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 To enhance the spectrum sensing algorithm for better Qos in Cognitive radio 

networks 

 To apply this method to cognitive radio network and validate the results by 

applying enhanced spectrum sensing on spectrum analyzer 

 To calculate the route sustenance time and connection sustenance time which are 

very important parameters for improving the Qos of a Cognitive radio network 

 To further enhance the Qos of cognitive network architecture by using 

combination of enhanced spectrum sensing and hybrid spectrum sensing for joint 

interweave and overlay model. 

 To apply the proposed algorithms and enhancing them for cognitive radio enabled 

IoT (Internet of Things) network.  

1.7  Thesis Organization 

The thesis is organized as follows. Chapter 2 discusses about spectrum sensing algorithms 

and enhancing the conventional spectrum sensing method. For the purpose of validation 

the proposed algorithm is applied on spectrum analyser and results are presented. In the 

third chapter analysis about route sustenance time and connection sustenance time are 

done, which are very important parameters in improving Qos of cognitive radio networks. 

These two parameters are tested on vehicular and pedestrian traffics and results are 

presented. In chapter 4 a joint interweave underlay mode is presented with the help of 

proposed Enhanced spectrum sensing and Hybrid spectrum sharing. In this chapter the 

focus is on power optimization based on the PU sensing result. In chapter 5 proposed 

algorithms are applied on cognitive radio enabled IoT network. In this chapter spectrum 

quality and spectrum availability are estimated based on two parameters called global 

information about spectrum usage and instant spectrum status information. Chapter 6 

gives conclusions and directions for future work.  
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CHAPTER 2: ENHANCED SPECTRUM SENSING 

 

In the previous chapter, we have discussed about cognitive radio, cognitive radio 

networks, QoS in CRNs and Essential components of CRNs from QoS perspective. If 

closely observed, in order to have an efficient network which maintains good throughput, 

secondary users (SUs) must sense true unused primary user (PU) channels. It is to say that 

spectrum sensing unit at the cognitive radio should perform well without any probability 

of false alarms and probability of missed detections. In this chapter the focus is on 

spectrum sensing part and improvising one of the frequently used sensing methods. Later 

in the chapter, the proposed enhanced sensing algorithm is applied on hardware for 

validation of the proposed algorithm. 

 

2.1  Spectrum Sensing (SS)  

Most of the spectrum which is licensed is unused both in frequency and time. Wireless 

networks tend to have burst traffic and therefore, at a very fine time scale the efficient 

exploiting of unused licenced spectrum will lead opportunity for secondary users who are 

in need (Unlicensed Users). Thus spectrum sensing plays a pivotal role in CRNs. The SU 

duty is to sense the spectrum, quickly transfer its data and vacate the bands when the 

primary user comes back without causing any interference to the primary user network. 

There are several methods proposed in literature for the identification of the unused 

spectral bands. In the following sub sections, we describe few of them briefly  
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2.1.1 Energy Detection Based Spectrum Sensing  

Energy detection method is most commonly used SS algorithm because of its ease of 

implementation and low computational load [22-25]. Added to this, compared to other 

sensing methods, this is simpler as receivers do not require apriori knowledge of PU 

signal. Signal detection is done by comparing the output from the energy detector with a 

predefined threshold. The bottlenecks associated with energy detection algorithm include 

threshold detection for PUs, performance degradation under low signal to noise ratio 

(SNR) values. Let us consider that the received signal is of the form  

 

        ( ) ( ) ( )y n x n w n                                                                  (2.1) 

 

Where x(n) is the input signal and w(n) is the additive white Gaussian noise (AWGN) and 

n is the index for number of samples. Then the energy detector output is given as  

 

               2

0

| ( ) |
N

n

M y n


         (2.2) 

 

Where, N is the number of samples which are to be observed. When there is no 

transmission from PU the received signal x(n) = 0. The decision metric M is compared 

with a fixed threshold λ to decide whether PU is present or not. This can be given as 

binary hypothesis problem:  

 

                0 : ( ) ( )H y n w n           (2.3) 

             1 : ( ) ( ) ( )H y n x n w n        (2.4) 
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The performance evaluation of energy detection algorithm is made on two probabilities: 

probability of detection PD and probability of false alarm PF. PD is the probability of 

detection of a signal when it is present in the observed frequency band. PD is given as  

 

PD=Pr(M>λ | H1)                   (2.5) 

 

False alarm is the one when energy detector gives a decision that primary user is present 

when it is not, and the probability of false alarm, PF is given as 

 PF=Pr(M>λ | H0)            (2.6) 

 

It is obvious that, large probability of detection is desired. PF has to be maintained as low 

as possible so as not to interfere with the PU. To achieve this, λE must be selected 

properly to have a balance between PD and PF for which a priori knowledge of detected 

signal powers and noise are required. It is quite easy to estimate noise power but not the 

signal power as it changes depending on distance between CR and PU and characteristics 

of PU transmissions. However, to achieve a specific false alarm rate noise variance is 

enough for a threshold selection.  

