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ABSTRACT 

Nanorobots are propitious to swim or fly compared with crawling and walking because 

of issues with desirable characteristics of high velocity, efficiency, specificity, 

controllability, and a simple propagation mechanism that can be realized with 

miniaturized parts. Inspired by the fact that microorganisms existing in nature function 

expeditiously under these circumstances, researchers have shown a great interest to 

conceptualize, model, analyze, and make micro-/nanosized swimmers (nanorobots) that 

can move in body fluids for applications such as targeted drug delivery, nanomedication, 

and in-viscera nanosurgery. 

The study aims at dynamics and design of uniflagellated nanoswimmer with a focus on 

planar as well as helical wave propagation through a tapered flagellum. This study also 

proposes a methodology for assessing the candidature of any material for the fabrication 

of artificial flagella and possible manufacturing techniques.  

To achieve the objective of proposed research, the thesis is divided in to six chapters. 

Since in this research study two separate cases of flagellar propulsion i.e. through 

uniform and tapered flagella, are used for their possible applications as nanorobots' 

propulsion mechanisms, the methodology, results and discussions are given separately 

under each heading and presented as different chapters (Chapters 3-4). 

Chapter 1 introduces the problem i.e. investigation on dynamics of nanoswimmer. The 

significance of low Reynolds number and the limitations of propulsion modes at 

nanoscales are also presented. The aim of the present work is also given at the end of this 

chapter. 

In Chapter 2, the reviews are organized chronologically in the field of flagellar 

propulsion and swimming strategies used in low Reynolds number hydrodynamics 

i.e. Planar wave propulsion and Helical wave propulsion. Scope of the present work is 

discussed at the end of this chapter. 

Chapter 3 describes the solution methodology adopted for uniform flagella cases. Two 

strategies of flagellar propulsion; planar and helical wave propulsion, have been studied 

from a passive filament point of view. Design of propulsion with planar as well as helical 

flagella is proposed and a generalized analytical model is developed, simulated and 
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discussed. An elastohydrodynamic model of the filament has been created and the same 

is used to obtain the steady state shape of an elastic filament driven in a Stokes flow 

regime. Resistive Force Theory (RFT) which is very effective in predicting propulsion 

parameters for a given shape is used to study the propulsive dynamics of such a filament. 

The performance parameters of the developed model viz. velocity and efficiency have 

been computed based on resistive force theory and compared with those of the model 

available in literature. Optimization of physical parameters is carried out for each of the 

boundary conditions considered. 

Chapter 4 presents investigation considering the effect of variation of diameter on 

planar and helical wave propagation. The modeling and simulation of planar wave as 

well as helical wave propagation through a tapered flagellum of a nanoswimmer for a 

given taper ratio is discussed. The performance parameters viz. velocity and 

efficiency are compared with the uniform diameter case. Taper diameter modeling of 

flagellum gives a superior performance by indicating higher velocity and efficiency. 

The material selection for the flagella needs to be assessed on the criteria like 

biocompatibility, physical properties and technological feasibility. Chapter 5 

provides a methodology for assessing the candidature of a material for the fabrication 

of artificial flagella that shall have implant capabilities and shortlist the potential 

material. The short listing is quintessential for attempts to engineer an artificial 

nanoswimmer. 

Chapter 6 contains the summary of the conclusions and future scope of the present study. 

Keywords: Flagellar hydrodynamics, Micro/nano fluidics, Modeling in nanodomains, 

Nanorobotics, Nanoswimmer, Low Reynolds number flows, Motion of 

nanostructures, Nanoengineering 
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Chapter 1 

Introduction 

1.1 SWIMMING: MACRO TO NANO 

Moving things in nature present a wide variety of modes to achieve motion. More 

explicitly, some of them walk, others crawl, some hop, many fly and the remaining 

swim. Swimming becomes very important mode of motion as moving things become 

smaller in size. In fact, small sized objects are more propitious to swim or fly instead of 

crawl or walk [1-3]. Macro-sized swimmers propel themselves by hydrodynamic 

forces/thrust generated because of reversing the oar motion; oar may be hand in human 

swimming, fin flapping in fishes, actual oar of a boat/propeller in large/small sized ship 

sailing in water. 

Hydrodynamics of macroswimmers are governed by the Navier-Stokes equation, which for 

an incompressible Newtonian fluid is given as [4]: 

   FVpVV
t

V 














 2.   (1.1) 

where  is the fluid density,   is the dynamic viscosity, V


is the velocity vector and p is 

the pressure, F


 is the other external forces acting over per unit volume, and t  is time. The 

left hand side in brackets represents the acceleration of the fluid; the first term represents 

the local acceleration, which vanishes if the flow is steady and the second term represents 

the convective acceleration, which involve the velocity change from point to point. The 

right hand side comprises three terms, which represents the forces due to pressure gradient, 

viscous stress tensor and other external forces exerted on a given volume, in the order 

respectively. Equation (1.1) holds for high Reynolds number (dimensionless number 

which is ratio of inertia forces to viscous forces) regime i.e. the inertial terms are much 

larger than the viscous terms and a macroswimmer rely on inertia for swim. 

At small length scales (up to hundreds of micron), viscous forces dominate over the inertial 

forces leading to low values in Reynolds number ( 1Re  ). In this regime, Navier-Stokes 

equation (1.1) reduces to Stokes equation because inertia terms are negligible and is given as 
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 02  Vp


  (1.2) 

Scientists and researchers [5-14] in last few decades have been interested in micro/nano 

swimmers. The small sized swimmers or for that matter miniaturization of any device in 

general has itself many advantages like resource conservation, low cost, low power 

consumption and easy disposability. Specially for nanoswimmers, small size of the order 

of a few hundreds of nanometers is additionally advantageous, because of being 

comparable to biologicals and therefore a possible use in bio-medical application.  

Nature is very inventive in designing nanoswimmers as small sized organisms such as 

bacteria and many eukaryotic cells and their propulsion mechanism in a fluid 

environment. The environment is highly viscous to the miniaturized swimmers and 

exerts large resistive force to the miniaturized swimmers. The high viscosity of 

surrounding medium and low inertia of nano sized organism makes the governing 

hydrodynamics different from macro sized organisms and their motion difficult to 

happen at low Reynolds number. For example, nano sized organism swimming at low 

Reynolds number achieve motion by deforming the body rather than by using rigid 

cyclic oar motion as in macro size doers. Further, the motion is instantaneous and inertial 

forces are negligible for a nanoswimmer which is very different from a macroswimmer 

(overshooting from target point because of inertia is quite common for a 

macroswimmer). There are no external forces or torques except those exerted by 

surrounding fluid in context to nanoswimmer. The body undergoes asymmetric cyclic 

deformations and non-reciprocal motion in comparison to symmetric, reciprocal motion 

for a macroswimmer [2]. 

Nanoswimmers experience therefore, drastically different hydrodynamics compared to 

macro size swimming objects. For most sub-micron scale objects which are moving in 

water or any other fluid, the flow is characterized as Stokes flow and for this type of 

flow, the inertia terms in the Navier-Stokes equation are neglected. The time-dependent 

term are absent and implies that the generated propulsion force only depends on the 

relative position of propeller and not on the rate of motion. The concept of performing 

half of the stroke at a faster rate and the other half at a slower rate i.e. Scallop theorem 

(Figure 1.1), does not work towards propulsion in low Reynolds number domain. 
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Figure 1.1: Schematic depicting Purcell's scallop theorem 

For example in the motion of scallop (Figure 1.1), forward motion is by quickly closing 

scallop hinges (from position A to position B as shown in Figure 1.1) and then slowly 

opening (from position B to position A) leads to net translation at macro level (i.e. at 

Re  1). This happen because a quick closing causes a larger forward inertia force in 

comparison to lower backward inertia force during slow opening. The cycle of closing 

and opening therefore subjects the swimmer to net force forward and a net motion 

forward. But if the scallop were scaled down to be a few nanometers, this periodic 

forward and backward motion would cause negligibly different inertial force, more 

appropriately almost equal inertial force in forward and backward stroke and therefore 

results in no net displacement in nano regime (i.e. Re  1). Thus, reciprocal and time 

reversible motion fails in low Reynolds regime [2, 5, 7] and generated net propulsion 

depends on relative position of propeller and not on the rate of motion. The net 

propulsion has been efficiently achieved (as said in previous paragraph) by 

microorganisms by deforming their propellers and causing non reciprocal time 

irreversible motion. 

The possibility of realization of an artificial autonomous swimming nanorobot 

(nanoswimmer) is possible by designing a deformable propeller in a mechanism to cause 

non reciprocal time irreversible motion. Such a nanoswimmer is going to be very useful 

having many applications in medical and health care for drug delivery and disease 

treatments [1, 8]. The subject of miniaturization has been initiated by R. Feynman [9] in 

his famous lecture "There’s Plenty of Room at the Bottom" first delivered at an 

American Physical Society meeting at Caltech in December 1959. After Feynman's talk, 

scientists and engineers have put forth tremendous effort and have come up with many 

micro/nano sized devices. The research towards realization of an autonomous 

nanoswimmer is also pursued for quite some time now and advancement in the direction 
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is available in literature [6, 13-15]. The feasibility of nanoswimmers is inspired by 

existence of organisms and biologicals at same size scales performing motion 

intelligently. Due to their small size, nanoswimmers move at very low Reynolds number 

(Re) because at small sizes the viscous forces are very high owing to significant surface 

effects and inertia is very less. Both the effects originate from the size miniaturization. 

Relevance of low Reynolds number is detailed in next section. 

1.2 SIGNIFICANCE OF LOW REYNOLDS NUMBER 

The Reynolds number (Re) is defined as the ratio of inertial force to the viscous forces 

per unit volume. It is written as [4] 

 


VL


(viscous)friction   todue forces

inertia  todue fluidin  forces
Re   

where, L is the length of the object, V is the velocity, µ is the fluid viscosity, and ρ is the 

density of fluid. So, flows at high Reynolds numbers are dominated by high inertia and/or 

low friction while at small Reynolds number, flow is one for which viscous forces are high 

and/or inertia is low. 

The low inertia and high viscous forces are coupled with low efficiency and low convective 

motion in nano size regimes. For example, motion by beating of cilia and flagella at 30 

μm/sec with 1% efficiency costs 8102  erg/s in bacterial movements [2]. The efficiency is 

too low when compared to ~30% in case of internal combustion engines. Though the 

efficiency is poor but is only a small fraction of the metabolism and the energy budget of the 

bacteria. The biological have sufficient amount of energy supply and are least concerned 

about energy efficiency. The issue of energy efficiency, though, will be of concern in 

nanorobots where power supply to the miniaturized robot and miniaturization of power 

supply both are going to be a challenge and nagging problem to engineers. 

More explicitly, for example, in water ( 310 Pa.s, 1000 kg/m
3
), a nanoswimmer 

such as E. coli bacteria ( mL 10 ) with a typical velocity 30V µm/s has a Reynolds 

number 45 1010Re   whereas a human swimmer ( mL 2 ) paddling slowly in a 

swimming pool has a Reynolds number 54 1010Re  . A human swimmer swims at a very 

high Reynolds number, and inertial terms are large. The human swimmer is able to glide 

(swims) long distance, however, a nanoswimmer like E. coli experiences high viscosity and 

almost negligible inertia thrust, and thus very small gliding (swimming) is possible. In a 
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world of low Reynolds number, the response of the fluid to the motion of boundaries is 

instantaneous [12-14]. So, when E. coli stops its motion, it is stopped immediately without 

any gliding or displacement. 

Moreover, to achieve motion of an artificial nanoswimmer, two conditions need to be 

fulfilled. First, energy should be transformed into a mechanical deformation of the 

device. Second, the sequence of deformations must be cyclic and not time-reversible. 

The second requirement arises from the fact that fluid dynamics at nanometer scale is 

dominated by viscous rather than inertial terms. Keeping in view the issues and 

challenges discussed in above paragraph, design of propulsion mechanism for an 

artificial nanoswimmer is an interesting and challenging problem in front of scientists 

and engineers and is yet to be resolved. Purcell [2] has hypothesized three possible 

swimming mechanisms in low Reynolds number environments, namely; 'the flexible 

oar', 'corkscrew swimmer', and 'three link swimmer'. An example of the first case is 

eukaryotic cells use flagella (refer Figure 1.2a) that resemble elastic rods and exhibit a 

beating motion: internally generated stresses give rise to a series of bends that propagate 

towards the tip. In second case, helical shaped bacterial flagella (refer Figure 1.2b), 

driven at the bases by a reversible rotary engine, which rotates the attached flagellum to 

give a motion similar to that of a corkscrew. Purcell's three link swimmer (refer 

Figure 1.2c) had three rigid links that could move independently to generate a 

nonreciprocal motion. The three mechanisms are shown in Figure 1.2. 

 

 
(a) (b) 

 
(c) 

Figure 1.2: Locomotion strategies [2] employed by nano-bio-organisms  

(a) beating flagellum, (b) rotating flagellum and (c) three-link swimmer 
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Scientists have worked on the mechanism conjectured by Purcell and others  

[5, 7, 9, 13-15]. The state of art on design of propulsion mechanism for a nanoswimmer 

is still not materialized and the propulsion debate is still open. Keeping in view the great 

utility of nanoswimmer in drug delivery [1, 8], in viscera surgery [8], surveillance [13], it 

is interesting to work on realization of nanoswimmer and certainly therefore design for 

its propulsion mechanism. 

1.3 MOTIVATION 

Nanorobotics is emerging technology attempting to create miniaturized machines or 

swimmers of the size of a few hundred nanometers and below, consisting of 

components of nanoscale or molecular size and with certain functionalities of their 

macrocounterparts [13]. Nanorobots are more propitious to swim or fly [1]. In the 

past two decades, there has been an all around development in nanotechnology 

including nanofabrication, facilitating realization of nanorobots. Scientists and 

engineers have shown a great interest to conceptualize model, analyze and make 

nanosized machines, mechanisms and structures in past two decades [2-14]. The 

prime reason for advancing attempts in the field of nanorobotics are the unique 

applications of the nanorobots in medical, health care and environmental monitoring, 

which are attributable to the size of nanorobots comparable with biological entities. 

Moreover, feasibility of nanorobots is inspired by the existence of organisms and 

biologicals at the same size scales performing in robust manner and intelligently. 

There is growing literature on the subject and few attempts have been made towards 

the realization of autonomous nanoswimmers swimming in biological fluids. The 

state of art on nanorobots at present though still is in its nascent stage of evolution 

and synthesis of a fuel efficient nanoswimmer which performs controlled propulsion 

from internal excitations, and is still a distant dream. 

Among many facet in the realization of nanoswimmer the motion by swimming is first 

challenge among others wherein we require an integral and efficient blending attempt of 

miniaturization of four major areas, namely, energy storage, transduction of energy to 

motion, transmission mechanism for motion in swimming and control of motion. This is 

shown schematically in Figure 1.3. 
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Figure 1.3: Schematic of interrelated issues in motion of nanoswimmer 

For realizing motion of nanoswimmers, a well designed propulsion system is required 

which must overcome various resistive forces significant in nano-domains. Various 

scaling effects have been discussed in literature pertinent to motion of small-sized 

entities including synthesized particles and mechanisms and natural organisms [13]. For 

instance, energy has both storage and a transactional character. For nanoswimmers, 

onboard volume is a precious and limited commodity. Viscous forces dominate inertial 

and gravitational forces, so mass is almost irrelevant. Hence energy stored per unit 

volume (J/m
3
) is an appropriate index for nanoscale energy storage devices. The issue of 

energy storage is further complicated because of related transduction and transmission 

issues. In context to motion of nanosized entities, some of the relevant issues and related 

problems are of significant importance for motion of nanoswimmers and are shown in 

Figure 1.4. 

 

Figure 1.4: Schematic of motion issues in nanodomains 
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Further the understanding of physics of locomotion in nanosized domains is a problem of 

motion because at such size domains the object (in present case nanoswimmer) will 

encounter low Reynolds number i.e. high viscous and low inertia forces. Nanoswimmers 

are important because of their potential use for the purpose of drug delivery, monitoring 

and diagnostics for in-vivo biomedical application. They mimic microorganisms and 

mostly modeled as propelled by beating or rotating flagella. Survival and existence of 

microorganisms like E. coli at an operating efficiency of 1% is amazing but that is 

allowed in nature because the power consumption by E. coli in propelling themselves is 

of the order of Pico watts. Considering abundant amount of energy available in 

surrounding, E. coli, there is certainly no concern for low efficiency. The propulsion of 

E. coli is like a very inefficient car design but with unlimited supply of fuel. For an 

artificial nanoswimmer, the limitations like low efficiency is not tolerable and an 

improved design is a challenge posed to researchers. The design parameters like 

mechanism, shape and size of oar, material of oar needs to be investigated and optimized 

for realization of an efficient nanoswimmer. For example, in almost all models available 

in literature on design of propulsion mechanism of a nanoswimmer mostly flagella is 

used as oars and diameter of the flagellum is considered constant. In nature, though, the 

flagella of the nanoswimmer is not of constant diameter. The actual profile of flagella is 

tapered and the head of the nanoswimmer is a sphere in shape. The material 

consideration is also quite complex as far as usage/application of nanoswimmers matters. 

For example, for in vivo applications of a nanoswimmer, biocompatibility is of prime 

importance; fabrication technology with a kind of material may be a limitation in choice 

of the material. The debate therefore is to consider different designs of flagellum, model 

drag accordingly and investigate different designs to achieve certain acceptable 

efficiency, higher velocity, and higher thrust force in the motion of the nanoswimmer. 

Along with modeling and design of shape and size of nanoswimmers, the material selection 

for the flagella is important but had been least addressed by researchers and needs to be 

assessed on the criteria like biocompatibility, physical properties and technological 

feasibility. The research is quintessential for attempts to engineer an artificial nanoswimmer. 

Keeping in mind in vivo medical applications of the artificial nanoswimmer, the present 

research has investigated the design issues namely, shape and material of the flagella of the 

nanoswimmer. Towards this objective, we present the available literature in context and 

formulate the problem statement investigated in next chapter. 
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Chapter 2 

Literature Review 

2.1 INTRODUCTION 

In the previous chapter, we discussed the relevance and motivation to investigate 

nanoswimmers. Here, nanoswimmer refers to an artificial swimmer having mechanism 

to propel with overall dimensions (ranging in size from 0.1-100 micrometers) below the 

millimeter range and made of nanometer scale components. The nanoswimmer consists 

of a tail i.e. a flagellum few micro-meters long, made of a bio-compatible material, 

which may be of uniform diameter throughout the length or of tapered diameter, attached 

to a spherical or an elongated head. The one with uniform diameter flagellum will be 

called in this thesis as “uniform diameter nanoswimmer” (UDN) and one with tapered 

flagellum will be called as “tapered nanoswimmer” (TN). Scientists and researchers [1-

12] interest in nanoswimmer is increasing over the past few decades and significant 

published literature is available on nanoswimmer in context to their applications in drug 

delivery, nanorobotics, surveillance, fault diagnosis in pipes and many other. Most of the 

available literature on nanoswimmers is on the modeling and propulsion mechanisms. 

The study of swimmer at low Reynolds number has a long history of scientific 

investigation starting from Ludwig [13] to a most recent study in Zhang et al. [14], 

has been discussed. This chapter reviews the modeling of physics as investigated 

since 1930 of flagellar propulsion for both planer and helical waves in engineering 

nanorobots. To examine the hydrodynamics of swimming microorganisms, 

researchers have proposed different theories to model the flagellar propulsion 

through planar wave and helical wave. Among existing theories in flagellar 

propulsion such as resistive force theory (RFT) [15], slender body theory (SBT) 

[16], the bead model (BM) [17] and boundary element method (BEM) [18], RFT 

has been widely used by researchers due to its simplicity and relative ease of 

application for obtaining approximate results for uniflagellated nanoswimmers, though it 

does not account for the interactions between the flagellum and the cell body or flow 

boundaries in a systematic manner. The progress in designing the propulsion system 

of a nanoswimmer are reviewed, and various interdisciplinary aspects of realizing 
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an autonomous nanoswimmer and issues in moving nanoswimmers have been 

presented chronologically. Further in this chapter, the gaps in the research and the 

problem statement of the thesis is given. 

The Chapter is compiled in three more sections; the first gives a chronological 

compilation of significant work on modeling physics of flagellar propulsion. This is 

followed by the section in which gaps in the published research work has been compiled. 

Section 3 gives the conclusions and the problem statement of the thesis. 

2.2 PHYSICS OF FLAGELLAR PROPULSION 

Nanoswimmers experience drastically different hydrodynamics compared to macro scale 

swimming robots. The time-dependent terms in Navier-Stokes equation are absent and 

the propulsion force depends on the relative position of the propeller and not on the rate 

of motion (refer section 1.1 of Chapter 1). It has been shown that planar bending waves 

and corkscrew can create motion in nanosize domains. A recent experimental realization 

of the first man-made micro-swimmer [19], nanoswimmer speeding at 10 mm/sec [20], a 

controlled propulsion of artificial magnetic nanoswimmer [21], and fabrication of 

artificial bacterial flagella [22-23] are examples of engineered swimming motion in 

nanosized domain. The swimming nano-bio-organisms use active and rotating or beating 

cilia or rotating flagella [24-32] as major methods of movement (refer to Figure 2.1). 

 

Figure 2.1: Schematic of planar and helical propulsion 

Ludwig [13] observed that a microorganism that waves rigid arms like oars is incapable 

of net motion. Sir Geoffrey Taylor explained hydrodynamics of swimming micro-

/nanosized object in early 1951 [33]. The propulsion element flagellum was modeled as 

an infinite cylindrical filament executing small-amplitude planar and helical waves in an 

un-bounded fluid. The resulting stress and motion in the surrounding fluid was analyzed 

mathematically for progressive planar waves [34] as well as helical waves of smaller 

amplitudes and it was concluded by Taylor that the energy dissipated by two neighboring 
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flagellar waves beating in phase with each other is much less than the energy dissipated 

if they were beating out of phase. 

Hancock [16] considered the line distribution of Stokeslets and doublets along the 

oscillating filament centerline. The strengths of these singularities were determined using 

boundary condition of no-slip on the flagellar surface, with the condition that the total 

energy of the induced velocity field remains finite. Gray and Hancock [15, 35] assumed 

that the head of the nanoswimmer travels along the axis of progression without 

oscillating from side to side and developed resistive force theory (RFT) for flagellar 

hydrodynamics. Gray and Hancock [15] explained spermatozoa propulsion by flagellar 

bending waves and obtained the propulsive speed of spermatozoon in terms of 

amplitude, wave length and frequency of waves passing down the tail of spermatozoon. 

The two approximations of tangential ( lC ) and normal coefficients ( nC ) of viscous 

resistance acting on the surface of a long thin cylindrical filament in motion through a 

viscous fluid of viscosity µ are being used to date in RFT, 
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The parameters b and λ are the amplitude and wave length of the flagella, respectively. 

Machin [36] modeled wave propagation along an elastic filament and explained the 

passive and active elastic filaments. Machin [36] considered flagella to be made from 

contractile elements throughout its length in order to explain propagation mechanism. 

Chwang and Wu [37] compared the features of planar and helical waves, in terms of their 

propulsive velocities and power consumption. In a similar study, Blake [38] has shown 

that an infinite cylinder can propel itself through a viscous liquid at low Reynolds 

number if it has certain undulations on its surface. Berg and Anderson [39] considered a 

biological motor at the base of flagella [15]. Keller and Rubinow [41] assumed that the 

axis of flagellum makes a small angle with the axis of helical path and showed that the 

trajectory of the microorganism is a helix of small radius instead of a straight line and 

confirmed that non rigid body motion can propel itself headless. A combination of 

flagella filaments for Spirillum sp. bacteria was analyzed by Winet and Keller [42], and it 

was found that at least one of the bundles of the bacteria contributes to balanced force 

component and helps in swimming. de la Torre and Bloomfield [17] used the bead model 

to study helical flagella and replaced the helical flagellum by a discrete array of frictional 
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beads along its centerline. Lighthill [43] reviewed the slender body theory (SBT) and 

analyzed cell body-flagella interactions and derived solutions for the resistance 

coefficients  lC and  nC  as 
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Chwang and Wu [44-45] and Johnson [46], published on improved SBT. The seminal 

talk on “Life at low Reynolds number” by Purcell [47] led to further research in the field 

of modeling, simulation and parametric influence investigation for a nanoswimmer. 

Purcell conceptualized three possible mechanisms for propulsion in low Reynolds 

number swimming domain, namely, flexible oar, corkscrew swimmer, and three link 

swimmers. Further, Purcell concluded via symmetry arguments that the net displacement 

of a three link swimmer must follow a straight line, but the direction and other details of 

motion were not discussed. Purcell introduced an important property of swimming 

without inertia, namely; the scallop theorem. The low Reynolds number flows associated 

with microorganism propulsion and the hydromechanics of ciliary systems were 

reviewed by Brennen and Winet [48]. Rikmenspoel [49-50] considered flagellum as a 

thin tapered rod, which was clamped at the mid-piece and carried out the detailed 

observations of the tail movement of non-rotating and rotating bull spermatozoa and 

shown that the stiffness of the tail is most probably caused by collagen-like material in 

the fibrous sheath of the tail. Johnson and Brokaw [51] investigated the accuracy of the 

RFT, commonly used for hydrodynamic analysis of swimming flagella by comparing the 

distribution of forces, bending moments, and shear moments along the flagellum length 

calculated by the more accurate slender-body theory for large-amplitude, planar wave 

forms. RFT is better where the cell body is absent or very small. Next, Lowe et al. [52] 

explored the rapid rotations of the swimming bacteria and found that the bundle 

frequency (rotation rate) is closely correlated with swimming speed (except at higher 

viscosity) and that it decreases with increasing viscosity. 

Shapere and Wilczek [53] studied the efficiencies of swimming motions due to small 

deformations of spherical and cylindrical bodies at low Reynolds number and determined 

optimal swimming strokes. In another study, Shapere and Wilczek [54] showed 

swimming motions for cylinders with a variety of cross-sections. The works on 

nanosized object swimming were reviewed by Sleigh [55]. 
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The boundary element method (BEM) has been successfully applied to low Reynolds 

number domain, i.e., Stokes flow problem by many researchers such as Phan-Thein et al. 

[18], Ramia [56], Ramia et al. [57], Nasseri and Phan-Thein [58-59], Fujita and Kawai 

[60], and Trachtenberg et al. [72]. BEM is applicable to uniflagellated to multiflagellated 

organism and allows the variations in geometrical parameters. Further, discretization of 

boundary reduces the number of unknowns tremendously. Phan-Thein et al. [18] 

optimized the geometrical parameters to get maximum swimming speed for given power 

dissipation and input. Ramia [56] applied boundary element method to study the 

locomotion of a microorganism and predicted the instantaneous swimming velocity, 

counter-rotation angular velocity, and power dissipation of a given organism as functions 

of time and the geometry of the organism. Unlike previous approaches such as RFT and 

SBT, this method is not restricted to slender bodies, hence allows for the consideration of 

realistic organism geometries. 

Ramia et al. [57] considered wall and neighbor element effects and applied boundary 

element method to study the locomotion of a microorganism and determined the optimal 

geometrical parameters to attain maximum swimming speed for a given power 

dissipation. The swimming of a spherical cell body, propelled by a single rotating 

flagellum near a plane boundary, midway between two plane boundaries or in the 

vicinity of another similar organism, was investigated. It was found that only a small 

increase (less than 10%) results in the mean swimming speed of an organism swimming 

near and parallel to another identical organism. Nasseri and Phan-Thein [58] used BEM 

to model the locomotion of micromachine with planer as well as helical rigid tails. 

The necessity of tail shaping and elasticity of tail were observed to be the two key 

parameters to improve the efficiency of micromachines and were analyzed by a number 

of researchers. Further, Nasseri and Phan-Thein [59] in another work, modeled a 

micromachine with capsule-shaped head propelled by a rigid spiral tail using BEM and 

optimized geometrical parameters to attain highest translation velocity. Fujita and Kawai 

[60] calculated the optimum shape of a spiral flagellated microorganism using 

boundary element method and examined how the microorganism shape affects their 

motion. It was stated that eight parameters, namely, turn of flagellum, helical radius, 

length of magnified part, which was equal to helical wave number/magnification 

coefficient, radius of flagellum, length of flagellum, head aspect ratio, length ratio of 

front head to rear, flagellum ellipticity, affects the locomotion of microorganisms. 
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Andrietti and Bernardini [61] studied the swimming of flagellated microscopic 

organisms with a helical head and a helical pattern of flagellar beating, using a 

theoretical approach similar to Chwang and Wu [37]. The main finding of Andrietti and 

Bernardini [61] was that the helical shape of the head seems to increase the efficiency of 

propulsion of the spermatozoon when compared with the more commonly shaped 

spherical head. 

Purcell [62] examined the relationships between external force (F) and external 

torque (T) applied on flagellum of a nanoswimmer as a function of translational velocity 

v and angular speed ω of flagellum to understand the nature of flagellar propulsion and 

concluded that the propulsion matrix of a propeller is proportional to the fluid viscosity µ 

and depend otherwise only on the shape and size of the propeller  

 BAvF  ; DCvT   (2.3) 

where A, B, C, D are the coefficient of propulsion matrix, also known as resistance 

matrix 








DC

BA
 and are proportional to fluid viscosity. 

The works referred above did not consider the flagella elasticity issues in wave 

propagation. Wiggins and Goldstein [25] demonstrated the effect of elasticity on 

propulsion at low Reynolds number and determined the shape of tail using 

elastohydrodynamics and modeled as 

 
''''~yvy   (2.4) 

where v~ is hyper-diffusion constant and is defined as na CAv ~ , and y  and ''''y  are the 

first derivative with respect to time and fourth derivative with respect to space, 

respectively. aA  is the bending moment of elastic filament and nC  is the normal drag 

coefficient. 

Further, Wiggins et al. [63] explored elastohydrodynamics by coupling elasticity 

theory and overdamped viscous hydrodynamics of single semiflexible filaments 

executing the planar motion. Assuming small-amplitude deformations, Wiggins et al. 

obtained analytical solutions for the time-dependent shapes of moving polymers, one 

end of which was moved in an impulsive or oscillatory way. Camalet et al. [64] studied 

self-organised flagellar beating due to internally driven filaments and have 
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demonstrated that a pair of elastic filaments held together by an active, force-

generating material, can induce wavelike patterns by a dynamic instability of the 

system. The resulting patterns of motion do not depend on the microscopic mechanism 

of the instability but only of the filament rigidity and hydrodynamic friction. Camalet 

et al. [64] suggested that the boundary conditions imposed at the ends select the type of 

beating pattern. 

Wolgemuth et al. [65] studied the overdamped nonlinear dynamics of a rotationally forced 

filament with twist and bend elasticity, considering flagella as a shaft and studied about 

twist injection, twist diffusion, and writhing. It was found that at small rotating 

frequency, the shaft i.e., flagella, will remain straight but when the twist torque is 

comparable to filament buckling torque, flagella becomes unstable.  

Koehler and Powers [66], studied effect of the twist on the deformation and torsional 

stress of a twisted elastic rod immersed in a viscous fluid of low Reynolds number 

neglecting Brownian effects and experimentally elucidated the interplay of viscous drag, 

twisting, and bending in the overdamped dynamics of twisted filaments immersed in a 

viscous fluid of low Reynolds number. 

Camalet and Julicher [67] studied the dynamics of an elastic rod-like filament in two 

dimensions, driven by internally generated forces. The situation was motivated by cilia 

and flagella which contain an axoneme (cylindrical arrangement of nine doublets of 

parallel microtubules, and one pair of microtubules in the centre). Camalet and Julicher 

[67] discussed the effects of the boundary conditions and externally applied forces on the 

axonemal wave forms and calculated the swimming velocity for the case of free 

boundary conditions. 

Goto et al. [68] analyzed the swimming motion of a monotrichously flagellated 

bacterium model using SBT and investigated the effects of the dimensions of the 

flagellum on the swimming speed and efficiency. Optimum shape for the fastest 

swimmer and the most efficient swimmer were calculated and compared with the 

flagellum existing on micro-organisms [69].  

Lowe [69] described a method for simulating the inertia-less dynamics of a flexible 

filament immersed in a fluid and plotted the swimming speed and efficiency as a 

function of sperm number.  
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Lowe [69] proposed one dimensionless parameter Sperm number (Sp), which 

characterizes the relative magnitudes of the viscous and bending forces and was given 

as 
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where L is the length of the filament, EI is the bending rigidity, ω is the angular 

frequency, and nC  is the perpendicular friction coefficient for the filament. A low 

value of sperm number implies that bending forces dominate, a high value that 

viscous forces dominate. At a sperm number (Sp) 2, both the swimming speed and 

efficiency (although not at exactly the same value) were find to be maximum. 

For a precise and successful working of a nanoswimmer, it is quintessential that their 

moving mechanism should be properly designed. Researchers are trying to learn more 

and more from the nature and analyzing microorganisms in order to engineer nanorobot. 

Magariyama et al. [70] experimentally verified that the ratio of backward and forward 

swimming speeds of a Vibrio alginolyticus cell with a single polar flagellum was 1.5. 

The characteristics in speed of Vibrio alginolyticus were found to be different from the 

E. Coli characteristics. Later on, forward speed was found to be equal to the backward 

speed. Magariyama et al. mathematically developed the model given by Berg and Turner 

[4] using modified RFT. The modification includes introduction of two apparent 

viscosities in the existing RFT. 

Woolley and Vernon [71]  suggested that the ability of the flagellum to adapt planar or 

helical wave form depends upon environmental conditions.  Raising the external 

viscosity or reducing the force of active sliding should increase the likelihood of 

helical waveform. 

Powers [72], developed theory of bundle formation and demonstrated the importance 

of body rotation for flagellar filament bundling as it helps to propel the bacteria. 

Using RFT, Powers [72] had shown that the counter-rotation of the cell body 

necessary for torque balance is sufficient to wrap the filaments into a bundle, even in 

the absence of the swirling flows produced by each individual filament. Helical shape 

of the flagellar filament and the flows induced by the individual filaments were not 

taken into account. 
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The scale length [72] plays an important role in determining the rigidity or flexibility of a 

flagellum. The scale length (l) associated with bending and drag was defined as 
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where EI is the bending rigidity,   is the angular frequency, and nC  is the normal drag 

coefficient for the filament. 

Trachtenberg et al. [73] analyzed the actual three dimensional reconstructions of 

bacterial flagellar filaments (propellers) rather than treating them as smooth, coiled 

cylinders or their center lines, as has been done in previous applications of the boundary 

element method and  worked toward the role of flagella surface in flow transition.  

