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ABSTRACT 
 

The objective of this thesis is to explore the design space of two specific data path 

elements (viz multipliers and barrel shifters) of different bit width at architectural-level, 

at logic design level, and at transistor size level to select proper architecture, logic design 

style and physical device sizes; keeping in a view their effects on performance (circuit 

delay), average power consumption and core area.  

The multipliers and barrel shifters are the fundamental data path elements required in 

high performance ‘Standard Digital Signal Processors’ and ‘ASIC Digital Signal 

Processors’ used for digital signal processing (DSP). Different multiplier and barrel 

shifter architectures show trade-offs between propagation delay, average power 

consumption and transistor counts. In deep sub-micron technologies, the simple gate-

level analyses are inadequate to validate particular data path architectures. In this thesis 

we considered the effects of wiring parasitics and MOS parasitics in the assessment of 

architecture. The selected word widths for different multiplier and barrel shifter 

architectures are 4-bit, 8-bit, 12-bit and 16-bit; which dominate in DSP applications.  

A schematic and physical library consisting of functional cells was defined for static 

CMOS logic design style, transmission gate (TG) logic design styles, dual rail domino 

logic design style and true single phase clock (TSPC) logic design style. Versions of the 

physical libraries were developed using three different sizes of transistors.  The layout 

assemblies for the 4-bit, 8-bit, 12-bit and 16-bit multiplier and barrel shifter circuits were 

carried out using these cell libraries using automatic place and route tool LEDIT (SPR) 

from M/s Tanner Research Inc. The circuit delay and average power dissipation then 

analyzed for each implementation of the multiplier and barrel shifter circuit using the 

same logic design style but utilizing three different physical libraries differing in their 

transistor sizes as described above. Maximum instantaneous power, core area, total 

routing length and number of vias were also analyzed for each implementation for 

highlighting the very large scale integration (VLSI) implementation characteristics. 

Further in nanometer scale digital integrated circuits negative bias temperature instability 

(NBTI) related circuit performance degradation was studied. The NBTI stress makes P-

channel metal oxide semiconductor (PMOS) devices slower over time due to change in 

their threshold voltages. In deep sub-micron technologies the NBTI degradation decides 

the lifetime of CMOS circuits; In this thesis we present a novel Verilog HDL based 
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circuit modeling method that incorporates NBTI degradation dynamically. This 

technique will help the designers to include NBTI degradation effects in their circuit 

analysis efforts. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Data-paths of different bit-widths are frequently required in very large scale integrated 

(VLSI) circuits from processors to application specific integrated circuits (ASICs). The 

performance of microprocessors and computers heavily depends upon the performance 

of the various data-paths used. Such data paths include data registers that hold operands 

and results and combinational logic units that manipulate and process data values [1], 

[2]. Various combinational logic units are adder, multiplier, divider, barrel shifter and 

arithmetic logic unit (ALU) circuits. The selection of a particular data-path depends upon 

the state-of-the-art in digital design. The most important and widely accepted metrics for 

measuring the quality of data-path designs are propagation delay, area and power [2], [3]. 

Minimizing area and delay has always been important, but reducing power consumption 

has also gained importance recently because of increasing levels of integration and the 

desire for portability. Furthermore, the progress in battery technology is slower as 

compared to the ever-increasing power requirement due to advances in electronic 

circuits; the battery technology is unable to provide a solution to the power problem, 

therefore, an accurate estimation of “average power dissipation” is required to estimate 

battery life; also, the correct estimate of “peak power dissipation” is required to study 

circuit reliability. The three major sources of power dissipation in VLSI circuits are: (i) 

switching component of power, which is increasing due to increase in on-chip clock rates 

(ii) component of power due to direct-path short-circuit current in circuits, that depends 

upon the rise and fall times of signals and (iii) component of power due to leakage 

current which is increasing at an alarming rate due to thin gate oxide and small geometry 

effects like tunneling and drain induced barrier lowering which are dominating due to 

device scaling. The short-circuit dissipation of complimentary metal oxide 

semiconductor (CMOS) inverter with and without load (for equal rise and fall times of 

input and output signals) is only a fraction (< 20%) of the total dissipation. The dominant 

term in power dissipation is the switching power component, which is given by equation 

1.1. 

         )1.1(2 η•••= CLKDDLdynamic fVCP  
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Low-power designs, thus, aim at minimizing the power consuming transitions (switching 

activity factor ‘η’), power supply (VDD), and load capacitance (CL) [3], [4]. Since, the 

largest component of power dissipation is due to the signal transitions at circuit nodes, an 

accurate estimation of switching activity at the internal circuit nodes is required. Gate 

delays have impact on switching activity; a delay model is used for computing the 

Boolean conditions that cause glitches in the circuit. Glitches occur primarily due to 

mismatch or imbalance in the path lengths in the logic network. Such mismatches in the 

path lengths result in mismatches of signal timing with respect to the primary inputs [3], 

[5]. The probability of each gate switching at any particular time is computed from input 

switching rates, and then the sum of these probabilities over all the gates gives the 

switching activity in the entire circuit over all the time points in a clock cycle [1], [3], 

[6], [7]. Such probabilistic methods can’t be applied reliably to portable high 

performance applications, where accurate estimation of power is required.  

Power dissipation due to leakage currents is gaining utmost importance due to scaling of 

devices. Many techniques at design and fabrication levels are applied to reduce such 

leakage. At transistor-level design ‘Variable Threshold CMOS Circuits’ are used and at 

fabrication level ‘Multiple Threshold CMOS Circuits’ and ‘HIGH-k gate oxide 

dielectric’ are used to reduce leakage [2], [3], [8], [9].  

Portable wireless applications like mobile phones, laptop computers and personal digital 

assistants (PDA’s) require high-speed circuitry consuming low power. Such design 

requirements are conflicting and involve design tradeoffs. Furthermore the 

microprocessor on-chip clock rates have already reached GHz range, leading to 

substantial increase in dynamic (switching) power consumption. As a result in high 

performance desktops, sinking large amounts of heat through packages is becoming a 

difficult problem. Therefore, designing low-power processors is also gaining importance 

for high performance desktops, as well as for portable applications like laptops and 

palmtops where big heat sinks cannot be used. A low power processor design without 

greatly loosing computational speed is a technologically challenging requirement. 

 There are several degrees of freedom available in the design of low-power high-

performance circuits and systems at various abstraction levels. These include process 

technology level, circuit design level, logic design level, architectural level and 

algorithmic level. CMOS technology, the vehicle for VLSI, offers a combination of large 

noise margins, ruggedness of design, low power consumption, scalability of technology 

and validity of the logic design styles at scaled down technologies [9], [10]. Within the 
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CMOS technology, designers have the freedom of choosing the architecture, the logic 

design style, and the transistor sizes for implementing various arithmetic functions. 

Besides these, technology scaling including threshold voltage scaling, and supply voltage 

scaling constitute other techniques that can be used in low-power digital design [11]. 

 

1.2 Objective of Thesis 

It has been reported that the time spent in generating data path designs is typically 60% 

of the overall chip design due to the fact that it is the only major component, which is 

still handled manually and is a major bottleneck in the design [12]. Automatic layout 

generation for the data path circuits is possible [12] but ‘design space exploration’ is still 

limited. These automatic layout generation tools exploit regularity and avoid the global 

routing and inter-module channel routing by optimally performing signal alignments 

between modules during the module generation. The random selection of architecture or 

logic design style in VLSI design flow may lead to substantial increase in the design time 

due to complicated VLSI design flow from net list to layout generation in order to meet 

the specified design constraints. In the present study two data path elements have been 

considered namely signed/unsigned multipliers and barrel shifters. These data path 

elements are implemented as purely combinational logic circuits. The objective of this 

thesis is to explore the design space of these data path elements for different bit-widths at 

architectural-level, at logic design level (to select proper logic design style), and at 

transistor-level (to select proper transistor sizes) keeping in view their contributions to 

performance indices like average switching energy, circuit delay and area.  

Presently, wide exploration has been carried out in literature for adder circuits but 

exploration for other data path elements is still limited. We have explored the design 

space of multipliers and barrel shifters (at architectural level, at logic design style level 

and at transistor size level). Such exploration will help the designer in choosing an 

optimal implementation strategy in terms of the choices of architecture, logic design 

style and transistor sizes. Various data path elements considered for exploration are listed 

in section 1.3. 

Further, we have also explored one of the most important circuit reliability issues, 

namely, negative bias temperature instability (NBTI), which has become the deciding 

factor for the lifetimes of CMOS devices in deep sub-micron technologies. 
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1.3 Different Data Path Elements Considered for Exploration 

The multiplier and barrel shifters are fundamental building blocks in ‘Standard Digital 

Signal Processors’ and ‘ASIC Digital Signal Processors’ used for digital signal 

processing (DSP) [13]. The DSP processors are provided with multiplier-accumulators 

(MACs) in order to perform sum-of-product computations efficiently. The high 

performance of these processors is achieved by using a high degree of parallelism and 

faster data-path architectures. Different multiplier and barrel shifter architectures provide 

trade-offs between gate counts, latency and speed. 

1.3.1 Multipliers 

Classification of various multiplier architectures is described below: [13] 

Multiplier architectures are classified broadly into two categories: 

 Bit serial multipliers:  These multipliers are slower but take much less area and 

power. 

 Bit parallel multiplies: These multiplier are faster but take more area and power.  

 Bit parallel multipliers are further classified into following two categories: 

(i) Array type multipliers: These multipliers follow regular array structure, 

thereby simplifying the wiring and layout design [4], [8], [10], [14], [15], 

[16], [17] [18], [19] 

(ii) Tree based multipliers: These multipliers show irregular structure and 

therefore take larger wiring area. These multipliers use different column 

compression techniques namely Ofman tree, Wallace tree and Dadda tree 

column compression techniques [20], [21], [22], [23], [24], [25], [26], 

[27] 

In this thesis both regular arrays and Wallace tree multipliers have been considered for 

exploration. Gate-level analyses suggest that Wallace trees are not only faster than array 

multiplier but they also consume much less power. However these analyses did not take 

wiring into account, resulting in optimistic timing and power estimates [28]. In sub-

micron and deep sub-micron technologies the effect of wiring delays cannot be ignored 

and therefore wiring parasitics and MOS parasitics must be considered to provide an 

accurate assessment of a particular architecture. The selected word lengths for multiplier 

and barrel shifter implementations are 4-bit, 8-bit, 12-bit and 16-bit; which dominate in 

DSP applications. Different multipliers considered for exploration in this research work 

are described in section 1.6.  
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1.3.2 Barrel Shifters 

A barrel shifter [29], [30] is a circuit that allows its input to be shifted or rotated any 

number of positions in either direction. For example, a 4-bit rotating barrel shifter can 

shift its inputs I3, I2, I1, I0 by zero, one, two or three bit positions to the right or left by 

using the shift control inputs S1, S0. The direction control bit (DIR) decides the left/right 

shift direction. Barrel shifter can be implemented as a purely combinational logic circuit, 

using conventional multiplexers (MUX), decoders, and logic gates. The sequential 

approach to implement the barrel shifter uses a finite state machine (FSM) and a simpler 

data-path. Such sequential approaches have not been considered in the present 

exploration. 

 Different combinational multiplier and barrel shifter architectures considered for 

exploration in the present work are described in section 1.6.  

Appropriate selection of multiplier and barrel shifter units can be done efficiently by 

using the data available through such study. 

 

1.4 Research Gaps 

Most DSP tasks which are multiplication and shifting intensive must be performed 

speedily while minimizing cost and power. This requires efficient multipliers and 

shifters. Different multiplication algorithms differ in the manners of ‘partial product 

generation’ and ‘partial product addition [21]. The array multipliers have a linear time 

complexity and therefore their delay increases linearly with operand size n. Also it has 

poor space complexity O (n2), as it requires approximately n2 cells to produce 

multiplication. Therefore as the operand size grows, the circuit takes larger area and 

power [14], [15], [16]. A radix-y Booth encoding, where y=2x reduces the partial product 

rows by a factor of x. Booth radix-4 (y=4=22) encoding can reduce the number of partial 

product rows by a factor of two [22]. Since the number of partial product rows is reduced 

to half, the hardware required for multiplication is also roughly reduced by a factor of 2 

[16]. In Wallace tree multipliers, since ripple effect is reduced they produce products in 

far less time. The time complexity is reduced to O (log n) but larger routing area is 

required as compared to regular array multipliers making them less suitable for VLSI 

implementation [16]. The advantage of reduction in hardware using Booth encoding 

scheme can be combined with accelerated Wallace tree accumulation of partial products 

to obtain the reduced time complexity of O (log n), which is well suited for large operand 
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size multipliers [16], [22]. In sub-micron/deep sub-micron technologies for the 

multipliers of moderate operand sizes, where tree based architectures may degrade their 

performance due to larger routing lengths, some hybrid architectures [such as array of 

array multiplier] may show better performance [10]. These multiplier architectures have 

moderate routing area requirements and time complexity of )( nO [10]. Even though 

there is a body of research studies on multipliers in the literature, a systematic 

research study of promising high performance multipliers across architectures, 

logic design styles and transistor sizes does not exist. Such a study can be of great 

value to multiplier designers.  

Similarly different barrel shifter architectures also show tradeoffs between silicon area 

and speed of operations. Some architectures have a dedicated block for all the operations 

to be performed by the barrel shifter. They are faster, but consume larger silicon area and 

power. A significant reduction in area and power required by the barrel shifter circuit is 

achieved by implementing rightward operations as operations in leftward direction [30]. 

Once again, no systematic study of barrel shifter design across architectures, logic 

design styles and transistor sizes exists in literature.  

In the area of circuit reliability, even though NBTI has been identified as the primary 

factor limiting the circuit life of CMOS circuits using deep sub-micron technology no 

published method exists in literature to incorporate and simulate NBTI effects 

dynamically in digital CMOS circuits. The CAD tools for modeling and simulation of 

NBTI degradation are not widely available due to this effect’s complexity and emerging 

status [31], [32], [33]. Presently research works on NBTI is actively pursued only within 

the community of device and reliability physicists and leading industrial companies 

appear to develop their models and tools only internally to handle this effect [31], [32], 

[33], [34]. Considering all the above the scope of the research to be carried out under this 

thesis was determined as follows: 

 

1. To study high performance multipliers (for a range of bit widths from 4-bit to 16-bit) 

across architectures, logic design styles and transistor sizes to gain an understanding of 

the optimality of various design approaches for high performance multipliers. 

2. To carry out a similar study for barrel shifters. 

3. To explore and propose a method of incorporating NBTI effect dynamically in 

logic/switch level simulation of CMOS circuits. 
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1.5 Research Methodology/Work-Plan 

As proposed, the research work started its journey by collecting the various 

relevant literature items available on the various multiplier and barrel shifter 

architectures. This helped to understand their algorithms, architectures and their VLSI 

implementations. Various techniques to achieve optimum performance (i.e. low-power, 

high-speed and optimum area) were also studied in detail.  

In the second phase, transistor level schematic libraries consisting of a standard sets of 

functional cells were developed for static logic design style, transmission gate (TG) logic 

design style, dual-rail domino logic design style and true single phase clock (TSPC) 

logic design style (used only for the barrel shifters). Corresponding to each schematic 

library, three different versions of physical library were developed by respectively sizing 

the W/L ratios of the N-channel metal oxide semiconductor (NMOS) transistor to values 

of 3, 5 and 7 (W/L values smaller than 3 were also experimented with but not considered 

further as they resulted in parasitic dominated slower speeds due to weak drives of 

transistors and were not considered good candidates for high performance). Physical 

libraries were implemented in 0.5 µm, N-well CMOS process (SCN_SUBM, 

lambda=0.3) of MOSIS. The layout assemblies for the 4-bit, 8-bit, 12-bit and 16-bit 

multiplier and barrel shifter circuits were carried out using these cell libraries and 

automatic place and route tool LEDIT (SPR) from M/s Tanner Research Inc. [35], [36]. 

In the third phase the generated layouts were then simulated after parasitic extraction 

using circuit simulator, ELDO spice. Supply voltage VDD was kept at 3.3V.  The product 

of average switching energy and circuit delay was then computed for each 

implementation of the selected multiplier and barrel shifter circuit using the same logic 

design style but utilizing three different physical libraries- differing in their transistor 

sizes as described above. It was noticed that for all the three logic design styles, the 

physical library utilizing W/L ratio of 3 for NMOS transistors gave the smallest average 

switching energy-delay product. A detailed comparative study was carried out for 

different parameters like propagation delay, transistor count, core area and power 

dissipation at 20MHz input/clock rate (selected for comparison purposes) across all the 

implementations. 

In fourth phase, one of the most important circuit reliability issues, namely, NBTI [31], 

[32] was considered. We proposed a new technique to study the NBTI degradation using 

widely available Verilog HDL, which will help many designers to include NBTI effect in 
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their designs. The NBTI is identified as most critical reliability concern for nanometer 

scale digital integrated circuits. Degradation occurring in P-channel metal oxide 

semiconductor (PMOS) devices is most critical as it decides the lifetime of CMOS 

devices in deep sub-micron technologies. We studied the NBTI degradation for a 1-bit 

full adder circuit in 90 nm technology using Verilog HDL. The circuit model describes 

basic static CMOS logic gates using switch-level Verilog description, which also 

incorporates the model for computing change in the threshold voltage (∆Vt) and the 

delay (tp) of PMOS devices after every NBTI stress. NBTI stress can be computed by 

knowing the time for which particular PMOS transistor remains under negative bias (i.e 

Vgs<0).  

 

1.6 Thesis Structure 

In this thesis a total of four multiplier architectures have been chosen for study, 

out of which two multiplier architectures support signed 2’s complement numbers. These 

are Baugh Wooley multiplier and Booth encoded Wallace tree multiplier. The remaining 

two multiplier architectures supports unsigned numbers. These are MUX based 

multiplier and 2×2 cell based multiplier. The barrel shifter architectures chosen for study 

are Pereira’s architecture and MUX-based architecture. The different logic design styles 

used for VLSI implementation are static CMOS logic, dual rail domino CMOS logic, TG 

logic and TSPC logic (only for the barrel shifter designs).  

The thesis consists of seven chapters. Chapter 2 describe the design philosophy of 

multiplier and barrel shifter circuits, Chapter 3 explains the different multiplier and 

barrel shifter architectures, chapter 4 discusses the different CMOS logic design styles 

and determination of PMOS/NMOS width ratio (β) for high speed design, chapter 5 

presents the study of the dynamics of NBTI degradation in digital logic circuits using 

Verilog HDL. The VLSI implementation and simulation results for different multiplier 

and barrel shifter circuits are tabulated and compared in chapter 6. The comparison 

parameters are propagation delay, average power, maximum power and leakage power, 

transistor count, core layout area, routing length and number of vias. The complete 

research work is summarized in chapter 7, which concludes the thesis. The list of 

references, appendix, and brief bibliography of the candidate as well as the supervisor 

are appended at the end of the thesis. 
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1.7 Chapter Summary 

In this chapter we discussed about the background of the work and the objectives of the 

thesis. Further we described the different data path architectures considered for 

exploration and identified the research gaps based on detailed literature survey. The 

chapter also lays out the research methodology and chapter wise structure of the thesis. 
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CHAPTER 2 

A DESIGN PHILOSOPHY OF MULTIPLIER AND BARREL 

SHIFTER CIRCUITS 
Multiplication is the most widely used operation in many computational systems. 

Multiplication process is used in many neural computing and DSP applications like 

instrumentation and measurement, communications, audio and video processing, 

graphics, image enhancement, 3D rendering, navigation, radar, global positioning system 

(GPS), and control applications like robotics, machine vision and guidance. It is used 

mainly to implement algorithms like frequency domain filtering such as finite impulse 

response (FIR) and infinite impulse response (IIR), frequency-time transformations, 

correlation etc. Most DSP tasks require real-time processing; it must perform these tasks 

speedily while minimizing cost and power. The optimizations carried out at different 

levels of abstraction in the design process are typically at architectural-level, at logic 

level to select proper logic design style, and at transistor-level to select proper transistor 

sizes- keeping in view their contributions to performance indices like average power, 

circuit delay and area.  

The multipliers used for various applications can be categorized as unsigned and signed 

multipliers. The popular 2’s complement number representation is considered for signed 

multipliers. Apart from reducing the length of critical path, the VLSI implementation of 

multiplier circuit primarily focuses on iterative circuits with uniform interconnection 

pattern, which also helps in reducing the total interconnect length. The multiplication 

involves two basic operations i.e. the generation of partial products and their 

accumulation. Different multiplier algorithms differ in terms of ‘partial product 

generation’ and ‘partial product accumulation’, therefore their time and space complexity 

also varies. The complexity becomes important when operand size increases (i.e. 

problem size grows). The speed-up for the multiplication can be achieved using the 

following two techniques [13], [14], [22], [37]: 

1. Reduce the number of partial products. 

2. Accelerate the accumulation of partial products. 

The smaller number of partial products reduces the time needed to accumulate the partial 

products. The accumulation process can be accelerated using faster carry save addition 

(CSA) technique as discussed in section 2.2. 
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2.1 Array Multiplier  [4], [8], [18], [19], [10], [14], [15], [16], [17], [37], [38] 

In this scheme, the two dimensional logic can be so organized that the partial product at 

(i+1)st stage is the sum of the partial products up to ith stage and the left shifted version of 

(i+1)st partial product. The partial products in the multiplication process may be 

independently computed in parallel. For a multiplicand A=An-1 An-2 ……A0, and 

multiplier B=Bn-1 Bn-2 ……B0   the product P=A.B is given by equation 2.1. 
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The ith partial product sum PPi can be denoted by equation 2.2 

 

 

 

 

 

  

 

 

 

 

Example 2.1 shows the simple multiplication process. The figure 2.1 shows the simple 

array multiplier cell. This simple cell is used repetitively and arranged to realize a 

complete array multiplier circuit as shown in figure 2.2. The critical path in multiplier 

circuit is also indicated. Reduction in the length of critical path is one of the major 

objectives in any combinational circuit design. 

 

 

 

 

 

 

 

 

Example 2.1: 
A= Multiplicand 
B= Multiplier 

A: 1101=13 
B: 1011=11 

   1101 
            1101+ 
          0000++ 
       1101+++ 
 ---------------------------------- 
     10001111=143

PP0=0 
 
PP1 =PP0+B0A 
 
PP2 =PP1+B1 21A 
 
PP3 =PP2+B2 22A 
. 
. 
. 
PPi+1 =PPi + Bi 2iA                                                               (2.2) 
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Figure 2.1 Array multiplier cell 

 

 

 

 

 

Advantages:  

• Regular circuit structure; hence suitable for VLSI implementation.  

• The length of interconnects is reduced appreciably. 

• Execution is comparatively faster than sequential multiplication. 

• Such architecture can be faster for smaller operand size multipliers. 

 

Disadvantages: 

• As the operand size grows the circuit takes large area and power due to space 

complexity O (n2). 

• Execution is slow due to ripple effect in partial product addition. 

• These multipliers have time complexity of O (n). 

• Due to linear time complexity, delays may not be acceptable for larger operand 

size multipliers. 