 

White noise can be described as a zero mean Gaussian random variable with variance σ2
w, 

i.e., 2( ) (0, )ww n N  . For better analysis signal term is also defined as zero mean 

Gaussian variable, i.e. 2( ) (0, )xx n N  . As per the assumptions made the decision metric 

Eq. (2.2) will follow chi square distribution and hence, it can be given as  

 

2
2

2
2

wM N


        0H
 

(2.7) 
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Where χ2
2N  is a chi square distribution with 2N degrees of freedom.  

 

In energy detection algorithm threshold depends on the noise variance. Therefore, there 

will be performance loss for even a small noise power estimation error [26].  Many 

solutions are derived for this problem; by using MUSIC (Multiple signal classification) 

algorithm [27] dynamic estimation of noise level is done by separating signal and noise 

subspaces. When an autocorrelation is performed on incoming signals, the smallest eigen 

value is termed as noise variance. Then for satisfying a certain false alarm rate the noise 

variance obtained or the smallest eigen value is chosen as threshold. In [28] to satisfy a 

certain probability of false alarm an algorithm is stated to get the decision threshold. For 

unknown noise power cases forward methods are proposed in [29] which are based on 

energy measurements. Hence this method is more suitable for practical scenarios where 

there is no prior knowledge about noise variance.  

 

Energy detector is applied on wireless local area network (WLAN) channels to know 

busy and idle periods and analysis of measurement results are done in [30], [31], [32]. 

Energy detector is also applied on slots of global system for mobile communications 

(GSM) [33] to exploit idle slots. But in GSM scenario CR network should be in 

synchronous to PU network and also sensing time is limited to each slot. For 

opportunistic usage of unused cellular bands same kind of approach is used in [34]. Fast 

fourier transform(FFT) is applied on incoming signals of TV channels [35] to get the 

power level and is compared with the threshold to know which TV channels are used. In 
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[36][37] energy detection algorithm performance is tested by applying on various fading 

channels. 

 

2.1.2 Waveform- based sensing 

For the purpose of synchronisation in wireless systems known patterns such as preambles, 

Midambles, spreading sequences etc. are shared. Sensing can be performed effectively at 

the receiver if known patterns are readily available [38], [39], [40]. Waveform based 

sensing is applied only when the transmitting patterns are known and it is also termed as 

coherent sensing. In [38] it is shown that the convergence time and reliability is more in 

waveform based sensing when compared with energy detection. It is also mentioned that 

as the length of known pattern increases sensing performance also increases.  

From [38], the metric of waveform based sensing is given as 

         *

1

Re[ ( ) ( )]
N

n

M y n x n


                (2.8) 

 

Where * indicates conjugate operation. When PU is not present the metric is given as  

 

*

1

Re[ ( ) ( )]
N

n

M w n x n


                     (2.9) 

 

The sensing metric when PU is present is given as  

 

2 *

1 1

| ( ) | Re[ ( ) ( )]
N N

n n

M x n w n x n
 

                  (2.10) 

 

By comparing the decision metric M with a fixed threshold λ, decision can be made on 

whether PU is present or absent.  
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In [41] it is evident that for waveform based sensing that the measurement time is very 

short but it is susceptible to synchronisation errors. In [31], [32] and IEEE 802. 11b [42] 

packet preamble signals are considered for experimenting the WLAN channel usage 

characteristics. In summary if known patterns of the waveform is known then this method 

is advantageous otherwise this method is not used for spectrum sensing. This sensing 

method is susceptible to synchronisation errors which eventually increases false alarms. 

 

2.1.3 Cyclostationarity- based Sensing 

In this method cyclostationary features of received signals are determined for detecting 

the presence of PU’s [43], [44], [45], [46]. The periodicity in mean and autocorrelation 

[47] or signal itself is the features of cyclostationarity- based sensing method. Sometimes 

these features are induced intentionally for spectrum sensing purpose [48-51]. The prime 

benefit of cyclostationarity based sensing is it can differentiate noise signals and original 

signal easily. Cyclostationarity is also used for distinguishing between different types of 

primary users and transmissions [52].  

