
1

Web Services: Application Development,
Interoperability, Mobility and Security Issues

THESIS

Submitted in partial fulfilment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

SUJALA ALVA

Under the Supervision of

Prof. Dr. S. Vadivel

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

2010

2

Web Services: Application Development,
Interoperability, Mobility and Security Issues

THESIS

Submitted in partial fulfilment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

SUJALA ALVA

Under the Supervision of

Prof. Dr. S. Vadivel

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

2010

3

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN)

CERTIFICATE

This is to certify that the thesis entitled Web Services: Application Development,
Interoperability, Mobility and Security Issues and submitted by Sujala Alva ID No
2005PHXF005P for award of Ph. D. Degree of the Institute embodies original work done
by her under my supervision.

Signature in full of the Supervisor:

 Name in capital block letters: Prof. DR. S. VADIVEL

 Designation: Professor and Head of
 Department (CS),BITS, PILANI – Dubai,
 DIAC, Dubai, U.A.E.

Date: November 7, 2010

4

Acknowledgements:

I would like to express my sincere gratitude to Prof. Dr. R. K. Mittal, Director

BITS, Pilani – Dubai for his support. I would also like to express my sincere

gratitude to Prof. Dr. M. Ramachandran, Former Director BITS, Pilani - Dubai for

being the motivating factor for pursuing my PhD. He was the person who initially

instilled in me the importance of getting a doctorate. I would like to thank my

guide Prof. Dr. S. Vadivel who has been a pillar of support right through my

research work. He is always ready to share his vast resource of knowledge,

provide help and guidance at every step.

I would like to express my gratitude to the members of my Doctoral Advisory

Committee Dr. Santhosh Kumar, Dr. B. Vijaykumar and Dr. Ramachandran Nair

for their valuable suggestions during the course of my work. I would also like to

thank Dr. G. Vijaya, Dean Research and Consultancy, BITS, PILANI - Dubai and

Dr. K.K. Singh in charge of Research and Consultancy activities for overall

monitoring of my work.

I would like to thank the Research and Consultancy Division at BITS, PILANI,

Rajasthan for monitoring my work very closely and setting deadlines and targets

which have enabled me to accomplish my work. My special thanks to Dean

Research and Consultancy, Prof. Ashis Kumar Das , members of the research

board Mr Dinesh Kumar, Ms Monica Sharma and Mr Sharad Shrivatsava.

My special thanks to my parents who are always supportive in my every

endeavor and for having provided me with the education to go ahead in life. They

are my motivators. My thanks to my in-laws who have stood by me at every step.

Last but not the least I would like to appreciate the help and co-operation of my

husband Dr. Deepak S. Shetty and my children. I have taken up a lot of time

which was rightfully theirs, but they have always stood by me and have been my

strength.

5

Abstract:

Web Services create a platform for applications to communicate with each other

across different platforms. Web services enable machine to machine interaction,

this finds great relevance in today‘s business world where processes can be

automated hence minimizing human intervention.

WEKA is a very powerful desktop data mining application. A step by step

procedure has been developed to convert the popular data mining application to

a web service. Tests are conducted where it is proved that there is no loss of

accuracy when the application is converted to a web service with the added

benefit of being accessible to a number of users. Users need not install the

application on their system instead they can utilize the data mining facilities by

invoking the service through the internet.

In today‘s world people would want to consume web services using their mobile

device because of the anytime anywhere connectivity of mobile devices. In this

thesis an attempt has been made to create a mobile enabled web service such

that only registered users can consume the available web services and get

benefited. It creates a level of abstraction for a person using this application in

which he need not know how to programmatically invoke the web service. He

only has to register online to the application and fill up a form which allows him to

connect to the database and perform his search. Mobilink uses MySQL for the

database which records and stores customer details. Form validation is done via

PHP and entries like the date field where the number of days in a month are

dependent on the month as well as the year (in case of a leap year) are filled in

using JavaScript. Checking the username availability is done using AJAX. The

web service as well as the mobile client is developed using Netbeans IDE.

6

Interoperability is the keyword of web services, but in spite of a large amount of

research done in this field it is seen that some issues remain unresolved when

web services and clients across different platforms interact. Until these issues

are identified and sorted out web services may not be able to achieve wide

spread acceptance. These issues have been identified and programmatically

tested and proved in this thesis.

Since web services have access to secure information like credit card numbers,

personal information and other sensitive information, It is important that any

transaction with web services occurs in a secure manner. Secured invocation

across different platforms as seen commonly in web services is a matter of great

concern as compared to secured invocation across the same platform. Web

service interoperability across .NET and Java is a difficult task the task gets

further complicated when we consider security. An attempt has been made to

develop a platform using which secured invocation of a .NET client by a Java

web service can be done. The platform ensures that certificates get exchanged

irrespective of the Java / .NET platform. Further the platform developed has the

means to verify the security certificate exchange by logging the request response

message.

7

Table of Contents

Acknowledgements iv
Abstract v
Table of Contents vii
List of Tables ix
List of Figures and Listings x
List of Abbreviations xii

Chapter 1: Introduction to the Thesis
1.1. Introduction 1
1.2. Web services and Service Oriented Architecture 1
1.3. Web services 4
1.4. M-services 7
1.5. Application developed to convert a desktop data
 mining application into a web service 12
1.6. Interoperability in web services 21
1.7. Security in Interoperable web services 23
1.8. Scope and Limitations of research 27
1.9. Organization of the thesis 28

Chapter 2: State of art in web services
2.1. Introduction 29
2.2. Working of web services 29
2.3. Evolution of web services 30
2.4. Introduction to Service Oriented Architecture 32
2.5. Types of web applications 36
2.5. Building blocks of web services 39
2.7. Building and developing SOA applications
 / Web services 54

Chapter 3: Case study of converting a desktop data mining
 application into a web service using Weka
3.1. Introduction 55
3.2. Overview of work done 55
3.3. Java Data Mining (JDM API) 56
3.4. Need for web service 57
3.5. Weka web service creation 58
3.6. Verification of output 59
3.7. Conclusion and future extension of work 74

8

Chapter 4: Comparison of J2EE and .NET development
 platforms used in web services and tests conducted
 on the commonly seen interoperability issues
4.1. Introduction 75
4.2. Definition of Interoperable Web Services 75
4.3. Why interoperability? 75
4.4. Examples of Interoperability 77
4.5. The two common platforms used for web
 service development 78
4.6. Comparative analysis between J2EE and .NET 81
4.7. Test results of the platform developed for testing
 Interoperability issues 91
4.8. Conclusion 106

Chapter 5: Mobile web services
5.1. Introduction 108
5.2. Evolution of Java 108
5.3. Introduction to J2ME 109
5.4. Mobilink 112
5.5. Mobilink Architecture 115
5.6. Mobilink on the Netbeans emulator 124
5.7. Conclusion 130
5.8. Future work 130

Chapter 6: Security issues in web services and web
 service security interoperability platform
 development
6.1. Introduction 131
6.2. Concept of interoperability 131
6.3. WS-I Basic Profile 132
6.4. .NET Framework 134
6.5. Windows Communication Foundation(WCF) 135
6.6. Web Service Security 137
6.7. Work Done 147
6.8. SOAP Messages Log 154
6.9 Conclusion 160

Conclusions and Future Scope of work 161
Specific Contributions 164
List of References 165
Appendix A 174
Appendix B 176
Appendix C 177

9

Appendix D 181
Appendix E 183
Appendix F 184
List of Publications 186
Brief Biography of Candidate 187
Brief Biography of Supervisor 188

10

List of Tables

2.1: Sample HTML and XML documents used to describe

 the same data 40

4.1: Comparison of JAX-RPC and JAXM 87

4.2: Table showing output of web methods of the two Java

 web services 96

4.3: Compiled table 98

List of Listings

2.1: Unencrypted XML purchase order document 38

2.2: Encrypted XML purchase order document

 with only payment details encrypted 38

2.3: Sample WSDL document for stock quote service 47

3.1: Output obtained on running the J48 Classifier 60

3.2: SOAP Request for J48 classifier 60

3.3: SOAP Responses for J48 Classifier 60

3.4: WSDL generated for J48 Classifier 62

3.5: Output for client code 63

3.6: Method returned on invoking the clustering algorithm 64

3.7: SOAP Request for clustering algorithm 64

3.8: SOAP Response for clustering algorithm 65

3.9: WSDL generated for clustering algorithm 66

3.10: Output for client code of clustering algorithm 67

3.11: Output obtained for the text classifier 68

3.12: SOAP Request for text classifier 68

3.13: SOAP Response for text classifier 69

3.14: WSDL generated for text classifier 72

3.15: Output for the client code of text classifier 73

11

5.1: Ajax script for checking username availability 117

6.1(a): A Plain SOAP message without WSS 139

6.1(b): The Plain SOAP message with WSS Encryption 140

6.2: SetCertificateMethod() 152

6.3: The Identity to the server certificate is provided in the

 app.config file 153

6.4: SOAP Request log 154

6.5: SOAP Response log 158

12

List of Figures

1.1: Transformation of data to knowledge 13

2.1: Example web a service application 30

2.2: Client server application 31

2.3: Service Oriented Architecture 34

2.4: Interaction in web services 39

2.5: Structure of a SOAP message 44

2.6: Architecture of UDDI 50

2.7: UDDI data structure 51

2.8: W3C Web Services reference Model 53

4.1: Architecture layers of Interoperability 76

4.2: Output of an array with null elements

 when invoked by a Java client 92

4.3: Output of an array with null elements

 when invoked by a .NET client 92

4.4: Precision testing with a Java client 93

4.5: Precision testing with a .NET client 93

4.6: Browser window for float data type web service 95

4.7: Browser window for double data type web service 96

4.8: Double data type client window showing

 the result of float data type Web Service 99

4.9: Double data type client window showing result

 of double data type Web Service 99

4.10: Initial screen to enter student details(Java Clinet) 102

4.11: Result displayed after successful invocation (Java client)102

4.12: Output showing hash map contents of student

 details (Java client) 102

4.13: Initial screen for entering student details (.NET client) 103

4.14: Result displayed after successful invocation (.NET) 104

4.15: Output showing hash map contents of student

13

 details(.NET client) 104

5.1: J2ME Architecture 110

5.2: Screenshot of registration page 116

5.3: Sample database values of registered users 117

5.4 Web service creation page 118

5.5: Screenshots of data fields of web service 118

5.6: Adding data to a web service 119

5.7: Screenshot of web service with the data 119

5.8: A J2ME client invoking the web service 121

5.9: Interaction of web service stub with J2ME

 midlet and the web service 122

5.10: Typical JAX-RPC application 122

5.11: A wireless carrier‘s network ensures XML

 encoding of SOAP messages 123

5.12: Login screen with sample input values 124

5.13: Login successful screen 125

5.14: Web services screen with the list of

 available web services 126

5.15: Search field screen with searching parameter 127

5.16: Search screen with given input keyword 128

5.17: The result screen 129

6.1: Overview of Common Language Infrastructure 135

6.2: WCF service and client 137

6.3: XML security standards 138

6.4: How certificates are used 142

6.5: The Conceptual relationship between XML and

 web service security standards 145

6.6: Working of Symmetric key Encryption 148

6.7: Microsoft Management Console Utility 149

6.8: JKS2PFX tool 150

6.9: TCPMonitor utility 154

14

List of Abbreviations

AJAX Asynchronous Java and XML

ARFF Active Resource File Format

B2B Business to Business

B2C Business to Consumer

CA Certification Authority

CDC Connected Device Configuration

CIL Common Intermediate Language

CLI Command Line Interface

CLDC Connected Limited Device Configuration

CLR Common Language Runtime

CRL Certificate Revocation List

CTL Certificate Trust List

CSV Comma Separated Vector

DOM Document Object Model

DTD Document Type Definition

ebXML Enterprise Business XML

FTP File Transfer Protocol

GPL General Public License

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HTML Hypertext Markup Language

IDE Integrated Development Environment

JAXP Java API for XML Parsing

JAXM Java API for XML Messaging

J2EE Java 2 Platform Enterprise Edition

J2SE Java 2 Standard Edition

J2ME Java 2 Micro Edition

JCA Java Connector Architecture

JDBC Java Data Base Connectivity

15

JDM Java Data Mining

JRE Java Runtime Environment

JVM Java Virtual Machine

KVM Kilo Virtual Machine

MIDP Mobile Information device Profile

MSMQ Microsoft Messaging Queue

OASIS Organization for the Advancement of Structured Information

 Standards

PDAP Personal Digital Assistant Profile

PHP hyPertext Processor

PGP Pretty Good Privacy

PKI Public Key Infrastructure

RPC Remote Procedure Call

SAX Simple API for XML

SSL Secure Socket Layer

SOAP Simple Object Access Protocol

SMTP Simple Mail Transfer Protocol

TCP Transfer Control Protocol

UBL Uniform Resource Locator

UBR UDDI Business Registry

UDDI Universal Discovery Description Integration

W3C World Wide Web Consortium

WEKA Waikato Environment for Knowledge Analysis

WSCI Web Service Choreography Interface

WSDL Web Services Description Language

WS-I Web Service Interoperability

WSIT Web service Interoperability Technologies

WCF Windows Communication Foundation

WSE Web Services Enhancement

WS Web Service

WSS Web Service Security

16

XML eXtensible Markup Language

XKMS XML Key Management Specification

X-KRSS XML Key Registration Service Specification

X-KISS XML Key Information Service Specification

XSD XML Scheme Definition

17

Acknowledgements:

I would like to express my sincere gratitude to Prof. Dr. R. K. Mittal, Director

BITS, Pilani – Dubai for his support. I would also like to express my sincere

gratitude to Prof. Dr. M. Ramachandran, Former Director BITS, Pilani - Dubai for

being the motivating factor for pursuing my PhD. He was the person who initially

instilled in me the importance of getting a doctorate. I would like to thank my

guide Prof. Dr. S. Vadivel who has been a pillar of support right through my

research work. He is always ready to share his vast resource of knowledge,

provide help and guidance at every step.

I would like to express my gratitude to the members of my Doctoral Advisory

Committee Dr. Santhosh Kumar, Dr. B. Vijaykumar and Dr. Ramachandran Nair

for their valuable suggestions during the course of my work. I would also like to

thank Dr. G. Vijaya, Dean Research and Consultancy, BITS, PILANI - Dubai and

Dr. K.K. Singh in charge of Research and Consultancy activities for overall

monitoring of my work.

I would like to thank the Research and Consultancy Division at BITS, PILANI,

Rajasthan for monitoring my work very closely and setting deadlines and targets

which have enabled me to accomplish my work. My special thanks to Dean

Research and Consultancy, Prof. Ashis Kumar Das , members of the research

board Mr Dinesh Kumar, Ms Monica Sharma and Mr Sharad Shrivatsava.

My special thanks to my parents who are always supportive in my every

endeavor and for having provided me with the education to go ahead in life. They

are my motivators. My thanks to my in-laws who have stood by me at every step.

Last but not the least I would like to appreciate the help and co-operation of my

husband Dr. Deepak S. Shetty and my children. I have taken up a lot of time

which was rightfully theirs, but they have always stood by me and have been my

strength.

18

Abstract:

Web Services create a platform for applications to communicate with each other

across different platforms. Web services enable machine to machine interaction,

this finds great relevance in today‘s business world where processes can be

automated hence minimizing human intervention.

WEKA is a very powerful desktop data mining application. A step by step

procedure has been developed to convert the popular data mining application to

a web service. Tests are conducted where it is proved that there is no loss of

accuracy when the application is converted to a web service with the added

benefit of being accessible to a number of users. Users need not install the

application on their system instead they can utilize the data mining facilities by

invoking the service through the internet.

In today‘s world people would want to consume web services using their mobile

device because of the anytime anywhere connectivity of mobile devices. In this

thesis an attempt has been made to create a mobile enabled web service such

that only registered users can consume the available web services and get

benefited. It creates a level of abstraction for a person using this application in

which he need not know how to programmatically invoke the web service. He

only has to register online to the application and fill up a form which allows him to

connect to the database and perform his search. Mobilink uses MySQL for the

database which records and stores customer details. Form validation is done via

PHP and entries like the date field where the number of days in a month are

dependent on the month as well as the year (in case of a leap year) are filled in

using JavaScript. Checking the username availability is done using AJAX. The

web service as well as the mobile client is developed using Netbeans IDE.

19

Interoperability is the keyword of web services, but in spite of a large amount of

research done in this field it is seen that some issues remain unresolved when

web services and clients across different platforms interact. Until these issues

are identified and sorted out web services may not be able to achieve wide

spread acceptance. These issues have been identified and programmatically

tested and proved in this thesis.

Since web services have access to secure information like credit card numbers,

personal information and other sensitive information, It is important that any

transaction with web services occurs in a secure manner. Secured invocation

across different platforms as seen commonly in web services is a matter of great

concern as compared to secured invocation across the same platform. Web

service interoperability across .NET and Java is a difficult task the task gets

further complicated when we consider security. An attempt has been made to

develop a platform using which secured invocation of a .NET client by a Java

web service can be done. The platform ensures that certificates get exchanged

irrespective of the Java / .NET platform. Further the platform developed has the

means to verify the security certificate exchange by logging the request response

message.

20

Table of Contents

Acknowledgements iv
Abstract v
Table of Contents vii
List of Tables ix
List of Figures and Listings x
List of Abbreviations xii

Chapter 1: Introduction to the Thesis
1.1. Introduction 1
1.2. Web services and Service Oriented Architecture 1
1.3. Web services 4
1.4. M-services 7
1.5. Application developed to convert a desktop data
 mining application into a web service 12
1.6. Interoperability in web services 21
1.7. Security in Interoperable web services 23
1.8. Scope and Limitations of research 27
1.9. Organization of the thesis 28

Chapter 2: State of art in web services
2.1. Introduction 29
2.2. Working of web services 29
2.3. Evolution of web services 30
2.4. Introduction to Service Oriented Architecture 32
2.5. Types of web applications 36
2.5. Building blocks of web services 39
2.7. Building and developing SOA applications
 / Web services 54

Chapter 3: Case study of converting a desktop data mining
 application into a web service using Weka
3.1. Introduction 55
3.2. Overview of work done 55
3.3. Java Data Mining (JDM API) 56
3.4. Need for web service 57
3.5. Weka web service creation 58
3.6. Verification of output 59
3.7. Conclusion and future extension of work 74

21

Chapter 4: Comparison of J2EE and .NET development
 platforms used in web services and tests conducted
 on the commonly seen interoperability issues
4.1. Introduction 75
4.2. Definition of Interoperable Web Services 75
4.3. Why interoperability? 75
4.4. Examples of Interoperability 77
4.5. The two common platforms used for web
 service development 78
4.6. Comparative analysis between J2EE and .NET 81
4.7. Test results of the platform developed for testing
 Interoperability issues 91
4.8. Conclusion 106

Chapter 5: Mobile web services
5.1. Introduction 108
5.2. Evolution of Java 108
5.3. Introduction to J2ME 109
5.4. Mobilink 112
5.5. Mobilink Architecture 115
5.6. Mobilink on the Netbeans emulator 124
5.7. Conclusion 130
5.8. Future work 130

Chapter 6: Security issues in web services and web
 service security interoperability platform
 development
6.1. Introduction 131
6.2. Concept of interoperability 131
6.3. WS-I Basic Profile 132
6.4. .NET Framework 134
6.5. Windows Communication Foundation(WCF) 135
6.6. Web Service Security 137
6.7. Work Done 147
6.8. SOAP Messages Log 154
6.9 Conclusion 160

Conclusions and Future Scope of work 161
Specific Contributions 164
List of References 165
Appendix A 174
Appendix B 176
Appendix C 177

22

Appendix D 181
Appendix E 183
Appendix F 184
List of Publications 186
Brief Biography of Candidate 187
Brief Biography of Supervisor 188

23

List of Tables

2.1: Sample HTML and XML documents used to describe

 the same data 40

4.1: Comparison of JAX-RPC and JAXM 87

4.2: Table showing output of web methods of the two Java

 web services 96

4.3: Compiled table 98

List of Listings

2.1: Unencrypted XML purchase order document 38

2.2: Encrypted XML purchase order document

 with only payment details encrypted 38

2.3: Sample WSDL document for stock quote service 47

3.1: Output obtained on running the J48 Classifier 60

3.2: SOAP Request for J48 classifier 60

3.3: SOAP Responses for J48 Classifier 60

3.4: WSDL generated for J48 Classifier 62

3.5: Output for client code 63

3.6: Method returned on invoking the clustering algorithm 64

3.7: SOAP Request for clustering algorithm 64

3.8: SOAP Response for clustering algorithm 65

3.9: WSDL generated for clustering algorithm 66

3.10: Output for client code of clustering algorithm 67

3.11: Output obtained for the text classifier 68

3.12: SOAP Request for text classifier 68

3.13: SOAP Response for text classifier 69

3.14: WSDL generated for text classifier 72

3.15: Output for the client code of text classifier 73

24

5.1: Ajax script for checking username availability 117

6.1(a): A Plain SOAP message without WSS 139

6.1(b): The Plain SOAP message with WSS Encryption 140

6.2: SetCertificateMethod() 152

6.3: The Identity to the server certificate is provided in the

 app.config file 153

6.4: SOAP Request log 154

6.5: SOAP Response log 158

25

List of Figures

1.1: Transformation of data to knowledge 13

2.1: Example web a service application 30

2.2: Client server application 31

2.3: Service Oriented Architecture 34

2.4: Interaction in web services 39

2.5: Structure of a SOAP message 44

2.6: Architecture of UDDI 50

2.7: UDDI data structure 51

2.8: W3C Web Services reference Model 53

4.1: Architecture layers of Interoperability 76

4.2: Output of an array with null elements

 when invoked by a Java client 92

4.3: Output of an array with null elements

 when invoked by a .NET client 92

4.4: Precision testing with a Java client 93

4.5: Precision testing with a .NET client 93

4.6: Browser window for float data type web service 95

4.7: Browser window for double data type web service 96

4.8: Double data type client window showing

 the result of float data type Web Service 99

4.9: Double data type client window showing result

 of double data type Web Service 99

4.10: Initial screen to enter student details(Java Clinet) 102

4.11: Result displayed after successful invocation (Java client)102

4.12: Output showing hash map contents of student

 details (Java client) 102

4.13: Initial screen for entering student details (.NET client) 103

4.14: Result displayed after successful invocation (.NET) 104

4.15: Output showing hash map contents of student

26

 details(.NET client) 104

5.1: J2ME Architecture 110

5.2: Screenshot of registration page 116

5.3: Sample database values of registered users 117

5.4 Web service creation page 118

5.5: Screenshots of data fields of web service 118

5.6: Adding data to a web service 119

5.7: Screenshot of web service with the data 119

5.8: A J2ME client invoking the web service 121

5.9: Interaction of web service stub with J2ME

 midlet and the web service 122

5.10: Typical JAX-RPC application 122

5.11: A wireless carrier‘s network ensures XML

 encoding of SOAP messages 123

5.12: Login screen with sample input values 124

5.13: Login successful screen 125

5.14: Web services screen with the list of

 available web services 126

5.15: Search field screen with searching parameter 127

5.16: Search screen with given input keyword 128

5.17: The result screen 129

6.1: Overview of Common Language Infrastructure 135

6.2: WCF service and client 137

6.3: XML security standards 138

6.4: How certificates are used 142

6.5: The Conceptual relationship between XML and

 web service security standards 145

6.6: Working of Symmetric key Encryption 148

6.7: Microsoft Management Console Utility 149

6.8: JKS2PFX tool 150

6.9: TCPMonitor utility 154

27

List of Abbreviations

AJAX Asynchronous Java and XML

ARFF Active Resource File Format

B2B Business to Business

B2C Business to Consumer

CA Certification Authority

CDC Connected Device Configuration

CIL Common Intermediate Language

CLI Command Line Interface

CLDC Connected Limited Device Configuration

CLR Common Language Runtime

CRL Certificate Revocation List

CTL Certificate Trust List

CSV Comma Separated Vector

DOM Document Object Model

DTD Document Type Definition

ebXML Enterprise Business XML

FTP File Transfer Protocol

GPL General Public License

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HTML Hypertext Markup Language

IDE Integrated Development Environment

JAXP Java API for XML Parsing

JAXM Java API for XML Messaging

J2EE Java 2 Platform Enterprise Edition

J2SE Java 2 Standard Edition

J2ME Java 2 Micro Edition

JCA Java Connector Architecture

JDBC Java Data Base Connectivity

28

JDM Java Data Mining

JRE Java Runtime Environment

JVM Java Virtual Machine

KVM Kilo Virtual Machine

MIDP Mobile Information device Profile

MSMQ Microsoft Messaging Queue

OASIS Organization for the Advancement of Structured Information

 Standards

PDAP Personal Digital Assistant Profile

PHP hyPertext Processor

PGP Pretty Good Privacy

PKI Public Key Infrastructure

RPC Remote Procedure Call

SAX Simple API for XML

SSL Secure Socket Layer

SOAP Simple Object Access Protocol

SMTP Simple Mail Transfer Protocol

TCP Transfer Control Protocol

UBL Uniform Resource Locator

UBR UDDI Business Registry

UDDI Universal Discovery Description Integration

W3C World Wide Web Consortium

WEKA Waikato Environment for Knowledge Analysis

WSCI Web Service Choreography Interface

WSDL Web Services Description Language

WS-I Web Service Interoperability

WSIT Web service Interoperability Technologies

WCF Windows Communication Foundation

WSE Web Services Enhancement

WS Web Service

WSS Web Service Security

29

XML eXtensible Markup Language

XKMS XML Key Management Specification

X-KRSS XML Key Registration Service Specification

X-KISS XML Key Information Service Specification

XSD XML Scheme Definition

30

Chapter 1: Introduction to the Thesis

1.1 Introduction

This chapter gives an overview of service oriented architecture and web services.

The different applications where web services are used in various walks of day to

day life is looked into. A brief introduction is given to the research carried out in

the following areas.

i) Applying web service technology to a desktop data mining application.

ii) Interoperability issues seen in web services across Java and .Net

platforms.

iii) Mobile enabled publishing of web service, locating the web service and

 invocation of the web service.

iv) Web service security issues.

1.2 Web Service and Service Oriented Architecture

In the current scenario, where there is large scale globalization, having a

standalone application will not suffice. In order to build a large application it is

very important to integrate a number of systems which could be distributed all

over the world. The software industry is coming to terms with the fact that

integrating software applications across multiple operating systems,

programming languages, and hardware platforms is not something that can be

solved by any one proprietary environment. Traditionally the problem has been

one of tight coupling, where one application that calls a remote network is tied

strongly to it by the function call it makes and the parameters it requests. In most

systems before web services, this is a fixed interface with very little flexibility or

adaptability to the changing needs of the environment [1].

Web services and Service Oriented Architecture (SOA) have changed the

definition of distributed computing they provide a new paradigm for building

distributed computing applications. Web services have an advantage over

conventional distributed computing platforms such as Remote Procedure Calls

31

(RPC), Remote Method Invocation(RMI), Distributed Component Object

Model(DCOM), Common Object Request Broker Architecture (CORBA) etc

which were bound to a particular platform, in contrast web services have a

loosely coupled architecture, combined with their standardized interoperability led

to a new computing paradigm that supports the construction of more flexible and

dynamic distributed applications [2]. Traditional means of building distributed

computing applications have been dominated by various technologies which

were popularly called ―Middleware Technologies‖ which were basically vendor

dependent and they were typically implemented using the client server

technology. Some of the common technologies are:

i) RMI – uses Java to create distributed applications

ii) DCOM – Is a ActiveX software component technology which was

developed by Microsoft Corporation

iii) CORBA – Managed by the Object Management Group (OMG) which is a

consortium of over 800 companies [3].

A SOA is designed to help developers overcome many distributed enterprise

computing challenges including application integration, transaction management

and security policies.While allowing multiple platforms and protocols and

leveraging numerous access devices and legacy systems. The driving goal of

SOA is to eliminate these barriers so that applications integrate and run

seamlessly.

A service in SOA is an exposed piece of functionality with three essential

properties. Firstly a SOA based service is self contained i.e. the service

maintains its own state. Secondly services are platform independent assertions.

Lastly, the SOA assumes that services can be dynamically located, invoked and

recombined.

32

Thus with SOA, an enterprise can create, deploy and integrate multiple services

and choreograph new business functions by combining new and existing

application assets into a logical flow.

The use of SOA is gradually capturing the market because SOA has several

advantages such as it reuses the existing resources and executes tasks by

composing services at runtime based on specific parameters. Another major

advantage of SOA is negotiation transparency, applications can delay binding

services until deployment or execution. SOA is also cost effective. The requestor

can pay for services on the basis of use rather than having access to the

application. An attractive feature of web services is that if a service is upgraded,

it needs to be updated only on the server, no changes need to be done on the

client code. Most importantly SOA provides means for service interoperability in

networks where heterogeneity is a major obstacle; the architecture allows

developers to construct new services on demand through dynamic service

construction at run time. Overall SOA is an extremely flexible and extensible

architecture. As testimony to the appeal of SOA, it is used widely in government

organizations like the Canadian government which uses SOA to facilitate

management growth of large scale applications as quoted by [4] and by the

European Union for standardizing their online documentation formalities and also

by the German government in their postal application as explained by [5]. In

essence SOA = Semantic integration + Loose coupling + Managed Evolution.

Semantic integration is the major prerequisite and challenge, loose coupling is

the distinct feature of SOA, and managed evolution represents both a purpose

and an implementation approach [5].

Businesses would generally involve a series of tasks involving different systems

and if the SOA approach can automate this process and make it more efficient

and faster it is a technological boon to the business world and it can be seen that

SOA is very relevant to today‘s business world. Service-Oriented Architecture

(SOA) is an IT architectural style that supports the transformation of the business

33

into a set of linked services, or repeatable business tasks that can be accessed

when needed over a network. This may be a local network, it may be the

Internet, or it may be geographically and technologically diverse, combining

services in New York, London, and Hong Kong as though they were all installed

on a local desktop. These services can coalesce to accomplish a specific

business task, enabling the business to quickly adapt to changing conditions and

requirements. When SOA implementation is guided by strategic business goals,

it ensures the positive transformation of the business and can realize the chief

benefits on an SOA, as follows:

i) Alignment of IT with the business

ii) Maximal reuse of IT assets

Together, these help assure that investment in expensive IT projects result in

lasting value to the business [1].

When creating such business processes it is important to remember an important

business process called choreography which is useful for complex automation

services. Choreography provides a set of rules that explain how different

components can act together and in what sequence, giving a flexible, systematic

view of the process. Using a travel package analogy, choreography allows

reservations to recognize that airfare must be booked first and then hotel

reservations can be made [6].

The Universal Business Language (UBL) is an initiative to develop common

business document schemas for interoperability. However businesses operate in

different industry, geopolitical and regulatory contexts and have different rules

and regulations for the information they exchange. Hence several trading

communities are tailoring the UBL schemas to their needs, requiring that these

schemas translate to each other [5].

34

1.3 Web Services

Web services are an instance of SOA. Web services can be explained briefly as

a framework of software technologies designed to support interoperable machine

to machine interaction over the network [6]. A web service is a software interface

that describes a collection of operations that can be accessed over the network

through standardized XML messaging. It uses protocols based on the XML

language to describe an operation or to exchange data with another web service.

A group of web services integrating together in this manner defines a particular

web service application in a SOA. The success of web services is mainly

attributed to its use of the highly versatile XML, XML allows the separation of

grammatical structure (syntax) and the grammatical meaning (semantics), and

how data is processed and understood by each service and the environment it

exists in.

Web services allow the following

i) Interaction between services written on any platform and on any

language.

ii) Allows for loose coupling, in which service applications may not break if

there is a change in the way in which one or more services are designed

or implemented.

iii) Conceptualize application function into tasks. This allows higher

abstraction of software so that even less technical people can use it for

business analysis.

iv) Adapt existing applications or legacy applications to changing business

and customer needs.

v) Legacy applications can be interfaced with other applications without

changing the original application.

vi) Provide other administrative or management functions like reliability,

accountability and security [1].

35

Web services can be used in a host of applications from weather forecast to

ticket booking. Some applications where they are used very effectively as seen in

the literature survey is discussed below.

Online labs with web services

 In the present day distance learning programs are becoming very popular with

students, an area which is slowly growing in popularity is online laboratories. To

clearly understand the concepts learned in a course labs would have to be used

but many institutions may not be able to afford setting up multiple labs, in such

cases online labs could be accessed, or in cases of distance learning these

online labs would have to be used. These online labs could be of any one of

these categories

 i) Virtual laboratories which provide a simulation environment in which students

 conduct experiments.

ii) Remote laboratories – students use a GUI to operate actual instruments via

 remote control.

The difficulty of creating an effective laboratory using remote control is to use

scattered computational resources and instruments across platforms. Normally to

ensure interoperability, systems use equipment from the same company like

Agilent or National Instruments. They even use the same operating system like

Microsoft. Users must then install additional software to use these devices using

remote control, thereby involving a lot of constraints on users. One solution to

these problems is to base online experiment systems on web services, which can

support interoperable machine to machine interaction over the network and can

also integrate heterogeneous resources [7].

Integrated automobile design

A scenario is considered as discussed by [8] where an automaker in Germany

may be required to cooperatively design a new automobile with an automaker

from Japan, however their software components that remote clients invoke for

designing the automobile may be in different technologies, such as Java 2

36

Enterprise Edition (J2EE), .Net or other distributed object technologies.

Accessing such different components with a unified method is difficult for a

remote client. Web services are used in such applications because they can

implement loosely coupled web applications across platforms and program

languages. Moreover developers can use some tools to transform most existing

components to web services. A framework using AJAX and web services can be

used for cooperative image editing [9].

Distributed Healthcare System

A distributed health care system built on SOA and web services can be used to

integrate a number of entities like physicians, nurses, pharmacists, patients as

well as medical devices used to monitor patients. Multimedia input and output

with text, images and speech makes systems less computer like and easily

accessible to non computer savvy people. Using this system a patient can book

an appointment either on their mobile or the desktop with a particular doctor, the

nurse can check this appointment list, the doctor can prescribe medicines which

are sent directly to the pharmacist to avoid tampering of the medicine list or to

avoid misinterpretation of the list due to ineligible handwriting. Medical equipment

like blood pressure monitoring devices and glucose monitoring devices can also

be connected on this framework. Web services are the most ideal platform to

connect these devices because of its ability to connect devices on different

platforms and implemented on different programming languages [10].

