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Abstract

Next-generation wireless communication systems need antennas with multi-functionality,
adaptability, and flexibility to provide efficient utilization of power and electromagnetic spectrum.
Reconfigurable antenna can fulfill these demands by delivering multiple functionalities in a single
antenna structure. These antennas can dynamically adapt to changing system requirements
by altering their operating parameters. Reconfigurable antennas are classified as frequency,
pattern, polarization and compound reconfiguration. Compound reconfigurable antenna involves
simultaneous reconfiguration of two or more parameters such as frequency and pattern, frequency
and polarization, pattern and polarization and frequency, pattern and polarization. This
dissertation presents design and development of linearly polarized and circularly polarized pattern

reconfigurable microstrip parasitic antennas.

The antenna designs presented in this thesis includes a) Pattern reconfigurable antenna with
continuous beam scanning in H-plane, b) Pattern reconfigurable antenna with capabilities of
complete azimuthal beam scanning and beamwidth variability in both the principal planes with
linear polarization and c) Independent pattern and polarization reconfigurable antenna along with
beamwidth reconfiguration for dual orthogonal linear polarization. The proposed reconfigurable
antenna designs have the following characteristics a) Electrically reconfigured by incorporating
varactor diode as switching element, b) Operating frequency of all the antennas is chosen as 2.45

GHz and ¢) Working on the principle of microstrip Yagi and tunable parasitic patch size method.

A reconfigurable microstrip Yagi antenna is proposed to realize continuous and improved beam
scanning from —40° to 40° in the H-plane. This antenna is designed using a square-shaped
driven patch and two hexagonal slotted tunable parasitic elements placed in the H-plane. Tunable
parasitic element shows dual resonance characteristics, and hence its effective electrical size can
be changed by varying the capacitance of varactor diodes. Mutual coupling between the driven and
tunable parasitic elements is controlled by changing the capacitance of varactor diodes loaded in
the hexagonal slot. The relative lead and lag of current due to change in the dimension of tunable
parasitic patch causes phase distribution across the elements resulting in continuous scanning of
the main beam. It is observed that the antenna radiates with a maximum steered angle when
the size of a tunable parasitic element is close to the driven patch size. Effect of varactor diode
capacitance on the mutual coupling is studied by calculating current ratios in all three operating
modes, namely Reflector-Director (RD), Director-Reflector (DR), and broadside. Performance

of the proposed pattern reconfigurable antenna is measured in RD, DR, and broadside operating
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mode. In RD and DR mode, the main beam is continuously scanned from 14.4° to 40° and —14.4°
to —40°, respectively. The main beam is directed to 0° in the broadside mode with a gain of 3.36
dBi.

1-D continuous beam scanning principle is then extended to achieve increased diversity in terms
of radiation characteristics. A reconfigurable cross parasitic antenna is proposed to realize
complete azimuthal beam scanning and tunable beamwidth in the E-plane (xz-plane) and H-plane
(yz-plane). This antenna consists of a square-shaped driven element and four size-tunable parasitic
elements placed on each side of the driven element. Radiated beam of the cross antenna is
continuously scanned in the elevation plane from # = 0° to 10.8°, 0° to 32.4°, and 0° to 40°
in ¢ = (0°, 180°), (45°, 135°, 225°, 315°), and (90°, 270°) planes respectively. Moreover, the
3-dB beamwidth of the cross antenna is continuously tuned from 65° to 152° and 64° to 116° in
the E-plane and H-plane respectively. Performance of the antenna is experimentally verified in
broadside direction and ¢ = (0°, 45°, 90°) plane. The beamwidth reconfiguration characteristics

are also experimentally verified in E-plane and H-plane.

A RA design is proposed to achieve independent pattern and polarization reconfiguration along
with beamwidth reconfiguration at an operating frequency of 2.45 GHz. This antenna consists
of a dual-feed square-shaped driven patch surrounded by four tunable parasitic elements placed
in the E-plane and H-plane. Each tunable parasitic element consists of a square-shaped slot
loaded with four varactor diodes. A reconfigurable feeding network is developed using a 3-dB
quadrature hybrid coupler, one SP4T switch, and two SPDT switches to generate orthogonal
linear (LVP, LHP) and circular (LHCP, RHCP) polarization. For each polarization state, the main
beam of the antenna is continuously scanned in the elevation plane and provide complete 360°
azimuth coverage. In LP operating mode, main beam is continuously scanned from 6 = 0° to
11°, 0° to 32°, and 0° to 40° in ¢ = (0°, 180°), (45°, 135°, 225°, 315°), and (90°, 270°) planes
respectively. In CP operating mode, main beam is continuously scanned from 6 = 0° to 30° in
¢ = (0°, 180°), (45°, 135°, 225°, 315°) and (90°, 270°) planes respectively. This antenna shows
excellent cross-polarization characteristics, and it is observed that the axial ratio is less than 3
dB in all the beam scanning directions. The 3-dB beamwidth of the proposed antenna can also be
continuously tuned in both the principal planes either individually or simultaneously with LVP and
LHP polarization states. The result shows that 3-dB beamwidth in the E-plane, H-plane, and both
the planes can be continuously tuned from 66° to 152°, 60° to 108°, and 78° to 120° respectively.

Full-wave simulation of the proposed reconfigurable antenna designs has been performed using
commercial software Ansys HFSS. The antenna designs presented in this thesis are validated
by simulation as well as measurement. Reflection and radiation performance of the fabricated

antennas show good agreement with the simulation results.
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