 

From [48] the cyclic spectral density (CSD) of a required signal is given as 

        2( , ) ( ) j f

yS f R e  



 






      (2.11) 

Where 
* 2( ) [ ( ) ( ) ]j n

yR E y y e       
 
is the cyclic autocorrelation function (CAF) 

and α is the cyclic frequency. Cyclic frequencies are extracted or assumed to be known 

[53] for identifying the features of transmitted signals.  

 

In [49-51] specific cycle frequencies at certain frequencies are generated and altered 

before transmission in the orthogonal frequency division multiplexing (OFDM) 
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waveform. These cycle frequencies are then used for efficient classification of signals. To 

increase the robustness against multi path fading in [51] cyclic features obtained in the 

signal are increased but at the rate of increased bandwidth and overhead. In [54] hardware 

implementation of cyclostationarity based sensing is presented. In summary if the cyclic 

features of the primary signal is not known then it is difficult to do spectrum sensing.  

 

2.1.4 Radio- Identification based sensing 

By identifying the kind of transmission technologies used by PU’s gives a clear picture 

about spectrum characteristics. With the knowledge of identifying which transmission 

technology is used by PU enables CR to have higher accuracy and higher dimensional 

knowledge. For instance, CR identifies that PU’s technology is Bluetooth, CR will use 

this information for extracting important information in spatial domain. In certain 

applications CR wants to communicate with the identified transmission technology. 

Radio identification can be done by techniques like feature extraction and classification 

[55]. The objective is to find out the presence of any known transmission technology and 

if nothing is present, the communication happens through them. The two important tasks 

to achieve radio identification based sensing are initial mode identification [IMI] and 

alternative mode monitoring [AMM]. Possible transmission mode for cognitive device is 

done in IMI and AMM monitors other modes when CR communicates in different mode.  

Several features are identified in this method from the received signal and those features 

will help in selecting the most optimal PU technology by applying various classification 

methods. Features acquired like how much energy is detected and how much it is 

distributed among the spectrum are from energy detection algorithm are used for 

classification in [56], [57]. In [58] the reference features selected are channel bandwidth 

and its shape. The prime discriminating feature among others is channel bandwidth. 

Radial basis function (RBF) neural network is used for classification. With the help of 
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energy detector the received signals centre frequency and operation bandwidth are 

extracted in [59]. For identifying spectrum opportunities these features are given to 

Bayesian classifier to determine any active PU is present or not. In [60], [61] neural 

networks and standard deviation of instantaneous frequency and its duration are extracted 

for identifying active transmissions using these features. For detection and signal 

classification, cycle frequencies of incoming signals are used in [60]. Identification of 

signals are performed using hidden Markov model (HMM). In [62], [63] features like 

spectral coherence function and spectral correlation density are identified for detection 

and classification. Again in this method also if primary user signals features are not 

known then it is difficult to know which channel is free and can be used by secondary 

user.  

 

2.1.5 Matched Filtering  

One of the optimal methods for PU detection is matched filtering when apriori 

information about PU signal is known [64]. Comparing to other detection algorithms the 

benefit of matched filtering is it takes less time to achieve a specific probability of missed 

detection or probability of false alarm [65]. At low SNR’s for a target probability of false 

alarms the number of samples increases for matched filtering. But, matched filtering 

requires perfect knowledge about PU’s and features such as frame format, pulse shaping, 

modulation type and order, operating frequency and bandwidth are required for 

demodulating received signals [66]. Though it is very efficient method when compared to 

all the above spectrum sensing methods, an apriori information about primary user must 

be known which is not true in practical scenarios.   
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2.1.6 Other sensing methods 

Other spectrum sensing methods are time- frequency analysis, wavelet transform based 

estimation, multi taper spectral estimation and Hough transform. In [67] to detect edges in 

power spectral density of a wideband channel, wavelets are introduced once the edges of 

an occupied and empty bands and their transmissions are detected, estimation of powers 

between two bands are done. Using this information decision about PU, spectrum is 

characterised as occupied or not occupied. By assuming sparse signal spectrum and by 

using sub nyquist sampling the method proposed in [67] is modified in [68]. To obtain 

coarse spectrum knowledge efficiently sub nyquist sampling is used. In [69], [70] analog 

implementation of wavelet transform is used for coarse sensing. Analog implementation 

is better because of its low power consumption and real time analysis.  