Flagella Surface complexity was found to be a crucial factor in formation and dispersion 

of flagellar bundles (key parameters in chemotaxi). 

Takano and Goto [74] used RFT and Kirchhoff rod model for the numerical analysis of 

flexible helical flagellum of swimming bacteria. Propulsive speed of the bacteria was 

determined, taking deformation in account and demonstrated that the backward speed is 

slightly faster than the forward speed. 

Edd et al. [75], worked on design aspects of a surgical microrobot and explained the four 

quadrant propulsion system for maneuvering and shown that use of carbon nanotubes as 

synthetic flagella is the possible tool of effective locomotion. The robot would be 

capable of traveling at almost 1mm/s with a 2% hydrodynamic efficiency for 1 nW of 

power, with 100 µm long filaments. 

Becker et al. [76] using slender-body hydrodynamics in the inertialess limit, showed that 

the direction of net translation and the speed of the swimmer depend on the angular 

amplitude of the swimming strokes as well as on the relative length of the links. 

Lagomarsino et al. [77] worked on large-amplitude motion and found that the 

dependence of the swimming speed on both sperm number and amplitude was 

significantly modified, relative to the small-amplitude case. To compare the  efficiencies 

of different swimmers, Avron et al. [78] introduced a swimming drag coefficient which 

allowed for the ranking of swimmers at low Reynolds numbers. The smaller the 

swimming drag coefficient, the more efficient was the swimmer. 
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Kim and Powers [79] studied hydrodynamic interaction between rotating rigid helical 

flagella and used SBT to study bundling of flagella. Using numerical slender-body 

calculations and symmetry arguments, Kim and Powers [79] calculated the 

hydrodynamic forces and moments on nearby rotating helices at zero Reynolds number 

and showed that for two rigid helices rotating with zero phase difference, there was no 

time-averaged attractive or repulsive force between the helices. 

The singly flagellated bacterium, Vibrio alginolyticus, moves forward and backward by 

alternating the rotational direction of its flagellum. When the cell swims close to a wall, 

the forward and backward speeds differ noticeably as was suggested in the work of Goto 

et al. [80]. This study detailed a boundary element model for the motion of a bacterium 

swimming near a rigid boundary and the results reveal that forward motion is more 

stable than backward motion with respect to pitching of the bacterium. 

Flores et al. [81] presented computational model of the interaction of multiple bacterial 

flagella. Flores et al. [81] modeled the elasticity of the flagella with a network of elastic 

springs and found that the maximum swimming speed of single flagellum bacteria occurs 

at a certain value of the pitch of helical flagella irrespective of its length. Flores et al. 

also explained the bundling and tumbling in three flagella model and found that the 

counterclockwise rotation of all the flagella leads to bundling. With flagella motor 

rotating in opposite direction, the hydrodynamic interaction disturbs and leads to 

tumbling. Tumbling occurs in a faster time scale than bundling. 

Behkam and Sitti [82] worked on various aspects of nanorobotic propulsion starting from 

E. Coli inspired propulsion based on RFT, modeling and testing of biomimetic flagellar 

propulsion method, and hybrid microrobot. Behkam and Sitti [82] introduced the 

biomimetic propulsion mechanism inspired by flagellar motion of bacteria. The key 

parameters such as velocity, distribution of force, and power requirements for different 

configurations of tail were determined by Behkam. Applying Buckingham’s Pi theorem, 

a scaled-up model of the robot was constructed and tested in silicone oil. Another 

common method of propulsion among microorganisms is known as eukaryotic flagellar 

motion. Behkam and Sitti [83] further suggested that kinematic and dynamic analysis of 

this motion and comparison between the results of prokaryotic and eukaryotic 

flagellation would yield an effective design methodology for microscale swimming 

robots. The developed hydrodynamic models [83] were optimized for design parameters 

for each of two propulsion models i.e., prokaryotic and eukaryotic microorganisms. The 
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experiment was done for single flagella, and thrust force, torque, velocity, and efficiency 

were determined and compared with the scale- up model. 

Behkam and Sitti [84] used following relations for the non-dimensional analysis of force, 

torque and velocity 
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where, M is torque generated, F is the propulsion force, U is the forward velocity, A is 

the amplitude of the helix, rh is the radius of head,  is the wavelength of the helix, d is 

half the thickness of the tail filament and L is the length of tail filament. 

One of the issues in the work of Behkam and Sitti [84] was that thrust force and 

efficiency were calculated based on velocity component of larger amplitude wave, while 

the modeling was done with assumption of low amplitude wave. Majumdar et al. [85] 

made the appropriate corrections in the existing theory, and it was demonstrated that 

thrust force changes with viscosity of the medium as well and given as 
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where, wxx VhVF ,,,,  and d denote total thrust force, wavelength, velocity of flagellum 

in positive x-axis, amplitude of wave, wave speed, and filament thickness respectively. 

The locomotion and manipulation dynamics of miniature  robots are dominated by 

micro/nano-scale forces and the scaling effects. Manghi et al. [86] studied dynamics of 

rotating elastic filament and found a nonlinear relationship between applied torque and 

angular frequency in the presence of external load. Manghi et al. [86] had shown that 

rotation of elastic rod with constrained azimuthal angle give rise to forward thrust 

independent of sense of rotation. Chattopadhyay et al. [87] made use of optical tweezers 

and measured dynamic properties of bacteria such as torque and swimming speed of E. 

coli. Microscopic properties of the flagellar bundle [46] was estimated using the resistive 

force calculations for a helical coil. The propulsive efficiency, defined as the ratio of the 

propulsive power output to the rotary power input provided by the motors, was measured 

to be ≈ 1.7 %, which was consistent with the efficiency predicted theoretically for a rigid 

helical coil [46, 72]. 
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Roper et al. [88] shown that the dynamics of magnetically driven micro-swimmers are an 

admixture of the gaits of a flagellum and of an elastic rod that is waggled from side to 

side. Recent advances in micro-machining allow very small cargos, such as single red 

blood cells, to be moved by outfitting them with tails made of micrometer-sized 

paramagnetic particles yoked together by polymer bridges. When a time-varying 

magnetic field is applied to such a filament, it bends from side to side and propels itself 

through the fluid, dragging the load behind it. 

Yu et al. [89] experimentally investigated Purcell’s flexible oar swimmer. A 

microswimmer was constructed and both tail shape and propulsive force were measured. 

Measurements of propulsive forces and time-varying shapes were in agreement with the 

results of resistive-force theory. 

Sudo et al. [90], examined the wireless magnetic swimming mechanism for the 

development of medical micro robots working in human blood vessels. Locomotive 

characteristics of the swimming mechanism in a viscous liquid were analyzed by a high-

speed video camera system. The effect of fluid viscosity on the locomotive 

characteristics of the magnetic swimming robot was also reported. 

Lauga [91] presented an analytical treatment of the locomotion of an elastic swimmer in 

the limit of small amplitude actuation and characterized the geometry and performance 

of optimal swimmers. The efficiency range (typically 0.1% - 0.4% efficiency) reported 

for the most efficient elastic swimmers were  comparable although smaller than the 

typical real swimming micro-organisms (usually 1% - 2% swimming efficiency). 

Swimming using multiple elastic filaments was also discussed for the better control on 

the swimming trajectories. 

Researchers have proposed numerous microrobotic swimming methods, with the 

vast majority utilizing magnetic fields to wirelessly powered and controlled 

microrobots. Kosa et al. [92] worked toward the optimization of microactuators 

using mechanical-electrical-fluidic model and implement the same in the 

experiments using scaled-up model. It was shown that a 10 mm long tail was able to 

propel the swimming object with a velocity of 5cm/s. In another study, Kosa et al. 

[93] used piezoelastic swimming tail to generate planar waves and investigated the 

effect of head section presence on the swimming on a microrobot. Kosa et al. [93] 

found that propulsion velocity reduces to 50% when the ratio of volume of head to 
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volume of swimming tail reaches 12; i.e., velocity reduces as volume of head 

increases. 

Nanoswimmers should help, through medical target identification, to improve diagnosis 

and provide new therapeutic procedures. In 2008, Cavalcanti et al. [94] addressed the 

control and the architecture design for developing practical molecular machines. 

Cavalcanti et al. [94] described a pathway towards an effective methodology to control 

nanoswimmers and advance nanotechnology as a valuable tool for medicine. Numerical 

analysis and computational simulation was adopted to illustrate the proposed 

nanoswimmer performance in a dynamic environment used as test-bed for medical 

instrumentation and drug delivery. 

Earl et al. [95] modeled microscopic swimmers using numerical methods, which consist 

of Oseen tensor, lattice Boltzmann, and multiparticle collision dynamics. The model [95] 

consists of three spheres connected with each other and having movement in one 

dimension only. The expression for efficiency was the ratio of energy required by an 

external force to move the sphere by a distance to the work done to change the shape. 

The theory was generalized up to 200 spheres, and it was shown that a logarithmic ratio 

exist between the increment of spheres and the efficiency. The generalized model was 

able to turn and control its trajectory in three dimensions. 

Alexander et al. [96] described the constraints imposed on the hydrodynamic scattering 

of two low Reynolds number swimmers by the time-reversal invariance of the Stokes 

equations. 

Coq et al. [97] emphasized on the self induced helicity of elastic flagella for the driving 

of artificial swimmers. Coq et al. [97] showed that increasing the angular velocity, the 

filament undergoes a sharp but continuous shape transition from a linear to an helical 

shape tightly wrapped around the rotation axis. The argument in [97] was based on the 

rotation of single tilted flexible rod. 

Keaveny and Maxey [98] described the dynamics of a chain of discrete paramagnetic 

beads bonded together by short flexible links to form a tail attached to a larger spherical 

particle or head. It has been demonstrated that the magnetic micro-swimmer introduced 

by Dreyfus et al. [19] with planar actuation can be used as a model to study a corkscrew 

form of swimming, driven by a rotating magnetic field. Further, for low-frequency 
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rotations, Keaveny and Maxey [98] predicted that the swimming speed (U) grows 

initially as U∼ Sp
4
, where Sp is the sperm number [69]. 

Qian et al. [99] considered the deformation of a tilted elastic rod rotating in a viscous 

fluid and studied the shape transition when driven either at constant torque or at constant 

speed. 

Lauga and Bartolo [100] demonstrated that two bodies with reciprocal deformation can 

exploit hydrodynamic interactions to obtain collective locomotion and effective long-

range interactions. Normand and Lauga [101] derived the time-averaged forces acting on 

a tethered flapper in a polymeric fluid and demonstrated that the scallop theorem is not 

valid in polymeric fluids. Reciprocal movement cannot be used for locomotion at low 

Reynolds number in an infinite fluid or near a rigid surface but Trouilloud et al. [102] 

had shown that this limitation is relaxed for a body performing  reciprocal motions near a 

deformable interface. Lauga and Powers [103] reviewed the biophysical and mechanical 

principles of locomotion at the small scales relevant to cell swimming and illustrated the 

theoretical framework necessary to understand biological and synthetic locomotion at 

low Reynolds number. Resistance matrices for solid bodies, flow singularities, and 

kinematic requirements for net translation were also emphasized in [103]. 

Some microorganisms, such as spermatozoa, synchronize their flagella when swimming 

in close proximity. Elfring and Lauga [104] showed that the time evolution of the phase 

difference between co-swimming cells depends only on the nature of the front-back 

geometrical asymmetry of their flagellar waveform and microorganisms can  phase lock 

into conformations which minimize or maximize energy dissipation. 

Subramanian et al. [105] developed an analytical model for propulsion attributed to 

generalized helical flagella. The linearly increasing amplitude helical model showed 

improved performance compared to the uniform amplitude model. Thus, a plausible 

design parameter for increased propagation of nanoswimmers is the helix profile. Apart 

from increment in velocity of nanoswimmer, the linear variation in amplitude reduces 

internal strains which may develop at the basal end of the flagella for constant amplitude 

helix. 

In a recently study, the effects of bends on flagella and pitch angle were observed and 

optimized by Yang et al. [106]. Simultaneously optimizing the swimming efficiency with 

respect to inter-kink length and pitch angle, Yang et al. [106] found  that the optimal 
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pitch angle is 35.5˚ and the optimal inter-kink length ratio is 0.338, which are in good 

agreement with experimental observations. 

Coq et al. [107] studied theoretically and experimentally the periodic motion of a flexible 

filament immersed in a viscous fluid. They emphasized on  the nonlinear force-torque 

relation resulting from the interplay between the linear elasticity of the rod and the linear 

Stokes flow. Coq et al. [107] showed that the characteristics of the propulsive force 

strongly depends on the actuation mode for a torque-driven beating. 

Li et al. [108] proposed a dynamic model using RFT for the swimming microrobots with 

application for the controlled drug delivery inside the human body. The proposed 

microrobot had helical head and an elastic tail. It was shown that the microrobot 

performs better after the bifurcation in terms of speed and efficiency. Linear and angular 

velocities increase linearly with the driving torque applied by external magnetic field. 

Wada and Netz [109] presented analytical and numerical studies on a self-propelling bi-

stable helix as a model system for Spiroplasma bacterial motility. The effects of cell 

stiffness, viscosity and the thermal fluctuations on helical-shaped bacterial motility and 

its swimming speed were considered. 

Magnetic fields are an attractive means to actuate ferro- and paramagnetic micro- and 

nano-structures in fluidic and biological environments. Ghosh and Fischer [21] described 

the construction and operation of one of the smallest artificial swimmers to date that can 

be navigated in water with micrometer-level precision using homogeneous magnetic 

fields. The propellers are typically 200-300 nm in width and about 1 to 2 μm long; are 

made of silicon dioxide (SiO2). 

Abbott et al. [22] compared three promising methods of microrobot swimming using 

magnetic fields, to rotate helical propellers that mimic bacterial flagella, to oscillate a 

magnetic head with a rigidly attached elastic tail, and pulling directly with magnetic field 

gradients. It was observed that  helical propulsion will likely be the best choice for in 

vivo applications. 

Artificial bacterial flagella (ABFs) consist of helical tails resembling natural flagella 

fabricated by the self-scrolling of helical nanobelts and soft-magnetic heads composed of 

Cr/Ni/Au stacked thin films. ABFs are controlled wirelessly using a low-strength 

rotating magnetic field. Zhang et al. [23] performed swimming tests of ABFs and 

investigated the influences of head size on swimming velocity and the lateral drift of an 
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ABF near a solid boundary. Inspired by monotrichous bacteria flagella, Zhang et al. [13] 

in another article, reported the fabrication and controlled swimming of artificial bacterial 

flagella (ABF), microsphere manipulation, and the thrust force generated by an ABF.  

In a recent review, Fischer and Ghosh [110] discussed the construction, actuation, and 

operation in context of artificial micro-structure that can be controlled and propelled with 

homogenous magnetic fields. Peyer et al. [111] reported various magnetic helical 

micromachines that transforms a rotation around their helical axis into a translational 

motion along the helical axis and discussed the actuation, motion control, fabrication, 

and functionalization of helical micromachines for biomedical applications. 

Previous analytical and computational models of flagellar propulsion has been dedicated 

to the fluid mechanics of flagella and cilia in Newtonian flows, only a few studies 

incorporated the non-Newtonian fluids. A variety of internal biological fluids have 

complex polymeric microstructures and exhibit non-Newtonian behavior. Inspired by 

this fact, Lauga [112] worked on the kinematics of locomotion and transport in complex 

biological fluids, wherein the fluid is non-Newtonian and observed that the transport 

kinematics in a viscoelastic fluid are also controlled by the mechanical properties of the 

fluid, such as fluid viscosity and relaxation time. 

Many micro-organisms swim through gels and non-Newtonian fluids in their natural 

environments. Fu et al. [113] addressed how swimming velocities are affected in 

nonlinearly viscoelastic fluids and found that in general, nonlinear viscoelastic 

corrections decrease the swimming velocity relative to the Newtonian case. Fu et al. 

[113] assumed that the amplitude of deflection is small compared to both, the 

wavelength of deformations, and the radius of the cylinder. Design of a fastest swimming 

micro-swimmer requires tuning of material parameters and of the actuation frequency in 

order to maximize the dimensional swimming speed. 

Viscoelasticity may have important effects on bacterial fluid dynamics. Smith et al. [114] 

modeled cilia-driven transport of biological fluids and applied the model to the large-

amplitude motion of a single cilium in a linear Maxwell liquid. A test particle is 

propelled approximately one-fifth as quickly along the direction of cilia beating as in the 

Newtonian case.  

For slender bodies in a Newtonian fluid, the ratio of normal to tangential drag 

coefficients is fully determined by the geometry and cannot exceed 2. Cohen and Boyle 
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[115] observed that, in non-Newtonian environments, the ratio of drag coefficients is a 

function of both the geometry and the medium. In addition to viscoelastic effects, 

biological fluids can also show shear-thinning viscosity as part of their non Newtonian 

behavior. In a recent study, Yim et al. [116], assessed the effect of varying viscosity with 

shear rate on the performance of swimming, experimentally. Experiments were 

conducted using two types of magnetically driven swimmers (oscillating flexible tail and 

rotating rigid coil devices) to test this effect. Velez-Cordero and Lauga [117] extended 

classical results of Taylor [33-34] to non-Newtonian fluids flow cases (i.e. shear thinning 

and shear thickening fluids) and addressed the role of shear-dependent viscosity on 

flagellar propulsion.  It was shown that the shear-thinning fluids always decrease the cost 

of transport and yields the flow transport more efficient. 

Engineered micro-/nanoswimmers must expend internal energy in order to produce the 

waves of deformation responsible for the motion. Spagnolie and Lauga [118] considered 

the regularization of Lighthill’s sawtooth waveform while taking into account the 

additional energy costs of bending, sliding of the internal microtubules and internal 

viscous resistance. The shape of the flagellar wave which leads to the fastest swimming 

for a given energy expenditure was determined analytically and numerically. The optimal 

shapes of periodic, planar flagellar waves of both infinite and finite length were derived. 

Rodenborn [119] determined the propulsive force, torque and drag on flagella with 

different biologically relevant geometries, determining the dependence of these forces 

and torques on both the wavelength and the axial length of the flagella. Swan et al. [120] 

modeled the hydrodynamic self-propulsion of microorganisms at low Reynolds number 

using Stokesian Dynamics simulations and represented the swimming body as an array 

of spheres. Lauga and Eloy [121] used internal energetic measure to derive 

computationally the optimal shape of an internally-forced periodic planar flagellum 

deforming as a travelling wave. The travelling-wave shape computed in [121] are the one 

which maximizes the swimming speed for a fixed energetic cost. 

Berman et al. [122] studied the low-Reynolds-number locomotion of finite undulating 

filament propelled by a propagating sinusoidal wave using an approximate Resistive 

Force Theory (RFT). Berman et al. [122] assumed a local nature of hydrodynamic 

interaction between the filament and the surrounding liquid, and more accurate particle-

based numerical computations taking into account the intra-filament hydrodynamic 

interaction. 
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The boundary-element method (BEM) is a reliable and accurate tool for studying the 

zero- Reynolds number hydrodynamics of motile microorganisms, especially in 

situations where the detailed geometry of the structure of the microorganism plays a role. 

Symmetries in fluid-structure interaction problems have been used by some researchers 

to reduce the number of unknowns and as a result simplify numerical computation. Liu et 

al. [123] used modified boundary-element method utilizing symmetry concept in surface 

domain to model the motion of a bacterium propelled by a helical flagellum, and 

compute the swimming speed of a rotating helix subject to zero force. The chronological 

advancements in flagellar propulsion have been tabulated in Table 2.1. 

Table 2.1: Chronological advancements of flagellar propulsion 

Year Researcher Work done 

1930 Ludwig Observed that rigid arms like oars is incapable of net 

motion in microorganisms. 

1951 Taylor Proposed RFT and modeled flagellum as an infinite 

cylindrical filament in an unbounded fluid. 

1953 Hancock  Pioneered SBT and mathematically analyzed the 

propulsion and extended the study to realistic amplitudes 

1955 Gray and Hancock Studied the propulsion of spermatozoa using RFT 

1958 Machin Modeled wave propagation along an elastic filament 

1971 Chwang and Wu Compared the two modes of propulsion namely, planar 

wave and helical wave 

1974 Chwang and Wu Improved SBT 

1976 Winet and Keller Compared the RFT predictions with experimental 

observations on geometry of flagella 

1976 Keller and 

Rubinow 

Showed that trajectory of a microorganism is a helix 

instead of a straight line and confirmed that a non-rigid 

body motion can propel itself without a head 

1976 Lighthill Proposed the motion of a filament as the line distribution 

of Stokeslets and source dipole. Given more accurate 

normal Cn and tangential coefficients Ct of resistance. 

1977 Brennen and 

Winet  

Reviewed both SBT and RFT approaches 

1979 Johnson and 

Brokaw 

Compared RFT and SBT and suggested that SBT is better 

where cell body is present 
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Year Researcher Work done 

1980 Johnson Improved SBT  

1987 Phan-Thein et al. Optimized geometrical parameters for maximum 

swimming speed 

1991 Ramia  Studied locomotion of a microorganism using BEM to 

predict propulsion characteristics 

1993 Ramia et al. Studied wall effects using BEM 

1996 Nasseri and Phan-

Thein 

Modeled locomotion with planar and helical rigid tail 

1997 Nasseri and Phan-

Thein 

Optimized a capsule shaped head propelled by a rigid 

spiral tail for maximum speed 

1998 Wiggins and 

Goldstein  

Determined the shape of the filament by balancing the 

visco-elastic forces using small amplitude deformations 

1999 Camalet et al. Studied inextensibility of the filament and the effect of 

boundary conditions imposed on beating pattern 

2000 Goto et al.  Used SBT to understand swimming motion and calculate 

the optimal shapes for the fastest swimmer and the most 

efficient swimmer 

2001 Magariyama et al. Introduced two apparent viscosities in existing RFT 

2001 Goto et al. Studied cell body rotation of single flagellum bacterium 

2001 Fujita and Kawai Calculated optimal shape of a spiral flagellum 

2002 Powers Studied flagellar bundling and showed that the counter 

rotation of cell body is necessary for torque balance.  

2003 Takano and Goto Applied RFT for analysis of small flagellar deformations  

2003 Edd et al. Studied the design aspects of a surgical microrobot using 

RFT 

2003 Trachtenberg et al. Analyzed bacterial flagellar filaments and worked 

towards the role of flagella surface in flow transition. 

2004 Behkam and Sitti Studied E.coli inspired propulsion using RFT and tested 

the biomimetic flagellar propulsion 

2004 Kim and Powers Studied hydrodynamic interactions between rotating rigid 

flagella  and their bundling 

2005  Goto et al. Studied the motion of bacterium near a rigid boundary 

2005 Flores et al. Modeled interaction of flagella in a multi flagellated 

swimmer  
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Year Researcher Work done 

2005 Dreyfus et al. First microscopic artificial nanoswimmer. Observed 

dependency of normalized velocity on sperm number. 

2006 Chattopadhyay et al. Validated RFT experimentally 

2007 Lauga Studied hydrodynamics of a rotating filament 

2009 Coq et al. Modeled the coupling with surrounding viscous fluids 

using local anisotropic friction coefficients. 

2009 Li et al. Proposed a dynamic model for swimming microbots for 

controlled drug delivery. 

2009 Yang et al. Numerically studied the Spiroplasma swimming using 

RFT 

2009 Ghosh and Fischer Smallest artificial nanoswimmer made till date. 

Demonstrated micron level precision in control using 

homogenous magnetic field. 

2009 Zhang et al. Studied the effect of solid boundaries on ABF. Observed 

that ABF cannot swim in a circle like a bacterium because 

head and tail do not counter rotate. 

2010 Cohen and Boyle Discussed the undulatory swimming in non-Newtonian 

fluid 

2010 Spagnolie and 

Lauga 

Discussed the optimal shapes of periodic and planar 

flagellar motion 

2011 Swan et al. Modeled hydrodynamic self propulsion of microorganism 

at low Reynolds number 

2012 Rodenborn et al. Studied propulsion of helical flagellum using SBT 

2013 Berman et al. Studied locomotion of finite undulating filament 

propelled by a sinusoidal wave  

2013 Liu et al. Modeled swimming of helically propelled bacterium 

subjected to zero force 

The continuous effort and work on realization of nanoswimmers is leading to ever 

growing published literature in the field. Still, the available literature has a vast gap 

between the realization of nanoswimmer as there are many assumptions in the theories 

developed and more so over limitation on fabrication technology in the nanodomain. 

The available literature reported in this section pertains to the nanorobot locomotion via 

flagellar propulsion and the existing theories developed to model a nanoswimmer 
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propelled by a beating or a rotating elastic flagellum. Many researchers [15, 83, 90, 111] 

used RFT to estimate the forces acting on inelastic flagella moving at low Reynolds 

number and a few [71, 111] of them have also used elastohydrodynamic model in order 

to predict performance indexes of nanoswimmers. Mathematical models of the 

flagellated nanoswimmers show dependence of motion on multiple parameters like 

geometry and material of flagella, viscosity of surrounding medium, and the mode of 

actuation. Though the investigation of actuation modes has been done for uniform 

flagellated nanoswimmers, but its influence on tapered flagellated nanoswimmers is not 

yet addressed. This was first done by us and published [124, 125]. Material choice is 

another important and integral part of the design and must be explored for any device. 

Nanoswimmers are also no exemptions and needs suitable material for exploring the 

design perspective. Researchers proposed SiO2 [21, 109], PDMS [126] and PEG-DA 

[127] as the biocompatible materials for flagella, but their adaptability as flagellar 

structure needs to be assessed with respect to parameters like flexural rigidity, and 

technical feasibility. We first proposed and published [128] the methodology for 

assessment of a material for its appropriateness as a material for flagella and assessed 

over 500 materials for their suitability as a material of choice for flagella. 

Among above mentioned and many other gaps in existing theories on propulsion of 

nanoswimmer and actual nanoswimmer in nature, few of them have been addressed in 

the present thesis. Keeping in view the detailed literature presented in this section and 

assessed gaps in already attempted problems on propulsion of a nanoswimmer, the scope 

of the present thesis has been enlisted in the next section. 

2.3 SCOPE OF THE PRESENT WORK 

Based on the literature review done in previous section, the following issues have been 

considered and addressed: 

1. Most of the researchers studied shapes and kinematics of flagellar propulsion 

assuming a particular flagella shape. Though the shape determination via 

elastohydrodynamics is attempted by some researchers but the effect of flagellar 

elasticity on nanoswimmer propulsion is largely uninvestigated. Does elasticity 

of flagella have something to do with efficiency of motion of nanoswimmer? 

Using RFT, the variation of nanoswimmer performance indexes i.e. propulsive 
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velocity, and propulsion efficiency as a function of elasticity and characteristic 

length ( ol ) has been investigated in the present thesis and presented in Chapter 3. 

2. In the vast literature available on modeling of flagellar propulsion, the flagellum 

is considered constant diameter whereas, the actual microorganism have tapered 

flagella. Why are microorganisms in nature designed with tapered flagellum? Is 

the taper of flagellum related to the efficiency of the nanoswimmer? Wave 

propagation through a tapered flagellum of a nanoswimmer for a given taper ratio 

needs to be studied in detail. The investigations on this has been done in the 

present work and the modeling, simulation, and analysis are presented in Chapter 

4. The effect of flagellar elasticity on nanoswimmer propulsion by planar and 

helical motion of flagellum are investigated and reported in Chapter 4. The two 

modes of propulsion, namely planar wave and helical wave, have been compared 

for a tapered nanoswimmer based on their performance indexes (i.e., velocity and 

efficiency).  

3. Though modeling of shape and size of nanoswimmers is investigated in literature, 

the material selection for the flagella needs to be assessed on the criteria like 

biocompatibility, physical properties and technological feasibility. The short 

listing of biocompatible materials is quintessential for attempts to engineer an 

artificial nanoswimmer. How can one design a nanoswimmer without a chosen 

material? Is it not imperative to propose a method to choose a material if we have 

to realize a nanoswimmer? The present study provides a methodology for 

assessing the candidature of a material for the fabrication of artificial flagella that 

shall have implant capabilities and shortlist the potential material and a survey of 

over 500 materials to qualify as a suitable candidate using the provided 

methodology. This has been presented in Chapter 5.  

4. The performance of a uniform diameter nanoswimmer and the more realistic,  

tapered nanoswimmer using resistive force theory is investigated in Chapter 3 

and Chapter 4, respectively. A systematic study is carried out with both planar 

and helical wave propagations through a uniflagellated nanoswimmer. The 

important results of the present study are summarized in Chapter 6. 
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Chapter 3 

Flagellar Propulsion and Resistive Force Theory 

3.1 INTRODUCTION 

In the previous chapter, literature review including various aspects such as modeling 

approaches, effect of body shape, importance of viscosity, wall and neighbor effect on 

swimming, and fabrication in context of realizing nanoswimmer have been presented 

chronologically. In the present chapter, the existing modeling theories of propulsion of 

nanoswimmer such as resistive force theory (RFT), slender body theory (SBT), boundary 

element method (BEM) and  the bead model (BM) are discussed briefly. Advantages and 

limitations of RFT over other theories are outlined. Further using RFT, mathematical 

modeling and analysis is carried out for both planar wave propulsion (PWP) and helical 

wave propulsion (HWP) with uniform diameter nanoswimmer. The chapter includes 

determination of steady state shapes of flagellum using elastohydrodynamics and 

derivation of RFT model to include propulsion, thrust force and efficiency as explicit 

functions of characteristic length of flagellum. Variation in characteristic length is 

achieved by varying elastic modulus of the flagellum material. 

As discussed in Chapter 1, section 1.2, locomotion strategies used at microscopic level in 

low Reynolds number regime is quite different than the strategies used at macroscopic 

level. Inertia drift no longer works at small  Reynolds number (Re  1). The concept of 

performing half of the stroke at faster rate and the other half at slower rate i.e. Scallop 

concept, does not work in low Reynolds number domain, therefore to swim or propel, a 

nanoswimmer must have non-reciprocal propulsive mechanism. 

In 1977, Purcell [1] in his landmark talk "Life at low Reynolds number" suggested two 

possible swimming strategies employed by nature that work at low Reynolds number, 

namely either by the planar beating of tail (flagella) i.e. 'the flexible oar' or by helical 

propulsion of tail (flagella) i.e. the 'corkscrew swimmer'. The two strategies are 

schematically shown in Figure 3.1. From Figure 3.1(a) and Figure 3.1(b) it can be seen that 

the motion of flagella in both cases is non-symmetric. The non-symmetric motion is shown 

by bold and dotted line, and the corresponding swim is part of cyclic motion. 
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To model and analyze the propulsion of flagellated nanoswimmer, following approaches 

have been proposed by researchers in available literature [2-22] 

i Resistive force theory (RFT) [3] 

ii Slender body theory (SBT) [4] 

iii Boundary element method (BEM) [5] 

iv Bead model (BM) [6] 

 

(a)      (b) 

Figure 3.1: Planar (i.e. wiggling) and helical wave (i.e. corkscrew) propulsion 

RFT, the use of which was first pioneered by Gray and Hancock [3], has been shown to be 

highly effective in predicting the propulsion parameters for planar and helical waves 

corroborating observations from nature [3] as well as scaled up experiments [7-9]. RFT uses 

the linear Stokes flow assumption and considers the flagellum to be composed of a series of 

interconnected cylinders. The fluid resistance on each small cylinder is calculated by 

assuming that it is translating at its given orientation in the absence of neighboring cylinders. 

The more rigorous slender body theory provides a systematic method of approximating 

the flow field and hence the forces on long and thin objects. The advantage of slender 

body theory is that solutions of desired accuracy can be obtained, and its disadvantage is 

that it can require tedious and involved computations. Slender body theory captures the 

hydrodynamic interactions between distant parts of a curved filaments more accurately. 

This interaction, which is not considered in resistive-force theory, is not so significant for 

small cell bodies, such as the heads of simple spermatozoa. For larger cell bodies, or cell 

bodies that have large amplitude motions transverse to the swimming direction, use of 

slender-body theory is required for accurate analysis. Slender body theory is based on the 

fundamental concepts of mass and momentum conservation at low Reynolds numbers, 

which result in a system of linear partial differential equations i.e. Stokes equations [10]. 

Slender Body Theory (SBT) was first formulated by Hancock [4] and firmed up by 

pioneers like Taylor [11], Cox [12], Batchelor [13], Higdon [14], Johnson [15], who 
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refined and brought this theory forward. Johnson and Brokaw [16] investigated the 

accuracy of the RFT and compared the distinctions between RFT and SBT. It was shown 

by Brokaw and other researchers that SBT is good for large-amplitude planar waves 

whereas RFT is better where the cell body is absent or very small. 

Unlike previous approaches such as RFT and SBT, boundary element method (BEM) is not 

restricted to slender bodies, allow the modeling of realistic and complex geometries [17]. 

BEM is applicable to all, uniflagellated to multiflagellated nanoswimmer with the variations 

in geometrical parameters. BEM is a numerical technique to find the flow field and pressure 

around an elastic filament using Stokes equation. In boundary element method, forces on a 

flagellum and the resultant flow field can be found by discretizing a flagellum surface and 

assigning a Stokeslet to represent the fluid response to each surface element. 

In another approach, called as bead model, few researchers [6, 18-22] divided linear 

elastic filaments (i.e. flagella) of nanoswimmer in discrete beads connected through stiff 

linkers. In 1977, de la Torre and Bloomfield [6] proposed the bead model approach for 

the study of hydrodynamics of microorganism, in which the helical flagellum is replaced 

by a discrete array of frictional beads along its center line. The beads were assumed to 

behave hydrodynamically like spheres whose radius is equal to that of the flagellum. In 

this approach, hydrodynamic behavior of spheres is determined by Stokes' law frictional 

coefficients and the hydrodynamic interaction tensors between them. 

