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TITLE OF THE THESIS: Development of Novel Techniques for Fetal ECG Extraction
in Early Pregnancy

ABSTRACT:

Congenital heart defects are among the most commdn defects and the leading
cause of birth defect-related deaths. Most cardefects have some manifestation in the
morphology of cardiac electrical signals. The non ineastudy of fetal cardiac signals can
provide an effective means of monitoring the well-beingheffetal heart. This may be used
for the early detection of cardiac abnormalitiebe Electrocardiogram (ECG) signal is the
graphical recording of the electrical potential getextan associatiowith heart activity. It is
one of the physiological signals commonly used inicéil aspects. As in adults, the well-
being and the status of the fetus can be assessedafrietal electrocardiogram (FECG)

signal.

Non invasive techniques of fetal monitoring are Doppldirasound, fetal
electrocardiography and fetal magneto cardiography.o#gnthese methods the most
commonly used is Doppler ultrasound because it iplsirto use and cheap. However this
method produces an averaged heart rate and theror®t give beat to beat variability.
Fetal electrocardiogram offers the advantage ofitoong beat to beat variability. There are
many technical problems with non invasive extraction &C6E. The FECG signal is
corrupted by different sources of interferences sschaternal electrocardiogram (MECG)
maternal electromyogram (MEMG), 50 Hz power line if@e¥nce and base line wander.
The low amplitude of the signals, the different tyé noise and overlapping frequencies of

mother and fetal ECG make the extraction of FEQIBfeult task.

Extraction and analysis of the fetal ECG signal #re primary objectives of
electronic fetal monitoring. In extracting the fetal @@ignal, the digital signal processing

technigues have played a significant role. The primassym@ption is that the abdominal ECG



signal (AECG) is a non linear combination of the maeECG, fetal ECG signal and other
interference signal. Fetal ECG extraction is frono tsignals recorded at the thoracic and
abdominal areas of the mother’s skin. The thoracic ECEBCG) is assumed to be almost
completely maternal whereas the abdominal electdimgram is considered to be

composite, as it contains both the mother’s and @G signals.

Ten different algorithms have been proposed in thiskwasing three major
classifications. They are (i) multi stage adaptiNgering (i) combination of wavelet and
adaptive filtering (iii) combination of soft computindANFIS — Adaptive Neuro Fuzzy

Inference System) and wavelet.

In multi stage adaptive filtering classificationret different methods have been
proposed to extract fetal ECG. These are accomplibgedi) defining the different non
linear operators (i) optimizing the processing aldons of multi stage adaptive filters (iii)
modifying the thoracic signals for optimal maternal EG&azllation and (iv) suggesting a

refining process after the fetal ECG extraction.

In wavelet —adaptive classification, four differanethods have been proposed to
extract the fetal ECG. This is accomplished by @velet denoising of the abdominal signal
(ii) defining the different non linear operators (iiipdifying the thoracic signals for optimal
maternal ECG cancellation and (iv) suggesting a refirpngcess after the fetal ECG
extraction.

In soft computing and wavelet classification, thresthnds have been proposed. This
is achieved by (i) ANFIS method (ii) wavelet prepresiag with ANFIS and (iii) ANFIS
followed by wavelet post processing methods.

The ten different algorithms were tested with teal abdominal signals and the

results were evaluated using the performance paeasaeih each classification the best



extraction technique was identified. Out of theseeg¢hidentified algorithms in different
classifications, it was found that the soft computmigh wavelet was more efficient in
extracting the fetal ECG.

To test the robustness of the soft computing and wsvalgorithms, further testing
and evaluation was done with data sets froff 8240" week of pregnancy, during labour
with and without oxytocin administration. Among thefts computing with wavelet
techniques, it was found that the ANFIS followed bavelet post processing is found to be
the best extraction method. The accuracy of detectf fetal ECG of this particular
technique was found to be 100%.

The accuracy of the three best algorithms fromthihee different classifications was
compared with the other existing techniques. It is kmled that the soft computing followed
by wavelet post processing technique was able to ¢xXetad ECG even during the early
stages of pregnancy. Since the morphology of the eégttaEECG using this technique

remains same, it can be used by the physician to asagietal anomalies.
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CHAPTER 1
INTRODUCTION

1.1 BACKGROUND OF THE WORK

The electrocardiogram (ECG) signal is one of thestmoommonly used
physiological signals. The activity of the hearhdae visualized from an ECG signal
obtained by measuring the potential differencenaf points on the skin and this ECG can
provide valuable cardiac information. The monitgrand analysis of the ECG has been a
useful technique for diagnosis of cardiac diseasasdveral decades.

One of the most common birth defects is the defethe heart and is a leading
cause of birth related deaths. Every year aboutoh@f 125 babies are born with some
form of congenital heart defects (Minimbal., 2007). The defects may be so small that
the baby appears healthy for many years after birihmay be very severe that the life is
in danger. Congenital heart defects originate nyesiages of pregnancy when the heart
is forming and they can affect any function of theart. Genetic syndrome, inherited
disorders and environmental factors such as irfestor drug misuse may lead to cardiac
anomalies (Pajkrét al., 2004).They can also occur due to specific fptaditioning that
chokes the umbilical cord (Zuckerwarr al., 1993) The regular monitoring of the fetal
heart, fetal ECG and the early detection of anydiear abnormalities can help the
pediatric cardiologist to prescribe proper medaagiin time, or to consider the necessary
precautions to be taken during delivery or aftethbi

Fetal electrocardiogram (FECG) monitoring is a teghe for obtaining important
information about the condition of the fetus in #w®ly stages of pregnancy and before
delivery. The well-being and condition of the fewen be assessed from the fetal ECG.

For example, the fetal ECG signal can often revegdortant information for an



arrhythmia diagnosis. The fetal ECG signal canlit@ioed from electrical measurements
on the maternal abdomen. However, the abdominal B@f@al is composed of a

combination of the maternal ECG signal, the fet@lGEsignal, and interference signals.
As the amplitude of the maternal ECG signal isagfly much larger than the fetal ECG
signal and the interference signals, ECG signatgssing can play a significant role in
obtaining a good estimate of the fetal ECG signal.

Non invasive techniques of fetal monitoring are Plep ultrasound, fetal
electrocardiography and fetal magneto cardiogragtigong these methods the most
commonly used is Doppler ultrasound because itviple to use and cheap. However this
method produces an averaged heart rate and theredanot give beat to beat variability
(Fukushimeet al., 1985). Fetal electrocardiogram offers the adagetof monitoring beat
to beat variability. There are many technical peofid with non invasive extraction of
FECG. The FECG signal is corrupted by differentrses of interferences such as
maternal EMG, 50 Hz power line interference andeldaee wander. The low amplitude
of the signals, the different types of noise andrtapping frequencies of mother and fetal
ECG make the extraction of FECG a difficult taslkeéin, 1994).

The fetal heart rate variations during pregnamay &bor have been used as an
indirect indicator of fetal distress. Observatioveo longer periods may yield more
information about the status of the fetus. The e of fetal QRS complex from the
surface records is very difficult task which is migidue to overlapping of mothers ECG.
The MECG and FECG are partly uncorrelated. Also MEeCG signal is very much
stronger than the FECG signal embedded in it. Theenin which FECG is embedded is

also stronger depending on the gestation age.
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Figure 1.1 The amplitude and frequency range of biosignals ¢an interfere with fetal
cardiac signals

In the Figure 1.1 the labels stand for the mateatattrocardiogram (MECG),
electroencephalogram (MEEG), electrohystrogram (M@ Helectrooculogram (MEOG),
electromyogram (MEMG) and the fetal ECG (FECG). éNthat the amplitude of these
signals also depends on the site from which tha datecorded (Devedewkal., 1993),
(Webster, 1998), and (Snowdetal., 2001). The amplitude and frequency range of feta
ECG have been compared with other noises and @stifAccordingly, the fetal ECG is
much weaker than the other interfering biosignilereover, from the signal processing
perspective, there is no specific domain (timecep&equency, or feature) in which the
fetal ECG can be totally separated from the interéesignals. Most of the previous work
in this area has been devoted to filtering thel fedadiac signals. Due to the complexity
of the problem there are many issues that reqguipeaved signal processing techniques.

Many signal-processing-based techniques were asexttact FECG with various
degrees of success. These techniques include eeldtering (Widrow et al., 1975),

correlation techniques (Abbowat al., 1992), singular value decomposition (Callaetts



al., 1990), wavelet transform (Mochimaru and Fujimd002), wavelet transform and
pattern matching (Echeverréaal., 1996), wavelet analysis method (Datian and Xueme
1996), complex continuous wavelet transform (Karuset al., 2004), orthogonal basis
functions (Longiniet al., 1997), fractals (Richteet al., 1998), IIR adaptive filtering
combined with genetic algorithms (Kam and Coher§9)9frequency tracking (Barros,
2002), real-time signal processing (lbahiney al., 2003) and Projective filtering
techniques (Kotas, 2007). The most recent and suxstessful method of extractions are
blind source separation (Lathauwet al., 2000), independent component analysis
(Marosseroet al., 2003), blind source separation via independemiponent analysis
(Zarzoso etl., 1997), and independent component analysis anetlets (Vigneroret
al.,2003). Some of the soft computing techniquescategorization process with back
propagation and SOM network (Liszka-Hackzell, 1994@ural and fuzzy classifiers
technique (Magenest al., 1999) and adaptive linear neural network (Reaa Wei,
2004), fuzzy logic (Azad, 2000), FIR neural netwdqfkampset al., 2001), dynamic
neural network (Campat al., 2004), polynomial network (Assaleh and Nashazboys),
singular value decomposition and neuro-fuzzy infeeesystem (Zaben and Smadi,2006)
and ANFIS (Assaleh, 2007).