 

In [71] multi taper spectrum estimation is proposed which is an approximation to 

maximum likelihood power spectral density estimator. This method is optimal for wide 

band signals and it is less complex when compared to maximum likelihood estimator. But 

also this requires more number of computations. In [72] for IEEE 802.11 systems random 

Hough transform of received signals are used to identify the presence of rador pulses. 

This method is used where periodic pattern is known beforehand. In [73] statistical 

covariance of noise and signal are used to develop algorithm for detecting the PU signal 

presence.  

 

Among all the above discussed sensing methods Energy detection method is frequently 

used because of its simplicity in design, apriori information about PU is not required. But 

conventional energy detection method has the problem of false alarms and missed 

detections. In this work the focus was to improvise the energy detection method for better 

probability of detection.  
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2.2  Enhanced Spectrum Sensing 

The spectrum sensing problem can be formulated as a binary hypothesis testing problem 

with the following two hypotheses: 

 

H0  : y[n] = w[n]           n = 1, 2,………,N                             (2.12) 

H1  : y[n] = x[n] + w[n]    n = 1,2,…….,N                   (2.13) 

 

where H0 is a null hypothesis stating that the received signal samples y[n] correspond to 

noise samples w[n] and therefore there is no primary signal in the sensed spectrum band, 

and hypothesis H1 indicates that some licensed user signal x[n] is present. N denotes the 

number of samples collected during the signal observation interval (i.e., the sensing 

period), emphasizing that the decision is made based on a limited number of signal 

samples. The ideal spectrum sensor would select hypothesis H1 whenever a primary 

signal is present and hypothesis H0 otherwise. Unfortunately, spectrum sensing 

algorithms may fall into mistakes in practice, which can be classified into missed 

detections and false alarms. A missed detection occurs when a primary signal is present in 

the sensed band and the spectrum sensing algorithm selects hypothesis H0, which 

may result in harmful interference to primary users. On the other hand, a false alarm 

occurs when the sensed spectrum band is idle and the spectrum sensing algorithm selects 

hypothesis H1, which results in missed transmission opportunities and therefore in a 

lower spectrum utilization. Based on these definitions, the performance of any spectrum 

sensing algorithm can be summarized by means of two probabilities: the probability of 

missed detection Pmd = (H0/H1), or its complementary probability of detection Pd = 

P(H1/H1) = 1- Pmd, and the probability of false alarm  Pfa = P(H1/H0). Large Pd and 

low Pfa values would be desirable. Nevertheless, there exists a trade-off between Pd and 



21 
 

Pfa, meaning that improving one of these performance metrics in general implies 

degrading the other one and vice versa.  

 

Energy detection measures the energy received on a primary band during an observation 

interval and declares the current channel state Si as busy (hypothesis H1) if the measured 

energy is greater than a properly set predefined threshold, or idle (hypothesis H0) 

otherwise[74] 

 

𝑇𝑖(𝑌𝑖 ) =  ∑ [𝑌𝑖
𝑁
𝑛=1 [𝑛]]2 ≷   𝜆                 (2.14)  

 

Where 𝑇𝑖(𝑌𝑖 ) is the test statistic computed at the ith  sensing event over a signal vector  

Yi = (Yi [1], Yi[2]…………Yi[N]) and 𝜆 is a decision threshold to distinguish between the 

two hypothesis in (2.12) and (2.13). The procedure employed to select the 

algorithm’s decision threshold is an important aspect since it represents the parameter 

configured by the system designer to control the spectrum sensing performance. The 

decision threshold could be chosen for an optimum trade-off between Pd and Pfa. 

However, this would require knowledge of noise and detected signal powers. While the 

noise power can be estimated, the signal power is difficult to estimate since it depends on 

many varying factors such as transmission and propagation characteristics. In practice, 

the threshold is normally chosen to satisfy a certain Pfa, which only requires the noise 

power to be known. The decision threshold required for a target probability of false alarm 

is [74] 

 

𝜆 = ( 𝑄−1 ( 𝑃𝑓𝑎,𝑡𝑎𝑟𝑔𝑒𝑡 
𝐶𝐸𝐷  )√2𝑁 + 𝑁 )𝜎𝜔 

2          (2.15)  

 



22 
 

The problem which encounters in conventional energy detector (CED) is misdetections 

and false alarms occurring due to instantaneous signal energy variations. In order to avoid 

this, as cognitive user will any how sense the spectrum continuously, all the test statistics 

related to past will be present. With the help of past test statistics if there is any 

instantaneous variation in the signal energy also the misdetections and false alarms can be 

minimized. Therefore, in enhanced spectrum sensing instead of just comparing the 

present test statistic with the threshold we compare average of all past test statistics and 

just before test statistic with the threshold to make a decision about primary users 

presence or absence. The simulation results shows the improvement in the probability of 

detection.  