The literature available on modeling of locomotion at low Reynolds number for 

nanoswimmer reported shows the importance and popularity of RFT among researchers 

starting from early 1931 to till date. This is so because of simplicity and relative ease of 

application of RFT for obtaining results for uniflagellated nanoswimmers. Despite the 

limitation that RFT does not account for the interactions between the flagellum and the cell 

body or flow boundaries, it gives quite accurate and acceptable results for flagellated 

nanoswimmer with small head. Gray and Hancock validated resistive-force theory and 

their proposed resistive coefficients by comparing their model with the behavior of sea-

urchin spermatozoa [3]. The difference in results obtained by RFT and actual sea-urchin 

spermatozoa was less than 1%. Embracement of the theory by the academic community 

followed with successful applications, other biological organisms have been modeled 

using RFT. In the next section, RFT approach is explained which is followed by sections 

on modeling of PWP and HWP with uniform diameter flagellum. 
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3.2 RESISTIVE FORCE THEORY 

Resistive force theory (RFT) for modeling propulsion of a nanoswimmer was first 

proposed by Sir Geoffrey Taylor [2]. Gray and Hancock [3], Chwang and Wu [23], 

Lighthill [24] are the few pioneers, who refined and brought this theory forward. It was 

initially proposed for sea urchin spermatozoa. To estimate the forces on filaments 

moving at low Reynolds number, Gray and Hancock proposed a method in which local 

force components are linearly related to velocity components through corresponding 

drag coefficients and this method later in time became popularly known as resistive force 

theory (RFT). RFT is also known as local drag theory as it describes the hydrodynamic 

forces per unit length acting at a point on a filament in terms of velocity of the filament 

at that point. The researchers argued that as the flagellum undulates provided its radius of 

curvature is large compared to its diameter, the forces corresponding to the normal and 

tangential motion would be approximately given by the product of local flagellum 

velocity and the drag coefficients. 

In RFT, the fluid is treated as a passive background material which responds negligibly  

to the motion of slender object. The theory is valid for the situation in which the 

inertial forces are negligible as compared to the viscous forces. Nanoswimmers present 

an ideal case of negligible inertia and RFT is suitably applied for its' modeling. The 

wave form for both i.e. PWP and HWP have been generated from first principles of 

balancing the viscous forces with the bending forces and presented in section 3.3 and 

section 3.4, respectively. In the following sub-section RFT is explained taking planar 

wave as an example. 

3.3 SIMULATION OF PLANER WAVE PROPULSION (PWP) 

THROUGH A UNIFORM DIAMETER NANOSWIMMER (UDN) 

In this section, the mathematical model for uniform diameter nanoswimmer (UDN) 

propelling by generating PWP has been presented. Although the RFT modeling has 

been reported in literature, it is derived in the next section for the sake of continuity. 

The developed mathematical model is further simulated for performance indexes of 

nanoswimmer namely swimming velocity and efficiency i.e. xV  and   in the next 

section. 
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3.3.1 Modeling PWP in UDN 

Figure 3.2 shows a simple schematic of the nanoswimmer proposed to be propelled by a 

flagellar motion executing planar wave motion. The coordinates drawn are shown along 

with the flagellum. Coordinates origin is considered to be at head and tail joint as shown 

in Figure 3.2. 

 

Figure 3.2: Schematic diagram of a nanoswimmer whereby the wiggling of the 

elastic tail generates forward thrust 

The nanoswimmer is considered to be consisting of a head and an elastic tail part 

i.e. flagellum. The propulsive force is generated by the tail motion in a fluid. The 

nanoswimmer is considered to be surrounded by the fluid (shown in Figure 3.2 as white 

background) and its constraint boundary are supposed to be far away and therefore do not 

influence the motion of tail. Assessing the tail configuration provides the boundary 

conditions, the drag of a small element 'ds' of the wiggling tail provides a thrust force 

perpendicular to the direction of actuation. This thrust force and a summation of all such 

thrust forces from all the elements constituting the tail, provide propulsion to the 

nanoswimmer with a velocity Vx in x-direction. The head of the nanoswimmer is taken as 

sphere lying along negative x direction. The base angle (θ) of flagella oscillates with a 

frequency ( ) in two dimensions i.e. in xy plane by an actuating mechanism assumed to 

be present in the swimmer's head. The present thesis is focused on the design of flagella 

and we have assumed the presence of actuation mechanism responsible for either planar or 
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helical beating of flagella. The work models and investigates two aspects of flagellum 

design namely (1) determination of the steady state shape and (2) calculation of 

performance indexes namely swimming velocity ( xV ) and efficiency of propulsion ( ). 

The inertia terms in the equation of motion are neglected, which is a valid assumption 

(also repeatedly emphasized in available literature) for a nanoswimmer as mass of the 

nanoswimmer is negligible. The flagellum is considered as a thin body, which is valid 

for bL /  from 50 to 500, where L and b are the length and cross-sectional radius of 

flagellum [29], respectively. Uniform elasticity and uniform circular cross section has 

been considered along the flagellum. 

With the above mentioned considerations, two forces govern the motion of an element of 

flagellum, namely elastic forces ( EdF ) that tend to straighten the flagellum and viscous 

forces ( VdF ) that oppose the motion of each element through the fluid medium (Refer 

Figure 3.2.). The two forces determine the form and the rate of propagation of waves 

along flagella. At equilibrium of the two forces, force balance is used to derive the 

resultant governing equation of motion. Consider the forces acting on an element ds of 

the flagellum (Figure 3.2). The elastic force EdF  is obtained by considering ds as an 

oscillating elastic beam and has been derived in [25]. The derivation of equation is given 

in Appendix-I for reference. The force EdF  is given as [25]: 

 ds
x

y
EIdFE 4

4




  (3.1) 

where, E is the elasticity of the material of flagella, I is the area moment of inertia and y 

is the transverse displacement at any given position over length. 

The viscous force VdF  is product of drag coefficient acting on element ds and elemental 

velocity in y direction [26]. Considering drag coefficient as nC  in normal direction and 

elemental velocity as 
t

y




, the elemental viscous force VdF  on element ds is 

 ds
t

y
CdF nV




  (3.2) 

where, nC  is the normal resistive force coefficient, y is the displacement of element ds in 

y direction, and t is time, 
t

y




is the rate of change of displacement y with respect to time. 
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At steady state of motion, equilibrium of forces results in force balance. A force balance 

on element ds of the tail is given by equating elastic forces ( EdF ) and viscous drag 

( VdF ) and is obtained by equating equation (3.1) with equation (3.2) as: 

 
t

y
C

x

y
EI n









4

4

 (3.3) 

Equation (3.3) is Euler's beam equation and the solution of the equation (3.3) is obtained 

and given in [27]. The solution of equation (3.3) is assumed as a function of x and t, and 

is given as: 

 tiexytxy )(),(   (3.4) 

where displacement y is a function of displacement in x direction and time t, and  is 

frequency of oscillation of element. The first order time derivative and fourth order 

displacement derivative of equation (3.4) are obtained as: 

 tieixy
t

y )(



 (3.5) 

 
4

4

4

4

dx

yd
e

x

y ti



 (3.6) 

Substituting 
t

y




from equation (3.5) and 

4

4

x

y




 from equation (3.6), in equation (3.3) and 

rearranging the terms, we obtain 

 0
4

4

 y
EI

C
i

dx

yd n  (3.7) 

Considering  
4

1
















nC

IE
l  (3.8) 

where, l is the scale length associated with elastic forces and drag on the filament. The 

scale length plays an important role in determining the rigidity or flexibility of a 

flagellum. Equation (3.7) is written in terms of scale length as: 

 0
44

4

 y
l

i

dx

yd
 (3.9) 
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The characteristic equation (3.9) is written as: 

 0
4

4 
l

i
m  (3.10) 

where 
4

4
4

dx

yd
m  ; is the fourth order space derivative of transverse displacement of the 

flagellum. 

The general solution of the equation (3.3) is given as [28] 

 ][),(
4

4

3
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2
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1

1
 

x
l

m
x

l

m
x

l

m
x

l

m

ti eAeAeAeAetxy    (3.11) 

where A1, A2, A3 and A4 are the arbitrary constants, which are obtained from the 

boundary conditions given in equation (3.12) and m1, m2, m3, and m4 are the four roots of 

 
4

1

i . In the next sub section, the boundary conditions are presented to obtain the 

complete solution of equation (3.11). 

3.3.2 Modeling Performance Indexes in Planar Wave Propelled UDN 

The actuation of the flagellum is at the proximal end (i.e. where x = 0) with the tail fixed 

to the head. Consider a time dependent slope having maxima as  maxtan G  at beating 

frequency of ω. At the distal end (i.e. where x = L), the shear force and the bending 

moment vanishes. Hence for a spherical head attached to cylindrical tail of a 

nanoswimmer among many possibilities, the boundary conditions considered here are as 

follows 

 Position at proximal end 0
0


x
y  (3.12a) 

 Slope at proximal end 
ti

x
Gey 

0
 (3.12b) 

 Bending moment at distal end 0
Lx

y  (3.12c) 

 Shear force at distal end 0
Lx

y  (3.12d) 

The four coefficients A1, A2, A3 and A4 are calculated by substituting the boundary 

conditions given in equation (3.12), in equation (3.11). 
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Substituting the boundary condition from equations (3.12a) in equation (3.11) we get  

 04321  AAAA  (3.13a) 

Similarly substituting the second boundary condition from equations (3.12b) in equation 

(3.11) we get 
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Similarly substituting the third boundary condition from equations (3.12c) in equation 

(3.11) we get 
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Similarly substituting the fourth boundary condition from equations (3.12d) in equation 

(3.11) we get 
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The equations (3.13a) to (3.13d) are combined and rewritten in form of matrix as 
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where,  ollL   i.e. /  is the characteristic length, a dimensionless term, which characterizes 

the relative magnitudes of the viscous and bending forces and hence represents the overall 

effectiveness of a nanoswimmer. Equation (3.14) is used to obtain four coefficients A1, A2, 

A3 and A4. By substituting back them in equation (3.11) we obtain steady state shape of 

wave form. Characteristic length describes the length of flagellum scaled by characteristic 

distance over which undulations in flagellum settle down. Characteristic length is a key and 

fundamental parameter to evaluate the performance of a nanoswimmer and is defined as 
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A low value of characteristic length (lo) indicates that bending forces dominate and  a 

high value of characteristic length corresponds to higher viscous forces. Thus if 1  ol  

flagellum behaves like a rigid rod with only very small deflections while for 1  ol , 

flagellum is very sloppy. Characteristic length (lo) is also known as Sperm number (Sp) 

and was proposed by researchers in 2003 [18-19]. 

Referring to Figure 3.2 again, the element ds is redrawn in Figure 3.3 more elaborately. 

Figure 3.3 shows the forces acting in normal and longitudinal directions on the element 

ds of the flagellum due to transverse velocity yV  and forward velocity xV . The element is 

oriented to the x-axis at an angle θ at an instance of time t. In Figure 3.3, the longitudinal 

direction l and the normal direction n are shown along and normal to the centroidal axis 

of the element ds. 

 

 

Figure 3.3: Free body diagram of the element 'ds' of the tail 

The drag force generated depends on the components of the velocity in the normal and 

the longitudinal directions. The resistance of the fluid to the flagellum’s motion is 

computable if the local coefficient of drag for the element and its velocity component in 

normal and longitudinal directions are known. Usually, the coefficient of drag is 

expressed in terms of normal and tangential drag coefficients per unit length, nC , and 

lC , respectively. The total force in normal and longitudinal directions for any motion of 

the flagellum is found by an integration of the forces from each such small segment of 

the flagellum. For objects that are much longer than the cross sectional dimensions, the 

fluid force per unit length is conveniently split into a normal force ( ndF ) and a 

longitudinal force ( ldF ). These two components of force (i.e. ndF  and ldF ) due to 
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transverse and forward displacements of the element are vectorial summation of 

components of drag forces and are given as 

 dsVVCdF xynn )sincos(    (3.16) 

 dsVVCdF yxll )sincos(    (3.17) 

where, xV and yV  are the velocity in x and y- directions, respectively, sinxV  and 

cosyV  are velocity components in n-direction and cosxV  and sinyV  are 

components in l-direction. These two formulae given in equations (3.16) and (3.17) 

constitute the basis of resistive force theory 

nC  and lC  in equation (3.16) and (3.17) are the coefficients of normal and tangential 

drag per unit lengths. The velocity of wave propagation is correlated with the thrust force 

generated by the flagellum through these drag coefficients. Gray and Hancock [3] 

assumed the drag coefficient as a function of viscosity of medium, the wavelength and 

diameter of the flagellum. In 1958, Machin [28] modified it as a function of viscosity and 

Reynolds number. Later Wiggins et al. [29] proposed it to be a function of viscosity of 

the medium and length to radius ratio of the flagellum. Over the period of time this 

coefficient has changed its form for better approximation of the propulsion indexes of 

nanoswimmer. The more accepted and more used normal and tangential coefficients of 

drag nC  and lC , is given as [3, 29-30] 
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where   is the viscosity of the liquid medium, L is length of the flagellum and b is 

flagellum radius. The resultant forward thrust (i.e. net force in x-direction) and the 

resultant transverse force (i.e. net force in y-direction) on the element ds (refer 

Figure 3.3) is found out by taking components of normal and longitudinal forces along x- 

and y-directions, respectively and are given as 

  cossin lnx dFdFdF   (3.20) 

  sincos lny dFdFdF   (3.21)
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Substituting the normal force ndF  and longitudinal force ldF  from equations (3.16) and 

(3.17), respectively, in equation (3.20), and rearranging gives the net forward thrust xdF  as 

 dsVCCVCCdF xlnylnx ])cossin(cossin)[( 22    (3.22) 

Similarly, the net transverse force is obtained by substituting the normal force ndF  and 

longitudinal force ldF  from equations (3.16) and (3.17), respectively, in equation (3.21) 

and rearranging we get ydF  

 dsVCCVCCdF ylnxlny ])sincos(cossin)[( 22    (3.23) 

Dividing numerator and denominator of equations (3.22) and (3.23) by 2cos   
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Now, using 


22

2
tan1sec

cos

1
  in equation (3.24) and (3.25), and solving, we get  

 ds
VCCVCC

dF
xlnyln

x

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2
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])tan(tan)[(


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  (3.26) 
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dF
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


  (3.27) 

Length of the small element ds is given by   dxds 2tan1 , where dx  is the 

projection of elemental length ds along x-axis and   is the angle between element ds  

and x-axis. Substituting for ds  in terms of dx and   in equation (3.26) and equation 

(3.27) and considering for the low amplitude waves,   very small  1tan i.e.   therefore 

neglecting terms with 2tan , the equations (3.26) and (3.27) reduce to 

 dxVCVCCdF xlylnx ]tan)[(    (3.28) 

 dxVCVCCdF ynxlny ]tan)[(    (3.29) 
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Now, substituting 
dx

dy
tan  and 

dt

dy
Vy   in equation (3.28) and substituting y from 

equation (3.11) and integrating equation over the flagella length from 0 to L, gives the 

net thrust xF  generated by the flagellum and is given as 

   
L

xlln

L

xx dxVC
dx

dy

dt

dy
CCdFF

00

])[(  (3.30) 

The net thrust  xF  is used to overcome the drag due to the head by nanoswimmer to 

move forward. Under steady state conditions, the magnitude of the thrust force xF  

generated by the entire tail is equal to the drag experienced by the head. From Stokes' 

equation, drag due to a spherical head of radius hr  in a viscous medium of viscosity µ is 

given as [31] 

 xhhead VrF 6  (3.31) 

Equating the net thrust force generated due to wiggling action of the flagellum from 

equation (3.30) to the drag due to spherical head from equation (3.31), we can calculate 

the forward velocity xV  of the nanoswimmer. Equating (3.30) to with equation (3.31) we 

have 

 xh
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Rearranging equation (3.30), we obtained forward velocity xV  of the nanoswimmer 

 
LCr

dx
dx

dy

dt

dy
CC

V
lh

L

ln

x














 6

)(
0


 (3.33) 

Forward velocity xV  is the first index to evaluate the performance of the nanoswimmer. 

Another index for performance investigation of a nanoswimmer is efficiency ( ) of a 

nanoswimmer which is defined as the ratio of useful power developed for forward 

motion along the x axis to the total power needed for wiggling the tail. The power needed 

to wiggle the tail is the power comsumed in motion in the x and y-directions and is 

calculated by integrating xxVdF  and yyVdF over the flagella length.  
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Efficiency    of the nanoswimmer is defined as 

 








L

yy

L

xx

L

xx

VdFVdF

VdF

00

0  (3.34) 

The developed mathematical model for performance measuring index of nanoswimmer 

namely velocity  xV  (refer equation 3.33), and efficiency    (refer equation 3.34) are 

simulated in the next section using MATLAB


. 

3.3.3 Simulation, Results and Discussion of Performance of Planar Wave 

Propelled UDN 

The numerical simulations for the propulsion model developed for uniform flagella 

(refer equation 3.11, with substitution of four coefficients A1, A2, A3 and A4 from 

equation 3.14) in previous section are carried out using MATLAB


. The MATLAB 

code is given in Appendix-II. The parameters for simulation namely flagellum 

stiffness, viscosity of surrounding medium, flagellum length, cross-section radius of 

the flagellum, and radius of head are chosen based on prokaryotic microorganism and 

sea-urchin spermatozoa since they use planar wave propulsion. The parametric values 

used for simulations are listed in the Table 3.1. 

The simulated shapes are obtained for a flagella of uniform diameter (cross-section 

radius 0.2 µm) and length L = 50 µm. The fluid through which the nanoswimmer is 

swimming is assumed to be water with viscosity 0.001 Pa-s. The head radius 

considered is 0.5 µm. The values of flexural rigidity (EI) is chosen in the range of 

10
-24 

Nm
2
 - 10

-18 
Nm

2
 [32-33]. The simulated range of values for EI covers entire 

experimentally observed and simulated values in available literature. From 

observed values of beating frequency in nature [34], the range considered here 

varies from 25 Hz to 45 Hz. The values of surrounding medium viscosity, length of 

flagellum, and cross-section radius and radius of head are kept same for all 

simulation whereas flagellum stiffness is varied as parameter from 10
-18 

Nm
2
 to  

10
-24

 Nm
2
 to understand the effect of flexural rigidity of flagellum on shapes  and 

motion of the nanoswimmer. 
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Table 3.1: List of parametric values (PWP) 

S.No. Parameter 
Value [3, 32-34] 

(Sea-urchin spermatozoa) 

1 Flagellum stiffness (EI) 10
-22 

Nm
2
 

2 Surrounding medium (water) viscosity    0.001Pa.s 

3 Flagellum length (L) 50 µm 

4 Cross section radius of flagellum (b) 0.2 µm 

5 Radius of head ( hr ) 0.5 µm 

The variation in flagellum stiffness causes characteristic length lo (refer equation 

3.15) to vary from 1 to 10. The simulations were carried out for different values of lo 

in this range i.e. 1 to 10. For simulation, the boundary conditions given in equation 

(3.12) were considered. The simulated shapes of the elastic flagella for five different 

characteristic lengths (lo) 1, 2, 5, 7 and 10,  respectively with a flagella beating 

frequency of 35 Hz [3] are shown in Figure 3.4 to Figure 3.8 at eight different time 

intervals. Figure 3.4 and Figure 3.5 shows the flagellum with smaller characteristic 

lengths i.e. when lo 1  and (lo 2 ). Figure 3.4 and Figure 3.5, illustrates that the 

flagellum with smaller characteristic lengths behave as a stiff filament, while those 

with larger characteristic lengths (Figure 3.6, 3.7 and 3.8) behave as a flexible 

filament. In case of smaller characteristic lengths, Figure 3.4, ( lo 1 ) and Figure 3.5 

(lo 2 ), bending forces dominate and flagella remain straight and, hence flagella 

behaves like a rigid filament. Since the kinematic reversibility in low Reynolds 

regime does not produce a net thrust and exhibits rigidity, hence reversibility of 

motion in a cycle (refer mode shapes in Figure 3.4 and Figure 3.5),  no net forward 

motion is achieved in such designs of nanoswimmer for flagellum with small 

characteristic lengths. 

The plots of the shape of elastic flagella (Figure 3.6) obtained for a flagella beating 

frequency of 35 Hz, are in accordance with those published in literature [6] and also 

corroborates to the damping distance (the distance wave travels before its amplitude falls 

to 1/e of its original value) of around 2.6 times the scale length in the waveform. It is 
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clearly observed from the plots (Figure 3.4 to Figure 3.8) that with increase in 

characteristic length, the flexibility of the flagellum increases. 

Figure 3.7 (lo 7 ) and Figure 3.8 (lo 10 ) shows that the flagellum elements located at a 

distance larger than l does not oscillate much and therefore do not contribute towards 

thrust. For the larger characteristic length, drag forces dominates and hence leads to 

insufficient propulsion as most of the filament length has small deflection with very little 

oscillation. The drag exist throughout the length of the flagellum contributes drag but 

there exist no thrust contribution over a substantial length in larger characteristic length 

nanoswimmer. The velocity of swimmer decreases and tends to become zero because of 

excess drag for larger characteristic length of nanoswimmer. For the values of 

characteristic length (lo 10 ), the maximum amplitude in x direction is observed to occur 

at a distance less than 10% of total length. To take full advantage of drag and thrust 

based propulsion, characteristic length (lo) of flagella should be optimal and that may be 

around 2.6. 

 

Figure 3.4: Flagella projections are taken for L equals to l (i.e. lo 1 ) with flagellar 

beating frequency of 35 Hz at eight different time intervals 
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Figure 3.5: Flagella projections are taken for L equals to 3l (i.e. lo 3 ) with flagellar 

beating frequency of 35 Hz at eight different time intervals 

 

Figure 3.6: Flagella projections are taken for L equals to 5l (i.e. lo 5 ) with flagellar 

beating frequency of 35 Hz at eight different time intervals 
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Figure 3.7: Flagella projections are taken for L equals to 7l (i.e. lo 7 ) with flagellar 

beating frequency of 35 Hz at eight different time intervals 

 

Figure 3.8: Flagella projections are taken for L equals to 10l, (i.e. lo 10 ) with 

flagellar beating frequency of 35 Hz at eight different time intervals 
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Figure 3.9: Swimming speed variation with characteristic length  lL /  for flagella 

beating frequency  = 25, 35, 45 Hz 
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Figure 3.10: Thrust force ( xF ) variation with characteristic length  lL /   for flagella 

beating frequency  = 25, 35, 45 Hz 
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Figure 3.11: Propulsive efficiency ( ) Vs characteristic length  lL /  for flagella 

beating frequency  = 25, 35, 45 Hz 

Velocity of nanoswimmer which is mathematically modeled in equation (3.31) is 

simulated using parametric values as that used in simulations of mode shapes of 

nanoswimmer. The results of simulations are plotted in Figure 3.9. Figure 3.9 shows 

the variation of swimming speed with respect to characteristic length (lo) for three 

different frequency values varied from 25 Hz to 45 Hz in steps of 10 Hz. From Figure 

3.9, it can be observed that the swimming speed is maximum for  lL /  near 2 and is 

optimal at 45 Hz. 

The mathematical model of thrust force given by equation (3.30) and that for efficiency 

is given by equation (3.34) are also simulated for same parametric values used for 

simulation of mode shapes of the nanoswimmer. The results of simulations are plotted in 

Figure 3.10 and 3.11 respectively for thrust force xF  and efficiency  . Maxima in 

swimming speed also corresponds to maxima in thrust force as is observed from 

Figure 3.10 and from efficiency plots, Figure 3.11. Further it can be observed that the 
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nanoswimmer generates higher thrust and, moves faster and efficiently at higher beating 

frequency values. The maximum swimming speed obtained at 45 Hz is 488 µm/s. 

The maximum efficiency of nanoswimmer is found to occur at  = 45 Hz, lL / 2 and 

has a value of 3.2%. The maxima of both, the swimming speed (Figure 3.9) and 

propulsive efficiency (Figure 3.11) are in the range of lo 2. 

The trend of variation of swimming speed, thrust force and efficiency is similar and is 

observed from Figure 3.9, Figure 3.10 and Figure 3.11, respectively. The values of xV , 

xF ,   increases as lL / , attains a maxima and then asymptotically reaches zero as 

lL / . It is also observed from the plots that maxima of the nanoswimmer velocity 

xV  occurs at beating frequency 45 Hz. For other frequencies, the shift in peak of xV  is 

significantly visible. For xF  and  , the highest value occurs at 45 Hz. 

The resistive force theory has been applied to planar bending waves upto this point of 

investigation, but, helical wave propulsion has many advantages when fabrication and 

development of nanoswimmers is to be done artificially. In the planar bending wave 

model, elements of the flagella undergo opposite strains extremely often and hence it may 

be tough to create such a fiber on nanoscale. Nano springs made of carbon nanotubes are 

already existent [35] and hence the helical model may be the most easily artificially 

reproducible. In the planar bending waves, energy has to be generated locally for 

sustaining the same amplitude throughout the length of the tail which may be extremely 

tough for an artificial fiber. Therefore an investigation on helical wave propulsion is also 

carried out on similar lines as was done in the section for planar wave propulsion. 

Interestingly, despite its advantages mentioned above, such an analysis is not available in 

literature. The modeling and analysis was first reported by us in [36]. 

In the next section, mathematical modeling and analysis is carried out for helical wave 

propulsion with flagella of uniform diameter using RFT. 

3.4 HELICAL WAVE PROPULSION (HWP) THROUGH A 

UNIFORM DIAMETER NANOSWIMMER (UDN) 

In the previous section, mathematical modeling, simulation and analysis is performed for 

a nanoswimmer with flagella of uniform diameter, propelling itself by generating planar 
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wave. Performance of the nanoswimmer was evaluated in terms of forward velocity xV  

and propulsive efficiency   using RFT. 

In this section, mathematical model for UDN propelling itself by generating HWP has 

been done. The modeling has not been reported in earlier in literature and was first 

carried out by us with the boundary conditions given in section 3.4.2 and published in 

[36]. The developed mathematical model is simulated for performance indexes of 

nanoswimmer, namely, forward velocity zV  and propulsive efficiency  . 

3.4.1 Modeling HWP in UDN 

Schematic of nanoswimmer performing helical wave motion through its flagella is 

shown in Figure 3.12. The coordinate system considered is also illustrated in Figure 3.12. 

The flagellar filament is taken with one end constrained to lie at the origin O and the 

other end is considered free. Initial unstressed shape of nanoswimmer is shown as a 

straight rod in Figure 3.12(a).   denotes the angle made by the flagellum with the  

z -axis or axis of rotation. The base of the flagellum rotates along the z -axis, making the 

filament sweep out a cone of rotation along z -axis. Actuator inside the head is assumed 

to cause elastic deformation of the flagellum and take the shape of a helix with both pitch 

and amplitude varying along the z direction as shown in Figure 3.12(b). The position 

vector of any point on the flagellum with respect to -axis is considered as jyixr ˆˆ 


. 

The head of the nanoswimmer is taken as a sphere lying along the negative z -axis. The 

coordinate system along with the flagellum rotates with positive z -axis as axis of 

rotation at an angular velocity   relative to a frame of reference situated on the head. 

  

(a) (b) 

Figure 3.12: Schematic of the nanoswimmer showing (a) initial non-deflected shape 

of the filament and (b) steady state deflected shape of the filament 

At steady state, transverse velocity of flagellum (i.e. velocity component 

perpendicular to flagellum centerline) relative to the fluid is  
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 jxωiyωrkv ˆ ˆ ˆ 


  (3.35) 

where,   is angular velocity of flagellum with respect to head of nanoswimmer and 

î , ĵ , k̂  are the unit vectors in x , y and z -direction, respectively. 

The flagellum is both translating with respect to the fluid as well as rotating about its 

own centroidal axis. The rotation about centroidal axis causes a viscous torque 

tending to twist the flagellum about its own cross section. This torque ( v ) is order of 

)4( 2 rbO  [30] which is quite less for a flagellum with small diameter (in 

comparision to its length) and therefore the twist effect due to torque v  is neglected 

for estimating the shape. 

For nanoswimmer, inertia force is negligible and steady state shape of flagellum is 

determined by a balance of elastic and viscous forces acting over the flagellum. The elastic 

bending force on an element of length ds for helical wave propulsion, EdF , is given by 

replacing y with r


 and x with z in equation (3.1) and is obtained as equation (3.36) 

 ds
z

r
EIdFE 



















4

4
 (3.36) 

where, E is the elasticity of the material of flagella, I is the area moment of inertia and 

r


is the position vector of the small element ds on flagellum. 

The viscous forces ( VdF ) on an element ds are well approximated by the resistive-force 

coefficients [30] and is given as 

 dsvCdF nV 


 (3.37) 

where, nC  is the normal resistive force coefficient detailed subsequently and v


 is the 

velocity component perpendicular to flagellum centerline. 

At steady state of motion, elastic bending force EdF  (equation 3.36) and resistive force 

VdF  (equation 3.37) balance each other on the element ds. Equating elastic and viscous 

forces on a small element ds of the flagellum gives 

 
















vC

z

r
EI n




4

4

 (3.38) 
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Substituting for jyixr ˆˆ 


 and transverse velocity  v


of flagellum from 

equation (3.35), in equation (3.38), we obtain 

  jxiyCj
z

y
i

z

x
EI n

ˆ ˆ ˆˆ
4

4

4

4

 





















 (3.39) 

Equating î components on LHS and RHS in equation (3.39), we get 

 
4

4
4

z

x
ly




  (3.40) 

Similarly, equating ĵ components on LHS and RHS in equation (3.39), we get 

 
4

4
4

z

y
lx




  (3.41) 

where,
4

1













nC

EI
l ; l, is the scale length associated with elastic forces and drag on the 

flagellum and is same as given by equation (3.8) for PWP in section 3.3.1. 

Further, substituting the value of y from equation (3.40) in equation (3.41), we get 

 























4

4
4

4

4
4

z

x
l

z
lx  (3.42) 

Solving we get x-z wave form equation 

 
8

8
8

z

x
lx




  (3.43) 

The characteristic equation (3.43) is written as: 

 0
1
8

8 
l

m  (3.44) 

where 
8

8
8

dz

xd
m  ; is the eighth order space derivative of transverse displacement of the 

flagellum with respect to z. 

The solution of equation (3.44) is a generalization of Machin's solution [28] and is given as  

 l

zim

i
ieAzx 



8

1

)(  (3.45) 
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Substituting equation (3.45) back in equation (3.40) gives y-z wave form of flagellum 

   l

zim

i
ii emAzy 



8

1

4
)(  (3.46) 

where eight constants Ai (i = 1 to 8) in equations (3.45) and (3.46) are obtained using 

boundary conditions which are presented in next section and m1 to m8 are the eight roots 

of   8/1
1 . Using the boundary conditions, the mathematical models for forward velocity 

zV , angular velocity  , thrust force zF , torque ( zz LM  and ; components of torque 

generated due to circumferential force acting on the flagellum element) and propulsive 

efficiency   are developed in the next section. 

3.4.2 Modeling Performance Indexes in Helical Wave Propelled UDN 

For the UDN with the basal end of the tail attached at the axis of rotation and making an 

angle   to the axis of rotation (Refer Figure 3.12 (a) and Figure 3.12 (b)), the boundary 

conditions considered are given as 

 0)(,)(
00


 zz
zyzx  (3.47a) 

which means displacement positions x at 0z and y at 0z is zero. 

 tan
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zz

x
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zz

y
 (3.47b) 

which means slope at the base along x and y directions are tan θ and zero, respectively. 
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which means curvature at the distal end is zero. 
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Lz
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 (3.47d) 

which means shear force at the distal end is also zero. 

The eight constants iA  in equation (3.45) and equation (3.46), are calculated by 

substituting the above boundary conditions, i.e., equation (3.47), four for x direction and 

four for y direction, in equations (3.45) and (3.46). The eight constants iA  (i = 1 to 8) 

determine the shape of the wave in the flagellum. 
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Substituting the boundary condition from equations (3.47a) in equation (3.45) and (3.46) 

we get  

 0
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iA  (3.48a) 
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Similarly substituting the second boundary condition from equations (3.47b) in equation 

(3.45) and (3.46) we get 
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Similarly substituting the third boundary condition from equations (3.47c) in equation 

(3.45) and (3.46) we get 
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Similarly substituting the fourth boundary condition from equations (3.48d) in equation 

(3.45) and (3.46) we get 

  


8

1

3 0 
i

l

L
im

ii emA  (3.48g) 

  


8

1

7 0 
i

l

L
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The equations (3.48a) to (3.48h) are combined and rewritten in the form of a matrix as 

 ][]][[ ZAM   (3.49) 
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where,  ollL  i.e.  /  is the characteristic length and is same as given in equation (3.15). 

Equation (3.49) is used to obtain coefficient matrix ][A  and is given as 

 ][][][ 1 ZMA   (3.50) 

where 1][ M  is the inverse of matrix ][M . By solving equation (3.49), we obtained eight 

constants (i.e. A1 to A8). A MATLAB code was written to calculate inverse of the matrix 

][M . Using these eight constants, steady state shape of wave in flagellum is obtained. The 

steady state shapes obtained are general curves in space and are treated as helixes of 

variable amplitude and pitch. To evaluate instantaneous pitch angle, first we determine the 

projection of the helix on a plane. The projection of a vector (which is a small curved 

element of flagellum in our case) on a plane in 3D-space is found by the projection of the 

vector on the normal to plane and subtract this projection from the original vector [37]. 

From the obtained projections, the instantaneous amplitude and pitch angle of the curved 

flagellum element are obtained. Consider a general curve sd


 as a small element of helix in 

3D-space, having instantaneous amplitude )(z  and pitch angle )(z . 
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The position vector of a small element sd


 of the flagellum with respect to z -axis is 

considered as jyixr ˆˆ 


. The projection  psd


 of a vector sd


on a plane containing 

normal vector ( n̂ ) and is given by  

  nnsdsdsd p ˆ ˆ .


  (3.51) 

where kdzjdyidxsd ˆˆˆ 


 is a curve in space and 
22

ˆˆ
ˆ

yx

jyix
n




  is the unit normal 

vector at a given - location. 

Substituting the sd


and n̂  in equation (3.51), we get
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Solving equation (3.52), we get 
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Simplifying and rearranging x, y and z components in equation (3.53), we get 
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 (3.54) 

where 22 yxr 


is the amplitude of the vector r


. 

The vector projection psd


 is approximately a straight line in the projected plane 

therefore the instantaneous pitch angle of the flagellum element is written as 
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Simplyfing equation (3.55), we obtain 
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r

xydxdyxxydydxy

z
ˆ

)(tan

4

2222


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Further simplifying equation (3.56), we get 
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22

)(tan

4

22222222




 (3.57) 

Separating 2dx , 2dy  and dxdy  terms in equation (3.57) and rearranging the terms 
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Taking  22 yx   common and using 22 yxr 


 in equation (3.58), we get 
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Simplifying equation (3.59), gives  
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From equation (3.60), the pitch angle )(z  in terms of vector amplitude r


 and slopes 

along x and y direction is defined as 

 


























dz

dy
x

dz

dx
y

r
z 

1
)(tan  (3.61) 

The amplitude )(z  of the flagellum element is given by 

 
22)( yxrz 


  (3.62) 

For an element of the flagellum sd


 at a distance of z from the base, the pitch angle 

)(z  and the amplitude )(z  are evaluated using equations (3.61) and (3.62). The 

obtained instantaneous amplitude and pitch angle of the curved flagellum element are 

used to derive the propulsive dynamics of any arbitrary shape in space, applying 

equations (3.67) and (3.68). 
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Referring to Figure 3.12, Figure 3.13(a) is drawn to elaborately show the various forces 

and their directions along with velocity components acting on the element ds. 