Hence considering the relevance of web services in today‘s world and the wide

range of applications where web services can be used.This thesis considers web

services to be a technological innovation of this century in terms of distributed

computing. This research work is based on this very relevant and highly evolving

field. Since it is a new area there is scope for a lot of research and innovation in

this field.

37

Along with all the benefits of web services there are a few downsides also. One

of the major factors could be the different standardizing agencies like W3C,

OASIS, Liberty Alliance Project and the Web Services Interoperability (WS-I)

Organization. Different companies are involved with web service technologies

like IBM, Microsoft, Sun etc. The uncoordinated web services standards process

has resulted in some companies ―predeveloping‖ a standard and then turning it

over to a standards organization.Tthis is a good business move because it helps

to create a new mass of applications which interoperate with their own

applications and tools. Companies like IBM and Microsoft believe in developing

their products in a closed process and then turning it over to a standard body.

Sun is working hard on developing applications in a more open environment [1].

1.4 M-services

 The significant advances in wireless technologies open a promising application

area for Web services. As a key extension of Web services, mobile services (M-

services) cater to the increasing population of mobile users. Specifically, M-

services are a special set of web services that can be accessible by mobile hosts

over wireless networks [11, 12, and 13]. They work together with mobile devices

to offer anytime/anywhere accessible services. In contrast to Web services with

wired infrastructures, M-services are more suitable for time and location critical

tasks. For instance, a stock quote service can help users make quick response

by providing timely quote prices. However, users may prefer desktops to cell

phones or Personal Digital Assistants (PDA‘s) when carefully preparing a travel

package for vacations. The mobile environment poses great challenges for

providing and consuming M-services. Mobile devices have low CPU and memory

capacities, limited power supply, small screen size, and restricted input

mechanisms. Wireless networks are limited by their small bandwidth. They also

suffer from link outages, which result in temporary unavailability. These

limitations hinder existing web service technologies from directly working with M-

services. For instance, the limited bandwidth may not be enough to convey

SOAP messages [11]. In addition, SOAP is expensive for mobile hosts in terms

38

of both power consumption and waiting time, they impose more overhead

because of the SOAP requests and responses, and parsing XML code also adds

extra computing costs. An option which is available is compression and

decompression of the SOAP messages, though this process can add an

overhead it is still effective since it reduces CPU computations [14].

 In mobile environment, users‘ context, such as location and activity, may change

rapidly. M-services need to track these changes and provide context- aware

functionalities. However, service description techniques, such as Web Service

Description Language (WSDL), have not provided support to model context.

UDDI enables service discovery in the web service framework. However, the

multiple costly round trips required by UDDI lookup are troublesome form of

service discovery [11]. The frequent unavailability of wireless network may cause

failures in service discovery processes.

But in spite of the shortcomings the landscape of software development is

changing rapidly, a decade ago it was sufficient to develop a desktop version of a

product to reach a majority of customers and to meet their expectations but now

most applications are developed to be compliant with mobile devices. Though

like the earlier web based applications, mobile services have technical and

physical limitations they have the advantage of location independence whereas

existing PC based systems can offer at best a nomadic context.

The evolution of mobile devices is so significant now that given an option of a

stationary option or a mobile option, users would any day prefer the mobile

option especially in applications like telephone conversations, taking digital

pictures, listening to music, reading, e-mail, managing personal information,

banking and a wide range of other consumer and employee activities [15].

The current challenge of software companies is to provide a uniform and

integrated user experience across desktop, web and mobile applications. The

39

natural architectural driver is to maximize that part of the software system

common to all three platforms while minimizing the platform specific part. In

addition the interface between the generic and platform specific parts should be

as simple and stable as possible, SOA offer an excellent technical solution for

achieving this architectural goal.

However when mobile devices are considered, the following challenges arise.

i) Different mobiles offer various subsets of mechanical, hardware and

software capabilities.

ii) Each device is available in the market for a very short period generally

months not even years

iii) Any software designed for mobile devices must be tested and validated on

each device since it can affect both user experience and the software‘s

ability to execute properly

iv) Any application that is developed must be forward compatible so that

users can use this application even if they upgrade to a new mobile

device.

Since customers demand and expect a uniform integration of services and

products, SOA is bound to become the platform of choice for an increased set of

everyday tasks [5].

As the mobile internet grows, the number and types of services will increase,

researchers should focus on empowering service users, programmers and non

programmers alike to create and share mobile services, this will enable the kind

of bottom-up creativity on the mobile internet that has served the conventional

internet so well [16].

1.4.1 Work Done

In Chapter 5 of the thesis an application has been developed which can be

accessed by mobile devices which is called Mobilink. The application creates a

40

web service which enables a data search to be performed on the back end data

base, the interesting aspect of Mobilink is that it assumes that the user of this

application would like to tailor make a web service to perform a search as per the

desired specifications but the user may not be tech savvy and may not be able to

code this application. Mobilink is designed with such people in mind who might

have a specific demand but may be lacking in technical knowledge to develop

this application. Mobilink provides a front end GUI to specify the parameters of

the search, the web service which is created would than perform the search

accordingly in a fixed set of databases. Mobilink provides a mobile web service

client which allows the mobile device to be used for performing a search in the

database. This application has tremendous potential, it can be extended to

search for image files, video files, audio files or it can be interfaced with context

aware GPS systems to give specific information to users.

1.4.2 Related Work from literature survey

It is very important that mobile service creation should not be limited to

professional computer programmers, who constitute a fraction of the world‘s

population, rather anyone who is able to browse the internet or perform simple

jobs online like online banking should be able to create mobile services, an easy

way to accomplish this is to create ―service templates‖ that nonprogrammers can

fill in to configure and create services. Authors of [16] have developed a

prototype system called Streamspin available at: (http://streamspin.com). This

prototype allows users to receive content from a range of services through a

single interface. Access to the system is both through the Streamspin website as

well as a mobile client. The users can register to services through the website

and they can receive content from the system like photos, video and data on their

mobile. Users can create services simply by filling up an online form , these

services once created can be put up to be shared with friends or with the general

public, for e.g. a person can create the desired travel plan which could be

shared with friends. Streamspin offers a level of abstraction to the user by hiding

all the implementation details. This system allows access to geospatial and

http://streamspin.com/

41

social networks. But this system is developed as a web application and not a web

service, unlike the application Mobilink which is developed as a web service.

 During the course of literature survey it was observed that most applications

designed for mobile services were used to provide either directions, video files or

text data like news, stock prices etc. The great advancements in mobile services

have opened the possibility of mobile web based services that tailor content to

user preferences, user locations, and device capabilities. As explained by [17]

where an application is created which stores the user‘s personal data like choice

of food, the direction of travel etc. When a search for a restaurant is performed,

the database storing the preferences is searched and the direction of travel is

obtained from the GPS system and the person is directed to the nearest

restaurant serving his favorite type of food.

The common fields in which mobile web services are used widely could be

categorized as

i) News: Could include information portals such as online news papers or

news broadcasting sites.

ii) Social: Could be in the form of blogs, online gaming, YouTube etc.

iii) Travel: Online reservations like Expedia or tourist and travel information.

Online games and Youtube videos require heavy graphics. Processing these

graphics intensive applications on the fly is processor intensive. Hence it is better

to pregenerate this data and cache it for quick future reference as explained in

[18].

In [19] the authors have developed an application for a vehicle rental service for

mobile users, this service allows the user to make a vehicle reservation and also

to make the payment through a mobile device. Response time analysis was done

using General Packet Radio Service (GPRS) and Wi-Fi networks separately.

42

Mobilink fills the research gap by providing a user friendly GUI which gives the

flexibility of creating the web service to the client as per the requirements. It also

creates a mobile web service client which allows access to this created web

service from a mobile phone.

1.5 Application developed to convert a desktop data mining

 application into a web service

1.5.1 Overview of Data Mining

One thing that has caught everyone‘s attention in the age of data explosion is the

huge volume of data that surrounds us.

i) International retailers like Carrefour, Wal-Mart etc. have huge volumes of

data

ii) Organizations performing research on human cells may store tons of data

on DNA, protein sequence and gene expression data

iii) Sites like Google, Yahoo, and YouTube etc may have to store terabytes of

data.

What is Data? Data can be any fact, number or text which can be processed by

the computer. These include:

i) Transactional or operational data like sales, payroll, accounting and cost.

ii) Non-operational data like forecast data, industry sales and macro

economic data.

iii) Meta data which is the data about itself such as data dictionary definitions.

It becomes pointless having this huge volume of data if there are no efficient data

mining tools to extract patterns in this data. Data can be any fact, number, or text

which can be processed by the computer. Data mining uses sophisticated

algorithms to extract useful data and identify trends and relationships in data that

are beyond simple analysis. In data mining, there are several fundamental

functions and associated algorithms. These mining functions include

classification, regression, clustering and association and form a core supporting

many common data mining solutions [62].

43

 Figure 1.1 Transformation of data to knowledge

Data Mining has evolved from areas like statistics, machine learning, pattern

recognition, databases and high performance computing [61]. As represented in

Figure 1.1 [110] the process of converting data to knowledge is called Knowledge

Discovery in Databases (KDD). KDD is an iterative process which involves data

selection, preprocessing the data, applying algorithms on the data and finally

viewing or analyzing the patterns in the data [23].

The technology of data mining is not new. It finds wide use in various domains

like-

Science and engineering:

i) Educational research

ii) Changes in DNA sequence for detecting diseases [66].

iii) Condition monitoring of high voltage electrical equipments.

iv) Dissolved Gas Analysis (DGA) on power transformers.

Business:

44

i) Customer Relationship Management (CRM) to find prospects with high

likelihood of responding.

ii) Market Basket Analysis for retail sales [70]

Mail Mining:

i) Parse and store e-mails by senders/subject.

ii) Separate spam mail

Building a web portal (like MyYahoo):

i) Collect data from more than one source page and present it as a

single page by adding some value to the data.

Building a search engine (e.g. Google):

i) Data mining helps Web search engines find high quality web pages and

enhances web click stream analysis.

ii) Web search engine crawls the web, indexes web pages and builds and

stores huge keyword based indices that help to locate sets of web pages

to a query.

iii) Return relevant pages to the query [70].

Personalized B2C E-Commerce (e.g. Amazon.com):

i) A host of web mining techniques, e.g. associations between pages visited,

click-path analysis, wish lists, instant recommendations etc., are used to

improve the customer‘s experience during a ‘store visit‘

ii) Also with the help of data mining techniques, the various patterns of

customer web-usage can be found.

iii) Depending on these usage patterns, users can be classified and

categorized and accordingly promotions and discounts can be sent to the

appropriate user groups [70].

1.5.2 Work Done

In chapter 3 a standalone desktop data mining application is converted into a

web service using the Weka software and tests are performed to see if the data

mining output obtained for three data mining operations which are clustering,

classification and text classification are the same when used as a standalone

45

desk top application and as a web service. The results obtained showed that web

services give the same output as a standalone application thus proving that a

standalone application can be converted to a web service with no loss of

precision but with the added advantage of having the application invoked by any

number of users who would require data mining results. This is the whole idea of

SOA to have code reuse and the usage of applications as services which can be

invoked over the network by other applications. Another major advantage of

converting the application to a web service is that the data mining application

need not be loaded on the client‘s system, this service can be invoked as a web

service thus saving on precious memory space on the system. A added benefit

would be any upgradation of the service will involve only the server side code

without affecting the client program.

1.5.3 Literature survey of the algorithms used in the data mining

application

The three algorithms considered in the data mining application are

i) J48 Classifier

ii) EM Classification

iii) IBk Lazy algorithm for text classification

1.5.3.1 J48 Classification

The notion of classification is to classify cases according to a fixed set of

categories. In simple words, classification is a machine learning (data mining)

technique to predict group membership of instances. Decision trees represent a

supervised approach to classification. A decision tree is a simple structure where

non-terminal nodes represent tests on one or more attributes and terminal nodes

reflect decision outcomes [67]. Classification can either be binary where there

are only two categories like will a person vote? Yes/ No, or classification can be

of multiclass like the different categories of income. Classification models may

use probability like the probability that people vote is 80%. Tools that support

46

classification in JDM include decision trees, Naïve Bayes, support vector

machines and feed forward neural networks [72].

Regression is used for classifying continuous values like value of a property,

congestion level in the atmosphere etc, algorithms that support regression

includes neural networks, decision trees and vector machines.

The J48 Decision tree classifier follows a simple algorithm. In order to classify a

new item, it first needs to create a decision tree based on the attribute values of

the available training data. So, whenever it encounters a set of items (training

set) it identifies the attribute that discriminates the various instances most clearly

[72].

The general approach can be summarized as given below:

i) Choose an attribute that best differentiates the output attribute values.

ii) Create a separate tree branch for each value of the chosen attribute.

iii) Divide the instances into subgroups so as to reflect the attribute values of

the chosen node.

iv) For each subgroup, terminate the attribute selection process if:

a. All members of a subgroup have the same value for the output

attribute,

 terminate the attribute selection process for the current path and

label the

 branch on the current path with the specified value.

b. The subgroup contains a single node or no further distinguishing

attributes

 can be determined. As in (a), label the branch with the output value

seen

 by the majority of remaining instances.

v) For each subgroup created in iii) that has not been labeled as terminal,

repeat the above process.

47

1.5.3.2 EM Clusterer Working

Clustering works by grouping data or documents on its similarity and not on

previous knowledge, Weka provides a number of clustering tools [58]. Clustering

analysis identifies clusters that exist in a given dataset, where a cluster is a

collection of cases that are more similar to one another than cases in other

clusters. A set of clusters is considered to be of high quality if the similarity

between clusters is low, yet the similarity of cases within a cluster is high [73].

The Expectation-Maximization (EM) algorithm is part of the Weka clustering

package.The EM algorithm assumes all attributes to be independent random

variables. The parameters are re-computed until a desired convergence value is

achieved [64].

In the simplest case, the probability distributes are assumed to be normal and

data instances consist of a single real-valued attribute. Using the scenario, the

job of the algorithm is to determine the value of five parameters, specifically:

i) The mean and standard deviation for cluster 1

ii) The mean and standard deviation for cluster 2

iii) The sampling probability for cluster 1 (or the probability for cluster 2)

The general procedure is :

i) Guess initial values for the five parameters.

ii) Use the probability density function for a normal distribution to compute

the cluster probability for each instance. In the two-cluster case, the two

probability distribution formulas each having differing mean and standard

deviation values.

iii) Use the probability scores to re-estimate the five parameters. [68]

1.5.3.3 IBK Lazy

Data is of two types either it is unstructured i.e. created by humans for humans

like books, e-mails, web pages etc or structured form for e.g. a database or an

XML document which is meant for the computer. Text mining is a specialized

application of data mining where it extracts useful information from unstructured

48

text or it uses it in the unstructured form by what is called a bag of words model

[58].

Text mining can be a very complex task, the tools available should provide a

layer of abstraction and they should keep the user unaware of how text mining

actually works.

Generally text mining could involve the following categories

i) Language Identification – Language profiles can be compared using n-

gram frequencies, n-gram is a chunk of continuous characters from a

single word for e.g. the word hello can have six grams –he, hel, ell, llo,

lo_, o_ _

ii) Clustering – Using K-nearest neighbor the centroid of the cluster of

words is found and it is decided into which cluster a word belongs.

iii) Similarity – Different functions like Hamming, Manhattan etc can be

applied to look for similarity.

Plagiarism detection is an application of text mining [58].

Generally to identify spam the following is done

i) Source Analysis – Looks at the identities of object contributors

ii) Text Analysis – Looks for words or phrases which could be categorized

as spam.

iii) Link or behavior analysis – looks at networks of objects or users.

Many sites like Wikipedia manually train spam filters to identify spam mail. Text

analysis in e-mail can generally happen with Bayesian Networks which are

trained to identify spam mail. There are three actions which can be taken when

spam is identified.

i) the spam mail is deleted

ii) the mail is given but with a warning

49

iii) the link with spam would have a lower rating this is generally effective

in a search engine portal like Google which would rank pages with

spam lower in its list [59].

The given code for training and testing a Text Classifier can be implemented with

two algorithms – IBk Lazy and Naïve Bayes. This code can be extensively used

for the purpose of mail mining and depending on the content of the mail it can be

classified as SPAM or NO SPAM.

The IBK Lazy is Weka‘s implementation of the K – Nearest Neighbor

Classification algorithm [67]. The k-nearest neighbor‘s algorithm (k-NN) is a

method for classifying objects based on closest training examples in the feature

space. It is one of the simplest algorithms that support a type of instance-based

learning, or lazy learning where the function is only approximated locally and all

computation is deferred until classification. An object is classified by a majority

vote of its neighbors, with the object being assigned to the class most common

amongst its k nearest neighbors, k is a positive integer, typically small. If k = 1,

then the object is simply assigned to the class of its nearest neighbor. In binary

(two class) classification problems, it is helpful to choose k to be an odd number

as this avoids tied votes. The neighbors are taken from a set of objects for which

the correct classification (or, in the case of regression, the value of the property)

is known. This can be thought of as the training set for the algorithm, though no

explicit training step is required [74].

1.5.4 Related work from literature survey

Various works has been carried out where Weka is converted to a distributed

data mining application on the grid environment. Weka4WS is a framework

where Web Services Resource Framework (WSRF) is used for accessing remote

data mining algorithms and managing distributed computations. On every

computing node, a WSRF compliant web service is used to expose all the data

mining algorithms as a web service. The authors of [78] use the Globus Toolkit to

50

develop the framework; Globus Toolkit is a middleware system which runs on top

of existing operating systems and networks it provides a Java WSRF library on

the Unix platform.

A very similar application to Weka4WS is discussed in [81] where a web services

based toolkit for providing distributed data mining is provided. A workflow engine

is provided within the toolkit to enable a user to compose web services to

implement particular point solutions. Three types of web services are provided:

classifiers, clustering algorithms and association rules.

Another framework developed along the similar lines is Weka4GML as described

by [89] where the WSRF technology is used for developing meta learning

methods to deal with data sets distributed among data grids.

In all the above three cases it is seen that Weka is converted to a distributed data

mining application on the grid and offered as a web service, the Globus Toolkit

framework is used in all the above cases. Another disadvantage is that the use of

the Globus toolkit makes all the three applications dependent on the Unix

environment. Managing the grid environment is a complex task and it would

require a workflow engine to distribute the tasks and to compute the result. On

the other hand the application developed and discussed in the thesis reduces the

scale of complexity and offers the service by performing the data mining

application at one node. This application will be simple to implement on any

system and it provides the data mining requirement for a small application by

eliminating the complexity of grid computing.

Related work in this field was conducted by [20] where they have used web

services for integrating incompatible applications in bioinformatics, an area which

is becoming increasingly critical to meaningful biological research. Web services

could be used in any research field that requires analyzing volumes of data and

conducting complex data mining. While analyzing the research gap it was

51

identified that most applications use data mining techniques to mine data like in

[21] where a database to simulate the world wide web has been created and this

data is mined using data mining tools created as web services to perform

operations like clustering, association rules etc.

A very interesting web service mining framework has been developed in [22]

which allow unexpected and interesting service components to automatically

emerge in a bottom up fashion. Different mining techniques aiming at discovery

of such service compositions are used, an evaluation measure of the usefulness

and interestingness of this model is also made. A case study has been designed

to work on biological processes and to study the discovery of interesting and

useful patterns.

A scalable, extensible, and easy to use data mining application that relies on web

services to achieve extensibility and interoperability has been developed in [23];

Anteater provides simple abstractions for users, and supports computationally

intensive processing on large amounts of data through massive parallelism.

Weka is a very powerful desktop data mining tool which is used for numerous

data mining applications, in this thesis Weka is converted into a web service and

tests are conducted on the output generated. The tests performed compares the

output of a desktop application to that of a web service, hence this research fills

the gap of testing and proving that any application can be converted to a web

service without any performance drop. And with the added advantage of being

accessible to many more people over the network. The only limiting factor here is

the network delay.

1.6 Interoperability in web services

Interoperability is defined by IEEE as the ability of two or more systems or

components to exchange information and to use the exchanged information [24].

52

Interoperability would require an application to interact with other applications

written using different languages or operating in different platforms. In web

services the possible scenarios for web service and web service clients can be

endless. Some of the main issues seen in interoperability are

i) Usage of complex data types – Whenever complex data types are

specified, they would ultimately be represented in XML. But the XML

schema may not be implemented to its fullest; the degree of the schema

implementation may vary from vendor to vendor. So support for complex

data type may vary from vendor to vendor. Therefore it is best to use

primitive data types which are supported by all vendors.

ii) Interoperability issues of wire protocol – SOAP sits over the same wire

protocol like HTTP, SMTP, and Jabber etc. So the different interoperability

issues related to these protocols are also escalated to web service

interoperability

iii) Document/Literal or RPC encoding – Some web services like Microsoft

follow the document/literal encoding while some web services like Apache

web service follow the RPC encoding. SOAP messages have many

optional parts, this leads to a number of interoperability issues.

iv) Security and related issues – There are stringent requirements in security

specifications. Each of them follows their own security policy.

Specifications like WS-Reliability and WS-Specification are built on top of

SOAP and they provide security features [25].

Document schemas create dependencies among documents because any

change to the document like any data added or removed may directly affect

existing applications. In this sense RPC message exchange is much more

transparent. The problem of standardizing structure and semantics of the

document is reduced to a much more manageable task of standardizing service

interfaces [26].

When discussing about interoperability, an important issue is to follow

specifications or follow a standard. If each developer uses their own technique it

53

would be very difficult to put all this together, hence a more homogenous

approach is needed to put together all applications to interact with each other.

There is a lot of research going on in increasing automation in service

interoperability i.e. the client application will read the requirements to bind to the

web service by going through the WSDL, the WSDL is more for machine

consumption but most WSDL documents come with a documentation file which

contains details of the WSDL document, such that it is easy for humans to

understand. The SOAP document is also semiformal and it is meant for humans

to understand, but only such that they can develop middleware tools to support it

[27].

1.6.1 Work Done

Chapter 4 explains the state of the art in interoperability issues and it explains

about the platform which has been developed to test commonly seen

interoperability issues across two platforms which are the most commonly used

tools for web service development that is Microsoft .NET and the Java platform.

Interoperability issues arise when the server and the client are developed using

different platforms. The commonly seen issues are with the transfer of primitive

data types, complex data types, namespace issues and with representation of

date and time.

 1.6.2 Related work from literature survey

The author of [28, 29, and 30] discusses about the different interoperability

issues, all these issues have been programmatically developed and tested during

the course of this research. A platform for testing the various interoperability

issues has been developed. The different issues which are tested are

interoperability issues when an array with null elements is passed. Passing of

different primitive data types like unsigned numbers, float values etc. Passing

complex data types like objects between the platforms. The results obtained after

performance of the tests is clearly explained in chapter 4 of this thesis report.

54

[31] discusses work is done with both basic and complex data types and the

authors have encountered interoperability issues, in their paper they propose a

business model where data binding tools not only generate the WSDL, but also

provide portable binding extensions for manipulating the XSD types, these

binding extensions can be integrated into any other binding tool, overcoming their

limitations. Other work in web service interoperability as observed during

literature survey are more of analytical work where current standards are

assessed and specifications for identifying new opportunities are suggested as

the work carried out by [32] indicate. Similarly [33] study the interoperability

issues involved in e-government issues and they highlight the fact that

interoperability needs to focus on both technical and non-technical issues. In [34]

a smart home environment has been designed where home entertainment, home

surveillance, energy management, assistive computing and healthcare are all

interfaced using web service technology and they discuss about interoperability

issues and present a simple SOAP solution to solve interoperability issues.

Interoperability issues can be solved to some extent by having some similarity

among several service registries as suggested by [35] crawler engines can also

be designed such that they could aggregate the web service references,

resources and description documents. Since one of the main beneficiaries of the

web service technology happens to be business organizations, web services can

solve interoperability to some extent by making use of the Universal Business

Language (UBL) such that the schemas of the UBL documents can translate to

each other.

1.7 Security in Interoperable web services

As explained previously web services are loosely coupled applications which can

interact across multiple platforms and across multiple programming languages

and operating systems. Web services make use of the SOAP protocol for data

transfer, SOAP is nothing but XML documents. These XML documents flow as

clear text and it is not difficult for an intruder to intercept and retrieve sensitive

55

information like credit card numbers, therefore to enable security of data

transaction XML digital signatures and XML encryption is used. Both XML digital

signatures and XML encryption use Public Key Infrastructure (PKI) for

encrypting, decrypting and signing the various documents. For an application to

use XML encryption and/or digital signature, the application must use or integrate

with a PKI solution. Various PKI solutions are available, such as X.509 (widely

used), Pretty Good Privacy (PGP), Simple Public Key Infrastructure (SPKI) and

Public Key Infrastructure X.509 (PKIX). To enable one application to talk to

another application either both of them should use the same PKI solution or they

should be aware of each other‘s PKI solutions [36]. For example, if organization

A uses an X.509 PKI solution and sends encrypted documents to organization B,

which uses an SPKI PKI solution, then organization B won't be able to decrypt

and use the document sent by A. For A and B to work together, one of them has

to understand the other's PKI solution. If this scenario is extrapolated to a

situation where multiple partners are involved, it becomes clear that all of the

partners will have to be aware of each other's PKI solution, thus increasing each

application's complexity many times. In order to abstract the user from all these

complexities the XML Key Management Specification (XKMS) takes care of

maintaining the keys and certificates and lets enterprises exchange their digital

signature or their certificates.

1.7.1 Work Done

Web service security interoperability platform has been developed using Java

and .Net. The web service is developed in Java using the Netbeans IDE; the web

service performs simple addition and simple interest calculation. A C# client is

developed to invoke this web service. The web service developed is a secured

web service which uses username authentication with symmetric key. The client

has to authenticate itself to the web service before it can access the service

offered by the web service, this is done by certificate exchange, and the client‘s

certificate is matched with the issued certificates by the glassfish server. The

glassfish server is used to deploy the web service. Once the certificate matches

56

than a session key is enabled and there is than flow of data between the web

service and the web service client.

The important work that is accomplished by the developed web service security

interoperability platform can be specified as given below.

i) It is observed that the certificates to be exchanged by the two different

platforms Java and .Net have different formats which are represented

by the different file extensions.

ii) The certificate stores are converted to a format which could be

understood by each other.

iii) The transfer of data after certificate verification is verified. The

verification is done by logging the SOAP messages which travel back

and forth between the web service and the client by using a logging

tool like the TCP monitor.

1.7.2 Related Work: Setting up Web Service Security (WSS) can be a very

complex and difficult task even for somebody associated with security leave

alone somebody new to security, [37] have proposed an API which allows non

security experts to easily configure and enable WSS. This API makes use of a

six step programming model to configure and test WSS easily. This API which is

developed is than compared with similar API‘s like JSR, WSS4J, WSE, and

WSSAPI in terms of lines of code, number of classes and cyclomatic complexity.

When security is added in web services, the performance of WSS remains a

concern due to the additional security contents added to the SOAP message and

extra service time for processing these security contents. In [38] the authors

conduct a performance evaluation of WSS. A simple web service is designed and

used for performance testing with a variety of WSS policies and message sizes.

The test results are categorized, compared and analyzed to work out the

overheads for individual security setting.

57

WS-FESec is a framework which is developed and it highlights the importance

of end to end security in web services [39].

Most of the existing tools give a technology oriented view and only assist in

choosing the data to encrypt and selecting an encryption algorithm, the users

would have to design their own security model and decide on how they would

relate to their business policies. The authors of [40] have described a tool which

gives a simplified business-policy-oriented view. It models the messaging with

customers and business partners, lists various threats and presents best practice

security against the threats.

Just checking the access control rights of a person trying to access a web

service may not be sufficient but it may be required to check the web access

history of the person, data mining operations like association rules are also

performed simultaneously to predict the web services the person could possible

invoke. A match is done to see if the request matches with the analysis done

using data mining; depending on the outcome web access is either permitted or

denied [41].

A large number of papers have been written which explain about the current

state of the art of XML and web service security. This is important because of the

need of WSS to constantly evolve with time such that the technology is ahead of

hackers and security breaches. A very good reference in this area is [42].

During literature survey it was observed that a platform developed for web

service security interoperability like the one developed during the course of this

research does not exist, hence this research bridges this gap. This developed

platform allows different interacting systems to exchange authentication

information prior to data exchange; the platform is an excellent base for young

researchers to experiment with different security specifications.

58

1.8 Scope and Limitations of Research

1.8.1 Scope

Web Services are a very important technological innovation. They enable

services to be hosted such that a service consumer can simply invoke a service

without bothering about which programming language is used and in what

platform the application is developed. Web services can be composed into large

applications by using Business Process Execution Language (BPEL). This

enables large services to be developed by combining smaller services.Work

carried out in this thesis is divided into four main areas.

i) A case study is developed for converting a desktop data mining

application to

 web service.It is programmatically verified that the the output of the

desktop

 application is the same as a web service application.

ii) Mobile enabled publishing, location and invocation of web service is

developed.

iii) A GUI based platform is developed to check interoperability issues across

Java

 and .Net .

iv) A platform for studying secured communication between a .Net and J2EE

web

 service has been developed and verified.

1.8.2 Limitations

i) An alternate form of web services is REST (REpresentational State Transfer)

web services. REST is a design idiom that embraces a stateless client-server

architecture in which web services are viewed as resources and can be identified

by their URL‘s. This research is confined to SOAP based web services, and in

future it can be extended to REST web services.

ii) Semantic web services is an emerging area for discovering a particular

preferred web service among similar web services by adding semantic

59

information to the description of web services. In future this work can be

extended to semantic web services by adding semantic information to the WSDL

document.

iii) Scalability is an important issue to be considered, when multiple clients invoke

a particular web service at the same instant of time. This research can be

extended to scalability issues.

iv) Response time analysis of invoking the different tools developed during this

research is not addressed.

1.9 Organization of the Thesis

Chapter 2 Discusses the state of art in web services.

Chapter 3 Deals with applying web services to a data mining application.Tests

 are performed to check the performance of the desk top data mining

 application as compared to a web service.

Chapter 4 Discusses the issues seen in web service interoperability across

 diverse platforms.

Chapter 5 Presents an innovative web framework for developing mobile enabled

 web service .

Chapter 6 Explains the development of a framework for studying web service

 security across .Net and J2EE platform.

60

Chapter 2: State of Art in Web Services

2.1 Introduction

This chapter discusses the evolution of web services and SOA. The different

building blocks of web services like UDDI , WSDL, SOAP and XML are explained

in depth.

2.2 Working of Web services

A Web service is a software system designed to support interoperable machine

to machine interaction over a network. It has a interface which is described in a

machine understandable format (Web Services Description Language).Other

systems interact with the web service in a manner prescribed by SOAP

messages, typically conveyed using HTTP with XML serialization in conjunction

with other web related standards.

An important point to remember with web services is that they need not be

available on the world wide web , they can be anywhere from the internet to the

intranet, infact web services have little to do with browser focused and HTML

focused World Wide Web [43].

In a web service the invocation method is very important, how the web service is

deployed and implemented is not of any concern this is very similar to the web

browser interacting with a web application. The browser just does not care about

the application because all that the browser is concerned about is the wire level

protocol HTTP which is used to transfer the data and the wire level format HTML

used to present the data. As long as the site supports the protocol and this

format it would continue working [44].

In the traditional approach if a client had to make a booking for a business trip

they would have to log on to multiple sites and make separate bookings for their

air ticket, the hotel and pay separately through their credit card. But using a web

61

service to do the booking would considerably reduce the effort of the client as

explained below.

Figure 2.1 [110] explains how a web service works. A client who is planning a

business trip logs onto a client application which in turn communicates with a

travel agent web service which communicates with other web services like the

hotel reservation web service , the airline reservation web service and the credit

card company web service for the payment. Here all the interactions are

machine to machine with no human interaction. Finally the travel agent web

service combines the response of all the other web services and gives the final

itinerary to the client.

Figure 2.1 Example of a web service application

2.3 Evolution of Web services

i) Mainframe architecture: Used in the yesteryears where computers were just

being used in applications. The applications were large, monolithic and

expensive. Very few companies owned computers.

62

ii) Client Server application: N number of clients could interact with a single

server; the server would process the request and send back the response to the

client as illustrated in Figure 2.2 [110] . Now if there is a change in the client code

than this code would have to be redeployed and installed on all the client

machines. Now if this application is within an office where the clients are

accessing a database server in the office itself this would be possible. But over

the internet where there are a number of clients located world wide this may not

be possible. This was the reason for client server applications not being used in

large distributed applications.

Figure 2.2 Client Server applications

iii) Distributed Architecture: Here individual computers are geographically

located in different places and they are connected over the network. This was an

efficient method of connecting computers because individual computers could

perform computations simultaneously, without blocking for the services of the

server .The computers used TCP/IP as their communication protocol.

63

iv) Web based application: The internet and the World Wide Web gave rise to a

lot of business opportunities, they led to the globalization of a number of

companies. Businesses could either be business to business B2B or business to

consumer B2C. B2B allows electronic exchange of documents like purchase

orders or invoices without any human interaction, B2B could be used for a small

application like credit card validation to a large application like the full automation

of a supply chain management. In B2C there was human to computer interaction,

and this would be in the form of a request response interaction. Where the user

would send a request for a particular website and the server would send a

response. Here this interaction between components was browser based, if the

browser did not support a particular format a document could not be viewed.

Commonly used applications include web shopping portals, online banking

application, distance education and stock trading application.

a) In a B2C application the consumer would interact with java servlets or

enterprise java beans while B2B applications can interact with straight

java code which can be hosted on web service engines.

b) B2C handle data over the HTTP protocol input comes in the form of GET

parameters or POST parameters from forms. While B2B applications can

use internet protocols like HTTP, FTP, and SMTP.

c) B2C uses HTML which only allows string data types to be transmitted,

even numbers are encoded as strings during transmission, B2B uses XML

for data transmission, XML is programming language and platform neutral

so any form of data can be transmitted.

d) B2C needs a user interface because a human would be interacting with

the system, B2B does not need a user interface because of a machine

interacting with the application.

V) Service Oriented Architecture (SOA): With the usage of the internet

businesses expanded, but business to business applications became rare. SOA

offers a platform for services to be available and these services to be invoked by

other applications over the internet.