In the thresholding stage, moving average method is used to compute the threshold 

required to find the vacant spectrum. In moving average method, a subset of frequencies 

are considered and an average is computed with Equation 2.16.  
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                Where , 1,....k M M                                 (2.16) 

     

By shifting this subset forward, an average is computed again. This process is repeated till 

the average of the whole spectrum is computed. The minimum of these averages is 

multiplied by a certain scaling factor to decide the threshold. This threshold helps in 

detecting the vacant spectrum. The same process is repeated for three test statistics 

considered as shown in Figure 2.2, Figure 2.3 and Figure 2.4. In the second stage, the 

opportunistic user senses the licensed spectrum of the primary user in order to detect the 

availability and use it. This current sensed spectrum is compared with the last or recent 

test statistic in order to obtain a reliable common vacant spectrum as shown in Figure 2.5. 

This leads to a reduction in the probability of false alarm. In the third stage, the average 

of all the test statistics is computed and is compared with the sensed spectrum in order to 
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obtain the reliable common vacant spectrum as shown in Figure 2.7. This final stage 

ensures further reduction in the probability of false alarms thus, increasing the reliability 

in communication. This detection of reliable vacant spectrum helps the opportunistic user 

to shift to other free channels effectively whenever the licensed user wants to access his 

channel. The following algorithm gives the clear information about the enhanced 

spectrum sensing: 

Algorithm: 

Si ϵ {H0 , H1} 

for each sensing event i do 

Ti (Yi) ← Energy of N samples 

Tiavg (Ti) ← Mean of {Ti-L+1 (Yi-L+1), Ti-L+2 (Yi-L+2),…….. Ti-1 (Yi-1), Ti (Yi)} 

if Ti (Yi) > λ then  

 Si ← H1 

else 

if Tiavg (Ti) > λ then 

 if Ti-1 (Yi-1) > λ 

  Si ← H1 

else 

  Si ← H0 

end if  

else 

     Si ← H0 

  end if  

 end if 

end for 
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2.3   Simulation Results 

In order to avoid instantaneous energy drops, false alarms and signal misdetections the 

proposed enhanced energy detector exploits the past spectrum sensing history. The energy 

drops, false alarms and missed detections is due to primary transmission power pattern 

and the radio channel fading properties. If the sensing events are close in time then 

finding the current status of channel based on past spectrum sensing results is reasonable. 

This means performance of proposed algorithm can be achieved when the target channel 

is sensed with enough periodicity. But when the sensing frequency is increased with 

sensing interval N constant, the time allocated for data transmission will be decreased 

which results in secondary user throughput degradation. To maintain the average 

throughput, N should be decreased along with the period between two consecutive 

sensing events. If N is decreased too small, the test statistic may follow the instantaneous 

variations of the received signal energy. This can lead to missed detections. The aim of 

this chapter is to reduce probability of false alarms. Hence the enhanced spectrum sensing 

can be improved with short sensing intervals and high sensing frequencies. As threshold 

plays an important role the moving average method will help to find the proper threshold. 

Spectrum sensing is applied on the targeted frequency band and a test statistic is 

calculated which is compared with calculated threshold. There is a database of test 

statistics available from which the reference signal is built. Once the sensed test statistic 

is computed it is compared with the reference database and Pus presence or absence is 

decided. If in the reference signal at the sensed band, if PU is present but recent test 

statistics decision is PU absent then a false alarm occurs. There is another case of false 

alarm where PU is absent but recent test statistic says PU is present then a missed 

detection happens but it doesn’t disturbs the definition of CR where PU communication 

shouldn’t get affected by SU communications. Hence this is not considered in our 

Probability of false alarm calculations. This is repeated for N number of iterations and the 
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probability of false alarms are plotted.  A number of test statistics are obtained and 

recorded using Matlab. 60K samples are considered to evaluate the test statistics and to 

calculate threshold a moving average method with window size of 1024 is chosen. 