 

 

FA 

AND 

Bi 

Aj 

Sin Cin 

Cout 

Pout 

Where, 

Sin is the incoming sum bit and Cin is the incoming carry bit being summed along with the 

partial product bit Bi Aj by the full adder.  
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Figure 2 .2 A 4x4 array multiplier showing critical path 

 

2.2 Wallace Tree [22], [37], [39] 

A Wallace tree scheme accelerates the accumulation using faster CSA technique. CSA is 

one of the major speed enhancement techniques used in modern digital multiplier circuits 

due to its ability to add numbers with minimal carry propagation. Using 3:2 compressors, 

three numbers can be reduced to two using simple addition while keeping their carries 

and the sum separate. This means that all of the columns can be added in parallel without 

waiting for the result of the previous column. The two outputs that the adder generates as 

sum and carry can be compressed further in next stage. In the last stage, two rows of sum 

and carry can be added using carry propagate adder (CPA) to obtain final product. 

Example 2.2 shows accumulation of partial product in a Wallace tree multiplier.  

 

AND AND AND AND 
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Advantages: 

• Since ripple effect is reduced, it produces the product in far less time. 

• The time complexity is reduced to O (log n). 

 

Disadvantages: 

• Requires more hardware to accumulate partial product bits as compared to array 

multipliers (which are regular).  

• Takes larger routing area as compared to regular array multipliers; hence less 

suitable/adaptable for VLSI implementation.  

 

 

Example 2.3 shows the addition of partial product rows in a Wallace tree multiplier. The 

addition can be performed using fast CSA as shown in figure 2.3. 

 

 

 

 

 

 

 

 

 

Example 2.3: 
 
 A= 111 (7) 
 B= 110  (6) 
  00000 (PP0) 
  01110 (PP1) 
  11100  (PP2) 
101010 (Final Sum Calculated) 

Example 2.2: 
         10111001 

         00101010 

         00111001 

               Sum: 10101010 

          Carry:  00111001X  

           Result:100011100 
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Figure 2.3 Accumulation of partial product in a Wallace tree 

 

2.3 Booth’s Algorithm [37], [39] 

The motivation of this scheme is to “speed up” multiplication process by reducing the 

number of partial products.  It is not essential to execute add and shift for each ‘1’ 

multiplier bit. 

A multiplier (say) B = 001110011110 can be treated as: 

 

0 0 1 1 1 0 0 1 1 1 1 0 

 

0       +1 0 0        -1 0       +1 0 0 0        -1 0 

 

Instead of add and shift operation for each bit that is ‘1’ in the multiplier the ‘0’ and ‘1’ 

multiplier bits can be replaced by +1, 0, or –1 as noted.   

• +A or –A with appropriate shift need to be added to the partial product 

corresponding to +1 or –1.  

• Thus the number of ADD operations is reduced from 7 to only 4 ADD/SUB 

operations. 

• Rules for first order Booth encoding are given in table 2.1. 

 

 
PP1 

(01110) PP0 
(00000) 

PP2 
(11100) 

S (10010) C (011000) 

Final Product 
(101010)

5-bit CSA 

6-bit CPA 

3×3 Wallace Tree Multiplier 
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Table 2.1 Rules for radix-2 Booth encoding 

Bi Bi-1 Comments Yi

0 0 String of zeros 0 

1 1 String of ones 0 

1 0 Beginning of a string with ones -1

0 1 End of a string with ones 1 

 

Such encoding is useful for sequential multiplier design, since it reduces the number of 

addition operations to be performed. The Booth encoding in combinational circuit design 

can be explained by example 2.4. 

 

 

 

 

This is called radix-2 Booth encoding. A radix-y Booth encoding, where y=2x reduces 

the number of partial product rows by factor of x. Therefore radix-2 Booth encoding 

does not reduce the number of partial product rows. Example 2.5 shows that radix-2 

Booth multiplier does not show any advantage in combinational multiplier design, since 

the number of partial product rows remains unreduced and algorithm puts additional 

burden of negation of a multiplier. Thus radix–2-Booth encoding is costlier than normal 

multiplier. 

 

Example 2.5: 

Multiplicand = A= −5 = 1011 (⇒  -A = +5=0101) 

Multiplier = B = −3 =1101 

Multiplicand (A)     1 0 1 1 

Multiplier (B)     1 1 0 1 

Recoded multiplier (Y)     0 -1 1 -1

PP1  0 0 0 0 1 0 1 

PP2  1 1 1 0 1 1 - 

PP3  0 0 1 0 1 - - 

PP4  0 0 0 0 - - - 

Sum  0 0 0 1 1 1 1 

Example 2.4: 

• A multiplier of 14 (0,1,1,1,0) can be treated as (+1,0,0, -1,0) i.e. (16-2)  

• A multiplier of 15 (0,1,1,1,1) can be treated as (+1,0,0,0, -1) i.e. (16-1) 
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To get rid of the above problem higher radix Booth algorithms are used. Booth radix-4 

(y=4=22) encoding can reduce the number of partial product rows by a factor of two. For 

radix-4 Booth encoding, we are encoding each pair as operation like 0, ±A, ±2A, this 

will reduce the number of rows of partial products in combinational circuit by a factor of 

two. In this algorithm Bi and Bi-1 is recoded as Zi and Zi-1 but taking into account the Bi-2 

bit. The algorithm to convert a sequence is given in the table 2.2. 

Table 2.2 Rules for radix-4 Booth encoding 
 

Bi Bi-1 Bi-2 Zi Zi-1 Dj Operation

0 0 0 0 0 +0 +0 

0 0 1 0 1 +1 +A 

0 1 0 0 1 +1 +A 

0 1 1 1 0 +2 +2A 

1 0 0 -1 0 -2 -2A 

1 0 1 0 -1 -1 -A 

1 1 0 0 -1 -1 -A 

1 1 1 0 0 +0 +0 

For the case of radix-4 Booth encoding a signed binary number in two’s complement 

form is partitioned into overlapping groups of three bits (in general for the radix-y Booth 

encoding the overlapping group takes x+1 bits) and each group is represented by possible 

value of 0, +A, -A, +2A, -2A using the rules indicated in the table 2.2. The value of 

overlapping groups of three bits can also be computed easily using the equation 2.3, 

which computes digits Dj as shown in table 2.2. Use of this algorithm reduces the number 

of partial product rows to half. Example 2.6 shows the grouping of multiplier bits in a 

radix-4 Booth encoding. 

Example 2.6: 
Multiplier (B) = 11010 = B4B3B2B1B0 

Multiplier B 
Comments 

B5 B4 B3 B2 B1 B0 B-1 i 
j=(i-1)/2 Operation 

B is sign extended 1 1 1 0 1 0 0    

Group 0     1 0 0 1 0 (-2A) 

Group 1   1 0 1   3 1 (-A) 

Group 2 1 1 1     5 2 (0) 
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Example 2.7 shows the multiplication process for radix-4 Booth algorithm. In this 

method the number of bits should always be even. If the number of bits is odd then sign 

bit is extended at the most significant bit (MSB) position. The example shows that the 

number of partial product rows is reduced by a factor of 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.7: 
Multiplicand A = +13 = 01101 (⇒ -A = 10011) 
Multiplier B= -6 = 11010  = 111010 (sign extended to 6-bit) 
 
Modified multiplier bits: 
 i = 5 ⇒ Z5Z4 = (0 0), i =3 ⇒ Z3Z2 = (0 –1) and i = 1 ⇒ Z1Z0= (–1 0)  
 
OR {since, i=2j+1 ⇒ j=(i-1)/2} 
 
 j = 2 ⇒ D2=0, j = 1 ⇒D1 = -1, j = 0 ⇒ D0 = -2     
 
Operation to be performed = 0, –A, –2A (From Table 2.2) 

0     0    1    1     0    1  (+13) 
0     0    0  –1   –1    0  (-6) 

     1    1    1  1     0  0    1   1    0  (-26) 
     1    1    1 0     0  1    1   +    +    (-52) 
     0    0    0     0     0    +    +     +    +              (0) 
     1    1    0 1     1  0     0    1     0  (-78) 
 
Note: Number of partial product rows have been reduced by a factor of 2 
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Advantages: 

• Number of partial product rows is reduced to half. This also implies that the 

hardware required to generate partial products is reduced to n2/2 cells. 

• The advantage of reduction in hardware using Booth encoding scheme can be 

combined with accelerated Wallace tree accumulation of partial products to 

obtain the reduced time complexity of O (log n). 

• Such Booth encoded tree multipliers are highly suitable for large operand size 

multipliers. 

  Disadvantages: 

• The Booth encoding requires extra hardware and generation of partial products 

becomes complex due to increased number of operations on multiplicand A. 

• The Booth encoder circuit adds an extra delay to critical path hence for smaller 

operand-size multipliers the performance may degrade. 

 

2.4 Array of Array Multiplier [10] 

As discussed earlier, array multipliers are preferred for smaller operand sizes due to their 

simpler VLSI implementation, in-spite of their linear time complexity. On the other hand 

the tree-based multipliers have better time complexity as compared to array based 

multipliers but are less suitable for VLSI implementation; since being less regular they 

require larger total routing length, which may degrade their performance. Some hybrid 

architectures have area and latency characteristics in between the two extremes. These 

are called array of array based schemes, which have routing area requirements close to 

an array multiplier and time complexity of )( nO .  

 

2.5 Different Multiplier Architectures Considered for Exploration 

The different multiplier architectures to be studied based on the above points of view are 

listed below. 

(1) Baugh Wooley Multiplier [8] 

(2) Booth Encoded Wallace Tree Multiplier [22], [40], [41] 

(3) MUX Based Multiplier [16] 

(4) 2×2 Cell Based Multiplier [10], [42] 

The multipliers (1) and (2) are signed multipliers while multipliers (3) and (4) are 

unsigned multipliers. The detailed design implementation for these multiplier 
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architectures are discussed in chapter 3. These architectures have been considered for 

exploration in the present study. The performance and characteristic parameters for 

comparison purposes are propagation delay, average power, maximum power and 

leakage power, transistor count, core layout area, routing length and number of vias. 

 

2.6 Barrel Shifter Design Philosophy and Architectures Considered for Exploration 

Data shifting is a requirement of many key computer operations- from address 

generation to arithmetic functions. Shifting a single data bit one field at a time can be a 

slow process; this is where a barrel shifter comes in. A barrel shifter is a combinational 

logic device/circuit that can shift or rotate a data word by desired number of bits in a 

single operation. It is another most important block in DSP processor circuits. Intel 

80386 and Motorola 68030 chips have also utilized the barrel shifter circuit in their 

design. It is used for floating-point normalization, word pack/unpack, and field 

extraction from a bit stream, editing, data modification, and arithmetic manipulation. 

Different barrel shifter architectures show tradeoffs between silicon area and speed of 

operations. Some architectures have a dedicated block for all the operations to be 

performed by the barrel shifter. They are faster, but consume larger silicon area and 

power. A significant reduction in area and power required by the barrel shifter circuit is 

achieved by implementing rightward operations as operations in leftward direction [30]. 

The barrel shifter architectures to be studied from the above points of view and included 

in our studies are listed below. 

(1) MUX Based Barrel Shifter [43] 

(2) Pereira’s Barrel Shifter [29] 

The detailed design implementation for these barrel shifter architectures are discussed in 

chapter 3.  

 

2.7 Chapter Summary 

In this chapter we present the design philosophy of the multiplier and barrel shifter 

circuits for achieving high performance. The chapter presents the schematic structure and 

highlights the associated advantages and disadvantages of array multipliers, Wallace tree 

multipliers, Booth’s algorithm and array of array multipliers. Furthermore, the chapter 

proposes four high-speed multiplier architectures for further investigation. Similarly, it 

proposes two high-speed barrel shifter architectures for further investigation.  
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CHAPTER 3 

DIFFERENT MULTIPLIER AND BARREL SHIFTER 

ARCHITECTURES 

Basics of multiplier design have been already discussed in chapter 2. In this chapter we 

present details of architecture and logic implementations in respect of four different 

multipliers and two different barrel shifters selected for exploration.   

The multipliers selected are: 

(1) Baugh Wooley Multiplier [8] 

(2) Booth Encoded Wallace Tree Multiplier [22], [40], [41] 

(3) MUX Based Multiplier [16] 

(4) 2×2 Cell Based Multiplier [10], [42] 

Multiplier (1) and (2) are signed multipliers and multiplier (3) and (4) are unsigned 

multipliers. The signed multipliers follow the 2’s complement number representation.  

The barrel shifter architectures considered for explorations are: 

(1) MUX Based Barrel Shifter [43] 

 (2) Pereira’s Barrel Shifter [29]  

All the multipliers as well as barrel-shifter architectures are implemented for 4-bit, 8-bit, 

12-bit and 16-bit sizes using four different logic design styles. 

3.1 Baugh-Wooley Multiplier 

The Baugh-Wooley multiplier is a signed array multiplier, which utilizes 2’s 

complement number system in the implementation of multiplication algorithm. Partial 

products are adjusted to maximize regularity of multiplication array. Algorithm moves 

partial product terms with negative signs to the last steps, where it adds  (-22N-1) to other 

partial product terms to get sum of partial products as shown in equation 3.4, which is 

derived using equation 3.1, equation 3.2 and equation 3.3.  
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Design implementation for a 4×4 multiplier: As explained earlier in a 4×4 multiplier the 

sign-bit of product carries a weight of -27. The design procedure for a 4×4 multiplier 

utilizes equation 3.1, equation 3.2 and equation 3.3 and derives the terms T1, T2, T3, T4, 

T5 and T6 (where, the first term T1=-27) such that their summation generates the final 

product in 2’s complement notation as shown by equation 3.4 
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The final product obtained by adding T1, T2, T3, T4, T5 and T6 is then rearranged to 

produce product bits P0 to P7 as shown in equation 3.5, which helps the designer to 

implement the combinational logic circuit for 4×4 multiplier as shown in figure 3.1. For 

this multiplier, Ai & Bi are two 4-bit input vectors and Pk & Cout are outputs of 8-bit and 

1-bit length respectively. The final carry bit Cout is discarded. 

 Similar technique is followed in design of 8×8, 12×12 and 16×16 multipliers. 
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Figure 3.1 A 4 ×4 Baugh Wooley multiplier 
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3.2 Booth Encoded Wallace Tree Multiplier  

The basic operation of radix-2 and radix-4 Booth encoding has already been discussed in 

chapter 2. This section presents design implementation for a M×N radix-4 Booth 

encoded optimized Wallace tree multiplier. In this multiplier design, the partial product 

at each bit position is compressed into sum and carry signals, which are then added to 

give the final output as explained later in section 3.2.2.  

3.2.1 Multiplication Logic 

The multiplier’s main blocks are multiplier/multiplicand selector block, the modified 

Booth encoder block, partial product generator block, Wallace tree section (which adds 

all the partial products simultaneously to produce final two rows of sum and carry). The 

final two rows of sum and carry are then added using CPA. 

 Mao-Sorley proposed modified Booth 3-bit recoding. Application of this method of 

recoding to an M-bit two’s complement binary number B is shown in equation 3.6. An 

equivalent base 4 redundant sign digit representation is obtained as B’ is shown in 

equation 3.7. 
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The digits Di are chosen from the set +2,+1,0,-2,-1 according to the rules in table 3.1 At 

each step 3-bits of B i.e.B2i+1B2iB2i-1, are examined and table 3.1  is referred to for 

selecting Di. The multiplier B is always appended on the right by a zero (i.e. B–1=0) and 

M is always even. 
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Table 3.1 - Booth encoder truth table 

B( 2i+1) B(2i) B(2i –1) Di

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 2 

1 0 0 -2

1 0 1 -1

1 1 0 -1

1 1 1 0 

In the M-bit by N-bit multiplication, the M-bit multiplier number B is Booth encoded. 

The product AB is then obtained by adding M/2 partial product rows as shown in 

equation 3.8. These partial products rows are calculated easily by shifting and/or 

complementing the multiplicand A.    
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When adding the M/2 partial product rows Pi, the Pi+1
st partial product row is placed two 

bits to the left of partial product row Pi as indicated by equation 3.9. However, all Pi rows 

must be sign extended to the (M+N)th binary position, such a sign extension becomes 

very costly in terms of hardware. In order to avoid excessive hardware required for sign 

extension, we use sign extension prevention technique, which assumes that all of the 

partial products are negative. In this case, the sum of all sign extensions can be pre-

calculated as shown in equation 3.10. 
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Equation 3.10 suggests that a fixed number, (-1) ( 2 M – 1)/3, should be added to the (un-

extended)  partial products, starting from the Nth binary position leftwards as shown in 

table 3.2, which depicts the logical operation of a 4×4 multiplier. If it turns out that a 

partial product Pi = Di A is indeed positive, we simply replace its sign bit with a one to 

undo the effect of our earlier assumption that the partial product Pi is negative, that is we 

will take 2’s complement of sign extended portion (i.e. add jS’=’1’ at sign bit to invert 

all 1’s and add jS’=’1’ at the beginning of partial product row as shown in example 3.1). 

Equation 3.12 explains the generation of jS’ bit. 

Table 3.2 Logical operation of a Booth encoded 4×4 multiplier assuming that all of the 

partial products are negative 

    A3 A2 A1 A0 

     B2  B0 

1 1 1 1 P3 , 0 P2 ,0 P1, 0 P0, 0

1 1 P3,2 P2,2 P1,2 P0,2   

Sum of sign bits     

1 0 1 1     

P7 P6 P5 P4 P3 P2 P1 P0 

A fixed number = (-1) (2 M – 1)/3 = (-5) = 1011 is added at the position indicated in table 

3.3. 

The original algorithm does not generate correct result if particular partial product row is 

‘0’, since it is neither positive nor negative. Hence for 0×0 it gives wrong output. The 

algorithm is slightly modified as shown in table 3.3. 
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Example3.1: 

Let A=(-3) 10=(1101) 2 and B=(22) 10=(010110) 2 

Booth encoding of B gives:- (010), (011), (100) =A, 2A, -2A 

Note: Multiplier to be Booth encoded has size of M-bit and multiplicand has size 
of N-bit. 

M = 6, N = 4 ⇒ signs = (336)10= (1010110000)2 

Or fixed number = (-1) (2 6 – 1)/3 = (-21) = 101011 is added at position indicated. 
     (0S’=1) 0 1 0 1 

         (0S’=1) 

   (2S’=0) 1 0 1 0 + + 

       (2S’=0)   

 (4S’=0) 1 1 0 1 + + + + 

     (4S’=0)     

1 0 1 0 1 1     

1 1 1 0 1 1 1 1 1 0 

Table shows that if partial product is non zero then jS’ is selected for addition at both 

MSB and least significant bit (LSB) positions and if partial product row is zero then 

jMVDD=’1’ is added at MSB position and jMGND=’0’ is added at LSB position. The 

prevention of sign extension plays an important role in hardware reduction of a 

multiplier architecture design based on Booth encoding. Equation 3.13 explains the 

generation of jMVDD and jMGND bits. 

Table 3.3 Modified logical operation of Booth encoded 4×4 multiplier 

    A3 A2 A1 A0 

     B2  B0 

   0S’/0MVDD P3 , 0 P2 ,0 P1, 0 P0, 0 

 2S’/2MVDD P3,2 P2,2 P1,2 P0,2  0S’/0MGND 

1 0 1 1  2S’/2MGND   

P7 P6 P5 P4 P3 P2 P1 P0 
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3.2.2 Implementation Technique 

This section presents the design procedure for implementing the M×N multiplier as 

shown in table 3.3. The multiplier has three design levels: 

The first level in design is the part where the partial products are generated using the 

Booth encoded multiplier. The second level in deign is the accumulation of the partial 

products using 3:2 and 4:2 compressors (as explained later in section 3.2.2.5), which 

generate intermediate sum and carry. The intermediate sum and carry of the second level 

are further accumulated using 3: 2 compressors that are essentially full adders to generate 

final row of sum and carry. The third level in design accumulates sum and carry obtained 

by the second level, using a (M+N) bit CPA , which gives the final output of (M+N) bits. 

Figure 3.2 explains all three levels in the design of Booth encoded multiplier. 

 

 

 

 

 

 

 

The functions of different design blocks used in Booth encoded Wallace tree multiplier 

are explained in sections from 3.2.2.1 to 3.2.2.6. 

3.2.2.1 Modified Booth Encoder 

 The multiplier is Booth encoded using the Booth encoder to generate the Booth encoded 

bits (PLj, Mj, Xj, 2Xj). The PLj, Mj, Xj and 2Xj are derived from the basic Booth 

algorithm. Table 3.4 shows the Booth encoding for all the input combinations. 

  

Figure 3.2 Basic Steps in Booth multiplication 

Multiplicand

Booth encoded Multiplier

Accumulation of partial products and 
sign bits to generate reduced final two 
rows as sum and carry. 

Sum 
Carry 

CPA Result



 30

 Where,  PLj =1, ⇒ positive partial product 

   Mj =1, ⇒ negative partial product 

   Xj =1, ⇒ partial product neither doubled and nor zero 

  2Xj =1, ⇒ partial product doubled    

Table 3.4 Modified Booth encoding 

Inputs Sign Select 

Bj+1 Bj Bj-1
Function

Xj 2Xj PLj Mj

0 0 0 0 0 1 0 0 

0 0 1 +A 1 0 1 0 

0 1 0 +A 1 0 1 0 

0 1 1 +2A 0 1 1 0 

1 0 0 -2A 0 1 0 1 

1 0 1 -A 1 0 0 1 

1 1 0 -A 1 0 0 1 

1 1 1 0 0 1 0 0 

After logic optimization using Karnaugh maps equations obtained are shown as equation 

3.11. Using these equations the combinational circuit can be designed to generate Booth-

encoded bits (PLj, Mj, 2Xj). (Note that Xj bit is not evaluated, as it can be eliminated in   

generation of partial products as explained in next section.) 
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3.2.2.2 Sign Bit Generator 

 This generates the sign bit as shown in table 3.3, which removes the need for sign 

extension. This takes PLj, Mj and MSB of A input as input and gives jS’ as output. 

Mj+PLj=’1’ means partial product is non-zero. MSB of A=’1’ means multiplicand is 

negative. If Mj=’1’ then jS will be zero meaning partial product is positive and therefore 
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jS’=not (jS)=’1’ is added at the appropriate positions as shown in table 3.3. The logic 

equation used for implementing sign bit generator is shown in equation 3.12. Thus this 

sign bit is valid for non-zero partial products and when multiplicand is negative. 
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Table 3.3 shows that if partial product is non zero then jS’ is selected for addition at both 

MSB and LSB positions and if partial product row is zero then jMVDD=’1’ is added at 

MSB position and jMGND=’0’ is added at LSB position. Mj+PLj= ‘0’ means partial 

product is zero, for such cases ‘1’ is placed at jMVDD location and ‘0’ at jMGND locations 

as shown in table 3.3, which are taken care by jMVDD and jMGND bits. The generation of 

jMVDD and jMGND bits can be obtained by modifying equation 3.12. The modified 

equation 3.13 takes care of the case of zero partial products for which original algorithm 

gives wrong results.  
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3.2.2.3 Partial Product Generator 

The partial products are generated using the partial product generator. The bits of partial 

products generated at different bit positions are accumulated.  When there is a single 

partial product then the simple partial product generator is enough. For generating and 

accumulating 2 or 3 or 4 partial products, 2D, 3D and 4D units are used respectively, 

which generate the respective number of partial products and then compress them into 

sum and carry signals. Partial product bit at position (i,j) as given by reference [41] are 

shown in equation 3.14. 
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Equation 3.14 can also be implemented using two 2:1 MUX and two XOR gates as 

shown by equation 3.15 (this eliminates the Xj input, which is complement of input 2Xj). 
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Equivalace between 3.14 and 3.15 has been shown in table 3.5 

Table 3.5 Equivalace between two different patial product generation logics 

Xj 2Xj PLj Mj Pi,j  using eq. (3.14) Pi,j  using eq. (3.15) 

0 1 0 0 0 0 

1 0 1 0 Ai Ai ⊕  Mj = Ai 

1 0 1 0 Ai Ai ⊕  Mj = Ai 

0 1 1 0 Ai-1 Ai-1⊕  Mj = Ai-1 

0 1 0 1 A’
i-1 Ai-1 ⊕  Mj = A’

i-1 

1 0 0 1 A’
i Ai ⊕  Mj = A’

i 

1 0 0 1 A’
i Ai⊕  Mj = A’

i 

0 1 0 0 0 0 

3.2.2.4 Addition of Fixed Number 

The fixed number (-1) (2 M – 1)/3, should be added to the un-extended  partial products, 

starting from the Nth binary position leftwards. 
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3.2.2.5 Accumulation of Partial Product Rows 

 Partial product rows are accumulated using fast CSA/ 3:2 compressor/ 4:2 compressor/ 

2D/ 3D/ 4D to generate final rows of sum and carry [40], [41]. These final rows of sum 

and carry are added using CPA to generate final product for an M×N multiplier. 