64

2.4 Introduction to Service oriented Architecture (SOA)

In SOA all software components (functional units) which can be consumed over a

network are modeled as services. The focus here is on the interface because

other applications can invoke this process.

For e.g. a banking application which already has a loan processing application

can be considered. The bank might decide to offer this application as a service to

be accessed by other banks. Similarly an application may be designed to give

the best rate of interest among a number of banks, so an application may be

designed which just compares the rate of interest of different banks and gives the

best interest possible so here the concept of a service oriented architecture

where a number of independent services are collaborated together to generate a

bigger service.

Another application of a service oriented architecture could be restaurant finder

in a particular area, this is a service which can be invoked by any person, now

this service may be interfaced with a map quest service which could give the

map of a particular area and the route or direction to a particular restaurant so

here again a combination of services giving rise to a service oriented architecture

can be seen.

Another interesting application could be a doctor using a hand held device to

access patients medical history, the doctor could than write out a prescription

which is sent online directly to the pharmacy, the pharmacy could than courier

the medicines to the patient if he so desires.

From the above examples it can be seen that services can be something which is

as discrete or trivial as a currency converter or a language translator used for

simple text conversions between English and French. Or a service can be

65

something as complicated as handling a complete supply chain process for a

large company can be done with SOA [45].

2.4.1 SOA Architecture

Figure 2.3 Service Oriented Architecture

The interaction of the different components of SOA are shown in Figure 2.3

[110] and they are defined as:

Service Provider: Is responsible for developing and deploying the service,

the service provider also publishes the service with the service broker

Service Broker: Is more commonly called the service registry, contains

information about the different services, their description, and their location.

Service Consumer: Is responsible for invoking the service.

These different roles can be played by any computer on the network for e.g. a

computer which is invoking a service may be providing a service to a

downstream computer.

SOA also includes three operations publish, inquire and bind.

Publish : Publish is the act of advertising the services available, this can be

done by moving the service description into a web application server‘s

directory structure or in a UDDI it can be a more sophisticated operation

66

Find: Is an operation of querying the service registry. How the result is

displayed would depend on how the registry is organized. In a simple registry

a simple HTTP GET would give all the web services available, but a UDDI

has many powerful find capabilities.

Bind/Interact: It represents the relationship in a client server model, it can be

sophisticated and dynamic such as on the fly generation of a client side proxy

used to invoke the web service or it can be a static model where the

developer hand codes the way a client application invokes a web service [43].

A scenario of a travel service provider who exposes the available business

applications as services is considered, these services could be obtained from

other businesses like an airline company, hotel reservation system, car rental

system, credit card system etc. A service requester could send a request

either from a desktop or from a mobile device to the travel registry which will

in turn interact with the other services. This type of application is seen in the

web sites of certain airline companies for e.g. South West airlines has a tie up

with Dollar rent a car and if bookings are made through the airline web site

the customer is offered a better rate, similarly a customer can book into a

hotel from the airlines web site itself here a collaboration of a number of

services together forming a service oriented architecture is seen.

2.4.2 Importance of SOA

i) SOA changed the way that software was developed; software is built as

loosely coupled mix and match processes.

ii) It becomes easy to scale an application, for e.g. if an application has just

2-3 processes it can be scaled to a big application.

iii) Having a large monolithic, tightly coupled, inflexible software is difficult to

maintain and modify, this will slowly give rise to the SOA approach

iv) Any changes to the application can easily be modeled, for e.g. the arrival

of a new supplier, merger of two divisions etc.

67

v) Another important feature of SOA is the merger of IT concepts with

business rules.

vi) Code reuse is an important feature, if code to perform currency conversion

is already available, a system can simply invoke this service rather than

build this service from scratch leading to a more specialized industry.

2.4.3 SOA and Web services are distinct but different

SOA is an architectural concept which focuses on building systems which are

built as loosely coupled components or services which can be dynamically

composed. Web services on the other hand are one approach to building a SOA

application.

Web services provide a standard of a particular set of XML related technologies

that can be used to build SOA applications [43]. Web services are instances or

implementations of SOA. Other instances of SOA deployments, other instances

include Distributed Component Object Model (DCOM) and the Common Object

Request Broker Architecture (CORBA) [4]. Web services seem to become the

preferred implementation technology for realizing the SOA promise of maximum

service sharing, reuse and interoperability. Web services and SOA reduce

complexity of enterprise application eco-systems by encapsulation and

minimizing the requirements for shared understanding by defining service

interface in an unambiguous and transparent manner [46].

 2.5 Types of Web applications

Web applications can be anyone of the two types.

i) Browser based Web application

ii) Web services where there is an exchange of SOAP messages

Bowser based Web applications

i) The browser acts like a thin client and it invokes a service which is hosted

on the server.

68

ii) The output seen is dependent on the browser used.

iii) It is easy to upgrade the server application, without affecting browser‘s

access to the application.

 Web services based applications

i) There is an exchange of information with the flow of XML messages.

ii) Web services can interact across different platforms, for e.g. the service

and the client can be hosted on computers with different operating

systems and they can be coded with different programming languages.

iii) Web services can be developed on different programming languages like

.NET, Java, C# etc.

iv) Web services are not meant for handling presentations like HTML, they

are developed using XML, such that they can be accessed by any

software application, any device and from any platform [47].

2.5.1 How are Web services different from Web applications?

i) In web applications interaction is only with the browser, in web services

methods are invoked directly and requests can come from any source or

from any server.

ii) Web applications interact with the browser, the browser is now dependent

on the operating system and the hardware of the computer, the browser

would be able to communicate only with HTML documents and it could

understand the HTTP protocol only while web services interact through

other XML based protocols also.

iii) In a traditional web application, the actual user is on the other end, so in a

single sign on application a user can be asked to authenticate himself if

required whereas in a web service the originator of the request may not be

available for authentication as and when required.

iv) All browser based web applications make use of the Secure Socket layer

(SSL) for secure transfer of data. SSL is a secure and reliable protocol

which provides end to end security between two parties. Web services

69

make use of XML encryption. XML encryption provides two very important

additional features which are not addressed by SSL.

a. Encrypting only part of the data being exchanged

b. Secure sessions between more than two parties.

v) SSL encrypts the data completely between two parties, thereby increasing

the overhead at both ends, in case of XML encryption selective encryption

of data is possible as indicated in Listing 2.2 [48].

Listing 2.1 Unencrypted XML purchase order document
<purchaseOrder>
 <Order>
 <Item>book</Item>
 <Id>123-958-74598</Id>
 <Quantity>12</Quantity>
 </Order>
 <Payment>
 <CardId>123654-8988889-9996874</CardId>
 <CardName>visa</CardName>
 <ValidDate>12-10-2004</ValidDate>
 </Payment>
</purchaseOrder>

Listing 2.2 Encrypted XML purchase order document with only payment

details encrypted

<?xml version='1.0' ?>
<PurchaseOrder>
 <Order>
 <Item>book</Item>
 <Id>123-958-74598</Id>
 <Quantity>12</Quantity>
 </Order>
 <Payment>
 <CardId>
 <EncryptedData
Type='http://www.w3.org/2001/04/xmlenc#Content'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>
 <CipherData>

 <CipherValue>A23B45C564587</CipherValue>
 </CipherData>
 </EncryptedData></CardId>
 <CardName>visa</CardName>

70

 <ValidDate>12-10-2004</ValidDate>
 </Payment>
</PurchaseOrder>

From Listing 2.2 and 2.2 we can conclude that XML permits selective encryption

where only credit card information is encrypted, and all other data is sent in clear

text

2.6 Building blocks of Web services

The building blocks of web services are XML, SOAP, WSDL and UDDI. The

working and the significance of each of the following is explained in Figure 2.4

[110].

Figure 2.4 Interaction in web services

2.6.1 XML Extensible Markup Language

XML has changed the way of structuring, exchanging and describing data. For

web services the significance of XML is paramount. All key web service

technologies are based on XML. Many specifications are built on top of XML to

71

extend its capabilities and use it in a broader range of scenarios. XML is used to

describe structured and semi structured data in textual form. Semi structured

data can be in the form of a doctor‘s prescription and a structured document can

be in the form of representation of scientific data from manuals and reports.

Table 2.1 Sample HTML and XML documents used to describe the same

data (address of John Doe).

 Sample HTML document Sample XML document

The HTML document describes more about how the document is to be displayed

and does not explain about the content of the document; it is difficult for a

machine to extract information from the HTML document. The XML document

describes the content of the document and it is easy for a machine to

understand.

XML Separates Data from HTML

If dynamic data in an HTML document needs to be displayed, it will take a lot of

work to edit the HTML each time the data changes. With XML data can be stored

in separate XML files. This way more concentration can be on using HTML for

layout and display, and be sure that changes in the underlying data will not

<?xml version=1.0?>
<contact>
 <name>John Doe</name>
 <address>2Backroads
Lane</address>
 <country>New York</country>
 <phone>045935435</phone>

<email>john.doe@gmail.com</email
>
</contact>

<html>

<body>
 <h2>John Doe</h2>
 <p>2 Backroads Lane

 New York

 < 045935435

 john.doe@gmail.com

 </p>
</body>
</html>

72

require any changes to the HTML. With a few lines of JavaScript, an external

XML file can be read and updated.

XML Simplifies Data Sharing

In the real world, computer systems and databases contain data in incompatible

formats. XML data is stored in plain text format. This provides a software- and

hardware-independent way of storing data. It makes it much easier to create data

that different applications can share.

XML Simplifies Data Transport

With XML, data can easily be exchanged between incompatible systems. One of

the most time-consuming challenges for developers is to exchange data between

incompatible systems over the internet. Exchanging data as XML greatly reduces

this complexity, since the data can be read by different incompatible applications.

XML Simplifies Platform Changes

Upgrading to new systems (hardware or software platforms), is always very time

consuming. Large amounts of data must be converted and incompatible data is

often lost. XML data is stored in text format. This makes it easier to expand or

upgrade to new operating systems, new applications, or new browsers, without

losing data

XML Makes Data More Available

Since XML is independent of hardware, software and application, XML can make

data more available and useful. Different applications can access data, not only

in HTML pages, but also from XML data sources. With XML, the data can be

available to all kinds of "reading machines" (Handheld computers, voice

machines, news feeds, etc), and make it more available for blind people, or

people with other disabilities.

73

XML is used to create new internet languages

A lot of new Internet languages are created with XML.

Here are some examples:

i) XHTML the latest version of HTML

ii) WSDL for describing available web services

iii) WAP and WML as markup languages for handheld devices

iv) RSS languages for news feeds

v) RDF and OWL for describing resources and ontology

vi) SMIL for describing multimedia for the web

The building blocks of XML are

i) XML Instances: Are used to create syntactically correct documents.

ii) XML Schema: A standard that allows detailed validation of XML

documents as well as the specification of XML data types.

iii) XML Namespaces: used to combine many XML documents from

different sources to produce a single XML document.

iv) XML Processing: is used for creating, manipulating and processing

XML documents from programming languages as well as mapping

 Java data structures into XML.

XML documents are broadly divided into two categories

i) Document centric XML

ii) Data centric XML

i) Document centric XML – used to represent semi structured data like technical

manuals, legal documents and product catalogues which are meant mainly for

human consumption.

74

ii). Data centric XML – used to represent highly structured data like textual

information of a database system, financial transactions and programming

language data structures. It is generally generated by machines for machine

consumption and used to represent highly structured and repetitive data [43].

An important feature of XML is its self describing ability; an XML document

contains a XSD (XML Schema Definition) which defines the schema of the

language. The use of XSD makes XML more resilient to changes in data,

because when there is a change in the XML document it can be reflected in the

schema definition making it easy for the parser to parse the given document [49]

There is another form of defining data i.e. DTD (Document Type Definition) but

this form is not used with web services because the structure of the DTD

document is totally different from an XML document. A large number of DTD

documents are still found on the web, but the growing demand for XML and the

shortcomings of DTD led to alternate description schemas like RELAX, TREX

and XSD [50].

There are two types of parsers available in XML

i) SAX parser

ii) DOM parser

i) SAX (Simple API for XML) parser transforms the XML document to a

string,

 giving the programmer a temporal sequence of tokens.

ii) DOM (Document Object Model) Represents the XML document as a node

 labeled tree in which the nodes correspond to the distinguished

 components of the format [51].

2.6.2 SOAP Simple Object Access Protocol

i) SOAP is a wired protocol, which means that SOAP is used to

define how data is serialized and transmitted over the network, for

75

e.g. if a data 56 is transferred on the wire it specifies how the data

is transmitted. In SOAP the data is transmitted in XML whereas in

other transport protocols data is transferred as binary.

ii) SOAP uses XML framework to define extensible messaging

framework which works with a number of other protocols like HTTP,

FTP and also MSMQ. SOAP is by nature platform neutral and

vendor neutral. These characteristics allow for a loosely coupled

relationship between requester and provider which is especially

important over the internet where two parties may reside in different

organizations or enterprises [46].

iii) SOAP is put on HTTP, most systems which are behind the firewall

use port 80 to communicate with the internet, so SOAP also travels

through this port.

iv) SOAP permits complex data to be put on HTTP, unlike HTTP which

only allows name value pairs

v) SOAP protocol supports a rich set of data types like enumeration,

structures and arrays.

vi) SOAP is a light weight protocol used for exchanging structured

information in a decentralized, distributed environment.

76

Figure 2.5 Structure of a SOAP message

The components of a SOAP message are represented in Figure 2.5 [110]. A raw

XML document is converted to a SOAP message by the addition of a SOAP

envelope which in turn contains a SOAP header(optional), and the SOAP

body(compulsory).The SOAP message may also contain attachments, these

attachments could be XML or non-XML files (i.e. image files, text files etc.).The

SOAP header provides a mechanism to extend the SOAP message by adding

functionalities like security, transactions, priority etc

SOAP Body: Is the mandatory part of the message, more than one body may be

contained in the SOAP message; it contains the message which is to be

transferred to the receiver. The body block of the SOAP message can contain

any one of the following:

77

i) RPC method and its parameters

ii) Target application (specific data for the receiver)

iii) SOAP fault for reporting any errors and status information.

2.6.3 Web Service Description Language (WSDL)

WSDL is an XML document which is used to describe web services. With a large

number of communication formats and protocols it becomes necessary to define

a standard. WSDL provides a standardized format for all the necessary

information about services like name of the service, location of the service,

parameters exchanged, the communication protocol used etc. The WSDL should

be easily accessible to clients, in order to make the web service known the

service provider registers the WSDL in a registry. A client wanting to access the

web service retrieves the WSDL details from a registry like a UDDI and it can

then invoke the web service by sending a SOAP request to the specified web

service.

 In most of the cases application tools or Integrated Development Environment

(IDE) like Netbeans can generate the WSDL document for a service during the

development of the service. In some cases it is possible to generate the WSDL

document for code, which has already been developed and deployed by using

tools to perform this operation, for example there could be a courier tracking

application, weather reporting service or a stock quote service which is already

developed but it is to be accessed as a web service here the tools will have to go

through the source code and generate the WSDL. In some cases the WSDL

document can be created and tools can be invoked to create the matching J2EE

base component to create the web service.

Structure of the WSDL document

The WSDL contains four important components.

i) Interface information, which contains information on publically available

functions

78

ii) Data type information about incoming messages (request) and outgoing

information (response)

iii) Binding information about the protocol used to invoke the Web service

iv) Address information for invoking the specified Web service

The services description is accomplished through a set of seven special XML

elements as illustrated in Listing 2.3. These elements are specific to WSDL and

are governed by the XML namespace convention. The seven elements are :

<types>, <messages>,<operations>, <portType>, <binding>, <port> and

<service> .

Definitions are the root element that contains all seven elements that describe

web services.

i) <types> element - defines the data type definitions using some type of

system like the XML Schema Definition(XSD). XML namespaces are also

used when required, they define the data types of the information used in

the message element.

ii) <message> element - this defines the message that will be exchanged

between the two ports. It specifies the name of the message, the input or

request data type and the output or response data type. There could be

many messages exchanged and each message is identified by a part name

iii) <operations> element – is an abstract definition of the actions supported by

the web service, it supports two types of elements

<input> - supports server side action

<output> - supports client side action

iv) <portType> element - Describes one or more abstract set of operations

supported by one or more endpoint. In order to distinguish between one or

more operations a name attribute is associated with the operation.

v) <binding> element – specifies a concrete protocol and a data format

specification for a <portType>

79

vi) <port> element – provides a single endpoint which is defined by a

combination of <binding> and network address to specify where a web

service is hosted.

vii) <service> element - Identifies the web service since multiple web services

can be hosted. It models the multiple services through a list or collection of

<port> elements [52].

Listing 2.3 Sample WSDL documents for a stock quote service

<?xml version="1.0"?>
<definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <schema targetNamespace="http://example.com/stockquote.xsd"
 xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="TradePrice">
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

 <message name="GetLastTradePriceInput">
 <part name="body" element="xsd1:TradePriceRequest"/>
 </message>

 <message name="GetLastTradePriceOutput">
 <part name="body" element="xsd1:TradePrice"/>
 </message>

80

 <portType name="StockQuotePortType">
 <operation name="GetLastTradePrice">
 <input message="tns:GetLastTradePriceInput"/>
 <output message="tns:GetLastTradePriceOutput"/>
 </operation>
 </portType>

 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastTradePrice">
 <soap:operation soapAction="http://example.com/GetLastTradePrice"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://example.com/stockquote"/>
 </port>
 </service>
</definitions>

Limitations of WSDL

WSDL is not capable of describing complex business web services, where a web

service consists of multiple fine grained web services. This is due to the fact that

WSDL does not support workflow descriptions in WSDL. To overcome this

eXtensible Business using XML(ebXML) and Web Service Choreography

Interface(WSCI) are provided. The information provided in the WSDL may be too

generic and inadequate to properly invoke a target web service. Some extra

semantic information may be provided to help construct input parameters [24].

81

2.6.4 Universal Description Discovery Interface (UDDI)

The UDDI is a directory which contains the description of the different web

services which are available. It is an electronic medium in which other services

can discover web services registered with this UDDI, it is also a medium where

web service developers can register their services to be invoked by others. When

services have to be discovered among a small number of businesses it becomes

easy to identify the service manually, but when the number of business is large

and distributed all over the world, it becomes important to have a registry where

these services can be searched for. Companies like Microsoft, IBM etc maintain

UDDI repositories.

Technical architecture: The UDDI is a single system built from multiple nodes

which have their data synchronized through data replication. All the nodes

together form the UDDI Business Registry (UBR). Data can be added at any of

these nodes but any editing or deletion of data is allowed only at the node where

the data was added. Figure 2.6 explains the architecture of the UDDI [110].

Two API‘s are described by the UDDI specification.

i) Inquiry API – used to enquire the UDDI, users need not be

authenticated hence the protocol used is HTTP.

ii) Publishing API – used to create, store or edit information, users must

be authenticated to use the registry hence the HTTPS protocol is used.

Registries are of two kinds

i) Public registries

ii) Private registries

i) Public registries are available for anyone to publish/query their service

information. Public registries could generally be distributed, but they are

synchronized, so if changes are made at any site the changes will be

synchronized. Such registries are called UBR. Content in these registries can be

82

uploaded at any site but if the data is to be edited it can only be done at the site

where data was added.

ii) Private Registries are owned privately and a user must be authenticated to

 be allowed access to these registries [47].

Figure 2.6 Architecture of UDDI

Depending on how a UDDI is used it is classified into one of these categories

i) White pages: Here companies register information like name, address,

contact information etc. White pages will be more or less like the regular

telephone directory where information is stored according to alphabetical

order. Searching in this directory can be difficult.

ii) Yellow pages: Businesses classify their information based on different

categories of business like automobiles, share brokers etc very much like

the yellow pages available in telephone directories. This classification of

information makes searching for a particular data easy.

83

iii) Green pages: Technical information about the web services like the

behavior and supported functions is published here.

 Figure 2.7 UDDI data structures

UDDI Data Structures

The different data structures in the UDDI are illustrated in Figure 2.7 [110].

i) businessEntity: contains general information about the company like

contact information, categorizations, identifiers and relationship with

other companies.

ii) publicAssertion: Is used to establish public assertion with another

company, only if both companies specify the same relationship with

each other than they can be seen by the public.

iii) businessService: Is a single logical service classification, it describes

the set of services provided by the business, these services can be

manual services or they can be web services for e.g. if a college has a

faculty web service this can be accessed by the administration web

service or the admissions web service, it can contain one or more

binding template.

iv) T-Model: Is the technical model which has the digital fingerprint which

specifies how to interact with a particular web service, it provides

pointers to a location which gives these specifications.

84

As explained in [53] a browser can also be used to access web services. During

the early years of web services, browsers did not have the ability to send SOAP

messages, hence an intermediary was required to transform a HTTP request to a

SOAP request and vice versa, this was done by components within the web

portal the only disadvantage of this method is that end to end connectivity was

broken.

In recent time‘s browsers like Mozilla starting from version 1.0 and Internet

Explorer 5 support SOAP. They offer some form of SOAP API which can be used

with scripts embedded in HTML to send SOAP messages directly from browser,

the only disadvantage is that the API‘s are browser specific.

UDDI suffers from several shortcomings:

i) Provides no guarantee for the quality of the registered service.

ii) Registration to UDDI is voluntary, therefore public registries could

contain passive and outdated information.

iii) Lacks business oriented integration capabilities like service

provider validation, pricing models, security, trust establishment etc.

In some cases businesses could maintain a separate registry like ebXML which

allows a business to business framework which allows organizations to advertise

and discover information about themselves. It contains XML documents which

specify about the manner in which businesses exchange information.

Because of the possibility of service providers advertising their services on

different registries, the data may be duplicated, therefore searching for relevant

information may be difficult. It is a good idea to have a web service crawler

engine that can facilitate the aggregation of web service references, resources

and description documents [54].

85

Figure 2.8 W3C Web Services reference model

Now that the different building blocks of web services is discussed, Figure 2.8

[76] shows that the existing technologies such as SOAP for Web services

communication, WSDL for web services interface description, and UDDI for web

services publishing and searching and so on are all based on XML centric

approach to web services and can implement loosely coupled distributed web

applications across different platforms [55].

86

Web services interact with each other by exchanging messages encoded using

XML. In its basic form, the web service architecture consists of a simple RPC

model in which a client invokes operations exported by a service provider using

SOAP, a standard communication protocol for transmitting XML messages. Each

web service publishes its invocation interface (for example, network address,

ports, operations provided, and the expected XML message formats to invoke

the service) using the WSDL. The WSDL specification serves as a contract

between the client and the server that (in part) defines the valid interactions [56].

2.7 Building and developing SOA applications / Web services

To successfully build and deploy a distributed SOA, there are four primary

aspects to be addressed

i) Service enablement: Each discrete application needs to be

exposed as a service.

ii) Service orchestration: Distributed services need to be configured

and orchestrated in a unified and clearly defined distributed process

iii) Deployment Emphasis: should be shifted from test to the

production environment, addressing security, reliability and

scalability concerns.

iv) Management Services: must be audited, maintained and

reconfigured. The latter requirements require that corresponding

changes in processes must be made without rewriting the services

or underlying application.

Services can be programmed using application development tools like

(Microsoft.NET, Borland JBuilder, or BEA WebLogic Workshop) which allow new

or existing distributed applications to be exposed as web services. Technologies

like J2EE Connector Architecture (JCA) may also be used to create services by

integrating packaged applications (like ERP systems), which would then be

exposed as web services [46].

87

Now that web services and the technology behind them have been discussed

and understood. The next chapter discusses about a case study of how a

standalone data mining application is converted into a web service, such that it

can be invoked by any client who requires data mining services, all that the client

has to do is to pass the URL of the file which is to be mined. This would save

memory on the client‘s machine and if it is required to extend the features of the

data mining application it can be done only at the server end without affecting the

client application.

88

Chapter 3: Case study of converting a desktop data mining

 application into a web service using Weka

3.1 Introduction

Data mining is the process of sifting through large volumes of data, analyzing

data from different perspectives and summarizing it into useful information. One

of the widely used desktop applications for data mining is the Weka tool which is

nothing but a collection of machine learning algorithms implemented in Java and

open sourced under the General Public License (GPL). A web service is a

software system designed to support interoperable machine to machine

interaction over a network using SOAP messages. Unlike a desktop application,

a web service is easy to upgrade, deliver and access and does not occupy any

memory on the system.Weka software requires about 20MB of system memory

along with memory space required for storing the tables. Another benefit is when

the desktop application is installed on the desktop the entire suite of algorithms

will have to be installed, though most of these algorithms may never be

used.Unlike this a web service can invoke only the required mining

algorithms.Keeping in mind the advantages of a web service over a desktop

application, this chapter demonstrates how this Java based desktop data mining

application can be implemented as a web service to support data mining across

the internet.

3.2 Overview of work done

The open source code available on downloading the Weka 3.6 serves as the

basis for converting the desktop application into a web service. Netbeans IDE 6

has been used to create the web service. Three data mining tasks are

considered as case studies and for each of these tasks a data mining algorithm

has been selected. The work is divided into different phases.

Phase 1: Libraries available in the open source code of Weka is used in the Java

code

89

 of data mining.

Phase 2: Each of these data mining codes is converted into a web service.

Phase 3: Clients are developed to consume each of these three web services.

3.3 Java Data Mining (JDM API)

Is the first attempt to create a standard Java API to access data mining tools

from Java applications. It is similar to JDBC for Java applications. JDBC is an

API which allows Java applications to interact with databases similarly JDM is an

API which allows Java API to interact with data mining tools.

JDM uses packages to group together similar classes which form a package. Not

all vendors will support all functions, algorithms or features. Java packages

provide an effective way to modularize the API by mining functions and

algorithms so that vendors can choose packages that they want to implement

[75].

3.3.1 Weka for Data Mining

Weka (Waikato Environment for Knowledge Analysis) is an ensemble of data

mining algorithms written in Java. These algorithms can either be applied directly

to a dataset using the Weka explorer or called from the modified Java code. It

contains tools for data pre-processing, classification, regression, clustering,

association rules, and visualization and can be used to develop new machine

learning schemes [71].

Weka provides different environments like the Simple CLI (command-line

interface) for direct execution of Weka commands, Explorer for exploring data

with Weka and Experimenter for performing experiments and conducting

statistical tests between learning schemes [65]. It is a desktop application and

needs to be downloaded from the official web site. It requires that a specific Java

version be installed on the system and is supported by Windows, MAC and Linux

operating systems. The datasets for Weka should also be saved on the system

90

and formatted according to the ARFF format. Converters included in WEKA can

convert other file formats like Comma Separated Vector (CSV) to Active

Resource File Format (ARFF) [63].

3.4 Need for Web Service

So far data mining applications which are run from the desktop are considered.

The user has to install the data mining engine in Oracle or the data mining

software like WEKA or RAPID MINER and then solve the data mining tasks. This

not only occupies a lot of memory on the system for storing the data repository

and the software but is also not easily accessible from a system other than the

system on which the software is installed.When WEKA is downloaded as a

standalone application it requires 20MB of memory in constrast the side of the

client code of a web service application would require abour 700KB of memory.

Also huge volumes of data available across the net cannot be mined successfully

from the desktop.

Web services are easy and inexpensive to deliver, upgrade and access. So if a

data mining application is converted into a web application, the data mining

application can be hosted and accessed from any client in the world. Any

modifications can be made to the code without the need of downloading the

updated code. Also the data on the net can be mined without the need to

download the application, only the file URL needs to be sent to the web service.

Then depending on the algorithm used in the web enabled data mining

application, the application will return the results of the mined data. It also helps

in easy interaction of the web service with large corporations who need to mine

their data and get back the result anytime anywhere [69]. Web services can be a

boon for any organization which requires analyzing large volumes of data.

Organizations which use data mining for only specific tasks would have to spend

a considerable amount of time performing time consuming data analysis that is

required in data mining, instead it would be worthwhile for the company to

concentrate on their competencies and allow other groups to perform tasks like

91

data mining and whenever these special services are required they can invoke

these services through web services and get back the response they require [57].

3.5 Weka Web Service Creation

The libraries used in the open source code of Weka is considered to implement

certain data mining algorithms of J48 classification, EM clustering and text

classification as web services.Clients are created to invoke these applications.

3.5.1 Convert J48 Classifier into Web Service

The J48 classifier algorithm explained in 1.5.3.1 is applied to the training data.

The code for the above as a web service with the necessary comments is as

shown in Appendix A .The web service makes use of the method ‗execute‘ which

takes as an input a string parameter specifying the name of classifier algorithm,

the filter and also the file location of the dataset. It then trains the iris dataset

using the J48 decision tree algorithm and outputs the result as shown in 3.6.1.

3.5.2 Convert EM Clusterer into Web Service

The EM Clustering algorithm explained in 1.5.3.2 is applied to the training data.

The code for the above as a web service with the necessary comments is as

shown in Appendix B. Here the web service makes use of the method ‗execute‘

whose input parameter is the file URL of the dataset. It then trains the weather

dataset using the EM Clustering algorithm and outputs the result as shown in

3.6.2.

3.5.3 Convert Text Classifier into Web Service

The IBK Lazy algorithm is explained in 1.5.3.3.The code for converting the

algorithm to a web service for text classification with the necessary comments is

as shown in Appendix C. Here the web service makes use of the ‗execute‘

method which does not have any input parameters. The training and testing

dataset are stored as string arrays and are classified into ‗spam and ‗no spam‘ by

making use of the Lazy IBk algorithm and the results are as shown in 3.6.3.

92

3.6 Verification of Output

The output generated by the three sample codes of web services described

above is found to be same as that of the java data mining code for the desktop

application. This shows that the datasets provided as inputs are correctly mined

by the above given sample web services with the same precision and accuracy.

The input, output on testing these three web services with the SOAP request and

response messages, the WSDL document and the code for the client is given in

the sections below.

3.6.1 J48 Classifier as Web Service

The training data set used here is the IRIS DATASET and the location of the file

iris.arff is given as input to the code along with the string parameter specifying

the name of the algorithm.The IRIS dataset is a table with 150 records describing

four characteristics of flower petals i.e. sepal length, sepal width, petal length,

petal width and the categorization of the flower.

Output of the web service with its corresponding SOAP request and SOAP

response is as shown below. The input to the execute method indicates that a

J48 classifier is used and the dataset is the iris.arff file available in the local

directory. When required to be invoked as a web service, the path of the file need

not be specified only the URL of the specified file has to be supplied to the

service.

execute Method invocation

Method parameter(s)

Type Value

java.lang.Stri
ng

CLASSIFIER weka.classifiers.trees.J48 -U FILTER
weka.filters.unsupervised.instance.Randomize DATASET
C:/Users/s1/Documents/NetBeansProjects/JavaApp/build/classes/
iris.arff

93

Listing 3.1 Output obtained on running the J48 Classifier

Method returned on running the application

java.lang.String : "Weka - Demo =========== Classifier...:
weka.classifiers.trees.J48 -U -M 2 Filter.......:
weka.filters.unsupervised.instance.Randomize -S 42 Training file:
C:/Users/s1/Documents/NetBeansProjects/JavaApp/build/classes/iris.arff J48
unpruned tree ------------------ petalwidth <= 0.6: Iris-setosa (50.0) petalwidth > 0.6
| petalwidth <= 1.7 | | petallength <= 4.9: Iris-versicolor (48.0/1.0) | | petallength >
4.9 | | | petalwidth <= 1.5: Iris-virginica (3.0) | | | petalwidth > 1.5: Iris-versicolor
(3.0/1.0) | petalwidth > 1.7: Iris-virginica (46.0/1.0) Number of Leaves : 5 Size of
the tree : 9 Correctly Classified Instances 142 94.6667 % Incorrectly Classified
Instances 8 5.3333 % Kappa statistic 0.92 Mean absolute error 0.043 Root mean
squared error 0.1854 Relative absolute error 9.6778 % Root relative squared
error 39.3217 % Total Number of Instances 150 === Confusion Matrix === a b c
<-- classified as 49 1 0 | a = Iris-setosa 0 46 4 | b = Iris-versicolor 0 3 47 | c = Iris-
virginica === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall
F-Measure Class 0.98 0 1 0.98 0.99 Iris-setosa 0.92 0.04 0.92 0.92 0.92 Iris-
versicolor 0.94 0.04 0.922 0.94 0.931 Iris-virginica "

Listing 3.2 SOAP Request for J48 classifier

SOAP request indicates that the classification algorithm is invoked.

SOAP Request

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header/>
 <S:Body>
 <ns2:execute xmlns:ns2="http://demo1/">
 <input>CLASSIFIER weka.classifiers.trees.J48 -U FILTER
weka.filters.unsupervised.instance.Randomize DATASET
C:/Users/s1/Documents/NetBeansProjects/JavaApp/build/classes/iris.arff</input>
 </ns2:execute>
 </S:Body>
</S:Envelope>

Listing 3.3 SOAP Response for J48 classifier

SOAP Response- Shows the mined data generated by the web service.

