol at B3LYP/6-
31G(d,p) and M06-2X/6-31G(d.p) levels of theory. -X is the substituent on the para-
position of benzylbromide.

(b). The values of log[ b))
[AEpa],,

with diphenylamine in methanol at B3LYP/6-31G(d.p) and M06-2X/6-31G(d,p)
levels of theory. -X is the substituent on the para-position of benzylbromide.

Lfor the reaction ofpara-substituted benzylbromide

(c). The values of charge transfer (AN) for the reaction of para-substituted
benzylbromides with diphenylamine in methanol at B3LYP/6-31G(d,p) and M06-
2X/6-31G(d,p) levels of theory. -X is the substituent on the para-position of
benzylbromide. In all the cases with the substituents as shown, para-substituted
benzylbromide acts as an eclectron acceptor (A) and diphenylamine acts as an
electron donor (B).

(d). The values of o° for different substituents and log% values for the
B(A

reaction of para-substituted benzylbromide with diphenylamine in methanol at
B3LYP/6-31G(d,p) and M06-2X/6-31G(d,p), levels of theory.-X is the substituent
on the para-position of benzylbromide.
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(a). The values of AEg (), AE4 gy and AEgg(4p) (in keal mol™) for the reaction of
2,2 2-trifluoroaceticacid  with  B-substituted ethanol at B3LYP/6-31G(d,p),
LANL2DZ (For I atom) and M06-2X/6-31G(d,p), LANL2DZ (For I atom) levels of
theory. Here, -X is the substituent on the.B-position of ethanol.

(b). The values of log{ BE j
Epa

substituted ethanol at B3LYP/6-31G(d,p), LANL2DZ (For I atom) and M06-2X/6-
31G(d,p), LANL2DZ (for I atom) levels of theory. Here, -X is the substituent on the
B-position of ethanol.

£ for the reaction of 2,2,2-trifluoroaceticacid with f3-

(c). Charge transfer (AN) values for the reaction of 2,2,2-trifluoroacetic acid with -
substituted ethanol at B3LYP/6-31G(d,p), LANL2DZ (for I atom) and M06-2X/6-
31G(d,p), LANL2DZ (for I atom) levels of theory. -X is the substituent on -
position of ethanol. In all the cases 2,2,2-trifluoroacetic acid acts as an electron
acceptor (A) and B-substituted ethanols as electron donors (B).

5.5
(a). The values of AEg 4y, AE, 5y and AEgp(apy (in keal mol™) for the reaction of

norbornene with meta-substituted arylazides in ethylacetate at B3LYP/6-31G(d,p)
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and M06-2X/6-31G(d,p) levels of theory. Here, -X is the substituent on the meta -
position of arylazide.

AE
(b). The values of log% for the reaction of norbornene with meta-substituted
B(A)ly
arylazides in ethylacetate at B3LYP/6-31G(d,p) and M06-2X/6-31G(d.p) levels of

theory. Here, -X is the substituent on the meta-position of arylazide.

(c). Charge transfer (AN) values for the reaction of norbornene with meta-
substituted arylazides at B3LYP/6-31G(d,p) and M06-2X/6-31G(d.p), levels of
theory. -X is the substituent on meta-position of arylazide. In all the cases
norbornene acts as an electron donor (B) and meta-substituted arylazides act as an
electron acceptors (A).

5.6

(a). The values of AEg(,), AE, gy and AEgg(apy (in keal mol™!) for the reaction of
norbornene with para-substituted arylazides in ethylacetate at B3LYP/6-31G(d,p)
and M06-2X/6-31G(d,p) levels of theory. Here, -X is the substituent on the para-
position of arylazide.

AE
(b). The values of log{A;ﬂ for the reaction of norbornene with para-substituted

B4 u
arylazides in ethylacetate at B3LYP/6-31G(d,p) and M06-2X/6-31G(d,p) levels of
theory. Here, -X is the substituent on the para-position of arylazide.

(c). Charge transfer (AN) values for the reaction of norbornene with para-substituted
arylazides arylazides at B3LYP/6-31G(d,p) and M06-2X/6-31G(d,p) levels of
theory. Here, -X is the substituent on para-position of arylazide. In all the cases
norbornene acts as an electron donor (B) and para-substituted arylazides act as
clectron acceptors (A).
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