(A) 3:2 Compressor: This is essentially a 1-bit full adder. It accepts 3-bit input and 

generates two bit output as sum and carry. 

(B) 4:2 Compressor:  The first stage sum and carries are given to the 4:2 compressor as 

4-bit input, which generates two bit output as sum and carry. 

(C) 2D Block: This block generates two partial products using partial product generator 

and then these bits are compressed into sum and carry using 3:2 compressor. 

(D) 3D Block: This block generates three partial products using partial product generator 

and then these bits are compressed into sum and carry using 3:2 compressor. 

(E) 4D Block: this block generates four partial products using partial product generator 

and then these bits are compressed into sum and carry using 4:2 compressor. 

3.2.2.6 Eliminating the Other Limitations of an Existing Algorithm  

Another limitation of the basic algorithm is that it does not work for all the combinations 

of inputs. When both the inputs are zero it produces wrong results. Equation (3.12) 

suggests that MSB of multiplicand input A has to be ‘1’ meaning it is always negative 

and multiplier input B is Booth encoded. Adding a 2’s complement and swapping unit 

before Booth encoding removes these limitations, but it increases gate count and delay. 

The logic for pre-processing of inputs through 2’s complement and/or swapping unit is 

presented below in table 3.6. The external inputs AI and BI are assigned to algorithm 

inputs A and B using swap select logic. Note that algorithm input A is always negative 

and B input is Booth encoded. This can be seen from equation 3.12 where MSB of A has 

to be ‘1’. If out of AI and BI one number is negative and the other number is positive 

then A is taken – ve & B is taken as positive. In such cases always the positive B 

operand is Booth encoded. If both numbers AI and BI are negative then   A=AI and 

B=BI and B operand is Booth encoded. AI=’0’ is considered as +ve number if other 
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number is negative. AI=’0’ is considered as -ve number if other number is positive. 

BI=’0’ is always considered as +ve irrespective of the other number. The swapping and 

2’s complement operations are explained in table 3.6. 

Table 3.6 Logic for preprocessing of inputs 

External Inputs Swapping 2’S Complement Algorithm Inputs 

AI (+ve) 

BI (+ve) 
NO YES 

A = -AI 

B = -BI 

AI (+ve) 

BI (-ve) 
YES NO 

A = BI 

B = AI 

AI (-ve) 

BI (+ve) 
NO NO 

A = AI 

B = BI 

AI (-ve) 

BI (-ve) 
NO NO 

A = AI 

B = BI 

AI (zero) / AI (+ve) 

BI (zero) 
NO YES 

A = -AI 

B = -BI 

AI (-ve) 

BI (zero) 
NO NO 

A = AI 

B = BI 

AI (zero) 

BI (-ve) 
YES NO 

A =BI 

B = AI 

AI (zero) 

BI (+ve) 
NO NO 

A = AI 

B = BI 

 

Figure 3.3 shows the Block diagram of Booth encoded Wallace tree multiplier, which 

eliminates all limitations of existing algorithm. 
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Table 3.3 represents the 4×4 multiplier. The partial product bits in a particular column 

are generated and accumulated by either simple partial product generator/2D/3D/4D to 

give sum and carry bits as per equations 3.16-a. The selection of particular block 

depends on number of partial products to be generated and accumulated in a particular 

column (e.g. for generating and accumulating a single bit of partial product in a column 

requires simple partial product generator, while, if in a particular column 2 partial 

product bits are required to be generated and accumulated then 2D unit will be used). 

The sum and carry bits obtained by partial product generator/2D/3D/4D units are then 

added with sign bits and fixed number derived by using equation 3.10 to generate the 

final rows of sum and carry as per equations 3.16-b. These final rows of sum and carry 

are then added using a CPA to generate the product bits of the multiplier as per equations 

3.16-b. 

Figure 3.3 Block diagram of Booth encoded Wallace tree multiplier 
eliminating limitations 
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Booth Encoder 
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Where, Si and Ci are the bits after the 1st stage compression of the partial product bits 

produced by partial product generator/ 2D/3D/4D units. 1Si & 1Ci are intermediate sum 

and carry bits generated after 2nd stage compression, which accumulate Si & Ci sign bits 

and fixed number. 2Ci are carry bits and Pi are final product bits generated by the last 

stage of the CPA as shown by equation 3.16-b. 
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Figure 3.4 shows a 4×4 Booth encoded Wallace tree multiplier designed using above 

described technique. Similar technique is followed in the design of 8×8, 12×12 and 

16×16 multipliers. 
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Figure 3.4 A 4×4 Booth encoded Wallace tree multiplier-eliminating limitations (j=’0’) 
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3.3 MUX Based Multiplier 

It is based on an unsigned multiplier algorithm in which one bit of the multiplier and 

one bit of the multiplicand are processed in parallel. The algorithm is symmetric, i.e. the 

multiplier and multiplicand can be interchanged. According to this algorithm, sum of the 

two operands, progressively computed, is a useful quantity that is used in the 

computation of certain partial products. The different quantities are computed one bit at 

each step of the algorithm and the appropriate quantity is then selected in the next step, if 

so required. The parallel implementation of this algorithm yields an iterative type array. 

Compared to implementation based on the modified Booth’s algorithm, this algorithm 

requires similar amount of circuitry but yields faster multiplication [16]. This MUX 

based architecture performs parallel computation of the partial sums of the two operands 

together, which simplifies the tasks such as compression and accumulation. It also 

performs favorably well with regards to gate area, compared to other regular array 

architectures [16]. This architecture can also be extended to accept input in 2’s 

complement form, with a little modification, but is not considered for present 

exploration.  

3.3.1 Multiplication Logic 

Equation 3.17, equation 3.18, equation 3.19, equation 3.20 and equation 3.21 explain the 

multiplication logic. 
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Aj & Bj are binary numbers after truncation, up-to the (j-1)th bit in A, B respectively as 

per equation 3.18.          
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3.3.2 An Illustration of the Multiplication Logic 

Example 3.2 shows the multiplication process for two 4-bit binary numbers using MUX 

based approach. The multiplication process shows that the number of rows remains the 

same, but number of partial product bits to be compressed in a particular column are now 

restricted to 3 bits only. This makes compression much faster and easier. If carry bits C1, 
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C2, C3 … as shown by example 3.2 are taken care then the number of bits to be added in 

particular column will be 2 bits only. The two columns can be added simultaneously 

using 2-bit carry look ahead adder (CLA), which also accepts carry input C1, C2, C3 of 

particular column (this is possible because, these carries are occurring in alternate 

columns). Thus the first step in algorithm is generation of partial product rows and 

second step performs the addition of these partial products together with compression.  

Example 3.2(a):  A0B0, A1B1, A2B2 & A3B3 at the positions shown below has be added with 
appropriate term selected by 4:1 MUX based on select lines shown in first column. 
 
Let A= A3A2A1A0 = 0111 = (+7)10 and B= B3B2B1B0 = 0011 = (+3)10 
The uncolored portion explains the operation to be performed by algorithm and colored portion 
show the application of algorithm on selected inputs A and B. 
Working of MUX: Select lines ‘00’/’01’/’10’/’11’ corresponds to I1/I2/I3/I4. 

 

Select 
line for 

4:1 
MUX 

 A3B3  A2B2  A1B1  A0B0  
 0  0  1  1  

     0/0/0/C1 
=0/0/0/1 

0/A0/B0/S0 
=0/1/1/0  A1B1 

=’11’ 
     1 0   
   0/0/0/C2 

=0/0/0/1 
0/A1/B1/S1 
=0/1/1/1 

0/A0/B0/S0 
=0/1/1/0   A2B2 

=’10’ 
   0 1 1    

 0/0/0/C3 
=0/0/0/1 

0/A2/B2/S2 
=0/1/0/0 

0/A1/B1/S1 
=0/1/1/1 

0/A0/B0/S0 
=0/1/1/0    A3B3 

=’00’ 
 0 0 0 0     
0 0 0 1 0 1 0 1 =(21)10 
P7 P6 P5 P4 P3 P2 P1 P0  
 
 
Example 3.2 (b):  A0B0, A1B1, A2B2 & A3B3 at the positions shown below has be added with 
appropriate term selected by 4:1 MUX based on select lines shown in first column. 
 
Let A= A3 A2 A1 A0 = 1111= (+15)10 and B= B3 B2 B1 B0 = 1111 = (+15)10 
The uncolored portion explains the operation to be performed by algorithm and colored portion 
show the application of algorithm on selected inputs A and B. 
Working of MUX: Select lines ‘00’/’01’/’10’/’11’ corresponds to I1/I2/I3/I4. 
 

Select 
line for 

4:1 
MUX 

 A3B3  A2B2  A1B1  A0B0  
 1  1  1  1  

     0/0/0/C1 
=0/0/0/1 

0/A0/B0/S0 
=0/1/1/0  A1B1 

=’11’ 
     1 0   
   0/0/0/C2 

=0/0/0/1 
0/A1/B1/S1 
=0/1/1/1 

0/A0/B0/S0 
=0/1/1/0   A2B2 

=’11’ 
   1 1 0    

 0/0/0/C3 
=0/0/0/1 

0/A2/B2/S2 
=0/1/1/1 

0/A1/B1/S1 
=0/1/1/1 

0/A0/B0/S0 
=0/1/1/0    A3B3 

=’11’ 
 1 1 1 0     

1 1 1 0 0 0 0 1 =(225)10 
P7 P6 P5 P4 P3 P2 P1 P0  
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It produces output in time T = (n+1) τFA_2CLA where τFA_2CLA is the delay of a 2-bit CLA 

with a timing overhead of one 4:1 MUX delay, while regular array multiplier takes 

approximate delay of T = (2n) τFA as seen in figure 3.1. The large area overhead will be 

due to routing needed between these MUXs. 

3.3.3 Implementation 

The logic explained in example 3.2 can be shown through a schematic, which uses 4:1 

MUXs & AND gates as shown in figure 3.5(a). The MUXs are used to choose the Zj for 

the Zj
 2

j terms (refer to equation 3.21) while AND gates are used to produce the ajbj2
2j

 

terms. Complete implementation of the multiplier is shown in figure 3.5 (b). Cell I and 

cell II used in MUX based multiplier implementation are shown in figure 3.5 (c) and 

figure 3.5 (d) respectively. The number of cell I required in a n×n multiplier are n(n-1)/2 

while number of cell II required are n. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 (a) MUX based multiplier implementation logic 
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Figure 3.5 (b) MUX based multiplier implementation 

 

 

 

 

 

 

 

Figure 3.5 (c) Cell I used in MUX based multiplier implementation 
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Figure 3.5 (d) Cell II used in MUX based multiplier implementation 

 

3.4 2×2 Cell Based Multiplier 

In this architecture the 2×2 multiplier is used as a basic building block in the hierarchical 

design of a larger bit-size multiplier. This multiplier uses a hybrid scheme called the 

array of array multiplier, which has moderate routing area requirements and time 

complexity of )( nO  for an n×n multiplier [10]. The truth table for a 2×2 combinational 

multiplier is shown in table 3.7.  The truth table can be solved using Karnaugh maps, 

which generates the equation (3.22) as shown below. A combinational circuit can be 

realized using these equations. Figure 3.6 shows the schematic of a 2×2 combinational 

multiplier. 

First step in the design of a 4-bit multiplier will be to find the different combinations of 

input bit pairs that are to be processed by 2×2 multipliers. Each input bit pair is handled 

by a separate 2×2 combinational multiplier to produce a partial product row. These 

partial products rows are then added optimally to generate the final product bits. The 

design procedure for 4×4 combinational multiplier is shown in table 3.8. Figure 3.7 

shows the schematic of a 4×4 combinational multiplier designed using 2×2 

combinational multiplier.  
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Table 3.7 Truth table for a 2×2 combinational multiplier 

A1 A0 B1 B0 P3 P2 P1 P0

0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 1 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 1 0 0 0 1 

0 1 1 0 0 0 1 0 

0 1 1 1 0 0 1 1 

1 0 0 0 0 0 0 0 

1 0 0 1 0 0 1 0 

1 0 1 0 0 1 0 0 

1 0 1 1 0 1 1 0 

1 1 0 0 0 0 0 0 

1 1 0 1 0 0 1 1 

1 1 1 0 0 1 1 0 

1 1 1 1 1 0 0 1 

 

 

 

 

 

 

 

Figure 3.6 A 2×2 combinational multiplier 
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Table 3.8 Design of a 4-bit multiplier using 2×2 combinational multiplier 

Pair     A3 A2 A1 A0 

     Group II Group I 

     B3 B2 B1 B0 

     Group IV Group III 

I × III     PP3 PP2 PP1 PP0 

II ×III   PP7 PP6 PP5 PP4   

I × IV   PP11 PP10 PP9 PP8   

II × IV PP15 PP14 PP13 PP12     

Sum P7 P6 P5 P4 P3 P2 P1 P0 

 

 

P0=A0 ⋅ B0 
 
P1=A0 B1(B’

0+A’
1) + A1 B0(B’

1 +A’
0) 

      ={[A0 B1(B’
0+A’

1) + A1 B0(B’
1+A’

0)]’}’ 

      ={[A0 B1(B’
0+A’

1)]’ ⋅ [ A1 B0(B’
1+A’

0)]’}’ 

    ={[(A0B1)’ + (B0 A1)] ⋅ [(A1 B0)’+(A0B1)]}’
 

    = [(A0B1)’ + (B0 A1)]’+ [(A1B0)’+(A0B1)]’ 

    = [A0B1 (B0A1)’]+ [(A1 B0)(A0B1)’] 
    = {[A0B1 (B0A1)’]’ ⋅  [(A1 B0) (A0B1)’]’}’ 

 
P2=A1B1 (A’

0+ B’
0) 

    ={[A1B1 (A’
0+ B’

0)]’}’ 

    =[(A1 B1)’
 + (A0 B0)]’ 

    =(A1 B1) ⋅ (A0 B0)’ 
 
P3=A1 A0 B1 B0 
    ={[A1A0 B1 B0]’}’ 

    =[(A1A0)’
 +(B1B0)’]’                                    (3.22) 
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Figure 3.7 A 4×4 combinational multiplier 

Similar technique is used in the design of 8×8, 12×12 and 16×16 multipliers. In such 

design at each level of hierarchy in schematic design only four partial product rows are 

required to be generated. Hence the accumulation of these partial product rows is much 

simplified as compared to other architectures 
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3.5 MUX Based Barrel Shifter 

The MUX based barrel shifter architecture has been designed using 4:1, 8:1, 16:1, 32:1 

and 64:1 MUXs. The design follows a hierarchy, which can be described as follows. The 

2:1 MUX is first designed using CMOS logic. It is then used to design the 4:1 MUX. The 

8:1 MUX is designed using the 4:1 MUXs as the basic building block. Similar hierarchy 

is followed in the design of 16:1, 32:1 and 64:1 MUXs.  A 2n:1 MUX will have 2n input 

lines, n select lines and one output line. MUXs with any n, greater than one can be 

implemented using 2:1 MUX. One 2n: 1 MUX requires (2n-1) 2:1 MUX s and has a delay 

of n 2:1 MUX. In this architecture n =1, 2, 3, 4, 5, 6 are used in the design 2:1, 4:1, 8:1, 

16:1, 32:1 and 64:1 MUXs. 

3.5.1 Design of 4-bit MUX Based Barrel Shifter 

Table 3.9 shows the behavior of 4-bit MUX-based barrel shifter, which utilizes control 

inputs D for direction, S/R for operation (shift/rotate) and S1, S0 for number of bits to be 

shifted or rotated. O0, O1, O2, O3 represent the output bits and I0, I1, I2, I3 are input bits. 

D=’0’ means the direction of shift/rotate operation is towards left and D=’1’ means the 

direction of shift/rotate operation is towards right. F represents the fill bit, fill bit is ‘0’ 

for left shift and fill bit is MSB bit for right shift operation. The line S/R=’1’ for rotate 

operation and S/R= ‘0’ for shift operation. Bits S1 and S0 are length selection bits. 

S1S0=’00’ means length is zero bit, S1S0= ‘01’ means length is one bit, S1S0= ‘10’ means 

length is two bits and S1S0= ‘11’ means length is three bits. Table 3.9 explains the 

various operations performed by 4-bit barrel shifter. 

As there are four control inputs, we need a 16:1 MUX for each output bit. Thus for 4 

output bits, we need four 16:1 MUXs in the design of a 4-bit barrel shifter. In addition 

we need a 2:1 MUX for fill bit as shown in figure 3.9. Thus the total number of 2:1 

MUXs required in the design are 61.  
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Table 3.9 Truth Table for 4-bit barrel shifter operation 

Operation D S/R S1 S0 O3 O2 O1 O0 

0 0 0 0 I3 I2 I1 I0 

0 0 0 1 I2 I1 I0 F 

0 0 1 0 I1 I0 F F 
Arithmetic shift left 

0 0 1 1 I0 F F F 

0 1 0 0 I3 I2 I1 I0 

0 1 0 1 I2 I1 I0 I3 

0 1 1 0 I1 I0 I3 I2 

Rotate left 

 
0 1 1 1 I0 I3 I2 I1 

1 0 0 0 I3 I2 I1 I0 

1 0 0 1 F I3 I2 I1 

1 0 1 0 F F I3 I2 
Arithmetic shift right

1 0 1 1 F F F I3 

1 1 0 0 I3 I2 I1 I0 

1 1 0 1 I0 I3 I2 I1 

1 1 1 0 I1 I0 I3 I2 
Rotate right 

1 1 1 1 I2 I1 I0 I3 

Each row of the truth table 3.9 can be implemented with a dedicated 16:1 multiplexer 

circuit, which is designed using 2:1 MUX cells, to obtain the final output. Similar 

technique is followed in the design of 8-bit, 12-bit and 16-bit barrel shifters. 

3.5.2 Fill Bit Logic 

Fill bits are required only in the case of shift operations. In left shift operation, the lower 

significant bits are filled with 0’s. While in the right shift operation, in order to preserve 

the sign of the input number, MSB is sign extended.  This is accomplished using a 2:1 

MUX. The D=’0’ represents the left operation for which fill bit is ’0’ and D=’1’ means 

the right operation for which fill bit is MSB bit of input.  The Fill bit is utilized for shift 

operations, while it is discarded for rotate operations. Figure 3.8 shows the schematic of 

a 4-bit MUX-based barrel shifter, which also includes fill bit logic.  
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Figure 3.8 A schematic diagram of 4-bit, MUX based barrel shifter 
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3.6 Pereira’s Barrel Shifter  

In this architecture significant reduction in area occupied by the barrel shifter circuit is 

achieved by implementing rightward operations as operations in leftward direction and 

significant reduction in delay is possible by reducing the length of the critical path. The 

16-bit barrel shifter is chosen for explanation. The 16-bit barrel shifter design has six 

external control signals out of which the first four bits represent the length of operation, 

while the fifth and sixth bits represent the ‘direction’ and the ‘type’ of the operation 

respectively. Length bits LGTHx [x=0, 1, 2, 3], allow shifting or rotation of data from 0 

[i.e LGTH=LGTH3 LGTH2 LGTH1 LGTH0=’0000’] to 15 positions [i.e LGTH=LGTH3 

LGTH2 LGTH1 LGTH0=’1111’]. DIR bit decides direction of shift/rotation (DIR=’0’ 

means leftward and DIR=’1’ means rightward direction) and TYP bit decides shifting or 

rotation (TYP=’0’ means shifting and TYP=’1’ means rotation).  This barrel shifter 

circuit consists of shift rotate array, programming unit and mask generator unit. Section 

3.6.1 explains the shift-rotate array, section 3.6.2 describes the programming unit and 

section 3.6.3 describes the mask generator unit. Schematic and operation are described in 

section 3.6.4 

3.6.1 Shift-Rotate Array 

This unit consists of six stages. The first stage will allow leftward rotation of data by 0 or 

1 position. This stage is used for creating an additional left rotation by 1-bit, required for 

rightward operations. Next four stages provide shifting or rotation of data from 0 to 15 

positions to the left, using combination of second stage (0 or 1 position), third stage (0 or 

2 positions), fourth stage (0 or 4 positions) and fifth stage (0 or 8 positions). The sixth 

stage performs the masking for right shift operations only. 

Rotating 16-bit (N=24) data p positions to the right where 0≤p≤N-1 is equivalent to 

rotating data (N-p) positions to the left. Similarly, shifting p position to the right where 

0≤p≤N-1 is equivalent to rotating data (N-p) positions to the left and masking p most 

significant bits with the sign bit of the input data for arithmetic shifting. Attaining the 

(N-p) positions leftward operation is achieved by first rotating by 1-bit towards left and 

then rotating leftward again by 1’s complement of length LGTH.  Figure 3.9 shows the 

schematic representation of a shift rotate array. First stage of the circuit performs the 

additional left rotation of data by 0 or 1 position and is controlled by R and R’ signals, 
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which are derived from DIR. Stage 2 to stage 5 perform the task of left rotation/left shift 

and are controlled by LSx, LS’x and LRx which are generated by programming unit using 

equation (3.27), equation (3.28) and equation (3.29).  Note that x=0 (for stage 2), x=1 

(for stage 3), x=2 (for stage 4) and x=3 (for stage 5). For left shift operation fill bits are 

‘0’ which are appropriately created by stage 2 to stage 5. Since for right shift operation 

fill bits are sign extension bits, we require an extra masking stage labeled as stage 6, 

which provides sign extensions of MSB bit for appropriate bit length and is controlled by 

signal Mi (i=1…..15) and M’i (i=1…..15) which are generated by the masking unit (as 

described in section 3.6.3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Schematic of shift-rotate array 
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function implements the logic function given in equation (3.23). Operations of AND-OR 

function are explained in table 3.10. 

Yi=C1. Ii+ C2. Ij.                             (3.23) 

Where C1, and, C2 are internal control bits applied to individual instances of AND-OR 

function that are derived from top level control signals. Also ‘Ii’ is input bit, and, ‘Ij’ is 

left rotated bit which are appropriately derived from input data bits to each stage (as 

described below). 