Though the BSS and ICA extraction methods consilesethe most successful
methods, in order to work these techniques propetlyequires multiple leads for
collecting several ECG signals. ICA assumes thatcitimposite abdominal signals are
obtained via linear mixing of the thoracic signiatial components and other interfering
signals. The adaptive filters, wavelet transformd aeural networks can use two leads
but have their limitations especially when the fét@ats overlap with the QRS wave of

the maternal beats. The proposed work extractéethb ECG by two lead signals which



are the abdominal signal and thoracic signal ofntla¢her’s abdomen and thorax region.

The proposed work overcomes the limitation of cygpled FECG and MECG signals.

1.2 OBJECTIVES OF THE STUDY

The prime objectives of this research work are;
* To extract the fetal ECG from the maternal abdoingngnals recorded
from the array of electrodes placed on the mateaxbdbmen.
» Development of different algorithms to extract f&E&G.
» Testing of the algorithms with real abdominal sigrfar different cases.
» Evaluation and analysis of the extracted FECG.
» Comparison of the proposed methods.
» Comparison of the efficient proposed methods witthep existing

methods.

1.3 METHODOLOGY ADOPTED FOR THE STUDY

The methodologies adopted for this research wodcloeve the objectives are:
Phase 1:Development of multi stage adaptive filtering methds

The conventional adaptive filtering methods weapable of extracting the fetal
ECG completely. Thus there is a need to improve randify the filtering methods to
obtain a better quality of fetal ECG. This is awkig by (i) defining the different non
linear parameters (ii) optimizing the processingpathms of multi stage adaptive filters
(i) modifying the thoracic signals for optimal meanal ECG cancellation and (iv)

suggesting a refining process after the fetal EQi@etion.



Phase 2:Development of wavelet- adaptive filtering methods

The combination of wavelet and adaptive filteringthods were developed to
extract the fetal ECG. This is accomplished byw@velet denoising of the abdominal
signal (ii) defining the different non linear paret@rs (iii) modifying the thoracic signals
for optimal maternal ECG cancellation and (iv) sesigng a refining process after the
fetal ECG extraction.
Phase 3:Development of soft computing techniques with wavet

The combinations of soft computing techniques witivelets were developed to
extract the fetal ECG. This is achieved by (i) ASFhethod (ii) wavelet preprocessing
with ANFIS and (iii) ANFIS followed by wavelet ppbgrocessing method.
Phase 4:Testing, evaluation and comparison of the proposealgorithms

All the proposed algorithms were tested with redlddominal signals. The
extracted fetal ECG signal was evaluated using operdnce indices, correlation
coefficient and SNR. The better performing methadse identified.
Phase 5: Robust method of fetal ECG extraction

The soft computing with wavelet methods were furttested for the robustness
with additional real abdominal signals and resuwitsre evaluated for performance
indices. The comparison was done between the hj@tdposed methods and the existing

methods.

1.4 SCOPE OF THE STUDY

The study is about extracting fetal ECG from confgosbdominal signal
recorded from the abdomen of the mother duringrmmargy. This contains information on
the health status of the fetus and which can aidnirearly diagnosis of cardiac defects

before delivery. Many signal-processing-based tieeles were used to extract FECG



with various degrees of success. In this researonkwdifferent algorithms were
developed to have accurate extraction of fetal ETI& proposed methods should be
capable of extracting fetal ECG in the case of layging with maternal ECG. It is also
required to understand the health status of thes fetiring early stages of pregnancy. The
proposed algorithms were designed to meet the at®operements. Hence, it is proposed
to develop number of algorithms based on diffeamiciples of signal processing. The

best proposed method can become a diagnosticaptrelatment of fetal arrhythmias.

1.5 ORGANIZATION OF THE THESIS

The research work is presented in seven chaptéodl@ss:

Chapter — 1: In this chapter, the structure of the thesis is@néed. This research work
deals with the fetal ECG extraction techniques higtilights the importance of the fetal
monitoring. The chapter states the objectives o tiesearch followed by the
methodology. Ten different extraction algorithm® groposed using adaptive filters,
wavelets and ANFIS. The algorithms were tested vatli data sets and the results were
evaluated.

Chapter — 2: In this chapter, the history of fetal monitorirgypresented. The literature
survey of the different fetal ECG extraction aljoms were discussed in detail. The
research gaps are highlighted by reviewing thetiegi®xtraction methods.

Chapter — 3 In this chapter, the multistage adaptive filterbagsed fetal ECG extraction
methods are proposed. Three different methods usinglistage adaptive filtering
technique with different non linear parameterspaoposed. Each method was tested with
two sets of different but real abdominal signalte Tesults were evaluated using the

performance parameters. The better adaptive fitjeextraction method is highlighted.



Chapter — 4: In this chapter, the combination of wavelet andpaigta filtering methods
were developed to extract the fetal ECG. Using tbisibination, four different methods
were proposed along with different non linear partan Each method was tested with
two sets of different but real abdominal signal$ie Tresults are evaluated using the
performance indices parameters. The better fet&h E&traction method is highlighted
from the proposed methods.

Chapter - 5 In this chapter, the combinations of soft compmtiechniques with wavelet
were developed to extract the fetal ECG. Threesdhfit methods were proposed. The
methods were tested with two sets of differentreat abdominal signals. The results are
evaluated using the performance indices parametédms. better fetal ECG extraction
method is highlighted from the proposed methods.

Chapter - 6 In this chapter, further testing of the soft cortnpy and wavelet techniques
by the real abdominal signals was done to showdhastness of these methods in early
stages of pregnancy. The real abdominal signalshereata sets from #2to 40" week
and during labour with and without oxytocin admirason. The results were evaluated

using the performance indices parameters. Thepeegirming method is highlighted.

Chapter - 7 In this chapter, the summary of the ten proposethats, conclusions,
comparison of the proposed methods and comparispnoposed method with existing
methods were presented. Future scope of work andpécific contribution of the study

are presented.



CHAPTER 2
LITERATURE REVIEW

In this chapter, the state of the art of fetal E€i@nal extraction of past and
present methods is reviewed. The ECG is a graptecarding of the electrical potentials
generated in association with the heart activiigtal electrocardiogram (FECG) signal
contains potentially precise information that cowlssist clinicians in making more
appropriate and timely decisions before and dulatpr. The ultimate reason for the
interest in FECG signal analysis is in clinicalghasis and biomedical applications. The
extraction and detection of the FECG signal fronmposite abdominal signals with
powerful and advance methodologies are becoming imgportant requirements in fetal
monitoring. FECG is useful to get reliable information on fedtatus, the detection of

abnormalities and to enable the adoption of meadoreassuring fetal wellbeing.

2.1 ELECTROPHYSIOLOGY OF THE FETAL HEART

The prerequisite physiological and electrophysimlalgaspects of fetal cardiac
development and monitoring are presented in tlegicse Some of these issues are used
for explaining the results and conclusions achiefrech the extracted FECG from the

composite abdominal signals.

2.1.1 FETAL CARDIAC DEVELOPMENT

The heart is the first organ developed in the fetnd undergoes a considerable
amount of growth in the very early stages of pregyaJana, 2004). Figure 2.1 shows
the fetus and its heart in early stages of pregnédoawrence, 1995). After fertilization,

between the three and seven weeks is the mostatrpieriod of the fetal cardiac



development. The simple heart tube assumes the siidpe four chambered heart. The
heart is believed to begin beating by thé“2@ay of the life. It can be externally
monitored by ultrasound imaging in th& o 9" week (Jana, 2004). But only vague
images are recordable at this stage. The cardigefasan and the beat to beat variability
of the heart rate are not measurable in ultrasoomabing. So, fetal ECG and the
maternal ECG that contains the morphological infation of the cardiac activity have
received much interest. These signals can be reddim the maternal abdomen as
early as the Z1week after conception (Petegsal., 2001) and (Van Leeuwest al.,

2004).

e

Figure 2.1 The fetus and its heart in the early stages o¢ldgment
Anatomy of the fetomaternal compartments are showhigure 2.2(Lawrence,
1995).The fetus is surrounded by several differ@nmatomical layers with different
electrical conductivities (Oostendosgp al., 1989). The highest and lowest conductivity
are found in the amniotic fluid and the vernix azs®e Vernix caseosa is formed over the
fetal skin.Both these layers surround the fetus metaly. In maternal abdomen
compartments, the skin and the subcutaneous fathalge poor conductivity. These two
layers which are the interface of the surface speets and the internal tissues have

considerable influence on the recorded fetal ECIGofAhese different tissues and layers



form the volume conductor in which the fetal cacdsignals propagates up to the
maternal body surface. This volume conductor is aaiteady conductor. Its electric
conductivity and the geometric shape constantlyngbathroughout gestation. The
amniotic fluid, the placenta and the fetus increds® volume in the 20week onward.