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

94

 <S:Body>
 <ns2:executeResponse xmlns:ns2="http://demo1/">
 <return>Weka - Demo
===========

Classifier...: weka.classifiers.trees.J48 -U -M 2
Filter.......: weka.filters.unsupervised.instance.Randomize -S 42
Training file:
C:/Users/s1/Documents/NetBeansProjects/JavaApp/build/classes/iris.arff

J48 unpruned tree

petalwidth <= 0.6: Iris-setosa (50.0)
petalwidth > 0.6
| petalwidth <= 1.7
| | petallength <= 4.9: Iris-versicolor (48.0/1.0)
| | petallength > 4.9
| | | petalwidth <= 1.5: Iris-virginica (3.0)
| | | petalwidth > 1.5: Iris-versicolor (3.0/1.0)
| petalwidth > 1.7: Iris-virginica (46.0/1.0)

Number of Leaves : 5

Size of the tree : 9

Correctly Classified Instances 142 94.6667 %
Incorrectly Classified Instances 8 5.3333 %
Kappa statistic 0.92
Mean absolute error 0.043
Root mean squared error 0.1854
Relative absolute error 9.6778 %
Root relative squared error 39.3217 %
Total Number of Instances 150

=== Confusion Matrix ===

 a b c <-- classified as
 49 1 0 | a = Iris-setosa
 0 46 4 | b = Iris-versicolor
 0 3 47 | c = Iris-virginica

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

95

 0.98 0 1 0.98 0.99 Iris-setosa
 0.92 0.04 0.92 0.92 0.92 Iris-versicolor
 0.94 0.04 0.922 0.94 0.931 Iris-virginica

</return>
 </ns2:executeResponse>
 </S:Body>
</S:Envelope>

Listing 3.4 WSDL generated for J48 classifier

 <?xml version="1.0" encoding="UTF-8" ?>
 <!--
 Published by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS RI

2.1.3.1-hudson-417-SNAPSHOT.
 -->
 <!--
 Generated by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS RI

2.1.3.1-hudson-417-SNAPSHOT.
 -->

<definitions xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://demo1/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/" targetNamespace="http://demo1/"
name="NewWebService12Service">

<types>
<xsd:schema>
 <xsd:import namespace="http://demo1/"

schemaLocation="http://localhost:13699/WebApplication12/NewWebService
12Service?xsd=1" />

 </xsd:schema>
 </types>

<message name="execute">
 <part name="parameters" element="tns:execute" />

 </message>
<message name="executeResponse">
 <part name="parameters" element="tns:executeResponse" />

 </message>
<message name="Exception">
 <part name="fault" element="tns:Exception" />

 </message>
<portType name="NewWebService12">
<operation name="execute">
 <input message="tns:execute" />

96

 <output message="tns:executeResponse" />
 <fault message="tns:Exception" name="Exception" />

 </operation>
 </portType>

<binding name="NewWebService12PortBinding" type="tns:NewWebService12">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />
<operation name="execute">
 <soap:operation soapAction="" />
<input>
 <soap:body use="literal" />

 </input>
<output>
 <soap:body use="literal" />

 </output>
<fault name="Exception">
 <soap:fault name="Exception" use="literal" />

 </fault>
 </operation>
 </binding>

<service name="NewWebService12Service">
<port name="NewWebService12Port"

binding="tns:NewWebService12PortBinding">
 <soap:address

location="http://localhost:13699/WebApplication12/NewWebService12Servic
e" />

 </port>
 </service>
 </definitions>

Listing 3.5 Output for client code:

Servlet NewServlet at /WebApplicationClient12

Result = Weka - Demo =========== Classifier...: weka.classifiers.trees.J48 -U -
M 2 Filter.......: weka.filters.unsupervised.instance.Randomize -S 42 Training file:
C:/Users/s1/Documents/NetBeansProjects/JavaApp/build/classes/iris.arff J48
unpruned tree ------------------ petalwidth <= 0.6: Iris-setosa (50.0) petalwidth > 0.6
| petalwidth <= 1.7 | | petallength <= 4.9: Iris-versicolor (48.0/1.0) | | petallength >
4.9 | | | petalwidth <= 1.5: Iris-virginica (3.0) | | | petalwidth > 1.5: Iris-versicolor
(3.0/1.0) | petalwidth > 1.7: Iris-virginica (46.0/1.0) Number of Leaves : 5 Size of
the tree : 9 Correctly Classified Instances 142 94.6667 % Incorrectly Classified
Instances 8 5.3333 % Kappa statistic 0.92 Mean absolute error 0.043 Root mean
squared error 0.1854 Relative absolute error 9.6778 % Root relative squared
error 39.3217 % Total Number of Instances 150 === Confusion Matrix === a b c
<-- classified as 49 1 0 | a = Iris-setosa 0 46 4 | b = Iris-versicolor 0 3 47 | c = Iris-

97

virginica === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall
F-Measure Class 0.98 0 1 0.98 0.99 Iris-setosa 0.92 0.04 0.92 0.92 0.92 Iris-
versicolor 0.94 0.04 0.922 0.94 0.931 Iris-virginica

3.6.2 EM Clusterer as Web Service
The training data set used here is the WEATHER DATASET and the location of

the file weather.arff is given as input to the code. Output of the web service and

its corresponding SOAP request and SOAP response is given below:

execute Method invocation indicates that weather.arff file is provided as input to
the EM clustering algorithm.

Method parameter(s)

Type Value

java.lang.St
ring

C:/Users/s1/Documents/NetBeansProjects/ClusteringDemo/build/cl
asses/weather.arff

Listing 3.6 Method returned on invoking the clustering algorithm

java.lang.String : "Weka - Demo =========== --> normal EM == Number of
clusters selected by cross validation: 1 Cluster: 0 Prior probability: 1
Attribute: outlook Discrete Estimator. Counts = 6 5 6 (Total = 17) Attribute:
temperature Normal Distribution. Mean = 73.5714 StdDev = 6.3326 Attribute:
humidity Normal Distribution. Mean = 81.6429 StdDev = 9.9111 Attribute:
windy Discrete Estimator. Counts = 7 9 (Total = 16) Attribute: play Discrete
Estimator. Counts = 10 6 (Total = 16) === Clustering stats for training data
=== Clustered Instances 0 14 (100%) Log likelihood: -9.4063 --> manual # of
clusters: 1 --> density (CV) # of clusters: 0 "

Listing 3.7 SOAP Request for clustering algorithm

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header/>
 <S:Body>
 <ns2:execute xmlns:ns2="http://demo/">

98

<input>C:/Users/s1/Documents/NetBeansProjects/ClusteringDemo/build/classes/
weather.arff</input>
 </ns2:execute>
 </S:Body>
</S:Envelope>

Listing 3.8 SOAP Response for clustering algorithm

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:executeResponse xmlns:ns2="http://demo/">
 <return>Weka - Demo
===========

--> normal

EM
==

Number of clusters selected by cross validation: 1
Cluster: 0 Prior probability: 1
Attribute: outlook
Discrete Estimator. Counts = 6 5 6 (Total = 17)
Attribute: temperature
Normal Distribution. Mean = 73.5714 StdDev = 6.3326
Attribute: humidity
Normal Distribution. Mean = 81.6429 StdDev = 9.9111
Attribute: windy
Discrete Estimator. Counts = 7 9 (Total = 16)
Attribute: play
Discrete Estimator. Counts = 10 6 (Total = 16)

=== Clustering stats for training data ===
Clustered Instances
0 14 (100%)

Log likelihood: -9.4063
--> manual
of clusters: 1
--> density (CV)
of clusters: 0

</return>

99

 </ns2:executeResponse>
 </S:Body>
</S:Envelope>

Listing 3.9 WSDL generated for clustering algorithm

 <?xml version="1.0" encoding="UTF-8" ?>
 <!--
 Published by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS RI

2.1.3.1-hudson-417-SNAPSHOT.
 -->
 <!--
 Generated by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS RI

2.1.3.1-hudson-417-SNAPSHOT.
 -->

<definitions xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://demo/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/" targetNamespace="http://demo/"
name="NewWebService2Service">

<types>
<xsd:schema>
 <xsd:import namespace="http://demo/"

schemaLocation="http://localhost:13699/WebApplication4/NewWebService2
Service?xsd=1" />

 </xsd:schema>
 </types>

<message name="execute">
 <part name="parameters" element="tns:execute" />

 </message>
<message name="executeResponse">
 <part name="parameters" element="tns:executeResponse" />

 </message>
<message name="Exception">
 <part name="fault" element="tns:Exception" />

 </message>
<portType name="NewWebService2">
<operation name="execute">
 <input message="tns:execute" />
 <output message="tns:executeResponse" />
 <fault message="tns:Exception" name="Exception" />

100

 </operation>
 </portType>

<binding name="NewWebService2PortBinding" type="tns:NewWebService2">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />
<operation name="execute">
 <soap:operation soapAction="" />
<input>
 <soap:body use="literal" />

 </input>
<output>
 <soap:body use="literal" />

 </output>
<fault name="Exception">
 <soap:fault name="Exception" use="literal" />

 </fault>
 </operation>
 </binding>

<service name="NewWebService2Service">
<port name="NewWebService2Port" binding="tns:NewWebService2PortBinding">
 <soap:address

location="http://localhost:13699/WebApplication4/NewWebService2Service"
/>

 </port>
 </service>
 </definitions>

Listing 3.10 Output for client code of clustering algorithm

Servlet NewServlet at /WebApplication5

Result = Weka - Demo =========== --> normal EM == Number of clusters
selected by cross validation: 1 Cluster: 0 Prior probability: 1 Attribute: outlook
Discrete Estimator. Counts = 6 5 6 (Total = 17) Attribute: temperature Normal
Distribution. Mean = 73.5714 StdDev = 6.3326 Attribute: humidity Normal
Distribution. Mean = 81.6429 StdDev = 9.9111 Attribute: windy Discrete
Estimator. Counts = 7 9 (Total = 16) Attribute: play Discrete Estimator. Counts =
10 6 (Total = 16) === Clustering stats for training data === Clustered Instances 0
14 (100%) Log likelihood: -9.4063 --> manual # of clusters: 1 --> density (CV) #
of clusters: 0

3.6.3 Text Classifier as Web Service
The testing and training data set used here are provided in the code itself.

101

Output of the above web service with Lazy-IBk algorithm and its corresponding

SOAP request and SOAP response is given below:

execute Method invocation

Method parameter(s)

Type Value

Java.lang.String

Listing 3.11 Output obtained for text classifier

Method returned

java.lang.String : "dataset: DATA SET: @relation 'data set' @attribute text
string @attribute class {'no spam','?',spam} @data 'hey, buy this from
me!',spam 'do you want to buy?',spam 'I have a party tonight!','no spam'
'today it is a nice weather','no spam' 'you are best',spam 'I have a horse','no
spam' 'you are my friend','no spam' 'buy, buy, buy!',spam 'it is spring in the
air','no spam' 'do you want to come?','no spam' INFORMATION ABOUT THE
CLASSIFIER AND EVALUATION: classifier.toString(): IB1 instance-based
classifier using 1 nearest neighbour(s) for classification
evaluation.toSummaryString(title, false): Summary Correctly Classified
Instances 10 100 % Incorrectly Classified Instances 0 0 % Kappa statistic 1
Mean absolute error 0.1026 Root mean squared error 0.1088 Relative
absolute error 29.4118 % Root relative squared error 26.9191 % Total
Number of Instances 10 evaluation.toMatrixString(): === Confusion Matrix
=== a b c <-- classified as 6 0 0 | a = no spam 0 0 0 | b = ? 0 0 4 | c = spam
evaluation.toClassDetailsString(): Details TP Rate FP Rate Precision Recall
F-Measure Class 1 0 1 1 1 no spam 0 0 0 0 0 ? 1 0 1 1 1 spam
evaluation.toCumulativeMarginDistribution: -1 0 0.768 100 CHECKING ALL
THE INSTANCES: Class values (in order): 'no spam' '?' 'spam' Testing:
'hey, buy this from me!' predicted: 'spam (2.0)' real class: 'spam (2.0)' ==>
OK!! Testing: 'do you want to buy?' predicted: 'spam (2.0)' real class: 'spam
(2.0)' ==> OK!! Testing: 'I have a party tonight!' predicted: 'no spam (0.0)'
real class: 'no spam (0.0)' ==> OK!! Testing: 'today it is a nice weather'
predicted: 'no spam (0.0)' real class: 'no spam (0.0)' ==> OK!! Testing: 'you
are best' predicted: 'spam (2.0)' real class: 'spam (2.0)' ==> OK!! Testing: 'I
have a horse' predicted: 'no spam (0.0)' real class: 'no spam (0.0)' ==> OK!!
Testing: 'you are my friend' predicted: 'no spam (0.0)' real class: 'no spam
(0.0)' ==> OK!! Testing: 'buy, buy, buy!' predicted: 'spam (2.0)' real class:
'spam (2.0)' ==> OK!! Testing: 'it is spring in the air' predicted: 'no spam
(0.0)' real class: 'no spam (0.0)' ==> OK!! Testing: 'do you want to come?'
predicted: 'no spam (0.0)' real class: 'no spam (0.0)' ==> OK!! NEW CASES

102

CHECKING ALL THE INSTANCES: Class values (in order): 'no spam' '?'
'spam' Testing: 'you want to buy from me?' predicted: 'spam (2.0)' real
class: '? (1.0)' ==> NOT OK!! Testing: 'usually I run in stairs' predicted:
'spam (2.0)' real class: '? (1.0)' ==> NOT OK!! Testing: 'buy it now!'
predicted: 'spam (2.0)' real class: '? (1.0)' ==> NOT OK!! Testing: 'buy, buy,
buy!' predicted: 'spam (2.0)' real class: '? (1.0)' ==> NOT OK!! Testing: 'you
are the best, buy!' predicted: 'spam (2.0)' real class: '? (1.0)' ==> NOT OK!!
Testing: 'it is spring in the air' predicted: 'no spam (0.0)' real class: '? (1.0)'
==> NOT OK!! "

Listing 3.12 SOAP Request for text classifier

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header/>
 <S:Body>
 <ns2:execute xmlns:ns2="http://demo/"/>
 </S:Body>
</S:Envelope>

Listing 3.13 SOAP Response for text classifier

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:executeResponse xmlns:ns2="http://demo/">
 <return>dataset:

DATA SET:
@relation 'data set'

@attribute text string
@attribute class {'no spam','?',spam}

@data
'hey, buy this from me!',spam
'do you want to buy?',spam
'I have a party tonight!','no spam'
'today it is a nice weather','no spam'
'you are best',spam
'I have a horse','no spam'
'you are my friend','no spam'
'buy, buy, buy!',spam
'it is spring in the air','no spam'

103

'do you want to come?','no spam'

INFORMATION ABOUT THE CLASSIFIER AND EVALUATION:
classifier.toString():
IB1 instance-based classifier
using 1 nearest neighbour(s) for classification

evaluation.toSummaryString(title, false):
Summary
Correctly Classified Instances 10 100 %
Incorrectly Classified Instances 0 0 %
Kappa statistic 1
Mean absolute error 0.1026
Root mean squared error 0.1088
Relative absolute error 29.4118 %
Root relative squared error 26.9191 %
Total Number of Instances 10

evaluation.toMatrixString():
=== Confusion Matrix ===
 a b c <-- classified as
 6 0 0 | a = no spam
 0 0 0 | b = ?
 0 0 4 | c = spam

evaluation.toClassDetailsString():
Details
TP Rate FP Rate Precision Recall F-Measure Class
 1 0 1 1 1 no spam
 0 0 0 0 0 ?
 1 0 1 1 1 spam

evaluation.toCumulativeMarginDistribution:
 -1 0
 0.768 100

CHECKING ALL THE INSTANCES:
Class values (in order): 'no spam' '?' 'spam'

Testing: 'hey, buy this from me!'
predicted: 'spam (2.0)' real class: 'spam (2.0)' ==> OK!!

104

Testing: 'do you want to buy?'
predicted: 'spam (2.0)' real class: 'spam (2.0)' ==> OK!!

Testing: 'I have a party tonight!'
predicted: 'no spam (0.0)' real class: 'no spam (0.0)' ==> OK!!

Testing: 'today it is a nice weather'
predicted: 'no spam (0.0)' real class: 'no spam (0.0)' ==> OK!!

Testing: 'you are best'
predicted: 'spam (2.0)' real class: 'spam (2.0)' ==> OK!!

Testing: 'I have a horse'
predicted: 'no spam (0.0)' real class: 'no spam (0.0)' ==> OK!!

Testing: 'you are my friend'
predicted: 'no spam (0.0)' real class: 'no spam (0.0)' ==> OK!!

Testing: 'buy, buy, buy!'
predicted: 'spam (2.0)' real class: 'spam (2.0)' ==> OK!!

Testing: 'it is spring in the air'
predicted: 'no spam (0.0)' real class: 'no spam (0.0)' ==> OK!!

Testing: 'do you want to come?'
predicted: 'no spam (0.0)' real class: 'no spam (0.0)' ==> OK!!

NEW CASES

CHECKING ALL THE INSTANCES:
Class values (in order): 'no spam' '?' 'spam'

Testing: 'you want to buy from me?'
predicted: 'spam (2.0)' real class: '? (1.0)' ==> NOT OK!!

Testing: 'usually I run in stairs'
predicted: 'spam (2.0)' real class: '? (1.0)' ==> NOT OK!!

Testing: 'buy it now!'

105

predicted: 'spam (2.0)' real class: '? (1.0)' ==> NOT OK!!

Testing: 'buy, buy, buy!'
predicted: 'spam (2.0)' real class: '? (1.0)' ==> NOT OK!!

Testing: 'you are the best, buy!'
predicted: 'spam (2.0)' real class: '? (1.0)' ==> NOT OK!!

Testing: 'it is spring in the air'
predicted: 'no spam (0.0)' real class: '? (1.0)' ==> NOT OK!!

</return>
 </ns2:executeResponse>
 </S:Body>
</S:Envelope>

Listing 3.14 WSDL generated for text classifier

 <?xml version="1.0" encoding="UTF-8" ?>

 <!--
 Published by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS RI

2.1.3.1-hudson-417-SNAPSHOT.
 -->
 <!--
 Generated by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS RI

2.1.3.1-hudson-417-SNAPSHOT.
 -->

<definitions xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://demo/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/" targetNamespace="http://demo/"
name="TextClassifierServiceService">

<types>
<xsd:schema>
 <xsd:import namespace="http://demo/"

schemaLocation="http://localhost:13699/TextClassifierService/TextClassifier
ServiceService?xsd=1" />

 </xsd:schema>
 </types>

<message name="execute">
 <part name="parameters" element="tns:execute" />

 </message>
<message name="executeResponse">

106

 <part name="parameters" element="tns:executeResponse" />
 </message>

<portType name="TextClassifierService">
<operation name="execute">
 <input message="tns:execute" />
 <output message="tns:executeResponse" />

 </operation>
 </portType>

<binding name="TextClassifierServicePortBinding"
type="tns:TextClassifierService">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

<operation name="execute">
 <soap:operation soapAction="" />
<input>
 <soap:body use="literal" />

 </input>
<output>
 <soap:body use="literal" />

 </output>
 </operation>
 </binding>

<service name="TextClassifierServiceService">
<port name="TextClassifierServicePort"

binding="tns:TextClassifierServicePortBinding">
 <soap:address

location="http://localhost:13699/TextClassifierService/TextClassifierService
Service" />

 </port>
 </service>
 </definitions>

Listing 3.15 Output for the client code of text classifier

Servlet NewServlet at /TextClient

Result = dataset: DATA SET: @relation 'data set' @attribute text string
@attribute class {'no spam','?',spam} @data 'hey, buy this from me!',spam 'do
you want to buy?',spam 'I have a party tonight!','no spam' 'today it is a nice
weather','no spam' 'you are best',spam 'I have a horse','no spam' 'you are my
friend','no spam' 'buy, buy, buy!',spam 'it is spring in the air','no spam' 'do you
want to come?','no spam' INFORMATION ABOUT THE CLASSIFIER AND
EVALUATION: classifier.toString(): IB1 instance-based classifier using 1 nearest
neighbour(s) for classification evaluation.toSummaryString(title, false): Summary
Correctly Classified Instances 10 100 % Incorrectly Classified Instances 0 0 %
Kappa statistic 1 Mean absolute error 0.1026 Root mean squared error 0.1088
Relative absolute error 29.4118 % Root relative squared error 26.9191 % Total

107

Number of Instances 10 evaluation.toMatrixString(): === Confusion Matrix === a
b c <-- classified as 6 0 0 | a = no spam 0 0 0 | b = ? 0 0 4 | c = spam
evaluation.toClassDetailsString(): Details TP Rate FP Rate Precision Recall F-
Measure Class 1 0 1 1 1 no spam 0 0 0 0 0 ? 1 0 1 1 1 spam
evaluation.toCumulativeMarginDistribution: -1 0 0.768 100 CHECKING ALL THE
INSTANCES: Class values (in order): 'no spam' '?' 'spam' Testing: 'hey, buy this
from me!' predicted: 'spam (2.0)' real class: 'spam (2.0)' ==> OK!! Testing: 'do
you want to buy?' predicted: 'spam (2.0)' real class: 'spam (2.0)' ==> OK!!
Testing: 'I have a party tonight!' predicted: 'no spam (0.0)' real class: 'no spam
(0.0)' ==> OK!! Testing: 'today it is a nice weather' predicted: 'no spam (0.0)' real
class: 'no spam (0.0)' ==> OK!! Testing: 'you are best' predicted: 'spam (2.0)' real
class: 'spam (2.0)' ==> OK!! Testing: 'I have a horse' predicted: 'no spam (0.0)'
real class: 'no spam (0.0)' ==> OK!! Testing: 'you are my friend' predicted: 'no
spam (0.0)' real class: 'no spam (0.0)' ==> OK!! Testing: 'buy, buy, buy!'
predicted: 'spam (2.0)' real class: 'spam (2.0)' ==> OK!! Testing: 'it is spring in the
air' predicted: 'no spam (0.0)' real class: 'no spam (0.0)' ==> OK!! Testing: 'do
you want to come?' predicted: 'no spam (0.0)' real class: 'no spam (0.0)' ==> OK!!
NEW CASES CHECKING ALL THE INSTANCES: Class values (in order): 'no
spam' '?' 'spam' Testing: 'you want to buy from me?' predicted: 'spam (2.0)' real
class: '? (1.0)' ==> NOT OK!! Testing: 'usually I run in stairs' predicted: 'spam
(2.0)' real class: '? (1.0)' ==> NOT OK!! Testing: 'buy it now!' predicted: 'spam
(2.0)' real class: '? (1.0)' ==> NOT OK!! Testing: 'buy, buy, buy!' predicted: 'spam
(2.0)' real class: '? (1.0)' ==> NOT OK!! Testing: 'you are the best, buy!'
predicted: 'spam (2.0)' real class: '? (1.0)' ==> NOT OK!! Testing: 'it is spring in
the air' predicted: 'no spam (0.0)' real class: '? (1.0)' ==> NOT OK!!

3.7 Conclusion and future extension of work

Weka is a widely used tool for data mining. It provides an open source code that

can be used for machine learning. Not only that the interface provided by the

software can also be used for mining large datasets. However keeping in mind

the benefits of a web service as compared to a desktop application, it is

demonstrated how Weka (or any other software) can be ported as a web service.

The results obtained from the web application are the same as that of the

desktop application, thereby highlighting the fact that the data can be mined by

the Weka web service in a similar fashion as can be mined by Weka desktop

application, with easier access to large datasets and less memory consumption

of the system. This work has been published in World Academy of Science,

Engineering and Technology, International Conference, ICCESSE/‘10 held in

Rome, Italy April 28-30, 2010.

108

 Data mining applications involve fixed algorithms like association rules,

Bayesian learning or clustering it is possible to scale up these regular algorithms

such that they work in parallel in distributed data mining which is a fast

developing extension of data mining [60]. Distributed data mining also has the

advantage that all the data is not available in one centralized site thus increasing

the reliability of the site [61]. Another important aspect which could be added to

this work is the inclusion of security during the transfer of the SOAP request or

SOAP response. In chapter 6 the details of web service security are looked at

and discussed.

109

Chapter 4: Comparison of J2EE and .NET development
platforms used in web services and the tests conducted
on the commonly seen interoperability issues.

4.1 Introduction

Web services are designed to bring together applications from geographically

distributed and heterogeneous environment and provide interoperability among

them [76].In this chapter, a comparison between the two choices that businesses

have for building XML-based web services: the Java 2 Platform, Enterprise

Edition (J2EE), built by Sun Microsystems and Microsoft.NET, built by Microsoft

Corporation is considered. Some of the features on which the comparison is

made include tools available for web service generation, support for UDDI

registries, and support for RPC and message driven web services and since

security is a major concern in web services the security offered in both the

platforms is looked into.

Because of the heterogeneous nature of the internet it is mandatory that a J2EE

client should be able to invoke a .Net web service or the other way round. But in

reality the feasibility of the above is not always possible. The state of art in web

services interoperability issues which have been extensively discussed.

4.2 Definition of Interoperable Web Services

Interoperability is defined by IEEE as the ability of two or more systems or

components to exchange information and to use the exchanged information [77].

The goal of interoperability in web services is to provide seamless and automatic

connections from one software application to another [31].

4.3 Why Interoperability?

Once achieved, the ability to seamlessly integrate Java Enterprise Edition(Java

EE) and .NET environments will help developers create applications on a diverse

110

range of operating systems including the Solaris operating system, Windows and

Linux, that can co-exist and interoperate across heterogeneous computing

environments. Seamless integration will also enable greater collaboration for

enterprises, by allowing them to leverage a larger ecosystem of partners in

application development. Additionally, interoperability between the two platforms

will help pave the way for greater adoption of web services and SOA based

application development by reducing the associated cost, complexity and risk.

4.3.1 Architecture layers for interoperability

 Figure 4.1 Architecture layers of Interoperability

 As shown in Figure 4.1 [33] the different levels at which interoperability

can occur are

i) Technical level – includes transport, protocol, security, reliability and

authentication features.

ii) Syntax level – ensures that data has the same structure and follows the

same format.

Pragmatic level

Semantic level (meaning)

Syntactic level (structure)

Technical level (network

infrastructure)

111

iii) Semantic level – ensures that communicating systems interpret the

information in the same way, this is very important to be achieved in a

heterogenous environment [24].

iv) Pragmatic level is split into organizational level and business

process.Organizational level consists of responsibilities, agreements

etc.Process level gives importance to process driven integration.

4.4 Examples of Interoperability

Example 1

In a real life scenario it is seen that organizations comfortable in .NET would

develop their web service using a .NET platform.Now the client which invokes

the web service could be a ASP.Net client, a pearl cient or a Java client, similarly

organizations comfortable in Java could have a web service developed in Java

and this service could be invoked by a client developed on any programming

language platform.As a simple example a web service for currency conversion

which is developed in Java with Axis which is consumed by an ASP.Net client

created in C# is considered.

Example 2

 Multiple web services interacting with each other is considered, as an example

a supply chain application where a supplier, warehouse manufacturer and the

retail stores interact with each other. Developers could be using a Java2

Enterprise Edition (J2EE) based web service deployed on Oracle 9i application

server with web services deployed on other platforms such as .Net and J2EE

application servers from other vendors.

Example 3

A purchase order scenario is considered. In this scenario, a potential buyer (that

is, the "Customer") retrieves a catalog of products offered by a particular buyer

and selects which products will be purchased in what quantities. When a

purchase is complete, an order is sent to the supplier with the types and amounts

of products that the buyer requested. The supplier will then check if the

requested products are available to be shipped to the customer. This is achieved

112

by querying the warehouse. If there is insufficient stock to fulfill the order, the

order's status is set appropriately and an error is returned. If the available stock is

sufficient, the supplier will then check the customer's credit to execute the

purchase. Each buyer is associated with a particular bank that can provide

information about the account status, as well as deduct the required funds from

that account. Finally, assuming that the bank account status is good, the supplier

sends a request to the warehouse to ship the order. The customer, in the

meantime, can check on the status of a particular order with the supplier, or

retrieve an invoice for a confirmed shipment. Each of the participants in the

application scenario described above, namely customer, supplier, warehouse

and bank, is implemented as a web service. These services can run on the same

machine or on different machines, with different implementations, showing the

value of web services technology in a heterogeneous environment.

Which implementation of a role is used when running the application is

determined by a set of XML files that describe combinations, for example, a

particular warehouse service with a particular supplier. This way, any

permutation of role implementations by the different vendors can be configured.

The XML configuration files are kept in a central place and, typically, cannot be

changed [79].

4.5 The two common platforms used for web service

development

4.5.1 J2EE

The Java 2 Platform Enterprise Edition (J2EE) is a set of coordinated

specifications and practices that together enable solutions for developing,

deploying, and managing multi-tier server-centric applications. Multi-tier server

applications are those, where a client‘s request to a server generates request to

other servers that are connected together through a backbone network. Building

on the Java 2 Platform Standard Edition (J2SE), the J2EE platform adds the

capabilities necessary to provide a complete, stable, secure, and fast Java

113

platform to the enterprise level. It provides value by significantly reducing the cost

and complexity of developing and deploying multi-tier solutions, resulting in

services that can be rapidly deployed and easily enhanced [80].

The J2EE camp's goal is to give customers choice of vendor products and tools,

and to encourage best-of breed products to emerge through competition. To

secure buy-in, Sun collaborated with other vendors of eBusiness platforms, such

as BEA, IBM, and Oracle, in defining J2EE. Sun then initiated the Java

Community Process (JCP) to solicit new ideas to improve J2EE over time [81].

The Java 2 Platform, Enterprise Edition adds full support for Enterprise

JavaBeans components, Java Servlets API, JavaServer Pages and XML

technology. The J2EE standard includes complete specifications and compliance

tests to ensure portability of applications across the wide range of existing

enterprise systems capable of supporting the J2EE platform. In addition, the

J2EE specification now ensures web services interoperability through support for

the WS-I Basic Profile [80].

4.5.2 .NET

The Microsoft .NET Framework is a software component that is a part of modern

Microsoft Windows operating systems. It provides a large body of pre-coded

solutions to common program requirements. The .NET framework is included

with Windows Server 2003, Windows Server 2008 and Windows Vista, and can

be installed on most older versions of Windows.Microsoft.NET is a product suite

that enables organizations to build smart, enterprise-class web services. .NET is

the Microsoft web services strategy to connect information, people, systems, and

devices through software. .NET-connected solutions enable businesses to

integrate their systems more rapidly and in a more agile manner and help them

realize the promise of information anytime, anywhere, on any device.

4.5.3 Similarity and Differences between Java and .NET

114

Similarities

i) Both technologies provide a number of API‘s that serve a common

purpose e.g. IO, reflection, serialization, networking etc.

ii) Both technologies support primitive data types, e.g. integer, float, boolean,

double, long etc. However since .NET supports multiple languages

primitive data types have been mapped to a specific class in the .NET

framework.

iii) Both technologies do not support multiple inheritances.

iv) Applications written in both technologies get compiled to an intermediate

language.

v) Both technologies have a garbage collector for managing their resources.

The garbage collector deletes resources once they go out of scope.

Though the garbage collector performs the same function in both the

technologies their approach is very different.

Differences

The differences in approach between .NET and J2EE and the technical

challenges accompanying them are sometimes significant hindrances to

interoperability. The following are some of the differences between .NET and

J2EE.

i) J2EE is a set of open standards not a product .NET on the other hand, is

a product suite with some features built on standards and other features

that extend standards.

ii) .NET provides runtime support for SOAP and UDDI as native .NET

protocols.

iii) Integrated support is provided in .NET to build and deploy XML based web

services.J2EE vendors must provide integration between J2EE products

and an IDE offering.

iv) .NET provides business process management and e-commerce

capabilities. These capabilities may be provided in J2EE implementation

but are not part of the standard.

115

v) J2EE is focused on application portability and connectivity between

platforms supporting Java..NET targets application integration using XML.

Application and backend integration approaches differ. Java uses JCA (Java

Connector Architecture) to connect to specific systems and applications.

Connections across disparate applications is through JMS..NET provides

integration through several mechanisms, the host integration server 2000, COM

Transaction Integrator (COM TI), Microsoft Messaging Queue (MSMQ) and

Biztalk Server 2000 [45].

4.6 Comparative Analysis between J2EE and .NET

 4.6.1 Tools for Web service generation in J2EE

The following are the most popular software solutions commercially available for

implementing Web services in J2EE.

i) BEA systems products – BEA WebLogic Server 7.0 provides the

infrastructure solution for Web services supporting the standards and

protocols of Web Services. The BEA Weblogic Integration server also

enables complex web services to be deployed with transactional

integrity, security and reliability while supporting the emerging ebXML

and BTP standards.

ii) Cape Clear Products – Provides Web Services infrastructure and

product solutions such as CapeConnect and CapeStudio, which

enable the development of web service solutions based on industry

standards such as XML, SOAP, WSDL and UDDI. Cape Clear also

enables business applications from diverse technologies such as Java,

EJB, CORBA and Microsoft.NET.These components can be composed

as web services over the Internet.

iii) Oracle Products – Oracle‘s 9i release 2 application servers provides

the J2EE based infrastructure solution for web services supporting web

services standards including SOAP, WSDL and UDDI.It also have the

ability to integrate with legacy systems.

116

iv) SUN products – SUN has released JAX (Java API for XML) Pack

which supports the XML technology, it has also released JWSDP (Java

Web services Developer Pack) [47].

Tool for web services generation in .NET

Microsoft has always been a strong tools vendor, and that has not changed. As

part of its launch of .NET, Microsoft released a beta version of the Visual

Studio.NET integrated development environment. Visual Studio.NET supports all

languages supported by earlier releases of Visual Studio with the notable

exception of Java. In its place the IDE supports C#, Microsoft‘s new object-

oriented programming language, which bears a remarkable resemblance to Java.

Visual Studio.NET has some interesting productivity features including Web

Forms, a web-based version of Win Forms, .NET‘s GUI component set. Visual

Studio.NET enables developers to take advantage of .NET‘s support for cross-

language inheritance.

It is concluded that Microsoft has the clear win when it comes to tools. While the

functionality of the toolset provided by J2EE community as a whole supersedes

the functionality of the tools provided by Microsoft, these tools are not 100%

interoperable, because they do not originate from a single vendor. Much more

low-level hacking is required to achieve business goals when working with a

mixed toolkit, and no single tool is the clear choice, nor does any single tool

compare with what Microsoft offers in Visual Studio.NET. Microsoft's single-

vendor integration, the ease-of-use, and the super-cool wizards are good to have

when building web services [82].

4.6.2 Web services support in J2EE

The future of eBusiness is undoubtedly web services. For organizations that are

preparing for the future of web services, their underlying eBusiness architecture

must have strong web services support.

117

Today, J2EE supports web services through the Java API for XML Parsing

(JAXP). This API allows developers to perform any web service operation today

through manually parsing XML documents. For example, JAXP can be used to

perform operations with SOAP, UDDI, WSDL, and ebXML. Additional API‘s are

also under development. These are convenience APIs to help developers

perform web services operations more rapidly, such as connecting to business

registries, transforming XML-to-Java and Java-to-XML, parsing WSDL

documents, and performing messaging such as with ebXML.

A variety of J2EE-compatible 3rd party tools are available today that enable rapid

development of web services [82].

Web services support in .NET

Microsoft.NET also enables organizations to build web services. The tools that

ship with Microsoft.NET also offer rapid application development of web services,

with automatic generation of web service wrappers to existing systems. It can

perform operations using SOAP, UDDI, and SDL (the precursor to WSDL). Visual

Studio.NET provides wizards that generate web services.

