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(c)
Figure .
igure 6.3 Sample Photographs of defects (a) Outer race defect (b) Inner race defect (c)

Ball Detect (d) Combined defect.

Table 6.1 Conditions of bearing.
|
Faults Name

Fault Dimensions

1.0x0.5%0.3 /’/M///
[.0x0.75%0.5 OR2, IR2
—w OR3, IR3
w Ball Fault

G

0.5%0.5%0.5
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