Table 3.10 Operations performed by AND-OR function 

C1 C2 Output  (Yi) Comments 

0 0 Fill bit ‘0’ is passed Required for left shift operations for stage 2 to stage 5 

0 1 
Left rotated bit (Ij) is 

passed 

Required for passing left rotated data for stage 1 to 

stage 5 

1 0 Input bit (Ii) is passed 
Required for passing data without any change for 

stage 1 to stage 6 

1 1 Ii+ Ij Never comes 

The 1st stage of shift rotate array has C1=R’, and, C2=R for all 16 instances of AND-OR. 

Note that R’=’0’, and, R=’1’ for performing 1-bit additional left rotate operation required 

for rightward operations. R’=’1’, and, R=’0’ for passing data without any operation (as 

required in leftward operations).  The operation of 1st stage is explained in equation 

(3.24). 

i.e. 

For  R’=’1’, and, R=’0’: 

Ai=Ii   (For i=0…..15)   

For  R’=’0’, and, R=’1’: 

Ai=I15  (For i=0)    

Ai=Ii-1  (For i=1…..15)                      (3.24) 
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The 2nd stage of the circuit has C1= LS’0 and C2= LR0 for one instance of AND-OR 

corresponding to one LSB fill bits. The remaining 15 instances of AND-OR have C1= 

LS’0 and C2=LS0. For passing the data without any modification LS’0=’1’, LR0=’0’, and, 

LS0=’0’. For left rotation LS’0=’0’, LR0=’1’, and, LS0=’1’, but for left shift operation 

LS’0=’0’, LR0=’0’, and, LS0=’1’ [since LS’0=’0’, and, LR0=’0’ the fill bit instance of 

AND-OR will generate output ‘0’ according to equation (3.23)].  The operation of 2nd 

stage is explained in equation (3.25). 

i.e.      

For LS’0=’1’, LR0=’0’, and, LS0=’0’: 

Bi=Ai   (For i=0…..15)  

 

For LS’0=’0’, LR0=’1’, and, LS0=’1’: 

Bi=A15  (For i=0) 

Bi=Ai-1  (For i=1…..15)  

 

For LS’0=’0’, LR0=’0’, and, LS0=’1’: 

Bi=0  (For i=0) 

Bi=Ai-1  (For i=1…..15)                      (3.25) 

 

Operations performed by 3rd, 4th & 5th stages can be explained in similar manner as 

shown in table 3.11. 
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Table 3.11 Operations performed by 3rd, 4th and 5th stages 

Stage #3 Stage #4 Stage #5 

For LS’1=1,LR1=0, and LS1=0: 

 

Ci=Bi  (For i=0…..15) 

 

For LS’1=0,LR1=1, and LS1=1: 

 

      Ci=B14+i (For i=0,1) 

Ci=Bi-2 (For i=2…..15) 

For LS’1=0,LR1=0, and LS1=1: 

       Ci=0 (For i=0,1) 

  Ci=Bi-2 (For i=2…..15) 

For LS’2=1,LR2=0, and LS2=0: 

 

Di=Ci  (For i=0…..15) 

 

For LS’2=0,LR2=1, and LS2=1: 

 

      Di=C12+i    (For i=0….3) 

Di=Ci-4 (For i=4…..15) 

For LS’2=0,LR2=0, and LS2=1: 

      Di=0 (For i=0,….3) 

Di=Ci-4 (For i=4…..15) 

 

For LS’3=1,LR3=0, and LS3=0: 

 

Ei=Di  (For i=0…..15) 

 

For LS’3=0,LR3=1,and LS3=1: 

 

      Ei=D8+i (For i=0…7) 

Ei=Di-8 (For i=8…..15) 

For LS’3=0,LR3=0, and LS3=1: 

      Ei=0 (For i=0…7) 

Ei=Di-8 (For i=8…..15) 

 

The 6th stage of the shift rotate array has C1=M’i and C2= Mi for 15 instances of AND-

OR corresponding to 15 MSB bits. Since maximum possible length for right shift is 15 

bits, no masking is required for 0th bit. Thus 0th bit can be passed directly. Generation of 

these masking bits is explained in section 3.6.3. Operation of the 6th stage is explained in 

equation (3.26). 

For Mi =’0’ and M’i=’1’:  

     O0=E0  

Oi=Ei   (For i=1…..15)  
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For Mi =’1’ and M’i=’0’:  

     O0=E0  

Oi=MSB=I15  (For i=1…..15)                                       (3.26) 

3.6.2 Programming Unit 

Programming unit controls the operation of the five stages of the shift-rotate array.  A 

schematic circuit diagram of the programming unit is shown in figure 3.10. Input signals 

to programming units are TYP, DIR and LGTHx [x=0, 1, 2, 3]. The unit generates 

outputs as LSx, LS’x and LRx [x=0,……3] using equations (3.27), (3.28) and (3.29): 

LSx = [LGTHx ⊕ DIR]         where x= 0,1,2,3               (3.27) 

LS’x = not [LGTHx ⊕ DIR]        where x=0,1,2,3                  (3.28) 

LRx =  (DIR +TYP) (LGTHx ⊕ DIR)      where x= 0,1,2,3                  (3.29) 

3.6.3 Mask Generator Unit 

Mask generator unit controls masking in the last stage of the shift-rotate array. This 

module has input signals as TYP, DIR, LGTHx [x=0, 1, 2, 3] and generates outputs Mi [i 

=0,……15] and M’i  [i =0,……15] using equation (3.30) & (3.31) respectively. For right 

shift operation, masking bits are sign extension bits and for left shift they are ‘0’. Sixth 

stage of shift-rotate array along with masking unit provides sign extensions of MSB bit 

for desired length.  

IMx= [DIR.TYP’ ]. LGTHx,  where x= 0,1,2,3      

M1= (DIR TYP’ LGTH3). (DIR TYP’ LGTH2). (DIR TYP’ LGTH1). 

         (DIR TYP’ LGTH0) 

     = IM3.IM2.IM1.IM0    For LGTH=(1111)2=(15)10 
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M2= IM3.IM2. IM1.IM’0+ M1                 For LGTH=(1110)2=(14)10 

M3= IM3.IM2. IM’1.IM0+ M2  For LGTH=(1101)2=(13)10 

M15= IM’3.IM’2. IM’1.IM0+ M14  For LGTH=(0001)= (01)10 

         (3.30) 

& M’i = not (Mi)    (For i=1…..15)                    (3.31) 

3.6.4 Schematic and Operation 

Shift-Rotate array, programming unit and mask generator unit are combined to form a 

16-bit barrel shifter. Figure 3.10 shows the schematic diagram of the complete 16-bit 

barrel shifter unit. Control inputs for performing different shift and rotate operations are 

listed in table 3.12.  

 

Table 3.12 Operation performed by 16-bit barrel shifter 

LGTH 
Operation DIR TYP

LGTH3 LGTH2 LGTH1 LGTH0 

Arithmetic shift left 0 0 p3 p2 p1 p0 

Rotate left 0 1 p3 p2 p1 p0 

Arithmetic shift right 1 0 p3 p2 p1 p0 

Rotate right 1 1 p3 p2 p1 p0 
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Figure 3.10 Complete barrel shifter unit 

3.7 Chapter Summary 

In this chapter we present the detailed schematic level design and associated Boolean 

logic for the selected multiplier and barrel shifter architectures. The selected signed 

multipliers are Baugh Wooley multiplier and Booth encoded Wallace tree multiplier, 

while unsigned multipliers are MUX based multiplier and 2×2 cell based multiplier. The 

signed multipliers follow the 2’s complement number representation.  The selected barrel 

shifter architectures are MUX based barrel shifter and Pereira’s barrel shifter. All the 

multipliers as well as barrel-shifter architectures are implemented for 4-bit, 8-bit, 12-bit 

and 16-bit sizes using four different logic design styles. The details of logic design styles 

used for VLSI implementation of these architectures are presented in the next chapter. 
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CHAPTER 4 

DIFFERENT CMOS LOGIC DESIGN STYLES AND 
DETRMINATION OF PMOS/NMOS WIDTH RATIO FOR HIGH 

SPEED DESIGN 
 
The scalable CMOS technology offers many advantages like more transistors per chip 

and improvement in speed besides low power consumption, and large noise margins [1], 

[2], [3]. VLSI implementations of a circuit using different CMOS logic design styles 

show trade-offs in terms of parameters like transistor count, core layout area, average 

power and peak power consumption. The suitability of a particular logic design style for 

design is decided by performance, power and cost targets to be achieved. The multiplier 

and barrel shifter architectures discussed in chapter 3 are designed for 4-bit, 8-bit, 12-bit 

and 16-bit sizes using four different CMOS logic design styles in our explorations. In 

this chapter we discuss the fundamentals of the logic design styles considered for 

exploration, these logic design styles are categorized as described below.   

 

 Static CMOS logic circuits 

• Static logic design style 

• TG logic design style 

 Dynamic CMOS logic circuits 

• Dual rail domino logic design style 

• TSPC logic design style 

4.1 Static CMOS Logic Circuits [1], [2], [3] 

Static logic circuits allow versatile implementations of logic functions based on static or 

steady state behavior of simple CMOS structures. Typically a static logic gate generates 

its output corresponding to the applied input voltages after a certain time delay, and it 

can preserve its output level (or state) as long as the power supply is provided. This 

approach, however may require a large number of transistors to implement a function, 

and may cause a considerable time delay. In steady state each gate output is connected to 

either VDD or GND   through a low-resistive path and therefore for a static input, the 

output levels are preserved. On the other hand dynamic logic circuits for their operation 

rely on temporary storage of logic signal values on the capacitances of circuit nodes. 
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4.1.1 Static Logic Design Style 

The 2-input NOR gate implemented using static logic design style is shown in figure 4.1. 

The features of static logic style are listed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1   Static logic gate 

 

 Static logic design style is most suitable and widely accepted for many VLSI 

circuit implementations due to its important properties like high speed, low 

power, large noise margins, no logic degradation and validity of logic design 

style at scaled down technologies. Circuits implemented using static logic design 

style give negligible static power dissipation, as there is no direct path between 

power supply and ground for any of the logic input combinations under steady 

state condition. 

 A logic gate with fan-in of n requires 2n (i.e n number of N-type and n number of 

P-type) devices. Two logic blocks, the N-block and the P-block, form a CMOS 

gate. The topology of N-block is the dual of that of the P-block. Since both the 

blocks have equal number of transistors, transistor count of gate is large. 

 The channel widths of series connected NMOS transistors or PMOS transistors 

have to be increased to obtain a reasonable conducting current to drive capacitive 
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loads. The increase in size of transistors results in a significant area overhead, and 

also an increased gate input capacitance, which may lead to high dynamic power 

dissipation. The higher gate input capacitance loads the previous stage thereby 

increasing the delay. The ratio of PMOS/NMOS transistor widths (β) should be 

chosen optimally for achieving higher speed and lower power consumption as 

described in section 4.3. 

 Static logic gates also exhibit short-circuit currents. However, by sizing 

transistors for equal rise and fall times, the short-circuit power component can be 

minimized. 

 Due to unequal path delays of logic block ⁄ sub-block, the circuit nodes can 

spuriously switch before their correct logical value stabilizes. Such transitions 

increase the dynamic power consumption of the circuit. Buffers can be inserted at 

appropriate locations to equalize path delays. 

 

4.1.2 TG Logic Design Style 

TG logic design style presents a class of logic circuits, which use the TG as their basic 

building blocks. The CMOS TG switch consists of one NMOS and one PMOS transistor, 

connected as shown in figure 4.2. The gate voltages applied to these two transistors are 

complementary signals. The CMOS TG switch operates as a bi-directional switch 

between the nodes A and B which is controlled by signal C. If the control signal C is 

high, both the transistors are turned on and provide a low resistance current path between 

nodes A and B. If the control signal C is low, both the transistors are off and the path 

between nodes A and B will be an open circuit. Figure 4.2 shows the schematic diagram 

of a CMOS TG switch. 

 

 

 

 

 

 

 

 

Figure 4.2 CMOS TG switch 
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The TG logic shows an advantage over the pass transistor logic in that the output levels 

are not degraded [21]. The TG logic design style passes both logic ‘0’ and logic ‘1’ 

without any degradation. Figure 4.3 shows the different representations of the CMOS TG 

switch and its operation.  
 

 

 

 

 

 

 

 

 

 

 
Figure 4.3 Different representations of CMOS TG switch 

 

The speed of the TG logic design style may degrade drastically compared to static logic 

design style when length of the critical path in a circuit becomes too long and no 

repeaters are present in the path.  

4.2 Dynamic CMOS Logic Circuits [1], [2], [3] 

In high density, high performance digital implementations where reduction of circuit 

delay and silicon area are major objectives; dynamic logic circuits offer several 

advantages. The operation of all dynamic logic gates depends upon the temporary 

(transient) storage of charge on circuit node capacitances. This operational property 

necessitates the periodic updating of internal node voltage levels, since stored charge on 

capacitors cannot be retained indefinitely. Therefore dynamic logic circuits require 

periodic clock signals to control charge refreshing.  
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4.2.1 Domino and Dual Rail Domino Logic Design Style 

A domino logic implementation is shown in figure 4.4. It consists of a dynamic CMOS 

circuit followed by static CMOS inverter. The dynamic circuit consists of a PMOS 

precharge transistor, a NMOS evaluation transistor, and a N-logic block, which, in 

general, is a series-parallel combination of NMOS transistors activated by the inputs and 

implementing the required logic. This circuit style uses a single-phase clock (clk).  When 

clk=’0’, the dynamic node is pre-charged to VDD and during the evaluation phase, the 

dynamic node either remains at VDD or discharges to logic ‘0’. The numbers of cascaded 

domino logic gates are limited by the duration of the evaluation clock phase. The 

features of domino logic style are listed below. 

 

 In comparison to the static logic, domino logic has a smaller gate input 

capacitance (Cin) and smaller output load capacitance (CL) due to the absence of 

large sized PMOS transistors.  

 Domino gate features faster switching speeds due to reduced load capacitances 

owing to lower input gate capacitance (Cin) and smaller output load capacitance 

(CL). 

 A simple domino gate with a fan-in of n requires n + 2 (i.e. n+1 number of N-

type and one P-type) transistors. However, other transistors may be required to 

remove unwanted effects like charge sharing and for gate cascading. 

 The disadvantage of simple domino logic is that the gate suffers from the charge-

sharing problem in which the parasitic capacitances at the internal nodes get 

coupled to the load capacitance. A weak pull up PMOS transistor connected as 

shown in figure 4.4, solves this problem [9]. This requires a static inverter and a 

PMOS transistor; the use of a static inverter makes cascading possible. A simple 

domino gate without pull up transistor but utilizing a static inverter to avoid 

cascading problem may show degradation of logic ‘1’ voltage at the input of 

inverter, which may increase its static power consumption. 

 The advantage of domino gates as compared to static logic gates is that they do 

not show short-circuit power dissipation and glitching problems, since any node 

can undergo at most only one transition per clock cycle. The logic also shows the 

full voltage swing (i.e. VOL = GND and VOH = VDD) as for the case of static logic. 
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 However in the circuits designed using domino logic design style, the power 

consumption may increase due to higher switching activity as compared to 

equivalent static logic circuits, because all the domino nodes are pre-charged to 

VDD during each clock cycle. A further increase in power consumption may result 

from the highly loaded clock distribution network, which consumes a significant 

amount of dynamic power [9].  

 In the domino logic gate as shown in figure 4.4, the PMOS transistors do not 

appear in series. Also, Cin and CL are smaller as compared to static logic. 

Therefore fall times of the domino logic gates will be improved. However, their 

rise times depend on combined effect of CL and an additional series transistor 

(evaluate transistor) in pull-down path. The decreased CL will tend to decrease 

the rise time, while the series transistor will tend to increase the rise time. 

 The circuits designed using simple domino logic gates implement only non-

inverting logic functions and are incapable of implementing inverting logic 

functions like NAND, NOT, NOR and XOR etc. mainly due to cascading 

problem [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Domino logic gate 
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 The “dual rail domino logic” overcomes the limitations of simple domino logic 

design style, since it can also implement inverting logic functions. In almost all 

circuit designs inverting logic functions are unavoidable and hence the dual rail 

domino logic design style is used instead of the simple domino logic design style. 

The dual rail domino schematic cell for 2-input XOR function is shown in figure 

4.5. 

 The disadvantage of using dual rail domino logic is that the number of transistors 

required to implement any logic function will be twice of that required for the 

simple domino logic. Thus transistor count is increased, which increases the 

power consumption due to increased switching activity.  Another disadvantage is 

that the circuits designed using dual rail domino logic may increase total length 

of interconnects, which may also increase the length of critical path, and 

therefore, the propagation delay of the circuit and the layout core area may 

increase. 

 

 
Figure 4.5 Schematic of a 2input XOR cell designed using dual rail domino cell 

 

4.2.2 TSPC Logic Design Style 

TSPC logic is one of the high performance dynamic logic circuit design styles which is 

distinctly different from the NORA logic design style in that it uses only one clock 

signal, which is never inverted. Since the inverted clock signal is not used anywhere in 

the system, no clock skew problem exists. Consequently higher clock frequencies can be 
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achieved for dynamic pipelined operations. The features of TSPC logic style are listed 

below. 

 

 TSPC logic supports the high-speed pipelined circuit operation, which increases 

the circuit throughput [26], [29]. A circuit designed using the TSPC logic accepts 

the inputs every clock cycle and produces the outputs after a fixed number of 

clock cycles equal to the latency of the circuit. Since the waiting time to apply 

new inputs is reduced as compared to a purely combinational circuit, hence it 

shows improved performance. Thus TSPC logic forms an acyclic sequential 

circuit. 

 Apart from supporting pipelining of operations, an important feature of the TSPC 

logic cells is their compactness: normally they occupy much less area as 

compared to dual rail domino logic design style. 

 All the logic cells in all the stages of the pipelined logic circuit perform the pre-

charge and evaluation logic operations every clock cycle simultaneously and the 

clock rate is high (few MHz to GHz) therefore average power consumption and 

peak power consumption of the circuit is much higher as compared to other logic 

design styles.  

 

The TSPC logic Cell implementation for the logic function Y=A . B is shown in figure 

4.6. Table 4.1 explains the summary of operation for TSPC logic circuits.  

Table 4.1 Summary of operation 
 

Cell Type CLK=’1’ CLK=’0’ 
First stage Dynamic evaluation Pre-charge + Dynamic latch 
Second stage Dynamic latch Dynamic evaluation 

 

The operation of first stage is explained in table 4.2 and the operation of second stage is 

explained in table 4.3. 

Table 4.2 Operation of first stage 
 
 
 
 
 
 
 
 

A B CLK Z Comments 
0 0 1 0 Dynamic evaluation 
0 1 1 0 Dynamic evaluation 
1 0 1 0 Dynamic evaluation 
1 1 1 1 Dynamic evaluation 
X X 0 Latch Pre-charge + Dynamic latch 
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Table 4.3 Operation of second stage 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 TSPC logic circuit 

 
 
4.3 Determination of β Ratio for High-Speed Digital Designs 

In CMOS circuit designs, the low mobility (µp) PMOS devices are sized up to attain the 

same conduction performance as the high mobility (µn) NMOS devices. The β is an 

important ratio in the design of digital circuits using static CMOS logic. The 

conventional method of estimating β excludes the effect of several technology 
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parameters in estimation of β ratio. In this section we discuss a more accurate estimation 

of β ratio using relevant technology parameters like thickness of gate oxide (tox), 

threshold voltage of NMOS device (Vtn), threshold voltage of PMOS device  (Vtp), zero-

bias junction capacitance per unit area of NMOS device (Cj0n), zero-bias junction 

capacitance per unit area of PMOS device (Cj0p), side wall zero-bias junction capacitance 

per unit length of NMOS device (Cj0swn), side wall zero-bias junction capacitance per 

unit length of PMOS device (Cj0swp) and built-in potential of PN junction (PB).  β ratios 

are computed for 0.5 µm technology and are compared to their values computed using 

the conventional method. The β ratio thus computed taking into consideration the above 

mentioned other technology parameters improves the inverter threshold or switching 

threshold voltage (Vth) by 5% and inverter average propagation delay (τP) by 0.6%.   

The static CMOS logic has robustness against voltage and transistor scaling, and it 

provides reliable operation at low voltages together with low switching activity as 

compared to other logic styles. Static CMOS logic has high noise margins owing to the 

presence of a static path from output to the appropriate supply that restores the correct 

logic state in the presence of noise. Logic gates in static CMOS are constructed from a 

N-block and a P-block. The N-block evaluates the ‘0’ state while the P-block evaluates 

the ‘1’ state, where only one of the blocks is conducting at steady state. The main 

drawback of static CMOS circuits is the existence of the P-block because of its low 

mobility (µp) devices as compared to the NMOS devices (µn). Therefore, PMOS devices 

need to be sized up to attain the gate’s performance. The highest noise margin for static 

CMOS is conventionally obtained by using a β ratio of 
p

n
µ

µ [3], [9], which is also 

conventionally taken to provide identical current driving capability for the N and P 

networks. If symmetry and noise margins are not of prime concern, then it is possible to 

speed up the inverter by reducing the width of PMOS device. Conventionally the best 

gate performance is supposed to be achieved with a β ratio of 
p

n
µ

µ  [3], [9], because, 

widening the PMOS improves the tPLH of the inverter but it also degrades the tPHL due to 

increased capacitance of next stage. The above result is based on the assumption that 

ratio β depends only on the mobilities whereas in reality it depends upon many other 

technology parameters. In this analysis we have included the effect of relevant 

technology parameters in determining the ratio β. 0.5 µm technology has been 
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considered for the present study. Section 4.3.1 explains the calculation of β ratio and Vth, 

section 4.3.2 describes dependence of β ratios on various technology parameter; section 

4.3.3 provides comparison of different β ratios for 0.5 µm technology. Section 4.3.4 

provides a comparison of Vth for different β values, section 4.3.5 provides a comparison 

of τP for different β ratios. 
 
 
4.3.1 Calculation of β ratio and Vth 
 
We assume that a static CMOS inverter is driving another identical static CMOS inverter 

of same W/L ratio as shown in figure 4.7.   

 

 

 
 

Figure 4.7 A static CMOS inverter driving an identical static CMOS inverter 

 

The load capacitance seen by the first inverter is given by equation (4.1) & (4.2). 

 

WgngpdndpL CCCCCC ++++= 2211                                           (4.1) 
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Where, Cdp1 and Cdn1 are equivalent drain diffusion capacitance of PMOS and NMOS 

transistors of the first inverter and Cgp2 and Cgn2 are the gate capacitances of the second 

inverter. Cw represents the wiring capacitance. 

If PMOS devices are β times larger than NMOS devices then: 
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The value of β to achieve highest speed of the inverter if symmetry and noise margin are 

not of prime concern is given by equation (4.3) [3] 
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The calculation of β given by equation (4.4) is under the assumption that no significant 

wiring delay is present and Vtn=|Vtp|.  If significant wiring delay is present and Vtn≠|Vtp|  

then, 

21

21

:

)1()1(

gndn

W

gndn

W
optimum

CC
C

x

where

xr
CC

C
r

+
=

+=
+

+=β

                                                                       (4.5) 

 

2

2

)(
)(

tpgsoxp

tngsoxn

VVC
VVC

r
−

−
=
µ
µ

 

 

The Vth is an important parameter characterizing the DC performance of the inverter. 