It is concluded that:

i) J2EE can be used to develop and deploy web services today using JAXP

which is not the ideal way to build web services, since it requires much

manual intervention.

ii) .NET can be used to develop web services today using the partial .NET

platform eCollaboration model, which is based on the UDDI and SOAP

standards. These standards are widely supported by more than 100

companies. Microsoft along with IBM and Ariba are the leaders in this area.

.

4.6.3 Portability of web services

A key difference between J2EE and .NET is that J2EE is platform-agnostic,

running on a variety of hardware and operating systems, such as Win32, UNIX,

118

and mainframe systems. This portability is an absolute reality today because the

Java Runtime Environment (JRE), on which J2EE is based, is available on any

platform.

There is a second more debatable aspect of portability as well, J2EE is a

standard, and so it supports a variety of implementations such as BEA, IBM, and

Sun. The danger in an open standard such as J2EE is that if vendors are not

held strictly to the standard, application portability is sacrificed. To help with the

situation, Sun has built a J2EE compatibility test suite, which ensures that J2EE

platforms comply with the standards, it ensures portability of applications.

By way of comparison, .NET only runs on Windows, its supported hardware, and

the .NET environment. There is no portability at all. It should be noted that there

have been hints that additional implementations of .NET will be available for

other platforms.

4.6.4 System Cost

A wide variety of implementations based on J2EE architecture are available for

purchase, with price varying dramatically, enabling a corporation to choose the

platform that meets its budget and desired service level.The important point is

that low-cost solutions can be obtained with both Microsoft and J2EE

architecture. Microsoft's solution has an aggressive price, whereas J2EE

architecture allows the user to choose a service level. For example, J2EE can

be used to develop a high-end, expensive solution (iPlanet running on Sun

Solaris in an E-10000 server), or a low-end, inexpensive solution (jBoss running

on Linux on a Cobalt RAQ server).

Therefore, it‘s recommend not to consider the price of the platform when

selecting between J2EE, .NET, or any other platform, but rather consider the

more important other factors [81].

119

4.6.5 Support for UDDI registry access support in J2EE

UDDI is several things

 A federated and open database

 A standard SOAP interface for querying and submitting information

A repository that includes custom data for querying and finding web

services

UDDI allows companies to register their electronic services – everything from an

e-mail address for technical support to XML based web services for purchasing.

They can do this from a web page by programmatically using the UDDI interface.

This information is than replicated to IBM, Microsoft and several other database

providers that run UDDI registries. The UDDI specification defines two XML

based programming API‘s for communicating with the UDDI registry node the

Inquiring API and the publishing API

Inquiring API: The inquiry API consists of XML messages defined using UDDI

schemas, which can be used to locate information about a business such as the

services a business offers and the technical specifications of these services.

A UDDI programmer uses the inquiry API to retrieve information stored in the

registry, to retrieve information a registry user does not need to be authenticated.

Some of the API functions used to find information include <find_business>,

<find_service>, <find_binding> , <find_tmodel> to get further detailed

information from the UDDI registry the API functions available are

<get_business_detail>, <get_service-detail>, <get_tModelDetail>. Both .NET and

Java use the same data structures for finding and querying the database.

Publishing API:

i) Uses XML messages that can be used to create, update and delete

the information found in the UDDI registry. To publish in the UDDI

registry the user needs to be authenticated.

120

ii) The publishing API defines functions that deal with authentication of

the registry users that is needed to successfully execute the rest of the

functions of this API.

iii) XML messages constituting the UDDI programmer API‘s are defined

using a UDDI XML schema, the XML messages are wrapped in a

SOAP body element and sent as a HTTP post request to a UDDI

registry.

iv) The UDDI registry processes these SOAP messages and gets hold of

the actual API function represented by the actual XML message, which

further instructs the registry service to provide either publishing or

inquiry services.

v) Typically publishing access points use HTTPS because they need to

be authenticated [80].

Microsoft and IBM jointly authored the WS-Inspection which is available in .NET

for inspecting endpoints such as the root of a web server and finding out what

services it offers. WS-Inspection is a simple XML grammar for gathering web

services together. It has the ability to link to UDDI registries to give more

information about the service offered. WSDL is also a document that describes

the UDDI but WS-Inspection can create human readable documentation, such as

HTML pages [83].

Support for UDDI registry access support in .NET

Microsoft offers UDDI client support through several tools including Visual Studio

.NET, the Office XP Web Services Toolkit, and the UDDI SDK.Microsoft Visual

Studio .NET (provides native support for UDDI services through the "Add Web

Reference" feature, enabling developers to easily discover Web Services and

other programmatic resources in UDDI Services for use in building dynamic

applications. By navigating the

ttp://<machinename>/uddipublic/addwebreference, a developer is presented with

a user interface from which UDDI can be queried directly from Visual Studio

121

.NET. Microsoft Visual Basic for applications provides an add-in that supports

UDDI discovery as well. This tool works slightly differently, in that the access

point for UDDI services must be provided (that is,

http://<machinename>/uddipublic/inquire.asmx)[84].

4.6.6 Support for RPC and Message Driven Web Services in J2EE

Java provides Java API for XML messaging (JAXM) which is an integral part of

JWSDP which provides synchronous and asynchronous messaging capabilities

in the web services environment and enables exchange of XML documents over

the intranet or Internet. JAXM is an API framework based on the messaging

protocols defined by SOAP 1.1 specifications and SOAP attachments. JAXM

uses a standard messaging provider infrastructure and Java based API‘s to

facilitate sending and receiving of XML based messages asynchronously in a

web services environment. Core features of JAXM are as follows

i) Has portable XML messaging applications

ii) Has synchronous request/response and asynchronous (one-way)

messaging.

iii) Transmits and routes messages to many providers

iv) Ensures message delivery through reliable messaging.

v) Supports standard internet protocols like HTTP, SMTP, and FTP.

The role of JAX-RPC in Web Services

In a web service environment, JAX-RPC defines an API framework and a runtime

environment for creating and executing XML based RPC‘s. The web services

requestors invoke the service provider‘s methods and transmit parameters and

receive return values as XML based requests and responses. The core features

of JAX-RPC are as follows

i) Providing API‘s for defining RPC based web services, hiding the

underlying complexities of SOAP packaging and messaging.

ii) Provides run time API‘s for invoking RPC based web services based on

stubs and ties, dynamic proxy, and dynamic invocation [47].

122

A comparison of the key features of JAX-RPC and JAXM is provided in table 4.1

[47]

Table 4.1 Comparison of JAX-RPC with JAXM

Sl No JAX-RPC JAXM

1 Synchronous RPC-based service

interaction

Synchronous / Asynchronous

message based service

interaction

2 Message sent as XML based

request and response

Message sent as document

driven XML messages

3 Exposes internals to service

requestors

Loosely coupled and does not

expose internals to service

requestors

4 Provides a variety of client

invocation models

Does not provide a client-

specific programming model

5 No reliability mechanisms Provides guaranteed message

delivery and reliability

mechanism

Support for RPC and document centric web services in .NET

Microsoft provides messaging systems that allow store and forward

communication, this type of communication is appropriate for one way

communication like logging. Server based messaging products like MSMQ

(Microsoft Message Queuing) provide rich features including transactions which

complement rather than compete against web services [85]. XML-RPC.NET is a

library for implementing XML-RPC Services and clients in the .NET environment.

Its features include:

i) interface based definition of XML-RPC servers and clients

ii) code generation of type-safe client proxies

iii) support for .NET remoting on both client and server

iv) ASP.NET web services which support both XML-RPC and SOAP

123

v) client support for asynchronous calls

vi) client support for various XML encodings and XML indentation styles

(some other XML-RPC server implementations incorrectly only accept

certain indentation styles)

vii) built-in support for XML-RPC introspection API on server

viii) dynamic generation of documentation page at URL of XML-RPC end-point

ix) support for mapping XML-RPC method and struct member names to .NET

compatible names

x) support for Unicode XML-RPC strings in both client and server

xi) support for optional struct members when mapping between .NET and

XML-RPC [86].

4.6.7 Web services security support comparison in .NET and J2EE

Web services are widely used because of their ability to deliver integrated,

interoperable solutions, web services can be potentially accessed by a complete

stranger over the network hence without proper security infrastructure in place it

would not be possible to adopt web services. A number of technologies and

standards are being used to secure web services ensuring integrity,

confidentiality and security. Some of the prominent technologies supported in

XML include

i) XML Encryption

ii) XML Signature

iii) Security Assertion Markup Language (SAML)

iv) XML Access Control Markup Language (XACML)

v) XML Key Management Services (XKMS) [47].

Netbeans an IDE available in J2EE offers the following methods for

implementing security in Web services

i) Mutual Certificates Security: Adds security via authentication and

message protection that ensures integrity and confidentiality.

124

ii) Transport Security (SSL): Is a point to point security mechanism that can

be used for authentication, message integrity and confidentiality.

iii) Message authentication over SSL: Attaches a cryptographically secured

identity or authentication token with the message and uses SSL for

confidentiality protection.

iv) SAML authorization over SSL: Attaches an authorization token with the

message and uses SSL for confidentiality protection.

v) Endorsing Certificate: Uses symmetric key for integrity and confidentiality

protection and uses an endorsing client certificate to augment the claims

provided by the token associated with the message signature [87].

Web Service Security in .NET

Web Service Enhancement (WSE) 3.0 simplifies the development and

deployment of secure Web services. It enables developers and administrators to

apply security policies to web services running on the .NET Framework 2.0.

Using WSE 3.0, web services communication can be signed and encrypted using

Kerberos tickets, X.509 certificates and other custom binary and XML-based

security tokens. In addition username/password credentials can be used for

authentication purposes. An enhanced security model provides a policy-driven

foundation for securing web services. WSE also supports the ability to establish a

trust-issuing service for retrieval and validation of security tokens, as well as the

ability to establish more efficient long-running secure communication via secure

conversations [88].

Hence it is concluded that both platforms give sufficient support for security.

4.6.8 Support for Existing Systems

Most large corporations have existing code written in a variety of languages, and

have a number of legacy systems, such as CICS/COBOL, C++, SAP R/3, and

Siebel. It is very important that corporations be given an efficient path to preserve

125

and reuse these investments of a system. This legacy integration often is one of

the most challenging tasks to overcome when building a web service.

There are several ways to achieve legacy integration using J2EE, including

i) Java Message Service (JMS) to integrate with existing messaging systems

ii) CORBA for interfacing with code written in other languages that may exist on

remote machines.

iii) JNI for loading native libraries and calling them locally.

iv) J2EE Connector Architecture (JCA) is a specification for plugging in

resource adapters that understand how to communicate with existing

systems. If such adapters are not available, they can be written using an

adapter. These adapters are reusable in any container that supports the JCA.

.NET also offers legacy integration through the Host Integration Server 2000.

i) COM Transaction Integrator (COM TI) can be used for collaborating

transactions across mainframe systems.

ii) Microsoft Message Queue (MSMQ) can integrate with legacy systems built

using IBM MQSeries.

iii) BizTalk Server 2000 can be used to integrate with systems based on B2B

protocols, such as Electronic Data Interchange (EDI).

In conclusion, the legacy integration features offered by J2EE are superior to

those offered by .NET. The JCA market is producing a marketplace of adapters

that will greatly ease enterprise application integration.

126

4.7 Test Results of the platform developed for testing

 Interoperability issues

Results seen in implementation of Interoperability Issues

Web services exchange data by exchanging XML documents. As soon as data

objects are pushed into the web service stack they are represented as XML

documents. Thus the web service stack on the receiving end should know how to

interpret the XML document sent by the sender. The XML Schema, which

provides an outline of the XML document, helps the receiver to map the data

which is represented in XML. But the implementation difference in the underlying

technologies of J2EE and .NET results in different mappings between the

schema and native data types on both the platforms. This may lead to

information distortion and de-serialization failure [29]. To avoid interoperability

issues the actual trend is to create web services that use simple data type‘s i.e.

atomic data types and arrays. More complex data types can only interoperate

when both parties use the same underlying stack; here the purpose of using web

services is lost [31].

Interoperability issues are tested by creating a reliable web service in Java using

Netbeans IDE 6.5 and deploying it on Glassfish server (v2). A C# client in .NET

and a Java web client are developed. In order to compare the performance of a

Java web service and a Java client and a Java web service and a .NET client

the client is made to invoke the web service and pass data to the web service the

web service processes this data and sends it back to the client. The output for

various cases like primitive data types, arrays with null elements, and complex

data types are considered. The communication between the web service and the

client is observed by the exchange of SOAP messages using the TCP Monitor.

 4.7.1 An array with null elements

The XML representations of an array with null elements are different between

.NET and Java. Consider a Java web service which returns an array with a null

element. A Java client can correctly interpret the null string in an array. However,

127

a .NET client interprets the null string as a string of length zero or an empty

string. Empty and null strings are completely different from each other in object

oriented programming language [29]. The screen shots given below clearly

indicate this fact when a array with three elements one of which is null is sent

from the service provider to the client.

Output from Java and .NET clients

The screenshots in Figure 4.2 and 4.3 show the difference in the interpretation of

null values by Java and .NET clients. The output of the Java client is Disha, null,

Vinita. Hence, it is infered that Java clients infer the null values correctly,

whereas the .NET client displays null as an empty string and cannot deseialize

null values correctly.

Figure 4.2 Output of an array with null element when invoked by a Java

client

Figure 4.3 Output of an array with null element when invoked by a .NET

client

4.7.2 Precision issues

For xsd:decimal, xsd:double , and xsd:float data types, each platform might have

different precision support. This may lead to loss of precision. Let‘s consider the

128

following example in which a Java web service returns the sum of two float

numbers. Java has a precision of 6 digits after decimal whereas .NET has a

precision of 5 digits after decimal. Therefore, rounding off takes place in the .NET

client and it loses precision [87] as illustrated by Figures 4.4 and 4.5.

Java Client

The Java client which calls the add method of the testprecsion web service and

passes the float values 4.111111 and 8.888888 to the web service and dislays

the sum that is returned by the web service i.e. 12.999999.

.NET client

The .NET client also passes the same values and displays the sum returned by

the service. But because.NET is less precise the value 12.999999 gets rounded

of to 13 and this is displayed.

Output from Java and .NET clients:

Figure 4.4 precision testing with a Java client

129

Figure 4.5 precision testing with a .NET client

4.7.3 Primitive Types

Primitive data types can cause trouble. Each programming language has a set of

native data types. A one-to-one mapping is not available between native data

types and XSD data types. Therefore, information can be lost during the

translation, or the receiver is not able to do the mappings for certain native data

types [86].

i) Unsigned Numbers

For example, unsigned numerical types, such as xsd:unsignedInt,

xsd:unsignedLong, xsd:unsignedShort , and xsd:unsignedByte , are the typical

examples of XSD types. In .NET, the uint, ulong, ushort , and ubyte types map

directly to the XSD types, in Java language unsigned types are not defined.

[WebMethod]

Public uint getUint(uint ui)

 { Return ui; }

This is a .NET web service which returns the unsigned integer passed to it. Since

unsigned types are not defined in Java, it leads to an interoperability issue when

a Java client tries to call this web service.

130

To solve this, use the WebServicesAssembler tool to map the request input type

to the Java native type long and then call the web service. Another thing to do is

use wrapper methods to convert these unsigned data types to xsd:string type so

that interoperability is achieved.

ii) Interoperability Issues seen with data types float and long

To test interoperability issues seen with Java and .NET two web services in Java

which perform simple arithmetic operations like add, subtract, multiply and divide

are considered. One web service takes the two input parameters as float data

type, and it returns the result of the operation also as a float data type. The

second web service takes parameters as type long and also returns the result as

data type long.

Random values 2.1 and -1.2 are chosen for the add method, -5.36 and 3.82 for

the subtract method, -.72 and 0.4 for divide method and 6.16 and -5.14 for the

multiply method. The screen shots for the same are shown in Figure 4.6 and 4.7.

131

Figure 4.6 Browser Window for Float Data Type Web Service

132

Figure 4.7 Browser Window for Double Data Type Web Service

Upon testing the output of these methods the following outputs are obtained as

shown in the table 4.2

Table 4.2 Table Showing Output of Web Methods of the Two Java Web

Services

Web method Add Subtract Divide Multiply

Inputs 2.1,-1.2 -5.36,3.82 -0.72,0.4 6.16,-5.14

Float Data Type

Web Service

0.89999986 -9.18 -1.8000001 -31.6624

Double Data Type

Web Service

0.9000000000

000001

-9.18 -

1.799999999999

9998

-

31.662399999999

99

Actual Result 0.9 -9.18 -1.8 -31.6624

133

As can be seen from table 4.2 some of the results vary with the expected values

by a very small precision and in the number of decimal digits.

Testing of a .NET client

A .NET client in VB.NET is developed to invoke the same two web services

which have the parameters and the return type of float and long. The web service

processes the results and sends the result back to the client where it is

displayed. A point to be noted here is that .Net has no direct mapping of the

‗Float‘ data type used in Java, when programmed in VB.NET. Hence the .NET

client has been programmed to accept the float data type as a double.

As seen earlier that data type incompatibility can cause failure of interoperability

or give us a situation where the SOAP messages are valid, interoperability is

successful but the results are incorrect. This situation is highlighted in our

implementation as when the float data type web service is consumed as a double

data type, the results of the methods vary from the expected correct answer by a

very small precision and in the number of decimal digits. Possible reasons for the

incorrect results can be, firstly using different data types float and double,

secondly since .Net and Java have different precision for decimal digits. This

explains why the answers returned by the .Net client have more number of

decimal digits.

When the double data type Java web service is consumed as a double data type,

the results are closer to the correct value. This helps us infer that using same

data types with both .Net and Java platforms leads to better results than

otherwise. Table 4.3 shows us the final results after computing values entered

by the .Net client. Clearly the best results where when both the web service and

client used the same data type. In all other cases results were not completely

correct varying in degree or precision and number of decimal digits. Figure 4.8

and 4.9 show output of .Net client when used with float data type web service

and double data type web service.

134

Again for verification purposes the values 2.1,-1.2 are considered for add

method, -5.36, 3.82 for the subtract method, -0.72, 04 for divide and 6.16, -5.14

for multiply method.

Table 4.3.Compiled table

Showing Output of Java Web Services and Java clients (first two rows) and Java

web services and .Net clients (last two rows)

Web method Add Subtract Divide Multiply

Inputs 2.1,-1.2 -5.36,3.82 -0.72,0.4 6.16,-5.14

Float Data Type

Web Service

0.8999998

6

-9.18 -1.8000001 -31.6624

Double Data

Type Web

Service

0.9000000

00000000

1

-9.18 -1.7999999999999998 -31.66239999999999

Float Web

Service-Double

Client

0.8999998

56948853

-

9.1800003051757

8

-1.80000007152557 -31.6623992919922

Double Web

Service-Double

Client

0.9 -9.18 -1.8 -31.6624

Actual Result 0.9 -9.18 -1.8 -31.6624

135

Figure 4.8 Double Data Type Client Window Showing Result of Float Data
Type Web Service

Figure 4.9 Double Data Type Client Window Showing Result of Double Data
Type Web Service

136

Conclusion: Now .NET does not have an exact data type mapping for Java‘s

float. Hence the client is programmed with data type as float. This gave us two

situations, one, where a Java web service with data type float was consumed by

a .Net client of data type double, two a Java web service with data type double

consumed by a .Net client with data type double. Clearly, the best results where

when the double data type web service was consumed by the double data type

client. In situations where the web service and the client were developed in

different platforms it is seen that the result is close to the expected value but not

equal to the correct value. Also the number of decimal digits was large and

differed between .Net and Java.

As recommendations for any successful cross platform interoperability

application it is always best to have the same or almost similar data types in both

client and web service. Achieving data type compatibility can be done by creating

an XML schema document for the web service and developing a client that

strictly complies with the Schema. WSDL of web service clearly defines all the

web service methods and attributes such as data type, associated with input

output parameters of the web service.

.Net platform is strongly recommended for developing web service applications

which will be consumed on a small network such as within a business enterprise,

university campus etc. .Net is more graphic, user friendly and easier to learn than

Java. Java due to the presence to EJB‘S and other highly specialized features is

recommended to use for large scale applications such as banking , ATM web

services, etc, where multitier data base applications are involved.

4.7.4 Collection of complex data types

In both Java and C# there are rich libraries of collection types. For example, Java

supports collection types like java.util.Hashtable, vectors, Set, ArrayList, etc.

Whereas in C# there‘s Systems.Collections.Hastable, SortedList, Queue, Stack,

137

ArrayList, etc. These collection objects contain elements of different data types.

Due to this, they may also be considered as weakly typed data structures.

When exposed across web services they create problems. The receiving side

may not be able to understand the SOAP messages that contain weakly-typed

object elements and native data types. For example, an ArrayList in a .NET web

service is taken to be data of ‗anytype‘ in the XML schema this makes it

ambiguous. Therefore when the Java client sees the schema, he won‘t know

which collection type to map the data to at the receiving side. This can be

resolved by sticking to simple data types as much as possible and avoiding the

use of complex data types [25].

a.Types of collection objects

Collection objects might contain elements of any data types. Thus, many

consider them as weakly typed data structures. That makes them a wonderful

programming tool. In object-oriented programming, there are rich libraries of

collection types. In Java for example, there are:

i) java.util.Hashtable
ii) Vectors
iii) Hashmap
iv) Set
v) ArrayList

While in .NET, there are:

i) System.Collections.Hashtable
ii) SortedList
iii) Queue
iv) Stack
v) ArrayList

If exposed across web services, these collection types can cause insurmountable

problems. The problem lies in how the receiving side is able to understand the

serialized SOAP messages that contain the weakly-typed object elements and

native data types. Even though some collection types look extremely similar

between languages, such as System.Collections.ArrayList in .NET and

java.util.ArrayList in Java, remember that the elements in the collections are

138

generic references. To accurately unmarshall the XML representation of a

collection, consumers must have prior knowledge of the original concrete types.

The burden is on the toolkit developers to interpret the XML schemas published

by the web services providers and map the SOAP messages to the native data is

not an easy task for the weakly-typed collections [85] .

An object of student was created, the object contained details like ID-No which

was of type int, Name of type string, DOB of type date, Gender of type char,

subjects an array of type string, marks an array to store float values and a

Boolean value, the object containing the mixed data types could be successfully

sent from the client to the web service and the object could be successfully

displayed in the hash map table on the web service as shown in Figures 4.10 –

4.12.

Figure 4.10 Initial Screen to enter Student Details (Java Client)

Figure 4.11 Result displayed after successful invocation (Java Client)

139

Figure 4.12 Output showing hash map contents of StudentDetails (Java
Client)

Figure 4.13 Initial Screen for entering Student Details(.NET Client)

140

Figure 4.14 Result displayed after successful invocation (.NET Client)

Figure 4.15 Output showing hash map contents of StudentDetails(.NET
Client)

In Figure 4.13-4.15 the complex data type could be transmitted and interpreted

correctly, but this may not always happen, hence it is best to use primitive data

types which is supported by all vendors [89].

4.7.5 Relative URI reference as a namespace declaration in WSDL

141

XML namespaces help in creating universally unique URIs. They resolve naming

conflicts in the XML documents. However, the way that URIs are interpreted and

mapped in the native code differs between platforms. It is usually relative URIs

which cause a problem. In Java, it‘s not a problem when the WSDL file is

generated by the web service itself. This is because the target namespace is

derived from the package and the tool automatically qualifies them with the

schemas. But, when the web service is on .NET and it generates the WSDL then

the target namespace comes directly from what is mentioned in the code. In

.NET, the process of qualifying with the schema is not done and the relative URIs

sometimes cause conflict when the target namespace is the same. Therefore, to

avoid this, the best practice is to always make the namespace unique by

qualifying it with its own organization domain name [86].

4.7.6 Date Time Issues

A schema data type called xsd:dateTime is available. This too is one of the

primitive data types, but is discussed as a separate issue here due to a variety of

problems occurring when this schema type is used, if not careful [87].

4.7.7 Null Values in Date data type

The communicating parties could pose problems if one of their data types is a

reference type and the other is a value type. The xsd:dateTime is mapped to

System.dateTime in .NET. This is a value type, whereas it is mapped to

java.util.Calendar or java.util.Date, which is a reference type in Java. The object

of a value type is in a stack and the object of a reference type is in a heap. Hence

a null reference is allowed as it signifies that the object has a null pointer but a

value type cannot have a null value.In Java when the reference type is not

referencing any object, a null value can be assigned to it. Whereas .NET web

services will throw a System.FormatException in case it receives a null value to

its value type of data from a Java client.

142

If the Calendar or Date object is initialized with a null value in a Java client, then

a null xsd:dateTime is sent in the SOAP message. When the web service built on

the .NET platform receives the SOAP message, correct deserialization of the

message is not possible. This is because the System.DateTime type is not

nillable.

4.7.8 Precision problem in date data type

Different platforms use different precisions when interpreting the native dateTime

types. When translating values of an XML dateTime simple type to different

platforms, loss of precision can occur. The .NET platform uses four digits for the

year value and seven digits for the milliseconds and the Java platform uses five

digits for the year value and three digits for milliseconds. This can be cleary

illustrated in the following example.Here is a .NET web method that returns a

system MAX_VALUE of the DateTime data type.

The Java client then gets a SOAP Response from the .Net Web Method

returning the MAX_VALUE of the DateTime datatype.

<?xml version="1.0" encoding="utf-8" ?>

 <dateTime xmlns="http://tempuri.org/">9999-12-31T23:59:59.9999999

08:00</dateTime>

Since the Java platform uses only 3 digits for the milliseconds and the

MAX_VALUE has seven digits, it rounds up the date. Therefore on the receiving

side the output obtained is January 1, 10000.

4.8 Conclusion

Both Java and .NET are useful and both can lead to the same destination. When

deciding about which platform is good for which application, it is recommended to

concentrate on the larger business issues. Think about the existing developer

skill sets, the existing systems, the existing vendor relationships, and the

customers. Regardless of which platform is selected , new developers will need

to be trained for J2EE or .NET. No matter which platform is chosen, both the

143

platforms can build web services, both the platforms offer low system cost and

both offer single vendor solutions [14].

Sun's J2EE vision is based on a family of specifications that can be implemented

by many vendors. One of J2EE's major disadvantages is that the choice of the

platform dictates the use of a single programming language, and a programming

language that is not well suited for most businesses.

There are several important advantages to the J2EE platform:

i) J2EE offers absolute portability since its vendors support multiple operating

systems.

ii) J2EE has better legacy integration through the Java Connector Architecture

(JCA) [15].

iii) J2EE is a more advanced programming model, appropriate for well-trained

developers who want to build more advanced object models and take

advantage of performance features [14].

Microsoft's .NET platform vision, is a family of products rather than specifications.

The major disadvantage of this approach is that it is limited to the Windows

platform, so applications written for the .NET platform can only be run on .NET

platforms[14].

There are several important advantages to the .NET platform:

i) Web Services support is stronger, with industry standard eCollaboration

built into

 the platform.

ii) The cost of running applications is much lower, since .NET has a simpler

 programming model [14].

iii) The ability to scale up is much greater, with the proved ability to support at

 leasten times the number of clients J2EE supports [15].

144

A series of tests are conducted and areas which lead to interoperability issues

are explained and justified. The outcome of this work was published as one

Journal paper ―Interoperability Issues seen in Web Services‖, IJCSNS

International Journal of Computer Science and Network Security, VOL.9 No

8, August 2009 and as a conference paper ―Comparison of Web Service

Development Platforms‖, Proceedings of the 2008 International Conference

on Semantic Web and Web Services‖, WORLDCOMP‘08, July 14-17, 2008, Las

Vegas Nevada, USA. In the next chapter a web service applications created for

mobile devices is explained.

145

Chapter 5: Mobile Web Services

5.1 Introduction

In order to reap the full benefits of web services, not only desktop clients but

even mobile clients should be able to interact with SOA. Mobilink the application

designed and explained in this chapter allows mobile clients to publish, locate

and invoke web services.

5.2 Evolution of Java

Because of the wide spread proliferation of the usage of mobile devices, and also

because of the lifestyle of people where people are constantly on the go it may

not be possible for a person to connect to his computer and stay in touch, but

people generally carry their mobile phones around so it is very essential that

mobile devices should be able to access web services to exploit the full potential

of web services.

Due to the diversity and range in size of Java applications Sun Microsystems

divided the Java technology into three categories as represented by Figure 5.1

[90]

i) J2EE – used in large applications for developing server side scalable

applications.

ii) J2SE – Used for mid size applications used for desktop machines

iii) J2ME – used for resource constrained mobile application. Here most of

the features available in J2SE is available but on a much more scaled

down form.

Each Java platform defines a set of technologies which can be used with a

particular product. These technologies include.

i) Java Virtual Machine – it fits inside a range of computing devices and

is the reason for the popularity of Java which enables Java programs

to have the ability to be built once but run any number of times from

146

any location, this term is referred to as WORA (Write Once Run

Anytime).

ii) Libraries and API‘s – are different for different types of computing

devices.

iii) Tools for deployment and device configuration [90].

5.3 Introduction to J2ME

J2ME is designed for small devices but there are a wide range of devices ranging

from devices with high processing power like set top boxes which require

constant network connection which is maintained using TCP/IP , to devices with

low processing requirement like PDA‘s or pagers.

Unlike J2EE or J2SE where the range or application of devices is limited in J2ME

the diversity of the applications is vast therefore it is not possible to have single

software to cater to all the needs. Instead of being a single entity J2ME is a

collection of specifications that define a set of platforms each of which is suitable

for a subset of the total collection of consumer devices that fall within its scope.

The configuration and the profiles that are appropriate for a device depend on

both the nature of the hardware and the market to which the device is targeted.

5.3.1 Configurations

A configuration is a specification that defines the software environment for a

range of devices and it generally depends on features like.

i) amount of memory available

ii) type of processor and its speed

iii) the type of network connection available to a device

A configuration represents a minimum platform for a target device and it is not

permitted to have any optional features. Vendors should implement this

specification fully so that developers can rely on a consistent programming

147

environment and create applications which are as device independent as

possible.

 Figure 5.1 J2ME Architecture

J2ME currently has two types of configurations:

i) Connected Limited Device Configuration (CLDC)

ii) Connected Device Configuration (CDC)

Connected Limited Device Configuration (CLDC) – Is used for the low end of

the consumer electronics range, used generally for devices like cell phones,

pagers and PDA‘s , as the name indicates limited indicates that the devices have

limited memory, limited processing power, limited display, limited battery life and

limited network connection. The data rates are typically 9.6Kbps and network

connection is generally intermittent and not very fast, it is generally costly

accessing the internet from the phone and they are charged by the number of

data packets exchanged.

The CLDC is designed for devices with 160KB to 512KB of total memory

including a minimum of 160KB of ROM and 32KB of RAM available for the Java

148

platform. CLDC works on a smaller scaled down implementation of the JVM

called the Kilo Virtual Machine (KVM) since the KVM is much smaller than the

JVM it does not do everything performed by the JVM in the J2SE world. The

KVM does not allow native methods to be added at run time, all native

functionality is built into the KVM.

The KVM only has a subset of the standard byte code verifier, this means that

the task of verifying the classes is split between CLDC devices and some

external mechanism, this can have serious security drawbacks.

Connected Device Configuration (CDC) – Addresses the needs of devices like

television set top boxes, car navigation systems, high end PDA‘s , web

telephones etc which are between the CLDC and J2SE applications. These

devices have a minimum of 512KB of Read Only Memory ROM, 256KB of

Random Access Memory RAM and they have network connectivity maintained

by TCP/IP and have much more capable processors.

In tune with keeping up with the upward compatibility of Java it is required that

the core class libraries of Java should be based on the Java2 platform, wherever

possible J2ME must use the classes and libraries available in J2SE this also

reduces the learning curve for J2ME [91].

5.3.2 Profiles

A profile is layered on top of a configuration, adding the API‘s and specifications

necessary to develop applications for a specific family of devices.

Foundation Profile: Is a specification for devices that support a rich networked

J2ME environment. It does not support user interface, other profiles like Personal

Basis Profile and Personal Profile are layered on top of the foundation profile and

they produce user interface and other functionality. The combination of CDC +

Foundation profile + Personal Basis Profile + Personal Profile is designed as the

next generation of the Personal Java application runtime environment.

149

PDA Profile (PDAP) : Is built on CLDC , it is designed for palmtop devices which

have better memory with a minimum of 512KB combined ROM and RAM and a

maximum of 16MB and a better screen display.

Mobile Information Device Profile (MIDP) – This profile is of most important

use to us because it deals with mobile devices which have wide usage and since

mobiles are used widely in real life there is a lot of interest in developing useful

mobile applications. This profile adds networking, user interface components and

basic networking based on HTTP 1.1.There are two versions MIDP 1.0 and

MIDP 2.0. MIDP 2.0 is backward compatible with MIDP 1.0 and it offers many

new features which were not available in MIDP 1.0 such as support for

multimedia, a new game user interface API, support for HTTPS connection

Applications developed on MIDP profile are also called midlets keeping in mind

the other applications created by SUN like applets and servlets. The actual

development process for midlets is more complicated than that of a J2SE it

involves the following steps:

 Edit Source Code -> Compile -> Preverify -> Package -> Test or Deploy

[92].

5.4 Mobilink

The application Mobilink which is developed is a very important technological

innovation. In Mobilink, web service publishing and user creation is done by the

administrator using PHP based framework and Mysql. Details of registered users

are stored in MySQL database. Checking correctness of data entered like month

or day in a year is done by Javascript, AJAX is used to check availability of

username and password. The web service and the J2ME client are developed

using Netbeans IDE.

 For the purpose of registration, the user has to log on to the web application and

register with the specified username and password, consequent access of the

150

framework can either be on the desktop or by using the mobile interface. When

accessing the web service through the mobile device the user is first prompted to

enter the user name and password, Mobilink application validates the user using

a method of the master web service, after this a list of available web services is

shown, upon selection another method of the master web service can be invoked.

The beauty of Mobilink is that it allows the user to specify the web services he

would like to create to access the data stored in the back end database, this

gives a level of abstraction to the user where he need not be concerned about

how the web service is created.

5.4.1 Different software used for the development of Mobilink

JavaScript and AJAX

JavaScript - Despite its name, JavaScript and Java are unrelated except for the

syntax, JavaScript was invented in 1995 as a scripting language for Netscape

web browser to enable the web pages to be more dynamic. JavaScript supports

only a few data types like numbers, strings, booleans, functions and objects.