This leads to the recordings of the ECG and the M@ihg the surface electrodes
(Magann, 1997). The very low conductivity vernixseasa layer is formed between the
28" and 39¢ week of gestation (Oostendogpal., 1989). It electrically shieldes the fetus
and makes the recordings very difficult. For normpaégnancies, the layer slowly

dissolves in the 37to 38" week of pregnancy (Stinstra, 2001).

Intestines

Fetal membranes

Amniotic Huid

Bladder

Figure 2.2 The fetomaternal compartments influencing thel fedediac surface potentials

During the first two trimesters of pregnancy théusedoes not have a specific
presentation and moves about a lot. By the beginafrthe third trimester it commonly
settles in a head-down position known as the vepsesentation, which is more
appropriate for birth (Osei and Faulkner, 1999)widwer, the fetus may also settle in
other, but less-probable, presentations. The pi&sem of the fetus influences the fetal

cardiac signals recorded from the maternal bodfasarover different leads.



2.1.2 PHYSIOLOGY OF THE FETAL HEART

There are some functional differences between et &ind adults hearts. After
the birth, the right ventricle pumps the blood he tungs for acquiring oxygen and the
left ventricle pumps blood to the body. But for fie¢us, the fetal oxygen is supplied by
the placenta.The blood is no longer pumped touhgd. Instead both ventricles pump the
blood throughout the body including the lungs (8ti&, 2001). While the mechanical
function of the fetal heart differs from an adudtant, its beat-to-beat electrical activity is

rather similar.

2.1.3 FETAL ELECTROCARDIOGRAM

The fetal electrocardiogram was first observed bgidmer in 1906 (Deam 1994).
The representation of fetal PQRST is (Stinstra, 1200
* P wave: atrial depolarization. During the next 50msly very weak signals are
recordable, as it takes some time for the dep@ltniz front to travel through the
AV-node. (Ihareet al., 2006)
* QRS complex: the ventricular depolarization. Th#aat repolarized at the same
time; but this repolarization is obscured by thpalarization of the ventricles.
» T wave: the ventricular repolarization.
Though there are similarities between the eledtpgoaperties of fetal and adult, the
RR interval and morphology are different. The fdtaart beat is almost twice as fast as
an adult heartbeat with changes in different stagésfetal cardiac development
(Hornberger and Sahn, 2007). Adult and fetal EC& similar patterns but the relative
amplitudes of the fetal complexes undergo considerehanges throughout gestation and
even after birth. The most considerable change exoscthe T-waves, which are rather

weak for fetuses and newborns (Van Leeuetel., 2004)



2.2 FETAL MONITORING

Fetal electrocardiogram monitoring is a techniqoe dbtaining the important
information about the condition of the fetus durprg@gnancyThe characteristics of the
FECG such as heart rate, waveform, and dynamicvimehare convenient in determining
the fetal life, fetal development, fetal maturitgnd existence of fetal distress or
congenital heart diseasAnalysis of the fetal heart sound has been usednfme than
100 years to find out whether the fetus is alivenot. Pinard’s stethoscope (simple
wooden funnel) is still being used for this purp{Sandstrornet al., 2005). During 1960s
the abdominal electrode recordings were providingraninformation than the simple
heart rate (Tayloet al., 2003). Electronic fetal monitoring (EFM) wasroduced during
the 1970s and it has become a useful and signifaastetric tool. It was providing more
detailed fetal heart rate analysis and a geneeadbepted method for fetal surveillance
during pregnancy and labor (Amer, 2003). EFM tetbgw is easy to operate and more
robust as a result of advances in signal procedsicigniques. But, to date the EFM

cannot provide all the desired information of fefBandstronet al., 2005).

2.2.1 ELECTRONIC FETAL MONITORING

Electronic fetal monitoring uses special equipntenneasure the response of the
fetal heart rate (FHR). It provides the record ttwat be read by the doctor or nurse. FHR
is a good indicator of stress on the fetus in ledoat delivery. Normal heart rate suggests
that the fetus is extracting enough oxygen formwlmenan’'s bloodstream through the
placenta and umbilical cord. But variations in theart rate can indicate decreased
oxygen in the blood and tissues of the fetus, wih lead to potential damage to the
brain, central nervous system and organs. In skwases, this can result in death.

Electronic fetal monitoring can be external (Norasive), internal (invasive). The



pregnant woman needs to stay in bed during botstgb electronic monitoring, but she

can move around and find a comfortable position.

2.2.2 INTERNAL ELECTRONIC FETAL MONITORING

This method is also called as tlrect or invasive method. The internal
monitoring involves the placement of a small ptasievice through the cervix. The fetal
scalp electrode is placed just beneath the skitheffetal scalp. The fetal heart rate
information is transmitted through the fetal scalpctrode to the fetal monitor. The
advantage of the internal fetal monitor is, sinoe ¢lectrode is attached directly to the
baby the fetal heart rate is sometimes much clearérmost consistent than the external
monitoring device. But the disadvantages are themg be a slight risk of infection and
also the scalp electrode may cause a mark or smatin the baby's head. But this may

heals quickly(Chen, 2004).

2.2.3 EXTERNAL ELECTRONIC FETAL MONITORING

This method is also called @wdirect or non-invasive method. The external fetal
monitoring is done through the skin and it is ncgamt to be invasive. The electrical
signals generated by the fetal heart are measuved hulti channel sensitive electrodes
placed on the mother's abdomen over conductiny j&lhen, 2004 his method of
recording the fetal ECG from the mother’s body withdirect contact with the fetus is
highly desirable. Some of the external fetal manmitp techniques are:

* Fetoscope
» Fetal Phonocardiogram
» Cardiotocography

» Fetal magnetocardiogram



» Doppler Ultrasound

* Abdominal ECG
Fetoscope: It is a special device like stethoscope. It ixpthin the ears of the doctor and
the open end is pressed on mother’'s abdomen. Tdlehtsart beat can be heard clearly by
this method but used less often than the Dopptessdund (Peteret al., 2001).
Fetal Phonocardiogram (FPCG): It allows the heart sounds and murmurs to be tedec
by contracting heart. FPCG imparts no energy tdehes and therefore is inherently safe
for long term monitoringBut it was felt to be too susceptible to movemariifacts
effects (Bassiét al., 1989).
Cardiotocography (CTG): It is the simultaneous measurement of the fetatt hede
with an ultrasound transducer, and the uterine raotibns with a pressure-sensitive
transducer (called a tocodynamometer), for meaguitie strength and frequency of
uterine contractiongSignoriniet al., 2003).
Fetal Magnetocardiogram (FMCG): This uses (SQUID) superconducting quantum
interference deviceQroweet al., 1995)The FMCG is based on the measurement of the
magnetic fields produced in association with car@iectrical activity (Lewis, 2003). The
disadvantages of the fetal MCG are the size, audtcamplexity of the instrumentation
required.
Doppler ultrasound: It is commonly used technique. It is a small deticat is pressed
against the mother’'s abdomen. The sound wavesoaneeded in to signals of heart beat
by the ultrasound device. The advantage is sinpleseé and it can be virtually assured
that FHR can be obtainedNgguchi et al., 1994). The disadvantage is it produces
averaged heart rate and cannot give beat to bembiy. The ultrasound transducer

involves the procedure of launching 2 MHz signavaads the fetus will be problematic



and very uncomfortable (Karvourgsal., 2007). So it is not suitable for long periods of
FHR monitoring (Ungureanet al., 2005).
Abdominal Electrocardiogram (AECG):

This method has the greater prospect for long tmonitoring of FHR and fetal
well-being using signal processing techniques. ABCG signal can be used for non
invasive FHR determination through the detectiorsogll fetal cardiac potentials from
the maternal abdomen surfacgofumet al., 1980). This technique is completely non
invasive and unobtrusive. This has comparativelypower requirement and can be used
over extended (e.g., 24h) periods. This methodtiaddily allows the maternal heart rate
(MHR) to be recorded since the MECG is also deted®mm the AECG. It is
advantageous of using AECG to extract FECG withitaal information compared to
Doppler ultrasound (Mariet al., 2001).

Abdominal Electrocardiogram is recorded by suitgiigcing the electrodes on the
mother’'s abdomen and recording the combined mdtama fetal ECG. This method
monitors the baby's heartbeat by placing a smaihdoultrasound (high-speed sound
waves) disc with ultrasound gel on the mother’'scaben and held in place by a
lightweight stretchable band or belt. Uterine caations are recorded from a pressure-
sensitive transducer that is also placed on theorakd and held by a lightweight

stretchable band or békhandpur, 2002).

2.3 AECG OF PREGNANT WOMEN

The AECG of a pregnant woman reflects the mothelr fatus heart activity .The
ECG signal is measured in two locations (i) thestlad (ii) the abdomen. The typical
method of measurement includes 5 abdominal andi&dit recordings (Deam, 1994).