Equation (4.6) describes the calculation of Vth [1]. 
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4.3.2 Dependence of β Ratio on Other Technological Parameters 

Equation (4.4) shows that β ratio can be defined in terms of technology dependent 

process trans-conductance ratio [44], [45], [46]. While, equation (4.5) shows that  β ratio 

depends on many other technology parameters like tox, Vtn, Vtp, Cj0n, Cj0p, Cj0swn, Cj0swp, 

built-in potential of PN junction (PB) and capacitance per unit area of metal layer. The 

technology selected for study is 0.5 µm with the assumption that Cj0n= Cj0p, Cj0swn = 

Cj0swp and average interconnect length of 55λ. The lamda values for the 0.5 µm is 

selected using MOSIS scalable CMOS (SCMOS) design rules (Revision 8.0), λ=0.3 for 

0.5 µm MOSIS, SCN_SUBM, 3.3V technology. Using the model parameters Cw, Cdn1 

and Cgn2 are calculated for 0.5 µm technology, which gives the accurate value of β. The 
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technology parameters are read from respective model files of both NMOS and PMOS 

devices for 0.5 µm technology.  

  

4.3.3 Comparison of Different β Ratios for 0.5 µm Technology 

Table 4.4 shows the comparison of Cw, Cdn1 and Cgn2, r and β for 0.5 µm technology. 

Equation (4.5) shows the ratio β depends on x and r. Table 4.4 shows the calculated 

capacitances using appropriate technology parameters. The ratio β given by mobility 

ratio 
p

n
µ

µ  are computed and shown in table 4.5. The values of β shown in table 4.4 

are more accurate as compared to those given in table 4.5 and can be used as a basis for 

the selection of β  for optimization of performance. 

 

Table 4.4 Estimation of β ratio using more accurate method 

Technology 
Cox 

(F/cm2) 

VDD

(v) 
Keqn 

Cw 

(fF) 

Cdn1 

(fF) 

Cgn2 

(fF) 
x r β 

0.5 µm 3.59E10-7 3.3 0.6489 1.3959 1.665 3.877 0.252 4.97 2.49

 

Table 4.5 Estimation of β ratio using conventional method 
 

 

 

 

4.3.4 Comparison of Vth for Different β Ratios 

 

Since the static CMOS inverter has very sharp voltage transfer characteristic, the Vth is 

an important parameter characterizing the DC performance of the inverter. The inverter 

Vth is computed for   three different values of β: 

 

 (i) 
p

n
µ

µβ = (ii) 
p

n
µ

µβ =  and  (iii) )1(
21 gndn

W

CC
C

r
+

+=β     

 

Table 4.7 shows the comparison of Vth values calculated using the above three 

expressions for choosing β values for 0.5 µm technology. Table 4.7 shows the 

Technology µnCox  (A/V2) µpCox (A/V2) β=Sqrt (µn/µp) 

0.5 µm 196.47 E-6 48.74 E-6 2.00 
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comparison between the calculated and simulated values of Vth using conventional and 

the more accurate method.    

The ideal value of Vth must be VDD/2 (1.65 V for 0.5 µm technology) for attaining equal 

high and low noise margins. Comparing Vth values shows that choosing 

)1(
21 gndn

W

CC
C

r
+

+=β  gives a better value of Vth for 0.5 µm technology as indicated in 

table 4.6. 

 Table 4.7 compares the calculated results with simulated results using spice. The table 

shows almost 3.5% improvement in Vth for calculated results and almost 5 % 

improvement in Vth for simulated results for an inverter designed using 0.5 µm 

technology. 

 

Table 4.6 Comparison Vth for three different β ratios calculated using three different 

methods 

 

Calculated Vth  

Technology 
p

n
µ

µβ =  

(do not provide higher 

speed) 

p

n
µ

µβ =  

(Conventional 

method) 

)1(
21 gndn

W

CC
C

r
+

+=β  

(More accurate 

method) 

0.5 µm 1.517 V 1.368 V 1.414 V 

 

 

Table 4.7 Comparison of Vth using conventional and the more accurate method  

 

Vth 

(Conventional method) (More accurate method) 

 

Technology 

Calculated Simulation Calculated Simulation 

0.5 µm 

(VDD=3.3V) 

1.368 V 1.4 V 1.414 V 

(better) 

1.464 V 

(better) 
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4.3.5 Comparison of τP for Different β Ratios 

The τP is calculated for both the β ratios using standard τPHL and τPLH relations [1]. Table 

4.8 shows the comparison of τP for both β ratios using standard mathematical relations 

and through spice simulation. The table shows 1.2 % speed improvement for calculated 

results and 0.6 % speed improvement for simulated results of a single inverter designed 

using 0.5 µm technology. The spice simulation result shows higher delays due to the 

presence of many other real parasitic effects.  

 

Table 4.8 Comparison of τP using conventional and the more accurate method (for 
calculated and simulated values) 

 

τP 

p

n
µ

µβ =  

(Conventional method) 

)1(
21 gndn

W

CC
C

r
+

+=β  

(More accurate method) 

Technology 

Calculated Simulation Calculated Simulation 

0.5 µm 31.58 ps 92 ps 
31.08 ps 

(better) 

91.5 ps 

(better) 

 

 

The β ratio calculated using conventional method excludes many relevant technology 

parameters. A more accurate method for estimating β ratio is presented and compared 

against conventional method for 0.5 µm technology. The Vth obtained using  β ratio 

calculated taking into consideration relevant technology parameters shows almost 5 % 

improvement. This method of β estimation also decreases propagation delay.  

In this research work β ratio of 2.5 is chosen for standard cell design using static CMOS 

logic, CMOS TG logic and TSPC logic to achieve higher speed of logic gates designed 

for 0.5 µm technology. 
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4.4 Sizing of Pre-charge and Pre-discharge Transistors for Domino Logic Design 

Style 

The domino logic circuits are very popular in the design of high performance processors 

because they offer fast switching speeds and reduced area implementations. The domino 

logic gates use pre-charge and pre-discharge transistors to charge the intermediate 

dynamic node. The size of pre-charge and pre-discharge transistors play an important 

role in achieving higher speeds and smaller areas. In this section we present a method for 

optimal selection of pre-charge and pre-discharge transistor sizes, based on the amount 

of capacitance required to be driven at dynamic nodes of CMOS domino logic gates. The 

product term (area×rise-delay) is used as a figure of merit in the selection of pre-charge 

transistor size and the product term (area × fall-delay) is used as a figure of merit in the 

selection of pre-discharge transistor size. 

CMOS domino logic has become a popular logic family and is extensively used in most 

state-of-the-art processors due to its high performance capabilities [47], [48]. The static 

CMOS gates are slower because at a given time either the pull-up or pull-down network 

is activated but the input capacitance of the inactive network also loads the active 

evaluation path [9] [49]. Furthermore, the input gate capacitance increases because the 

low mobility PMOS transistors are sized up to attain comparable rise and fall delays [9]. 

Dynamic gates overcome this weakness by eliminating the PMOS transistor blocks and 

replacing them with a single pre-charge transistor [47], [49]. The dynamic nodes of  

domino logic gates are periodically pre-charged to 95% of VDD or pre-discharged to 5% 

of VDD before evaluation in each clock cycle [3]. The sizes of pre-charge and pre- 

discharge transistors play an important role in area and speed optimization [50]. The 

larger W/L may degrade the area and smaller W/L may lower the speed. In this section 

we present a method to optimally select pre-charge transistor size based on product 

(area×rise-delay) and pre-discharge transistor size based on product (area× fall-delay). 

The pre-charge PMOS and pre-discharge NMOS transistor sizes can be optimally 

selected by estimating the load capacitances to be driven by pre-charge and pre-discharge 

transistors at dynamic nodes.  The dynamic switching power in pre-charge and pre-

discharge operation will also get reduced due to use of optimal transistor sizes [51]. 

Section 4.4.1 explains the load capacitance estimation for pre-charge or pre discharge 

transistor, section 4.4.2 describes the computation of area-delay product, and section 

4.4.3 shows the simulation results.  
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4.4.1 Load Capacitance Estimation for Pre-charge and Pre-discharge Transistors 

The domino logic gates considered for estimating load capacitances are shown in figure 

4.8.  The figure 4.8 (a) shows a domino 2-input AND gate, which can be implemented 

using PMOS pre-charge transistor and NMOS evaluation transistor. Figure 4.8 (b) shows 

another implementation of domino 2-input AND gate, which uses a NMOS pre-

discharge transistor and PMOS evaluation transistors [3].  The pre-charge transistor 

PMOS or the pre-discharge transistor NMOS drives the capacitance at the dynamic node. 

These capacitances are given by equations 4.7, 4.8, 4.9 and 4.10. 

 

 
     

(a)         (b)  

Figure 4.8 (a) 2-input AND domino gate (b) another implementation 2-input AND 

domino gate 
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Cdp, pre-charge is equivalent drain diffusion capacitance of pre-charge PMOS transistor. 

Cdp,pullup is the pull-up drain diffusion capacitance, CdnA is NMOS evaluation transistor’s 

drain diffusion capacitance. Cgp,(inv) , Cgn,(inv) are the inverter gate capacitance  and CW is 

wire capacitance loads to be driven by pre-charge transistor. 
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+=

    

Cdn,pre-discharge is equivalent drain diffusion capacitance of pre-discharge NMOS transistor. 

CdpA and CdpB are PMOS evaluation transistor drain diffusion capacitances. Cgp,(inv), 

Cgn,(inv) are inverter gate capacitance and  CW is wire capacitance loads to be driven by 

the pre-discharge transistor. 

The dynamic node capacitances CL1 and CL2 that exclude drain parasitic capacitance of 

pre-charge and pre-discharge transistors are estimated using equations 4.8 and 4.10. The 

estimated capacitances CL1 and CL2 are to be replaced in the circuits shown in figure 4.9 

(a) and figure 4.9 (b) respectively.  The Pre-charge load capacitance is pre-assigned with 

an initial condition (ic=0 V) and pre-discharge load capacitance is pre-assigned with an 

initial condition (ic=3.3 V).  Here, we assume a fixed capacitance of 0.1 pF acting as a 

load for the pre-charge and pre-discharge transistors with pre assigned initial conditions 

as stated earlier. 

            
Figure 4.9 (a) PMOS driving the estimated capacitance CL1 (b) NMOS driving the 

estimated capacitance CL2 

 

4.4.2 Computation of Area Delay Product 

The circuit shown in figure 4.9 (a) is simulated for different W/L ratios of PMOS pre-

charge transistor and corresponding products (area×rise-delay) are calculated taking into 

account the drain capacitance of the pre-charge transistor besides the estimated 

connected load (CL1= 0.1 pF). Similarly, the circuits shown in figure 4.9 (b) is simulated 

for different W/L ratios of NMOS pre-discharge transistor and corresponding products 

(area×fall-delay) are calculated taking into account the drain capacitance of the pre-

discharge transistor besides the estimated load (CL2= 0.1 pF). Transistor level circuit 
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simulations are carried out using T-spice from M/s TANNER Research Inc. taking 

transistor model parameters of 0.5 µm technology. The channel lengths of NMOS and 

PMOS devices are kept fixed equal to the minimum channel lengths Ln=Lp=0.5 µm.  

 

4.4.3 Simulation Result 

The simulation is carried out for a fixed load (CL1= CL2=0.1 pF). Figure 4.10 shows the 

variation of rise- delay (for charging up to 95% of VDD) with W/L ratio of PMOS 

transistor and figure 4.11 shows the variation of product, (area×rise-delay) with change 

in W/L ratio of PMOS transistor. Figure 4.12 shows the variation of fall-delay (for 

discharging up to 5% of VDD) with W/L ratio of NMOS transistor and figure 4.13 shows 

the variation of product, (area × fall-delay) with change in W/L ratio of NMOS 

transistor. The Ln and Lp values were kept at 0.5 µm for all simulations.  
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Figure 4.10 Variation of rise- delay Figure 4.11 Variation of (area×rise-delay) product 
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Figure 4.12 Variation of fall-delay Figure 4.13 Variation of (area × fall-delay) product 

 

Figure 4.11 shows that the product (area×rise-delay) is minimum at a particular W/L 

ratio (≈5.5) of PMOS pre-charge transistor for (CL1=0.1 pF). The transistor sizes smaller 

than this value have lower speed and the transistor sizes greater than this value have 

larger area without significant contribution to speed. The optimal W/L selection varies 

with the amount of capacitance to be driven at dynamic node (CL1) as given by equation 

(4.8). For given capacitive load at dynamic node, the increase of W/L ratio of PMOS 
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pre-charge transistor beyond an optimum point has little speed advantage, mainly due to 

increase in the self parasitic capacitance load of the PMOS pre-charge transistor in 

comparison to the estimated load to be driven (CL1). Figure 4.13 show that product 

(area×fall-delay) is minimum at a particular W/L ratio (≈3) of NMOS pre-discharge 

transistor for (CL2=0.1 pF). Transistor sizes smaller than this value reduce speed and 

transistor sizes greater than this value increase area without any significant contribution 

to speed. Optimal W/L selection varies with the amount of capacitance to be driven at the 

dynamic node (CL2) as given by equation (4.10). For a given capacitive load at the 

dynamic node, the increase in W/L ratio of the NMOS pre-discharge transistor beyond 

an optimum point has little speed advantage-mainly due to increase in the self parasitic 

capacitance load of NMOS pre-discharge transistor in comparison to the estimated load 

to be driven (CL2). 

The optimal selection of pre-charge PMOS and pre-discharge NMOS transistor sizes in  

CMOS domino logic circuits can be achieved by estimating the load capacitances at the 

dynamic nodes to be driven by the pre-charge and the pre-discharge transistors. The 

transistor sizes with minimum product terms (area×rise-delay) and (area×fall-delay) are 

suitable candidates for an optimized design. Increase in the size of these transistors 

beyond the optimal point increases the device area without significant improvement in 

speed due to self-parasitic capacitance loading effect. The suggested technique can be 

effectively used in digital circuit design using domino logic gates to achieve faster and 

compact designs. In this research work the W/L ratio of pre-charge PMOS transistor in 

the dual rail domino logic cell design is kept same as the W/L ratio of the top NMOS 

transistor as shown in figure 4.14, because increase in the size of these transistors beyond 

this optimal point increases the device area without significant improvement in the speed 

due to self-parasitic capacitance loading effect.  The cell implements Y=A.B.C; the 

lower NMOS transistors in the cascade of a domino logic cell are graded in size, to 

improve its transient response [1]. 
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Figure 4.14 Design of a domino logic cell 

 

4.5 Chapter Summary 

This chapter presents the fundamentals of the logic design styles considered for level 

implementation of schematic level designs. These logic design styles are static CMOS 

logic and dynamic CMOS logic. Static CMOS logic design styles are static logic and TG 

logic while, dynamic CMOS logic design styles are dual rail domino logic and TSPC 

logic. It also looks at the problem of transistor sizing for these logic design styles to 

maximize their performance. These techniques and approaches have been used in the 

subsequent circuit level implementations of the schematics. 
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CHAPTER 5 

STUDY OF NBTI DEGRADATION IN DIGITAL LOGIC CIRCUITS 

USING VERILOG HDL 

 

NBTI is identified as one of the most critical reliability concerns for nanometer scale 

digital integrated circuits. Degradation occurring in PMOS devices is the most critical as 

it decides the lifetime of CMOS devices in deep sub micron technologies. Research on 

NBTI is active only within the community of device and reliability physics and leading 

industrial companies are developing their own models and tools to handle this effect. In 

this chapter we develop and present a Verilog HDL based switch level circuit modeling 

technique that incorporates the device-level NBTI modeling to dynamically model the 

growth of NBTI effect in transistor switches and its evolutionary impact on circuit 

performance with time. A one bit full adder circuit is used as vehicle to demonstrate the 

technique. The circuit model describes basic static CMOS logic gates using switch level 

Verilog description, which also incorporates the model for computing the change in 

threshold voltage (∆Vt) and delay (tp) of PMOS devices after every NBTI stress phase 

and recovery phase. NBTI stress can be computed by knowing the time for which 

particular PMOS transistor remains under negative bias (i.e Vgs<0). Higher modules can 

be described hierarchically using these basic gates. In this study, a set of random input 

vectors corresponding to 0.5 years of operation  (15768000 random vectors, changing 

every second) is applied to the digital circuit in order to observe the effect of NBTI 

degradation on threshold voltage shift of all PMOS devices. The techniques for 

estimating the degradation in the switching speed of the circuit are also discussed. 

It has been reported [52], [53] that NBTI occurring in PMOS devices has emerged as a 

key reliability degradation issue which affects the lifetime of CMOS devices. The 

degradation in NMOS devices is far less as compared to that in PMOS and is hence 

neglected in the presented analysis. NBTI manifests as an increase in the threshold 

voltage and consequent decrease in drain current and trans-conductance of PMOS 

transistors [52], [53]. NBTI degradation increases threshold voltage by about 25 to 30% 

in 10 years [54]. The degradation exhibits power law dependence with time, which can 

be described using reaction-diffusion model. When a negative gate to source voltage is 

applied, it initiates a field-dependent reaction at the Si/SiO2 interface that generates 
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interface traps by breaking the passivated Si–H bonds, which release hydrogen. The 

released hydrogen diffuses away from the interface, leaving behind a positively charged 

interface state (Si+), which is responsible for the increase in threshold voltage [53].  On 

removing the applied stress the Si-H bond reforms, which recovers of threshold voltage 

[54].  Gate sizing can tolerate the NBTI degradation in digital circuits, by assigning 

delay degradation margins to the transistors, so that the expected circuit delay would not 

exceed the original design specification before the end of the specified lifetime of the 

circuit [55]. 

The CAD tools for modeling and managing the NBTI degradation are not widely 

available due to this effect’s complexity and emerging status [33]. Presently research 

work on NBTI is actively pursued only within the community of device and reliability 

physicists and leading industrial companies do develop their models and tools to handle 

this effect [33], [34]. Furthermore, the first order estimation of NBTI degradation on 

digital logic circuits at the logic level is based on the probability that PMOS transistors in 

the circuit will be affected by NBTI stress. A stress is the condition when a negative gate 

to source voltage is applied to the PMOS transistor, the probability of being stressed is 

non-uniform among PMOS transistors in a circuit [52]. Such methods based on 

probability are less accurate. In this chapter we suggest a more accurate method using 

widely available Verilog HDL tool to individually compute the Vt degradation of all 

PMOS devices. The design can be re-simulated with modified Vt. Since timing 

verification of complete circuit through simulation requires large computational effort, 

the circuit delay can also be computed by including the PMOS transistor’s Vt 

degradation on the longest path (critical path) in the logic network.   Since longest path 

in the logic circuit can change over time, the top 10% of the longest paths can be 

considered for simulation [52] [53]. This chapter presents the model of a 1-bit full adder 

using Verilog HDL. This switch level model also incorporates necessary description to 

compute the change in threshold voltage (∆Vts & ∆Vtr) and the delay (tp) of all PMOS 

devices due to NBTI stress. It also presents a comparative study of Vt degradation for all 

the PMOS devices when input vectors corresponding to 0.5 years of operation are 

applied to the circuit. The computational model used for NBTI degradation process is 

described in Section 5.1. Section 5.2 describes the incorporation of NBTI degradation 

model in Verilog simulation. Verilog simulation results estimating NBTI degradation for 

1-bit full adder are described in section 5.3 
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5.1 Model for NBTI Degradation 

The predictive model of PMOS NBTI effect enables efficient design examination within 

the standard CAD environment [33]. For a PMOS device there are two phases of NBTI. 

In phase-I the NBTI stress condition is reached when a negative voltage is applied 

between the gate and source terminals of a PMOS device (i.e. when Vg=0, Vgs=-VDD). In 

phase-II the NBTI degradation is recovered (i.e. when Vg= VDD, Vgs=0), this phase is 

referred to as recovery phase. Change in threshold voltage under dynamic NBTI stress or 

recovery condition is given by equation (5.1) and equation (5.2), which are together 

taken as the predictive model given in reference [33]. This model provides a solid basis 

for the tool development. The dynamic NBTI behavior for 90 nm technology node using 

appropriate technology data is analyzed below. 
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Where, Kv represent the rate of generation of interface trap levels, ∆Vth0 represents initial 

deviation in threshold voltage before device’s stress or recovery phase, δV accounts for 

non-H based mechanisms like oxide and other charge residues trapped in Si-SiO2 

interface (=5 mv) and η is empirical constant (=0.35). 

 

]exp[]/exp[)](/1[ )( tA  K 0ox v KT
EEEVVVVVC aoxthgsdsthgsox −••−−−•= α  

Where, A is an empirical constant, tox  is the thickness of oxide layer in nanometer 

regime, Cox is capacitance per unit area of oxide layer, Vds & α  account for sub threshold 

leakage effect which alleviates NBTI stress (since Eox at the drain end is smaller than at 

the source end),  Eox is electric field experienced by oxide layer. Note that E0 is intrinsic 

electric field in the oxide and Ea is activation energy, which are technology independent 

characteristics of the reaction. 
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Putting these values equation (5.1) reduces to equation (5.3) and equation (5.2) reduces 

to equation (5.4). Equation (5.3) gives ∆Vts, which is the accumulated variation in Vt 

after stress phase, and equation (5.4) gives ∆Vtr, which is accumulated variation in Vt 

after recovery phase. These variations accumulate for all the stress and recovery cycles. 
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The value of Vt after any stress or recovery can be obtained by adding accumulated 

changes to Vt value at the beginning. Note that the ∆Vts is function of time and different 

technologies give different final values for ∆Vts, hence final value of ∆Vts is independent 

of frequency [33]. 
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The propagation delay of the device is calculated using alpha-power law MOSFET 

model [56], as given in equation (5.5), 
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Where,   VDD  is  the  supply  voltage (VDD =1V) ;  α is  a technology  based constant (α 

=1.3 ) and for normalized delay the C =1 pF, hence delays are in pico seconds. The Vt is 

the degraded threshold voltage of the PMOS after any stress or recovery phase. Thus, 

decrease in Vt of PMOS will increase delay of PMOS. 

 

5.2 Incorporation of NBTI Degradation Model in Verilog Simulation 

In our study, a 1-bit full adder is considered. Similar modeling can be done for any other 

combinational or sequential circuit to study the NBTI effect. The full adder circuit is 

implemented hierarchically i.e. a 1-bit full adder is implemented using two 2-input XOR 

gates and three 2-input NAND gates. The 2-input XOR gate is implemented using four 

2-input NAND gates, as shown in figure 5.1. Each 2-input NAND gate has static CMOS 
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implementation. Thus, the 2-input NAND gate is the basic building block for the whole 

circuit. 