JavaScript objects are generally name-value pairs called properties.

AJAX (Asynchronous JavaScript and XML) – Is a powerful web development

model for browser based web applications. Technologies that form the AJAX

model, such as XML, JavaScript, HTTP and XHTML, are individually widely used

and well known. However AJAX combines these technologies and lets web

pages retrieve small amounts of data from the server without having to reload the

entire page [93]. This capability makes web pages more interactive and lets

them behave like local applications [94]. AJAX is responsible for enhancing the

responsive nature and interactiveness of web pages. With AJAX web pages

contain JavaScript that asynchronously invoke requests on a web server by

creating an XmlHttpRequest request object, attaching it to a Java callback

function to handle the response, and then invoking the request [95].

151

5.4.2 MySQL

MySQL is the world's most popular open source database software, with over

100 million copies of its software downloaded or distributed throughout its history.

With its superior speed, reliability, and ease of use, MySQL has become the

preferred choice for Web, Web 2.0, SaaS, ISV, Telecom companies and forward-

thinking corporate IT Managers because it eliminates the major problems

associated with downtime, maintenance and administration for modern, online

applications.

Many of the world's largest and fastest-growing organizations use MySQL to

save time and money powering their high-volume Web sites, critical business

systems, and packaged software — including industry leaders such as Yahoo!,

Alcatel-Lucent, Google, Nokia, YouTube, Wikipedia, and Booking.com [96].

Reasons for selecting MySQL

A database is nothing but a collection of structured data, the data can be in the

form of text, pictures, video or music files, to add process or manage the data in

the database a database management system like MySQL server is needed.

i) MySQL is open source software which means that it is possible for anyone

to download the MySQL software from the internet and use it without

paying anything.

ii) MySQL is very fast, reliable and easy to use.

iii) MySQL is a relational database management system, in a relational

database the data is stored in separate tables rather than have all the data

in a single file.

iv) A large amount of contributed software is available.

5.4.3 PHP

PHP stands for Hypertext Preprocessor. PHP is a server side scripting language,

which can be embedded with HTML or it can be used as a standalone.

152

Proprietary products in this niche include Microsoft‘s Active Server pages,

Macromedia‘s Cold Fusion, Sun‘s Java Server Pages.

Reasons for choosing PHP

i) Ease of use – PHP is easier to learn compared to other ways to achieve

similar functionality. Unlike Java Server Pages or C based CGI, PHP

doesn‘t require a deep understanding of a major programming language

before a trivial database or remote server call.

ii) HTML embeddedness – PHP is embedded in HTML in other words PHP

pages are normal HTML pages that escape into PHP mode only when

necessary.

iii) Cross-platform compatibility – PHP and MySQL run on different

platforms (Unix, Windows, MAC etc)PHP is compatible with three leading

web servers: Apache HTTP server for Unix and Windows, Microsoft

Internet Information Server and Netscape Enterprise Server it also works

with several less well known servers like Microsoft‘s personal web server,

AOL Server etc.

iv) Open Source software- open source software is generally very flexible, it

allows the programs to be extended and customized as per the customer‘s

requirement.

5.5 Mobilink Architecture

Mobilink is divided into three main parts, a web service publisher which is a

web form designed using PHP, MySQL and JavaScript used to define the

web service and populate it before publishing it. Secondly the web service

itself which is developed in Java using the Netbeans IDE and thirdly the web

service client which is a J2ME application which accesses the web service.

153

5.5.2 Screenshots of Mobilink

Example of the registration form

 Figure 5.2 Screenshot of Registration page

The registration page shown in Figure 5.2 accesses the Customer Table in

the MySQL database and the values are recorded. Form validation is done

via PHP and entries like the date field where the number of days in a month

are dependent on the month as well as the year (in case of a leap year) are

filled in using JavaScript. Checking the username availability is done using

AJAX as shown in Listing 5.1.

154

Listing 5.1 Ajax script used for checking username availability

The table structure and sample data are given in Figure 5.3

 Figure 5.3 Sample database values of registered users

The second step takes the user to the web service creation page

155

Figure 5.4 WebService creation page

The web service name specifies the name of the web service that we are about

to create and no of fields indicates the number of fields as shown in required in

the web service as shown in Figure 5.4.The different fields are specified as

shown in Figure 5.5.

 Figure 5.5 Screenshot of data fields of web service

156

Once the data is entered the final screen comes up as shown in Figure 5.6.

Figure 5.6 Adding data to web service

 Figure 5.7 Screenshot of web service with the data

In this way data is stored in the database as shown in Figure 5.7 according to

the user‘s description. This structure is flexible and changes can be made

when necessary.

5.5.3 Web Service

The web service is designed in Netbeans 6 IDE and deployed on the Sun

Java System Application Server 9. The web service bridges the gap between

the web service publisher, the database and the mobile J2ME application. In

Netbeans the web service is coded using Java as follows.

@WebMethod(operationName=‖OperationName‖)
 Public returnType
OperationName(@WebParam(name=‖ParamaterName‖)String
 ParameterName,@WebParam(name=‖ParameterName‖)String
ParameterName)

157

{
 Code……
 Return returnType;
}
The web service consists of a number of web methods which contain the

parameter supplied and the returning value. The code inside the web method

is standard java code and in this case it initializes an instance of DbCon.java

which is the class responsible for accessing and carrying out transactions

with the MySQL database.

The following Web Methods are used in this application

Login

Parameters: Username (string), Password (String)

Function: Validating the user

Return : True or False

number

Parameters: None

Function: Counts the number of web services

Returns the number of web services

Webservices

 Parameters: index (int)

 Function: Returns the web services listed at index

 Return: The web service name

searchField

 Parameters: name(String)

 Function: Returns the number of datafields in webservice ―name‖

 Return : Returns the total number of operations

158

searches

Parameters: index(int), name(string)

Function: Returns all the data fields in web service ―name‖

Return : The operation name at index

resCount

Parameters: name(String), field(String), entry(String)

Function: Returns the number of data entries matching the search criteria

Return : The number of results

finalResult

Parameters: name(String), field(String), pos(int),word(String)

Function: Searches for word in field in web service ―name‖ at position pos

Return : the details matching the search keyword

5.5.4 Web Service Consumer

JAX-RPC (Java API for XML RPC) uses the popular concept of web service

endpoints and clients. The clients invoke access, consume or make use of the

services exposed by the end points. The details about web service endpoints are

specified in the WSDL document. The J2ME client invokes the web service.

159

Figure 5.8 A J2ME client invoking the web service

A J2ME client uses remote method calls to invoke methods associated with

web services as shown in Figure 5.8 [110], the midlet cannot directly call a

method of the web service so it must create a proxy called a stub interface

which can interact with the web service, and there are suitable classes

available in J2ME which can generate the stub classes. The J2ME midlet to

web service stub interaction is local and happens within the J2ME device as

indicated in the Figure 5.10 [110]

Figure 5.9 Interaction of a web service stub with J2ME midlet and the

web service

Figure 5.10 Typical JAX-RPC Application

160

The web service stub is a set of classes that act as a local agent or proxy of

the actual web service endpoint, J2ME uses a subset of JAX-RPC 1.9

specification to provide a Java API to SOAP based web services this is

appropriate for a J2ME platform because J2ME devices are generally used as

web service clients and they are not likely to expose web services unless

used in a peer to peer network where a mobile device can also act as a

service provider in addition to requesting for web services, this is especially

useful in ad-hoc networks [97], hence a subset of J2ME-RPC is available for

J2ME devices. A JSR1.0compliant device may not support XML 1.0 encoding

but it is the work of the network carrier to produce a SOAP representation that

can be transferred to an interoperable XML 1.0 representation[98].

Figure 5.11 A wireless carrier’s network ensures XML encoding of SOAP

messages

The flow of events that occur on logging on to Mobilink and accessing the

web service is shown in Figures 5.12 – 5.17.

161

5.6 Mobilink on the Netbeans emulator

The Login screen

Figure 5.12 Login Screen

162

Figure 5.13 The Login Successful Screen

163

The Web Services Screen

Figure 5.14 Web Services Screen with a list of available Web Services

164

 Screen on selecting BitsLib

Figure 5.15 Search Field Screen with parameter to select for searching

Author is selected

165

Screen on selecting author

Figure 5.16 Search screen with the given input keyword

166

 The Result Screen

Figure 5.17 Result screen with results

167

5.7 Conclusion

Different web services were hosted on the server and a MySQL database

contained the details of all the hosted web services, a J2ME client application

was created which could access any of the registered web services. A search

operation can be performed on the database by the selected web service, the

interesting feature of this application is that there is a level of abstraction

provided, which enables a user to create a web service as per the desired

specification even if the user does not have programming knowledge, this is

enabled by the availability of a GUI which provides the user with suitable forms to

create the web service. This work is published as a paper ―J2ME Based Tool for

interaction With Web Services‖, Proceedings of the 2008 International

Conference on Semantic Web and Web Services‖, WORLDCOMP‘08, July 14-

17, 2008, Las Vegas Nevada, USA.

5.8 Future work A simple search is performed in the database, a database

which contains image files or video files can also be created and a search can be

performed on the database, similarly more database operations like inserting,

deleting and updating records can also be performed. The web service

application can be extended to perform more complex operations which could

involve banking transactions or online mobile purchasing which would require the

user to specify the account number or the credit card details hence security

features would need to be added here. In addition mobile phones are now used

for more complex operations where content can be tailored to user preferences,

user locations and device capabilities. Information could be provided on a

location based context, for e.g. a user can be given directions to a restaurant as

per the location, food preferences etc. On line video like YouTube which would

require more efficient graphical processing ability can be viewed on the mobile so

it is analyzed that the potential of mobile devices is large and the designed

application can be designed to cater to all these possibilities [18]. In the next

chapter the current status of web service security is considered and issues which

could arise with security in interoperable web services is looked into.

168

Chapter 6: Security issues in interoperable web services
and web service security interoperability platform
development

6.1 Introduction

Web services provide a framework for interoperable machine to machine

interaction over the network. Because of the large number of systems interacting,

maintaining security specifications over the internet becomes a highly complex

task. Since web services are loosely coupled, it becomes difficult to impose

restrictions on the security mechanism followed by the different participating

bodies. In order to have some uniformity in the manner of interaction the W3C

and the OASIS have formulated certain specification standards like Web Service

Interoperability Technology (WSIT) with Java and Web Services Enhancement

(WSE) and Windows Communication Framework (WCF) with .NET [100].

Interoperability issues are dealt in detail in Chapter 4 of this thesis report. In this

chapter the interoperability issues with respect to the security of web services is

considered. A platform where participating entities can exchange security

information prior to exchanging data is developed. This information is also

transmitted in a secure fashion. The importance of security in web services

cannot be underestimated. Security will be the prime deciding factor on the

success and the wide scale adaptability of web services both by business houses

as well as individual consumers.

6.2 Concept of Interoperability

Chapter 4 of this thesis report discusses interoperability issues in detail, just

brushing through the concept of interoperability, interoperability can be defined

as the ability of software and hardware systems of one computer network to

communicate with other systems on other computer networks, each running

different protocols and different technologies. It is a tool that allows systems

running on different technologies to communicate and exchange information with

169

each other without requiring custom/intermediary coding to integrate the two

technologies.

Interoperability with regards to web services means that a web service and a web

service client are able to communicate and exchange important data with each

other irrespective of the platform or the programming language on which they are

running. Some major considerations for achieving interoperability in web services

are:

i) Both client side and web service should implement the same version of

the specification. As not all specifications are totally backward

compatible, this can pose a threat to achieving interoperability in web

services.

ii) Same versions of web services and Web Service Interoperability (WS-I)

specification should be used.

iii)The semantics used in web service communication must be agreed upon

in advance.

The reason that web services are receiving considerable attention right now is

because they provide interoperability. Web services are used these days in

many B2B and B2C applications like banking, hotel management etc. All these

web services and web service clients are built using different languages and run

on different platforms. Hence, a technology is required that ensures integration

of these applications without much effort.

6.3 WS-I Basic Profile

WS-I is an industry organization that includes members from IBM, Microsoft,

Intel, Oracle etc. The WS-I organization aims at achieving web services

interoperability. The WS-I Basic Profile is a profile that contains implementation

guidelines to avoid interoperability issues. They are like a set of best practices

that should be followed while developing web services.

170

Web Services Interoperability Technology (WSIT)

WSIT is used to ensure that interoperability is provided in the next generation

web services enterprise technologies [101]. WSIT provides interoperability in

various web service technologies like message optimization, reliable

messaging, security etc. between the Java platform and Microsoft‘s .NET

platform.

Message Optimization Technology

Various types of data are shared on the internet using web service applications.

This data can be in any format like documents, images, music files etc. When

these files are converted into XML formats for transmission via SOAP

messages, even larger files are created. This leads to degradation in

performance of web services over the network. Hence, XML messages that are

encoded need to be optimized for web services. So message optimization

technology encodes the binary object in such a manner, as to optimize the

bandwidth required to send the SOAP message.

Reliable Messaging Technology

Reliability is defined as the system‘s ability to deliver messages from point A to

point B without error. Reliable Messaging Technology is used to ensure that

messages are delivered at least once to their desired destination. With the help

of this technology, system can recover from a failure of message sequence

being lost in transit. Sender sends the message repeatedly until an

acknowledgement is received from the other end [101].

Reliable Message Technology has the following advantages and

disadvantages:

i) Ensures Messages are delivered exactly once in order.

ii) Degradation of web service performance.

iii)Web Service clients that do not support Reliable Message Technology are

not interoperable with web services that have this technology.

171

Security Technology

WSIT provides another level of security on top of the existing transport-level

security through WS-Security feature. It helps provide integrity and

confidentiality of the messages being transmitted. WSIT enhances security in

web services using the following implementations:

i) WS-Secure Conversation: Both end parties are able to negotiate a shared

security context when the first message is exchanged. Following

messages use the derived session key, reducing the security processing

overhead.

ii) Web Services Security Policy: Web Services are able to use security

assertions to emphasize the important security elements required for

successful communication.

6.4 .NET Framework

Microsoft .NET Framework consists of a large in-built library that offers solutions

to common programming problems. It also acts as a virtual machine on which

programs written in certain specific programming languages can be executed.

The pre-coded library is known as the Base Class Library using which other

applications are built. The runtime environment of the .NET Framework is known

as the Common Language Runtime (CLR). Because of the CLR, programmers

can write applications irrespective of the underlying CPU, operating system etc.

CLR also provides other services like exception handling, security and memory

management. The Base Class Library and CLR together form the .NET

Framework. The working of the CLR is represented in Figure 6.1 [110].

i) Common Language Infrastructure (CLI): The Common

Language Infrastructure provides a language independent platform

for development and execution of applications. All .NET specific

languages like VB, C# etc. compile into a second, platform

independent language known as the Common Intermediate

172

Language (CIL). This is then converted into machine readable form

with the help of .NET virtual machine CLR [102].

Figure 6.1: Overview of Common Language Infrastructure

i) Security: .NET framework provides its own security mechanism. It limits

the access that code has to critical resources and operations by using

Code Access Security (CAS). It also implements role based security so

that unauthorized access to resources is restricted. ASP.NET web

application security prevents false access to a site by comparing

authentication credentials to a list of authorized users contained in an XML

file.

ii) Memory Management: The .NET Framework Common Language

Runtime manages memory on its own. The framework contains a garbage

collector which runs periodically. As long as a reference to an object

exists, the object is considered accessible. Once there is no reference to

an object, it is considered garbage. The object is then destroyed freeing

up the memory allocated to it.

173

6.5 Windows Communication Foundation (WCF)

Windows Communication Foundation is an Application Programming Interface

(API) introduced with the .NET 3.0 Framework that is used to build applications

that can communicate with each other. WCF uses Service Oriented

Programming model for communication [45].This model unifies mechanisms like

web services, distributed transactions, .NET remoting and message queues all

under WCF. The service model features a straightforward mapping of web

services concepts to those of the .NET Framework common language runtime

(CLR), including flexible and extensible mapping of messages to service

implementations in languages such as Visual C# or Visual Basic [45].It includes

serialization facilities that enable loose coupling and versioning, and it provides

integration and interoperability with existing .NET Framework distributed systems

technologies such as Message Queuing (MSMQ), COM+, ASP.NET Web

services, Web Services Enhancements (WSE), and a number of other functions.

The ranges of issues addressed by the WCF technology are:

i) Unification with existing .NET Framework communication technologies.

ii) Support for Interoperability, including security and reliability.

iii) Explicit Service Orientation.

WCF Service

A WCF Service consists of three parts: a service class, which implements the

business logic of the service, host environment where the service is hosted and

endpoints to which the client will connect. The endpoint of the service specifies

the contract, which contains information regarding how the web service will be

accessed. It also contains binding information which defines how a client will

communicate with the web service.

WCF Client

WCF is designed according to the Service Oriented Architecture which support

distributed computing. As a result a service can be consumed by more than one

174

client and vice versa. A WCF client uses the WSDL interface of the Web Service

to communicate with the service [45]. WCF supports various advanced web

service (WS) standards like WS-Security, WS-ReliableMessaging and WS-

Addressing. Clients can communicate with the WCF Service using either RPC

based or literal based encodings. The interaction between WCF service and

client is shown in Figure 6.2 [110].

Figure 6.2: WCF Service and Client

6.6 Web Service Security

Some of the fundamental issues to be concerned in a distributed client server

environment like web services where information travels over a wide open

networking infrastructure are given below.

i) Confidentiality: This ensures that any third party listening to the conversion

cannot read and interpret the data.

ii) Integrity: This provides receivers with the ability to detect any change of

data, this prevents against intentional or unintentional change of data

during transmission.

iii) Authentication: This ensures that the client or user using the data is the

correct person.

iv) Authorization: This ensures that the client or user has the right to access

the information.

v) Non-Repudiation: This ensures that the client or the user cannot deny the

use of the information at a later time.

6.6.1 Need for Web service Security

The architecture of web services allows information to be transmitted as plain

text as XML/SOAP over HTTP which was the most preferred transport protocol. It

is very easy to intercept and interpret this information. Security can be provided

either at the transport level or at the application level. This leads to differences in

175

the various security mechanisms because all of a sudden security becomes tied

down to the service provider. Security at the transport level is generally point to

point security, they are based on a specific transport protocol/layer, such as

TCP/IP for SSL and HTTP for HTTPS [102]. In applications like web services

there could be intermediate nodes which could process or even modify (i.e.

remove or insert a SOAP header) therefore there should be some mechanism

which ensures message level security [100].

6.6.2 Web Services related security standards

Another way of securing web services as specified by Web Services Security

(WSS) is to secure the data that is being transferred over the underlying non

secure transport protocols like HTTP. Here the body of the SOAP message

contains the encrypted data and the header of the SOAP message contains the

session key encrypted with the private key of the message sender, the header

could also contain information like security token, signature etc. At the receiving

end the session key is extracted by using the public key of the sender and this

session key is used to decrypt and extract the data contained in the SOAP body,

this technique also ensures that the message comes from a particular user who

has access to the private key that encrypted the session key [102].

176

Figure 6.3 XML Security Standards

As indicated in Figure 6.3 SOAP is the core messaging protocol for web services.

The SOAP message is constructed of the SOAP envelope which in turn consists

of a SOAP header and a SOAP body [103].

XML Encryption and XML Digital Signature are used to provide confidentiality

and integrity respectively. They are both based on encryption and digital

signature and do not provide any new cryptographic algorithms. Instead they

define how to apply well established digital signature/ encryption algorithms to

XML.

XML Encryption is used to provide confidentiality to XML documents. Encryption

generally follows the symmetric key encryption where the sender and the

receiver use the same key for both encrypting and decrypting the data, hence

great care must be taken during the transfer of the key and it may be difficult

without person to person interaction. Hence public key encryption is used where

there are two sets of keys a public key and a private key, when a sender has to

send information he makes use of the receiver‘s public key which is well known

177

to everybody, the receiver than decrypts the data using the private key which is

known to the receiver alone.

A combination of public key cryptography and symmetric cryptography together

is a more efficient technique. The symmetric key is used to encrypt the data, and

then the data along with the symmetric key is encrypted with the public key and

sent to the recipient who uses the private key to decrypt the data and get the

symmetric key which was used to encrypt the data.

Listing 6.1(a) A Plain SOAP message without WSS
<soap:Envelope>
<soap:Header>
</soap:Header>
<soap:Body>
 <createWorkOrdersResponse>

<createWorkOrdersResult>
<WorkOrder>
<customerID>1</customerID>
<customerName>Tang</customerName>
<addressStreet>A Street</addressStreet>
<addressCity>Sydney</addressCity>
<addressState>NSW</addressState>
<addressZip>2006</addressZip>
<sourceCompany>EE</sourceCompany>
<appointmentDate>210406</appointmentDate>
</WorkOrder>

</createWorkOrdersResult>
 </createWorkOrdersResponse>
</soap:Body>
</soap:Envelope>

Listing 6.1(b) The SOAP message with WSS Encryption

<soap:Envelope>
 <soap:Header>
 <wsse:Security>
 <wsse:BinarySecurityToken ValueType="...‖>
 MIICnzCCAgigAwIBAgIQBHB1ZCwolDXbdsxTrNLj
 AMAsGA1UECxMEQ2VydDEMMAoGA1...

</wsse:BinarySecurityToken>
<xenc:EncryptedKey>

<xenc:EncryptionMethod Algorithm="…" />
<KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="… " …/>

178

 </wsse:SecurityTokenReference>
</KeyInfo>
<xenc:CipherData>
 <xenc:CipherValue>

 iHlscgQVO4uCwztyCBwFzH8CIekMAoG
 A1QBHB1gGjHa2GAKiaTaAgU…

 </xenc:CipherValue>
</xenc:CipherData>

 <xenc:ReferenceList>
<xenc: DataReference URI="…" />

</xenc:ReferenceList>
 </xenc:EncryptedKey>
 </wsse:Security>
</soap:Header>
 <soap:Body>

<xenc:EncryptedData Id="…" …>
 <xenc:EncryptionMethod Algorithm="…" />
 <xenc:CipherData>

<xenc:CipherValue>
QtzfuLYO/qh45yDxaypPhI/YdH4bJ…

 </xenc:CipherValue>
 </xenc:CipherData>

</xenc:EncryptedData>
 </soap:Body>
</soap:Envelope>

The significance of the different components of listing 6.1(b) [38] are explained, a

pair of tags of <wsse:Security> element is added to the SOAP header, in which

the required security elements are able to be embedded. The <wsse:

BinarySecurityToken> element holds the information of the binary security token

(e.g.,X.509 certificate) used for encryption and the <xenc:EncryptedKey>

element contains the key for encryption. Inside the <xenc: EncryptedKey>

element,<xenc: EncryptionMethod> specifies the encryption algorithm applied to

the encryption and the <KeyInfo> element keeps a reference to the

<wsse:BinarySecurityToken> element. Since the encryption key of the message

itself can be encrypted, and so can the content of the SOAP body, < xenc:

CipherData> in the < xenc: EncryptedKey > in the header provides the encrypted

data of the encryption key, and the one in <xenc: EncryptedData> in the body

179

contains the encrypted data of the body content. A < xenc:ReferenceList> is

used as a reference list to the encrypted data of the body content. It can also

been seen that the <wsse: Security> element and its descendants in the

encrypted message make the SOAP message much larger in size than the

original message.

While WSS enhances the security of web services, it may lead to performance

overheads due to longer networking times to transport the larger SOAP

messages and the CPU time involved in processing the SOAP message [38].

XML Digital Signature: Is important in electronic security and it can be used to

ensure integrity, authenticity and non-repudiation of data. The important feature

of XML digital signature is that it can be used to sign only some parts of an XML

document, and also one XML document may have different parts signed for

different users this feature distinguishes it from other forms of signing like PGP.

There are three types of XML digital structures, namely enveloped signature,

enveloping signature and detached signature. For enveloped and enveloping

signature, the signed document and the signature are in the same document, in

detached signature the signed document and the signature are in separate

documents [103]. Digital signatures make use of the standard techniques like

DSA-SHA1 and RSA-SHA1 [104].

180

How are certificates used ?

Figure 6.4 How certificates are used

The sequence of events shown in Figure 6.4 [105] is as follows:

i) Alice sends a signed certificate request containing her name, her public

key, and perhaps some additional information to a CA.

ii) The CA creates a message from Alice's request. The CA signs the

message with its private key, creating a separate signature. The CA

returns the message and the signature to Alice. Together, the message

and signature form Alice's certificate.

iii) Alice sends her certificate to Bob to give him access to her public key.

iv) Bob verifies the certificate's signature, using the CA's public key. If the

signature proves valid, he accepts the public key in the certificate as

Alice's public key.

As with any digital signature, any receiver with access to the CA's public key can

determine whether a specific CA signed the certificate. This process requires no

access to any secret information. The preceding scenario assumes that Bob has

access to the CA's public key. Bob would have access to that key if he has a

copy of the CA's certificate that contains that public key.

181

X.509 Digital Certificate

The X.509 certificate includes not only a user‘s name and public key but also

other information about the user like e-mail address an authorization to sign other

documents etc.All certificates have a valid time duration. A certificate can expire

and no longer be valid. The CA can revoke certificates. A list of the revoked

certificates is maintained in the CRL (Certificate Revocation List), network users

can access the CRL to find out about revoked certificates.

Certificate Stores in .NET and Java: Certificates are stored in safe locations

called certificate stores, a certificate store can contain certificates, certificate trust

lists(CTL) and certificate revocation list (CRL). In .NET each user has a personal

store called ―MY‖ store where that user‘s certificates are stored, the MY store can

be a database, a directory service or another memory location[105].

Java Keytool is a key and certificate management utility. It allows users to

manage their own public/private key pairs and certificates. It also allows users to

cache certificates. Java Keytool stores the keys and certificates in what is called

a keystore. By default the Java keystore is implemented as a file. It protects

private keys with a password. A Keytool keystore contains the private key and

any certificates necessary to complete a chain of trust and establish the

trustworthiness of the primary certificate [106].

XML Key Management Specifications (XKMS): Since both encryption and

digital signatures make use of keys, it is important to have a store for these keys

and to manage them efficiently, this job is taken up by the XKMS.XKMS defines

simple web services for retrieving, validating and registering public keys, thereby

shielding clients from the complexity of the potentially underlying public key

infrastructure (PKI). XKMS is divided into two main parts, the XML Key

182

Registration Service Specifications(X-KRSS) and the XML Key Information

Service Specification(X-KISS).

X-KRSS defines services in order to register, revoke and reissue keys. In the

case of registering a new public key, the key pair generation may either be

performed by the client or by the offered service. In case the key pair is

generated by the client, the client is required to prove possession of the private

key in order to register the public key in either case the KRSS provides

mechanisms for authenticating clients.

X-KISS defines two services namely locate and validate. The locate service

enables a client to retrieve a public key, or information about a public key. The

validate service provides the same functionality as the locate service but also

assures that the returned information meets specific validation criteria (e.g. by

validating the X.509 certificate).

Extensible Access Control Markup Language (XACML)

XAML is an XML specification for expressing fine grained information access

policies in XML documents or any other electronic resource. It specifies the

different access rights for different groups of people, the XML access control lists

is generally 4 tuples: subjects, target objects, permitted action, provision.

Security Assertion Markup Language (SAML)

SAML defines an XML framework for exchanging authentication and

authorization information. SAML addresses authentication and provides a

mechanism for transferring authentication and authorization decisions between

cooperating entities. SAML provides a very important feature of Single Sign

On(SSO) where a user can log onto one service and make use of a host of other

services for e.g. when a person logs onto their email account they can log onto

chat, Facebook and a host of other applications. This facility is enabled by SAML

which passes on the login information onto the other web sites.

183

All the above information is pertaining to XML security. WSS therefore takes

care of message integrity and data confidentiality. WSS is flexible and designed

to be used as the basis for securing web services within a wide variety of security

models including PKI, Kerberos and Secure Socket Layer (SSL). Specifically this

specification provides support for multiple security token formats, trust domains,

signature formats and encryption technologies [107].

 WS-SecurityPolicy

 Web Services Policy

 Web-SecureConversion

 WS-Trust

 WS-Security

SOAP XML Signature XML Encryption

 XML

Figure 6.5 The conceptual relationship between XML and web services

security standards

WS-Trust builds on WS-Security, and it provides functionality which can be used

by WS-Security, WS-Secure conversation builds on WS-Security and WS-Trust,

finally WS-Security Policy extends Web services Policy in order to facilitate the

use of WS-Security, WS-Secure Conversation and WS-Trust as shown in Figure

6.5.

Development support for these standards can be found in the Web Services

Interoperability Toolkit for Java and in the Windows Communication Foundation

for .NET. These standards are also supported by XML firewalls. Environments

such as Apache WSS4J [Apache Software Foundation 2006],IBM Web Sphere

[IBM Corporation 2006], Microsoft Web services Enhancements (WSE)

[Microsoft Corporation 2004] and Windows Communication Foundation (WCF)

184

[Microsoft Corporation 2006], provide tools and libraries for building web services

that are secured via the mechanisms of WS-Security and related specifications.

Disadvantage of Security Specifications:

Properly designing and securing web service applications are important and it is

not just about using security standards. Developers must understand both the

limitations and drawbacks to security standards in order to fully secure their web

services. The number of security standards available to users is large and

confusing. SSL which is now replaced by TLS, WSS, Digital Signature Services,

XML Encryption, XML-Signature, eXtensible Access Control Markup Language

(XACML), SAML, XKMS etc. These specifications could be confusing for

somebody new to web service standards and it could increase the effort for

developers to build web services, while providing a thin veneer of actual web

service security.

Just using these specifications will not assure complete web service security,

these specifications will have to be used correctly. In many cases it is seen that it

would be needed to combine more than one type of specification, but since most

system designers are not security experts, they will not know intuitively what they

are missing. Nor will they have any reason to suspect they need anything beyond

the standard they know and use [108].

6.6.3.NET Framework architecture

Prior to .NET technologies, languages like C++ and C were directly converted to

machine code for particular computer architecture. This was called unmanaged

code because features like security, memory management and type checking

was managed by the operating system itself. .NET applications are built with

managed code, the source code is compiled into an Intermediate Language (IL).

The Common Language Runtime (CLR) framework of .NET is responsible for

converting the IL to machine code. CLR enables Code Access Security (CAS)

which is a very different access model than the one that Windows OS has [109].

185

Security in the .NET environment

Web services in the .NET environment are hosted by IIS and thus the built in

security features of IIS can be leveraged in this environment. SSL is enabled for

HTTP to provide confidentiality and integrity of the data being transferred over

HTTP. Non repudiation is provided by the use of client side X.509 certificates.

Once SSL is enabled, all the data sent over the connection will be encrypted and

signed.

IIS provides multiple authentication mechanisms: basic, digest, Integrated

windows authentication or X.509 certificates. Any of these authentication

mechanisms can be enabled for the particular directory that hosts the web

service and this will allow the client to present the appropriate credentials and

authenticate to the IIS. In addition the web.config file for web service needs to be

modified to indicate that ―windows‖ authentication should be used, also

anonymous access needs to be disabled in IIS [102]. To provide authorization,

―Code Access Security‖ mechanism is provided by .NET. This allows the service

provider to check if the user is authorized to access this information.

Security in Java

i) SSL security can be provided in Java environment also. This provides

confidentiality and integrity of the data being transferred over HTTP.

ii) The only authentication mechanism allowed in this environment is basic

authentication. This requires appropriate usernames and passwords to be

added to the web server.

6.7 Work Done

A platform for working with interoperable web services is created. A secure web

service is built in Java using the Netbeans platform, the web service performs

two simple operations, the first is to find the sum of two numbers and the second

is to find simple interest given values for principal, time and rate of interest. The

186

client application is developed in C#. Security is enforced by using the simple

username password authentication with symmetric key. Hence to access the web

service the username and password are provided, as well as the certificate used

for encrypting and decrypting the SOAP messages transported between the web

service and the client.

6.7.1 Editing Web Service Attributes

Security can be added in Netbeans by changing the web service attributes. The

web service can be configured to use secure service and then specify the service

mechanism that is to be used. The following two mechanisms are used.

i) User Authentication with Symmetric Key: This mechanism only allows

users specified in the Glassfish server to access the web service. Also,

this mechanism uses the same key for encrypting and decrypting the

messages.

ii) Mutual Certificate Security: In this mechanism the xws-security-server

and the xws-security-client key pair are used for data confidentiality.

The security that is configured using netbeans is automatically stored in the

sun.xml and sun-web.xml configuration files .

User Authentication with Symmetric Key: Encryption using symmetric key

exchange works as represented in Figure 6.6. The client and the server use the

same shared key to encrypt and decrypt information.

187

Figure 6.6 Working of Symmetric key Encryption

When the client wants to invoke the service, he sends his username and

password encrypted using the shared symmetric key to the server. The server

decrypts the username and password and only if the user is a registered user

whose details are available in its directory than the client is allowed to access the

services offered. The working of the symmetric key is shown in Figure 6.6 [110].

Mutual Certificate Security

A C# client is developed to invoke the web service since the web service that is

invoked is a secure web service it is required that the client and the server

exchange their certificates, but before the certificate can be used by the WCF

client it must be installed on the windows machine.

The certificate is imported into the Microsoft Management Console (MMC). The

MMC is a tool provided by windows that helps system administrators create

flexible user interfaces and customize administration tools. There are two

certificates required by the web service client they are xwsecurityserver and

xwsecurityclient which are available in the *.JKS (Java Keystore) format. .NET

identifies certificates only if they are in the .PFX or .PFB and (.SST) Microsoft

188

Serialized Certificate store, so before the certificate can be imported it must be

converted from .JKS format to any of the acceptable .NET formats as shown in

Figure 6.7.

 Figure 6.7 Microsoft Management Console Utility

This conversion is done using the tool JKS2PFX.bat as shown in Figure 6.8.

189

Figure 6.8 JKS2PFX Tool

After both the certificates are converted to the proper format they are imported

into MMC. Once imported, the reference to these certificates in the web service

client can be provided either programmatically or by configuring the security in

the app.config file.