The abdominal signals are the composite signalstwbontain both the maternal ECG



and fetal ECG signals where as the thoracic sigoatains the maternal ECG signals
(Richteret al., 1998). The fetal ECG signal has high heart bateweaker signal. The
maternal ECG signal has lower heart rate thanetse but a stronger signal.

Figure 2.4 shows the abdominal signals measurad B channel experiment. They
have both MECG and FECG along with some high frequenoise. The signals were
recorded at a sampling frequency of 250 Hz fromle®teodes located on a pregnant
woman’s skin. The real cutaneous electrode recgsdior 1000 samples are plotted in
Figure 2.3 for different electrode positions (EB2BP6). Figure 2.4 shows the signals
from the mother’s thoracic region (TECG) for threlectrode positions (EP7 to EP9).
Due to the longer distance between the thorax relées and the fetal heart, no FECG

heartbeat component can be perceived in this.
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Figure 2.3 Abdominal signals from different electrode positon
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Figure 2.4 MECG signals measured at the thorax region okgr@nt woman.

The maternal ECG signal depends upon the gestaagrathe position of the fetus
and the positioning of the electrodes (Vratsal., 2004). Fetal heart rate depends upon
the fetal activity, hypoxia, placental blood floexternal stimuli, drugs and increases in

temperature (Sundstroenal., 2005).

2.3.1 INTERFERENCE AFFECTING THE FECG SIGNAL IN AECG
The FECG exhibits the bandwidth of 0.05 to 10 Hze maximum amplitude of

the QRS usually oscillates from 100 to ¥0for the maternal recording and up to |00
for fetal recording in composite abdominal signBhe energy of the fetal has been
estimated to be less than one quarter of the sigalals energyMartinezet al., 1997)
The FECG signals are disturbed by the electric&densuch as ECG noise. The ECG
noise sources are power line interference, mussi&ractions, respiration, skin resistance
interference and instrumental noise. The electrgraym and electrohysterogram due to

uterine contractions can corrupt the fetal ECG amgysignificantly(Zarzosoet al., 1997)



The shape and structure of the FECG signal alseertkpon the placement of the
electrodes, the gestational age and the positiotheffetus Golbachet al., 2000).
However, there is no standard electrode positientiied for optimal FECG acquisition
(Vrins et al., 2004). All of the above interference and noiskenthe fetal ECG detection
and extraction a difficult process from the compsibdominal signal. The electrical
noise which will affect the fetal ECG signals candategorized in to the following types:

(i) MECG Signal: MECG signal is the most predominant interferinghaigwith
fetal ECG in the abdominal signal. The frequenaogcsum of this noise source partially
overlaps that of the ECG. Therefore eliminating thoise is an important aspect of fetal
ECG extraction (Mazzeo, 1994).

(i) Power line interference: Power line interference consists of 50 Hz pickup
and harmonics. By using low noise electronic arguhf with high common mode
rejection ratio the effect of 50Hz power line irilgence and the electronic random noise
can be eliminated (Assaleh, 2007).

(iif) Mater nal muscle noise: The muscle noise is due to maternal movement. It is
often from the leg and abdominal muscles and magitieed up from the reference pad
from the maternal thigh. EMG activity in the musclef the abdomen and uterus is the
source of this kind of nois&MG noise can be reduced but not necessarily editach
with the use of classical low pass filtering tecjugs (Assaleh, 2007). Sometimes, it will
be difficult to identify the EMG signal from the @dminal signal.

(iv) Electrode contact noise: It is the transient interference caused by the ¢dss
contact between the electrode and skin. This disetts the measurement system from
the subjects. The transition may occur only oncenay rapidly occur several times in

succession.



(v) Motion artefact: There are two main sources for motion artefact tlsice
the electrode interface and electrode cable. Thiiomartefact can be reduced by proper
design of the electronics circuit.

(vi) Inherent noise in electronic equipment: All electronic equipments generate
noise. This cannot be eliminated. But it can beuced by high quality electronic
components.

(vii) Ambient noise: The source of this noise is electromagnetic rahatThe
surfaces of the human bodies are constantly ineddaith electro-magnetic radiation.
And it is not virtually possible to avoid exposuoeambient noise on the surface of earth.

(viii) Baseline Drift Interference: Baseline drift interference which is the low
frequency components is due to electrode-skin irapeel change caused by the
respiration and body movement. High pass filtees wsed to remove the baseline drift
(Frieseret al., 1990).

The signal processing algorithms need to remove (theMECG from the
composite abdominal signals (ii) reduce the effedtshe motion artefacts and muscle

noise (iif) enhance the FECG for monitoring andlysia purposes.

2.4 FECG SIGNAL DETECTION ALGORITHMS

FECG signal is obtained from the abdominal sigria pregnant woman that has
the potential of being an effective tool for deterimg the overall condition of the fetus
during the delivery. It is used for the detectidrpathological phenomendhe detection
of FECG is yet a difficult task even when the ma#kicomponent of the signal has been
reduced. Hence, to observe the FECG some techslyuéd be applied to eliminate the

maternal contribution and to improve the SNR (Sydsp2001).



Several method$iave been proposed for detecting and processieg-rECG
signal from the abdominal signal. The first reqoest for performing an untriggered
averaging of the FECG is to determine the averagdR.FTo detect FHR, two
fundamental methods can be considered. (i) Peadctitt method and (ii) transform
method. In the Peak detection method a small segoiehe FECG is observed at a time
and searched for the fetal R wave. The resulb@fsearch in abdominal signal depends
on the algorithm used. Due to unpredictable natfréhe abdominal signal, the local
SNR value fluctuates about the SNR value of th@eisignal and might be smaller at
sometimesThis may lead to non detection of fetal peaks ftbennoisyFECG signal. In
the second method, a new function of one or morarpeters is constructed from the
historical signal. Each value of the new functiepnesents a property of the entire signal.
At the same time, each value does not depend oilo¢hESNR but the SNR of the entire
signal. This leads to detection of FHR even when RECG signal is obscured by the
noise The peak detection algorithm failed to detect FMiiereas the transform method
could detect

Tal and Akselrod (1989) proposed a discrete Fouransform method for the
detection of FHR from the composite abdominal rdoc@s. The primary application of
the proposed method is to simulate FECG signal. rieposed method empowers the
detection of FHR from AECG signals where the faighal is barely visible. Then the
elimination of the MECG from the AECG is performe@ihey computed a triple
parametric transform function by multiplying thgsal by their analyzing functions and
integrating the result. In general, the method dan applied to handle weak,
guasiperiodic, sharp signals of various origins.

Kam and Cohen (1999) proposed two architectureshi® detection of FECG.

The first architecture is a combination of an IIRaptive filter and genetic algorithm



(GA). The second one is an independent GA seartiiout the adaptive filter The GA is
included whenever the adaptive filter is suspeakdeaching local minima. Thmain
disadvantage of an IIR (Infinite Impulse Resporfd&r is that the error surface is not
quadratic but a multimodal surface. Therefore, flresence of the GA forces the
algorithm to overcome the local minima and reaehdlobal solution. The quality of the
extracted FECG using this IIR-GA adaptive filtersigperior to that obtained using the
GA alone. The method of combining an adaptiverfitéth a GA performs effectively,
when there are uterine contractions in the ECG. data

Stoughtoret al.(1990) proposed the adaptive least mean squazar liprediction
methods. In the presence of background acoustgeribis method was useful for fetal
heart tone signature analysis and detection. Adapsignal-processing methods are
presented in support of a noninvasive ambulatori® Fkbnitor. Successive evaluation of
the detected fetal heart tone events are usedtendee the instantaneous FHR. The
initial investigation has indicated that linear giction method is feasible for detecting
the fetal heart tones in an advanced acoustic FERtoring system.

Lai and Shynk (2000) have proposed an adaptiverigtign for detecting and
separating the fetal and maternal heart beats.c@hgosite ECG signal is generated by
the genesis technologi@drauterine catheter electrode. Using this metti@destimation
of FHR and MHR are obtained. This method doesreguire reference signal to cancel
the maternal QRS complex and has low computaticoraiplexity.

Peterset al.(2006) developed an algorithm that calculateshiert rate based on
cross-correlation. This algorithm used the multecélode measurements from the
maternal abdomen for fetal monitoring in the eatbges of pregnancy. This algorithm is
also suitable for monitoring the fetal when the E@®@Gplitudes are low or the noise levels

are high.



2.5 FECG SIGNAL EXTRACTION ALGORITHMS

The fetal ECG signals can be used as indicatormmitoring and assessing the
fetus cardiac activities and well-being. There hagen several research studies aimed at
developing signal processing techniques to exfedat ECG signals or to suppress other
noise components from the composite abdominal Egnghe problem of FECG
extraction was tackled more than 30 years ago. rhetyaof techniques that have been
applied for fetal ECG signal extraction include pialge filtering, wavelet transform, ICA
(Independent Component Analysis), BSS (Blind So®eparation) and Singular Value
Decomposition (SVD). Some artificial intelligenc@l) techniques are Fuzzy logic,
neural network, Genetic algorithms (GA) and comtiimes of fuzzy logic and neural
network.