Figure 3.13(b) shows magnified view of element ds  with various forces. 

  

(a) (b) 

Figure 3.13: (a) Flagellum element ds , centerline making an angle (  ) with z-axis 

 (b) Forces acting on a flagellum element ds 

The forces acting in normal (n) and longitudinal (l) directions are proportional to the 

velocity of the element in the corresponding directions and the viscosity of the medium. 

Accordingly, if the normal and longitudinal component of velocity of flagellum element 

ds  are nV  and lV  respectively, the normal  ndF  and longitudinal  ldF viscous forces 

acting on element ds are:  

 dsVCdF nnn   (3.63) 

 dsVCdF lll   (3.64) 

where nC , and lC , are the resistive coefficients.  

The velocity components of the element ds in n and l direction are obtained by taking 

components of z and θ velocity components (i.e. zV  and V ) along normal and 

longitudinal directions and are given as  

 )cossin(  VVV zn   (3.65) 

 )sincos(  VVV zl   (3.66) 

where, zV  and V  are the swimming velocity in the negative z and θ directions, 

respectively, sinzV  and  cosV  are velocity components in n-direction and coszV  

and  sinV  are velocity components in l-direction [refer Figure 3.13 (a)] and the 
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flagellum rotates counter-clockwise when viewed from positive z axis. Substituting the 

normal velocity nV  and longitudinal velocity lV  from equations (3.65) and (3.66)  

respectively, in equations (3.63) and (3.64), the forces acting on element ds in normal (n) 

and longitudinal (l) directions with respect to flagellum centerline are given as 

 dsVVCdF znn )cossin(    (3.67) 

 dsVVCdF zll )sincos(    (3.68) 

The rotation gives rise to a circumferential velocity of flagellum element 

    rV


, wherein   is the angular velocity of the head with respect to the 

ground reference frame xyz. nC  is normal drag coefficient and lC  is tangential drag 

coefficient and are given as in equation (3.18) and equation (3.19). The two drag 

coefficients are re-written for sake of ready reference and continuity.  

 )(
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L
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where,   is the viscosity of the surrounding medium, L is the total length of the 

flagellum, and b is its radius of cross section.   is the modification factor suggested by 

Johnson and Brockaw [16] for HWP whose value is 1.35. 

The propulsive forces on the flagellum element ds in the negative z direction  zdF  and 

positive   direction  dF  [refer Figure 3.13 (b)] are determined by resolving 

components of normal  ndF  and longitudinal forces  ldF  along z and  -directions, 

respectively. The component of ndF  in z-direction is sinndF  and in  -direction is 

cosndF . Similarly the component of ldF  in z-direction is cosldF  and in  -direction is 

sinldF . The vectorially summing these force components in z  and  -directions, we get 

 )cossin(  lnz dFdFdF   (3.71) 

 
)cossin(  nl dFdFdF 

 (3.72) 
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Substituting normal and longitudianl force components from equations (3.67) and (3.68), 

in equation (3.71), the net thrust force  zdF  on the flagellum element is obtained 

  dsVVCVVCdF zlznz   cos)cossin(sin)cossin(   (3.73) 

Similarly substituting normal and longitudianl force components from equations (3.67) 

and (3.68), in equation (3.72), the net circumferential force  dF  on the flagellum 

element is obtained 

  dsVVCVVCdF znzl   cos)cossin(sin)sincos(   (3.74) 

Further, the length of element ds is given by  

   cos.cos1
22 dzdxdyds    (3.75) 

For small amplitude gradients 
dx

dy
, can be neglected and equation (3.75) is reduced to 

 dzds sec  (3.76) 

Substituting dzds sec  (small amplitude assumption) from equation (3.76) in 

equations (3.73), the net thrust force  zdF  is given by 

  dzVVCVVCdF zlznz )cossin(tan)cossin(     (3.77) 

Similarly, substituting dzds sec  from equation (3.76) in equations (3.74), the net 

circumferential force dF  is given by 

  dzVVCVVCdF znzl )cossin(tan)sincos(     (3.78) 

The net circumferential force on the flagellum element causing torque about the axis of 

rotation has two components  zz dLdM  and  i.e. . The first of these arise due to rotation 

of the element about the axis of rotation i.e. z  axis  zdM and is given as  

 dFrdM z 


 (3.79) 

Substituting circumferential force from equations (3.78) in equation (3.79), we obtain 

  dzVVCVVCrdM znzlz )cossin(tan)sincos(     (3.80) 

The second torque component  zdL  is a result of rotation of the element about its own 

centerline and is given by [30] 
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   dzbdLz  cos4 2   (3.81) 

The drag force on a spherical head of radius hr  moving in a medium with viscosity μ is 

given as [31] 

 zhhead Vμ rF 6  (3.82) 

Also the torque experienced by a spherical head of radius hr  rotating in a medium with 

viscosity μ is given as [31] 

  38 hhead rM   (3.83) 

The head spin about its center at an angular velocity   in a direction opposite to that of 

the flagellum. This causes the flagellum to rotate at    with respect to the ground 

reference frame. 

Under steady swimming conditions the velocity zV  in z - direction is constant. The total 

thrust force developed by the flagellum is equal to the drag experienced by the head. The 

total thrust force is obtained by integrating  zdF  over total length of flagellum from 0 to 

L. Equating that with drag force headF  , we get 

 head

L

z FdF 
0

 (3.84) 

Similarly, under steady swimming conditions, the net torque generated by the flagellum 

is equal in magnitude to the torque experienced by the head. The net torque is obtained 

by integrating   zz dLdM  over total length of flagellum from 0 to L and is equated to 

the torque experienced by head as 

   
L

headzz MdLdM
0

 (3.85) 

Substituting the  zdF  from equation (3.77) and headF  from equation (3.82) in equation 

(3.84) and rearranging we get  

   0  6)cossin(tan)cossin(
0

  zh

L

zlzn VrdzVVCVVC     

                                                                                                                                     (3.86) 
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Substituting circumferential velocity of flagellum element     rV


 in equation 

(3.86) and rearranging the zV ,   and   terms separately 
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 (3.87) 

Substituting the  zdL  and  zdM  from equations (3.80) and (3.81), respectively and 

headM  from equation (3.83), in equation (3.85), we get 
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 (3.88) 

With substitution of circumferential velocity of flagellum element     rV


 in 

equation (3.88) and separating zV  ,   and   terms, we get 
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 (3.89) 

Integrating equations (3.87) and (3.89) along the length of the flagellum and simplifying 

the resulting  simultaneous equations, we get 

       1154   6 ICCICCrICICV lnlnhnlz    (3.90) 
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 (3.91) 

where the integrals I1 to I5 in equations (3.90) and (3.91) are defined as 
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
L

dzI
0

5 tansin   

The equations (3.90) and (3.91) are rewritten in form of matrix as 
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Equation (3.92) is the mathematical model for performance index forward velocity 

zV  and angular velocity   for helical wave propelled UDN. For obtaining steady 

state shape of the flagellum, the initial shape is predicted assuming head velocity   

zero. Since the steady state shape is a function of,  , the updated value is substituted 

back into the shape calculation model i.e. equations (3.45) and (3.46), iteratively to 

give a modified shape and consequently modified values of propulsion parameters. 

The iterations are carried out till a constant value of   and thus the steady shape is 

obtained. The values of zV  and  , obtained by solving equation (3.92), are used to 

calculate the efficiency of the nanoswimmer. 

The efficiency ( ) of the nanoswimmer is calculated as the ratio of useful power 

developed for forward motion along z  axis to total power needed for spinning the 

flagellum and head. Useful power developed is obtained by integrating the product of 

force  zdF  and velocity zV over flagellum length from 0 to L. Similarly the total 

power required to spin the flagellum and head is the sum of power required to 

overcome the rotational resistance of flagellum and head. 

 
  


  headflagellum

zz

MM

VF


  (3.93) 

Equations (3.90), (3.91) and (3.93) are simulated in next section to investigate the 

performance of a nanoswimmer propelled by helical waves. The results obtained after 

simulations are analyzed and discussed in the following section. 
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3.4.3 Simulation, Results and Discussion of Performance of Helical Wave 

Propelled UDN 

The simulations of the mathematical model developed for displacement shapes in equation 

(3.45) and (3.46), and thrust force  zF , forward velocity  zV  and efficiency    in 

equations (3.77), (3.92) and (3.93) in previous section are carried out using MATLAB


. The 

MATLAB program is given in Appendix-III. The values of parameters for simulation are 

chosen as actual values in eukaryotic microorganism [34] and spermatozoa [3], both the 

eukaryotic microorganism [34] and spermatozoa performs helical wave based propulsion 

and therefore are appropriate choice for validation of model developed in previous section. 

For eukaryotic microorganism and spermatozoa, the stiffness of flagellum has been 

estimated to be in the range of 10
−24

 Nm
2
 [32] to 10

−18
 Nm

2
 [33]. Rigidity in the range 

mentioned for flagellum warrants a study of the deflection of filaments that are subjected to 

loading due to viscous drag. For microorganism with spherical heads, the effective head 

diameter varies from 0.5 µm to 6 µm. The parametric values considered for simulations are 

summarized in Table 3.2. 

Table 3.2: Parametric values for simulation (HWP) 

S.No. Parameter 
Value 

(Eukaryotic microorganism) [34] 

1 Filament stiffness (EI) 10
-22 

 Nm
2
 

2 
Surrounding medium (water) 

viscosity    
0.001 Pa.s 

3 Length of filament (L) 10 µm 

4 Cross section radius of filament (b) 0.2 µm 

5 Radius of head ( hr ) 0.5 µm 

The range is so chosen to include the values of parameters corresponding to Eukaryotic 

microorganisms because Eukaryotic microorganisms propels themselves through HWP. 

A flagellum of length L = 10 µm and a circular cross section with radius 0.2 µm is 

considered. The fluid through which the nanoswimmer is swimming is assumed to be 

water with viscosity 1 mPa-s. From observed values of rotational frequency in nature 

[3, 34] for helical wave propelled nanoswimmers, the range considered here for 

simulations varies from 100 Hz to 500 Hz. The angle at the base of the flagellum is 



Flagellar Propulsion and Resistive Force Theory 

 

80 

varied from 10 deg to 70 deg in steps of 5 deg. The steady state shape is predicted based 

on the input parameters which in turn estimate performance parameters. The model 

developed here has been validated by deriving performance parameters for planar waves 

and comparing with those given in available literature [29]. 

Using boundary conditions given in equations (3.47), equation (3.45) and (3.46) representing 

the mathematical model for displacement, shapes are obtained whose projection on xy, xz, 

and yz planes are shown in Figure 3.14 through to Figure 3.16, respectively for four different 

characteristic length lo lL /  values i.e. (lo) as 1.5, 2, 5, 10. 

As seen in Figure 3.14, the shapes obtained are left handed helixes with the helical axis 

along positive z -direction. The shapes are obtained from simulating a filament driven 

counter clockwise when viewed from the positive z-direction. For a counterclockwise 

driven left handed helix, the thrust force is along negative z-direction. Reversing the 

direction of rotation changes the handedness of the helix and hence the direction of thrust 

force remains unaltered. 

x/
L

 

 
y/L 

Figure 3.14: Steady state shapes of the filament projected on xy plane for 

different values of characteristic length (L/l) for a rotation frequency 100 Hz and 

θ = 45 deg: (a) L/l=1.5 (solid), (b) L/l=2 (dotted), (c) L/l=5 (dashed) and  

(d) L/l=10 (dot dashed) 
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x/
L

 

 

z/L 

Figure 3.15: Steady state shapes of the filament projected on xz plane for different 

values of characteristic length (L/l) for a rotation frequency 100 Hz and θ = 45 deg: 

(a) L/l=1.5(solid), (b) L/l=2 (dotted), (c) L/l=5 (dashed), and (d) L/l=10 (dot dashed) 

y/
L

 

 

z/L 

Figure 3.16: Steady state shapes of the filament projected on yz plane for different 

values of characteristic length (L/l) for a rotation frequency 100 Hz and θ = 45 deg: 

(a) L/l=1.5(solid), (b) L/l=2 (dotted), (c) L/l=5 (dashed), and (d) L/l=10 (dot dashed) 
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The steady state shapes plotted in Figure 3.14 through to Figure 3.16 show similarity to 

those obtained by Powers [30] for flagellar bundling. The results shown in Figure 3.14 to 

3.16 are for rotation frequency ( Hz 100 ) and pitch angle ( 45 deg). 

Figure 3.15 shows the projections of steady state shapes of flagellum on xz plane for four 

different characteristic lengths. The x-axis corresponds to the rotating amplitude given in 

dimensionless form i.e. (x/L). The y-axis gives the projection of flagellum on yz plane 

divided by flagellum length i.e. (z/L). As the values of characteristic length (L/l) 

increases from 1.5 to 10, the flagellum becomes more and more flexible. It is observed 

from Figure 3.15, for values of characteristic length L/l = 10, the maximum amplitude in 

x-direction is observed to occur at a distance less than %10  of the total length. Thus if 

L/l 1   the flagellum behaves very sloppy and bending occurs near proximal end. Figure 

3.16 shows the projections of steady state shapes of flagellum on yz plane for four 

different characteristic lengths at same values of rotational frequency and pitch angle i.e. 

100 Hz and 45 deg, respectively. 
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Figure 3.17: Variation of swimming speed with characteristic length (L/l) for 

different driving frequencies 
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The simulated results for swimming velocity (Vz) for variations in L/l are plotted in 

Figure 3.17 for three frequency values i.e. 100 Hz, 300 Hz and 500 Hz. The x-axis 

corresponds to the characteristic length i.e. L/l. The y-axis gives the swimming speed 

(Vz) of flagellated nanoswimmer. As seen in Figure 3.17, the swimming speed is 

maximum for L/l =2.7. For L/l near 2.7, the amplitudes peak at the distal end. This 

can be inferred by comparing plots in Figure 3.15, hence allowing the entire length of 

the flagellum to contribute to the thrust force. At values of L/l 2.7    the maximum 

amplitude occurs near the proximal end i.e. 0  z  and in the remaining portion of the 

flagellum amplitudes quickly dies out,  thus causing most of the part of the flagellum 

to contribute mainly to the drag without adding much thrust. The thrust force has a 

linear relation with the swimming speed (refer equation 3.59). For helical waves, the 

thrust force peak was obtained at lL 2.7   , whereas for planar waves, the maxima of 

thrust force was obtained at lL 2   (refer section 3.3.3, Figure 3.10) which 

corroborates with results available in literature [29]. The simulation results of varying 

head radius were carried out and the effect of head radius on swimming speed is 

illustrated in Figure 3.18. The x-axis corresponds to the head radius given in 

dimensionless form i.e. rh/L. The y-axis gives the swimming speed of nanoswimmer. 
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Figure 3.18: Plot showing swimming speed variation with respect to rh/L for 

different driving frequencies 
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As shown in Figure 3.18, for zero radius of the head, no waves propagate along the 

tail, thus causing zero swimming velocity which is also concluded by Behkam and 

Sitti [7]. In the range of simulation for rh/L varying from 0 to 0.5, swimming speed 

increases nonlinearly and reaches a maximum and then starts decreasing. The trend of 

swimming speed over head radius remains similar for three different frequency 

values considered i.e. 100 Hz, 300 Hz and 500 Hz. For values of head radius  hr  

above optimal value, the translational drag increases linearly with hr ; therefore, 

helical wave propulsion becomes less efficient with low speeds i.e. 100 Hz for larger 

head sizes. The maximum swimming speed obtained is 52 μm/sec at higher rotational 

frequency i.e. 500 Hz as compared with 488 μm/sec for planar waves. This is mainly 

due to the fact that fraction of the power developed by the actuator in generating 

helical waves is consumed in rotating the head against viscous drag. 

 

Figure 3.19: Plot of efficiency with respect to L/l and θ at 100 Hz showing optimal 

band of both values 

In Figure 3.19, simulation results for efficiency    are plotted with respect to 

characteristic length L/l of the flagellum and angle    at the basal end of the flagellum 

as parameter from 0 to 70 deg. In the 3-dimension plot in Figure 3.19, it is seen that a 

region of high efficiency exists for deg55deg45  . The maximum efficiency is 

found to occur at  45 deg, L/l 2.2  and has value of 0.0072%. This efficiency peak 

also corresponds to peak in thrust force. This may be attributed to the large amplitudes 

developed near the proximal end of the tail at values of  45 deg, which offsets the 
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effects of decreasing amplitude along the length. Larger amplitude waves propagating 

along the tail have two counteracting effects on the net thrust developed: (1) initial 

increase in   causes an increase in amplitude therefore leading to higher translational 

velocities for a given value of   and a corresponding increase in thrust force (refer 

Figure 3.20); (2) moving beyond the optimal range, however, the increased moment 

acting on the head dominates, which increases head’s angular velocity. The increase in 

angular velocity of head reduces the net absolute angular velocity of the flagellum and 

consequently the thrust force generated. 
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Figure 3.20: Variation of thrust force with θ for different values of driving 

frequency 

In Figure 3.20, the effect of rotation frequency on the optimal basal angle can be 

observed. As the frequency of rotation increases so do the optimal angles ranging from 

 45 deg at 300 Hz to almost 50 deg at 700 Hz. This is explained by the viscous 

forces becoming more dominant as   increases therefore requiring an increase in the 

basal angle   to maintain the amplitude and thrust force. 

In the present section, the mathematical model for the forces, velocity, and efficiency, 

was developed considering a case of the helical wave propelled UDN. The rotation of the 

helical flagella about the longitudinal axis, results in a net forward thrust, in viscous 
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domains, which propels the nanoswimmer forward. We compare propulsion of an UDN 

using a PWP and HWP modes in the next section. 

In the quest to see the effect of flagella elasticity on swimming velocity and efficiency 

of motion of nanoswimmer, a dimensionless term, characteristic length  ol  i.e.  is 

defined (refer equation 3.15). Characteristic length is a basic parameter to evaluate the 

performance of a nanoswimmer that accounts for the modulus of elasticity of flagellum 

material, area moment of inertia of flagellum cross-section, viscosity of the fluid 

medium and actuation frequency of flagellum. In practical situations, the value of ol  is 

constrained by the modulus of elasticity of available bio-compatible materials; the 

width of the targeted area; the viscosity of the fluid medium, and the frequency of 

actuation. For smaller values of characteristics length  1ol  the flagellum behaves 

like a rigid rod while for higher values of characteristic length  10 ol  the flagellum 

behaves very sloppy. Both these situations results in no net forward motion. The 

characteristics length for maximum velocity has been found out to be 1.7 for PWP 

(refer Figure 3.9) whereas it is 2.7 for HWP (refer Figure 3.17). The characteristics 

length for maximum efficiency has been found out to be 2 for PWP (refer Figure 3.11) 

whereas 2.2 for HWP (refer Figure 3.19). 

3.5 CONCLUSIONS 

Resistive force theory has been used from very early days till today and offers a very 

simple way of computing forces and the velocity. In the present chapter, we used RFT to 

develop a mathematical model for planar and helical wave propulsions. Propulsion 

characteristics of passive elastic flagellum propagating helical waves have been studied 

and the same compared to the case of propulsion using elastic flagellum propagating 

planar waves. An ab-initio approach is used where the steady state shape of the flagellum 

is predicted based on elastohydrodynamic equations using an iterative algorithm. A 

generalized propulsion model was developed to predict the propulsion characteristics of 

any shape. The model developed to study propulsion characteristics are given in 

equation (3.31) and equation (3.32) for PWP and in equation (3.84) and equation (3.85) 

for HWP is used to estimate swimming speed, thrust force, and efficiency of the 

nanoswimmer. From the analysis of simulated results it is seen that a planar wave 

propelled UDN performs better in the range of characteristic length lLl 2   7.1   
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whereas a helical wave propelled UDN performs better in the range of lLl 2.7   2.2  . 

Swimmers with longer flagellum lead to an increase in the drag force and hence have a 

detrimental effect on the swimming speed and efficiency. Based on the efficiency and 

velocity parameters, a range of optimal values for head radius, flagellum radius, 

beating/rotating frequency, basal angle have been reported, which provide a starting 

point for designing a nanoswimmer. Studies simulated result on the radius of the head 

prove that helical waves cannot propagate as head size tends to zero. The propulsion via 

helical waves is better than the propulsion via planar waves, because, in the planar wave 

propulsion, elements of the flagellum undergo opposite strains often and energy has to be 

generated locally for sustaining the same amplitude throughout the length of the 

flagellum, whereas the reversible straining is less in case of helical flagellar propulsion 

mechanism. From the fabrication point of view also, mechanisms used to generate rotary 

motions are simpler as compared to that required for planar motions. The geometry, 

dimension and other parameteric values have been taken from [7-8, 28-29] to validate 

the results, and the discrepancy obtained is 5.32% in speed and 6.25% in the efficiency 

of a nanoswimmer propelling through HWP. This may be because the flagellum 

considered here is of uniform diameter unlike tapered as found in nature. 

In the next Chapter, mathematical modeling and simulation results of a tapered 

flagellated nanoswimmer are explored. 
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Chapter 4 

Tapered Flagellated Nanoswimmer 

4.1 INTRODUCTION 

In the previous Chapter, the mathematical modeling and analysis is carried out for 

both planar wave and helical wave propulsion with a uniform diameter flagellated 

nanoswimmer, using RFT. Steady state shapes of flagellum are determined including 

elastohydrodynamics and the developed mathematical model was simulated for 

performance indexes of nanoswimmer namely swimming velocity, thrust force and 

efficiency. Literature [1-11] is available where, the flagellum is considered as 

filament of a constant diameter with a value of few hundreds of nanometer 

propelling an inert spherical head. In almost all models available in literature the 

diameter of the flagellum is considered constant. But in nature, the actual profile of 

flagellum of a nanoswimmer is tapered and the head also is more of an oblate 

spheroid in shape. The debate therefore is to consider taper of flagellum and model 

elastohydrodynamic propulsion accordingly and hence investigate the effect of 

inclusion of the taper flagellum in the evaluation of shape, velocity and efficiency of 

a beating flagellum. 

In this Chapter, the analytical design optimization of a tapered flagellated 

nanoswimmer for better performance has been studied. The chapter deals with the 

modeling and simulation of the planar as well as helical wave propulsion through a 

tapered flagellum and computes its performance indexes of swimming velocity and 

efficiency and are compared for different taper ratios of the flagellum. The output 

performance is measured in terms of velocity of propulsion and the efficiency of the 

nanoswimmer and the results are compared with the uniform diameter case. The 

parametric study highlights the optimum taper ratio of a tapering flagellum that 

generates minimum drag. The performance indexes as explicit functions of elastic 

modulus of the flagellum material and effect of  beat frequency on performance 

indexes is also analyzed. The observations of the study are important conclusions 

towards designing artificial flagellum for nanoswimmers. 
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4.2 SIMULATION OF PLANER WAVE PROPULSION (PWP) 

THROUGH A TAPERED NANOSWIMMER (TN) 

In this section, mathematical modeling for tapered nanoswimmer (TN) propelling 

through planar wave propulsion (PWP) using RFT has been presented. The modeling has 

not been reported in earlier in literature and was first attempted by us and published [12]. 

In this attempt, the boundary conditions used are same as given in section 3.3.2. The 

boundary conditions are kept same so as to compare the two designs of flagellum namely 

constant diameter and tapered diameter. The developed mathematical model is simulated 

for performance indexes of nanoswimmer namely forward velocity xV , and propulsive 

efficiency  . 

4.2.1 Modeling PWP in TN 

Figure 4.1 schematically shows a TN of length L propelled by executing a planar wave 

motion. The TN consists of a flagellum few micro-meters long, which is tapered 

throughout the length, attached to a spherical or an elongated head. Coordinates origin 

is considered to be at head and flagellum joint as shown in Figure 4.1. TN is assumed 

to be surrounded by the fluid (not shown in Figure 4.1) and fluid flow is considered 

unbounded in order to avoid any wall effects. Assessing the tail configuration provides 

the boundary conditions, the drag of a small element ds of the wiggling tail provides a 

net thrust force perpendicular to the direction of actuation, propelling the 

nanoswimmer with velocity Vx in x-direction. The head of the nanoswimmer is taken as 

sphere lying along negative x direction. The base of the flagellum oscillates with 

frequency   in xy plane by an actuating mechanism assumed to be present in the 

swimmer's head. 

 

Figure 4.1: Physical interpretation of tapered flagellum 
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For a nanoswimmer, inertia forces are insignificant [7] as mentioned in section 1.2, 

Chapter 1 and the steady state shape of flagellum is determined by balancing elastic and 

viscous forces acting over the flagellum. Since in TN, radius of the flagellum cross-

section is linearly varying along flagellum length therefore the moment of inertia I  

(which was constant in UDN case) in equation (3.1) is also varying along x and is 

replaced with )(xI . The elastic bending force EdF  is obtained by considering an element 

ds at a distance x from proximal end as an oscillating elastic beam with moment of 

inertia )(xI . Therefore  EdF  is obtained by replacing I  with  )(xI  in equation (3.1) and 

is given as:  
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where, E is the elasticity of the material of flagella, )(xI  is the area moment of inertia 

and y is the transverse displacement at any given position over length of flagellum. 

The viscous forces ( VdF ) is product of drag coefficient acting on element ds and 

elemental velocity in y direction. In TN, normal drag coefficient nC  is not a constant and 

vary along the length of flagellum therefore replacing nC  with  xCn  in equation (3.2), 

the elemental viscous force VdF  on element ds is 

   ds
t

y
xCdF nV



  (4.2) 

where,  xCn  is the normal resistive force coefficient, y is the transverse displacement 

and 
t

y




 is the rate of change of displacement y with respect to time. 

At steady state of motion, elastic bending force EdF  (equation 4.1) and viscous force VdF  

(equation 4.2) balances each other on element ds. Equating elastic and viscous forces on a 

small element ds of the flagellum gives the governing equation of the model as 

 
t

y
xC

x

y
xI

x
E n


























)()(

2

2

2

2

 (4.3) 

where, area moment of inertia )(xI , at any given position over length is obtained by 

replacing b  with )(xb  and given as 
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Equation (4.3) is Euler's beam equation for a beam with varying cross-sectional area. 

Further simplifying equation (4.3), we get 
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where )(xI   and )(xI   are first and second order space derivatives of )(xI . The general 

solution of the equation (4.5) is  

 tiexytxy  )(),(   (4.6) 

where displacement y is a function of displacement in x direction and time t, and  is 

frequency of oscillation of element. The time and displacement derivatives of equation 

(4.6) are obtained as: 
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Inserting space and time derivatives from equations (4.7) through to (4.10)  in equation 

(4.5), the governing equation reduces to 

 0)()('')('')(''')('2)('''')( 
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 xy

E
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In TN, radius of the flagellum cross-section is linearly varying over flagellum length (L) 

from ib  (radius at x = 0) to fb  (radius at x = L) as shown in Figure 4.2. The cross section 

radius )(xb , at any arbitrary section over the flagellum length (with linear taper 

assumption) at a distance x from the proximal end (actuated end) i.e. x = 0, is given as 

  1)(  kxbxb i  (4.12) 
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where, ib  is the flagellum radius at x = 0 and 

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 is the slope of linear taper. 

Substituting )(xb  from equation (4.12) in equation (4.4) 
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where, 
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 , is the area moment of inertia at proximal end.  

 

Figure 4.2: Linearly varying tapered flagellum  

Differentiating )(xI  with respect to x, gives first order space derivative )(xI   as 

 3)1(4)(  kxkIxI o  (4.14) 

Differentiating equation (4.14) once again with respect to x, gives second order space 

derivative )(xI  as 

 22 )1(12)(  kxIkxI o  (4.15) 

Substituting )(xI , )(xI   and )(xI   from equations (4.13), (4.14) and (4.15) respectively 

in equation (4.11) and simplifying, we get 
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Equation (4.16) is the general equation for a linear tapered flagella executing a planar 

motion. Equation (4.16)  is a linear differential equation also commonly known as 

Legendre’s linear equation, whose solution can be found by assuming another variable   

such that 

 )1ln(  kx  (4.17) 
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Differentiating equation (4.17) with respect to x gives 
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Multiplying numerator and denominator of equation (4.18) by dy and rewriting, we get 
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where 
d

d
D   and 

dx
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y   . 

Further, differentiating equation (4.19) with respect to x to get second, third and fourth 

order space derivatives as given 

 yDDkykx )1()1( 22   (4.20) 

 yDDDkykx )2)(1()1( 33   (4.21) 

 yDDDDkykx )3)(2)(1()1( 44   (4.22) 

Substituting y  , y  , and y  from equations (4.20) through to (4.22) in equation 

(4.16), we get characteristic equation 

 0
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The set of parameters, 










n

o

C

IE 
, has length units and is replaced by 4l  in equation (4.23) 

for further simplification. As previously defined in equation (3.8) in section 3.3.1, the 

length parameter ( l ) is also known as scale length 
4

1
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l . Simplifying 

characteristic equation (4.23), we get  
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Dividing equation (4.24) by 4k  and rearranging, we get 

 022
44

234 
lk

i
DDDD  (4.25) 

The general solution of equation (4.3) is given as [13] 

  


4

1

)1(
j

jm

j
ti xkAey   (4.26) 

where, the four coefficients Aj (j = 1 to 4) are calculated by substituting the boundary 

conditions given in equation (4.27), k   is product of the slope of the linear taper ( k ) and 

scale length (l) and mj are the four roots of the auxiliary equation (4.25). 

4.2.2 Modeling Performance Indexes in Planar Wave Propelled TN 

The boundary conditions considered for TN are same as previously defined in equation 

(3.12) in section 3.3.2 for UDN. i.e. the actuation of the flagellum is at the proximal end 

with the flagellum fixed to the head and with a time dependent slope having maxima as 

 maxtan G  at beating frequency of ω. At the distal end, the shear force and the 

bending moment vanishes. Hence for a spherical head attached to cylindrical tapered 

flagellum, the boundary conditions considered are given as  

 Position at proximal end 0
0


x
y  (4.27a) 

 Slope at proximal end ti

x
Gey 

0
 (4.27b) 

 Bending moment at distal end 0
Lx

y  (4.27c) 

 Shear force at distal end 0
Lx

y  (4.27d) 

The four coefficients A1, A2, A3 and A4 are calculated by substituting the boundary 

conditions given in equation (4.27), in equation (4.26). 

Substituting the boundary condition from equations (4.27a) in equation (4.26) we get  

 0
4

1


i

iA  (4.28a) 

Substituting the second boundary condition from equations (4.27b) in equation (4.26) we get 

 GmAk
i

ii 


4

1

 (4.28b) 



Tapered Flagellated Nanoswimmer 

98 

Substituting the third boundary condition from equations (4.27c) in equation (4.26) we get 

    011
4

1

2 
 





i

im
iii LkmmA  (4.28c) 

Similarly substituting the fourth boundary condition from equations (4.27d) in equation 

(4.26) we get 

     0121
4

1

3 
 





i

im
iiii LkmmmA  (4.28d) 

The equations (4.28a) to (4.28d) are combined and rewritten in form of matrix as 

 ][]][[ ZAM   (4.29) 

where 
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Equation (4.28) is used to obtain coefficient matrix ][A  and is given as  

 ][][][ 1 ZMA   (4.30) 

where 1][ M  is the inverse of matrix ][M . A MATLAB code was written (given in 

Appendix-IV) to calculate coefficient matrix. The four coefficients A1, A2, A3 and A4 are 

substituted back in equation (4.26) to obtain the wave form of flagellum in x-y plane. 

Figure 4.3 shows the forces acting in normal and longitudinal directions on the element 

ds of the flagellum due to transverse velocity yV  and forward velocity xV . The element is 

oriented to the x-axis at an angle θ at an instance of time t. The drag force generated 

depends on the components of the velocity in normal and longitudinal directions. The 

resistance of the fluid to the flagellum’s motion is computed for known values of the 
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local coefficient of drag i.e. )(xCn  and )(xCl for the element and its velocity component 

in normal and longitudinal directions. 

Using RFT, the local normal i.e.  xdFn  and longitudinal components i.e.  xdFl  of the 

force on element 'ds' due to forward and transverse displacements of the element are 

vectorial summation of components of forces in x and y direction and are given as  

 dsVVxCxdF xynn )sincos)(()(    (4.31) 

 dsVVxCxdF yxll )sincos)(()(    (4.32) 

where, xV  and yV  are the velocity in x and y- directions, respectively, sinxV  and 

cosyV  are velocity components in n-direction and cosxV  and sinyV  are 

components in l-direction. )(xCn  and )(xCl  are the local normal and longitudinal drag 

coefficients for the cylindrical element and are widely accepted in research community 

as given in [14] and are written below for sake of convenience. With radius b(x) at any x  

distance from origin and in a medium having viscosity µ, )(xCn  and )(xCl  for the 

tapered profile are obtained by replacing b  with )(xb  in equation (3.18) and equation 

(3.19) and are given as 

 

5.0
)(

ln

4
)(









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L
xCn


 (4.33) 

 

5.0
)(
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


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




xb

L
xCl


 (4.34) 

In the uniform diameter case, Cn and Cl are constant throughout the length of the 

flagellum as b is constant. 