6.7.2 Using ClientCredentials.SetCertificate() Method

The client.ClientCredentials.SetCertificate() method is used to specify the

certificate to be used to represent the web service client. The method Definition

is as follows:

public void SetCertificate(
 StoreLocation storeLocation,
 StoreName storeName,
 X509FindType findType,
 Object findValue
)

190

6.7.3 Configuring Security via app.config file

References to the client and server certificates can also be provided via the

app.config file. The code snippets to be added to the app.config file to provide

the necessary security measures are:

 <behaviors>
 <endpointBehaviors>
 <behavior name="secureBehavior">
 <clientCredentials>
 <clientCertificate
 storeName="My"
 storeLocation="CurrentUser"
 findValue="xws-security-server"
 x509FindType="FindBySubjectName" />
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>

This Behavior known as secureBehavior represents the certificate to be used by
the client. An Identity needs to be provided to the certificate used by the web
service before the application can be run.

<identity>
 <certificateReference findValue="xwssecurityserver"
storeLocation="LocalMachine" storeName="My"
x509FindType="FindBySubjectName" isChainIncluded="false"/>
</identity>

6.7.4 Source Code of the WCF Client in C#

Finally, a new Visual C# console application is created, adding a service

reference. The WSIT endpoint provided in this case is:

Listing 6.2 SetCertificateMethod()

http://localhost:8080/MyWebService/CalculatorWSService?wsdl

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

http://localhost:8080/MyWebService/CalculatorWSService?wsdl

191

namespace UserAuthenticationProject
{
 class Program
 {
 static void Main(string[] args)
 {
 ServiceReference1.CalculatorWSClient client = new
UserAuthenticationProject.ServiceReference1.CalculatorWSClient();
 client.ClientCredentials.UserName.UserName = "sujala";
 client.ClientCredentials.UserName.Password = "shetty";

client.ClientCredentials.ClientCertificate.SetCertificate(System.Security.Cryptogr
aphy.X509Certificates.StoreLocation.LocalMachine,System.Security.Cryptograph
y.X509Certificates.StoreName.My,System.Security.Cryptography.X509Certificate
s.X509FindType.FindBySubjectName,"xwssecurityserver");
Console.WriteLine("Sum:" + client.add(2, 3) + "\n Interest:" + client.interest(1000,
5, 2));
 Console.ReadLine();
 }
 }
}

As can be seen the certificate reference for the client is provided with the help of

the SetCertificate() Method. The app.config file generated by the process is:

Listing 6.3 The Identity to the server certificate is provided in the

app.config file.

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <system.serviceModel>

 <bindings>

 <customBinding>

 <binding name="CalculatorWSPortBinding">

 <security defaultAlgorithmSuite="Basic128Rsa15"

authenticationMode="UserNameForCertificate" requireDerivedKeys="false"

securityHeaderLayout="Strict" includeTimestamp="true"

keyEntropyMode="CombinedEntropy"

messageProtectionOrder="SignBeforeEncrypt"

messageSecurityVersion="WSSecurity11WSTrustFebruary2005WSSecureConversa

tionFebruary2005WSSecurityPolicy11BasicSecurityProfile10"

requireSignatureConfirmation="false">

 <localClientSettings cacheCookies="true"

detectReplays="true" replayCacheSize="900000" maxClockSkew="00:05:00"

maxCookieCachingTime="Infinite" replayWindow="00:05:00"

sessionKeyRenewalInterval="10:00:00"

192

sessionKeyRolloverInterval="00:05:00"

reconnectTransportOnFailure="true" timestampValidityDuration="00:05:00"

cookieRenewalThresholdPercentage="60" />

 <localServiceSettings detectReplays="true"

issuedCookieLifetime="10:00:00" maxStatefulNegotiations="128"

replayCacheSize="900000" maxClockSkew="00:05:00"

negotiationTimeout="00:01:00" replayWindow="00:05:00"

inactivityTimeout="00:02:00" sessionKeyRenewalInterval="15:00:00"

sessionKeyRolloverInterval="00:05:00"

reconnectTransportOnFailure="true" maxPendingSessions="128"

maxCachedCookies="1000" timestampValidityDuration="00:05:00" />

 <secureConversationBootstrap />

 </security>

 <textMessageEncoding maxReadPoolSize="64"

maxWritePoolSize="16" messageVersion="Soap11WSAddressing10"

writeEncoding="utf-8">

 <readerQuotas maxDepth="32" maxStringContentLength="8192"

maxArrayLength="16384" maxBytesPerRead="4096"

maxNameTableCharCount="16384" />

 </textMessageEncoding>

 <httpTransport manualAddressing="false"

maxBufferPoolSize="524288" maxReceivedMessageSize="65536"

allowCookies="false" authenticationScheme="Anonymous"

bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard"

keepAliveEnabled="true" maxBufferSize="65536"

proxyAuthenticationScheme="Anonymous" realm="" transferMode="Buffered"

unsafeConnectionNtlmAuthentication="false" useDefaultWebProxy="true" />

 </binding>

 </customBinding>

 </bindings>

 <client>

 <endpoint

address="http://localhost:8080/MyWebService/CalculatorWSService"

binding="customBinding" bindingConfiguration="CalculatorWSPortBinding"

contract="ServiceReference1.CalculatorWS" name="CalculatorWSPort">

 <identity>

 <certificateReference findValue="xwssecurityserver"

storeLocation="LocalMachine" storeName="My"

x509FindType="FindBySubjectName" isChainIncluded="false"/>

 </identity>

 </endpoint>

 </client>

 </system.serviceModel>

</configuration>

6.8 SOAP Messages Log

SOAP messages that are transferred between the web service and the web

service client can be logged using an utility called TcpMon. TcpMon is an open

source utility developed by the Apache foundation to log HTTP or SOAP

message traffic. It acts as a listener, waiting for inputstream at one port and

193

redirects it at another port, logging the messages being sent along the way as

shown in Figure 6.9.

Figure 6.9 TCPMon Utility

Listing 6.4 SOAP Request Log

POST /MyWebService/CalculatorWSService HTTP/1.1
SOAPAction: "http://webservice.com.org/CalculatorWS/addRequest"
Accept: text/xml, multipart/related, text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Content-Type: text/xml;charset="utf-8"
User-Agent: JAX-WS RI 2.1.3.1-hudson-417-SNAPSHOT
Host: 127.0.0.1:8081
Connection: keep-alive
Content-Length: 7625

<?xml version="1.0" ?>
 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:exc14n="http://www.w3.org/2001/10/xml-exc-c14n#">
 <S:Header>
 <To xmlns="http://www.w3.org/2005/08/addressing"
wsu:Id="_5006">http://127.0.0.1:8081/MyWebService/CalculatorWSService</To>
 <Action xmlns="http://www.w3.org/2005/08/addressing"
wsu:Id="_5005">http://webservice.com.org/CalculatorWS/addRequest</Action>
 <ReplyTo xmlns="http://www.w3.org/2005/08/addressing" wsu:Id="_5004">
 <Address>http://www.w3.org/2005/08/addressing/anonymous</Address>

194

 </ReplyTo>
 <MessageID xmlns="http://www.w3.org/2005/08/addressing"
wsu:Id="_5003">uuid:6876e04b-876b-4413-9e4a-9544b92d356b</MessageID>
 <wsse:Security S:mustUnderstand="1">
 <wsu:Timestamp xmlns:ns10="http://www.w3.org/2003/05/soap-envelope"
xmlns:ns11="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512" wsu:Id="_3">
 <wsu:Created>2008-11-13T01:18:51Z</wsu:Created>
 <wsu:Expires>2008-11-13T01:23:51Z</wsu:Expires>
 </wsu:Timestamp>
 <xenc:EncryptedKey xmlns:ns10="http://www.w3.org/2003/05/soap-envelope"
xmlns:ns11="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512" Id="_5002">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <ds:KeyInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="keyInfo">
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-1.0#X509SubjectKeyIdentifier" EncodingType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary">dVE29ysyFW/iD1la3ddePzM6IWo=</wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 <xenc:CipherData>

<xenc:CipherValue>SAPmpD1G7am4TCsVShGf0cAymvfMEd7ce2In8CKSc3zGqq3AmW8cf+D2
smlfYMFLU/SeLJ8XZF6ZpyWLorKNV46nuUGxIdsrXyCfuE0XCt0LYIScByupZy+Q9McrGjssa7HX
2saNE3FMPTAqovr+E21oH5BxbZ8bBd2JLw26xSE=</xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedKey>
 <xenc:ReferenceList xmlns:ns17="http://docs.oasis-open.org/ws-sx/ws-
secureconversation/200512" xmlns:ns16="http://www.w3.org/2003/05/soap-envelope" xmlns="">
 <xenc:DataReference URI="#_5008"></xenc:DataReference>
 <xenc:DataReference URI="#_5009"></xenc:DataReference>
 </xenc:ReferenceList>
 <xenc:EncryptedData xmlns:ns10="http://www.w3.org/2003/05/soap-envelope"
xmlns:ns11="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"
Type="http://www.w3.org/2001/04/xmlenc#Element" Id="_5009">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <ds:KeyInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="keyInfo">
 <wsse:SecurityTokenReference>
 <wsse:Reference ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-
message-security-1.1#EncryptedKey" URI="#_5002"/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 <xenc:CipherData>

<xenc:CipherValue>ZR1gaiwaW32MzdBcY2dKjR0pci/EvSAUFahBmbaFMQAeGUYPMzCMK+6i
uwIP3i74cx7GR+O+Lpyqv96x2kiX8ekL2iqPm1dDGO5+4eBjpz/ozjK9shW12NI8FjjEw5WDWmsD
FT5Ysd0+z3SGrjVDxZDK8dws6L7ZuTOg8cR+sasrG/FiJIt+u/IAMXagE21+rf8UV/4BXqkbapHaI7
BnglgA4WIhnuScZbb5WiGaetVKiGEft2GnREwfWkH47ehfNoZrFnqDE4GtaxUC+0P7WeQdPOpt
EzPPq2wEzCsm4HABzdDtmp14YqQR4lzD/rHZMC225DfOP9TbqBwxboiASpvvR2C77VLneUQ+
0wyJGW/8xjlg2I/fld9uoJw0kQOTTaJ0FtpYH/3i4gb4bZYCeYdUqdAHjT8cafCjtbdgoIuZ6gHBdLLA
EX1WClhzL6IjvE288Mn5vuyqgUtSSI9SFngBmJO9sUJ44zdX08B/TPqoHu83YM0WUpyM43ORU
dpt</xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>

195

 <ds:Signature xmlns:ns10="http://www.w3.org/2003/05/soap-envelope"
xmlns:ns11="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512" Id="_1">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="wsse S"/>
 </ds:CanonicalizationMethod>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
 <ds:Reference URI="#_5003">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="S"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>rqQBOAxFtBtazThQqvIM7ZinLm4=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#_5004">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="S"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>5Ab1ebo4/FraGgck/A8iDx1J9+I=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#_5005">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="S"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>CCmsv+bhIIeGmSDIz3qdbPXoJ+k=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#_5006">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="S"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>2vKHblosw5rGfPsRRWyqVpqDv2s=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#_5007">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="S"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>FxqMoXAiSeHNX38hCF1lqjRFOtw=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#_3">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="wsu wsse S"/>

196

 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>H5zXv2d8Eyd7cY//wlMFci2277o=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#uuid_2096f1c1-fde1-46be-9bab-2aaaf17b9075">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="wsu wsse S"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>d11zlh6pWtFmUJhHC3/g/Cd8sZo=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>dG75vk0PkoLf+Ua3Q7tWpwfGgxU=</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference wsu:Id="uuid_4c4e08b3-81b8-4bfd-b808-
e77be6448f22">
 <wsse:Reference ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-
message-security-1.1#EncryptedKey" URI="#_5002"/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </S:Header>
 <S:Body wsu:Id="_5007">
 <xenc:EncryptedData xmlns:ns10="http://www.w3.org/2003/05/soap-envelope"
xmlns:ns11="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"
Type="http://www.w3.org/2001/04/xmlenc#Content" Id="_5008">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <ds:KeyInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="keyInfo">
 <wsse:SecurityTokenReference>
 <wsse:Reference ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-
message-security-1.1#EncryptedKey" URI="#_5002"/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 <xenc:CipherData>

<xenc:CipherValue>6qBlcF23LRJ/idTkCra6uCtOTxl4wHXzoyLgU0fjhkhDYgx/2BiK2DagPagGtrw
M8lKfqMbXI//wYyZS/N49ZTxq5MeHfCkohEGR6as8rQFe2lkYOygKmDUQiROJSDxc</xenc:Ciph
erValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
 </S:Body>
 </S:Envelope

197

Listing 6.5 SOAP Response Log

HTTP/1.1 200 OK
X-Powered-By: Servlet/2.5
Server: Sun Java System Application Server 9.1_02
Content-Type: text/xml;charset="utf-8"
Transfer-Encoding: chunked
Date: Thu, 13 Nov 2008 01:18:53 GMT

14ca
<?xml version="1.0" ?>
 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:exc14n="http://www.w3.org/2001/10/xml-exc-c14n#">
 <S:Header>
 <To xmlns="http://www.w3.org/2005/08/addressing"
wsu:Id="_5005">http://www.w3.org/2005/08/addressing/anonymous</To>
 <Action xmlns="http://www.w3.org/2005/08/addressing"
wsu:Id="_5003">http://webservice.com.org/CalculatorWS/addResponse</Action>
 <MessageID xmlns="http://www.w3.org/2005/08/addressing"
wsu:Id="_5002">uuid:21236ef8-c995-4faf-b46f-e3c4f4c2ac48</MessageID>
 <RelatesTo xmlns="http://www.w3.org/2005/08/addressing"
wsu:Id="_5004">uuid:6876e04b-876b-4413-9e4a-9544b92d356b</RelatesTo>
 <wsse:Security S:mustUnderstand="1">
 <wsu:Timestamp xmlns:ns10="http://www.w3.org/2003/05/soap-envelope"
xmlns:ns11="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512" wsu:Id="_3">
 <wsu:Created>2008-11-13T01:18:53Z</wsu:Created>
 <wsu:Expires>2008-11-13T01:23:53Z</wsu:Expires>
 </wsu:Timestamp>
 <xenc:ReferenceList xmlns:ns17="http://docs.oasis-open.org/ws-sx/ws-
secureconversation/200512" xmlns:ns16="http://www.w3.org/2003/05/soap-envelope" xmlns="">
 <xenc:DataReference URI="#_5007"></xenc:DataReference>
 </xenc:ReferenceList>
 <ds:Signature xmlns:ns10="http://www.w3.org/2003/05/soap-envelope"
xmlns:ns11="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512" Id="_1">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="wsse S"/>
 </ds:CanonicalizationMethod>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
 <ds:Reference URI="#_5002">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="S"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>gqgZkOQhK9+VvtchDOp5iYxXCsA=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#_5003">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

198

 <exc14n:InclusiveNamespaces PrefixList="S"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>dXy4TbqNvG4W/ItXHYZG6tpWd7w=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#_5004">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="S"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>ATqT5G73L44ooJBSRt8ZCLbC2go=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#_5005">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="S"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>Nd/8wVmBdLowQKMblBRYK+6xcjA=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#_5006">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="S"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>C5cQ9qlSuBacClfkOdpHrv7hBRY=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#_3">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <exc14n:InclusiveNamespaces PrefixList="wsu wsse S"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>/bcGg9463R9cM17UAhaUgqCy7AM=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>wk0Ch/Ol2bnQI9ykesv3ohJOE0c=</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-
message-security-1.1#EncryptedKeySHA1" EncodingType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary">Tyrr2//3sWXAIwGgXw5yTl6ZFqY=</wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </S:Header>
 <S:Body wsu:Id="_5006">

199

 <xenc:EncryptedData xmlns:ns10="http://www.w3.org/2003/05/soap-envelope"
xmlns:ns11="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"
Type="http://www.w3.org/2001/04/xmlenc#Content" Id="_5007">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <ds:KeyInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="keyInfo">
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-
message-security-1.1#EncryptedKeySHA1" EncodingType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary">Tyrr2//3sWXAIwGgXw5yTl6ZFqY=</wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 <xenc:CipherData>

<xenc:CipherValue>RBk7cq7pGbxfL6CumsF+NcYXxgP+wAY0TRho7GBtQ2QCoo7no/u4Lacs7u
2xMGATZl4GsSPZNHfPOKrzoBZZKl/mc5NsPL+W1Kx33zZf2Pdz5pOtxdcibKXcM1OQJ52qjiEUJ
NfFYIr31rCu6qHx+w==</xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
 </S:Body>
 </S:Envelope>

As indicated by the highlighted text it is observed that in the SOAP request there

is an exchange of security information in the XML header after the verification of

the certificate by the glass fish server then there is the flow of data from the client

to the server in the encrypted format. Whereas in the SOAP response log there is

no exchange of authentication information only the values computed by the web

service are sent back to the client in encrypted form.

6.9 Conclusion: Because of the wide use of web services in security intensive

operations like banking and business operations the security issues that arise in

web services is of utmost significance. The security implementations in Java and

.NET are studied. These are the two most widely used platforms for developing

web services. In web services data is finally transmitted as XML documents, XML

security as well as web service security is studied. The platform that has been

developed allows web services from different platforms to exchange certificates

with each other and then to transmit data in a secure fashion. This platform can

be used by young researchers to test many more security specifications.

200

Conclusion and Future Scope of Work

Web services are a very powerful technology which enables machine to machine

interaction across different platforms, this interoperable feature of web services is

mainly due to the fact that web services are based on XML which is a platform

neutral language. In order to understand the working of web services the building

blocks of web services like UDDI, WSDL and SOAP are studied.

Web services find usage in a number of applications ranging from small

applications for currency conversion to a big supply chain management or a

travel website like Travelocity which automates the process of ticket purchase,

hotel reservation and rent a car booking. Web services could be of great use

when large volumes of data need to be analyzed.

Data Mining is a very important process in data analysis and forecasting. As a

case study a desk top data mining application is considered and converted it to a

web service. The output obtained by the standalone application is

programaticaaly verified to be the same as that of a web service hence

confirming the belief that when an application is converted to a web service there

is no loss of precision. The advantage of using a web service is that the data

mining application need not be loaded on the user‘s system thus saving memory

space and providing the benefit that the web service can be accessible to a

number of users. Many organizations may not even require to perform data

mining operations very frequently on their data in such cases it would not even

be needed to load the data mining application on their system , in such cases it

would be an ideal situation to use the web service which is hosted at a different

location.

 Future extension of this work could be to consider a distributed data mining

application such that multiple processors work on the distributed data in parallel.

201

Another important extension of the thesis could be to secure the SOAP

messages by encrypting the messages such that confidential data can be

transmitted without loss of confidentially.

It is noted that in order to harness the full potential of web services, web services

should be accessible to mobile devices. In today‘s highly volatile global market it

is essential for people to be always accessible to information. Mobile devices

satisfy this requirement of anytime anywhere accessibility. Therefore tapping this

potential market, the developed application Mobilink enables people to access

web services on their mobile. Another important feature of this application is that

it is accessible to people even on their desktops and they can create the web

service as per their needs to interact with the back end database. Mobilink adds

a level of abstraction to a user using this application. A further extension of this

work could be a search for video files, audio files or image files. If video files are

to be processed the application would have to interface with graphics files and

high end image processing may be required to provide a real time experience.

Mobiles are very commonly used with context based or location based services

like Google maps, the application can be extended to work with GPS systems.

People are increasingly using their mobiles for bank transactions and other

secure transactions, it would be a good idea to add security to the application

such that all transactions occur in a secure manner hence giving a feeling of

security to the client to use a mobile for secure transactions.

Interoperability is the key word which led to the success of web services, but in

spite of a lot of research and analysis done in this area it is seen that certain

issues still exist when transmitting data between Java web service and a .Net

client or vice versa, tests are conducted and it is shown that issues arise when

rounding up decimals, when sending objects containing different data types or

when sending across an array with null data elements among other issues.

These issues would continue to exist because of the difference in interpretation

of data in different ways by the different platforms, the clients using these data

202

types should take extra precaution when using these specific data types. Work

could be extended to test more data types and interoperability across different

platforms like Oracle could be tested.

For the success of any system, the system should be able to earn the confidence

of its users. This confidence can be earned only when a system is secure. In the

last phases of this thesis a secure platform has been created for a web service

and a web service client to exchange security information by the exchange of

certificates. Once certificates are exchanged and the web service and the client

authenticate each other, secure data could be exchanged between the two. Work

could be extended to include more forms of security exchange like SAML, SSL,

public key encryption etc. A performance analysis test can be conducted taking

different security implementations and considering different loads on the web

service.

203

Specific Contributions

During the course of this work four specific tasks were accomplished.

i) Conversion of a data mining desk top application to a web service and

verifying programmatically that the output obtained on processes like

clustering, classification and text classification when implemented as a web

service is exactly the same as that of a desktop application. This test result is

very significant because it proves that a number of everyday applications

could be converted to web services thereby increasing the number of

services that could be offered to users. There are a number of such services

which are already available like file conversion from one format to another

like word to pdf etc. Software like Microsoft Office may also be offered as a

service. Our application can be offered as a service to a number of people

who could invoke the web service when they require any kind of analysis on

their data.

ii) Mobilink the application developed gives users the flexibility of invoking a

developed web service either from the desktop or from a mobile device. The

beauty of this application is that it abstracts the user about the nitty gritty of

developing web services. A front end GUI is provided which enables the

developer to design the web service which performs a search in the back end

data base as per the requirement. The mobile web service client is a great

application for people who are constantly on the move.

iii) Test cases are designed to check the various interoperability issues that arise

when web services and clients are developed on different platforms. These

issues are identified and programmatically verified.

iv) A platform for exchange of certificates between interoperable web services is

developed. The format in which certificates are represented is different in

different platforms. It therefore becomes important to convert the certificates

to a form which can be understood by both platforms, this is taken care in the

developed platform. The exchange of authentication information can be

tracked by the status of the SOAP request and response messages, this task

is accomplished and security data exchange is verified.

204

List of References

1. New to SOA and Web Services, IBM Developer Works‖, available at:

http://www.ibm.com/developerworks/webservices/newto/websvc.html

2. Yuhui Chen and Alexander Romanovsky., ‖Improving the Dependability of

Web services Integration‖, IEEE IT Pro, May/June 2008. pp.29-35.

3. Rohit Dhand., ‖Web Services: A trend shift from conventional Distributed

Computing Model‖, IEEE Computer Society, 2009 ,pp.313-317.

4. Khalil A. Abuosba and Asim A. El-Sheikh.Formalizing Service Oriented

Architectures, IEEE IT Pro, July/August 2008, pp.34- 38.

5. Jan Bosch. ―Service Orientation in the Enterprise‖, IEEE Computer Society,

November 2007. pp. 51- 56.

6. Neal Levitt. ―Are Web Services Finally Ready to Deliver?‖ IEEE Computer,

November 2004,pp. 14-18.

7. Pro, March/April 2008, pp 24-30. Yuhong Yan, Yong Liang, Xinge Du,

Hamadou Saliah- Hassane and Ali Ghorbani, IEEE Computer Society IT

Pro, March/April 2006 , pp 27- 33.

8. Lihui Lei and Zhenhua Duan, ―Integrating AJAX and Web Services for

Cooperative Image Editing‖, IT Pro, May|June 2007, pp.25- 29.

9. R.Yuan, L. Zunchao and Feng Boqin, ―Research on Reused- Based Web

Service Composition‖, Academic J. Xiám Jiao Tong Univ.(English ed.),

2005,vol.17,no.1,pp.10-14,48.

10. Firat Kart, Louise E. Moser, and Michael Melliar-Smith, ‖Building a

Distributed E-Healthcare System using SOA‖, IEEE computer Society IT.

11. Pilioura. T., Tsalgatidou. A., Hadjiefthymiades.S.,Scenarios of using web

services in m-commerce. SIGecom Exch. 3(4), 28–36 (2003). DOI

http://doi.acm.org/10.1145/844351.844356.

12. Yang. X, Bouguettaya. A., Adaptive data access in broadcast-based

wireless environments. IEEE Trans. Knowl. Data Eng. 2005,17(3), 326–338.

http://www.ibm.com/developerworks/webservices/newto/websvc.html
http://doi.acm.org/10.1145/844351.844356

205

13. Yang. X, Bouguettaya. A,Medjahed.B, Long.H, He.W.,Organizing and

accessing web services on air. IEEE Trans.Syst. Man Cybern. Part A Syst.

Hum,2003, 33(6), 742–757.

14. Min Tian, Andreas Gramm, Hartmutt Ritter, Jochen Schiller and Thiemo

Voigt,―Adaptive QoS for Mobile Web Services through Cross-Layer

Communication‖, IEEE Computer Society, February 2007, pp 59-63.

15. Xu yang and Athman Bouguettaya, ―Semantic Access to Multichannel M-

Services‖, IEEE Transactions on Knowledge and Data Engineering‖, Vol 21,

No2, February 2009, pp.259-260.

16. Christian S.Jensen, Carmen Ruiz Vicente, and Rico Wind, ―User Generated

Content: The Case for Mobile Services‖, IEEE Computer, December 2008,

pp.116-118.

17. Ariel Pashtan, Andrea Heusser and Peter Scheurmann ―Personal Service

Areas for Mobile Web Applications‖, IEEE Internet Computing, November-

December 2004, pp. 34-39.

18. Claudia Canali, Michele Colajanni, and Riccardo Lancellotti, ―Performance

Evolution of Mobile Web-Based Services‖, IEEE Internet Computing, March

/ April 2009, pp. 60-67.

19. Mustafa Adacal and Ayse B.Bener,‖Mobile Web Services:A New Agent-

Based Framework, IEEE Internet Computing, May-June 2006, pp. 58-65.

20. Hong Tina Gao, Jane Huffman Hayes and Henry Cai,‖Integrating Biological

Research through Web Services‖, IEEE Computer, March 2005, pp. 26-31.

21. Chunying Chen, Xiongwei Zhou, Jianzhong Zhang, ―Web Data Mining

System Based on Web Services,‖IEEE Computer Society, 2009 Ninth

International Conference on Hybrid Intelligent Systems,pp. 216- 220.

22. George Zheng and Athman Bouguettaya, ―Service Mining on the Web‖,

IEEE Transactions on Service Computing, Vol.2, NO1, January-March

2009.

23. Dorgival Guedes, Wagner Meira Jr and Renato Ferreira, ―Anteater: A

Service-Oriented Architecture for High Performance Data Mining‖, July /

August 2006 IEEE Internet Computing, pp. 36-43.

206

24. Yalin yarimagan and Asuman Dogac, ―A semantic based solution for UBL

Schema Interoperability‖, IEEE Internet Computing, May June 2009.

25. Narayana Rao Surapaneni, Dhanjay Katre,‖Java and .NET, A Developer‘s

guide to Interoperability and Migration‖, Prentice Hall of India, 2004.

26. George Feurlicht, Sooksathit Meesanthit,‖ Design method for Interoperable

Web service‖, ICSOC 04 November, ACM 2004.

27. Hamid R. Motachari Nezhad and Boualaem Benatallah, Fabio Casati,

Farouk Toumani,‖Web Services Interoperability Specifications‖, IEEE

Computer Society, 2006, pp. 24-32.

28. Wangming Ye, ―Web services programming tips and tricks: Improve

interoperability between J2EE technology and .NET‖, IBM Developer Works

Part 1, available at

:http://www.ibm.com/developerworks/webservices/library/ws-tip-j2eenet1/

29. Wangming Ye ,―Web services programming tips and tricks: Improve

interoperability between J2EE technology and .NET‖, IBM Developer Works

Part 2 available at:

http://www.ibm.com/developerworks/webservices/library/ws-tip-

j2eenet2.html

30. Wangming Ye, ―Web services programming tips and tricks: Improve

interoperability between J2EE technology and .NET‖, IBM Developer Works

Part 3 available at

http://www.ibm.com/developerworks/webservices/library/ws-tip-j2eenet3/

31. Eric Jaen Villoldo, Joan Serrat-Fernandez, Emilio Luque, ―Improving Web

Service Interoperability with Binding Extensions‖, 2007 ICWS, pp.1-7.

32. Hamid R.Motahari Nezhad and Boualem Benatallah, Fabio Casati, Farouk

Toumani, ―Web Services Interoperability Specifications‖, IEEE Computer,

pp.24-32.

33. Marjin Janssen and Hans J. Scholl, ―Interoperability for Electronic

Governance‖, ICEGOV2007, pp.45-48.

34. Thinagaran Perumal, Abd Rahman Ramli and Chui Yew Leong, Shattri

Mansor and Khairulmizam Samsudin, ―Interoperability among

http://www.ibm.com/developerworks/webservices/library/ws-tip-j2eenet1/
http://www.ibm.com/developerworks/webservices/library/ws-tip-j2eenet2.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-j2eenet2.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-j2eenet3/

207

Heterogenous Systems in a Smart Home Environment‖, 2008 IEEE

Conference on Signal Image technology and Internet Based Systems‖,

pp.177-186.

35. Eyhab Al-Masri and Qusay H.Mahmoud, ―Interoperability among Service

Registry Standards‖, IEEE Internet Computing, May-June 2007,pp. 74-77.

36. IBM Developer Works available at: www.ibm.com/developerworks

37. Yumi Yamaguchi, Hyen-Vui Chung, Masayoshi Teraguchi and Naohiko

Uramoto, ―Easy to use programming model for web service security‖, 2007

IEEE Asia-Pacific Services Computing Conference, pp.275-282.

38. Kezhe Tang, Shiping Chen, David Levy, John Zie and Bo Yan, ―A

Performance Evaluation of Web Services Security‖, Proceedings of the 10th

IEEE International Enterprise Distributed Object Computing Conference

(EDOC‘06).

39. Lenin Singaravelu, Calton Pu,‖Fine Grain, End-to-End Security for Web

Service Compositions‖, 2007 IEEE International Conference on services

Computing(SCC 2007).

40. Michiaki Tatsubori, Takeshi Imamura, Yuhichi Nakamura,‖Best practice

Patterns and Tool Support for Configuring Secure Web services

Messaging‖, IEEE International Conference on Web Services (ICWS‘04).

41. Selma Elsheikh,‖Access Control Scheme for Web Services‖, 2008 IEEE

International Conference on Computer and Communication Engineering.

42. Nils Agne Nordbotton,‖XML and Web Services Security Standards‖, IEEE

Communications Survey and Tutorials, Vol. 11, No.3 Third quarter 2009.

43. Steve Graham, Doug Davis et al, ―Building Web Services with Java‖,

Pearson Education, Second Edition,2008.

44. Queue, March 2003, A conversation with Adam Bosworth.

45. David A Chappell and Tyler Jewell, ―Java Web services‖, O‘Reilly

Publication,2007.

46. Mike P. Papazoglou, Willem-Jan van den Heuvel, ―Service oriented

architecture: approaches, technologies and research issues, The VLDB

Journal (2007). pp. 389-415.

http://www.ibm.com/developerworks

208

47. Ramesh Nagappan, Robert Skoczylas, Rima Patel Sriganesh, ―Developing

Java Web Services‖, Wiley Publication,2007.

48. Bilal Siddiqui, ―Exploring XML Encryption Part 1‖, IBM Developer Works,

http://www.ibm.com/developerworks/xml/library/x-encrypt/index.html.

49. C.Low, J Randall, M Wrey, Self describing Data Representation, Hewlwtt

Packard Labs, 1997.

50. Geert Jan Bex, Frank Neven, Jan Van den Bussche,‖DTD Vs XML schema :

A practical study‖, Seventh International Workshop on Web and

Databases(WebDB2004), June 17-18, 2004, Paris, France.

51. Fabio Simeoni, David Lievens and Richard Connor, ―Language Bindings to

XML‖, IEEE Internet Computing, January – February 2003.

52. B.V.Kumar, S.V. Subramanya, ― Web Services an Introduction‖ , Tata

McGraw Hill,2007.

53. Luigi Lo Iacono and Hariharan Rajasekaran, ― Secure Browser based

access to web services‖ , IEEE Communication Society proceedings of

IEEE ICC 2009.

54. Liang-Jie-Zhang, Jia Zhang, ―An integrated service Model Approach for

enabling SOA‖, I.T. Pro September/ October 2009.

55. Lihui Lei and Zhenhua Duan, ―Integrating AJAX and Web Services for

Cooperative Image Editing‖, May|June 2007, IT Pro, pp 25- 29.

56. Sylvain Hallé, Tevfik Bultan, Graham Hughes, and Muath Alkhalaf, Roger

Villemaire, ―Runtime verification of Web Service Interface Contracts‖, IEEE

Computer Society, March 2010.

57. Hong Tina Gao, Jane Huffman Hayes , Henry Cai, ―Integrating Biological

Research through Web Services‖, IEEE Internet Computing , March 2005.

58. Juan Jose, Garcia Adeva and Rafael Calvo, ―Mining Text with Pimiento‖,

IEEE Internet Computing, July August 2006, pp 27-35.

59. Paul Heymann, Georgia Koutrika and Hector Molina, ―Fighting spam on

social websites, A survey of approaches and future challenges‖, IEEE

Internet Computing ,Nov- Dec 2007.

http://www.ibm.com/developerworks/xml/library/x-encrypt/index.html

209

60. Souptik Datta, Kanishka Bhaduri, Chris Gianella and Hillol Kargupta,

―Distributed Data Mining in Peer to Peer Networks‖, IEEE Internet

Computing, July August 2006, pp 20- 21.

61. Anoop Kumar, Metimed Kantardzic and Samuel Madden, ―Distributed Data

Mining Framework and Implementations‖, IEEE Internet Computing, July

August 2006, pp 15-19.

62. Ian H Witten, Eibe Frank, ―Data Mining Practical Machine Learning Tools

and Techniques‖, Morgan Kaufmann Publications, pp 14-395.

63. Markov Zdravko, and Russell Ingrid, An Introduction to the WEKA Data

Mining System, available at: http://www.cs.ccsu.edu/~markov/weka-

tutorial.pdf

64. Ian H Witten, Eibe Frank, WEKA Machine Learning Algorithms in Java,

available at: http://www.inf.ed.ac.uk/teaching/courses/dme/html/Tutorial.pdf

65. Haridas Mandar, CIS764-Step By Step Tutorial for Weka.

http://www.docstoc.com/docs/2582601/CIS764---Step-By-Step-Tutorial-

for-Weka-By-Mandar-Haridas-

66. Frank Eibe, et al., Data Mining in Bioinformatics using Weka, pp 1-2.

http://bioinformatics.oxfordjournals.org/cgi/reprint/20/15/2479

67. Dimov Rossen, WEKA: Practical Machine Learning Tools and Techniques

in Java.

http://www.dfki.de/~kipp/seminar_ws0607/reports/RossenDimov.pdf

68. Mark F. Hornick, Eric Marcade, Sunil Venkayala, ―Java Data Mining

Strategy, Standard, and Practice‖, Morgan Kaufmann publication pp 3-116.