Widrow et al.(1975) had addressed the adaptive noise canoellgchnique is to
remove the interference from the composite abddnsignals. Multiple abdominal
signals were used for extraction purpose.

Ferrara and Widrow (1982) had proposed time secueradaptive filtering
method for the enhancement of the abdominally édrietal electrocardiograms against
background muscle noise. This method requires twmare abdominal channels. The
advantage of the adaptive signal enhancing tecksidgi that the power spectra of the
signal and noise need not be known a priori. Tisellteshows that there is substantial
improvement in terms of signal distortion when tirsequenced filtering is used
compared to conventional time invariant filtering.

Widrow and Stearns (1985) proposed the adaptiveenoancellation technique
for extracting the fetal ECG by canceling the maaerECG from the composite
abdominal signal. They used two sets of electrodes,set placed on the abdomen of the

mother and the other placed on the chest of thenenoThe electrodes placed on the



mother’'s abdomen contain the FECG and MECG whettea<hest electrode contains
only the MECG. These two signals form the inputthi adaptive filters and the error is
the extracted FECG. The drawback of this method fajls to extract the FECG when it
is overlapped with the MECG.

Hamilton (1996) had proposed the comparison betwkeradaptive filters and
non adaptive filters for reduction of power lingéerierence in the ECG. The performance
of the two implementations were evaluated with eespto adaptation rate, signal
distortion and implementation complexity. The refat effect of adaptive and non
adaptive filters was investigated. The result shtived the adaptive implementation of
reduction in power line interference is less comm@ad more effective in removing the
noise compared to the non adaptive filters.

Martenset al. (2006) had proposed an improved adaptive powerifiterference
canceller for electrocardiography with error fiitey and adaptation blocking technique.
This method suppresses the fundamental power lmerféerence component and
harmonics in ECG recordings and is to be prefetwedotch filters. This method would
be equally applicable to other types of corrupigaas such as electromyogram (EMG)
and the electroencephalogram (EEG) with slight fincations.

Vesalet al. (2006) had used classic adaptive noise canaeilégichnique for non
invasive fetal electrocardiogram extraction by uatthg the fetal phonocardiogram as an
adaptation trigger. This approach uses additiocalistic modality to detect the temporal
occurrence of the fetal heart beats. These estihpeigods are used as an adapt- disabled
trigger, halting adaptation during a fetal heartatbeTheir finding show a better
approximation of FECG using a recursive least segpiadaptive filters.

Maha Shadayde#t al. (2008) used adaptive volterra filters which aapable of

synthesizing the non linear relationship betwees mother thoracic signal and the



abdominal signal which contains a transformed moB®@G, fetal ECG and other noise
elements. They have used a multi sensory noiseettanstructure for the extraction

purpose. The results provided better estimated FE@Geforms because the adaptive
volterra filters used is more capable of represgnthe complicated relation between the
mothers ECG and fetal ECG.

Yanjunet al.(2008)used the RLS based adaptive noise cancellatioroapip to
eliminate the maternal ECG and hence to extract@GElhe experimental results have
demonstrated that the developed adaptive noiseeliaton approach can speed up
convergence of the normalized LMS algorithm andhbile to tract non stationary FECG.
The results show that the RLS ANC algorithm offexsre robustness.

The wavelet transform (WT) is an efficient toolr fiocal analysis of non
stationary and fast transient signals. The impomaoperty of the WT is that it can be
implemented by means of discrete time filter bahlke WT represents a very suitable
method for the classification of the FECG extractimm the abdominal signal.

Mallat (1989) had developed a procedure to extrecfetal ECG by WT method.
There are two stages. The first stage is the pcegsing stage for the suppression of low
and high frequency additive noise based on optimalvelet multiresolution
decomposition. The second stage is to cancel tlierna QRS complexes by means of
pattern matching and template subtraction. In otdeliminate detail signals that do not
have maternal and fetal QRS frequency componerdstarallow maternal and fetal
complex homogenization, the wavelet multiresolutitetomposition was used (Abboud
and Sadeh, 1989). The homogenization and noiséenelilbn process based on wavelet
multiresolution decomposition assure that the nmaleQRS complexes on real signal
present morphological patterns that can be highgpaated with the additive influence

of the embedded fetal QRS complex.



The FECG was monitored by calculating the Lipsckitponent combined with
wavelets (Mallat and Hwang, 1992). The main probleith this method is to locate the
FECG when it is obscured by the MECG. This wasmiagor drawback, since they had
the combinations of the above signals which appketse or three times in a 10second
period. During the uterine contractions the noisetents are more. This leads to set the
thresholds on the wavelet coefficients dynamicallying the process. This type of
denoising may not be optimum since the thresholdihghe wavelet coefficients may
result in removing the FECG component from the inabsignal especially during the
contractions.

Echeverriaet al.(1996) had developed a procedure with waveletysigland
pattern matching for the off line processing of AECIt is assumed that the signal can be
mathematically described by the equations whicluge the fetal, maternal and Gaussian
noise components. These terms are affected by alatmoh factor that causes baseline
wandering (Bergveldt al., 1986).The pattern-matching procedure has anraage of
extraction being specific to every record, givin@rm robustness to the identification
process.

Datian and Xuemei (1996) had proposed the wavefgtlyais method for
detection of FECG from the AECG signal. The wavaletlysis method was first applied
to detect the appearances of the distorted MEC@bkand eliminate this signal form the
AECG. In some situations even after eliminating tM&CG, the FECG was sitill
challenging to extract. This is due to the scadiaof the wavelet base function which
can enhance the FECG only with an appropriate valgeng this method the FECG was
detected in more efficient way.

Papadimitriowet al. (1996) used wavelet transform to denoise the BidRals. In

this method, the transient spikes were removed thednoise was reduced without



destroying the high frequency information contefttiee signal. A noise reduction
technique that detects noise components by analyhm evolution of the WT modulus
maxima across scales is adapted to improve thétyjoadFHR recording. The denoising
method eliminates those multiscale maxima whichrespond to the noise components.
The denoised FHR is reconstructed from the prodasseima by the inverse WT.

Khamene and Negahdaripour (2000) had proposedrthbgonal quadratic spline
wavelet method for extraction of fetal ECG from A&CThis is based on the detection of
the singularities obtained from the composite ahidamsignal using the modulus
maxima in the wavelet domain. Modulus maxima lawaiof the abdominal signal are
used to discriminate between the abdominal and E€I& signals. Two approaches have
been used. One uses thoracic signal a priori tioerthe classification where as in the
second approach no thoracic signal was neededcagqsguction method was utilized to
obtain the fetal ECG signal from the detected fetatlulus maxima.

Mochimaru and Fujimoto (2002) also used waveleedawethods to detect the
FECG. They used multiresolution analysis (MRA) temove the large baseline
fluctuations in the signal as well as to removertbse. MRA was performed on the raw
ECG data with 12 levels of decomposition using Cehiies20 wavelet function. Noise
removal was accomplished by thresholding the wawelefficients at each level.

Karvounis et al.(2004) had developed the fetal ECG extraction dhase the
complex continuous wavelet transform (CCWT) and wahosl maxima theory using
multichannel MECG recordings. For a nonstationaignal, CCWT can be used to
identify stationary sections of the data stream kodte and characterize singularities.

Songet al. (2006) had proposed a method where fetal hearidssignals can be

detected, denoised, and reconstructed by utiliaivayelet transform based signal-



processing approach. This approach improves thealsig-noise ratio, which allows
reliable FHR variation to be estimated under veeakvsignal environment.

Karvouniset al.(2006) had developed a three stage method for ExtRaction
based on the time- frequency analysis used for AB@&al processing. In the first stage
using time —frequency analysis, the maternal R peaki fiducial points (QRS onset and
offset) are detected and the maternal QRS complasee®liminated. The second stage
locates the positions of the R peak using complaxelets and pattern matching theory.
In the third stage, using histogram based technia@eletection of the overlapped fetal R
peaks with the maternal QRS is accomplished.

Magalhaeset al.(2006) had used approximate entropy with waveilring
method (ApEN). This method is suitable in findirge tFHR irregularity for fetal risk
assessment. ApEn was able to discriminate thregaaés of behavioral patterns: calm
sleep, calm vigilance, and pathological flat-sindabcondition. They showed high level
of discrimination between normal and pathologiddRRracings.

Some others methods like ICA (Independent CompoAeatysis), BSS (Blind
Source Separation) and Singular Value Decompos{BMD) are becoming very popular
for processing the FECG signal form the AECG.

Kanijilal et al.(1997) had proposed the SVD method for fetal EQ@aetion by
single channel MECG. This method employs the semgwialue decomposition and
analysis based on the singular value ratio spectisimg singular value decomposed
modes the MECG and FECG components are identifiedn the elimination of MECG
and extraction of FECG are achieved through thecsgk separation of the singular
value decomposed components. The important feattithis method is that only one
composite MECG signal is required to determine RBCG component. Therefore, the

method is numerically robust and computationalficeht.