The resultant propulsive forces i.e.  xdFx  and transverse force i.e.  xdFy  on the 

flagellum element ds in the x  and y  direction are determined by resolving components 

of normal  xdFn  and longitudinal forces  xdFl  along x  and y -directions, and are 

given as 

  cos)(sin)()( xdFxdFxdF lnx   (4.35) 
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  sin)(cos)()( xdFxdFxdF lny   (4.36) 

Substituting the local normal  xdFn  and longitudinal forces  xdFl  from equations 

(4.31) and (4.32), in equation (4.35) and rearranging xV  and yV  terms separately, gives 

the net forward thrust  xdFx  as 

      dsVxCxCVxCxCxdF ylnxlnx  cossin)()( cos)(sin)()( 22  (4.37) 

Similarly, the net transverse force  xdFy  is obtained by substituting the local normal 

 xdFn  and longitudinal forces  xdFl  from equations (4.31) and (4.32), in equation 

(4.36) and rearranging xV  and yV  terms separately and is given as 

      dsVxCxCVxCxCxdF ylnxlny  sin)(cos)(cossin)()()( 22    (4.38) 

Dividing numerator and denominator of equations (4.37) and (4.38) by 2cos   

    
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  (4.39) 

    
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)(
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  (4.40) 

Using 


22

2
tan1sec

cos

1
  in equation (4.39) and equation (4.40) and solving, we get 

 
    

ds
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
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2
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tan )()( )(tan)(
)(




  (4.41) 

 
    

ds
VxCxCVxCxC

xdF
ylnxln

y




2

2

tan1

 tan)()(tan )()(
)(




  (4.42) 

Length of the small element ds is given by   dxds 2tan1 , where dx  is the 

projection of elemental length ds along x-axis and   is the angle between element ds  
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and x-axis. Substituting for ds  in terms of dx and   in equation (4.41) and equation 

(4.42) and with consideration of low amplitude waves,   is very small  1tan i.e.  , the 

equations (4.41) and (4.42) reduce to  

   dxVxCxCxCVxdF ylnlxx ]tan)()()([)(   (4.43) 

   dxxCVVxCxCxdF nyxlny )](tan)()([)(    (4.44) 

Further, substituting 
dx

dy
tan  and 

dt

dy
Vy   in equation (4.43) and, taking y from 

equation (4.26) and integrating the thrust force over length, we calculate the average 

thrust generated by the flagellum and is given as 

    
L L

lnlxxx dx
dx

dy

dt

dy
xCxCxCVdFF

0 0

])()()([  (4.45) 

Under steady state conditions, the net thrust force xF  generated by flagellum balances 

the drag due to the head by TN.  

From Stokes' equation, drag due to a spherical head of radius rh in a viscous medium of 

viscosity µ is given as 

 xhhead VrF 6  (4.46) 

Equating the net thrust force generated due to wiggling of flagellum from equation (4.45) 

to the drag due to spherical head from equation (4.46) we calculate the forward velocity 

xV  of TN and is given as 

   xh

L

lnlx Vrdx
dx

dy

dt

dy
xCxCxCV 6])()()([

0

   (4.47) 

Rearranging equation (4.47), we obtain forward velocity xV  of the tapered flagellated 

nanoswimmer 
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 (4.48) 

The forward velocity xV  is first performance index to assess TN's performance. The 

propulsive efficiency ( ) is the another index for performance investigation of TN. The 
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efficiency ( ) of a nanoswimmer is defined as the ratio of useful power developed for 

forward motion along the x-axis to the total power needed for wiggling the tail. The 

power utilised in the x and y-directions can be calculated by integrating the terms 

xx VxdF )(  and yy VxdF )( over the flagella length and therefore efficiency ( ) of TN is 

given as 
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00

0

)()(

)(

  (4.49) 

where, µ is the viscosity of the medium, L and b are the length and radius of the 

flagellum, and xV  and Vy represents the forward and transverse movement of element ds 

of the flagellum. 

The developed mathematical model for performance measuring index of TN namely 

velocity (refer equation 4.48), and efficiency (refer equation 4.49) are simulated in the 

next section using MATLAB
®
. 

4.2.3 Simulation, Results and Discussion of Performance of Planar Wave 

Propelled TN 

Numerical simulation of the propulsion model given by equation (4.26) for TN is carried 

out in MATLAB
®
. The MATLAB code is given in Appendix-IV. The tail is discretized in 

100 elements around which the solution converges. A mesh grid is made to discretize the 

total time period also into 100 time steps. From the computed mode shapes of the planar 

wave, partial derivatives with respect to space and time are calculated using the gradient 

function. The mode shapes, velocity and efficiency are first obtained for uniform flagella 

of length 50 µm and cross section radius 200 nm. The fluid through which the TN is 

swimming is assumed to be water with viscosity 0.001 Pa-s. The head radius to flagellar 

length ratio is kept as 0.3 [14]. 

The flexural rigidity is considered in the range of 10
-21 

Nm
2
 [15-16]. To compare the 

uniform diameter (case A) with the tapered geometry the volume of the flagellum is 

kept constant and two new cases are developed for a given ratio of initial and final 

diameter. In the first new case (case B) the length is kept equal to that of the uniform 

diameter flagellum study and in second new case (case C) the initial diameter is kept 
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equal to the diameter of the uniform case. For the given flexural rigidity and diameter 

of uniform flagellum the value of flexural modulus is calculated to be of the order of 

1 MPa. The same modulus value is used for the tapered cases. The three possible 

designs corresponding to case A, case B and case C are tabulated in Table 4.1 

alongside the parameters used in simulation. 

Table 4.1: Parameters for simulation (PWP) 

 

Case A 

Constant 

Diameter 

Case B 

Taper Diameter 
(equal length as in Case A) 

Case C 

Taper Diameter 
(equal initial diameter as in Case A) 

Radius (nm) 200 
Initial 288.23 Initial 200 

Final 96.07 Final 66.66 

Length (µm) 50 50 103.85 

Head radius(µm) 15 15 15 

Viscosity (Pa.s) 0.001 0.001 0.001 

Frequency (Hz) 35 35 35 

Elasticity (MPa) 1 1 1 

A specific case of uniform diameter flagellum is obtained for the input parameters as 

mentioned in second column of Table 4.1. Keeping volume constant, we generated the 

two other cases (B and C). For both the new cases i.e. case B and case C, a taper ratio of 

3:1 considered as an input. The obtained initial and final radius of the tapered flagellum 

for case B and case C is mentioned in first row of the Table 4.1. 

The mode shapes of all three cases are plotted in Figure 4.3. The output velocity and 

efficiency are noted in Table 4.2. The mode shape of case A is similar to those obtained 

by Lauga in [14]. For case B the amplitude is higher than that of case A. Analyzing the 

performance parameters, case B shows both higher velocity and efficiency compared to 

case A (Refer to the velocity and efficiency in column 2 and 3 of Table 4.2), while in 

case C the efficiency falls drastically compared to both cases A and B (Refer column 4 in 

Table 4.2 and compare them with the corresponding values in column 2 and 3 in the 

same table), as the flagellum length is greater and a considerable part of it exhibits no 

oscillations, produces larger drag and almost no thrust. 
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Figure 4.3: Mode shapes of planar wave propulsion in different cases i.e., case A, 

case B and case C. 

The efficiency in case C is significantly low with a value of % 10642.0 2 . The value 

of efficiency obtained for case B is % 1.0  which is also observed in natural 

nanoswimmer like Eukaryotic cells [3, 5]. Case C with lower efficiency is neglected for 

further parametric studies. Cases A and B are analyzed for varying elasticity and 

frequency. The results obtained are given in the next section. 

Table 4.2: Results - Comparison of three cases 

 

Case A 

Constant 

Diameter 

Case B 

Taper Diameter 
(equal length as in Case A) 

Case C 

Taper Diameter 
(equal initial diameter as in Case A) 

Velocity (µm/s) 3.604 9.804 3.427 

Thrust Force (pN) 1.018 2.772 0.969 

Efficiency (10
-2 

%) 3.029 10 0.642 

As projected in Table 4.2 the calculated velocity is in the order of 10µm/s. Actually 

observed velocity in the microorganisms are around 100µm/s or higher [15]. In order to 

match the velocity attained by naturally occurring nanoswimmer, a better design by 

parametric variation is investigated for better performance. 
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Figure 4.4: Velocity over parametric variation of Elasticity 

 

Figure 4.5: Efficiency over parametric variation of Elasticity 



Tapered Flagellated Nanoswimmer 

106 

The explicit formulation of the propulsion model including elastic modulus is 

important for choice of flagellum material. Elasticity of flagella and beating 

frequency are important parameters in nanoswimmer design and were also shown to 

significantly affect performance indexes of uniform diameter nanoswimmer in 

Chapter 3. By choosing appropriate elasticity of material and beating frequency of 

the flagellum we can achieve the velocity attained and observed in nanoswimmers 

existing in nature. 

The elasticity of the parameter is varied from 0.1 MPa to 1 GPa. Keeping geometric 

parameters as stated in Table 4.1, Figure 4.4 illustrates the variation velocity verses 

variation elasticity over a range from 0.1 MPa to 1 GPa. A family of plots of velocity 

for increasing frequency from 25 Hz to 45 Hz in steps of 10 Hz is plotted. As seen 

from the plotted curves in Figure 4.4, a consistent increase in velocity is observed as 

frequency increases and this is true for both cases of uniform diameter and tapered 

diameter. For uniform diameter, the model of velocity used for simulation is given in 

equation (3.33) in section 3.3.2, chapter 3 and tapered diameter flagellum design the 

model used for simulation is given in equation (4.48). For the uniform diameter case 

(case A) a maximum velocity of 103 µm/s is observed at a frequency of 45 Hz when 

elasticity is around 240 MPa, while the maxima of velocity for the taper diameter 

case (case B) is 181 µm/s, which is achieved at a lower elasticity of around 125 MPa 

and at the same beating frequency of 45 Hz. 

For both case A and B, Figure 4.5 illustrates the variation of efficiency over elasticity 

for three different frequencies. The tapered diameter case (case B) gives a higher 

maximum efficiency of 4.15% for the material with lower elasticity of 60 MPa at a 

lower frequency of 25 Hz, while the maximum efficiency of uniform diameter case 

(case A) is only 2.04% which is achieved at a elasticity of around 88.1 MPa for a 

beating frequency of 25 Hz. 

Figure 4.6 and Figure 4.7 shows the variation of the ratio of velocity i.e. (Vtaper / 

Vuniform) and efficiency ratio i.e. (ηtaper / ηuniform) over wide range of elasticity for a 

tapered diameter nanoswimmer with that of uniform diameter nanoswimmer.  It can be 

observed from Figure 4.6 that, for a given frequency, the velocity ratio for the taper to 

uniform case go as high as 3.2. Similarly, from Figure 4.7, it is observed that efficiency 

ratio for the taper to uniform diameter nanoswimmer go as high as 3.75. 
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Figure 4.6: Velocity ratio over parametric variation of Elasticity 

 

Figure 4.7: Efficiency ratio over parametric variation of Elasticity 
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In microorganisms, the beating frequency is observed to be 35 Hz [3]. For 35 Hz beating 

frequency, from Figure 4.6, it is observed that the value of the velocity for the tapered 

case is almost three times the velocity for corresponding uniform case. On the basis of 

improved velocity (refer Figure 4.6) and efficiency (refer Figure 4.7), with a given 

amount (mass) of flagellum material, the taper flagellum is a better approximation of the 

observation made in actual microorganisms. 

Further, the parametric variation of the slope k is carried on to check variation of the 

mode shape of the flagellum and later influence on velocity and efficiency. The 

findings are highlighted in Figure 4.8. Taking the optimum value (refer Figure 4.8, 

i.e. the value corresponding to bi : bf  = 18) we set the parameters used for the study 

as given in Table 4.3. 

Table 4.3: Simulation Parameters 

 
Case A 

Constant Diameter 

Case B 

Taper Diameter 

(equal length as in Case A) 

Radius (nm) 200 
Initial 336.68 

Final 18.70 

Length (µm) 50 50 

Viscosity (Pa.s) 0.001 0.001 

Frequency (Hz) 35 35 

Elasticity (MPa) 200 200 

 

The taper ratio of the tail (k) and its effect on the velocity and efficiency is illustrated 

in Figure 4.8 as the variation of the ratio of performance in the taper case to the 

uniform constant diameter case. 

Keeping physical parameters as stated in Table 4.3, Figure 4.8 illustrates the effects 

of variation of taper ratio (bi/bf) over a range from 2 to 50. The velocity increases as 

the taper ratio increases but efficiency reaches a maxima when bi : bf  is around 18. 
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taper ratio (bi : bf) 

Figure 4.8: Performance ratio over parametric variation of taper ratio 

 

Head radius to tail length (rh : L) 

Figure 4.9: Performance ratio over parametric variation of head radius to tail 

length 
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Considering a spherical head, the variation of the head radius to flagellum length ratio  

(rh:L) also has effect on performance of nanoswimmer. The velocity ratio and the 

efficiency ratio between the tapered case and constant diameter case over variation of 

rh:L are illustrated in Figure 4.9. Figure 4.9 shows that, for a spherical head, as head size 

increases the drag increases leading to decrease in the velocity. Moreover the dissipation 

of the power due to transverse motion is also lowered at low axial velocity. This in turn 

increases the efficiency of the swimmer with increase in head size. 

The propulsion characteristics of a tapered flagellum propagating planar waves have 

been studied and the same is compared to the case of uniform flagellum. Mode shapes of 

a tapered flagellum are predicted based on elastohydrodynamic equations. Keeping the 

flagellum volume constant, two new cases are developed for a given ratio of initial and 

final diameter. Results obtained from simulations have plotted in Figure 4.4 through 

Figure 4.9. From the Figure 4.4 and Figure 4.5, it is observed that the linearly tapered 

flagellum planar model (case B) showed improved performance higher velocity and 

efficiency compared to the uniform flagellum model. For a given frequency, the velocity 

and efficiency ratio for the taper to uniform case can go as high as 3.2 and 3.4 

respectively, as seen from Figure 4.6 and Figure 4.7. The maximum efficiency of the 

taper case is almost three times the maximum efficiency of the uniform diameter case at 

35 Hz beating frequency.  

Based on the simulation results reported above propulsion through a taper flagellum is 

more efficient and faster than the uniform diameter flagellum attached to same size 

spherical head. The optimum taper ratio (bi : bf ) is around 18 for a TN. The rh : L is the 

deciding factor which has to trade off between the velocity and the efficiency. For a 

given flagellum length, any increase in head size leads to increase in drag which in turn 

decreases the velocity.  

4.3 SIMULATION OF HELICAL WAVE PROPULSION (HWP) 

THROUGH A TAPERED NANOSWIMMER (TN) 

In the previous section, performance indexes, i.e., forward velocity )( xV  and 

propulsive efficiency )(  for a tapered nanoswimmer propelling itself through planar 

wave propulsion are obtained. It has been shown that the planar wave propulsion 

through a tapered flagella facilitates higher efficiency and velocity as compared to 
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the uniform diameter case. In this section, mathematical modeling and simulation is 

carried out for a TN propelling through HWP. The optimal size and shape parameters 

are found for two cases - the fastest swimmer and the most efficient swimmer. The 

performance parameters are computed for helical wave propagation and compared 

with planar wave propagation for TN [12]. The comparison between PWP and HWP 

based on forward velocity )( xV  and propulsive efficiency )(  is given in section 4.3.3 

and published in [17].  

The shape and the flexural rigidity of the flagella greatly affect the motility of the 

locomotor efficiency [20-25]. In tapered flagella, the flexural rigidity of the material 

and the drag force reduces at the distal end, thereby increasing the thrust force 

[16-17], [25]. In order to predict the shape form, forward speed and propulsive 

efficiency of tapered helical flagella, the mathematical model is developed using the 

resistive force theory (RFT) [3] as was done for earlier cases of uniform diameter 

nanoswimmer in Chapter 3 and tapered diameter nanoswimmer in the previous 

section. Using RFT, the forces corresponding to the normal and tangential motion of 

flagella would be approximately given by the local flagellum velocity and the drag 

coefficients in normal and tangential direction. The net force can be found out by 

integrating these forces over the length. 

4.3.1 Modeling HWP in TN 

Figure 4.10 shows the schematic of the tapered flagellated nanoswimmer of length  L 

with a head of radius hr . The coordinate system chosen is at the base of the 

flagellum. The base of the flagellum rotates along the z -axis, making the filament 

sweep out a cone of rotation along z -axis. Actuator inside the head is assumed to 

cause elastic deformation of the flagellum and take the shape of a helix with both 

pitch and amplitude varying along the z direction as shown in Figure 4.10. The head 

of the nanoswimmer is taken as a sphere lying along the negative z -axis. The 

coordinate system along with the flagellum rotates with positive z -axis as axis of 

rotation at an angular velocity   relative to a frame of reference situated on the 

head. 
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Figure 4.10: Schematic of nanoswimmer with a tapered flagellum 

For a tapered flagellated nanoswimmer, steady state shape of flagellum is determined by 

a balance of elastic and viscous forces acting over the flagellum. The elastic bending 

force on an element of length ds for helical wave propagation, EdF  is given by replacing 

y with r


 and x with z in equation (4.1) and is obtained as equation (4.50) : 
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
 (4.50) 

where, E is the elasticity of the material of flagella, )(zI  is the area moment of inertia 

and r


is the position vector of the small element ds on flagellum. The position vector of 

any point on the flagellum with respect to z-axis is considered as jyixr ˆˆ 


.  

The viscous forces ( VdF ) is product of drag coefficient acting on element ds and 

elemental velocity component perpendicular to flagellum centerline. The viscous force 

on an element of length ds for helical wave propulsion, VdF  is given by replacing y with 

r


 and x with z in equation (4.2) and is obtained as equation (4.51) : 

   dsvzCdF nV 


 (4.51) 

where, )(zCn is the local normal drag coefficient and v


 is the transverse velocity of the 

fluid relative to flagellum.  

At steady state, the transverse velocity of the fluid relative to flagellum is given by 

equation (3.35) defined in section 3.4.1 as 

 jxiyrkv ˆˆˆ  


 (4.52) 
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where, where,  is angular velocity of flagellum with respect to head of 

nanoswimmer and î , ĵ , k̂  are the unit vectors in x , y and z -direction, respectively.  

With the same assumptions made in section 3.4.1, the viscous torque ( ) tending to 

twist the flagellum about its own cross section is considered to be small and is of the 

order )4( 2 rbO  [26]. The twist effect due to torque   is neglected for estimating 

the shape since the diameter of the flagellum is small compared to its length L . 

At steady state swimming conditions, elastic bending forces EdF  (equation 4.50) and 

viscous forces VdF  (equation 4.51) balances each other on element ds. Equating elastic 

and viscous forces on a small element ds of flagellum gives 
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 (4.53) 

where,  zI is the area moment of inertia of any arbitrary  cross-section and given as 

  
 
4

4
zb

zI
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  (4.54) 

where, )(zb is the radius of the cross section.  

Simplifying equation (4.53), and substituting transverse velocity of flagellum from 

equation (4.52), in equation (4.53), gives 
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Substituting for jyixr ˆˆ 


 in equation (4.55) and separating î  and ĵ  terms, we get  
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Equating î components on LHS and RHS in equation (4.56) and dividing it by )(zCn , 

we get 
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Similarly, equating ĵ  components on LHS and RHS in equation (4.56) and simplifying, 

we get 
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where )(zI   and )(zI   in equations (4.57) and (4.58) are the first and second order space 

derivatives of )(zI .  

Substituting, x  from equation (4.58) in equation (4.57), we get 
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Further simplifying equation (4.59), we get 
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In TN, radius of the flagellum cross-section is linearly varying over flagellum length (L) 

from ib  (radius at z = 0) to fb  (radius at z = L). The cross section radius )(zb , at any 

arbitrary section over the flagellum length (with linear taper assumption) at a distance z 

from the proximal end (actuated end) i.e. z = 0, is given as 

  1)(  kzbzb i  (4.61) 
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where, ib  is the flagellum radius at z = 0 and 

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 is the slope of linear taper. 

Substituting )(zb  from equation (4.61) in equation (4.54) 
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where, 
4

 
4

i
o

b
I


 , is the area moment of inertia at proximal end. The cross-section 

radius at proximal and distal end of flagella are ib  and fb , respectively. 

Differentiating )(zI  with respect to z, gives first order space derivative )(zI   as 

   314)(  kzkIzI o  (4.63) 

Similarly, second )(zI  , third )(zI   and fourth order )(zI   space derivatives of 

equation (4.62), respectively are given as 
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Substituting )(zI , )(zI  , )(zI  , )(zI   and )(zI   from equations (4.62), (4.63), (4.64), 

(4.65) and (4.66) respectively in equation (4.60) and simplifying, we get 
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Equation (4.67) is the general equation for a linear tapered flagella executing a helical 

motion. Equation (4.67) is a variation of Legendre’s linear equation, whose solution can 

be found by assuming another variable   such that 
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 )1ln(  kz  (4.68) 

Differentiating equation (4.68) with respect to z gives 
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Multiplying numerator and denominator of equation (4.69) by dy and rewriting, we get 
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d

d
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Further, differentiating equation (4.70) with respect to z to get second, third, fourth, fifth, 

sixth, seventh and eighth order space derivatives, we get 
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to (4.77) in equation (4.67), we get characteristic equation 
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Dividing equation (4.78) with 8
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Further simplification of equation (4.79) gives  
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Eight roots of auxiliary equation (4.80) is determined and the general solution of 

equation (4.67) is given as 
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Substituting equation (4.81) back in equation (4.58), we get  
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Substituting )(zI , )(zI   and )(zI   from equations (4.62), (4.63) and (4.64) respectively 

in equation (4.82) and simplifying, we get 
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 (4.83) 

Further simplifying equation (4.83), we get x-z wave form of tapered flagellum executing 

helical wave  
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         


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1

4 1211
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iiiii

n

o kzmmmmA
zC

EI
kzx


 (4.84) 

where, the eight coefficients Ai (i = 1 to 8) in equations (4.81) and (4.84) are calculated 

by substituting the boundary conditions given in next section and 1m  to 8m  are the eight 

roots of the auxiliary equation (4.80). Using boundary condition stated in equation 

(4.85), the mathematical models for performance indexes i.e. forward velocity zV , 

angular velocity  , thrust force zF , torque  zz LM  and  and propulsive efficiency   of 

TN propelling through helical wave are developed in next section. 

4.3.2 Modeling Performance Indexes in Helical Wave Propelled TN 

For a helical wave propelled tapered flagellated nanoswimmer with the proximal end of 

the tail attached at the axis of rotation and rotating with a time dependent slope having 

maxima as G at an angular frequency of ω (refer Figure 4.11, section 4.3.1), the 

boundary conditions considered are given as, 

 Position    0,0,
0


z
yx  (4.85a) 

which means displacement positions x at 0z  and y at 0z  is zero. 

 Slope  tGtG
z

y

z

x

z

 cos,sin,
0




















  (4.85b) 

Equation (4.85b) means slope at the base along x and y directions are tG sin  and 

tG cos , respectively. In equation (4.85b), G is the measure of slope of helix. 

 Bending moment  0,0,
2

2

2

2
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

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
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x
 (4.85c) 

 Shear force  0,0,
3

3

3

3























Lz
z

y

z

x
 (4.85d) 

Equation (4.85c) and equation (4.85d) means that at the distal end the shear force and the 

bending moment vanishes, respectively. 
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The eight constants iA , corresponding to equations (4.81) and (4.84), are calculated by 

substituting the boundary conditions given in equations (4.85), in equations (4.81) and 

(4.84), respectively. Substituting the boundary condition from equations (4.85a) in 

equation (4.81) and (4.84) we get 

 0
8

1


i

iA  (4.86a) 

      
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1
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i

iiiii mmmmA  (4.86b) 

Similarly substituting the second boundary condition from equation (4.85b) in equations 

(4.81) and (4.84) we get 
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 (4.86c) 
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Similarly substituting the third boundary condition from equations (4.85c) in equation 

(4.81) and (4.84) we get 

    



8

1

2
011 

i
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iii kLmmA  (4.86e) 
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Similarly substituting the fourth boundary condition from equations (4.85d) in equation 

(4.81) and (4.84) we get 
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The equations (4.86a) to (4.86h) are combined and rewritten in form of matrix as

 ][]][[ ZAM   (4.87) 
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where  
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Equation (4.87) is used to obtain coefficient matrix ][A  and is given as  

 ][][][ 1 ZMA   (4.88) 

where 1][ M  is the inverse of matrix ][M . By solving equation (4.88), we obtained 

eight constants (i.e. A1 to A8). A MATLAB code was written to calculate inverse of the 

matrix ][M . Using these eight constants, steady state shape of wave in flagellum is 

obtained.  On obtaining the steady state shape by solving equations (4.81) and (4.84) in x 

and y, imposing the boundary conditions, the propulsion parameters are estimated using 

RFT. The steady state shapes obtained are arbitrary curves in space and are helixes of 

variable amplitude and pitch. The method developed in section 3.4.2 to evaluate the 

instantaneous pitch angle and amplitude of these curves and can be utilized to derive the 

propulsive dynamics of any arbitrary shape in space. 

The instantaneous pitch angle )(z  and amplitude )(z  are defined in equations (3.61) 

and (3.62), and rewritten here for continuity sake 
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  
dz

dx
y

dz

dy
x

r
z ..

1
tan    (4.89) 

   22 yxrz 


  (4.90) 

For an element of the tail of length ' ds ' at a distance of z  from the base, the pitch angle 

and amplitude are evaluated using equations (4.89) and (4.90), respectively. The local 

normal i.e. )(zdFn  and longitudinal components i.e. )(zdFl  of the force on such an 

element due to forward and transverse displacements of the element are vectorial 

summation of components of forces and are obtained by replacing nC  and lC  in 

equations (3.67) and (3.68), respectively with )(zCn  and )(zCl  and are given as  

  dsVVzCzdF znn  cossin)()(    (4.91) 

  dsVVzCzdF zll  sincos)()(    (4.92) 

where, )(zCn  and )(zCl  are the local normal and tangential drag coefficients and zV  

and V  are the swimming velocity in the z and θ directions, respectively, sinzV  and 

 cosV  are velocity components in n-direction and coszV  and  sinV  are velocity 

components in l-direction. The flagellum rotates counter-clockwise when viewed from 

positive z axis. 

For the cylindrical element with radius  za  in a medium having viscosity  , the local 

normal and longitudinal drag coefficients, )(zCn and )(zCl  respectively, are obtained 

from equation (4.33) and equation (4.34) by replacing )(xCn  with )(zCn ; )(xCl  with 

)(zCl ; and )(xb  with )(zb  and are given as 

 

 
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 (4.93) 
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L
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These coefficients are constant throughout the length for a flagellum with uniform 

diameter as a is constant, whereas in case of a tapered flagellum, the cross-section radius 

b  is varying along flagellum length and is function of )(zb . 

When the tail moves with an angular velocity of  , the reaction of fluid gives rise to 

an angular velocity   in the opposite direction [27]. This rotation gives rise to a linear 

velocity of     rV


,   is the angular velocity of the head with respect to the 

ground. The propulsive forces on the flagellum element ds in z -direction i.e. )(zdFz  

and   -direction i.e. )(zdF  are determined by using equations (3.71) and (3.72), and are 

given as 

   cos)(sin)()( zdFzdFzdF lnz   (4.95) 

   cos)(sin)()( zdFzdFzdF nl   (4.96) 

Substituting normal and longitudianl force components, )(zdFn  and )(zdFl respectively 

from equations (4.91) and (4.92), in equation (4.95), the net thrust force i.e. )(zdFz  on 

the flagellum element is obtained and is given as 

     dsVVzCVVzCzdF zlznz   coscossin)(sincossin)()(  (4.97) 

Similarly substituting normal and longitudianl force components from equations (4.91) 

and (4.92), in equation (4.96), the net circumferential force i.e. )(zdF  on the flagellum 

element is obtained and is given as 

  dsVVzCVVzCzdF znzl   cos)cossin)((sin)sincos)(()(  (4.98) 

The length of element ds  is given by 

 dz
dx

dy

ds




cos

 cos1

2

2










  (4.99) 

For small amplitudes, 

2










dx

dy
, can be neglected and equation (4.99) is reduced to  

 dzds sec  (4.100) 
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Substituting dzds sec  from equation (4.100) in equation (4.97) and equation (4.98), 

the net thrust force )(zdFz  and the net circumferential force )(zdF  on flagellum 

element is given as 
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 
dz
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Simplifying equation (4.101) and equation (4.102), we get 

    dzVVzCVVzCzdF zlznz   cossin)(tancossin)()(   (4.103) 

 dzVVzCVVzCzdF znzl )cossin)((tan)sincos)(()(     (4.104) 

The net circumferential force on the flagellum element causes torque about the axis of 

rotation and has two components  )( and )( i.e. zdLzdM zz . The first of these arise due to 

rotation of the element about the axis of rotation i.e. z  axis i.e. )(zdM z and is given as  

 )()( zdFrzdM z 


 (4.105) 

Substituting circumferential force from equations (4.104) in equation (4.105), we obtain 

  dzVVzCVVzCzzdM znzlz )cossin)((tan)sincos)(()()(     (4.106) 

The second torque component i.e. )(zdLz  is a result of rotation of the element about its 

own centerline and is  given by 

   dzzbzdLz  cos)(4)( 2    (4.107) 

The drag force on a spherical head of radius hr  moving in a medium with viscosity μ is 

given as 

 zhhead VrF    6   (4.108) 

Also the torque experienced by a spherical head of radius hr  rotating in a medium with 

viscosity μ is given as 

    8
3

hhead rM   (4.109) 

Under steady swimming conditions the velocity zV  is constant. The total thrust force 

developed by the flagellum is equal to the drag experienced by the head. The total thrust 
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force is obtained by integrating i.e. )(zdFz  over total length of flagellum from 0 to L. 

Equating that with drag force headF  for steady state motion, we get 

 0)(
0

 head

L

z FzdF  (4.110) 

Similarly, under steady swimming conditions, the net torque generated by the flagellum is 

equal in magnitude to the torque experienced by the head. The net torque is obtained by 

integrating  )()( zdLzdM zz   over total length of flagellum from 0 to L and is given by 

   
L

headzz MzdLzdM
0

)()(  (4.111) 

Substituting the )(zdFz  from equation (4.103) and headF  from equation (4.108) in 

equation (4.110), we get  

 
 
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 (4.112) 

Substituting the )(zdLz  and )(zdM z  from equations (4.106) and (4.107), respectively 

and headM  from equation (4.109), in equation (4.111), we get 

   
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 (4.113) 

Substituting     rV


 in equation (4.112) and separating zV ,   and   terms, we 

get 

 

 

      0sin)()(sin)()(
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 (4.114) 

Similarly substituting     rV


 in equation (4.113) and separating zV ,   and   

terms, we get 
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(4.115) 

Integrating equations (4.114) and (4.115) along the length of the flagellum and 

simplifying the resulting  simultaneous equations, we get 

 ][ ][ ] 6[ 1165 IIrIIV hz    (4.116) 

 ][ ] 8[ ][ 432
3

4321 IIIrIIIIV hz    (4.117) 

where the integrals I1 to I6 in equations (4.116) and (4.117) are defined as 
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Rewriting equations (4.116) and (4.117) in form of matrix, we get  
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 (4.118) 

Equation (4.118) is the mathematical model for performance index forward velocity zV  

and angular velocity   for helical wave propelled TN. The values of zV  and  , 

obtained by taking inverse and solving equation (4.118), are used to calculate the 

efficiency of the nanoswimmer. 
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The efficiency ( ) of the nanoswimmer is calculated as the ratio of useful power 

developed for forward motion along z axis to total power consumed by the 

nanoswimmer for transverse and forward motion. Useful power developed is obtained by 

integrating the product of force  zdF  and velocity zV  over flagellum length. Similarly 

the total power dissipated by the swimmer is power required to overcome the 

rotational resistance of tapered flagellum. 
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Equations (4.118) and (4.119) are simulated in next section to investigate the 

performance of TFN propelled by helical waves. The results obtained after simulations 

are analyzed and discussed in the following section. 

4.3.3 Simulations, Results and Discussion of Performance of Helical Wave 

Propelled TN 

The simulations of the mathematical model developed for displacement shapes (refer 

Figure 4.11) in equation (4.81) and (4.84), and, forward velocity  zV  and efficiency    

in equations (4.118) and (4.119) for tapered flagellated nanoswimmer (TN) is carried out 

in MATLAB
®
. The MATLAB code is given in Appendix-V.  

The tail is discretized in 100 elements around which the solution converges. The values 

of parameters chosen for the simulation are similar to that of E coli as these 

microorganisms use helical wave propulsion methods. The length of the flagellum is 

10 m , the frequency of helical wave is varied from 100 Hz – 500 Hz, and the viscosity 

of the medium   is 0.001 Pa-s. The proximal end diameter ib2  is 30 nm and fb2  is 

varied from 0 to ib2  in order to find the optimum value. Characteristic length (i.e. L/l) is 

varied from 1 to 10 by varying the modulus of elasticity, E from 0.01 - 200 GPa. In real 

life situations, the value of characteristic length is constrained by the elasticity of 

available bio-compatible [28] materials; the diameter of flagella is governed by the width 

of the targeted area inside the body, the blood viscosity inside our body and the 

frequency of motor can be adjusted to meet the optimum values of characteristic length. 
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Figure 4.11: Displacement shapes with respect to characteristic length (L/l) 
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Figure 4.12: Variation of velocity over lL /  ratio for different frequencies. The 

dotted lines correspond to uniform diameter flagellum case and the solid lines 

correspond to the tapered flagellum. 
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Equation (4.118) is simulated for parameters given in Table 3.2, section 3.4.3 and the 

results obtained are plotted in Figure 4.12. Figure 4.12 illustrates the swimming velocity 

(Vz) variation over (L/l) ratio for three different actuation frequencies i.e. 100 Hz, 300 Hz 

and 500 Hz. It shows consistent increase in velocity as frequency increases and compares 

the swimming velocity of TN with UDN. For (rh/L) = 0.34, a tapered flagellum with a 

taper ratio (bi/bf) = 5.88 shows higher velocity values as compared with uniform diameter 

flagellum. Similar trends have been observed for uniform diameter flagellum [29-30]. It 

shows, for TN swimming velocity is maximum for (L/l)~1.33, whereas the maxima of 

velocity is shifted for UDN and maximum swimming velocity occurs at (L/l) 8.1 , 

irrespective of flagella actuation frequency. The peak velocity increases linearly with 

increase in flagellum actuation frequency and a maximum velocity of 427.4 m /sec is 

observed at a higher actuation frequency of 500Hz (refer Figure 4.12). The maximum 

velocity generated increases five times from 85.45 sec/m at 100 Hz to 427.4 sec/μm  at 

500 Hz. It is observed that as the ratio (L/l) increases, the length of the active filament 

reduces which results in a greater passive length. As passive length does not contribute to 

total thrust generated by flagellum but instead contribute in drag force, a better design of 

nanoswimmer is to have (L/l) ratio in between 1.33 to 1.8. For longer filaments, i.e., at 

higher values of (L/l), the velocity approaches to zero. 