Figure 2.1, Figure 2.2, Figure 2.3 represent the three statistics recorded. With the help of 

the moving average method and enhanced energy detection proposed, vacant spectrum is 

detected as represented by the indicators in Figure 2.1. The average of the whole 

spectrum in each statistic obtained by applying moving average method is indicated by a 

red line in Figure 2.1 (ii), Figure 2.2 (ii), Figure 2.3 (ii).  

 

The sensed spectrum by an opportunistic user is shown in Figure 2.4. This is compared 

with the recent test statistic. It is observed that the secondary user can use the vacant 

channels as shown in Figure 2.5. 

Figure 2.6 represents the average of all the test statistics computed. It is compared with 

current statistic to comment on the availability of vacant spectrum. It is observed that the 

secondary user can use the vacant channels indicated in Figure 2.7. 

 

 

Figure 2-1: Test statistic 1-Detection of free spectrum by moving average 
method 
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Figure 2-2: Test statistic 2-Detection of free spectrum by moving average 
method 

 

 

 

 

 

Figure 2-3: Test statistic 3-Detection of free spectrum by moving average 
method 
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Figure 2-4: Current Sensed spectrum 

 

 

 

Figure 2-5: Comparison of the current spectrum with the past recent statistic 
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Figure 2-6: Average of all the test statistics 

 

 

 

Figure 2-7 Comparison of current sensed spectrum with the average of all 
the past statistics 

 

Figure 2.8 shows the comparison of probability of false alarm for the three stages 

mentioned in this work. Equation 16 from [74] is taken as reference to calculate 

probability of false alarm. First stage represents thresholding stage, second one obtained 

after the comparison of current sensed spectrum with the recent test statistic, and the third 

shows the false alarm probability after comparison of the spectrum with the average of all 

the test statistics obtained. It can be deduced from Figure 2.7 that the probability of false 

alarms have reduced by the enhanced energy detection method proposed in this work.  
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Figure 2-8 Probability of false alarms comparison 

 

It is clearly observed that with the help of enhanced spectrum sensing the probability of 

false alarms are decreased when compared to conventional energy detector. To validate 

our proposed algorithm tests are conducted on spectrum analyzer readings. 

 

The performance of spectrum sensing is characterized by both accuracy and efficiency, 

and more importantly the time taken to make a decision and also the complexity involved 

in doing so. In this work a simple detection technique is proposed based on a peak 

excursion threshold. To go around developing this method, a reference spectrum is 

formulated which is void of missed detections, by using an improved energy detection 

method which was discussed earlier in this chapter, and use it to compare decisions made 

by the proposed model. The model is modelled for false alarms making certain 

assumptions about missed detections. Later, the equations developed are verified for 

accuracy and efficiency over large data sets.  
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2.4  Application of Enhanced Spectrum Sensing on Spectrum Analyser 

(Agilent N9320B) 

The Agilent N9320B spectrum analyser (an off the shelf spectrum analyser, that is used in 

this work) measures the power ratio of a signal against the frequency. It operates within 

the frequency range of 9 KHz to 3 GHz. Its primary use is to measure the power of the 

spectrum of known and unknown signals. The input signal a spectrum analyser measures 

is electrical, however, spectral compositions of other signals, such as acoustic pressure 

waves and optical light waves, can be considered through the use of an appropriate 

transducer. 

 

Power ratio of the signal measured is in decibels per milliwatt (dBm), which can be 

converted to milliwatts by 

 

                  P(mW) = 1mW · 10(P(dBm) / 10)                   (2.20) 

 

 Peak excursion (Rex): Peak excursion is used as a measure to judge whether 

maxima in a spectrum can actually be considered a “peak”, in cognitive radio terms, band 

underutilization by primary user. It is defined as the minimum amplitude variation (rise 

and fall) required for a signal to be identified as peak [76]. If the difference (peak 

excursion) is greater than a certain preset threshold value, then the former is considered a 

peak. It is measured in decibels per unit of power (generally dBm). 

 Sweep time (Tsw): The time duration for which a signal or set of signals (within a 

range of frequencies) is analyzed. The primary motive usually is detecting peaks and 

spectrum holes. The longer the sweep time, the better is the accuracy in sensing the 

spectrum. 
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2.5  Detection based on Peak Excursion 

In the proposed detection based on peak excursion, sets of consecutive samples are taken 

and the sample with the highest amplitude (power ratio) is tested to exceed the nearby 

samples with the least amplitude (power ratio) by an amount of 𝑅′𝑒𝑥 (threshold). 