Lathauweret al.(2000) proposed the emerging technique of ICA xwaet the
fetal ECG from the multilead potential recordings the mothers skin which is the
classical problem in biomedical engineering. ICAars ambitious approach. ICA was
aimed to reconstruct of the different statisticatigependent bioelectric source signals, as
well as the characteristics of their propagatioth® electrodes, which reveals important
medical information. It is nonparametric and is baised on pattern averaging, which
could hamper the detection and analysis of tygetal heartbeats.

Barros and Cichocki (2001) had proposed a semédblsource separation
algorithm to extract the fetal ECG from AECG. Thadgorithm requires a priori
information about the autocorrelation function ok tprimary sources. They did not
assume the sources to be statistically indepermeérthey assumed that the sources have
a temporal structure and have different autocdiogldunctions. The main problem with
this method is that if there is FHR variability,paiori estimate of the autocorrelation
function of the FECG may not be appropriate for Fifalysis.

Marosseroet al.(2003) had developed the extraction method by @oimdp the
ICA and mermaid algorithm. Minimum Renyi's Mutuahférmation (Mermaid) was
proposed by Hildet al.(2001) using BSS technique. Marossero demonstréted
performance of an information theoretic ICA with i&id and the performance of the
Mermaid algorithm was evaluated. The effectiveraess$ data efficiency of Mermaid and
its superiority over alternative information theticdBSS algorithms are illustrated.

Ping Gacet al.(2003) had combined the SVD and ICA methods toaekthe fetal
ECG from the mixture of ECG signals from the abdormé the motherThey mainly
applied the blind source separation method usinD &Vseparate of each component the

ICA contributes to the independence of the two congnts from the mixtures.



Vigneronet al.(2003) had also applied the BSS methods for @G extraction.
In this method the fetal ECG was constructed bymaesd higher order statistical tools
for exploiting the non stationary ECG signals withvelets post processing techniques.

Vrins et al.(2004) had applied the BSS technique to extrat ECG. In this
application the sources are, FECG with MECG, diaghr and uterus. The mixtures are
recorded through electrodes located on the pregmamtan’s abdomen.

Burghoff et al. (2004) employed the ICA method to separate tted dd maternal
magneto cardiographic signals in twin pregnancyA I&es higher-order statistics to
decompose the signal into statistical independemtponentsThe results of this method
showed that the maternal and fetal components doeldeparated from each other as
well as from other sources of noise and artifacthe abdominal signal.

Chareonsalet al.(2004) had proposed a real-time BSS method thabeaused to
separate the FECG from the MECG effectively. Ndgattiet al. (2005) had employed
the ICA method for fetal ECG extraction from the @&. The results show that ICA
works well to extract FECG from AECG even in SNR290dB using simulated data.
But the performance was drastically decreasedistence of quantification noise.

Leeet al.(2005) proposed a new FECG extraction algorithingia single channel
from the abdominal signal. This algorithm is coesetl into a training and detection step.
In a training step, a demixing vector was compuwtéti over determined BSS and fetal
beat detection was performed by utilizing the cotagudemixing vector in the detection
step. The algorithm was evaluated with a simulasignal that has diverse heart rates and
with real maternal AECG. In all the cases, detectias perfectly achieved.

Some Al techniques are mainly based on neural mksnMeave been proposed for
processing FECG signal. Neural network is a comgutechnique that evolved from

mathematical models of neurons and systems of neuMduring recent years, neural



networks have become a useful tool for categodmatif multivariate data. This kind of
technique is very useful for real-time applicatibke FECG signal recording and
analysis.

Horneret al.(1992) had proposed the genetic algorithm (GA)r@agh to extract
FECG from AECG. This method is based on subtractimg pure MECG from an
abdominal signal which contains the FECG and ME@f®ads. Subtraction via genetic
algorithm is supposed to be near optimal rathem tha straight subtraction. The
disadvantage of the method is needed to get the ®Ei@nals whose shape is similar to
the MECG present in the abdominal recordings wihieeeFECG signals also available.
Therefore, it needs to be determined exactly whieeeelectrodes need to be placed to
pick up the MECG alone.

Liszka-Hackzell (1994) employed the categorizapoocess for the FHR patterns.
Digitized data from CTG measurements have been fosezhtegorization of typical heart
rate patterns before and during delivery. The baxggation and SOM (self organizing
map) networks were used that can be reliable angeagvell with the manual
categorization.

Marqueset al.(1994) proposed a method to determine the FHRguaitificial
neural networks(ANN). In this method, two baselideterminations methods were
suggested with multilayer perception based ANN. bhseline estimation and base line
classification were described and compared basedesnresults. It is found that the base
line classification is clearly superior to the @sponding base line estimation method.

Magenest al.(1999) combined the neural and fuzzy classifierextract FECG
signal from AECG. Using this method, the normal grathological fetal states were

discriminated. Both classifiers are based on lireea non linear indexes extracted from



cardiotocographic fetal monitoring. It was observigdt the neural and fuzzy classifiers
could improve the diagnostic information contaime@ TG signals.

Selvan and Srinivasan (2000) had suggested thatdhwination of adaptive
filtering technique with neural network is an eiiot technique for processing the
abdominal FECG. Real time recurrent learning atbaoriis applied for training the neural
network. The training converges faster to a loweamsquare error and suitable for real
time processing as well. The proposed techniquipas better than the noise canceller
alone or a cascade connection of both noise canaeitd signal enhancer.

Azad (2000) had proposed a fuzzy based approackxtoaction of FHR. That
was the improved scheme for detecting the presehdhe QRS complexes from the
AECG using a fuzzy detection algorithifihe fuzzy detector incorporates a measure of
uncertainty and can conclude that a maternal atad E&CG is present in the maternal
abdominal recordings.

Campset al.(2001) had proposed a method by FIR(Finite ImpuR&sponse)
neural network in order to provide highly nonlinelynamic capabilities to the FECG
extraction model. FIR neural network has the na@ecellation techniques as Widrow
method. Although the original scheme of Widrow (Véi¢h et al., 1975)considered
several reference signals, only one thoracic reterds considered in their proposed
method. In this way, all the correlated compongmsiternal signal) vanish and the
FECG register is obtained as the error signal.

Reaz and Wei (2004) proposed FECG extraction basethe adaptive linear
neural network. In this method the neural netwarkrained to cancel out the maternal
signal to get the fetal signal alone. The fetahalgis weak under the domination of
maternal signal and other noises. The network etesilenaternal signal as closely as

possible to abdominal signal, thus only the MEC@ridicted in the AECG. The main



concept of this proposed method is that the netveorér equals AECG minus MECG,
which is the FECG. This method is better than catigeal filtering because subtraction
was used. It can avoid eliminating desired signal.

Warrick et al.(2005) had used the combined tools of signal msing and neural
networks to develop the automated technique toctete FHR patterns of baseline,
acceleration and deceleration.

Assaleh (2007) had proposed an adaptive neurg flomic technique to extract
the fetal ECG from the AECG. Using the neuro fugeynbination the non linearity of
the MECG is identified. Then the fetal ECG is esteal by subtracting the aligned
version of MECG signal from the abdominal signal.

Some other methods with different techniques fetalf ECG extraction are
discussed below.

Mooney et al.(1995) had designed a adaptive algorithm basedomomputer
controlled data acquisition system capable of ately capturing the fetal cardiac signal
from the maternal transabdominal recordings.

Pieriet al.(2001) has proposed the matched filtering techeiguextract the fetal
ECG from the AECG. Three abdominal leads were uUseedextraction purpose. The
analog preprocessing steps were done then thd sgtigitized and further processed by
low pass filter, band pass filter. This digitatéil stage is followed by a matched filter for
further improvement of the SNR. But this methodswat yielding satisfactory results.

Laim and Shynk (2002) had used successive carioalld6C) algorithms for
FHR estimation using an intrauterine ECG signakalnerine ECG signal contains the
fetal and maternal QRS complexes. The two stage ag@rithms were used to
sequentially separate the fetal and maternal hdmat from an intrauterine

electrocardiogram signal. The heartbeats are segplnsequently in two stages. In



each stage a template for fetal or maternal soameenitialized and then performs event
classification based on a template-matching tecteiqihe template of the stronger
source is canceled from the composite ECG signal po initialization of the weaker
source’s template in the second stage. Similargyohd the initialization period the
classified events of the stronger source are rethtwafore classification of the weaker
ones. The postprocessing step improves the clestiin results by searching for
heartbeats that are not detected due to overlaggiaband maternal complexes or noise
corruption.

Ibrahimy et al.(2003) had proposed a statistical analysis methodetal ECG
extraction using one abdominal lead recordingss Thethod performs well for large
dataset.

Vasioset al.(2003) had proposed the matching pursuits (MPhateto extract
the very low frequency periodic components of tbmplicated FHR fluctuations during
labor. This is used to examitige long-term modulation characteristics of therbese in
relation to the oxygen saturation of fetal arteblod. The very low frequency range is
focused since some of the adaptive responses dethe are associated with the long
term slowly varying components of the FHR. MP meths sufficiently sensitive to
detect abrupt perturbations.

Georgoulast al. (2004) presented an approach to automatic dieatsiin of FHR
tracings belonging to hypoxic and normal newboifise classification was performed
using a set of parameters extracted from the FigRasiand two hidden Markov models.
Their results were satisfactory indicating that ¢R convey much more information

than the conventional FHR classification.