 

 
(a) 

 

 
(b) 

Figure 5.1. (a) Full Adder schematic (b) XOR gate schematic 

 

A Verilog code has been written to describe the 1-bit full adder. A NAND gate is 

modeled using switch-level model, which also incorporates the description for 

computing the change in threshold voltage (∆Vts and ∆Vtr) and the delay (tp) of PMOS 

devices after any stress or recovery phase. Inside each NAND gate module, the time for 

which each of the PMOS switch is getting stressed (i.e. time for each gate input signal 

remains logic ‘0’) is found and then ∆Vts and ∆Vtr is calculated using equation (5.3) and 

equation (5.4). Now, accumulated change in ∆Vts is added to value Vt at the beginning to 

get the new threshold voltage. The Verilog code for NAND2 gate is as shown below: 
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module my_nand (out,in1,in2);  

output out; 

input in1,in2; 

wire w; 

real 

vt1=0.2,vt2=0.2,k=0.0000000188,vt1s,vt1r,vt2s,vt2r,dv1s,dv2s,dv1r,dv2r,delay1,delay2;

  //threshold voltage Vt and change in threshold voltage dv=∆V  

time t1_in1,t2_in1,t1_in2,t2_in2,dt_in1,dt_in2; //time variables 

supply1 pwr; 

supply0 gnd; 

 

pmos (out,pwr,in1), 

(out,pwr,in2);  //switch-level modelling with static CMOS implementation 

nmos (out,w,in1), 

(w,gnd,in2); 

initial 

begin 

 dv1r=0; 

 dv1s=0; 

 dv2r=0; 

 dv2s=0; 

 end 

 

 always @ (negedge in1) 

t1_in1 = $time;  //noting the time when PMOS1 get stressed 

 

always @ (posedge in1) 

begin 

t2_in1 = $time;    //noting the time when PMOS1 is relieved from stress 

dt_in1 = t2_in1 - t1_in1;  //calculating the time for which PMOS1 remains stressed 

  

dv1s = ((((k*k)*((dt_in1)**0.5))+(dv1r*dv1r))**0.5+0.005); // dv1s=∆Vts 

dv1r = ((dv1s-0.005)*(1-(0.35*(dt_in1/t2_in1))**0.5)); // dv1r=∆Vtr 
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vt1s = vt1 + dv1s; //degraded Vt = original Vt + (change in Vt= ∆Vts)  

vt1r = vt1 + dv1r; //degraded Vt = original Vt + (change in Vt= ∆Vtr) 

 delay1 = 1/((1-vt1r)**1.3);  //delay for the PMOS1 taking C=1 pF, alpha=1.3 

end 

 

always @ (negedge in2) 

t1_in2 = $time;    //noting the time when PMOS2 get stressed 

 

always @ (posedge in2) 

begin 

t2_in2 = $time;    //noting the time when PMOS2 is relieved from stress 

dt_in2 = t2_in2 - t1_in2;   //calculating the time for which PMOS1 remains stressed 

dv2s = ((((k*k)*((dt_in2)**0.5))+(dv2r*dv1r))**0.5+0.005); // dv2s=∆Vts 

 dv2r = ((dv2s-0.005)*(1-(0.35*(dt_in2/t2_in2))**0.5)); // dv2r=∆Vtr 

vt2s = vt2 + dv2s;  //degraded Vt = original Vt + (change in Vt= ∆Vts) 

vt2r = vt2 + dv2r; //degraded Vt = original Vt + (change in Vt= ∆Vtr) 

 delay2 = 1/((1-vt2r)**1.3);  //delay for the PMOS1 taking C=1 pF, alpha=1.3 

end 

endmodule  

 

Hierarchical modeling is used to describe XOR gate and 1-bit full adder. The final Vt of 

each PMOS device can be read after every input vector application. These input vectors 

are generated randomly in the test bench and applied to the design under simulation after 

every 1 sec and simulated for a period of 0.5 years and corresponding degradation in Vt 

and delays are obtained through simulation. The simulation tool used is “Modelsim” 

from Mentor Graphics. Since the ∆Vts is function of time, the value of ∆Vts 

corresponding to warranty period can be found and used for robust circuit design to meet 

the specification. 

 

5.3 Verilog Simulation Results Showing NBTI Degradation for 1-bit Full Adder 

Initially, the |Vt| of all the PMOS switches is set to 0.2 V. The initial delay tp obtained 

with this value of Vt is 1.336 psec.  Then after applying input vectors corresponding to 

0.5 years of operation to the 1-bit full adder, we observed the threshold voltages shifts 
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and delay changes of all the PMOS switches of 1-bit full adder. Table 5.1 shows the 

increment in Vt’s and delay (tp’s) of the 22 PMOS devices of 1-bit full adder.  

 

Table 5.1 Degradation in Vt and propagation delay for all PMOS devices in a 1-bit full 

adder 

S. No Level 01 Level 02 PMOS |Vt|  (after 0.5 years) 

Delay  (after  0.5 years) 

ps 

 

1  P-1 0.212377 1.35274 

2  
NAND-0 

P-2 0.212377 1.35274 

3  P-1 0.212377 1.35274 

4  
NAND-1 

P-2 0.212377 1.35274 

5  P-1 0.212376 1.35274 

6  
NAND-2 

P-2 0.212376 1.35274 

7 XOR-0 P-1 0.212377 1.35274 

8  
NAND-0 

P-2 0.212377 1.35274 

9  P-1 0.212377 1.35274 

10  
NAND-1 

P-2 0.212377 1.35274 

11  P-1 0.212376 1.35274 

12  
NAND-2 

P-2 0.212376 1.35274 

13  P-1 0.210848 1.34935 

14  
NAND-3 

P-2 0.210848 1.34935 

15 XOR-1 P-1 0.212377 1.35274 

16  
NAND-0 

P-2 0.212377 1.35274 

17  P-1 0.212377 1.35274 

18  
NAND-1 

P-2 0.212377 1.35274 

19  P-1 0.210848 1.34935 

20  
NAND-2 

P-2 0.210848 1.34935 

21  P-1 0.21169 1.35121 

22  
NAND-3 

P-2 0.21169 1.35121 

 

The degradation in the switching speed of the circuit can be computed by re-simulating 

the circuit with modified Vt. The circuit delay can also be computed by simulating the 

PMOS transistors on the longest path (critical path) in the logic network in order to 

reduce computational effort [52], [57].   Since longest path in the logic circuit can change 

over time, the top 10% of the longest paths can be considered for estimation. 
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NBTI is one of the most critical reliability issues for deep sub micron technology. In this 

chapter we presented a new simple method to study NBTI degradation of any digital 

circuit using Verilog HDL. Since the research on NBTI is active only within the 

community of the device and reliability physicists and leading industrial companies 

develop their own models and tools to handle this effect, such NBTI study using Verilog 

HDL provides an open general method for modeling and estimation of NBTI degradation 

in CMOS circuits implemented using nanometer scale technologies. The degradation in 

Vt of all PMOS devices in the circuit can be obtained using Verilog HDL switch level 

modeling. Simulation result shows the degradation in the Vt of all PMOS devices in 1-bit 

full adder. The technique to compute degradation in the switching speed of the circuit 

has also been discussed. 

 

5.4 Chapter Summary 

This chapter presents NBTI degradation in nanometer scale digital VLSI circuits, which 

is identified as one of the most critical reliability concerns more recently discovered. The 

chapter studies the theoretical device level models and proposes a technique for 

incorporation of NBTI degradation in given circuit using switch level Verilog 

description. The developed technique has been used to dynamically simulate NBTI 

degradation in a full adder modeled using static CMOS logic design style. The NBTI 

degradation study for different data path elements like signed multiplier (i.e Baugh 

Wooley multiplier and Booth encoded Wallace tree multiplier), unsigned multiplier (i.e. 

MUX based and 2×2 cell based multiplier) and barrel shifter architectures (i.e MUX 

based barrel shifter and Pereira’s barrel shifter) designed using different logic design 

style is reserved as future scope of the work. 
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CHAPTER 6 

 VLSI IMPLEMENTATION AND SIMULATION RESULTS OF DIFFERENT 

MULTIPLIERS AND BARREL SHIFTER ARCHTECTURES 

 
 
In this chapter a comparison of VLSI implementation results of different architectures 

chosen for study for data path elements including signed multiplier (i.e Baugh Wooley 

multiplier and Booth encoded Wallace tree multiplier), unsigned multiplier (i.e. MUX 

based and 2×2 cell based multiplier) and barrel shifter (i.e MUX based barrel shifter and 

Pereira’s barrel shifter) is presented.  

A cell library consisting of functional cells was defined. Corresponding to the functional 

cell library, three different schematic libraries were designed using static logic, TG logic 

and dual rail domino logic design styles using the basic design principles. Three different 

physical versions of each schematic library were developed by respectively sizing the 

W/L ratios of the NMOS transistor to values of 3, 5 and 7. As discussed in chapter 1 the 

W/L values smaller than 3 were also experimented with but not considered further as 

they resulted in parasitic dominated slower speeds due to weak drives of transistors and 

were not considered good candidates for high performance. All the physical library 

versions were implemented in 0.5 µm, N-well CMOS process (SCN_SUBM, 

lambda=0.3) of MOSIS. 

 The layout assemblies for the 4-bit, 8-bit, 12-bit and 16-bit multiplier and barrel shifter 

circuits were carried out using these cell libraries and automatic placement and routing 

tool LEDIT (SPR) from M/s Tanner Research Inc [35], [36]. The generated layouts were 

then simulated after parasitic extraction using circuit simulator, ELDO spice. Supply 

voltage VDD was kept at 3.3 V.  

The performance parameters and design attributes for comparison were propagation 

delay, average power, maximum power, leakage power, transistor count, core layout 

area, routing length and number of vias. 
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6.1 Comparison Between Baugh Wooley Multiplier and Booth Encoded Wallace 
Tree Multiplier Implementations 
  
Table 6.1 (a), 6.1 (b) and 6.1 (c) show the comparison of the Baugh Wooley signed 

multiplier and the Booth encoded Wallace tree signed multiplier. 

Comparison of the two architectures shows that the Baugh Wooley multiplier is much 

faster than the Booth encoded Wallace tree multiplier and consumes much less power 

due to fewer numbers of transistors and smaller layout area. The routing length and 

number of vias are also much smaller in Baugh Wolley multiplier implementation. The 

Baugh Wolley multiplier implementation features smaller leakage power as compared to 

Booth encoded Wallace tree multiplier due to its smaller transistor count. 

For the Baugh Wooley multiplier architecture the implementations using TG logic design 

style and domino logic design style result in much larger delay and power as compared 

to static logic design style implementation because routing length is increased for these 

implementations.  

By comparison in Booth encoded Wallace tree multiplier the TG logic design style 

implementation is slightly faster and consumes lower power as compared to static logic 

implementation, since it has almost comparable routing length, but the domino logic 

design style implementation is slower and consumes more power compared to static 

logic design style mainly due to much larger routing length and use of many simpler 

logic cells in the design implementation.  

The increasing of sizes of devices does not show appreciable improvements in delay and 

only increases the core layout area and power consumption. 
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Table 6.1 (a) Performance and Characteristics of Baugh Wooley and Booth encoded 
Wallace tree multiplier for W/L=3 

 
 
 

Multiplier Architecture Type 
Baugh Wooley Booth encoded Wallace tree Size Performance Indices 

Static TG Domino Static TG Domino 
τ  (ns) 9.33 19.07 20.18 19.15 17.35 32.64 
Average Power (mw) at 20 MHz 4.52 14.61 22.65 27.949 17.96 24.32 
Max Power (mw) 192.19 2455.28 1653.71 177.25 403.77 4085.4 
Leakage Power (nW) 29.719 134.79 54.69 231.15 215.00 1265.5 
Transistor Count 8404 9862 13790 15288 14664 27312 
Core Area (mm2) 16.40 32.17 77.65 44.17 58.56 156.98 
Total Routing Length  (mm) 1005 1778 5117 2335 2750 9436 

16-bit 

No. of Via 2524 2428 5586 8266 7717 17211 
τ  (ns) 6.87 13.92 14.99 18.08 10.00 30.102 
Average Power (mw) at 20 MHz 2.50 7.91 12.34 9.71 11.50 23.82 
Max Power (mw) 113.55 1228.47 916.46 106.57 410 2329.8 
Leakage Power (nW) 22.05 78.62 35.6 119.74 128.93 28.81 
Transistor Count 4692 5502 7686 9298 8838 16450 
Core Area (mm2) 8.40 17.46 37.44 23.56 30.42 75.18 
Total Routing Length  (mm) 503.54 914 2495 1110 1335 4446 

12-bit 

No. of Via 1380 1424 3161 4837 4664 10299 
τ  (ns) 4.43 8.79 10.072 13.49 8.49 21.78 
Average Power (mw) at 20 MHz 1.089 3.29 5.286 2.66 4.94 10.93 
Max Power (mw) 55.53 494.12 398.62 59.9 145.44 1082.4 
Leakage Power (nW) 8.16 32.77 16.67 28.97 62.55 17.11 
Transistor Count 2068 2422 3374 4622 4186 7846 
Core Area (mm2) 2.99 6.13 14.71 9.69 11.20 30.66 
Total Routing Length  (mm) 159.28 264.51 889.86 420.015 467.20 1730.48 

8-bit 

No. of Via 617 596 1425 2161 2049 4791 
τ  (ns) 2.02 3.69 5.33 6.32 7.03 12.13 
Average Power (mw) at 20 MHz 0.2739 0.59 1.197 0.44 2.43 3.59 
Max Power (mw) 18.64 93.29 93.94 30.56 81.95 372.9 
Leakage Power (nW) 2.79 8.31 0.465 17.16 22.19 7.75 
Transistor Count 532 622 854 1638 1474 2738 
Core Area (mm2) 0.73 1.39 3.04 2.790 3.38 8.36 
Total Routing Length  (mm) 29.81 50.022 145.10 109.604 125.33 413.67 

4-bit 

No. of Via 142 129 364 712 657 1647 
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Table 6.1 (b)  Performance and Characteristics of Baugh Wooley and Booth encoded 
Wallace tree multiplier   for  W/L=5 

Multiplier Architecture Type 
Baugh Wooley Booth encoded Wallace tree Size Performance Indices 

Static TG Domino Static TG Domino 
τ  (ns) 9.25 18.47 18.67 14.24 16.12 31.85 
Average Power (mw) at 20 MHz 7.49 23.79 36.63 83.14 27.46 64.68 
Max Power (mw) 322.67 3724.37 2762.18 311.22 660.82 6303 
Leakage Power (nW) 37.16 214.69 32.07 281.64 357.47 2681 
Transistor Count 8404 9862 13790 17404 14664 27312 
Core Area (mm2) 16.09 37.12 87.43 53.24 59.91 172.81 
Total Routing Length  (mm) 947.69 2134.5 5564.03 2447.05 2553.89 10027 

16-bit 

No. of Via 2457 2414 5536 7999 7888 17213 
τ  (ns) 6.86 13.51 14.09 14.85 9.26 28.63 
Average Power (mw) at 20 MHz 4.158 12.86 20.07 58.59 18.34 37.87 
Max Power (mw) 191.03 1898.98 1580.25 259.59 470.50 3851 
Leakage Power (nW) 23.74 119.51 38.50 402.81 214.26 43.68 
Transistor Count 4692 5502 7686 10530 8838 16450 
Core Area (mm2) 8.52 17.55 43.04 26.66 31.62 93.46 
Total Routing Length  (mm) 484.61 872.9 2711 1195.14 1278.41 5356 

12-bit 

No. of Via 1385 1354 3136 4697 4582 10202 
τ  (ns) 4.42 8.54 9.52 11.10 8.39 20.57 
Average Power (mw) at 20 MHz 1.815 5.4 8.64 7.79 8.20 17.35 
Max Power (mw) 93.91 796.28 672.98 105.92 243.33 1778 
Leakage Power (nW) 10.13 52.40 26.77 151.76 104.53 17.78 
Transistor Count 2068 2422 3374 5120 4186 7846 
Core Area (mm2) 3.05 6.76 16.11 10.78 13.30 37.72 
Total Routing Length  (mm) 155.66 285.95 889.8 458.57 496.58 1840.9 

8-bit 

No. of Via 615 612 1421 2122 2117 4770 
τ  (ns) 2.03 3.6 5.07 6.01 6.95 11.46 
Average Power (mw) at 20 MHz 0.462 0.99 2.00 1.38 4.04 5.77 
Max Power (mw) 31.21 148.10 162.89 52.21 134.79 613 
Leakage Power (nW) 4.48 13.46 2.71 27.80 37.22 10.16 
Transistor Count 532 622 854 1804 1474 2738 
Core Area (mm2) 0.79 1.56 3.54 3.29 3.92 9.95 
Total Routing Length  (mm) 33.13 51.81 150.32 120.71 132.10 443.6 

4-bit 

No. of Via 159 141 372 715 668 1585 
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Table 6.1 (c)  Performance and Characteristics of Baugh Wooley and Booth encoded 
Wallace tree multiplier    for W/L=7 

Multiplier Architecture Type 
Baugh Wooley Booth encoded Wallace tree Size Performance Indices 

Static TG Domino Static TG Domino 
τ  (ns) 9.15 18.22 18.65 13.83 15.89 30.98 
Average Power (mw) at 20 MHz 10.42 37.09 50.75 157.44 38.42 88.20 
Max Power (mw) 461.93 4861.99 3789.06 438.83 1163.78 8943 
Leakage Power (nW) 65.01 287.45 28.53 620.57 501.43 2095 
Transistor Count 8404 9862 13790 17404 14664 27312 
Core Area (mm2) 18.18 36.71 911.24 54.69 61.38 189.53 
Total Routing Length  (mm) 1086.3 1849.2 5569.79 2543.18 2558.43 10700 

16-bit 

No. of Via 2445 2446 5629 7856 7696 17309 
τ  (ns) 6.77 13.31 14.02 14.69 9.01 27.62 
Average Power (mw) at 20 MHz 5.77 17.84 27.97 29.46 25.38 60.67 
Max Power (mw) 274.42 2557.17 2112.69 188.21 649.40 5286 
Leakage Power (nW) 39.22 165.72 30.12 391.18 300.42 40.14 
Transistor Count 4692 5502 7686 10530 8838 16450 
Core Area (mm2) 8.96 18.77 44.07 26.60 32.62 98.20 
Total Routing Length  (mm) 475.13 897.33 2657.5 1151.38 1353.37 5434 

12-bit 

No. of Via 1382 1363 3102 4651 4531 10276 
τ  (ns) 4.38 8.41 9.48 11.10 8.32 19.97 
Average Power (mw) at 20 MHz 2.508 7.47 11.96 14.86 11.46 23.92 
Max Power (mw) 135.53 1073.62 928.09 147.88 333.09 2488 
Leakage Power (nW) 11.64 71.92 5.19 134.30 146.28 18.16 
Transistor Count 2068 2422 3374 5120 4186 7846 
Core Area (mm2) 3.45 7.17 17.13 11.19 13.77 38.41 
Total Routing Length  (mm) 166.12 288.03 934.8 457.45 522.34 1876.5 

8-bit 

No. of Via 606 574 1376 2190 2089 4790 
τ  (ns) 2 3.55 4.96 6.00 6.91 11.34 
Average Power (mw) at 20 MHz 0.6435 1.39 2.78 2.72 5.62 8.03 
Max Power (mw) 43.79 204.33 226.10 74.10 185.65 867 
Leakage Power (nW) 4.16 18.62 1.35 84.17 51.91 6.90 
Transistor Count 532 622 854 1804 1474 2738 
Core Area (mm2) 0.78 1.62 3.56 3.20 4.04 11.27 
Total Routing Length  (mm) 31.40 51.12 145.35 112.12 129.98 524.6 

4-bit 

No. of Via 136 134 358 678 682 1652 
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6.2 Comparison Between MUX Based Multiplier and 2×2 Cell Based Multiplier 

Implementations  

Tables 6.2 (a), 6.2 (b) and 6.2 (c) show the comparison of the unsigned multipliers i.e. 

MUX based and 2×2 cell based multiplier. 

Comparison of these two architectures shows that the MUX based multiplier architecture 

is slower as compared to the 2×2 cell based multiplier but it consumes lesser power and 

features reduced transistor count, smaller core layout area and reduced routing length.  

This shows that MUX based multiplier architecture is inherently slower.  

In both MUX based and 2×2 cell based multiplier architectures the implementations 

using the TG logic design style show larger delay and power consumption as compared 

to the static logic implementation mainly due to larger routing lengths and increased 

number of vias. On the other hand the domino logic design style implementation shows 

comparable or slightly improved delay performance at the cost of large power 

consumption, this may be due to the use of more complex logic cells and hierarchical 

approach followed in designing these architectures. 