 

           𝑅𝑒𝑥[𝑛] = 𝑌[𝑛]~{𝑌[𝑛−1], 𝑌[𝑛+1]}  ≷  𝑅′𝑒𝑥                 (2.21) 

 

where, 𝑌[𝑛−1] and 𝑌[𝑛+1] represent the local minima adjacent (to the left and right 

respectively) to the sample being tested as a peak. 𝑅𝑒𝑥[𝑛] is the difference between the nth 

sample and its nearby local minima. 

The presence of a primary user is indicated, if 

 

𝑅𝑒𝑥[𝑛]  ≥  𝑅′𝑒𝑥                                     (2.22) 

And the null hypothesis indicated by, 

 

                                 𝑅𝑒𝑥[𝑛]  <  𝑅′𝑒𝑥                                  (2.23) 

 

The comparison mentioned is very elementary. The choosing of the threshold (𝑅′𝑒𝑥) is 

very important, as the decision is singly dependent on the threshold.  

 

2.6 Selection of the threshold 𝑹′𝒆𝒙 

To make the process of choosing the threshold simple, a simplistic equation is developed.  

The assumption is that there are no missed detections in the process of choosing the 

threshold. To ensure this, all records used to model the equation are tested against the 

reference signal and records showing any sign of missed detection are not considered. 
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Further, an equation is derived for calculating the number of false alarms in terms of the 

threshold. This would enable to calculate the threshold based on a requirement of false 

alarms. 

 

2.7 Results and Discussions 

The frequency range of 90 MHz to 100 MHz is considered as the spectrum under study. 

Radio channels consistently transmit signals within this band, and hence, can be used for 

study as the signals are consistent over a long period of time. Here, a radio station 

transmitting is analogous to a primary user’s presence and the converse, absence.  

Figure 2.9., shows the raw spectrum as recorded by the analyser. Multiple instances of 

the same are recorded, are averaged, and passed through the enhanced spectrum sensing 

to yield Figure 2.10. The signal as shown (in Figure 2.10) is the reference signal 

 

Figure 2-9 Spectrum as sensed by the spectrum analyser 

The depicted spectrum indicates the presence of signals at the bursts recorded at the 

bands of 91.1 MHz, 92.7 MHz, 93.5 MHz and 98.3 MHz. Hence, ideally the enhanced 

energy method should indicate the presence of a primary signal corresponding to the 

bands utilized by the radio channels (i.e., H1) and the null hypothesis (H0) elsewhere. 
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Figure 2-10 The formulated reference signal after passing through the 
enhanced spectrum sensing 

 

Figure 2-11 Peak Excursion Threshold Vs. Number of False alarms 

In Figure 2.11., we have conducted an experiment on the recorded data by varying 

different peak excursion thresholds and it is observed that the false alarms are decreasing 

with the proper selection of threshold.  

Repeated experimentation was carried out to find out a relationship between the peak 

excursion and false alarms arising out of it. It was found that the square of the difference 

of average signal strength and noise strength, multiplied by the peak excursion to have an 

exponential relationship as, 

 

                                    𝑁𝑓𝑎  ∝  𝑒−𝑅′𝑒𝑥×(∆𝑅)2
                         (2.24) 
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where, R is given by 

 

∆𝑅 = 𝑅𝑠 ~ 𝑅𝑛             (2.25) 

 

and 𝑅𝑠, 𝑅𝑛 are given by [76] 

 

                       𝑅𝑠 =  √∑ (yn)2N
n=1

N
  ;     yn є H1                                (2.26) 

                       𝑅𝑛 =  √∑ (yn)2N
n=1

N
  ;     yn є H0                               (2.27) 

 

Here, 𝑅𝑠 is the average signal power ratio of the bands under use by the primary user. 𝑅𝑛 

is the average noise power ratio of the bands (not under use by the primary user). N is the 

number of samples of the spectrum. yn is the nth sample in the spectrum. Rex, Rs and Rn 

are threshold, signal and noise spectral values respectively. 

But, just a dependency on a thresholding parameter would be insufficient and hence, the 

dependency of false alarms was tested with the sweep time (or simply the sensing time). 