Design of application specific integrated circwt the biomedical instrument has
become quite important recently. Various hardwareuits have been implemented to
develop FHR monitoring to assess the fetal states #ssuring his well-being during
pregnancy period.

Pimentelet al. (2001) offered a hardware implementation of ataigompression
tool for electrocardiographic signals based onsaréie cosine transform. The platform
chosen is a field programmable gate array (FPGAE t its ease of use and rapid
prototyping characteristics.

Charoensak and Sattar (2005) had implemented aoieeff FPGE hardware
architecture for the realization of a real time BS8e architecture can be implemented
using a low-cost FPGA. The architecture offers adydalance between hardware
requirement and separation performance. The FPG#gunle@mplements the modified
Torkkola’'s BSS algorithm for audio signals based®©A technique.

Performance of the extracted FECG was evaluatetyube essential parameters
proposed by Kohleet al. (2002).They areSensitivity (SEN), Specificity (SPE), Positive
Predicted Value (PPV), Negative Predictive Valu®{Wland Accuracy (ACC). TP (True
positive) is the total number of positive peaksedttd in extracted FECG .TN (True
Negative) is the total number of negative peakgated in extracted FECG. FN (False
Negative) when an artefact is detected as negpea&. FP is (False Positive) when an
artefact is detected as a positive peak. In addittothe above parameters Correlation

Coefficient (CORR) and Signal to Noise ratio (SNaye also been studied.



2.6 RESEARCH GAPS IDENTIFIED

In view of the literature review, following mainsearch gaps were identified.

(i) BSS and ICA extraction methods though congdeas the successful methods,
they require multiple leads for collecting seveahtiominal signals. In this method one
can see the remnants of the maternal R wave ahtternal and fetal QRS overlap. The
other disadvantage of BSS from cardio pediatriggamt of view, that the results were
not satisfactory because of the lack of accuracthersmallest waves. i.e P,O,R,S and T.

(i) The fetal ECG extraction based on adaptiveefd can use two leads but have
their limitations especially when the fetal beatzertap with the QRS wave of the
maternal beats.

(iii) The fetal ECG extraction based on source s&an using wavelet domain
introduces the permutation problem which is a kndimitations of transform domain
BSS particularly for convolute mixtures. The otliBsadvantage is its limitation when
overlapping between the maternal ECG and fetal Bi@@als exists.

(iv) Fetal ECG extraction based on neural netwoak® longer time for training
and estimating the thoracic signal from the contpcabdominal signal .

(v) Fetal ECG extraction based on fuzzy logic téeghe is not useful for
interference cancellation technique due to its mtsef adaptation capability.

The present research aims to overcome the abavebdcks by developing novel
techniques and soft computing techniques for FEQ@etion. The proposed techniques

use two lead (one abdominal and one thoracic) Edgoaxtract FECG.



CHAPTER 3

NOVEL EXTRACTION TECHNIQUES FOR FECG
USING MULTI STAGE ADAPTIVE FILTERING

3.1 INTRODUCTION

Suppression of maternal ECG in composite abdorsigalal is required to extract
the fetal ECG. MECG cancellation is a special aalseptimal filtering which can be
obtained when the information about the thoraagoai is available. Besides the problem
of electrode placement, noise from electromyogragattivity affects the signal due to the
low amplitude signal of fetus. Another interferisignal is maternal ECG which has the
intensity 5 to 10 times higher than the FEG@irow and Samuel, 1985The maternal
ECG affects all the electrodes which are placedhenchest (thoracic electrode) and
those placed on the abdomen (abdominal electr@=ause of the weak nature of the
FECG, electrodes placed on the thorax of the pragwamen will hardly record any
FECG (Kam and Cohen 1998).1f one is able to elit@irthe maternal ECG component
from the composite abdominal signal, the FECG digaa be obtained.

The best solution for this situation is to use awaepfilters because of the
advantage that the coefficients can adjust autcalhti Moreover the ECG signals are
non stationary in nature. The interfering matef8@lG and 50 Hz pickup can be greatly
reduced by the use of adaptive filtering (Widretal., 1975) and (Glover, 1977). Once
these interferences are removed, the resultingbsaggmtains FECG and the muscle noise.
The muscle noise can be reduced by signal enhamtefrerrara and Widrow, 1981).
The adaptive filter output is a best estimate effétal ECG component. The thoracic and
maternal signals need not be identical in wave shhpt they need to originate from a

common source.
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In this chapter three new algorithms for FECG signdraction are proposed.
These are named as (1) Method |- FECG Extractiothdte (2) Method Il-Improved
FECG Extraction Method (3) Method - 1ll Novel Methof FECG Extraction.

The testing of the algorithms was done by using dadm SISTA/DAISY and
Physionet. The data from SISTA/DAISY has abdomaeth of 5 channels and thoracic
data of 3 channels (De Moor, 2005).

Physionet has 2 channels of thoracic signals arithdnels of abdominal signals.
The database used for the maternal signals isewritt European Data Format (EDF). It
is provided by PhysioBank the public database ofsiiNet. This database contains a
series of 55 multichannel abdominal non-invasivéalfeelectrocardiogram (FECG)
recordings, taken from a single subject betweeto24D weeks of pregnangiarcelino
and Jorge, 1997). The sampling frequencies of $iata and Physio data are 250Hz and
1KHz.Both of the databases has been transformedMatlab readable format for easy
extraction, computation, and analysis.

The data from Sista daisy has abdominal data ¢idBmels (Channels 2,3,4,5 and
6) and thoracic data of 3 channels (channel 7,8 @ndPhysionet has 2 channels of
thoracic signals (channel 2 and 3) and 1 channehbmfominal signal (channel 4).
However for extraction of the FECG signal, any channel of abdominal signal and any
one channel of thoracic signal are used. The tgstirthe algorithms was done with all
the combination of abdominal and thoracic signmlsSista data and physio data any one
of the thoracic signal is selected since all thantiels have huge maternal signal. For
analysis purpose one channel of thoracic signadricll 7) along with all channels of
abdominal signals (channel 2, 3, 4, 5, and 6) wetiwidually analyzed and discussed for

Sista data. For physio data, one channel of thosagnal (channel 2) and one channel of



abdominal signal (channel 4) were chosen for amalyhe algorithms have been tested
with both the data sets.

For explanation purpose, the combination of abdamamannel 2 and thoracic
channel 7 is represented as electrode positiodr2a/similar way the other channels are
named as 3,7 ; 4,7 ;5,7 and 6,7 for Sista dataPRgsio, the combination of abdominal
channel 4 and thoracic channel 2 is representeteesode position 4,2.

The proposed methods detect fetal ECG by prepringesand denoising of
abdominal ECG (AECG) and subsequent cancellationaiérnal ECG (MECG) by multi
stage adaptive filtering. The thoracic signal (TEQ@ich is purely of MECG is used to
cancel MECG in abdominal signal and the fetal E@&dtor extracts the FECG.

The evaluation of these methods with data frontaSdaisy has been presented in
sections 3.6.1 to 3.6.3 and analysis in sectiorb36The evaluation of the methods with

physiodata has been presented in section 3.6.4ralysis in section 3.6.5.2

3.2 DEVELOPMENT OF THE ALGORITHM

A novel technique to extract FECG from the comm@oalidominal signal has been
developed using following methodology:
(i) Preprocessing of maternal ECG
(i) Multi stage Adaptive maternal cancellation

(iii) Extraction of FECG

3.2.1 PREPROCESSING ALGORITHM

The preprocessing of the abdominal signal is reguio remove the DC signal,
base line wander and power line interference. Basevander is caused by the patients

breathing or movements during recording (Onatadl.,1984). The frequency range of



the baseline wander due to breathing has an uppiersimaller than 1Hz. But when the
patient is performing exercise, the upper limit niey larger (Lagunat al., 1992).The
base line wander is low frequency in nature and EMiSe due to muscular contraction
is characterised by high frequency. The band phss feduces the influences of muscle
noise, 50Hz power interference, T wave interfereaod baseline wander (Pan and
Tompkins, 1985). The Fetal heart rate (FHR) norynbdls between 120 and 160 beats
min® (bpm) (Abboud and Sadeh, 1990) which correspomdsundamental FECG
frequency between 2 and 2.7Hz. In pathological ssafee FHR may be outside this
range. For fetal bradycardia and for fetal tachgizathe fundamental FECG frequency is
around 1.3Hz and 3.3 Hz.