69. Web Services on Wikipedia available at:

http://en.wikipedia.org/wiki/WebServices/

70. Data Mining: What is Data Mining? Available at:

http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palac

e/datamining.htm

71. Weka 3: Data Mining software in Java, available at:

http://www.cs.waikato.ac.nz/~ml/weka/

http://www.cs.ccsu.edu/~markov/weka-tutorial.pdf
http://www.cs.ccsu.edu/~markov/weka-tutorial.pdf
http://www.inf.ed.ac.uk/teaching/courses/dme/html/Tutorial.pdf
http://www.docstoc.com/docs/2582601/CIS764---Step-By-Step-Tutorial-for%1eWeka-By-Mandar-Haridas-
http://www.docstoc.com/docs/2582601/CIS764---Step-By-Step-Tutorial-for%1eWeka-By-Mandar-Haridas-
http://bioinformatics.oxfordjournals.org/cgi/reprint/20/15/2479
http://www.dfki.de/~kipp/seminar_ws0607/reports/RossenDimov.pdf
http://en.wikipedia.org/wiki/WebServices/
http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm
http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm
http://www.cs.waikato.ac.nz/~ml/weka/

210

72. Classification methods available at:

http://www.d.umn.edu/~padhy005/Chapter5.html

73. StatSoft, Electronics Statistics Textbook available at:

http://www.statsoft.com/textbook/cluster-analysis/

74. K-nearest algorithm from Wikipedia available at :

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

75. Frank Sommers, ―Leading Edge Java, Mine your own data with JDM API,

Exploring the Java Data Mining API‖, July 2005 available at:

http://www.artima.com/lejava/articles/data_mining.html

76. Qi Yu, Xumin Liu, Athman Bouguettaya, Brahim Medjahed, ―Deploying and

Managing Web service issues, solutions and directions‖, Springer

Verlag,2006.

77. Marijin Janssem, Hans J Scholl, ―Interoperability for Electronic

Governance‖, ICEGOV 2007, 2007 ACM.

78. D. Talia, P. Trunfio and O. Verta, ―Weka4WS: A WSRF-Enabled Weka

Toolkit for Distributed Data Mining on Grids‖, Springer-Verlag, 2006, pp.

309-320.

79. Andre Tost, ―Web services interoperability, Part I‖, available at:

http://www.ibm.com/developerworks/library/ws-bpinter/

80. Dereck Ashmore, ‗ The J2EE Architects Handbook‖, 2006, available at:

http://www.theserverside.com/news/1369773/Free-Book-The-J2EE-Architec

ts-Handbook

81. TTI. Taylor, A. S. Ali and O. Rana, ―Web services composition for distributed

data mining‖, IEEE International Conference on Parallel Processing

Workshops (ICPPW‘05), 2005, pp. 11-18.

82. Chad Vawter and Ed Roman, ―J2EE VS Microsoft.NET A comparison for

building XML based Web Services‖, June 2001, available at:

http://www.theserverside.com/tt/articles/article.tss?l=J2EE-vs-DOTNET

83. Keith Ballinger, ―.NET Web Services Architecture and Implementation ―,

Addison Wesley.

http://www.d.umn.edu/~padhy005/Chapter5.html
http://www.statsoft.com/textbook/cluster-analysis/
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://www.artima.com/lejava/articles/data_mining.html
http://www.ibm.com/developerworks/library/ws-bpinter/
http://www.theserverside.com/news/1369773/Free%1eBook%1eThe%1eJ2EE%1eArchitects%1eHandbook
http://www.theserverside.com/news/1369773/Free%1eBook%1eThe%1eJ2EE%1eArchitects%1eHandbook
http://www.theserverside.com/tt/articles/article.tss?l=J2EE-vs-DOTNET

211

84. Internet Information services (IIS) 7.5, available

at:http://www.microsoft.com/windowsserver2003/evaluation/overview/dotnet

/uddifaq.mspx

85. Alex Ferrara ,Mathew MacDonald, ―Programming .NET Web services‖,

O‘Reily Publication.

86. XML-RPC.Net available at:http://www.xml-rpc.net/

87. Advanced Web Service Interoperability available at:

http://www.netbeans.org/kb/60/websvc/wsit.html

88. Web services Enhancement (WSE) 3.0 for Microsoft.Net available at:

http://www.microsoft.com/downloads/details.aspx?familyid=018A09FD-3A7

4-43C5-8EC1-8D789091255D&displaylang=en

89. Moez Ben Haj Hmida, Yahya Slimani, ― WSRF Services for Learning

Classifiers from Data Grid‖, 978-1-4244-3806-8/09,2009, IEEE.

90. Roger Riggs, Antero Taivalsaari and others , ―Programming Wireless

Devices with Java 2 Platform, 2006.

91. Kim Topley, ―J2ME in a Nutshell‖, O‘Reilly Publication,2005.

92. Sing Li and Jonathan Knudsen, ―Beginning J2ME from Novice to

Professional‖, Apress Publication.

93. J.J.Garret, ―AJAX A New Approach to Web Applications‖, 18 Feb 2005,

available

at:http://www.adaptivepath.com/ideas/essays/archives/000385.php

94. Lihui Lei and Zhenhua Duan, ―Integrating AJAX and Web Services for

Cooperative Image Editing‖, May|June 2007, IT Pro, pp 25- 29.

95. Steve Vinoski, ―Scripting JAX-WS‖, IEEE Internet Computing May-June

2006.

96. About MySQL available at: http://www.mysql.com/about/

97. Mustafa Adacal and Ayse B Bener, ―Mobile Web Services : A new agent

based framework, IEEE Internet computing ,May June 2006.

98. Bilal Siddiqui, ―Building a secure SOAP client for J2ME, part 1: Exploring

web services API (WSA) for J2ME, IBM Developer Works .available at:

http://www.microsoft.com/windowsserver2003/evaluation/overview/dotnet/uddifaq.mspx
http://www.microsoft.com/windowsserver2003/evaluation/overview/dotnet/uddifaq.mspx
http://www.xml-rpc.net/
http://www.netbeans.org/kb/60/websvc/wsit.html
http://www.microsoft.com/downloads/details.aspx?familyid=018A09FD%1e3A74%1e43C5-8EC1-8D789091255D&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=018A09FD%1e3A74%1e43C5-8EC1-8D789091255D&displaylang=en
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.mysql.com/about/

212

https://www6.software.ibm.com/developerworks/education/ws-soa-secureso

ap1/ws-soa-securesoap1-pdf.pdf

99. Claudia Canali, Michele Colajanni and Riccardo Lancellotti, ―Performance

Evolution of Mobile Based Web-Based Services‖, IEEE Internet Computing,

March/April 2009, pp.60-67.

100. Nils Agne Nordbotten, ‖XML and Web Services Security Standards‖, IEEE

Communications Survey and Tutorials, Vol 11, No3, Third Quarter 2009.

101. Netbeans tutorials available at: www.netbeans.org

102. Nitin Gupta, ―Secure your Web Services‖, Intel whitepaper available at:

http://cache-www.intel.com/cd/00/00/32/07/320703_320703.pdf

103. Lili Sun, Yan Li, ‖XML and Web Services Security‖, 978-1-4244-1651-

6/08, IEEE 2008, pp. 765-770.

104. Diego Zuquim Guimarães Garcia and Maria Beatriz Felgar de Toledo,”

Web Service Security Management Using Semantic Web Techniques‖,

ACMSAC, March 2008, pp. 2256-2260.

105. Building secure ASP.NET applications: Authentication authorization and

secure communication. available at:

http://msdn.microsoft.com/en-us/library/aa302378.aspx

106. SSL Shopper available at: http://www.sslshopper.com/article-

most-common-java-keytool-keystore-commands.html

107. Lori Delooze, ―Providing Web Service Security in a Federated

Environment‖,IEEE Security and Privacy, January February 2007, pp.73 -

75.

108. John Veiga, Jeremy Epstein, ―Why applying Standards to Web Services is

not enough‖, IEEE Security and Privacy, July August 2006, pp. 25-31.

109. Richard Ford, Michael Howard, ―Introduction to Microsoft .NET Security,

November/ December 2008 IEEE Security and Privacy, pp. 73-78.

https://www6.software.ibm.com/developerworks/education/ws%1esoa%1esecuresoap1/ws-soa-securesoap1-pdf.pdf
https://www6.software.ibm.com/developerworks/education/ws%1esoa%1esecuresoap1/ws-soa-securesoap1-pdf.pdf
http://www.netbeans.org/
http://cache-www.intel.com/cd/00/00/32/07/320703_320703.pdf
http://msdn.microsoft.com/en%1eus/library/aa302378.aspx
http://www.sslshopper.com/article-most%1ecommon-java-keytool-keystore-commands.html
http://www.sslshopper.com/article-most%1ecommon-java-keytool-keystore-commands.html

213

APPENDIX

Appendix A
Code for J48 Classifier converted to a web service

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package demo1;

import javax.jws.WebMethod;
import javax.jws.WebParam;

import javax.jws.WebService;

import javax.jws.WebMethod;
import javax.jws.WebParam;

import javax.jws.WebService;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;

import weka.core.Instances;

import weka.core.OptionHandler;
import weka.core.Utils;

import weka.filters.Filter;

import java.io.FileReader;
import java.io.BufferedReader;

import java.util.Vector;

@WebService()

public class NewWebService12 {

 /**

 * Web service operation

 */

 @WebMethod(operationName = "execute")
 public String execute(@WebParam(name = "input")

 String input)throws Exception {

 Classifier m_Classifier = null;

 /** the filter to use */

 Filter m_Filter = null;

 /** the training file */

 String m_TrainingFile = null;

 /** the training instances */

 Instances m_Training = null;

 /** for evaluating the classifier */

 Evaluation m_Evaluation = null;

 String classifier = "";

 String filter = "";

 String dataset = "";
 Vector classifierOptions = new Vector();

 Vector filterOptions = new Vector();

 System.out.println(input);

/**splitting the input into six parts */
 String args[] = input.split("\\s");

 for (int i=0;i < args.length;i++)

 System.out.println (args [i]) ;
 int i = 0;

 String current = "";

 boolean newPart = false;
 do {

 // determine part of command line

 if (args[i].equals("CLASSIFIER")) {
 System.out.println(args[i]);

 current = args[i];

 i++;
 newPart = true;

 }

 else if (args[i].equals("FILTER")) {

214

 current = args[i];

 i++;
 newPart = true;

 }

 else if (args[i].equals("DATASET")) {
 current = args[i];

 i++;

 newPart = true;
 }

 if (current.equals("CLASSIFIER")) {

 if (newPart)
 classifier = args[i];

 else

 classifierOptions.add(args[i]);
 }

 else if (current.equals("FILTER")) {

 if (newPart)
 filter = args[i];

 else

 filterOptions.add(args[i]);
 }

 else if (current.equals("DATASET")) {

 if (newPart)
 dataset = args[i];

 //dataset="C:/Users/s1/Documents/NetBeansProjects/JavaApp/build/classes/iris.arff ";

 }

 // next parameter

 i++;
 newPart = false;

 }

 while (i < args.length);
 m_Classifier = Classifier.forName(classifier,

 (String[]) classifierOptions.toArray(new String[classifierOptions.size()]));

 m_Filter = (Filter) Class.forName(filter).newInstance();
 if (m_Filter instanceof OptionHandler)

 ((OptionHandler) m_Filter).setOptions((String[]) filterOptions.toArray(new String[filterOptions.size()]));

 m_TrainingFile = dataset;

 m_Training = new Instances(

 new BufferedReader(new FileReader(m_TrainingFile)));
 m_Training.setClassIndex(m_Training.numAttributes() - 1);

 // run filter

 m_Filter.setInputFormat(m_Training);

 Instances filtered = Filter.useFilter(m_Training, m_Filter);

 // train classifier on complete file for tree

 m_Classifier.buildClassifier(filtered);

 // 10fold CV with seed=1

 m_Evaluation = new Evaluation(filtered);
 m_Evaluation.crossValidateModel(

 m_Classifier, filtered, 10, m_Training.getRandomNumberGenerator(1));

 StringBuffer result;

 result = new StringBuffer();
 result.append("Weka - Demo\n===========\n\n");

 result.append("Classifier...: "
 + m_Classifier.getClass().getName() + " "

 + Utils.joinOptions(m_Classifier.getOptions()) + "\n");

 if (m_Filter instanceof OptionHandler)
 result.append("Filter.......: "

 + m_Filter.getClass().getName() + " "

 + Utils.joinOptions(((OptionHandler) m_Filter).getOptions()) + "\n");
 else

 result.append("Filter.......: "

 + m_Filter.getClass().getName() + "\n");

215

 result.append("Training file: "

 + m_TrainingFile + "\n");
 result.append("\n");

 result.append(m_Classifier.toString() + "\n");
 result.append(m_Evaluation.toSummaryString() + "\n");

 try {

 result.append(m_Evaluation.toMatrixString() + "\n");
 }catch (Exception e) {

 e.printStackTrace();

 }
 try {

 result.append(m_Evaluation.toClassDetailsString() + "\n");

 }
 catch (Exception e) {

 e.printStackTrace();

 }

 return result.toString();

 }

}

Appendix B

Code for EM Clusterer converted to a web service

package demo;

import javax.jws.WebMethod;
import javax.jws.WebParam;

import javax.jws.WebService;

import weka.core.Instances;
import weka.clusterers.DensityBasedClusterer;

import weka.clusterers.EM;

import weka.clusterers.ClusterEvaluation;
import java.io.FileReader;

import java.io.BufferedReader;

@WebService()

public class NewWebService2 {

 /**

 * Web service operation

 */

 @WebMethod(operationName = "execute")
 public String execute(@WebParam(name = "input")

 final String input)throws Exception{

 ClusterEvaluation eval;

 Instances data;

 String[] options;
 DensityBasedClusterer cl;

 data = new Instances(new BufferedReader(new FileReader(input)));

 StringBuffer result;
 result = new StringBuffer();

 result.append("Weka - Demo\n===========\n\n" + "\n\n--> normal\n");

 // normal

 //System.out.println("\n--> normal");

 options = new String[2];
 options[0] = "-t";

 options[1] = input;

 //System.out.println(ClusterEvaluation.evaluateClusterer(new EM(), options));

 result.append(ClusterEvaluation.evaluateClusterer(new EM(), options));

 // manual call

 //System.out.println("\n--> manual");

 cl = new EM();
 cl.buildClusterer(data);

 eval = new ClusterEvaluation();

 eval.setClusterer(cl);

216

 eval.evaluateClusterer(new Instances(data));

 //System.out.println("# of clusters: " + eval.getNumClusters());
 try {

 result.append("\n--> manual" + "\n\n# of clusters: " + eval.getNumClusters() + "\n");

 }
 catch (Exception e) {

 e.printStackTrace();

 }

 // density based

 //System.out.println("\n--> density (CV)");

 cl = new EM();
 eval = new ClusterEvaluation();

 eval.setClusterer(cl);

 eval.crossValidateModel(
 cl, data, 10, data.getRandomNumberGenerator(1));

 //System.out.println("# of clusters: " + eval.getNumClusters());

 try {

 result.append("\n--> density (CV)" + "\n\n# of clusters: " + eval.getNumClusters() + "\n\n\n");

 }
 catch (Exception e) {

 e.printStackTrace();

 }
 return result.toString();

 }
}

Appendix C

Code to convert Text Classifier into a web service

package demo;

import javax.jws.WebMethod;

import javax.jws.WebParam;
import javax.jws.WebService;

import java.util.*;

import weka.core.*;

import weka.core.Instance;

import weka.core.Instances;

import weka.core.Attribute;
import weka.classifiers.*;

import weka.classifiers.Classifier;

import weka.filters.unsupervised.attribute.StringToWordVector;

@WebService()
public class TextClassifierService {

 /**

 * Web service operation

 */

 @WebMethod(operationName = "execute")

 public String execute(@WebParam(name = "input")
 String input) {

 //TODO write your implementation code here:

 Instances instances = null;

 Classifier classifier = null;

 Instances filteredData = null;
 Evaluation evaluation = null;

 Set modelWords = null;

 // maybe this should be settable?
 String delimitersStringToWordVector = "\\s.,:'\\\"()?!";

 // String classString = "weka.classifiers.bayes.NaiveBayes";

 String classString = "weka.classifiers.lazy.IBk";

 // String classString = input;

String[] inputText = {"hey, buy this from me!", "do you want to buy?", "I have a party tonight!", "today it is a nice weather","you are

best","I have a horse","you are my friend","buy, buy, buy!","it is spring in the air", "do you want to come?"};

217

 String[] inputClasses = {"spam","spam","no spam","no spam","spam","no spam","no spam","spam","no spam","no spam"};

 String[] testText = {"you want to buy from me?","usually I run in stairs", "buy it now!","buy, buy, buy!","you are the best,

buy!","it is spring in the air"};

 if (inputText.length != inputClasses.length) {

 System.err.println("The length of text and classes must be the same!");

 System.exit(1);
 }

 // calculate the classValues

 HashSet classSet = new HashSet(Arrays.asList(inputClasses));
 classSet.add("?");

 String[] classValues = (String[])classSet.toArray(new String[0]);

 //

 // create class attribute

 //

 FastVector classAttributeVector = new FastVector();
 for (int i = 0; i < classValues.length; i++) {

 classAttributeVector.addElement(classValues[i]);

 }
 Attribute ClassAttribute = new Attribute("class", classAttributeVector);

 //

 // create text attribute

 //

 FastVector inputTextVector = null; // null -> String type

 Attribute TextAttribute = new Attribute("text", inputTextVector);
 for (int i = 0; i < inputText.length; i++) {

 TextAttribute.addStringValue(inputText[i]);
 }

 // add the text of test cases
 for (int i = 0; i < testText.length; i++) {

 TextAttribute.addStringValue(testText[i]);

 }

 //

 // create the attribute information

 //
 FastVector AttributeInfo = new FastVector(2);

 AttributeInfo.addElement(TextAttribute);

 AttributeInfo.addElement(ClassAttribute);

 /*this.inputText = inputText;

 this.inputClasses = inputClasses;

 this.classString = classString;

 this.attributeInfo = attributeInfo;

 this.textAttribute = textAttribute;

 this.classAttribute = classAttribute;

 */

 StringBuffer result = new StringBuffer();

 result.append("dataset:\n\n");

 // creates an empty instances set
 instances = new Instances("data set", AttributeInfo, 100);

 // set which attribute is the class attribute

 instances.setClass(ClassAttribute);
 try {

 for (int i = 0; i < inputText.length; i++) {
 Instance inst = new Instance(2);

 inst.setValue(TextAttribute,inputText[i]);

 if (inputClasses != null && inputClasses.length > 0) {
 inst.setValue(ClassAttribute, inputClasses[i]);

 }

 instances.add(inst);
 }

 result.append("DATA SET:\n" + instances + "\n");

 StringToWordVector filter = null;

 // default values according to Java Doc:

 int wordsToKeep = 1000;

218

 Instances filtered = null;

 try {
 filter = new StringToWordVector(wordsToKeep);

 filter.setOutputWordCounts(true);

 filter.setSelectedRange("1");

 filter.setInputFormat(instances);

 filtered = weka.filters.Filter.useFilter(instances,filter);

 // System.out.println("filtered:\n" + filtered);

 } catch (Exception e) {

 e.printStackTrace();

 }
 filteredData = filtered;

 // create Set of modelWords
 modelWords = new HashSet();

 Enumeration enumx = filteredData.enumerateAttributes();

 while (enumx.hasMoreElements()) {
 Attribute att = (Attribute)enumx.nextElement();

 String attName = att.name().toLowerCase();

 modelWords.add(attName);
 }

 classifier = Classifier.forName(classString,null);
 classifier.buildClassifier(filteredData);

 evaluation = new Evaluation(filteredData);
 evaluation.evaluateModel(classifier, filteredData);

 try {
 result.append("\n\nINFORMATION ABOUT THE CLASSIFIER AND EVALUATION:\n");

 result.append("\nclassifier.toString():\n" + classifier.toString() + "\n");

 result.append("\nevaluation.toSummaryString(title, false):\n" + evaluation.toSummaryString("Summary",false) + "\n");
 result.append("\nevaluation.toMatrixString():\n" + evaluation.toMatrixString() + "\n");

 result.append("\nevaluation.toClassDetailsString():\n" + evaluation.toClassDetailsString("Details") + "\n");

 result.append("\nevaluation.toCumulativeMarginDistribution:\n" + evaluation.toCumulativeMarginDistributionString() +

"\n");

 } catch (Exception e) {

 e.printStackTrace();
 result.append("\nException (sorry!):\n" + e.toString());

 }

 result.append("\n\n");

 // check instances

 int startIx = 0;
 String testType = "not test";

 try {
 result.append("\nCHECKING ALL THE INSTANCES:\n");

 Enumeration enumClasses = ClassAttribute.enumerateValues();

 result.append("Class values (in order): ");
 while (enumClasses.hasMoreElements()) {

 String classStr = (String)enumClasses.nextElement();

 result.append("'" + classStr + "' ");
 }

 result.append("\n");

 // startIx is a fix for handling text cases
 for (int i = startIx; i < filteredData.numInstances(); i++) {

 SparseInstance sparseInst = new SparseInstance(filteredData.instance(i));

 sparseInst.setDataset(filteredData);
 result.append("\nTesting: '" + inputText[i-startIx] + "'\n");

 // result.append("SparseInst: " + sparseInst + "\n");

 double correctValue = (double)sparseInst.classValue();
 double predictedValue = classifier.classifyInstance(sparseInst);

 String predictString = ClassAttribute.value((int)predictedValue) + " (" + predictedValue + ")";

 result.append("predicted: '" + predictString);

 // print comparison if not new case

 if (!"newcase".equals(testType)) {

 String correctString = ClassAttribute.value((int)correctValue) + " (" + correctValue + ")";

219

 String testString = ((predictedValue == correctValue) ? "OK!" : "NOT OK!") + "!";

 result.append("' real class: '" + correctString + "' ==> " + testString);
 }

 result.append("\n");

 result.append("\n");

 // result.append(thisClassifier.dumpDistribution());

 // result.append("\n");

 }
 } catch (Exception e) {

 e.printStackTrace();

 result.append("\nException (sorry!):\n" + e.toString());
 }

 result.append("\n");

 }catch (Exception e) {

 e.printStackTrace();
 result.append("\nException (sorry!):\n" + e.toString());

 }

 result.append("\nNEW CASES\n");

 Instances testCases = new Instances(instances);
 testCases.setClass(ClassAttribute);

 //

 // since some classifiers cannot handle unknown words (i.e. words not

 // a 'model word'), we filter these unknowns out.

 // Maybe this should be done only for those classifiers?

 // E.g. Naive Bayes have prior probabilities which may be used?

 //

 // Here we split each test line and check each word

 //

 String[] testsWithModelWords = new String[testText.length];

 int gotModelWords = 0; // how many words will we use?
 for (int i = 0; i < testText.length; i++) {

 // the test string to use

 StringBuffer acceptedWordsThisLine = new StringBuffer();

 // split each line in the test array

 String[] splittedText = testText[i].split("["+delimitersStringToWordVector+"]");

 // check if word is a model word
 for (int wordIx = 0; wordIx < splittedText.length; wordIx++) {

 String sWord = splittedText[wordIx];

 if (modelWords.contains((String)sWord)) {
 gotModelWords++;

 acceptedWordsThisLine.append(sWord + " ");

 }
 }

 testsWithModelWords[i] = acceptedWordsThisLine.toString();

 }

 // should we do do something if there is no modelWords?

 if (gotModelWords == 0) {

 result.append("\nWarning!\nThe text to classify didn't contain a single\nword from the modelled words. This makes it hard for
the classifier to\ndo something usefull.\nThe result may be weird.\n\n");

 }

 try {

 // add the ? class for all test cases

 String[] tmpClassValues = new String[testText.length];

 for (int i = 0; i < tmpClassValues.length; i++) {
 tmpClassValues[i] = "?";

 }

 for (int i = 0; i < testsWithModelWords.length; i++) {

 Instance inst = new Instance(2);

 inst.setValue(TextAttribute,testsWithModelWords[i]);
 if (tmpClassValues != null && tmpClassValues.length > 0) {

 inst.setValue(ClassAttribute, tmpClassValues[i]);

 }
 testCases.add(inst);

 }

220

StringToWordVector filter = null;

 // default values according to Java Doc:
 int wordsToKeep = 1000;

 Instances filtered = null;

 try {
 filter = new StringToWordVector(wordsToKeep);

 filter.setOutputWordCounts(true);

 filter.setSelectedRange("1");
 filter.setInputFormat(testCases);

 filtered = weka.filters.Filter.useFilter(testCases,filter);

 } catch (Exception e) {
 e.printStackTrace();

 }

 Instances filteredTests = filtered;
 int startIx = instances.numInstances();

 String testType = "new case";

 try {

 result.append("\nCHECKING ALL THE INSTANCES:\n");

 Enumeration enumClasses = ClassAttribute.enumerateValues();
 result.append("Class values (in order): ");

 while (enumClasses.hasMoreElements()) {

 String classStr = (String)enumClasses.nextElement();
 result.append("'" + classStr + "' ");

 }

 result.append("\n");

 // startIx is a fix for handling text cases
 for (int i = startIx; i < filteredTests.numInstances(); i++) {

 SparseInstance sparseInst = new SparseInstance(filteredTests.instance(i));

 sparseInst.setDataset(filteredTests);
 result.append("\nTesting: '" + testText[i-startIx] + "'\n");

 double correctValue = (double)sparseInst.classValue();

 double predictedValue = classifier.classifyInstance(sparseInst);
 String predictString = ClassAttribute.value((int)predictedValue) + " (" + predictedValue + ")";

 result.append("predicted: '" + predictString);

 // print comparison if not new case

 if (!"newcase".equals(testType)) {

 String correctString = ClassAttribute.value((int)correctValue) + " (" + correctValue + ")";
 String testString = ((predictedValue == correctValue) ? "OK!" : "NOT OK!") + "!";

 result.append("' real class: '" + correctString + "' ==> " + testString);

 }
 result.append("\n");

 result.append("\n");

 }
 }

 catch (Exception e) {

 e.printStackTrace();
 result.append("\nException (sorry!):\n" + e.toString());

 }

 result.append("\n");
 }catch (Exception e) {

 e.printStackTrace();

 result.append("\nException (sorry!):\n" + e.toString());
 }

 return result.toString();

 }
}

Appendix D

Client code for J48 Classifier as a web service:

package org.weka;

import demo1.NewWebService12Service;
import java.io.*;

import java.net.*;

221

import javax.servlet.*;

import javax.servlet.http.*;
import javax.xml.ws.WebServiceRef;

public class NewServlet extends HttpServlet {
 @WebServiceRef(wsdlLocation = "http://localhost:13699/WebApplication12/NewWebService12Service?wsdl")

 private NewWebService12Service service;

 /**

 * Processes requests for both HTTP <code>GET</code> and <code>POST</code> methods.

 * @param request servlet request

 * @param response servlet response

 */

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();
 try {

 // TODO output your page here

 out.println("<html>");

 out.println("<head>");
 out.println("<title>Servlet NewServlet</title>");

 out.println("</head>");

 out.println("<body>");
 out.println("<h1>Servlet NewServlet at " + request.getContextPath () + "</h1>");

try {

// Call Web Service Operation
 demo1.NewWebService12 port = service.getNewWebService12Port();

 // TODO initialize WS operation arguments here

 java.lang.String input = "CLASSIFIER weka.classifiers.trees.J48 -U FILTER

weka.filters.unsupervised.instance.Randomize DATASET C:/Users/s1/Documents/NetBeansProjects/JavaApp/build/classes/iris.arff";

 // TODO process result here

 java.lang.String result = port.execute(input);

 out.println("Result = "+result);

} catch (Exception ex) {

 // TODO handle custom exceptions here

}

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();
 }

 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click on the + sign on the left to edit the code.">

 /**

 * Handles the HTTP <code>GET</code> method.

 * @param request servlet request

 * @param response servlet response

 */

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {
 processRequest(request, response);

 }

 /**

 * Handles the HTTP <code>POST</code> method.

 * @param request servlet request

222

 * @param response servlet response

 */

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {
 processRequest(request, response);

 }

 /**

 * Returns a short description of the servlet.

 */

 public String getServletInfo() {

 return "Short description";
 }

 // </editor-fold>
}

Appendix E

Client code for EM Clusterer as web service

package org.web;

demo.NewWebService2Service;

import java.io.*;
import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;

import javax.xml.ws.WebServiceRef;

public class NewServlet extends HttpServlet {

 @WebServiceRef(wsdlLocation = "http://localhost:13699/WebApplication4/NewWebService2Service?wsdl")

 private NewWebService2Service service;

 /**

 * Processes requests for both HTTP <code>GET</code> and <code>POST</code> methods.

 * @param request servlet request

 * @param response servlet response

 */
 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();

 try {

 //TODO output your page here
 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet NewServlet</title>");
 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Servlet NewServlet at " + request.getContextPath () + "</h1>");

try {

 // Call Web Service Operation

 demo.NewWebService2 port = service.getNewWebService2Port();

 // TODO initialize WS operation arguments here

 java.lang.String input = "C:/Users/s1/ Documents/NetBeansProjects/ClusteringDemo/build/classes/weather.arff";

 // TODO process result here

 java.lang.String result = port.execute(input);
 out.println("Result = "+result);

} catch (Exception ex) {

223

 // TODO handle custom exceptions here

}

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();
 }

 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click on the + sign on the left to edit the code.">

 /**

 * Handles the HTTP <code>GET</code> method.

 * @param request servlet request

 * @param response servlet response

 */

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {
 processRequest(request, response);

 }

 /**

 * Handles the HTTP <code>POST</code> method.

 * @param request servlet request

 * @param response servlet response

 */

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {
 processRequest(request, response);

 }

 /**

 * Returns a short description of the servlet.

 */

 public String getServletInfo() {

 return "Short description";
 }

 // </editor-fold>

}

Appendix F

Client code for text classifier as web service:

package org.web;

import demo.TextClassifierServiceService;

import java.io.*;
import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;

import javax.xml.ws.WebServiceRef;

public class NewServlet extends HttpServlet {

 @WebServiceRef(wsdlLocation = "http://localhost:13699/TextClassifierService/TextClassifierServiceService?wsdl")

 private TextClassifierServiceService service;

 /**

 * Processes requests for both HTTP <code>GET</code> and <code>POST</code> methods.

 * @param request servlet request

 * @param response servlet response

 */

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

224

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();
 try {

 // TODO output your page here

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet NewServlet</title>");
 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Servlet NewServlet at " + request.getContextPath () + "</h1>");

try {

// Call Web Service Operation

 demo.TextClassifierService port = service.getTextClassifierServicePort();

 // TODO initialize WS operation arguments here

 java.lang.String input = "weka.classifiers.lazy.IBk";

 // TODO process result here

 java.lang.String result = port.execute(input);
 out.println("Result = "+result);

} catch (Exception ex) {

 // TODO handle custom exceptions here

}

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();

 }

 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click on the + sign on the left to edit the code.">

 /**

 * Handles the HTTP <code>GET</code> method.

 * @param request servlet request

 * @param response servlet response

 */

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);
 }

 /**

 * Handles the HTTP <code>POST</code> method.

 * @param request servlet request

 * @param response servlet response

 */

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {
 processRequest(request, response);

 }

 /**

 * Returns a short description of the servlet.

 */

 public String getServletInfo() {

 return "Short description";

 }

// </editor-fold>

}

225

List of Publications

Conferences

1. ―Midlet Security : An Overview‖, proceedings of National Conference on
 Knowledge Based Computing Systems & Frontier Technologies
 NCKBFT-07, February 19 & 20, 2007, held at Manipal Institute of
 Technology, Manipal, India.

2. ―Comparison of Web Service Development Platforms‖, Proceedings of the
 2008 International Conference on Semantic Web and Web Services‖,
 WORLDCOMP‘08, July 14-17, 2008, Las Vegas Nevada, USA.

3. ―J2ME Based Tool for interaction With Web Services‖, Proceedings of the
 2008 International Conference on Semantic Web and Web Services‖,
 WORLDCOMP‘08, July 14-17, 2008, Las Vegas Nevada, USA.

4. ―WEKA Based Desktop Data Mining as Web Service‖, Proceeding of
 WASET, ICCESSE\‘10, April 28-30, 2010, Rome, Italy.

Journals

1. ―Interoperability Issues seen in Web Services‖, IJCSNS International
Journal of Computer Science and Network Security, VOL.9 No 8,
August 2009.

2. ―Design and Security Analysis of web application based and web services
 based Patient Management System (PMS)‖, IJCSNS International
 Journal of Computer Science and Network Security, VOL.10 No. 3, March
 2010

226

Brief Biography of Sujala D. Shetty

Sujala Shetty has finished her MTech in Computer Science and Engineering from

MIT, Manipal in 2002. She has over 15 years of teaching experience. She has

worked as lecturer in the Computer Science Department of MIT, Manipal from

1997 to 2002. She is currently working as Senior Lecturer in the Computer

Science Dept of BITS, PILANI-Dubai from 2002. She has six publications in

various international journals and conferences. Her current areas of interest are

web services and security and databases and data mining.

227

Brief Biography of Prof. Dr S.Vadivel

Prof.Dr.S.Vadivel has got his PhD in Computer Science and Engineering from

I.I.T Madras, India in 1989. After getting his degree he worked in Crompton

Greaves in Bombay as research executive for 3 years. After which he worked as

Assistant Professor in Government Engineering College in Tamil Nadu, India for

4 years. After which he joined Think Business Networks a multinational software

company in Tamil Nadu as Research Lead.

He has joined BITS, Pilani - Dubai as faculty in Computer Science in January

2003 and is currently working as Professor and Head of Department of the

Computer Science Department in the same institute .He has 10 publications in

various international journals and conferences. His current research interests are

in web services and security, embedded controllers, data mining, and

architecture of enterprise software applications.

228