It was found that they were related as, 

 

                                   𝑁𝑓𝑎  ∝  𝑒−𝑇𝑠𝑤
2
                          (2.28) 

The relations obtained above in equations (2.24) and (2.28), put together would results in 

the following equation, 

 

                       𝑁𝑓𝑎 = 𝑎𝑒−(𝑏×𝑅′𝑒𝑥×(∆𝑅)2 +𝑐×𝑇𝑠𝑤
2 )                       (2.29) 
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where, ‘a’ (3.296x106) is a scaling factor, ‘b’ (4.629x10-2) and ‘c’ (5.267x102) are weight 

constants of the power ratio component and time respectively. The values indicated are 

those that have been practically calculated. 

 

Figure 2-12 Exponential curve fitted for the recorded data from spectrum 
analyser 

We wanted to observe whether Figure 2.11 follows any trend so that we can provide 

reference for False alarms. With the help of Matlab curve fitting tool box, exponential 

curve fitting is applied on Figure 2.11 and it is observed from Figure 2.12 that the 

variance between the Curve fitting and the practical data (in Figure 2.11.) is 0.0826 and 

standard deviation of 0.2873. A variance consistently less than 0.1 is obtained pointing 

out the accuracy of the model proposed. The same is tabulated below in Table I, along 

with a few more values. 

TABLE I: Tabulated values of ranges of 𝑅𝑠 and 𝑅𝑛 (in dBm) and corresponding averages 

of variance and standard deviation 

S.No 𝑅𝑠(dBm) 𝑅𝑛(dBm) Variance 

Standard 

Deviation 

1 -60 to -65 

-65 to -70 0.08776 0.2962 

-70 to -75 0.04987 0.2233 
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2 -65 to -70 

-70 to -75 0.10712 0.3273 

-75 to -80 0.05488 0.2343 

3 -70 to -75 -75 to -80 0.12019 0.3467 

 

 

 

Figure 2-13 Peaks detected by using parameters (𝑹′𝒆𝒙 = 6.7dBm and 𝑻𝒔𝒘 = 
100ms) from derived model 

Figure 2.13. Shows a sweep of spectrum under observation, with the parameters of peak 

excursion and sweep time obtained from the model described in (2.29), with number of 

false alarm of 0.1, or in terms of probability, 2.51x10-4, calculated through the expression, 

 

                       𝑃𝑓𝑎  =  
𝑁𝑓𝑎

𝑁−(𝑛∈𝐻1)
 =  

𝑁𝑓𝑎

(𝑛∈𝐻0)
                          (2.30) 

 

where, 𝑃𝑓𝑎 denotes the probability of false alarms and N refers to the number of samples 

in the recorded signals. 𝑛 ∈ 𝐻1 and 𝑛 ∈ 𝐻0 refer to the number of samples that satisfy the 

respective statements in the binary hypothesis.  

This method produces a near real time decision about spectrum occupancy. In the 

example shown in figure 2.13, the sweep time is 100ms, and so for each of the detections, 

the time required would be, 

 

                              𝑇𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑛𝑥×𝑇𝑠𝑤

𝑁
                                (2.31) 
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where, 𝑛𝑥 is the number of samples required for the decision (from the local minima to 

the left of the peak to the minima to the right), 𝑇𝑠𝑤 is the sweep time and N is the number 

of samples in the spectrum under observation. In the case discussed in figure 2.13, the 

times required vary from 3.19 milliseconds to 5.32 milliseconds.  

 

2.8  Conclusions 

In this chapter enhanced spectrum sensing is developed for improving the QoS by 

decreasing the probability of false alarms. 

Later in this chapter, a simple model based on peak excursion is discussed, which 

optimizes the time taken to make a decision about the spectrum utilization. Also, the 

complexity involved in doing so is very minimal, and so hardware modelling of the same 

would be very cheap. This can also be done using easily accessible off the shelf spectrum 

analysers, which also outputs the peak frequency in each band under use by the primary 

user. The false alarm and missed detection values obtained too are pretty minimal.  

Though we have enhanced the spectrum sensing method the secondary user has to vacate 

the band when the primary user wants the licensed spectrum. Eventually secondary user 

has to sense for another free band and continue its communication. If we really want to 

enhance the throughput of the CRN we need to seek answers for the following: 

a) The probability that there is atleast one relay, which is feasible for a user who is not in 

the coverage area.  

b) How long (on average) will a mobile relay remain feasible?  

c) Assuming rerouting, with the help of relay handover, how long a connection will 

sustain? (Connection sustaining time).  

In the next chapter, the above said parameters are tested and discussed. 

 