Increasing the sizes of devices does not show appreciable improvement in delays but 

only results in larger core layout areas and power consumption. 
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Table 6.2 (a) Performance and characteristics of MUX based and 2×2 cell based 
multiplier for W/L=3 

 
Multiplier Architecture Type 

MUX based 2×2 Cell based Size Performance Indices 
Static TG Domino Static TG Domino 

τ  (ns) 14.15 38.35 13.81 10.94 17.48 10.82 
Average Power (mw) at 20 MHz 22.05 54.63 24.26 31.58 67.67 43.89 
Max Power (mw) 623.46 2956.48 1841.31 543.34 4097.19 2620.89 
Leakage Power (nW) 53.34 120.32 68.03 64.02 288.42 127.87 
Transistor Count 10168 8758 15678 16032 21744 29232 
Core Area (mm2) 23.76 33.86 99.81 35.07 75.87 178.41 
Total Routing Length  (mm) 1386.71 1861.1 6651.38 2101.75 4015.68 11509.3 

16-bit 

No. of Via 3452 3795 8331 5704 5594 12596 
τ  (ns) 11.67 21.95 10.86 7.8 13.74 8.64 
Average Power (mw) at 20 MHz 7.12 19.98 14.22 16.83 35.34 23.62 
Max Power (mw) 363.56 1599.63 1083.68 342.90 2227.56 1447.11 
Leakage Power (nW) 31.86 73.39 33.12 43.16 156.09 76.89 
Transistor Count 6048 5286 9382 8668 11806 15918 
Core Area (mm2) 12.68 16.99 50.6 17.86 36.32 88.79 
Total Routing Length  (mm) 692.22 814.45 3160.92 997.09 1838.01 5708.2 

12-bit 

No. of Via 2063 2059 4833 3073 2997 6791 
τ  (ns) 9.01 12.31 8.00 4.52 12.25 5.65 
Average Power (mw) at 20 MHz 1.77 8.09 7.637 17.82 13.78 9.57 
Max Power (mw) 197.85 769.16 534.67 463.35 833.52 608.94 
Leakage Power (nW) 15.13 37.19 5.18 7.623 65.34 14.74 
Transistor Count 2952 2646 4622 3588 4926 6678 
Core Area (mm2) 4.75 6.88 19.18 6.26 13.84 31.30 
Total Routing Length  (mm) 230.07 315.08 1115.12 317.53 605.51 1881.6 

8-bit 

No. of Via 976 980 2524 1390 1370 3034 
τ  (ns) 6.41 8.36 5.93 2.92 6.22 3.92 
Average Power (mw) at 20 MHz 0.134 1.83 2.015 1.08 2.15 1.79 
Max Power (mw) 51.24 237.93 159.31 66 197.04 123.98 
Leakage Power (nW) 4.16 11.86 5.37 0.38 12.40 3.99 
Transistor Count 880 838 1398 652 934 1302 
Core Area (mm2) 1.19 1.93 4.75 0.98 2.05 4.04 
Total Routing Length  (mm) 47.69 66.26 215.35 42.68 72.92 196.17 

4-bit 

No. of Via 249 250 657 237 260 593 
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Table 6.2 (b) Performance and characteristics of MUX based and 2×2 cell based 
multiplier for W/L=5 

Multiplier Architecture Type 
MUX based 2×2 Cell based Size Performance Indices 

Static TG Domino Static TG Domino 
τ  (ns) 13.50 36.05 12.57 11.16 17.96 9.9 
Average Power (mw) at 20 MHz 57.158 63.80 40.42 52.14 107.74 68.93 
Max Power (mw) 1092.77 4729.06 3158.46 933.53 6047.99 4343.22 
Leakage Power (nW) 150.24 194.49 77.10 136.45 467.94 280.7 
Transistor Count 10196 8758 15678 16032 21744 29232 
Core Area (mm2) 24.96 39.21 108.12 39.63 83.34 177.28 
Total Routing Length  (mm) 1450.89 2048.8 7001.75 2297.2 4346.8 11514.2 

16-bit 

No. of Via 3443 3784 8217 5731 5700 12472 
τ  (ns) 11.08 21.27 10.18 10.86 14.02 8.15 
Average Power (mw) at 20 MHz 18.69 32.77 23.75 27.06 56.22 37.19 
Max Power (mw) 616.16 2595.57 1942.58 534.69 3230.36 2372.7 
Leakage Power (nW) 88.82 119.33 42.88 65.34 254.76 29.40 
Transistor Count 6068 5286 9382 8668 11806 15918 
Core Area (mm2) 13.30 19.18 55.34 18.53 37.50 87.18 
Total Routing Length  (mm) 755.77 874 3348.87 1007.3 1790.62 5591.8 

12-bit 

No. of Via 1980 1979 4899 3105 3007 6706 
τ  (ns) 8.69 11.88 7.57 5.47 12.45 5.17 
Average Power (mw) at 20 MHz 4.64 13.25 12.72 11.88 21.97 15.18 
Max Power (mw) 299.01 1259.30 936.23 259.47 1322.20 1004.45 
Leakage Power (nW) 42.59 60.20 11.97 24.68 128.04 14.52 
Transistor Count 2952 2646 4622 3588 4926 6678 
Core Area (mm2) 4.89 8.24 23.85 6.93 14.69 32.00 
Total Routing Length  (mm) 227.18 332.47 1342.11 344.73 608.54 1905.06 

8-bit 

No. of Via 958 981 2676 1380 1441 2979 
τ  (ns) 6.30 8.12 5.59 3.09 6.05 4.15 
Average Power (mw) at 20 MHz 0.355 2.99 3.40 1.64 3.48 2.41 
Max Power (mw) 87.63 389.04 280.91 87.15 293.32 206.77 
Leakage Power (nW) 11.51 19.33 3.32 7.05 9.37 5.18 
Transistor Count 884 838 1398 652 934 1302 
Core Area (mm2) 1.23 2.06 5.12 1.09 2.19 4.80 
Total Routing Length  (mm) 50.74 65.08 224.15 44.69 73.17 209.71 

4-bit 

No. of Via 264 250 669 251 244 589 
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Table 6.2 (c) Performance and characteristics of MUX based and 2×2 cell based 

multiplier for W/L=7 
Multiplier Architecture Type 

MUX based 2×2 Cell based Size Performance Indices 
Static TG Domino Static TG Domino 

τ  (ns) 13.25 36.51 12.12 10.77 18.01 9.86 
Average Power (mw) at 20 MHz 110.04 87.69 55.42 71.28 150.26 94.05 
Max Power (mw) 1528.38 6217.71 4361.28 1300.36 8082.12 6036.42 
Leakage Power (nW) 299.24 271.05 86.90 176.91 650.43 434.9 
Transistor Count 10196 8758 15678 16032 21744 29232 
Core Area (mm2) 25.19 34.97 115.56 39.27 85.88 183.39 
Total Routing Length  (mm) 1485.99 1786 7005.00 2176.5 4485.9 11294.4 

16-bit 

No. of Via 3416 3405 8071 5616 5594 12112 
τ  (ns) 10.92 21.32 9.91 10.9 16.47 8.07 
Average Power (mw) at 20 MHz 36.08 45.49 32.92 36.96 77.90 50.49 
Max Power (mw) 862.07 3547.97 2618.94 751.54 4349.61 3305.44 
Leakage Power (nW) 178.12 166.76 52.68 97.41 352.11 49.5 
Transistor Count 6068 5286 9382 8668 11806 15918 
Core Area (mm2) 13.66 19.75 65.01 19.78 41.48 99.13 
Total Routing Length  (mm) 726.21 886 3702.14 1072.9 1863.56 5499.2 

12-bit 

No. of Via 1989 2007 4836 3108 3025 6693 
τ  (ns) 8.60 11.72 7.53 5.52 12.01 5.22 
Average Power (mw) at 20 MHz 9.07 18.35 17.52 13.53 30.50 20.98 
Max Power (mw) 418.24 1734.28 1293.75 312.44 1804.79 1402.07 
Leakage Power (nW) 43.23 84.16 16.59 35.97 147.84 21.45 
Transistor Count 2952 2646 4622 3588 4926 6678 
Core Area (mm2) 5.61 8.38 23.57 7.20 14.60 33.10 
Total Routing Length  (mm) 260.4 347.84 1190.83 349.32 583.30 1754.2 

8-bit 

No. of Via 1054 1060 2551 1371 1422 3004 
τ  (ns) 6.24 8.01 5.56 3.14 5.94 3.7 
Average Power (mw) at 20 MHz 0.686 4.15 4.73 2.15 4.84 3.92 
Max Power (mw) 122.50 539.66 388.48 110.15 428.63 286.50 
Leakage Power (nW) 23.31 26.97 7.43 10.42 25.97 6.40 
Transistor Count 884 838 1398 652 934 1302 
Core Area (mm2) 1.32 2.10 5.86 1.10 2.35 5.41 
Total Routing Length  (mm) 49.45 64.24 267.04 44.06 69.62 224.68 

4-bit 

No. of Via 250 250 680 228 244 590 
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6.3 Comparison Between MUX Based Barrel Shifter and Pereira’s Barrel Shifter 

Implementations 

Tables 6.3 (a), 6.3 (b) and 6.3 (c) show the comparison of the cores of barrel shifter 

circuit using MUX based and Pereira’s design approaches. 

Comparison of the two architectures given in tables 6.3 (a), 6.3 (b) and 6.3 (c) shows that 

MUX based barrel shifter architecture is faster as compared to Pereira’s barrel shifter, 

but transistor count, core layout area and routing length are much larger for MUX based 

barrel shifter architecture. This shows that MUX based barrel shifter architecture is 

inherently faster.  

On the power count, MUX based architecture implemented using TG logic design style 

shows the lowest power consumption for bit widths of 4, 8 and 12. However, for the bit 

width of 16, Pereira’s architecture implemented using static logic features lower power 

consumption. 

In MUX-based architecture the implementation using TG logic design style is faster as 

compared to static logic implementation due to decrease in routing length, but domino 

implementation is much slower as compared to static logic implementation due to 

increase in routing length and use of many simpler logic cells in the design. 

Pereira’s architecture shows a comparable performance for static implementation and TG 

implementation, but performance is degraded in domino implementation due to increased 

routing length and use of many simpler logic cells in the design 

Increasing the sizes of devices does not show appreciable improvement in delay and on 

the contrary shows larger core layout areas and increased power consumption. 
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Table 6.3 (a) Performance and characteristics of MUX based and Pereira’s barrel shifter 
for W/L=3 

Barrel shifter Architecture Type 
MUX  based Pereira’s Size Performance Indices 

Static TG Domino Static TG Domino 
τ  (ns) 1.163 0.721 4.28 4.95 4.85 8.40 
Average Power (mw) at 20 MHz 7.18 2.27 22.26 1.328 1.428 5.72 
Max Power (mw) 65.87 276.26 1665.51 37.23 278.43 668.18 
Leakage Power (nW) 65.75 28.78 64.34 41.39 24.07 2273 
Transistor Count 12108 6054 18162 2042 2050 4588 
Core Area (mm2) 28.34 23.38 106.44 4.91 5.88 16.66 
Total Routing Length  (mm) 1901.42 1732.41 8053.4 266.7 292.21 988.9 

16-bit 

No. of Via 4316 4459 10192 1307 1225 2880 
τ  (ns) 1.10 0.675 3.65 4.85 4.79 6.76 
Average Power (mw) at 20 MHz 0.61 0.76 12.60 1.076 1.416 4.35 
Max Power (mw) 53.94 208.57 1156.87 27.82 233.58 524.35 
Leakage Power (nW) 62.38 14.41 45.43 18.69 33.59 1704 
Transistor Count 9840 4920 13626 1610 1618 3580 
Core Area (mm2) 20.19 17.21 64.244 3.59 4.62 12.09 
Total Routing Length  (mm) 1297.00 1184.07 5083.4 175.26 225.73 743.08 

12-bit 

No. of Via 3324 3400 7360 898 936 2137 
τ  (ns) 1.04 0.629 3.09 4.17 4.06 5.47 
Average Power (mw) at 20 MHz 0.37 0.22 4.66 0.537 0.841 2.25 
Max Power (mw) 34.00 125.90 408.85 18.51 127.35 280.55 
Leakage Power (nW) 14.96 8.51 17.75 5.81 4.43 1135 
Transistor Count 2988 1494 4482 880 884 1948 
Core Area (mm2) 5.09 4.30 17.496 1.86 2.32 5.98 
Total Routing Length  (mm) 322.09 296.57 1356.9 88.20 101.47 346.05 

8-bit 

No. of Via 1048 1092 2538 497 504 1144 
τ  (ns) 0.51 0.209 2.35 3.18 3.09 4.38 
Average Power (mw) at 20 MHz 0.06 0.042 1.06 0.223 0.324 0.89 
Max Power (mw) 10.15 35.70 100.08 9.24 59.39 111.57 
Leakage Power (nW) 18.91 1.12 4.33 3.20 0.62 567 
Transistor Count 732 366 1098 364 355 802 
Core Area (mm2) 1.09 0.94 3.35 0.652 0.76 2.035 
Total Routing Length  (mm) 59.73 57.30 237.4 24.89 29.82 107.4 

4-bit 

No. of Via 255 266 635 175 168 446 
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Table 6.3 (b)  Performance and characteristics of MUX based and Pereira’s barrel shifter 
for W/L=5 

Barrel shifter Architecture Type 
MUX  based Pereira’s Size Performance Indices 

Static TG Domino Static TG Domino 
τ  (ns) 0.994 0.669 3.77 4.38 4.70 7.05 
Average Power (mw) at 20 MHz 13.25 3.58 35.25 1.64 2.37 8.95 
Max Power (mw) 106.96 420.15 2771.99 46.76 288.3 1148.71 
Leakage Power (nW) 329.34 33.56 107.92 58.27 59.04 3835 
Transistor Count 12108 6054 18162 2042 2050 4588 
Core Area (mm2) 28.46 26.58 126.75 5.60 6.52 17.71 
Total Routing Length  (mm) 2037.5 1820.6 9683.6 270.2 296.74 969.57 

16-bit 

No. of Via 4266 4554 10445 1212 1183 2924 
τ  (ns) 1.00 0.609 3.70 4.35 4.53 6.45 
Average Power (mw) at 20 MHz 0.98 0.60 19.77 1.27 2.49 6.83 
Max Power (mw) 88.32 325.83 1920.2 35.27 373.89 895.66 
Leakage Power (nW) 1229.44 32.50 56.63 33.35 46.41 2876 
Transistor Count 9840 4920 13626 1610 1618 3580 
Core Area (mm2) 20.58 18.71 81.37 4.44 4.87 12.91 
Total Routing Length  (mm) 1303.7 1220.9 5875.05 218.10 222.39 718.98 

12-bit 

No. of Via 3324 3432 7274 920 941 2188 
τ  (ns) 1.01 0.578 2.82 3.75 3.87 5.20 
Average Power (mw) at 20 MHz 0.60 0.38 7.55 0.645 1.37 3.62 
Max Power (mw) 55.95 192.27 679.04 23.43 224.27 445.31 
Leakage Power (nW) 478.23 14.61 22.67 1.89 25.90 1916 
Transistor Count 2988 1494 4482 880 884 1948 
Core Area (mm2) 5.34 4.80 22.50 2.00 2.52 6.76 
Total Routing Length  (mm) 320.41 314.03 1622.06 87.36 103.48 383.5 

8-bit 

No. of Via 1031 1097 2514 504 502 1152 
τ  (ns) 0.517 0.205 2.28 2.89 3.14 3.98 
Average Power (mw) at 20 MHz 0.10 0.071 1.76 0.26 0.52 1.44 
Max Power (mw) 17.55 60.80 166.43 11.52 97.14 201.92 
Leakage Power (nW) 110.53 2.24 5.21 7.99 10.51 957 
Transistor Count 732 366 1098 364 355 802 
Core Area (mm2) 1.11 1.10 4.65 0.67 0.84 2.25 
Total Routing Length  (mm) 60.86 57.71 282.26 24.85 30.47 111.7 

4-bit 

No. of Via 246 275 623 173 167 451 
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Table 6.3 (c)  Performance and characteristics of MUX based and Pereira’s barrel shifter 
for W/L=7 

Barrel shifter Architecture Type 
MUX  based Pereira’s Size Performance Indices 

Static TG Domino Static TG Domino 
τ  (ns) 1.02 0.631 3.56 4.77 4.53 6.28 
Average Power (mw) at 20 MHz 19.37 4.84 48.13 2.3 3.31 12.15 
Max Power (mw) 148.48 559.31 3869.87 81.43 454.81 1644.20 
Leakage Power (nW) 1127.10 47.19 110.73 22.42 82.36 5157 
Transistor Count 12108 6054 18162 2042 2050 4588 
Core Area (mm2) 29.58 26.49 128.29 5.94 6.86 19.36 
Total Routing Length  (mm) 1963.67 1770.7 9465.7 287.3 320.36 1054.35 

16-bit 

No. of Via 4282 4480 10271 1222 1243 2927 
τ  (ns) 0.98 0.598 3.45 4.45 4.45 6.13 
Average Power (mw) at 20 MHz 1.36 0.90 27.14 1.8 3.48 9.40 
Max Power (mw) 122.9 432.63 2679.3 57.79 528.19 1210.8 
Leakage Power (nW) 1184.99 41.17 64.73 47.15 67.09 3868 
Transistor Count 9840 4920 13626 1610 1618 3580 
Core Area (mm2) 22.76 18.71 84.66 4.33 5.03 14.03 
Total Routing Length  (mm) 1444.3 1200.5 5913.02 195.93 218.74 748.9 

12-bit 

No. of Via 3276 3386 7266 945 941 2170 
τ  (ns) 0.948 0.541 2.75 3.66 3.81 5.00 
Average Power (mw) at 20 MHz 0.82 0.58 10.29 0.67 1.90 4.98 
Max Power (mw) 77.81 263.01 947.69 30.82 301.54 637.46 
Leakage Power (nW) 947.89 21.38 27.12 6.26 35.93 2578 
Transistor Count 2988 1494 4482 880 884 1948 
Core Area (mm2) 5.83 4.85 22.98 2.16 2.49 7.10 
Total Routing Length  (mm) 349.56 300.8 1619.51 96.43 104.33 391.9 

8-bit 

No. of Via 1032 1106 2554 488 472 1146 
τ  (ns) 0.501 0.201 2.15 2.83 2.96 3.91 
Average Power (mw) at 20 MHz 0.15 0.095 2.41 0.36 0.73 2.00 
Max Power (mw) 24.40 77.92 232.25 19.04 133.45 296.10 
Leakage Power (nW) 117.23 3.16 7.10 9.29 34.66 1288 
Transistor Count 732 366 1098 364 355 802 
Core Area (mm2) 1.22 1.14 4.82 0.72 0.88 2.56 
Total Routing Length  (mm) 61.13 58.16 275.35 25.22 29.63 123.4 

4-bit 

No. of Via 248 276 629 157 156 453 
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6.4 Comparison of Different Barrel Shifter Architectures for TSPC Logic Design 

Style 

Table 6.4 shows the comparison of different barrel shifter architectures implemented 

using TSPC logic design style. The TSPC logic design style shows pipelining behavior 

between two logic cells. The depth of circuit in terms of logic cells decides the number 

of clock cycles required to obtain correct output. In this circuit we may force the input 

every clock cycle, thereby improving the throughput of the circuit. 

The performance parameters and attributes for comparison are number of clock cycles, 

average power, maximum power, leakage power, transistor count, core layout area, 

routing length and number of vias. 

Table 6.4 shows the TSPC logic implementation for MUX based barrel shifter and 

Pereira’s barrel shifter, which take almost equal clock cycles to generate correct output. 

The MUX based barrel shifter and Pereira’s barrel shifter circuits are fully pipelined 

working at the clock speed of 500 MHz. The comparison shows that Pereira’s 

implementation is better in terms of transistor count, core layout area, total routing length 

and number of vias. 
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Table 6.4 Performance and characteristics of MUX based and Pereira’s barrel shifter for 
TSPC logic 

Barrel shifter Architecture Type (TSPC Logic) 
MUX  based  (500MHz) Pereira’s 1(500MHz) Size Performance Indices 

W./L=3 W/L=5 W/L=7 W./L=3 W/L=5 W/L=7 
No of Cycles 7 7 7 6 6 6 
Average Power (mw) at 500 MHz 173.28 302.59 424.31 37.95 63.03 87.12 
Max Power (W) 2.66 4.38 6.09 0.528 0.861 1.194 
Leakage Power (uW)  when clk=1 10.43 18.04 29.00 71 83.6 79.06 
Transistor Count 16144 16144 16144 2294 2294 2294 
Core Area (mm2) 46.67 48.65 52.43 4.46 4.58 5.05 
Total Routing Length  (mm) 3170.6 3232.8 3153.0 267.15 254.51 271.57 

16-bit 

No. of Via 5399 5431 5344 1096 1099 1107 
No of Cycles 7 7 7 6 6 6 
Average Power (mw) at 500 MHz 93.67 161.85 223.87 39.6 65.34 91.41 
Max Power (w) 1.94 3.11 4.36 0.4488 0.7128 1.039 
Leakage Power (uW) when clk=1 5.67 7.88 11.97 59.86 70.48 66.65 
Transistor Count 12112 12112 12112 1958 1958 1958 
Core Area (mm2) 31.26 41.41 33.60 3.55 3.81 4.24 
Total Routing Length  (mm) 1981.9 1905.8 1998.8 191.14 201.8 218.34 

12-bit 

No. of Via 3854 3802 3915 867 902 885 
No of Cycles 6 6 6 5 5 5 
Average Power (mw) at 500 MHz 49.09 84.72 117.63 21.05 34.55 48.21 
Max Power (W) 0.68 1.08 1.50 0.234 0.396 0.590 
Leakage Power (uW) when clk=1 4.00 6.64 9.90 34.80 40.97 38.75 
Transistor Count 3984 3984 3984 1091 1091 1091 
Core Area (mm2) 8.55 9.62 9.81 1.70 1.87 2.02 
Total Routing Length  (mm) 536.7 567.8 585.9 93.62 99.20 95.01 

8-bit 

No. of Via 1329 1327 1376 482 490 463 
No of Cycles 5 5 5 4 4 4 
Average Power (mw) at 500 MHz 13.63 23.72 32.76 10.78 17.65 24.58 
Max Power (W) 0.14 0.274 0.371 0.099 0.168 0.247 
Leakage Power (uW) when clk=1 1.91 2.10 3.14 14.85 17.48 16.53 
Transistor Count 976 976 976 481 481 481 
Core Area (mm2) 1.89 1.98 2.15 0.63 0.698 0.772 
Total Routing Length  (mm) 103.99 101.13 103.50 31.05 31.55 33.66 

4-bit 

No. of Via 327 329 324 188 198 184 
 

6.5 Chapter Summary 

This chapter presents the layout level implementation results of different architectures of 

chosen data path elements including signed multiplier (i.e Baugh Wooley multiplier and 

Booth encoded Wallace tree multiplier), unsigned multiplier (i.e. MUX based and 2×2 

cell based multiplier) and barrel shifter architectures (i.e MUX based barrel shifter and 

Pereira’s barrel shifter). The layout assemblies for the 4-bit, 8-bit, 12-bit and 16-bit 

multiplier and barrel shifter circuits were carried out using different high performance 

logic design styles and transistor sizes. The conclusions drawn are very useful for 

practicing designers since it describes the results after architectural exploration, logic 

design style exploration and transistor size exploration and physical design level 

exploration.   
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CHAPTER 7 

CONCLUSION AND SCOPE OF FURTHER WORK 

7.1 Conclusion 
 
The thesis presents an exploratory study of the different high performance architectures 

for important data path elements including signed multipliers, unsigned multipliers and 

barrel shifters for 4-bit, 8-bit, 12-bit and 16-bit configurations. It also discusses the 

results of different VLSI logic design style based implementations of these architectures 

which include signed multiplier (i.e Baugh Wooley multiplier and Booth encoded 

Wallace tree multiplier), unsigned multiplier (i.e. MUX based and 2×2 cell based 

multiplier) and barrel shifter architectures (i.e MUX based barrel shifter and Pereira’s 

barrel shifter). The general comparison of performance and attributes like average power, 

maximum power, leakage power, transistor count, core layout area, routing length and 

number of vias for different architectures implemented using different logic design styles 

and different device sizes shows that: 

 For the case of signed multipliers, for any operand size (4-bit, 8-bit, 12-bit and 

16-bit) and for any logic design style (static, TG, domino) Baugh Wooley 

multiplier is significantly faster than the Booth encoded Wallace tree multiplier 

and consumes much less power due to fewer number of transistors required and a 

smaller core area. The Baugh Wooley multiplier implementation also shows 

smaller leakage power compared to Booth encoded Wallace tree multiplier due to 

its smaller transistor count. 

 For the case of unsigned multipliers, for any operand size (4-bit, 8-bit, 12-bit and 

16-bit) and for any logic design style (static, TG, domino) MUX based multiplier 

architecture is slower as compared to 2×2 cell based multiplier architecture, but 

consumes lesser power and features reduced transistor count, a smaller core area 

and reduced routing length.  

 For the case of barrel shifters, for any operand size (4-bit, 8-bit, 12-bit and 16-bit) 

and for any logic design style (static, TG, domino) MUX based barrel shifter 

architecture is faster as compared to Pereira’s barrel shifter architecture; but the 

transistor count, core layout area and routing length are much larger for MUX 

based barrel shifter architecture as compared to Pereira’s architecture. This shows 

that MUX based barrel shifter architecture is inherently faster. On the power 
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count MUX based architecture implemented using TG logic design style shows 

the lowest power consumption for bit widths of 4, 8 and 12. However, for the bit 

width of 16, Pereira’s architecture implemented using static logic design style 

features lower power consumption. 

 The multiplier and barrel shifter VLSI implementations using TG logic design 

style may show speed advantage as compared to static logic design style 

implementation only when the total routing length is smaller or comparable with 

the static logic implementation. The average power, maximum power and 

leakage power for TG implementation are architecture dependent. 

 The multiplier and barrel shifter VLSI implementations using dual rail domino 

logic design style may be faster compared to static logic implementation only 

when more complex logic cells are used in design and total routing length is not 

too large compared to static logic implementation. The improvement in speed 

may be obtained at the cost of increased average power consumption; hence the 

designer needs to be careful of this aspect. 