The variation of velocity with variation in parameters like bi/bf, rh/L  and L/l  are plotted 

in Figure 4.13. The maximum velocity obtained is 85.45 sec/m and is found at L/l 

~1.33, rh/L~ 0.34 and a taper ratio  bi/bf ~5.88. In Figure 4.13-A, contour plot of variation 

of velocity with respect to variation in rh/L  and L/l is plotted for bi/bf  = 5.88. Variation 

of L/l is plotted on x-axis and rh/L is varied on y-axis. The family of curves for velocity 

are obtained by simulation of equation (4.116) and found closed contour as shown in 

Figure 4.13-A. The innermost contour represents a range of rh/L and L/l corresponding to 

maximum velocity. It is observed that the velocity remains close to maximum for 

variation of rh/L from 0.26 to 0.42 whereas for a UDN, the maxima of velocity is 

observed at rh/L~ 0.3 [24]. The range of L/l corresponding to maximum velocity is from 

1.33 to 1.72. 

In Figure 4.13-B, contour plot of variation in velocity is plotted for variation of bi/bf  and 

L/l ratio for rh/L = 0.34. Variation of L/l is plotted on x-axis and bi/bf  is varied on y-axis. 

The innermost contour represents a range of bi/bf  and L/l corresponding to maximum 

velocity. 
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Figure 4.13-A: Contour plot of velocity with variation in rh/L and L/l ratio at  

bi/bf  = 5.88. The inner most contour represents the optimal range of rh/L and L/l 

ratio for higher velocity. 

 

Figure 4.13-B: Contour plot of velocity with variation in bi/bf and L/l ratio at 

rh/L = 0.34. The inner most contour represents the optimal range of bi/bf and L/l ratio 

for higher velocity. 
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The inner most contour in Figure 4.13-B illustrates that the velocity remains close to 

maximum for bi/bf  varying from 2.7 to 21.2 and corresponding range of L/l is from 1.33 

to 1.72. The contour plots of velocity show that for  L/l 2  , the velocity is observed to 

be maximum for a taper ratio ~0 (i.e. pointed end). The maximum velocity observed for 

a pointed end (i.e. flagellum with taper ratio ~0) is 64.59 sec/μm at L/l = 1.33 whereas 

for a taper ratio~1, i.e. uniform diameter flagellum, the velocity observed 54.6μm/s at L/l 

ratio ~ 2 [21, 24]. 

The variation of efficiency with variation in parameters like bi/bf, rh/L  and L/l  are 

plotted in Figure 4.14. The maximum efficiency obtained is 0.58% and is found at L/l 

~1.85, rh/L ~ 0.28 and taper ratio bi/bf  ~3.57.  

In Figure 4.14-A, contour plot of variation of efficiency with respect to variation in 

rh/L  and L/l is plotted for bi/bf  = 3.57. Variation of L/l is plotted on x-axis and rh/L is 

varied on y-axis. The family of curves for efficiency are obtained by simulation of 

equation (4.119) and found closed contour as shown in Figure 4.14-A. The innermost 

contour represents a range of rh/L and L/l corresponding to maximum efficiency. It is 

observed that the efficiency remains close to maximum for variation of rh/L from 

0.25 to 0.45. The range of L/l corresponding to maximum efficiency is from 1.33 to 

1.72. 

Figure 4.14-B illustrates the effect of taper ratio (bi/bf) and characteristic length (L/l) on 

the efficiency of nanoswimmer. The efficiency is close to maximum for the variation of 

taper ratio (bi/bf) from 2.3 to 5.4. The maximum efficiency observed for a pointed end 

(i.e. taper ratio ~0) is 0.51% at L/l = 2.38, as compared to 0.36% at L/l  ratio ~ 2.5 for 

uniform diameter flagellum (i.e. taper ratio ~1). 

In order to obtain an optimum taper ratio, distal end diameter 2bf  is varied from 0 to 

proximal end diameter, 2bi. The variation of velocity and efficiency over taper ratio bi/bf  for 

different characteristic lengths L/l are shown in Figure 4.13 and Figure 4.14, respectively. 

The velocity is found to be maximum at L/l 1.4 for bi/bf 5.88, whereas the maxima of 

efficiency lies at L/l 1.8 for bi/bf   3.57 with a head radius 3 µm. 
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Figure 4.14-A: Contour plot of efficiency with variation in rh/L and L/l ratio 

at bi/bf = 3.57. The inner most contour represents the optimal range of rh/L 

and L/l ratio for higher efficiency. 

 

Figure 4.14-B: Contour plot of efficiency with variation in bi/bf and L/l ratio 

at rh/L = 0.34. The inner most contour represents the optimal range of bi/bf 

and L/l ratio for higher efficiency. 
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It can be seen from the Figure 4.13 and Figure 4.14 that the velocity and efficiency for  

bf ~bi i.e. uniform flagellated nanoswimmer, are small compared to the maximum values 

that can be obtained by having a taper. The optimal range of taper ratio for a fastest 

nanoswimmer lies between 2.7 to 21.2 (refer Figure 4.13-B) and for the most efficient 

swimmer the taper ratio lies in between 2.3 to 5.4 (refer Figure 4.14-B). Thus, a tapered 

flagellum is faster and efficient than the uniform diameter. 

Velocity and efficiency is plotted against characteristic length (L/l) with varying head 

sizes in Figure 4.13 and Figure 4.14 and this corroborates the findings of Chwang and 

Wu [31]. As observed from the plots, single helically waving flagellum cannot swim 

unless it is attached to a head that moves relative to it. It is observed from Figure 4.14-B 

that the velocity is maximum for head size of rh/L = 0.33 at L/l =1.4 while the efficiency 

is maximum for head size of rh/L = 0.37 at L/l =1.8. The maximum velocity and the 

maximum efficiency values observed are 84.5 μm/sec and 0.57%, respectively. The 

optimum parameters for both the cases (i.e. the fastest swimmer and the most efficient 

swimmer) obtained at frequency of 100 Hz are enlisted in Table 4.4. 

In the present section, the mathematical model for the forces, velocity, and efficiency, 

was developed considering a case of the helical wave propelled TN. The next section 

gives conclusion on propulsion of a TN using a PWP and HWP modes. 

Table 4.4: Results - Velocity and Efficiency 

 Tapered Diameter Uniform Diameter 

Parameters 
Fastest 

swimmer 

Efficient 

swimmer 

Fastest 

swimmer 

Efficient 

swimmer 

bi/bf   5.88 3.7 1 1 

2bi (nm) 30 30 30 30 

2bf  (nm) 5.1 8.1 30 30 

L/ l 1.4 1.8 2 2.5 

V (µm/s) 84.5 69.9 55.4 40.1 

Efficiency    0.46% 0.57% 0.24% 0.38% 
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4.4 TAPERED NANOSWIMMER: COMPARISON OF PLANAR 

WAVE AND HELICAL WAVE PROPULSION MODES 

For propulsion of a nanoswimmer, the elastic flagellum is subjected to either a 

planar wave or a helical wave by varying the mode of propulsion. The quest that still 

needs to be investigated is which of the two propulsion modes should be preferred 

for a tapered nanoswimmer. In the present section, the two modes of propulsion, 

namely planar wave and helical wave, have been compared for a tapered nanoswimmer 

based on their performance indexes (i.e., velocity and efficiency). 

The simulations of the mathematical model developed for forward velocity and 

efficiency in equations (4.48) and (4.49) for tapered nanoswimmer (TN) propelled 

through planar wave propulsion, and in equations (4.118) and (4.119) for tapered 

nanoswimmer propelled through helical wave propulsion is carried out in MATLAB
®
. 

The simulation parameters chosen are listed in Table 4.1, section 4.2.3.  

 

 

(bf/bi) 

Figure 4.15: Plot of velocity for planar and helical wave propulsion modes obtained 

for different taper ratio 

The length of the flagellum, L is 50 µm, the proximal end diameter, ib2 is 400 nm, the 

frequency of actuation is 35Hz and the viscosity of the medium   is taken as 0.001 Pa.s. 

The ratio of head radius to flagellar length, rh/L is assumed to be 0.3 [14]. 
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Figure 4.15 shows the effect of taper ratio on velocity for planar and helical wave 

propulsions. It has been observed that for a taper ratio less than 3.34 (i.e., 34.3 / fi bb ), 

the helical wave propulsion outperforms the planar wave propulsion, whereas beyond 

this point, the planar wave propulsion is faster than the helical wave propulsion. 

 

Figure 4.16: Velocity over parametric variation of elasticity as a function of taper 

ratio and propulsion modes  

Keeping the geometric parameters same, the variation of velocity and efficiency over 

flagella elasticity for planar wave and helical wave propulsion has been plotted in Figure 

4.16 and Figure 4.17, respectively. The maximum velocity of tapered nanoswimmer with 

the planar wave propulsion is found to be 166.8μm/s whereas the maximum velocity for 

the helical wave propulsion is found to be 151.9μm/s at a larger taper ratio of 5. 

Figure 4.17 illustrates the variation of efficiency over elasticity for a taper ratio of 5. In 

the range of simulation for E varying from 0.1MPa to 2GPa, efficiency of a 

nanoswimmer propelling through planar wave is always greater than the one propelling 

through helical wave. 



Tapered Flagellated Nanoswimmer 

135 

 

Figure 4.17: Efficiency over parametric variation of elasticity as a function of 

propulsion modes for taper ratio bi/bf = 5 

Planar wave propulsion gives a higher value of maximum efficiency ~5.01% when 

elasticity is around ~ 500MPa, while the maximum efficiency of helical wave propulsion 

is only ~0.55%, which is obtained at lower elasticity ~200MPa. The efficiency values are 

in agreement with previously reported values for a uniform flagellum [11], [14].  

Table 4.5: Comparison of planar wave propulsion with helical wave propulsion 

 

 
Planar wave propulsion Helical wave propulsion 

Taper ratio ( fi bb / ) 5 2 5 2 

ib2  (nm) 400 400 400 400 

rh/L 0.3 0.3 0.3 0.3 

Maximum velocity (µm/s) 166.8 114.1 151.9 128.8 

Maximum efficiency (η) 5.01% 3.33% 0.55% 0.50% 
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4.5 CONCLUSIONS 

In this Chapter, planar wave propulsion (PWP) and helical wave propulsion (HWP) with 

tapered nanoswimmer (TN) are modeled and simulated. The propulsion characteristics in 

terms of swimming speed and efficiency have been optimized for the fastest swimmer 

and for the efficient swimmer. The results were compared to that of a UDN and velocity 

and efficiency results show that the TN is a better choice than the UDN. 

Mode shapes of a planar wave propelled TN are predicted based on elastohydrodynamic 

equations. Keeping the flagellum volume constant, two new cases are developed for a 

given ratio of initial and final diameter. Results indicate that for a given frequency, the 

velocity and efficiency ratio for TN to UDN propelled through planar wave can go as 

high as 3.2 times and 3.75 times respectively. The maximum efficiency of the taper case 

is almost double the maximum efficiency of the uniform diameter case. Considering this 

the tapered flagellum gives a more realistic value of the performance indicators that has 

not been shown or attempted in literature. 

The maximum velocity of a helical wave propelled TN is 85.45µm/s as compared to 

55.65µm/s for a uniform diameter flagellum. The maximum efficiency observed is 

0.57% for a tapered flagellum and 0.38% for a uniform diameter flagellum. The optimal 

taper ratio and head size are found for both the fastest swimmer and the most efficient 

swimmer. The velocity is found to maximum at L/l~1.33, rh/L ~0.34 and at a taper ratio 

~5.88 whereas the efficiency is found maximum at L/l~1.85, rh/L ~ 0.28 and taper ratio 

~3.57. From the results, it is seen that the optimal range for head radius, characteristic 

length and taper ratio are (0.3-0.4), (1.33-2.1) and (3.57-5.88), respectively for a TN 

propelling itself through HWP. The maximum velocity and efficiency observed for 

tapered flagellated nanoswimmer through helical wave propagation are 85.45 sec/μm  

and 0.57%, respectively. 

Tapered flagellated nanoswimmer propelling through a helical wave has been also 

compared with a planar wave. Results indicate that a tapered flagellated nanoswimmer 

propelling though planar wave is more efficient than the one propelling through helical 

wave for all taper ratios. At an actuation frequency of 35 Hz, the efficiency of planar 

wave is nearly ten times larger than that of helical wave. However, the simulation results 

for velocity show that for a taper ratio less than 3.34 (i.e., 34.3 / fi bb ), the helical wave 

propulsion is faster, whereas beyond this point, the planar wave propulsion is superior. 
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Chapter 5 

Flagella Material Selection 

5.1 INTRODUCTION 

Biomedical applications of nanoswimmer are revolutionary with potential use in 

localized drug delivery [1]. Nanoswimmers are propulsion mechanisms of nanorobots, 

where intense engineering research is going on to bio-mimic flagellar microorganisms 

consisting of a head and flagella. Propulsion models for such nanoswimmers are 

developed which contributes to the study of its dynamics and efficiency [2-6]. The model 

assumes the flagella generating the propulsive force either by executing a planar or by a 

helical wave motion. In Chapter 3 and Chapter 4, we have developed various models of 

planar and helical wave propulsion for uniform diameter and tapered diameter flagellum 

design. To evaluate the performance of a nanoswimmer, researchers [7-8] proposed a 

dimensionless parameter, Sperm number (Sp), which characterizes the relative 

magnitudes of the viscous and bending forces. Scaled-up validation of the model using 

Sperm number is also done [9-10], but attempts to actual fabrication of nanoswimmers 

reported in literature are very few [11-14]. 

In previous chapters (i.e. Chapter 3 and 4), mathematical modeling and analysis is 

carried out for both planar wave and helical wave propulsion with uniform diameter 

nanoswimmer (UDN) in Chapter 3 and more realistic tapered nanoswimmer (TN) in 

Chapter 4, using RFT. In the present chapter, motivated by targeted drug delivery system 

with the help of nanoparticles [15] and the intricacies of biology inspired  

nano-engineering [16-17], we search for materials that can be used for the practical 

realization of flagellar nanoswimmers. Material choice is an important and integral part 

of the design and must be explored for any device. Nanoswimmers are also no 

exemptions and needs suitable material for exploring the design perspective. Although 

[18] proposed plexiglas or rigid plastics as candidates, the proposed materials had no 

basis to screen for biocompatibility or check if nanostructures can be manufactured from 

it. Although researchers in [19-20] proposed PDMS and PEG-DA as the biocompatible 

materials for flagella, their adaptability as flagellar structure needs to be assessed with 

respect to other parameters like flexural rigidity too. Based on the modeling of 
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nanoswimmer carried out in Chapter 3 and 4, in this chapter, a methodology is proposed 

for assessing the candidature of any material for the fabrication of artificial flagella, 

which shall have implant capabilities in vivo and shortlist the potential material for a 

feasible design of nanoswimmer. To manufacture a bio-mimicked nanoswimmer, the 

physical properties of the biological organism are studied. Based on the derived values, 

engineering materials having properties in the said range are screened. Keeping in mind 

in vivo medical applications, biocompatibility study of the material is an essential part of 

screening that has been done. Thereafter, looking at the possible manufacturing 

techniques, fabrication feasibility of such biocompatible materials as nanostructure is 

presented in section 5.2. The methodology has not been reported in earlier in literature 

and was first proposed by us and published in [21]. 

5.2 METHODOLOGY 

The present section proposes materials suitable for making the flagellum of a 

nanoswimmer. The findings in this chapter are based on the approach of screening 

hierarchy in context to flexure modulus followed by hemocompatibility and later 

technology feasibility. A literature review of the various stages of the framework discussed 

in the methodology is carried out leading to chosen material for design. We start with more 

than 500 materials given in Springer's materials handbook [22] and categorized them as 

metals, composites and polymers. Out of 500 materials given in materials handbook, 237 

materials are found relevant in present context, which are enlisted in Appendix-VI. Around 

36 engineering materials in the flexural modulus range (E = 0.01 MPa to 10 GPa) is sorted 

out from the listed 237 materials (see Appendix-VI). The flexural modulus range under 

consideration is from 10
-24 

to 10
-21

 Nm
2
. In the second-stage biocompatibility, specifically 

hemocompatibility, of the screened 36 materials was evaluated based on available 

literature. Finally, looking at the present set of manufacturing processes, fabrication 

feasibility of screened/shortlisted materials was assessed. 

 

Figure 5.1: Framework for material selection 
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The like criteria for selection of material for fabrication of nanoswimmer are based on a 

three-stage screening process. The framework for selection specific to nanoswimmer is 

described in a flowchart as given in Figure 5.1. The conditions for acceptance with 

respect to these three stages, viz., physical property, biocompatibility, and technical 

feasibility of any particular material are elaborated below. 

5.2.1 Physical Properties 

The mathematical model in literature models the flagella as a beam. The model takes the 

flexural rigidity (EI) as the physical parameter of the beam. The value is in the range of 

10
-24 

to 10
-21

 Nm
2
 [18], [23]. Considering the microorganism that has flagellar diameter 

around 200 nm [1] the flexural modulus of the material is obtained in the range of 0.01 

MPa to 10 GPa. 

Given the range of modulus values, shortlisting was done for all the enlisted materials in 

Appendix-VI [22]. Mostly, polymers appeared in the shortlisting. Metal-alloys are not 

included in this study as their flexural moduli vary with respect to the composition of 

constituents. For polymers, flexure modulus was available, and for the rest elastic 

modulus was considered for screening the initial list. 

 

Figure 5.2: Flexural/Elastic modulus of materials after stage 1 screening 
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The screened materials are shown in Figure 5.2 where x-axis enlists the abbreviation 

of the common name (elaborately written in Table 5.1) of the material, and y-axis 

indicates the flexural or elastic modulus of the corresponding material.  A few 

ceramics and metals also quantifies as potential material of choice for fabrication of 

nanoswimmer. Various grades and isomers of particular polymers are separately 

considered in Figure 5.2 and are clubbed together in Table 5.1. The screened 36 

materials are enlisted in Table 5.1 in increasing order of their elastic modulus.  The 

selection of these 36 materials are marked with ✓in Appendix-VI. 

Table 5.1: 36 materials screened after stage 1 

S.No. Materials S.No. Materials S.No. Materials S.No. Materials 

1 POLYETHYLENE 

(PE) 

10 POLYAMIDE 

NYLON 6 (PA) 

19 POLYOXYMETHY

LENE (POM) 

28 POLYBENZENE

-IMIDAZOLE 

(PBI) 

2 POLYTETRAFL

UROETHYLEN

E (PTFE) 

11 POLYVINYL 

CHLORIDE (PVC) 
20 POLYBUTADIENE 

TEREPHTALATE 

(PBT) 

29 CELLULOSE 

ACETATE (CA) 

3 CELLULOSE 

ACETATE-

BUTYRATE (CAB) 

12 POLYTRIFLUORO

CHLOROETHYLE

NE (PCTFE) 

21 POLYPHENYLENE 

OXIDE (PPO) 
30 CESIUM (Cs) 

4 FLUORINATED 

ETHYLENE 

PROPYLENE (FEP) 

13 POLYVINYLIDEN

E FLUORIDE 

(PVDF) 

22 CHLORINATED 

POLYVINYL 

CHLORIDE (CPVC) 

31 RUBIDIUM (Rb) 

5 PERFLUORINATE

D ALKOXY (PFA) 
14 ETHYLENE 

TETRAFLUOROE

THYLENE (ETFE) 

23 POLYSULFONE 

(PSF) 
32 POTASSIUM (K) 

6 CELLULOSE 

ACETATE-

PROPIONATE 

(CAP) 

15 ETHYLENE 

CHLOROTRIFLU

OROETHYLENE 

(ECTFE) 

24 POLYAMIDE-

IMIDE (PAI) 

33 LITHIUM (Li) 

7 POLYBUTYLENE 

(PB) 

16 POLYSTYRENE 

(PS) 

25 POLYETHYLENE 

TEREPHTALATE 

(PETP) 

34 SODIUM (Na) 

8 POLYPROPYLENE 

(Isotactic/Atactic) 

(PP) 

17 POLYCARBONAT

E (PC) 
26 POLYIMIDE (PI) 35 BARIUM (Ba) 

9 ACRYLONITRILE 

BUTADIENE 

STYRENE (ABS) 

18 POLYMETHYL 

METHACRYLATE 

(PMMA) 

27 POLYPHENYLENE 

SULFIDE (PPS) 

36 GRAPHITE (C) 

The shortlisted 36 materials with their properties are tabulated in Table 5.2. These 36 

materials should next pass the test of bio (hemo) compatibility as the nanoswimmer 

objective may be to swim inside the body in blood. This is carried out in next section.  
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5.2.2 Biocompatibility 

Biocompatibility deals with the study of any material’s characteristics and its form and 

function, while it interacts with another biological system. There are various standards to 

ensure the acceptability of the results of the study performed on the material [24]. One of 

them is “The standard for biological evaluation of medical devices - ISO 10993,” which 

deals with the various biocompatibility aspects. Although reports of the biocompatibility 

test conducted according to ISO 10993 [25], were not available in compiled form in any 

single publication for the screened materials, a thorough literature survey throws enough 

light on issues of their biocompatibility and medical usage. The findings are tabulated in 

Table 5.2. The column titled “Biocompatibility Test Protocol” discusses the type of testing 

protocol, carried out by researchers and available in different publication viz., in vitro or in 

vivo followed during biocompatibility assessment. The materials that qualify in vivo tests 

become more favorable candidates of choice for material for fabrication of nanoswimmer. 

Another major issue, is the fabrication feasibility even if the material passes the flexural 

rigidity and biocompatibility criteria of selection. Table 5.2 includes the possibility of 

fabrication with the chosen material. This is further discussed in next section. 

5.2.3 Technology Feasibility 

There are established technologies to produce nanowires and similar nanostructure  

[26-27]. The methods used for producing flagellar nanostructures of the above-screened 

materials are also looked into the literature and reported under column entitled 

“Technology Feasibility”. The observations are compiled and commented in Table 5.2. 

Table 5.2: Biocompatibility and Technology Feasibility of various materials 

S.No. Materials 

Biocompatibility Test Protocol Technology Feasibility Remarks 

In vivo In vitro Reference 
Process used and 

Reference 
Dia(nm) 

 

1 POLYETHYLENE 

(PE) 
✓ ✓ Belanger and  

Marois 2001[28]  

Electrospinning 

Rein et al. 2007 
[29]  

250 -12000  LDPE (Low Density 

Polyethylene) 
biocompatibility is 

studied as suitable 

reference materials 

 High Molecular Weight 

PE can be electrospun. 

2 POLYTETRAFL
UROETHYLEN

E (PTFE) 

- ✓ Risbud MV et al. 
2001[30]  

Ainslie et al. 
2006[31]  

Jet Blown fibrils 

Borkar et al. 2006 

[32]  

20-30  PTFE /wollastonite 
composite (90:10) static 

incubation assay contact 
did not lead to 

hemolysis thus 

exhibiting preliminary 
haemocompatibility. 
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S.No. Materials 

Biocompatibility Test Protocol Technology Feasibility Remarks 

In vivo In vitro Reference 
Process used and 

Reference 
Dia(nm) 

 

 Application in areas 

which require high 

rigidity and are subject 
to elevated 

temperatures. 

3 CELLULOSE 
ACETATE-

BUTYRATE (CAB) 

✓ ✓ Ocular Inserts 

Nilay et al. 

2008[33], 

Mucoadhesivity 

Miyazaki et al.  

2002 [35]  

Twin-screw 
extruder 

Polyester/CAB  

immiscible 
polymer blends 

used Li et al. 2010 

[36]  

179  Mostly used as 
microcapsules for drug 

delivery[33]. 

 Haemocompatibility not 

tested. 

 The diameters of 
nanofibers obtained by 

twin-screw extruder are 
smaller than those via 

electrospinning. 

 The blend would have 
different physical 

properties than CAB 
hence cross verification 

of the flexure rigidity of 

the blend needs to be 
checked. 

4 FLUORINATED 

ETHYLENE 

PROPYLENE (FEP) 

- - Not available Melt blending and 

Melt spinning. 

Chen et al. 2006 
[37]  

10-20  Haemocompatibility not 

tested. 

 Used as coating 

 Nanocomposite fibers 
based on Flourinated 

Multiwalled CNT 

(carbon nano tube) and a 

FEP copolymer. 

 

5 PERFLUORINATE
D ALKOXY (PFA) 

- - Not available   

6 CELLULOSE 

ACETATE-

PROPIONATE 
(CAP) 

- ✓ Gomes et al. 2007 

[38]  

Not available   Titanium coated with 

CAP was assessed as a 
low cost substitute for 

surface modification to 

make it an attractive 
substrate for cell and 

protien adhesion 

 Grafted material would 
have different physical 

property than CAP. 

7 POLYBUTYLENE 

(PB) 

- - Not available Twin-screw 

extruder 

Xiao et al. 2010 

[39] 

Grafting 

Ramos et al. 2011 

[40] 

137  Haemocompatibility not 

tested. 

 PB/CNF (Carbon 
Nanofibres) potential 

applications as smart 
(electrorheological) 

fluids 

 Polybutylene 
Terephthalate(PBT)/CA

B  immiscible polymer 

blends used for twin 
screw extrusion 

 The blend and 
compound would have 

different physical 

properties than PB 

 Polybutylene oxide 

grafted on CNF. 
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S.No. Materials 

Biocompatibility Test Protocol Technology Feasibility Remarks 

In vivo In vitro Reference 
Process used and 

Reference 
Dia(nm) 

 

8 POLYPROPYLENE 

(Isotactic/Atactic) 

(PP) 

- ✓ Contreras-García 

et al. 2011 [401] 

Twin-screw 

extruder 

Wang et al. 2007 
[42]  

75-375  improve the 

hemocompatibility and 

elution of antimicrobial 
agents for medical 

devices, N,N′-

dimethylacrylamide 
(DMAAm) and N-

isopropylacrylamide 

(NIPAAm) were 
sequentially grafted onto 

PP 

 functionalized PP has 
potential as hemo- and 

cyto-compatible 
materials 

 Isotactic polypropylene 
(iPP) Nano fiber 

9 ACRYLONITRILE 

BUTADIENE 

STYRENE (ABS) 

- - Not available   

10 POLYAMIDE 

NYLON 6 (PA) 

- ✓ Risbud and 

Bhonde 2001 [43]  

Electrospinning 

Bagheri et al. 2010 

[44]  

100-200  Biocompatibility test 

data demonstrates it 
favourable for tissue 

engineering. 

 Priliminary blood 
compatibility observes 

no detectable hemolysis 

in static incubation 
assay. 

 solid phase 
microextraction (SPME) 

fiber was fabricated  

11 POLYVINYL 

CHLORIDE (PVC) 

- ✓ Rhodes et al. 1996 

[45] 

Balakrishnan and 
Jayakrishna 2000 

[46]  

Electrospinning 

Lee et al. 2002 [47] 

template based 
fabrication 

 Martín et al. 2012 

[48]  

  Blood profusion model 

made to investigate 
platelet activation, 

granulocyte secretion, 

complement activation 
and contact phase 

activation of silicone, 

PVC and Nylon.  

 PVC was the most 

platelet compatible 

material but caused 
most contact phase 

activation.  

 PEGylated 

(Polyethyelene Glycol) 

PVC improves 
haemocompatibility 

12 POLYTRIFLUORO

CHLOROETHYLE
NE (PCTFE) 

 

- - Not available   

13 POLYVINYLIDEN

E FLUORIDE 
(PVDF) 

✓ ✓ In vivo 

Laroche et al. 
1995[49]  

In vitro 

Chang et al. 
2011[50]  

Electrospinning 

Choi et al. 2003 
[51]  

250  identified the effects of 
various manufacturing 

processes on the 

crystalline 
microstructure, 

mechanical properties, 

and biocompatibility of 
PVDF 
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S.No. Materials 

Biocompatibility Test Protocol Technology Feasibility Remarks 

In vivo In vitro Reference 
Process used and 

Reference 
Dia(nm) 

 

 in vivo  

thoracoabdominal 

bypass in a series of 
dogs. 

 hemocompatible nature 
of grafted PEGylated 

polymers by controlling 

grafting structures gives 
them great potential in 

the molecular design of 

antithrombogenic 
membranes for use in 

human blood 

14 ETHYLENE 
TETRAFLUOROET

HYLENE (ETFE) 

- - Not available  Mouse peritonial cavity 

15 ETHYLENE 

CHLOROTRIFLUO
ROETHYLENE 

(ECTFE) 

✓ - In vivo  Wortman 

et al. 1983 [52]  

Not available   Results indicate that cell 
adherence varies 

according to the type of 

material. 

 

16 POLYSTYRENE 

(PS) 
✓ ✓ In vitro and in vivo 

Molugu et al. 2006 

[53] 

In vivo Anderson 

et al. 2010 [54]  

Vacuum assisted 

infiltration 

McCarthy et al. 
2011 [55]  

200  Ocular and skin 

sensitivity, oral 
ingestion and inhalation 

studies done. 

 nanoparticles may be 
safe for use as 

antibacterial agents  

 Fluorescence Imaging of 

mouse 

 Fluorescent magnetic PS 

nanowire produced 

17 POLYCARBONAT
E (PC) 

- ✓ Schohn et al. 1986 
[56]  

Lithography-
assisted template 

bonding 

Yoon et al. 2008 
[57] 

Novel 

electrospinning  

Liao et al. 2011 

[58]  

50000 

221-1536 

 Haemodialysis 
treatments 

 During dialysis with the 
polycarbonate 

membrane hypoxemia 

does not occur and the 
pulmonary vascular 

resistances and 

pulmonary arterial 
pressure remain stable. 

 Template directed 
methods guide the 

nanostructure growth; in 

addition, they offer low 
temperature processing 

conditions such as 

electrochemical 
deposition in a liquid 

phase for specific 

applications. 

 Bisphenol A 

polycarbonate has 
superior mechanical 

properties 

18 POLYMETHYL 

METHACRYLATE 
(PMMA) 

✓ ✓ Thomson  et al. 

1992 [59]  

Electrospinning 

Czaplewski et al. 
2003 [60]  

Vapor Deposition  

Polymerization 
(VDP) 

85-350 

100 

 Biocompatibility of 
PMMA as bone cement 

evaluated by exposing 

to human synovial 
fibroblasts and mouse 

peritoneal macrophages 
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S.No. Materials 

Biocompatibility Test Protocol Technology Feasibility Remarks 

In vivo In vitro Reference 
Process used and 

Reference 
Dia(nm) 

 

 Lee et al. 2006 

[61]  

radical-mediated 
dispersion 

polymerization 

Kong  and Jang   
2008 [62]  

 Inflammatory potential 

noted from in vitro 

experiments but in vivo 
intra-articular injection 

of the particles into 

mouse knee joints well 
torlerated. 

 Ag/PMMA nanofiber 
had an excellent 

biocidal potential 

against Gram-positive 
bacteria (S. aureus) as 

well as Gram-negative 

bacteria (E. coli) 

 Haemocompatibility 

needs to be checked. 

 organic-dye embedded 

PMMA by VDP 

 Ag/PMMA Nanofibre 
by radical mediated 

dispersion 
polymerization 

19 POLYOXYMETHY

LENE (POM) 

- ✓ Vitral Farinazzo et 

al. 2010 [63]  

Electrospinning 

Kongkhlang et al. 
2008 [64]  

  Nanoporous structure 

gives high specific 
surface area 

 Control parameter for 
desired fibre diameter 

and nanoporosity is 

discussed. 

 Increase in tensile 

strength might make it 
unuseful for flagellar 

material 

 study of nitric oxide 
(NO) cellular production 

for evaluating cytotoxic 
potential 

20 POLYBUTADIENE 

TEREPHTALATE 

(PBT) 

- - Not available   

21 POLYPHENYLENE 

OXIDE (PPO) 

- - Not available   

22 CHLORINATED 

POLYVINYL 
CHLORIDE (CPVC) 

- - Not available High voltage 

electrospinning 

Sang et al. 2007 

[65]  

  CPVC nonwoven mat is 
used for water 

purification. 

23 POLYSULFONE 
(PSF) 

- ✓ Khang et al. 
1995[66] 

Electrospining 

Zhibin et al. 2008 

[67]  

  Platelet adhesion 
experiments on surface 

treated PSF films were 

carried out  

 Chinese hamster ovary 

in vivo test highlights 
surface wettability of 

PSF as very important 

parameter for cell 
adhesion and growth 

 Haemocompatibility not 
tested. 

 PSF used for stiffening 
agent for carbon fibre 

epoxy composit 
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S.No. Materials 

Biocompatibility Test Protocol Technology Feasibility Remarks 

In vivo In vitro Reference 
Process used and 

Reference 
Dia(nm) 

 

24 POLYAMIDE-

IMIDE 

(PAI) 

- ✓ Imai et al. 1983 

[68]  

Novel 

electrospinning  

Lee et al. 2009 [69]  

200-1000  Structure - 

biocompatibility 

relationship of 
condensation polymers 

studied by cell culture 

method. 

 In vivo 

heamocompatibility 
needs to be done 

25 POLYETHYLENE 

TEREPHTALATE 

(PETP) 

- ✓ De Brito Alves et 

al. 2003 [70]  

Electrospinning  

Nanofiber mats 
prepapred 

Ma et al. 2004 [71] 

200-600  computer vision coupled 

with SEM was used to 
monitor the platelet 

adhesion and activation 

onto blood-contacting 
materials 

 surface modification of 
PETP nanomats to 

mimic the fibrous 

proteins in native 
extracellular matrix 

towards constructing a 

biocompatible surface 
for endothelial cells 

26 POLYIMIDE (PI) - ✓ Richardson Jr. et 

al. 1993 [72] 

Electrospinning  

Fukushima et al. 
2010 [73] 

33±5  evaluated in vitro using 

a selected battery of 
levels I and II testing 

protocols  

 good candidates for 
further testing as 

encapsulants for 

implantable biosensors. 

 ultrafine beadfree 
nanofibers 

27 POLYPHENYLENE 

SULFIDE (PPS) 

- - Not available   

28 POLYBENZENE-
IMIDAZOLE (PBI) 

- - Not available   

29 CELLULOSE 

ACETATE (CA) 
✓ - Zhou et al. 2011 

[74]  

Electrospinning 

Zhang et al. 2008 

[75]  

10-1000  chitosan/cellulose 

acetate microsphere 
(CCAM) was tested for 

blood compatibility  

 implanted CCAM had 
no hepatotoxicity, no 

renal toxicity and no 
hemolytic effect in SD 

rats. 

30 CESIUM (Cs) - - Not available   

31 RUBIDIUM (Rb) - - Not Biocompatible Not available   

32 POTASSIUM (K) - ✓ Yumin et al. 2007 

[76]  

Not available   Potassium titanate 
biological thin film 

studied using simulated 

body fluid cultivation, 
kinetic clotting of blood 

and osteoblast cell 

cultivation experiments 

 better biocompatibility 

and bioactivity than Ti-
15Mo-3Nb 
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S.No. Materials 

Biocompatibility Test Protocol Technology Feasibility Remarks 

In vivo In vitro Reference 
Process used and 

Reference 
Dia(nm) 

 

 Elemental potasium is 

difficult to test for 

biocompatibility and to 
make nanowire 

33 LITHIUM (Li) - ✓ Oh et al. 2004 [77]  Zhang et al. 2012 

[78]  

  Influence of Lithium 

Flouride on 
biocompatibility and 

bioactivity of calcium 
aluminate+PMMA 

composite cement 

 Lithium alloy / carbon 
nano composite 

34 SODIUM (Na) - - Not available  Anticoagulant 

35 BARIUM (Ba) - - Not available Electrospinning 

He et al.  [79]  

80-200 BaTiO3 nanofiber is 
fabricated by 

electrospinning. 

36 GRAPHITE (C) ✓ - Zhang et al. 2010 
[80]  

Powder metallurgy 

Jang and Han 2007 

[81]  

  Graphene oxide (GO) is 
a promising material for 

targeted drug delivery to 

the lung 

 Toxicity needs to be 

assessed 

5.3 MATERIALS FOR DESIGN OF NANOSWIMMER 

We have followed a three-stage screening process to assess the candidature of the 

engineering materials as artificial flagella suitable for implant in the body. Figure 5.2 

highlights the materials that are in the range of flexural modulus satisfying the 

mathematical model of the nanoswimmer propulsion derived in Chapter 3 and 4. There are 

36 materials that qualify at this stage.  

In stage 2, biocompatibility of the stage 1-screened material is assessed from the available 

literature. All the grades and isomers of any particular material are considered under a single 

category of the parent material at this stage, and 36 such sets of materials are evaluated for 

their hemocompatibilities. There is no relevant literature available for 15 materials out of 36 

in context of hemocompatibility. For the sake of clarity, they are rewritten in Table 5.3 

below. Among remaining 21 materials, the study results of 18 in vitro and 8 in vivo tests 

done on 21 materials have been published in the literature. We have rewritten these materials 

in Table 5.2 with a column on “Biocompatibility Test Protocol” below. 

The 21 materials are further assessed for manufacturability i.e. for permissible existing 

technology for their fabrication. Various researchers explored electrospinning, twin-screw 

extrusion, powder metallurgy, and other novel methods to manufacture nanowires of 

polymers, metals and ceramics. It is enlisted in Table 5.2 under the “Technology feasibility”. 
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The possibilities under technology feasibility are rewritten in Table 5.4 below. The 

corresponding diameter of the nanostructure synthesized is also highlighted. 

Table 5.3: Materials with nonavailability of literature on biocompatible issues 

S.No. Materials 

1  FLUORINATED ETHYLENE PROPYLENE (FEP) 

2  PERFLUORINATED ALKOXY (PFA) 

3  POLYBUTYLENE (PB) 

4  ACRYLONITRILE BUTADIENE STYRENE (ABS) 

5  POLYTRIFLUOROCHLOROETHYLENE (PCTFE) 

6  ETHYLENE TETRAFLUOROETHYLENE (ETFE) 

7  POLYBUTADIENE TEREPHTALATE (PBT) 

8  POLYPHENYLENE OXIDE (PPO) 

9  CHLORINATED POLYVINYL CHLORIDE (CPVC) 

10 POLYPHENYLENE SULFIDE (PPS) 

11 POLYBENZENE-IMIDAZOLE (PBI) 

12 CESIUM (Cs) 

13 RUBIDIUM (Rb) 

14 SODIUM (Na) 

15 BARIUM (Ba) 

Table 5.4: Possible existing technologies for fabrication 

S.No. 
Technology Feasibility 

(Process used) 
Materials 

1 Electrospinning POLYETHYLENE (PE) 

POLYAMIDE NYLON (PA) 

POLYVINYL CHLORIDE (PVC) 

POLYVINYLIDENE FLUORIDE (PVDF) 

POLYMETHYL METHACRYLATE (PMMA) 

POLYOXYMETHYLENE (POM) 

POLYSULFONE (PSF) 

POLYIMIDE (PI) 

CELLULOSE ACETATE (CA) 

BARIUM (Ba) 

2 Jet Blown fibrils POLYTETRAFLUROETHYLENE (PTFE) 

3 Twin-screw extruder CELLULOSE ACETATE-BUTYRATE (CAB) 

POLYBUTYLENE (PB) 

POLYPROPYLENE (Isotactic/Atactic) (PP) 

4 Melt blending and Melt spinning. FLUORINATED ETHYLENE PROPYLENE (FEP) 

5 Vacuum assisted infiltration POLYSTYRENE (PS) 

6 Lithography-assisted template 

bonding  

POLYCARBONATE (PC) 

7 Powder metallurgy GRAPHITE (C) 
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Comments on the biocompatibility test done so far on the enlisted materials and their 

processing highlights if any are extracted from literature and also discussed in the 

“Remarks” column of Table 5.2. 

The selection criteria is set such that the biocompatibility test data is available for in vivo 

studies conducted and it is feasible to process into nano-structure of diameter around 

400 nm. 

Amongst the 36 materials screened at stage 1, ten (S. No. 5, 9, 12, 14, 20, 21, 27, 28, 30 

and 34 in Table 5.2) neither had any relevant data regarding biocompatibility nor seemed 

technically feasible to form nanostructures with the present day technology. There are 5 

(S. No. 4, 7, 15, 22 and 31 in Table 5.2) other materials like FEP, which can be used only 

as coating material [82], which enhances the bioactivity or the biocompatibility of the 

device, coated with it. But independent structure or device formations by these 5 

materials are not assessed yet. Further, nanowires from pristine materials like lithium and 

barium (S. No. 33 and 35) is not formed. Moreover the compounds, composites or the 

copolymers of the shortlisted material during stage 1, which may form nano-structures, 

often need flexural rigidity check. Normally as they are metal composites or oxides 

whose flexural rigidity values are higher than that derived in stage 1 hence they are 

rejected. 

Amongst remaining 19 materials, in vitro testing of some materials for cytotoxicity, 

bioactivity and hemodialysis treatment are reported in literature but specific in vitro 

study with whole blood or in vivo hemocompatibility is not assessed. There are 7 

materials out of 19 materials that can form nanowires and have succeeded in in vivo 

biomedical applications like ocular implant, bone cement and compatibility with skin, 

lungs and its mucoadhesivity is assessed positive but hemocompatibility is yet to be 

verified. CAB, PS, PMMA and Graphite (S. No. 3, 16, 18 and 36 in Table 5.2) are 

important candidates in this category. The National Heart, Lung, and Blood Institute 

(NHLBI), USA used polyethylene as reference material for biocompatibility testing [28]. 

Rein et al. [29] also carry out nanowire preparation of High Molecular Weight 

Polyethylene (HMWPE) (S. No. 1, Table 5.2) by electrospinning. It was also found that 

PVDF has favorable mechanical properties. Laroche et al. [49] proposed PVDF (S. No. 

13, Table 5.2) as a suture for cardiovascular surgery. Thus PVDF shows good blood 

compatibility. The nanowires formed also can have controlled dimensions favorable for 

bio-mimicking flagella. In vivo testing of CA on SD rats had no hemolytic effect [74]. 
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CA (S. No. 29, Table 5.2) is also electrospun to produce membranes and felts for 

conducting bio-separation studies by Zhang et al. [75]. 

With the data available at this stage we screened 3 materials out of 7 materials vis-à-vis 

Polyethylene (PE), Polyvinylidenefluoride (PVDF), Cellulose acetate (CA) that satisfied 

all the conditions. The details of their flexural modulus range, biocompatibility test 

asserted in literature and nanostructure dimension and process of manufacturing is 

highlighted in Table 5.5. 

Based on the optimum Sperm number [7-8], a range of beating frequency is also 

suggested for the three proposed materials for maximum swimming efficiency, which is 

given in Table 5.5. A low value of Sperm number indicates that bending forces dominate 

and a high value of Sperm number corresponds to higher viscous forces. 

Table 5.5: Details of proposed materials 

Materials 

Flexural 

Modulus 

(GPa) 

Biocompatibility 

Test Protocol 
Technology Feasibility Optimal beating 

frequency 

range* 

(for Sp = 2) [7] In vivo In vitro Process 
Diameter 

(nm) 

Polyethylene 

(HMWPE) 

0.52 - 0.97 ✓ ✓ Electrospinning 250 -12000  9-16.5  Hz 

Polyvinylidene 

Fluoride (PVDF) 

1.17 - 8.3 ✓ ✓ Electrospinning 250  20-138 Hz 

Cellulose Acetate 

(CA) 

8.3 - 27.6 ✓ - Electrospinning 10-1000  138-460 Hz 

*The parametric values of flagella length and diameter considered for calculating beating frequency 

are 50µm and 200 nm respectively. 

The mathematical model developed for a TN propelling through HWP in section 4.3.1 is 

further simulated for three proposed materials in next section. 

5.4 OPTIMAL FLAGELLUM DIAMETER FOR BIO-

COMPATIBLE MATERIALS 

Numerical simulation of the mathematical model developed for forward velocity  zV  

and efficiency    for tapered nanoswimmer in section 4.3.2 is carried out in MATLAB
®
 

and variation of both these indexes with respect to proximal diameter of flagellum are 

shown in Figure 5.3 and Figure 5.4. Figure 5.3 illustrates the variation of the velocity 
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over variation of proximal diameter of a helical wave propelled TN for three 

proposed bio-compatible artificial flagellar materials in section 5.3. Figure 5.3 

shows the change in proximal diameter does not affect the peak velocity values 

significantly. 

 

Figure 5.3: Proximal flagellum diameter (di) for the fastest swimmer 

 

Figure 5.4: Proximal flagellum diameter (di) for the most efficient swimmer 
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Keeping the same taper ratio, the peak velocity increases from 85.4 μm/s (for 

Cellulose Acetate) to 90.4 μm/s (for Polyethylene) with variation in proximal 

diameter from 30 nm to 115 nm as shown in Figure 5.3. As the elasticity of the 

material decreases, the peak velocity shifts towards the larger diameter.  

Figure 5.4 illustrates the variation of the efficiency over proximal diameter of a 

helical wave propelled TN for three proposed bio-compatible materials. It is 

observed from Figure 5.4 that the peak efficiency is decreased marginally with increase 

in diameter. Figure 5.4 shows that the maximum efficiency observed is 0.58% for a 

tapered flagellum made of Cellulose Acetate. However the peak efficiency values 

decrease as elasticity decreases. A range of optimal diameter for the fastest and the most 

efficient swimmer with the proposed materials at ω = 100Hz is listed in Table 5.6. 

Table 5.6: Proximal diameter for selected biocompatible materials for maximum 

velocity and efficiency 

Material E (GPa) 
Proximal diameter (nm) 

Fastest swimmer Efficient swimmer 

Polyethylene[83] 0.52-0.97 100-115 68-80 

PVDF[29] 1.17-8.3 55-90 40-65 

Cellulose 

Acetate[76] 
8.3-27.6 40-55 30-40 

5.5 CONCLUSIONS 

The present chapter proposes a three-stage screening framework for assessing the 

candidature of any material for the fabrication of artificial flagella, which shall have 

implant capabilities in vivo. Based on the flexural modulus data collected for more than 

500 materials and screening them according to the proposed framework there are three 

materials (Polyethylene, PVDF and Cellulose Acetate) that qualifies in all the criteria. 

In addition to these screened materials, researchers in [9], [19-20] have also found 

materials like SiO2, PDMS and PEG-DA as suitable candidates for fabricating micro 

swimmers. 

Comparison of fastest and most efficient nanoswimmer for three proposed biocompatible 

materials is carried out for the future design of nanoswimmer. The variation in 
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performance indexes of nanoswimmer namely swimming velocity and efficiency  

(i.e. xV  and  ) with respect to proximal diameter of flagellum for a helical wave 

propelled tapered nanoswimmer is obtained. The peak velocity increases from 

85.4 μm/s (for Cellulose Acetate) to 90.4 μm/s (for Polyethylene) with variation in 

proximal diameter from 30 nm to 115 nm. The maximum efficiency observed is 

0.58% for a tapered flagellum made of Cellulose Acetate. 
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Chapter 6 

Overall Conclusions and Future Scope of Work 

6.1 OVERALL CONCLUSIONS  

The performance of a uniform diameter nanoswimmer (UDN) and more realistic, a 

tapered nanoswimmer (TN) using resistive force theory was investigated. A systematic 

study was carried out with both planar and helical wave propagations through a 

uniflagellated nanoswimmer. The important results of present study are summarized in 

the following paragraphs. 

1. In Chapter 3, a generalized propulsion model was developed to predict the 

propulsion characteristics of elastic uniform flagella. The model is used to 

estimate swimming speed, thrust force, and efficiency of the nanoswimmer. From 

the results of simulation of generalized propulsion model, it is seen that in case of 

passive filaments it is advantageous to use short tail lengths. Longer tail lengths 

lead to an increase in the drag force and hence have a detrimental effect on 

swimming speed and efficiency. Boundary conditions such as the angle of the tail 

at the base are varied and optimized for helical wave propelled UDN. From the 

analysis of simulated results it is seen that a planar wave propelled UDN 

performs better in the range of characteristic length lLl 2   7.1   whereas a 

helical wave propelled UDN performs better in the range of lLl 2.7   2.2  . 

2. In Chapter 3, it has been shown that the HWP model is better than the PWP 

model due to practical aspects. The limitation of the planar bending wave model 

is that it is a 2D model and hence may never be able to conclude anything about 

performing turns in 3D. All parts for a helical model similar to the one in E. Coli 

are available today. 

3. The propulsion characteristics of a planar wave propelled TN have been studied 

and the same is compared to the case of UDN. Mode shapes of a tapered 

flagellum are predicted based on elastohydrodynamic equations. Keeping the 

flagellum volume constant, two new cases are developed for a given ratio of 
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initial and final diameter. Results indicate that the linearly tapered flagellum 

planar model (case B) showed improved performance higher velocity and 

efficiency compared to the uniform flagellum model. For a given frequency, the 

velocity and efficiency ratio/fraction for the taper to uniform case can go as high 

as 3.2 times and 3.75 times respectively. The maximum efficiency of the taper 

case is almost double the maximum efficiency of the uniform diameter case. 

Considering this the tapered flagellum gives a more realistic value of the 

performance indicators that has not been shown or attempted in literature. 

4. Based on the analysis done in Chapter 4, a TN is more efficient and faster than 

the UDN. The optimum taper ratio (bi : bf) is around 18. The rh : L is the deciding 

factor which has to trade off between the velocity and the efficiency. 

5. In Chapter 4, helical wave propelled TN is also modeled and simulated. From the 

results, it is seen that the optimal range for head radius to flagellum length ratio, 

characteristic length and taper ratio are (0.3-0.4), (1.33-2.1) and (3.57-5.88), 

respectively. The maximum velocity and efficiency observed for tapered 

flagellated nanoswimmer through helical wave propagation are 84.5μm/sec and 

0.57%, respectively. 

6. The maximum velocity of a helical wave propelled TN is 85.45µm/s as compared 

to 55.65µm/s for a uniform diameter flagellum. The maximum efficiency 

observed is 0.57% for a tapered flagellum and 0.38% for a uniform diameter 

flagellum. The optimal taper ratio and head size are found for both the fastest 

swimmer and the most efficient swimmer. The velocity is found to maximum at 

L/l~1.33, rh/L ~0.34 and at a taper ratio ~5.88 whereas the efficiency is found 

maximum at L/l~1.85, rh/L ~ 0.28 and taper ratio ~3.57. 

7. It has been observed that for a taper ratio less than 3.34 (i.e., 34.3 / fi bb ), the 

helical wave propulsion outperforms the planar wave propulsion, whereas beyond 

this point, the planar wave propulsion is faster than the helical wave propulsion. 

Planar wave propulsion gives a higher value of maximum efficiency ~5.01% 

when elasticity is around ~ 500MPa, while the maximum efficiency of helical 

wave propulsion is only ~0.55%, which is obtained at lower elasticity ~200MPa. 

The efficiency values are in agreement with previously reported values for a 

uniform flagellum. 
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8. The Chapter 5 proposes a three-stage screening framework for assessing the 

candidature of any material for the fabrication of artificial flagella, which shall 

have implant capabilities in vivo. Based on the flexural modulus data collected 

for more than 500 materials and screening them according to the proposed 

framework there are three materials (Polyethylene, PVDF and Cellulose Acetate) 

that qualifies in all the criteria. In addition to these screened materials, 

researchers have also found materials like SiO2, PDMS and PEG-DA as suitable 

candidates for fabricating nanoswimmers. 

9. Comparison of fastest and most efficient nanoswimmer for three proposed 

biocompatible materials is carried out for the future design of nanoswimmer. The 

variation in performance indexes of nanoswimmer namely swimming velocity 

and efficiency with respect to proximal diameter of flagellum for a helical wave 

propelled tapered nanoswimmer is obtained. The peak velocity increases from 

85.4μm/s (for Cellulose Acetate) to 90.4μm/s (for Polyethylene) with variation in 

proximal diameter from 30 nm to 115 nm. The maximum efficiency observed is 

0.58% for a tapered flagellum made of Cellulose Acetate. 

6.2 FUTURE SCOPE OF WORK 

No research concludes with an absolute end. There is enough scope for further 

investigations in the area of “Dynamics and Design of the Nanoswimmers”. The research 

in this topic will find a milestone when it will be first realized. From the perspective of 

present work, the following aspects can be studied and investigated further. 

1. Scaled-up experiments to evaluate steady shapes of passive elastic filaments and their 

propulsive characteristics are needed to validate these theoretical results. Another 

direction for future work lies in developing materials for the tail, which while not 

actively generating bending moments, maintain constant amplitude along their length. 

Notwithstanding the challenges this study shows that passive filaments can be 

considered as a good starting point in the design and fabrication of nanoswimmers. 

2. Effective ways of controlling nanoswimmers inside the human body is an 

important term in realization of an autonomous nanoswimmer which is yet to be 

addressed. Increasing the number of flagella will enhance both the speed and the 
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efficiency of nanoswimmers. The optimum design of a multi-flagella system in 

terms of number of flagella and spacing is yet to be investigated. 

3. For nanomachines working in fluids, thermal agitation around the machine 

influences its movement to a greater degree which has not been investigated till 

date. Further, the thermal and chemical changes affect the low Reynolds number. 

The environment parametric variations need to be incorporated in hydrodynamic 

modeling of nanoswimmers. 

4. Despite many attempts, no feasible design with on-board powering of a 

nanoswimmer has been proposed. Though researchers have proposed and 

investigated several techniques to locomote and control nanoswimmer but on-

board actuation scheme of nanoswimmer have yet to be conducted to confirm 

their credibility. 
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APPENDIX-I 

THE MOMENT-CURVATURE RELATION 

For a symmetrical, linearly elastic beam element subjected to pure bending, the relation 

between the curvature  /1  of the neutral axis and applied bending moment ( bM ) is 

given by equation (I.1) 
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where   is change in the slope angle between two points on the neutral axis at a distance 

s , E is modulus of elasticity, and I is the moment of inertia of the cross-sectional area. 

The curvature  /1  in terms of derivatives of deflection is given by equation (I.2) 
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where y  is the deflection of the neutral axis, and 
dx

dy
 is the slope of deflection curve 

i.e. neutral axis. 

Substituting equation (I.2) into (I.1), we get y  as a function of bM and is given as 
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With small slope assumption 







1

dx

dy
, equation (I.3) is simplified as 
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Differentiating equation (I.4) twice with respect to x, we get transverse load per unit 

length as a function of y  

 ds
x

y
EIdFE 4

4
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
  (I.5) 



APPENDIX-II 

MATLAB coding for obtaining performance indexes in UDN through 

Planar wave propulsion 

% Calculates steady state shape for planar waves 
clear 
% G=input('Enter vale of amplitude: '); 

G=1; 

% f=input('Enter value of frequency: '); 

% l0=input('Enter value of dimensionless length: '); 

f=100; 

L=35e-6; 

n=1; 

% for L=0.5e-6:0.1e-6:30e-6; 

%---------------------------------------------------------- 

k1=0.38+0.92i;       %fourth roots of -i 

k2=-.92+.38i; 

k3=-.38-.92i; 

k4=0.92-.38i; 

%---------------------------------------------------------- 

A=1e-22;             %Typical value of stiffness reported in literature 

u=0.001;             %fluid viscosity 

r=0.2e-6; 

cl=2*pi*u/(log(L/r)-0.5);     % drag coefficient 

cn=4*pi*u/(log(L/r)+0.5);     % drag coefficient   

cl=cl*1.35; 

cn=cn*1.35; 

ra=0.5e-6;                    % radius of head 

l=(A/(cn*2*pi*f))^(1/4);      % scale length 

l0=L/l; 

%-------------------------------------------------------------- 

h=.01;                       % discretization size                

tl=1/f;                      

x=[0:h:l0]; 

m=length(x); 

ht=tl/(m-1); 

[t,x]=meshgrid(0:ht:tl,0:h:l0);          %mesh of time and space domain 

a=[ 1 1 1 1; k1 k2 k3 k4; k1^2*exp(k1*l0) k2^2*exp(k2*l0) 

k3^2*exp(k3*l0) k4^2*exp(k4*l0); k1^3*exp(k1*l0) k2^3*exp(k2*l0) 

k3^3*exp(k3*l0) k4^3*exp(k4*l0)]; 

b=[0 G*l 0 0]; 

coeff=inv(a)*b'; 

y1=coeff(1)*exp(k1*x)/L; 

y2=coeff(2)*exp(k2*x)/L; 

y3=coeff(3)*exp(k3*x)/L; 

y4=coeff(4)*exp(k4*x)/L; 

yx=(y1+y2+y3+y4)*L; 

[V(n),Fx(n),l01(n)]=prop1(t,x,yx,f,L,ht,ra);%Swimming speed 

n=n+1; 

% end 

plot(l01,V); 

function v=propL(x,yx,f,l,l0) 

% clear 

% F=quad('sshape',0,5); 

tl=1/f; 

w=2*pi*f; 
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cl=3.34e-3; 

u=0.001;            % viscosity of water 

a=1e-6; 

L=l*l0; 

h=x(2)-x(1); 

j=1; 

t=0; 

yd=diff(yx)/h; 

k=length(yd); 

yd(k+1)=yd(k); 

A1=(yx.*yd); 

yd2=yd.^2; 

for t=0:.0001:tl 

    A2=1+exp(2*i*w*t)*yd2; 

    I1=A1./(A2.^(0.5)); 

    I2=A2.^(0.5); 

    F1=trapezoid(x,I1,h); 

    F2=trapezoid(x,I2,h); 

    Vx(j)=cl*(l^2)*i*w*exp(2*i*w*t)*F1/(cl*l*F2+6*pi*u*a); 

    j=j+1; 

end 

v=real(sum(Vx)/(tl/.0001)); 

 
% Propulsion parameters for planar waves 

function [V,Fx,l0]=prop1(t,x,yx,f,L,ht,a) 

%--------------------------------------------------- 

% physical parameters 

A=1e-22;            % Typical value of stiffness reported in literature 

u=0.001;            % fluid viscosity 

r=0.2e-6; 

w=2*pi*f; 

cl=1.35*2*pi*u/(log(L/r)-0.5);     % drag coefficient 

cn=1.35*4*pi*u/(log(L/r)+0.5);     % drag coefficient 

l=(A/(cn*w))^(1/4);           % scale length 

l0=L/l; 

%--------------------------------------------------- 

% shape definition 

tl=1/f; 

h=.01; 

x=l*x; 

h=l*h; 

  

y=real(exp(1i*w*t).*yx); % final shape function (time dependent) 

%----------------------------------------------------- 

[fx,ft]=gradient(y,h,ht); 

  

F1=abs(((1+fx.^2).^0.5)); 

  

F=((ft.*fx)./F1); 

F2=((cl+(fx.^2)*cn)./F1); 

I2=trapezoid(x,F,h,ht)/tl; 

I1=trapezoid(x,F2,h,ht)/tl; 

% I2=integral(x,ft,h); 

V=-((cn-cl)*I2/(I1+6*pi*u*a)); 

% Fy=abs(V*I1-2*I2); 

Fx=6*pi*u*a*V; 

% Integral with respect to space and time using trapezoidal rule 

function intgnd=trapezoid(x,yx,h,ht) 

k=length(x); 

f(1:k)=0; 
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intgnd=0; 

for j=1:k-1 

     

    for i=1:k-1 

        f(j)=f(j)+0.5*(yx(i,j)+yx(i+1,j))*h; 

    end 

end  

for j=1:k-1 

     intgnd=intgnd+0.5*(f(j)+f(j+1))*ht; 

end 
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MATLAB coding for obtaining performance indexes in UDN through 

helical wave propulsion 

% Derivation of steady state shape for helical waves 
function [x,y,z]=helical_shape(L,f,st) 
% Helical waves mathematical model 
% l0=input('Enter value of dimensionless length: '); 
% b0=input('Enter value for radius of rotation: '); 
% f=input('Enter value of forcing frequency: '); 
A=1e-22;            % Typical value of stiffness reported in literature 
u=0.001;            % fluid viscosity 
cl=2*pi*u/(log(L/r)-0.5); 
cl=cl+0.35*cl;   % drag coefficient 
cn=4*pi*u/(log(L/r)+0.5);     % drag coefficient 
cn=cn+0.35*cn; 
ra=5e-6;                      % radius of head 
l=(A/(cn*2*pi*f))^(1/4);      % scale length 
l0=L/l 
b0=L/10; 
z=[0:.05:l0]; 
n=1; 
for i=1:2:15 
    k(n)=exp(j*pi*i/8); 
    n=n+1; 
end 
% Evaluating coefficients 
for n=1:8 
    a(1,n)=1; 
    a(2,n)=k(n)^4; 
    a(3,n)=k(n)^2; 
    a(4,n)=k(n)^6; 
    a(5,n)=(k(n)^2)*exp(k(n)*l0); 
    a(6,n)=(k(n)^6)*exp(k(n)*l0); 
    a(7,n)=(k(n)^3)*exp(k(n)*l0); 
    a(8,n)=(k(n)^7)*exp(k(n)*l0); 
end 
b=[b0 0 0 0 0 0 0 0]; 
coeff=inv(a)*b'; 
X1=coeff(1)*exp(k(1)*z); 
X2=coeff(2)*exp(k(2)*z); 
X3=coeff(3)*exp(k(3)*z); 
X4=coeff(4)*exp(k(4)*z); 
X5=coeff(5)*exp(k(5)*z); 
X6=coeff(6)*exp(k(6)*z); 
X7=coeff(7)*exp(k(7)*z); 
X8=coeff(8)*exp(k(8)*z); 
Y1=-coeff(1)*(k(1)^4)*exp(k(1)*z); 
Y2=-coeff(2)*(k(2)^4)*exp(k(2)*z); 
Y3=-coeff(3)*(k(3)^4)*exp(k(3)*z); 
Y4=-coeff(4)*(k(4)^4)*exp(k(4)*z); 
Y5=-coeff(5)*(k(5)^4)*exp(k(5)*z); 
Y6=-coeff(6)*(k(6)^4)*exp(k(6)*z); 
Y7=-coeff(7)*(k(7)^4)*exp(k(7)*z); 
Y8=-coeff(8)*(k(8)^4)*exp(k(8)*z); 
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x=(X1+X2+X3+X4+X5+X6+X7+X8); 
y=(Y1+Y2+Y3+Y4+Y5+Y6+Y7+Y8); 
figure(1); 
plot(x/L,y/L,st); 
hold on; 
figure(2); 
plot(z/l0,y/L,st); 
hold on; 
figure(3); 
plot(z/l0,x/L,st); 
hold on; 
[V(p),wv(p),Fx(p),M(p),Mt(p)]=prophelix2(x,y,z,f,l,l0); 
 

% [V(p),wv(p),Fx(p),M(p),Mt(p)]=prophelix(x,y,z,f,l,l0); 
wv(p); 
w1=w-wv(p); 
f=(w1/(2*pi)); 
end 
% figure(1); 
% plot(x/l,y/l,st); 
% hold on; 
% figure(2); 
% plot(z/l0,x/l,st); 
% hold on; 
% figure(3); 
% plot(z/l0,y/l,st); 
% hold on; 
% figure(4); 
% plot3(x/l,y/l,z/l0,'r-'); 
V1=V(p); 
wv1=wv(p); 
Fx1=Fx(p); 
M1=(M(p)); 
Mt1=(Mt(p)); 
eff1=Fx1*V1/(Mt1*(w-wv1)+M1*wv1); 
% p=1:100; 
% plot(p,wv); 

 

% Propulsion parameters for helical waves 
function [V,wv,Fx,M,Mt]=prophelix(x,y,z,f,l,l0) 
L=l*l0; 
u=0.001;            % water as fluid 
b=.2e-6;            % diameter of tail 
a=0.5e-6;           % radius of head 
w=2*pi*f; 
cn=4*pi*u/(log(L/b)+.5); 
cl=2*pi*u/(log(L/b)-.5); 
%--------------------------------------- 
r=abs(sqrt(x.^2+y.^2)); 
r2=r.^2; 
z=l*z; 
hz=z(2)-z(1); 
yd=diff(y); 
n=length(yd); 
yd(n+1)=yd(n); 
xd=diff(x); 
xd(n+1)=xd(n); 
yd=yd/hz; 
xd=xd/hz; 
bt=atan(abs(y.*xd-x.*yd)./r); 
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bt(1)=0; 
%----------------------------------------- 
f1=r.*sin(bt); 
f2=r2.*sin(bt).*tan(bt); 
f3=r2.*cos(bt); 
f4=cos(bt); 
f5=sin(bt).*tan(bt); 
I1=integral(z,f1,hz); 
I2=integral(z,f2,hz); 
I3=integral(z,f3,hz); 
I4=integral(z,f4,hz); 
I5=integral(z,f5,hz); 
A=[cl*I1-cn*I1  4*pi*u*b^2*I4+8*pi*u*a^3-cl*I2-cn*I3; cl*I4+cn*I5-

6*pi*u*a  cn*I1-cl*I1]; 
B=[-w*(cl*I2+cn*I3) cn*I1*w-cl*I1*w]; 
sol=inv(A)*B'; 
V=sol(1); 
wv=sol(2); 
Fx=(6*pi*u*a*V); 
M=8*pi*u*a^3*wv; 
Mt=V*(cl*I1-cn*I1)+wv*(4*pi*u*b^2*I4-cl*I2-cn*I3)+w*(-

4*pi*u*b^2*I4+cl*I2+cn*I3); 

 
% Propulsion parameters for helical waves 
function [V,wv,Fx,M,Mt]=prophelix2(x,y,z,f,l,l0,a) 
L=l*l0; 
u=0.001;             % water as fluid 
r=0.2e-6;            % radius of tail 
% a=0.5e-6;          % radius of head 
w=2*pi*f;            % Angular velocity if tail wrt head 
cn=4*pi*u/(log(L/r)+.5);    % Normal     
cl=2*pi*u/(log(L/r)-.5);    % Tangential drag coefficients 
cl=1.35*cl; 
cn=1.35*cn; 
%--------------------------------------- 
x=real(x); 
y=real(y); 
r1=abs(sqrt(x.^2+y.^2));     % Calculating instantaneous amplitude 
r2=r1.^2; 
z=l*z; 
hz=z(2)-z(1); 
% Evalutaing differentials---------------- 
yd=diff(y); 
n=length(yd); 
yd(n+1)=yd(n); 
xd=diff(x); 
xd(n+1)=xd(n); 
yd=yd/hz; 
xd=xd/hz; 
%----------------------------------------- 
% Calculating instantaneous pitch angle(radians) 
bt=atan(abs(y.*xd-x.*yd)./(r1+1e-22));    

m=1:n+1; 
bt(1)=0; 

  
%Propulsion model----------------------------------------- 
f1=r1.*sin(bt); 
f2=r2.*sin(bt).*tan(bt); 
f3=r2.*cos(bt); 



Appendix-III 

 

III-4 

f4=cos(bt); 
f5=sin(bt).*tan(bt); 
I1=integral(z,f1,hz); 
I2=integral(z,f2,hz); 
I3=integral(z,f3,hz); 
I4=integral(z,f4,hz); 
I5=integral(z,f5,hz); 
A(1,1)=I1*(cl-cn);               

%(Calculation of angular speed of head and swimming velocity) 
A(1,2)=-(4*pi*u*r^2*I4+8*pi*u*a^3+cl*I2+cn*I3); 
A(2,1)=cl*I4+cn*I5+6*pi*u*a; 
A(2,2)=I1*(cn-cl);   

  
B=[-w*(cl*I2+cn*I3+4*pi*u*r^2*I4) w*I1*(cn-cl)]; 

% Modified for axial joint between motor and flagellum 
sol=inv(A)*B'; 
V=sol(1);                       % swimming speed 
wv=sol(2);                      % angular velocity of head 
Fx=(6*pi*u*a*V); 
M=8*pi*u*a^3*wv; 
Mt=V*(cl*I1-cn*I1)+wv*(-4*pi*u*r^2*I4-cl*I2-

cn*I3)+w*(4*pi*u*r^2*I4+cl*I2+cn*I3); 
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MATLAB coding for obtaining performance indexes in TN through Planar 

wave propulsion 

clc; clear all 

% parameters for simulations 

%-------------------------------------------------------- 

% for parametric variation 

L=50e-6; 

rc=200e-9;   

rh=15e-06; 

vol=L*pi*rc^2; 

u=0.001; 

count=100; % no of elements 

n=1;  % to initialize variation of first parameter array 

index 

for E=0.1e6:1e6:1e9 

elasticity(n)=E; 

s=1; 

for f=[25 35 45] 

w=2*pi*f; 

T=1/f; 

% case A - Constant diameter 

%----------------------------------------------------------- 

Ic=(pi/4)*(rc^4); 

cnc=4*pi*u/(log(L/rc)+0.5); 

cl_c=2*pi*u/(log(L/rc)-0.5); 

sclenc=((E*Ic)/(cnc*w))^0.25; 

flexr(n)=E*Ic; 

scalelen(n,s)=L/sclenc; 

% Taper diameter 

ratio=1/3; 

% case B - length remaining same 

%----------------------------------------------------------- 

x=linspace(0,L,count); 

25 

26 matlab codes 

ri=sqrt(vol/((pi/3)*L*(1+ratio^2+ratio))); 

rf=ri*ratio; 

r=ri-((ri-rf)/L).*x; 