 The multiplier and barrel shifter designs using simple dual rail domino logic cells 

show increased propagation delay due to one additional transistor in evaluate path 

and due to weak pull up transistor, which increases the contention current during 

evaluation. Another reason for increase in propagation delay for dual rail domino 

implementation using simple cells is the increased routing complexity and 

increased total routing length. Power consumption may also increases in simple 

domino gate based implementation due to higher switching activity than in 

equivalent static logic gate because all the domino nodes are pre-charged to VDD 

during each clock cycle. The large total routing length also demands larger power 

consumption. The core layout area is more due to increased transistor count and 

increased total routing length.  

 The static logic is most suitable for data path VLSI circuit implementation even 

for the circuits designed with simpler logic cells and longer critical paths. 

  TSPC logic circuits give correct operation up to frequency of 500 MHz in our 

implementation but leakage power and average switching power is high because 

of much higher switching activity as compared to other CMOS logic design 

styles. Maximum power is also too large for TSPC circuits. 

 Increasing the sizes of device does not show appreciable improvement in circuit 

delay and only features increased core area and power consumption.  
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Based on our research results a ready reckoner for selection of architecture and logic 

design style for high-speed signed multipliers is shown in table 7.1. Similar reckoners for 

unsigned multipliers and barrel shifters are shown in tables 7.2 and 7.3 respectively. 
 

Table 7.1 Ready reckoner for high-speed signed multipliers 

Bit Width 
Attributes 

4-bit 8-bit 12-bit 16-bit 

Low power 
Baugh Wooley

(static) 

Baugh Wooley

(static) 

Baugh Wooley

(static) 

Baugh Wooley

(static) 

High speed 
Baugh Wooley

(static) 

Baugh Wooley

(static) 

Baugh Wooley

(static) 

Baugh Wooley

(static) 

Smallest area 
Baugh Wooley

(static) 

Baugh Wooley

(static) 

Baugh Wooley

(static) 

Baugh Wooley

(static) 

 

Table 7.2 Ready reckoner for high-speed unsigned multipliers 

Bit Width 
Attributes 

4-bit 8-bit 12-bit 16-bit 

Low power 
MUX based 

(static) 

MUX based 

(static) 

MUX based 

(static/domino) 

MUX based 

(static/domino)

High speed 
2×2 cell based

(static) 

2×2 cell based 

(static/Domino)

2×2 cell based 

(static/ domino)

2×2 cell based 

(domino) 

Smallest area 
2×2 cell based

(static) 

MUX based 

(static) 

MUX based 

(static) 

MUX based 

(static) 

 

Table 7.3 Ready reckoner for high-speed barrel shifters 

Bit Width 
Attributes 

4-bit 8-bit 12-bit 16-bit 

Low power 
MUX-based

(TG) 

MUX based 

(TG) 

MUX based 

(static/TG) 

Pereira’s 

(static) 

High speed 
MUX-based

(TG) 

MUX-based

(TG) 

MUX-based

(TG) 

MUX-based 

(TG) 

Smallest area 
Pereira’s 

(static) 

Pereira’s 

(static) 

Pereira’s 

(static) 

Pereira’s 

(static) 
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For the NBTI, which is identified as one of the most critical reliability concerns for 

nanometer scale digital integrated circuits, we have presented a Verilog HDL based 

general technique to model the circuit performance degradation due to NBTI.  As an 

example we have presented the NBTI degradation study for a 1-bit full adder circuit 

using Verilog HDL. The degradation in Vt of all PMOS devices in the circuit can be 

obtained using Verilog HDL switch level modeling. Simulation result shows differing 

NBTI degradation in the Vt of different PMOS devices in a 1-bit full adder. Techniques 

to compute consequent degradation in circuit switching speed due to NBTI have also 

been indicated. 

 

7.2 Scope of Further Work 

An extensive design space exploration is necessary to meet performance, power and area 

trade-offs for data path elements such as signed/unsigned multipliers and barrel shifters. 

Based on our study a CAD tool can be developed for signed/unsigned multiplier and 

barrel shifter which will accept operand size and architecture type as an input and 

generates a cell/gate level HDL net-list in terms of predefined basic cells/gates. Such 

cell/gate level net-list then can be fed to commercial synthesis tools offering RTL to 

GDSII flow to generate VLSI implementation corresponding to the selected architecture 

type and selected operand size. Such a tool will be very useful for practicing designers in 

order to select an appropriate implementation out of many possible implementation 

options in view of the requirements of performance, power and area for any technology 

node, and across technology nodes. 

While the thesis has studied only the multiplier and barrel shifter circuits in a systematic 

manner to understand optimal design approaches for high performance design of these 

blocks, similar studies need to be carried out for other elements such as divider circuit, 

special function units computing trigonometric functions, statistical functions, 

mathematical functions and other specialized functions required in a host of application 

environments. Based on such studies, a similar CAD tools for the optimal synthesis of 

these functions/blocks can be developed. Also NBTI degradation effect can be 

incorporated in the evaluation of designs. Such tools can add a great deal of value to the 

hardware software co-design approaches required in embedded real time system 

developments and research in re-configurable computing systems being carried out 

globally at this point of time. 
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APPENDIX A1 
 

TABLE A1.1: BASIC CELLS USED FOR DIFFERENT MULTIPLIERS AND BARREL SHIFTERS FOR DIFFERENT LOGIC DESIGN 

STYLES 

 

STANDARD/BASIC CELLLS  

Logic 

design style 
BAUGH WOOLEY 

MULTIPLIER 

BOOTH ENCODED 

WALLACE TREE 

MULTIPLIER 

MUX-BASED 

MULTIPLIER 

2×2 CELL BASED 

MULTIPLIER 

MUX BASED 

BARREL 

SHIFTER 

PAREIRAS 

BARREL SHIFTER 

Static 

CMOS 

INV_static 

AND2_static 

FA_static 

MUX2-1_static_ABCHG 

INV_static 

NAND2_static 

NOR2_static 

XOR2_static 

OR2_static 

AND2_static 

MUX2-1_static 

XOR2_static 

OR3_static 

OR2_static 

FA_static 

AND2_static 

AND3_static 

INV_static 

NAND2_static 

NOR2_static 

FA_static 

MUX2-1_static 

XOR2_static 

OR3_static 

OR2_static 

INV_static 

AND2_static 

AND3_static 
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TG 

INV_static 

AND2_TG 

FA_TG 

MUX2-1_TG_ ABCHG 

INV_static 

NAND2_TG 

NOR2_TG 

XOR2_TG 

OR2_TG 

AND2_TG 

MUX2-1_TG 

XOR2_TG 

OR3_TG 

OR2_TG 

FA_TG 

AND2_TG 

AND3_TG 

INV_static 

NAND2_TG 

NOR2_TG 

FA_TG 

MUX2-1_TG 

XOR2_TG 

OR3_TG 

OR2_TG 

INV_static 

AND2_TG 

AND3_TG 

DOMINO 
AND2_DOMINO 

FA_DOMINO 

MUX2-1_DOMINO_ 

ABCHG 

XOR2_DOMINO 

OR2_DOMINO 

AND2_DOMINO 

MUX2-1_DOMINO 

XOR2_DOMINO 

OR3_DOMINO 

OR2_DOMINO 

FA_DOMINO 

AND2_DOMINO 

AND3_DOMINO 

AND2_DOMINO 

OR2_DOMINO 

FA_DOMINO 

MUX2-

1_DOMINO 

XOR2_DOMINO 

OR3_DOMINO 

OR2_DOMINO 

AND2_DOMINO 

AND3_DOMINO 
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TSPC     MUX2-1_TSPC 

AND3_TSPC 

AND_OR_TSPC 

BASICMODULE_TSPC 

INV_Static 

INV_BUF_TSPC 

LATCHINV_TSPC 

LATCH_TSPC 

OR3_TSPC 

OR2INV_TSPC 

NAND2_TSPC 

NOR2_TSPC 

NOT_TSPC 

XOR2_Static 

AND2INV_TSPC 

OR_AND_TSPC 
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APPENDIX A2 
 

A2.1 LAYOUT DESIGN FLOW 
The design of physical layout is very tightly linked to overall circuit performance (area, 

speed, power dissipation) since the physical structure directly determines the trans-

conductance of the transistors, the parasitic capacitances and resistance and obviously, 

the silicon area, which is used for a certain function.  

 

 
 

 

 

The initial phase of layout design can be simplified significantly by the use of stick 

diagrams or symbolic layouts. Then the actual layout is done using the design rules. 

Functionality and performance 
specification 

Circuit Topology 

Estimate parasitic Capacitances 

Initial sizing of transistor 

Stick Diagram Layout 

Mask Layout Design 

Design Rule check (DRC) 

Circuit & Parasitic Extraction 

Circuit Simulation 

Resize and 
Modify 

OK
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A2.2 STICK DIAGRAMS 
  
Stick level in VLSI Design is an abstraction between transistor schematic level and 

layout level. Stick diagrams assist in planning for layout drawing quickly and easily. 

They need not be to scale. Also designing complete layout in terms of rectangles can be 

overwhelming so first we will draw stick diagrams. It is a representation of the layout. In 

stick diagram we capture layer topology of layout proposition through lines (sticks) of 

different colors. It is a metric free notation and therefore does not show exact placement, 

transistor sizes, wire lengths, wire widths and tub boundaries. 

 

(a) Transistors  

A transistor exists where a poly-silicon stick crosses either an N diffusion stick (NMOS 

transistor) or a P diffusion stick (PMOS transistor).  

 

 
 

Note that there is no difference in the construction of a transistor source and a transistor 

drain. The source is determined as the source of conductors (electrons for NMOS / holes 

for PMOS) when current flows through the channel. In some pass transistor circuits, the 

source and drain may swap over during use.  

 

(b) Implied Connections and Crossovers: 

 

When two sticks of the same color meet or cross there is always a connection between 

them. When two sticks of different colors meet or cross there is no implied connection 

between them.  
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The N and P diffusions may not cross each other. Where poly silicon crosses diffusion a 

transistor is formed. 

 

(c) Contact cut or Via: 

 

A connection may be explicitly defined using a filled black circle. A connection is 

allowed when just one layer of insulator separates mask layers. This connection is 

defined as a "contact cut". Thus P diffusion may connect to Metal1 but not directly to 

Metal2.  

 

 
 

 

In a process if “stacked contacts” are permitted then we may draw a contact between 

non-adjacent conductors; e.g. between Poly and Metal3, in which case the connection to 

intermediate layers (Metal1 and Metal2) is implied.  
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(d) Taps  

The tap represents a connection to N-well or P-well. A tap is defined using an unfilled 

black square. Here there will be only one conductor crossing the square (Metal1 power 

or ground rail).  

 

 
 

If connection is from a power rail then it is N-Well Tap, otherwise if the connection is 

from a ground rail then it is a Substrate Tap. 

 

(e) Combined Contacts & Taps  

We can often save space by using a combined contact and tap. Here the tap shares the 

same Active Area as the contact. A combined contact and tap is defined using a filled 

black square instead of a filled black circle as shown for the source contact. 

 

 
 

 

A combined contact and tap can only be used where the end of a diffusion stick 

coincides with a contact to the power or ground rail.  
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(f) Stick Diagram Color Code  

 

P diffusion  :  Yellow/Brown         

Metal1  :  Blue   

N diffusion  :  Green      

Metal2  :  Magenta/Purple/ Gray   

Polysilicon  :  Red      

Metal3  :  Cyan/Light Blue   

Contacts & Taps :       Black   

 

A2.3 Layout Layer Representation 
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A2.4 DESIGN RULES 
 

The physical mask layout of any circuit to be manufactured using a particular process 

must conform to a set of geometric constraints , which are generally called layout 

design rules. These rules usually specify the minimum allowable line widths for 

physical objects on-chip such as metal and polysilicon interconnects or diffusion 

areas, minimum feature dimensions, and minimum allowable separations between 

two such features 

 

(i) Intra-Layer Design Rules 
 
 

 
(ii)Via’s and Contacts 
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(iii) Table of design rules: 
 
 

Table A2.1 Design rules 
 Rules Size 

1 
Active area rules 

 Minimum active area width 

 Minimum active area spacing 

 

3λ 

3λ 

2 

Polysilicon rules 

 Minimum polywidth 

 Minimum gate extension of poly 

over active 

 poly-active edge spacing 

(Poly outside active area) 

 Minimum poly-active edge 

spacing(poly inside active area) 

 

 

2λ 

2 λ 

 

2λ 

 

2λ 

 

 

3 

Metal rules 
 Minimum metal width 

 Minimum metal spacing 

 

 

3λ 

3λ 

 

4 

Contact rules 

 Poly contact size 

 Minimum poly contact spacing 

 Minimum poly contact to poly 

edge spacing 

 Minimum poly contact to metal 

edge spacing 

 Minimum poly contact to active 

edge spacing 

 Active contact size 

 Minimum active contact spacing 

(on the same active region) 

 

2λ 

2λ 

1λ 

 

1λ 

 

3λ 

 

2λ 

2λ 
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 Minimum active contact to active 

edge spacing 

 Minimum active contact to metal 

edge spacing 

 Minimum active contact to poly 

edge spacing 

 Minimum active contact spacing 

(on different active regions) 

 

 

1λ 

 

1λ 

 

3λ 

 

6λ 

 

 

 

A2.5 Cell Heights for Different Cells 
 
The heights of cells for different logic design styles and different W/L size of transistors 
are presented in table A2.2. These heights are in terms of λ. Where λ=0.3 µm. 
 

Table A2.2 
 

Name W/L=3 W/L=5 W/L=7
Static CMOS 73.5 75 85.5 

TG 75 85 95 
Domino 78 96 107 
TSPC 76 85 99 
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APPENDIX A3 
 
A3.1 HP05.md (Model Parameter File) 
 
***********************************************************************                        
 
*                           MOSIS PARAMETRIC TEST RESULTS 
*                                           
*          RUN: N5BO                                                VENDOR: HP-NID 
*    TECHNOLOGY: SCN05H                                FEATURE SIZE: 0.5 microns 
* 
* 
*INTRODUCTION: This report contains the lot average results obtained by MOSIS from  
*measurements of MOSIS test structures on each wafer of this fabrication lot. 
* SPICE parameters obtained from similar measurements on a selected wafer are also attached. 
* 
*COMMENTS: Hewlett Packard CMOS14TB. 
* 
* 
*TRANSISTOR PARAMETERS      W/L          N-CHANNEL      P-CHANNEL            UNITS 
*                                                      
* MINIMUM                 0.9/0.60                      
*  Vth                                 0.68       -0.90    Volts 
*                                                      
* SHORT                 15/0.60                       
*  Vth                             0.61       -0.88    Volts 
*  Vpt                         11.4       -9.4     Volts 
*  Vbkd                          11.4      -9.5    Volts 
*  Idss                                396                     -188     uA/um 
*                                                      
* WIDE                       15/0.60                       
*  Ids0                               10.5                    1.6     pA 
*                                                      
* LARGE                    5.4/5.4                       
*  Vth                                        0.69      -0.95    Volts 
*  Vjbkd                                    11.5      -10.1    Volts 
*  Ijlk                                  -19.2         8.1     pA 
*  Gamma                                     0.60                    0.49                     V^0.5 
*                                                      
* Delta length                                                                   0.14                   0.09                    microns 
*  (L_eff = L_drawn-DL)                                
* Delta width                                                                    0.44            0.32                microns 
*  (W_eff = W_drawn-DW)                                
* K' (Uo*Cox/2)                             72.1     -22.0     uA/V^2 
*                                                      
*COMMENTS: Delta L varies with design technology as a result of the different 
*           mask biases applied for each technology. Please adjust the delta L 
*           in this report to reflect the actual design technology of your 
*           submission. 
*                       Design Technology                       Delta L 
*                       -----------------                   ------- 
*                       SCN_SUBM (lambda=0.3), CMOSH, 
*                        HP_CMOS14TB                          no adjustment 
*                       SCN (lambda=0.35)                  add 0.1 um 
* 
* 
*FOX TRANSISTORS         GATE       N+ACTIVE  P+ACTIVE   UNITS 
* Vth                            Poly              >15.0          <-15.0      Volts 
* 
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* 
* 
* 
*PROCESS PARAMETERS     N+DIFF  P+DIFF   POLY  METAL1  METAL2  METAL3  UNITS 
* Sheet Resistance                          2.1         2.0           1.9        0.07           0.07           0.03      ohms/sq 
* Width Variation                     -0.36   -0.29         -0.04       0.16          -0.04          -0.30     microns 
*  (measured - drawn) 
* Contact Resistance                        2.3      2.2              2.2                           0.82           0.87       ohms 
* Gate Oxide Thickness                   94                                               angstroms 
* 
* 
*CAPACITANCE PARAMETERS  N+DIFF  P+DIFF   POLY  METAL1  METAL2   METAL3  UNITS 
* Area (substrate)             546         929          92         47                15               11     aF/um^2 
* Area (poly)                                              59                18               11     aF/um^2 
* Area (metal1)                                                                                                       37             14     aF/um^2 
* Area (metal2)                                                                                                                        33     aF/um^2 
* Area (N+active)                                                             3684                                         aF/um^2 
* Area (P+active)                              3500                                       aF/um^2 
* Fringe (substrate)                               195         234                                                 aF/um 
* Fringe (N+active)                                                            105                                        aF/um 
************************************************************************************ 
* 
*  N5BO SPICE LEVEL3 PARAMETERS 
* 
************************************************************************************ 
 
.MODEL NMOS NMOS LEVEL=3 PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=1 
+ VTO=0.6566 DELTA=6.9100E-01 LD=4.7290E-08 KP=1.9647E-04  
+ UO=546.2 THETA=2.6840E-01 RSH=3.5120E+01 GAMMA=0.5976  
+ NSUB=1.3920E+17 NFS=5.9090E+11 VMAX=2.0080E+05 ETA=3.7180E-02  
+ KAPPA=2.8980E-02 CGDO=3.0515E-10 CGSO=3.0515E-10  
+ CGBO=4.0239E-10 CJ=5.62E-04 MJ=0.559 CJSW=5.00E-11  
+ MJSW=0.521 PB=0.99 
* Weff = Wdrawn - Delta_W 
* The suggested Delta_W is 4.1080E-07 
.MODEL PMOS PMOS LEVEL=3 PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=-1 
+ VTO=-0.9213 DELTA=2.8750E-01 LD=3.5070E-08 KP=4.8740E-05  
+ UO=135.5 THETA=1.8070E-01 RSH=1.1000E-01 GAMMA=0.4673  
+ NSUB=8.5120E+16 NFS=6.5000E+11 VMAX=2.5420E+05 ETA=2.4500E-02  
+ KAPPA=7.9580E+00 CGDO=2.3922E-10 CGSO=2.3922E-10  
+ CGBO=3.7579E-10 CJ=9.35E-04 MJ=0.468 CJSW=2.89E-10  
+ MJSW=0.505 PB=0.99 
* Weff = Wdrawn - Delta_W 
* The suggested Delta_W is 3.6220E-07 
 

 
A3.2 mHP_nS5.ext (Layout Parasitic Extraction Definition File) 
 
 
# File:            mHP_nS5.ext 
# For:             Extract definition file 
# Vendor:          MOSIS/HP 
# Technology:      0.5u (Lambda = 0.30um) / N-well (SCN3M_SUBM) Sub-Micron 
# Technology File: mHP_nS5.tdb  
# Copyright © 1991-2001 Tanner EDA, A Division of Tanner Research, Inc. 
# All Rights Reserved 
# 
# This file will work only with L-EDIT Version 7 and greater. 
# **************************************************************************** 
 
connect(n well wire, ndiff, ndiff) 
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connect(subs, pdiff, pdiff) 
connect(allsubs, subs, subs) 
connect(ndiff, Metal1, Active Contact) 
connect(pdiff, Metal1, Active Contact) 
connect(poly wire, Metal1, Poly Contact) 
connect(Metal1, Metal2, Via1) 
connect(Metal2, Metal3, Via2) 
connect(LPNP emitter, pdiff, LPNP emitter) 
connect(LPNP collector, pdiff, LPNP collector) 
 
# NMOS transistor with poly1 gate 
device = MOSFET( 
               RLAYER=ntran;   
               Drain=ndiff, AREA, PERIMETER; 
               Gate=poly wire;    
               Source=ndiff, AREA, PERIMETER; 
               Bulk=subs; 
               MODEL=NMOS; 
               ) 
 
# PMOS transistor with poly1 gate 
device = MOSFET( 
               RLAYER=ptran; 
               Drain=pdiff, AREA, PERIMETER; 
               Gate=poly wire; 
               Source=pdiff, AREA, PERIMETER; 
               Bulk=n well wire; 
               MODEL=PMOS; 
               ) 
 
# PNP transistor 
device = BJT( 
            RLAYER=LPNP ID, AREA; 
            Collector=LPNP collector; 
            Base=n well wire ; 
            Emitter=LPNP emitter; 
            Substrate=allsubs; 
            MODEL=PNP; 
            NominalArea = 1.0; 
            ) 
 
# Linear capacitor using Cap-Well 
device = CAP( 
            RLAYER=Cap-Well Capacitor, AREA; 
            Plus=poly wire; 
            Minus=ndiff; 
            MODEL=; 
            ) 
 
# NMOS capacitor 
device = CAP( 
            RLAYER=NMOS Capacitor, AREA; 
            Plus=poly wire; 
            Minus=ndiff; 
            MODEL=; 
            ) 
 
# PMOS capacitor 
device = CAP( 
            RLAYER=PMOS Capacitor, AREA; 
            Plus=poly wire; 
            Minus=pdiff; 
            MODEL=; 
            ) 
 
# Poly resistor 
device = RES( 
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            RLAYER=Poly Resistor; 
            Plus=poly wire; 
            Minus=poly wire; 
            MODEL=; 
            ) 
 
# N Diffusion resistor 
device = RES( 
            RLAYER=N Diff Resistor; 
            Plus=ndiff; 
            Minus=ndiff; 
            MODEL=; 
            ) 
 
# P Diffusion resistor 
device = RES( 
            RLAYER=P Diff Resistor; 
            Plus=pdiff; 
            Minus=pdiff; 
            MODEL=; 
            ) 
 
# N Well resistor 
device = RES( 
            RLAYER=N Well Resistor; 
            Plus=n well wire; 
            Minus=n well wire; 
            MODEL=; 
            ) 
 
# Bonding Area Capacitance 
 device = CAP( 
             RLAYER=Pad Comment, AREA; 
             Plus=Metal1; 
             Minus=allsubs; 
             MODEL=; 
             ) 
 
# Diodes 
device = DIODE( 
              RLAYER=diode pdiff, AREA; 
              Plus=pdiff; 
              Minus=n well wire; 
              MODEL=Dpdiff; 
              NominalArea = 1.0; 
              ) IGNORE_SHORTS 
 
device = DIODE( 
              RLAYER=diode ndiff, AREA; 
              Plus=subs; 
              Minus=ndiff; 
              MODEL=Dndiff; 
              NominalArea = 1.0; 
              ) IGNORE_SHORTS 
 
# Lateral Diode 
device = DIODE( 
              RLAYER=diode_lat, AREA; 
              Plus=pdiff; 
              Minus=ndiff; 
              MODEL=D_lateral; 
              NominalArea = 1.0; 
              ) IGNORE_SHORTS 
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