I=(pi/4)*r.^4; 

cn=4*pi*u./(log(L./r)+0.5); 

cl=2*pi*u./(log(L./r)-0.5); 

sclen=((E*I)./(cn*w)).^0.25; 

% case C - distal end diameter remaining same 

%--------------------------------------------------------- 

Lt=3*vol/(pi*(rc^2)*(1+ratio^2+ratio)); 

xx=linspace(0,Lt,count); 

rix=rc; 

rfx=rix*ratio; 

rx=rix-((rix-rfx)./Lt)*xx; 

Ix=(pi/4)*rx.^4; 

cnx=4*pi*u./(log(Lt./rx)+0.5); 

clx=2*pi*u./(log(Lt./rx)-0.5); 

sclenx=((E*Ix)./(cnx*w)).^0.25; 
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% 

----------------------------------------------------------------------- 

% PROPULSION OUTPUT PARAMETERS 

% 

----------------------------------------------------------------------- 

% propulsion calculation for case A 

[tc yc hc htc]=ypro_const(x,sclenc,L,1,T); 

[Vc,Fxc,Fyc,effc]=prop_planar_const(L,rc,tc,x,yc,hc,htc,rh,f,u); 

% propulsion calculation for case B 

[t yx h ht]=ypro(x,sclen(1),L,1,T,ri,rf); 

[V,Fx,Fy,eff]=propulsion(t,x,yx,h,ht,rh,L,cn,cl,count,f,u); 

% propulsion calculation for case C 

%  [tx yxx hx htx]=ypro(xx,sclenx(1),Lt,1,T,rix,rfx); 

A.1 main function module 27 

% 

 [Vx,Fxx,Fyx,effx]=propulsion(tx,xx,yxx,hx,htx,rh,Lt,cnx,clx,count

,f,u); 

%  Velocity(n,:)=[Vc V V_Icn V_r]; 

%  efficiency(n,:)=[effc eff eff_Icn eff_r]; 

Velocity(n,s,:)=[Vc V ]; %Vx]; 

efficiency(n,s,:)=[effc eff ]; %effx]; 

thrust(n,s,:)=[Fxc Fx]; 

velfrac(n,s,:)=[V/Vc ]; %Vx/Vc]; 

efffrac(n,s,:)=[eff/effc ]; %effx/effc]; 

%  ti=num2str(E*Ic); 

%  subplot(1,1,n) 

%  if(E==190.8e6) 

%  plot(x,real(yc));hold on;%,’-r’,x,real(yx),’-.b’,xx,real(yxx),’-

b’); 

%  ylabel(’amplitude’);xlabel(’length’); 

%  end 

%  Title(ti); 

%  plot3(frac,rh_L,Vc,’xr’,frac,rh_L,V,’ob’,frac,rh_L,Vx,’xb’); 

hold on; 

%  ylabel(’Velocity for unit length’);xlabel(’tail radius to length 

fraction’); 

%  figure (1);plot3(E,f,Vc,’xr’);hold on; grid on; 

%  figure (2);plot3(E,f,V,’ob’);hold on; grid on; 

%  xlabel(’Elasticity’);ylabel(’Frequency’) 

%  figure(1); 

%  plot(E,Vc,’xr’,E,V,’ob’,E,Vx,’xb’);hold on; 

%  grid on; ylabel(’Velocity for unit length’);xlabel(’Elasticity’); 

% 

%  figure(2); 

%  plot(E,effc,’xr’,E,eff,’ob’,E,effx,’xb’);hold on; 

%  grid on; ylabel(’Efficiency for unit 

length’);xlabel(’Elasticity’); 

%   figure(1); 

%   subplot(121) 

%  plot(f,Vc,’xr’,f,V,’ob’,f,Vx,’xb’);hold on; 

%  ylabel(’Velocity for unit length’);xlabel(’Frequency’); 

%  grid on; 

%  

%   subplot(122) 

%  plot(f,V/Vc,’*r’,f,Vx/Vc,’*b’);hold on; 

%  ylabel(’Velocity ratio’);xlabel(’Frequency’); 

%  grid on; 

%  

%  figure(2); 

% plot(f,effc,’xr’,f,eff,’ob’,f,effx,’xb’);hold on; 
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%  ylabel(’Efficiency for unit length’);xlabel(’Frequency’); 

  

%  grid on; 

freq(s)=f; 

s=s+1; 

end 

n=n+1; 

end 

%  figure(1) 

%  plot(scalelen,Velocity(:,2,1),scalelen,Velocity(:,2,2)) 

%  grid on;ylabel(’Velocity’);xlabel(’L/scale length’); 

%  figure(2) 

% 

 plot(flexr,Velocity(:,1,1:2),’r’,flexr,Velocity(:,2,1:2),’g’,flex

r,Velocity(:,3,1:2),’’) 

%  grid on;ylabel(’Velocity’);xlabel(’Flexural rigidity’); 

figure(1) 

plot(elasticity,Velocity(:,:,1),’r’,elasticity,Velocity(:,:,2),’b’) 

% ,elasticity,Velocity(:,2,3),’g’) 

grid on;ylabel(’Velocity’);xlabel(’Elasticity’); 

figure(2) 

plot(elasticity,efficiency(:,:,1),’r’,elasticity,efficiency(:,:,2),’b’) 

grid on;ylabel(’Efficiency’);xlabel(’Elasticity’); 

figure(3) 

plot(elasticity,velfrac(:,:,1)) 

grid on;ylabel(’Velocity Fraction’);xlabel(’Elasticity’); 

figure(4) 

plot(elasticity,efffrac(:,:,1)) 

grid on;ylabel(’Efficiency Fraction’);xlabel(’Elasticity’); 

figure(5) 

plot(elasticity,thrust(:,:,1),’r’,elasticity,thrust(:,:,2),’b’) 

grid on;ylabel(’Thrust Force’);xlabel(’Elasticity’); 

% 

 plot(elasticity,efffrac(:,:,1),’r’,elasticity,efffrac(:,:,2),’g’)

; 

a.2 profile module : uniform flagellum 

Listing 4: Profile of Uniform Flagellum 

function [t yx h ht] = ypro_const(x,sclen,L,G,T) 

% fourth roots of -i 

k=roots([1 0 0 0 1i]); 

%------------------------------------- 

l=L/sclen; 

a=[ 1 1 1 1; ... 

k(1) k(2) k(3) k(4);... 

A.3 profile module : tapered flagellum 29 

k(1)^2*exp(k(1)*l) k(2)^2*exp(k(2)*l) k(3)^2*exp(k(3)*l) k(4) 

^2*exp(k(4)*l);... 

k(1)^3*exp(k(1)*l) k(2)^3*exp(k(2)*l) k(3)^3*exp(k(3)*l) k(4) 

^3*exp(k(4)*l)]; 

b=[0; G*sclen; 0; 0]; 

coeff=inv(a)*b; 

%------------------------------------------------------------- 

%  x=linspace(0,L); 

h=x(2)-x(1); 

m=length(x); 

ht=T/(m-1); 

[t,x]=meshgrid(0:ht:T,0:h:L); % mesh of time and space domain 

%------------------------------------------------------------- 

y1=coeff(1)*exp(k(1)*x/sclen); 

y2=coeff(2)*exp(k(2)*x/sclen); 
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y3=coeff(3)*exp(k(3)*x/sclen); 

y4=coeff(4)*exp(k(4)*x/sclen); 

yx=(y1+y2+y3+y4); 

_ 

a.3 profile module : tapered flagellum 

Listing 5: Profile of Tapered Flagellum 

function [t yx h ht]=ypro(x,scl,L,G,T,di,df) 

%  function yx = ypro_lin(scl,L,G,T,di,df) 

%----------------------------------------------- 

% calculate roots of auxiliary equation 

%----------------------------------------------- 

k=(df-di)/(L*di); 

c=1i/(k*scl)^4; 

z=[1 2 -1 -2 c]; 

m=roots(z); 

m1=m(1);m2=m(2);m3=m(3);m4=m(4); 

%----------------------------------------------- 

h=x(2)-x(1); 

p=length(x); 

ht=T/(p-1); 

[t,x]=meshgrid(0:ht:T,0:h:L); % mesh of time and space domain 

%------------------------------------------------ 

M=[1 1 1 1;... 

m(1) m(2) m(3) m(4);... 

m(1)*(m(1)-1)*((df/di)^(m(1)-2)) m(2)*(m(2)-1)*((df/di)^(m(2) 

-2)) m(3)*(m(3)-1)*((df/di)^(m(3)-2)) m(4)*(m(4)-1)*((df/ 

di)^(m(4)-2));... 

m(1)*(m(1)-1)*(m(1)-2)*((df/di)^(m(1)-3)) m(2)*(m(2)-1)*(m(2) 

-2)*((df/di)^(m(2)-3)) m(3)*(m(3)-1)*(m(3)-2)*((df/di)^(m 

(3)-3)) m(4)*(m(4)-1)*(m(4)-2)*((df/di)^(m(4)-3))];... 

30 matlab codes 

der=[0;G/k;0;0]; 

A1= M\der; 

%----------------------------------------------- 

y1=A1(1)*(k*x+1).^m(1); 

y2=A1(2)*(k*x+1).^m(2); 

y3=A1(3)*(k*x+1).^m(3); 

y4=A1(4)*(k*x+1).^m(4); 

yx=(y1+y2+y3+y4); 

end 

a.4 output module : uniform flagellum 

Listing 6: Output meseaurements for uniform flagellum 

% Propulsion parameters for planar waves 

function[V,Fx,Fy,eff]=prop_planar_const(L,rc,t,x,yx,h,ht,a,f,u) 

%--------------------------------------------------- 

%  variables_lin_taper; 

% u=0.001; 

w=2*pi*f; 

T=1/f; 

cn=4*pi*u/(log(L/rc)+0.5); 

cl=2*pi*u/(log(L/rc)-0.5); 

y=real(exp(1i*w*t).*yx); %  final shape function (time dependent) 

%----------------------------------------------------- 

[fx,ft]=gradient(y,h,ht); 

F=ft.*fx; 

F2=ft.*ft; 

I1_temp=ht*trapz(F); 

I1=h*trapz(I1_temp)/T; 

I2_temp=ht*trapz(fx); 

I2=h*trapz(I2_temp)/T; 
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I3_temp=ht*trapz(ft); 

I3=h*trapz(I3_temp)/T; 

I4_temp=ht*trapz(F2); 

I4=h*trapz(I4_temp)/T; 

V=abs(((cn-cl)*I1)/((L*cl)+(6*pi*u*a))); 

Fx=6*pi*u*a*V; 

Fy=abs(((cn-cl)*V*I2)-(cn*I3)); 

FynVy=abs(((cn-cl)*V*I1)-(cn*I4)); 

eff=(Fx*V)/((FynVy)+(Fx*V)); 

end 

_ 

A.5 output module: tapered flagellum 31 

a.5 output module: tapered flagellum 

Listing 7: Output meseaurements for tapered flagellum 

% Propulsion parameters for planar waves 

function[V,Fx,Fy,eff]=propulsion(t,x,yx,h,ht,a,L,cnx,clx,count,f,u) 

%--------------------------------------------------- 

w=2*pi*f; 

T=1/f; 

%  u=0.001; 

%  cn=mean(cnx);cl=mean(clx); 

for i=1:1:count 

cn(:,i)=cnx; 

cl(:,i)=clx; 

end 

y=real(exp(1i*w*t).*yx); %  final shape function (time dependent) 

%  plot3(x,t,y); 

%----------------------------------------------------- 

[fx,ft]=gradient(y,h,ht); 

F=(cn-cl).*ft.*fx; 

%  I1=trapezoid(x,F,h,ht)/T; 

I1_temp=h*trapz(F); 

%  I1=ht*trapz(I1_temp); 

I1=ht*trapz(I1_temp)/T; 

%  I5=trapezoid(x,cl,h,ht)/T; 

I5_temp=h*trapz(cl); 

%  I5=ht*trapz(I5_temp); 

I5=ht*trapz(I5_temp)/T; 

cfx=(cn-cl).*fx; 

%  I2=trapezoid(x,cfx,h,ht)/T; 

I2_temp=h*trapz(cfx); 

%  I2=ht*trapz(I2_temp); 

I2=ht*trapz(I2_temp)/T; 

cft=cn.*ft; 

%  I3=trapezoid(x,cft,h,ht)/T; 

I3_temp=h*trapz(cft); 

%  I3=ht*trapz(I3_temp); 

I3=ht*trapz(I3_temp)/T; 

F2=cn.*ft.*ft; 

%  I4=trapezoid(x,F2,h,ht)/T; 

I4_temp=h*trapz(F2); 

%  I4=ht*trapz(I1_temp); 

32 matlab codes 

I4=ht*trapz(I4_temp)/T; 

V=abs((I1)/(I5+(6*pi*u*a))); 

Fx=6*pi*u*a*V; 

Fy=((V*I2)-(I3)); 

FynVy=abs((V*I1)-(I4)); 

eff=(Fx*V)/((FynVy)+(Fx*V)); 

end 
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MATLAB coding for obtaining performance indexes in TN through helical 

wave propulsion 

%-------------------Parametric variation of distal end diameter-------- 

format long 

L=10e-6;             %Length (m) 

eta=1;               %Extent 

di=200e-9;            %Initial Diameter(m) 

 I=pi*(di^4)/64;      %Moment of Inertia(m^4) 

k=(df-di)/(L*di); 

 Mu=0.001;            %Viscoscity(Pa.s) 

R_sphere=3e-6;       %Radius of head(m) 

% b=1e-6; 

  

omega=100*2*pi;       %Angular Velocity(rad/s) 

C_drag=4*pi*Mu/(log(2*L/di)+0.5);      

dz=L/100;            %Length element(m) 

t=0.2;                %Time (s) 

t_step=0.01;         %Time step(s) 

scl=(EI/(omega*C_drag))^0.25 

loop=0; 

counter=0; 

scl=L/1.8; 

scl=L/1.4; 

 

%-----------------ROOTS OF EQUATION------------------- 

for df=0.1e-9:0.5e-9:di-0.5e-9 

k=(df-di)/(L*di); 

EQ=[ 1, 4, 2, -8, -7, 4, 4, 0,(1/(scl*k)^8)]; 

m=roots(EQ); 

  

counter=counter+1; 

for i=1:8 

    C(i)=m(i)*(m(i)-1)*(m(i)+1)*(m(i)+2); 

    R(i)=C(i)*m(i)*(m(i)-1)*(((k*L)+1)^(m(i)-2)); 

    P(i)=m(i)*(m(i)-1)*(((k*L)+1)^(m(i)-2)); 

    Q(i)=C(i)*m(i)*(m(i)-1)*(m(i)-2)*(((k*L)+1)^(m(i)-3)); 

    S(i)=m(i)*(m(i)-1)*(m(i)-2)*(((k*L)+1)^(m(i)-3)); 

 end 

%-----------------MATRIX for A(i)-------------------------- 

M=[C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8);... 

   1 1 1 1 1 1 1 1;... 

   C(1)*m(1) C(2)*m(2) C(3)*m(3) C(4)*m(4) C(5)*m(5) C(6)*m(6) 

C(7)*m(7) C(8)*m(8);... 

   m(1) m(2) m(3) m(4) m(5) m(6) m(7) m(8);... 

   R(1) R(2) R(3) R(4) R(5) R(6) R(7) R(8);... 

   P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8);... 

   Q(1) Q(2) Q(3) Q(4) Q(5) Q(6) Q(7) Q(8);... 

   S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8)]; 

  

n=0; 

for t=0:t_step:t 

n=n+1; 
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der(1:8,n)=[0;0;-

eta*sin(omega*t)/((k^5)*(scl^4));eta*cos(omega*t)/k;0;0;0;0]; 

% der=[0;0;0.05;0.0866;0;0;0;0]; 

A1(1:8,n)= M\der(1:8,n); 

  

i=0; 

for z=0:dz:L 

    i=i+1; 

    

y1=A1(1,n)*(k*z+1)^m(1); 

y2=A1(2,n)*(k*z+1)^m(2); 

y3=A1(3,n)*(k*z+1)^m(3); 

y4=A1(4,n)*(k*z+1)^m(4); 

y5=A1(5,n)*(k*z+1)^m(5); 

y6=A1(6,n)*(k*z+1)^m(6); 

y7=A1(7,n)*(k*z+1)^m(7); 

y8=A1(8,n)*(k*z+1)^m(8); 

yz(i,n)=(y1+y2+y3+y4+y5+y6+y7+y8); 

  

x1=-((k*scl)^4)*C(1)*A1(1,n)*((k*z+1)^m(1)); 

x2=-((k*scl)^4)*C(2)*A1(2,n)*((k*z+1)^m(2)); 

x3=-((k*scl)^4)*C(3)*A1(3,n)*((k*z+1)^m(3)); 

x4=-((k*scl)^4)*C(4)*A1(4,n)*((k*z+1)^m(4)); 

x5=-((k*scl)^4)*C(5)*A1(5,n)*((k*z+1)^m(5)); 

x6=-((k*scl)^4)*C(6)*A1(6,n)*((k*z+1)^m(6)); 

x7=-((k*scl)^4)*C(7)*A1(7,n)*((k*z+1)^m(7)); 

x8=-((k*scl)^4)*C(8)*A1(8,n)*((k*z+1)^m(8)); 

xz(i,n)=(x1+x2+x3+x4+x5+x6+x7+x8); 

  

end 

j=1; 

z=0:dz:L; 

Amp(1,n)=0; 

M11=0; 

M12=0; 

M21=0; 

M22=0; 

dl_O=0; 

dl_w=0; 

C1=0; 

C2=0; 

for a=0:dz:L 

j=j+1; 

    C_n(j-1,n)=4*pi*Mu/(log(2*L*exp(0.5)/(di*(k*z(j-1)+1)))); 

    C_l(j-1,n)=2*pi*Mu/(log(2*L*exp(-0.5)/(di*(k*z(j-1)+1))));     

end 

j=1; 

for a=dz:dz:L 

    j=j+1; 

    Amp(j,n)=(xz(j,n)^2+yz(j,n)^2)^0.5; 

    beta_angle(j,n)=atan(abs((xz(j,n)*(yz(j,n)-yz(j-1,n))-

(yz(j,n)*(xz(j,n)-xz(j-1,n))))/(z(j)-z(j-

1)))/(xz(j,n)^2+yz(j,n)^2)^0.5); 

    b=di*(k*z(j-1)+1)/2; 

    %---------------Coefficient of Fz----------------------- 

   M11=M11+(-C_n(j-1,n)*sin(beta_angle(j,n))*tan(beta_angle(j,n))-

C_l(j-1,n)*cos(beta_angle(j,n)))*dz; 

   M12=M12+((Amp(j,n)*sin(beta_angle(j,n)))*(C_l(j-1,n)-C_n(j-

1,n)))*dz; 
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   C1=C1+(omega*(Amp(j,n)*sin(beta_angle(j,n))*(-C_l(j-1,n)+ C_n(j-

1,n))))*dz; 

    %---------------Coefficient of Mz----------------------- 

   M21=M21+ (Amp(j,n)*sin(beta_angle(j,n))*(C_l(j-1,n)-C_n(j-1,n)))*dz; 

   M22=M22+ (-Amp(j,n)*Amp(j,n)*(C_l(j-

1,n)*sin(beta_angle(j,n))*tan(beta_angle(j,n))+C_n(j-

1,n)*cos(beta_angle(j,n)))-4*pi*Mu*b*b*cos(beta_angle(j,n)))*dz; 

   dl_O=dl_O+(4*pi*Mu*b*b*cos(beta_angle(j,n)))*dz; 

   dl_w=dl_w+(omega*4*pi*Mu*b*b*cos(beta_angle(j,n)))*dz; 

   C2=C2+ (omega*(Amp(j,n)*Amp(j,n)*(C_l(j-

1,n)*sin(beta_angle(j,n))*tan(beta_angle(j,n))+C_n(j-

1,n)*cos(beta_angle(j,n)))+4*pi*Mu*b*b*cos(beta_angle(j,n))))*dz; 

end 

M31=M11-(6*pi*Mu*R_sphere); 

M32=M22-(8*Mu*pi*(R_sphere^3)); 

Matr=[M31 M12;... 

    M21 M32]; 

RHS=[-C1;-C2]; 

X=Matr\RHS; 

Fz=M11*X(1)+M12*X(2)+C1; 

Mz=M21*X(1)+(M22+dl_O)*X(2)+C2-dl_w; 

Efficiency=Fz*X(1)/(Mz*omega); 

V1(counter)=X(1); 

V(counter)=Efficiency; 

V2(counter)=Fz; 

% Rat(counter)=df/di; 

Rat(counter)=df/di; 

hold on 

%---------------PLOTTING--------------------------------------------- 

%      subplot(5,1,counter) 

%      plot(z,yz(1:i,n),'black') 

%      hold on 

%      subplot(3,3,2) 

%  figure(2) 

%      plot(z,xz(1:i,n)) 

%      title('XZ'); 

%      hold on 

%      subplot(3,3,3) 

%  figure(3) 

%      plot3(z,xz,yz) 

%      title('3D'); 

%      hold on 

%      subplot(3,3,4) 

%      plot(z,beta_angle(1:i,n)) 

%      title('BETA ANGLE'); 

%      hold on 

%      subplot(3,3,5) 

%  figure(4) 

%      plot(z,Amp(1:i,n)) 

%      title('AMPLITUDE'); 

%      hold on 

%      subplot(3,3,6) 

%      plot(z,C_n(1:i,n)) 

%      title('C_n'); 

%      hold on 

%      subplot(3,3,7) 

%      plot(z,C_l(1:i,n)) 

%      title('C_l'); 

%      hold on 

end 
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end 

figure(1) 

plot(Rat,V,'black') 

hold on 

figure(2) 

plot(Rat,V1,'black') 

hold on 

figure(3) 

plot(Rat,V2,'black') 

hold on 

[g,I]=max(V); 

%  text(Rat(I),V(I),'\leftarrow a=') 

%  text(Rat(I),V(I),'\leftarrow a=5.0 \mu m',... 

%       'HorizontalAlignment','left') 

%  V=X(1) 

%  O=X(2)/(2*pi) 

%  Fz 

%  Mz 

%  Efficiency*100 

%  EI 

%  scl  
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Materials list used for flagellum material selection 

S.No. Material E(GPa) Selection 

1 GRAPHITE 3-12  

2 PYROLITIC CARBON 16-30  

3 DIAMOND 900  

4 VITREOUS CARBON (Treated @ 1000C) 28  

5 VITREOUS CARBON (Treated @ 2500C) 22  

6 BORON 320  

7 CHROMIUM DIBORIDE 211  

8 HAFNIUM DIBORIDE 500  

9 LANTHANUM HEXABORIDE 479  

10 MOLYBDENUM BORIDE 672  

11 NIOBIUM MONOBORIDE 637  

12 TANTALUM DIBORIDE 257  

13 THORIUM TETRABORIDE 148  

14 TITANIUM DIBORIDE 372-551  

15 URANIUM TETRABORIDE 440  

16 VANADIUM DIBORIDE 268  

17 ZIRCONIUM DIBORIDE 343-506  

18 BERYLLIUM CARBIDE 314.4  

19 BORON CARBIDE 440-470  

20 CHROMIUM CARBIDE 386  

21 DIAMOND 930  

22 GRAPHITE 6.9  

23 HAFNIUM MONOCARBIDE 424  
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S.No. Material E(GPa) Selection 

24 MOLYBDENUM HEMICARBIDE 221  

25 MOLYBDENUM MONOCARBIDE 197  

26 SILICON MONOCARBIDE (ALPHA) 386-414  

27 SILICON MONOCARBIDE (BETA) 262-468  

28 TANTALUM MONOCARBIDE 364  

29 TITANIUM MONOCARBIDE 310-462  

30 TUNGSTEN HEMICARBIDE 421  

31 TUNGSTEN MONOCARBIDE 710  

32 URANIUM CARBIDE 179-221  

33 URANIUM MONOCARBIDE 172.4  

34 VANADIUM MONOCARBIDE 614  

35 ZIRCONIUM MONOCARBIDE 345  

36 ALUMINIUM NITIDE 346  

37 BORON MONONITRIDE 85.5  

38 SILICON NITRIDE(BETA) 55  

39 SILICON NITRIDE(ALPHA) 304  

40 TITANIUM MONONITRIDE 248  

41 URANIUM MONONITRIDE 149  

42 MOLYDBENUM DISILICATE 407  

43 URANIUM SILICIDE 77.9  

44 
ALUMINIUM SESQUIOXIDE 

(Al, corundum, sapphire) 
365-393  

45 BERYLLIUM MONOXIDE 296.5-345  

46 CERIUM DIOXIDE 181  

47 HAFNIUM DIOXIDE 57  

48 GADOLINIUM OXIDE 124  
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S.No. Material E(GPa) Selection 

49 MAGNESIUM MONOXIDE 303.4  

50 SAMARIUM OXIDE 183  

51 SILICIUM DIOXIDE 72.95  

52 THORIUM DIOXIDE 144.8  

53 TITANIUM DIOXIDE 248-282  

54 URANIUM DIOXIDE 145  

55 YTTRIUM OXIDE 114.5  

56 ZIRCONIUM DIOXIDE 241  

57 
ZIRCONIUM DIOXIDE PSZ 

(stabilized with MgO) 
200  

58 ZIRCONIUM DIOXIDE TZP 200-210  

59 CORNING 0080 71  

60 CORNING 7570 56  

61 FLOAT GLASS 72  

62 PYREX 0211 76  

63 PYREX 7070 52  

64 PYREX 7740 76  

65 PYREX 7789 64.3  

66 PYREX 7913 89  

67 ROBAX 92  

68 SAPPHIRE GLASS 379  

69 SCHOTT BaK1 73  

70 SCHOTT Bk1 74  

71 SCHOTT BK7 82  

72 SCHOTT FK3 46  

73 SCHOTT FK5 62  
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S.No. Material E(GPa) Selection 

74 SCHOTT FK51 81  

75 SCHOTT FK52 78  

76 SCHOTT FK54 76  

77 SCHOTT K5 71  

78 SCHOTT KF9 67  

79 SCHOTT LaK9 110  

80 SCHOTT LF5 59  

81 SCHOTT PK3 84  

82 SCHOTT PK50 66  

83 SCHOTT PSK3 84  

84 SCHOTT SF63 58  

85 SCHOTT SK2 78  

86 SCHOTT ZKN7 70  

87 ACRYLONITRILE BUTADIENE STYRENE 1.7-2.6  

88 BUTYL RUBBER 0.3-3.4  

89 CELLULOSE ACETATE 1.0-4.0  

90 CELLULOSE ACETATE-BUTYRATE 0.3-2.0  

91 CELLULOSE ACETATE-PROPIONATE 0.34-1.38  

92 CHLORINATED POLYVINYL CHLORIDE 2.48-3.0  

93 EXPOXY RESIN 1.5-3.6  

94 ETHYLENE TETRAFLUORAETHYLENE 1.4  

95 ETHYLENE CHLOROTRIFLUOROETHYLENE 1.7  

96 FLUORINATED ETHYLENE PROPYLENE 0.62  

97 MELAMINE FORMALDEHYDE 7.6-10  

98 PERFLUORINATED ALKOXY 0.66  

99 POLYAMIDE-IMIDE 4.5-6.8  
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S.No. Material E(GPa) Selection 

100 POLYAMIDE NYLON 11 1.5  

101 POLYAMIDE NYLON 12 2  

102 POLYAMIDE NYLON 4,6 3.1-3.3  

103 POLYAMIDE NYLON 6 2.6-3  

104 POLYAMIDE NYLON 6,12 2.1  

105 POLYAMIDE NYLON 6,6 3.3  

106 POLYARAMIDE 59-124  

107 POLYARYLATE RESINS 16.6  

108 POLYBENZENE-IMIDAZOLE 5.86  

109 POLYBUTADIENE RUBBER 2.1-10.3  

110 POLYBUTADIENE TEREPHTALATE 2.6  

111 POLYBUTYLENE 0.3  

112 POLYCARBONATE 2.3-2.4  

113 POLYCHLOROPRENE RUBBER 0.7-20.1  

114 POLYETHER ETHER KERTONE 3.7-4  

115 POLYETHER IMIDE 2.9  

116 POLYETHER SULFONE 2.4-2.6  

117 
POLYETHYLENE 

(HIGH DENSITY) 
0.414-1.24 

 

118 
POLYETHYLENE 

(LOW DENSITY) 
0.14-1.86 

119 
POLYETHYLENE 

(MEDIUM DENSITY) 
0.17-0.38 

120 
POLYETHYLENE 

(ULTRA HIGH MOLECULAR WEIGHT) 
0.135-6.9 

121 POLYETHYLENE TEREPHTALATE 2.0-4.0  

122 POLYHYDROXY BUTYRATE 3.5  
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S.No. Material E(GPa) Selection 

(BIOPOLYMERS) 

123 POLYIMIDE 2.0-3.0  

124 POLYMETHYL METHACRYLATE 3.036  

125 POLYMETHYL PENTENE 1.5  

126 
POLYOXYMETHYLENE 

(HETEROPOLYMER) 
2.9-3.2 

 

127 
POLYOXYMETHYLENE 

(HOMOPOLYMER) 
3.6 

128 POLYPHENYLENE OXIDE 2.5  

129 POLYPHENYLENE SULFIDE 1350  

130 
POLYPROPYLENE 

(ATACTIC) 

0.689-

1.520 

 

131 
POLYPROPYLENE 

(ISOTACTIC) 

0.689-

1.520 

132 
POLYSTYRENE 

(HIGH-IMPACT) 
1.6 

 

133 
POLYSTYRENE 

(NORMAL) 
2.3-4.1 

134 POLYSULFONE 2.48  

135 POLYTETRAFLUROCHLOROETHYLENE 0.48-0.76  

136 POLYTRIFLUOROCHLOROETHYLENE 1.3  

137 POLYVINYL ACETATE 0.6  

138 POPLYVINYL CHLORIDE 0.3-0.55  

139 POLYVINYLIDENE FLUORIDE 1.0-3.0  

140 POLYVINYL CHLORIDE 21.2.7  

141 PROPYLENE-VINYLIDENE HEXAFLOURIDE 2.07-15.17  

142 STYRENE BUTADIENE RUBBER 2.1-10.3  
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S.No. Material E(GPa) Selection 

143 UNPLASTICIZED POLYVINYL CHLORIDE 24-40  

144 UNSATURATED POLYESTER 5.5  

145 GRAY CAST IRON GR.20 66-97  

146 GRAY CAST IRON GR.25 79-102  

147 GRAY CAST IRON GR.30 90-113  

148 GRAY CAST IRON GR.35 100-119  

149 GRAY CAST IRON GR.40 110-138  

150 GRAY CAST IRON GR.50 130-157  

151 GRAY CAST IRON GR.60 141-162  

152 DUCTILE CAST IRON (SG) 169-172  

153 COMPACTED GRAPHITE CAST IRON 165  

154 MALLEABLE CAST IRON 168  

155 15-5PH STAINLESS STEEL 196  

156 17-4PH STAINLESS STEEL 196  

157 17-7PH STAINLESS STEEL 204  

158 PH 13-8Mo STAINLESS STEEL 203  

159 ALLOY 20Mo-4 186  

160 CARPENTER 20Mo-6 186  

161 DURANICKEL 301 207  

162 HASTELLOY C276 205  

163 HASTELLOY G3 199  

164 HASTELLOY HX 205  

165 HASTELLOY S 212  

166 HASTELLOY X 196  

167 HAYNES 230 211  

168 HAYNES 556 205  
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S.No. Material E(GPa) Selection 

169 INCOLOY 909 159  

170 INCONEL 800 193  

171 INCONEL 800HT 193  

172 INCONEL 825 206  

173 INCONEL 600 207  

174 INCONEL 601 207  

175 INCONEL 617 211  

176 INCONEL 625 207  

177 INCONEL 690 211  

178 INCONEL 718 211  

179 INCONEL X-750 207  

180 INVAR 36 150  

181 INVAR 42 144  

182 MONEL 400 180  

183 MONEL 450 180  

184 MONEL K500 180  

185 NIMONIC 80A 222  

186 55NI-45TI SMA AUSTENTIC 83  

187 55NI-45TI SMA MARTENSITIC 28-41  

188 WROUGHT & CAST ALUMINIUM ALLOY 69-73  

189 ADMIRALTY GUN METAL 105  

190 
ALUMINIUM BRONZE 

(88Cu-9AL-3Fe) 
105  

191 
ALUMINIUM BRONZE 

(81Cu-11AL-4Fe-4NI) 
110  

192 BERYLLIUM COPPER CAST 110  

193 BERYLLIUM COPPER 20C 128  



Appendix-VI 

 

VI-9 

S.No. Material E(GPa) Selection 

194 CAST COPPER 115  

195 CHROMIUM COPPER 115  

196 HIGH TENSILE BRASS 105  

197 HYDRAULIC BRONZE 92  

198 LEADED GUN METAL 83  

199 SILICON BRASS 106-138  

200 TIN BRONZE 105  

201 PURE ZINC 104.5  

202 ILZRO 16 97  

203 KORLOY 2684 68-93  

204 ILZRO 12 82.7  

205 ZA-27 77.9  

206 ZA-8 85.5  

207 ZN-CU-TI ALLOY 63.5-88  

208 TIN ALLOY -  

209 PURE TIN 49.9  

210 
SOFT SOLDER 

(62Sn-36Pb-2Ag) 
22.96  

211 
SOFT SOLDER 

(60Sn-40Pb) 
29.99  

212 WHITE METAL 53  

213 LITHIUM 4.91  

214 SODIUM 6.8-10  

215 POTASSIUM 3.53  

216 RUBIDIUM 2.35  

217 CESIUM 1.7  

218 BERYLLIUM 318  
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S.No. Material E(GPa) Selection 

219 MAGNESIUM 44.7  

220 CALCIUM 19.6  

221 STRONTIUM 15.7  

222 BARIUM 12.8  

223 TITANIUM 120.2  

224 ZIRCONIUM 97.1  

225 HAFNIUM 137-141  

226 NIOBIUM 104.9  

227 TANTALUM 185.7  

228 MOLYBDENUM 324.8  

229 TUNGSTEN 411  

230 RUTHENIUM 413.8-432  

231 RHODIUM 344.8-379  

232 PALLADIUM 117.2-121  

233 OSMIUM 558.6  

234 IRIDIUM 524-528  

235 PLATINUM 172.4  

236 THORIUM 72.4-78.3  

237 URANIUM 201-176  
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