The preprocessing consists of the following stépgafnalatha and Prasad, 2p07
(a) Read the abdominal ECG
(b) Separate the high resolution components andésalution components
(c) Compensate for the phase
(d) Derive the noise component
(e) Separate the noise from the original signal
(f) Reconstruct the signal back
(g9) Repeat the entire process iteratively

In preprocessing stage, the high resolution compsnehich are the maternal
QRS wave having large amplitude and frequency jpursged from the low resolution
components of fetal ECG. The separation is donegusand pass digital filter. The FIR
band pass filter with cut off frequencies from 5tdz 90Hz is used. The power line
interference of 50Hz is also eliminated with thiant pass filter. Then the signal is
subjected to the Fast Fourier Transform where ¢odgoses a sequence of values in to

components of different frequencies. The compemsddtir the phase of the signal is done
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by phase shifting the signal so that the noiseadigan be derived. The noise signal thus
obtained, is separated from the original signalofeéd by the Inverse Fast Fourier
transform to reconstruct the signal back. The tesfuthe above algorithm for the case of
atrial fibrillation and ventricular tachycardia astown in Figure 3.1 and Figure 3.2.
Figure 3.1 (a) is the ECG in ventricular tachyathinyia. This ECG signal is processed
and the noise component derived is shown in Figui€b). The reconstructed signal
shows more subtle details than the original sigmahoth the cases the details seen in the

reconstructed ECG are not visible in the origin@ldesignal.

Signal Amp liude
E
—
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Time

Figure 3.2 (a) ECG in Atrial fibrillation (b) Noise (c) Recstnucted signal



3.2.2 ADAPTIVE MATERNAL CANCELLATION

The subject of adaptive noise canceling was intteduand treated extensively by
Widrow (Widrow et al., 1975).Figure 3.3 shows the adaptive method cfenGMECG)
cancellation. Here one input signal is the abdohsignal (X) which is the mixture of

MECG and FECG. In Xthe noise (MECG) is uncorrelated with signal (FECG

(X« = AECG = FECG + MECG) & (FECG)

» 2
Xlk:TECG f Y= MECG1
——p | Adaptive Filtgf (W)

/

Figure 3.3 Adaptive maternal cancellation

The input signal to the adaptive filter is thoragignal (TECG) which is
uncorrelated to FECG but correlated with MECG. Tddaptive filter output Y is
MECG;. Since MECG is generated from TECG it is correlated with MEQ@t
uncorrelated with FECG. The output is the esois given by

e.= FECG + MECG - Y (3.1)
The mean square ef is obtained as

a’= FECG + (MECG -Y\)?+ 2FECG (MECG-Y) (3.2)
Applying expectations on both sides of the abouea@gn

Ee’= E[FECG | + E[(MECG -YJ)?] + 2E[FECG (MECG-Y)] (3.3)
As FECG is uncorrelated neither with MECG nor withthen 2E [FECG (MECG-Y)]=0

Finally we obtain, B2= E [FECG] + E [(MECG -Y¥) ?] (3.4)



The goal of the adaptive filter is to minimize thean square error of E [MECG «]¥0

This can be obtained iteratively to give the optfirsolution when ¥= MECG.
This result is obtained by the adaptive procestiomit requiring any prior knowledge
about the signal and the noise (Widrow and Sami@85). If the properties of noise
changes in time and if the frequencies of the digma the noise overlaps, then the
adaptive filtering is chosenThe structure of filter employed for adaptive filtgy is
invariably finite impulse response because of thieeient stability and mathematical
tractability for computation of its coefficientsh& filter through an adaptive algorithm
readjusts its coefficients W at each time samplehghat the actual filter output is as
close to the inference component of the primaryingignal as possible in the mean
square error (Haykin, 2002). Different algorithmeres used for filtering which includes
Least Mean square (LMS) and Recursive Least Sq&8) and normalized least mean
square (NLMS). The LMS algorithm is a simple methtidoperates by automatically
adapting the filter coefficients W so that the @mganeous error signal® is minimized.
The computations of the weights of LMS are showadgnation 3.5 and 3.6.

Wit = Wi + 2 p e Xk (3.5)

& = Yi— W' X (3.6)
where p is the learning parameter. LMS algorithm is mo#eative in terms of
computation and storage requirements.The NLMS algoris a variant of the LMS
algorithm by normalizing with the power of the inpd’he RLS has the increased
complexity, computational cost and fidelity butnitinimizes the total error from the
beginning to the current value with the forgettfagtorA and it is related to the memory
of algorithm. The computations of the weights @& ahown in equation 3.7, 3.8 and 3.9.

Wi = W1 + Geex (3.7)



where G =P.1 X/ 6k and R= [ka Xk]'l ; (A« = Recursive way to compute the inverse
matrix, &= priori error)

&= Yic— Wi X" (3.8)

Gk = A+ X' Pt Xk (3.9)

RLS algorithm has got the superior convergencegmnees (Emmanuet al., 2002).

3.2.3 BLOCK DIAGRAM OF THE PROPOSED ALGORITHM
The block diagram of the proposed algorithm is shawFigure 3.4. Fetal ECG

detection was done by improving SNR of fetal QR&glex to the other components of
the signal using a nonlinear parameter. This reslttee maternal P and T waves. The non
linear paramete¥ is defined as follows.

¥ = DS (DS-1) (3.10)

Denoised signal

AECG (DS) ¥=DS (D<1)
» Preprocessing &
Denoisin¢
TECG Y

o o 1 N .
"1 (TECG) ”| Adaptive Filter 1 | Cancelling
mECG

4’| Adaptive Filter 2 | Cancelling

l mECG

=I Adaptive Filter 1 |

v | fECG detector \:> fECG
—+ Adaptive Filter 2 ‘_> mECG

Figure 3.4 Block Diagram of the proposed algorithm
DS is the preprocessed and denoised signal obt&ioedthe original abdominal
ECG. The DS signal is squared and then subtraated DS to obtaint. The advantage
of squaring the signal intensifies the slope of fregquency response curve of the

derivative and will help in restricting the falsegttive T waves which is higher than the



usual spectral energies (Pan and Tompkins, 1983) adaptive filter has two input

signals. One signal is the thoracic signal andraglgnal is the non linear operator signal
which is the squared denoised signal. The MECGqaasi periodic signal similar to the

FECG. The periodicity of the MECG is usually slowean that of FECG. In abdominal

recordings, the MECG amplitude is larger than FE&Gplitude. The breathing effects
and movements are resulting in changing distandeaagle of the electrode with respect
to the mother’s heart. This leads to a time varymgphology of the MECG. This time

variations are not proportional for the P, QRS dndvave because of their different
dipole directions (Goldberger and Goldberger, 199 MECG cancellation is done by
finding an estimate of each MECG complex using isgaprocedure. This scaling

procedure takes care of the time varying morpholdgiaptive filters are assigned with

LMS algorithm in both stages.

Figure 3.5 (a) shows the abdominal signal to bdyaed. Figure 3.5 (b) is the
preprocessed signal of the original abdominal sigafeer reducing the noise. The
preprocessed signal is squared. Then, the recatetrabdominal signal is obtained by
adding the preprocessed and the squared signahvgishown in Figure 3.5(d).Figure
3.6(a) is the maternal ECG recorded from thoraegeon. In order to reduce the mothers
ECG effects on extraction, MECG was eliminated Isng two stages of adaptive
filtering. The reference signal taken is shown iguFe 3.6(b) which is the squared and
scaled thoracic signal .The advantage of this niethahat the reference signal need not
closely mimic the signal to be cancelled. If sucteference signal could be generated,
than this method can be applied where only the erstBCG is available. The output of
the adaptive filter 1 is again adaptive filteredhathe squared TECG signal. The output
of the adaptive filter 2 is applied to FECG detettoobtain the FECG signal as shown in

Fig 3.6(d). The resultant signal depends on theevédr the constant of adaptation. After



the removal of baseline wander, the power lineriatence and the MECG, the signal

contains FECG combined with EMG interference andsugment noise. The original

abdominal signal, extracted FECG by the FECG detestd MECG are shown in Figure

3.7 (a), (b) and (c) for Sista daisy data. FiguB{e8 and 3.8(b) are the original signal and

extracted FECG for Physio data.
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Figure 3.5 (a) Original abdominal ECG (b) Preprocessed sigr)&quare of
preprocessed signal (d) signal obtaafes adding b and ¢
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Figure 3.6 (a) Thoracic ECG (b) square of Thoracic ECG (c)pQuof Adaptive filter 1

(d) Output of Adaptive filter 2
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Figure 3.7 (a) Original abdominal ECG (b) Extracted FECGHg)racted MECG (Sista)
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Figure 3.8 (a) Original abdominal ECG (b) Extracted FECG (FRinyeet)
The proposed preliminary algorithm was assessetl vetl composite signal
comprising of MECG and FECG. The noise in the FESI@hal is due to mother’s

electromyogram activity. The performance of the hodtis seen from the extracted

waveform centering on R wave peak. The P and T svase also be seen to some extent.



In order to enhance the quality of the extracte€GEhe proposed algorithm, has been

refined as presented in the following section.

3.2.4 SELECTION OF PROCESSING ALGORITHMS FOR ADAPTIVE
FILTERS
The proposed algorithm is analyzed with differenimbinations of adaptive

processing algorithms to choose the optimum cortibimao extract the fetal ECG. The
different adaptive filter combinations for two stggof adaptive filtering chosen are (i)
LMS,LMS (i) LMS,NLMS (ii)LMS, RLS ((iv)NLMS,LMS (V)NLMS,NLMS (vi)

NLMS,RLS (vii) RLS,LMS (viii) RLS,NLMS (ix)RLS,RLSFigure 3.9(a) is the original
abdominal signal. The outputs generated by the gmtibn of adaptive filter 1 as LMS

and adaptive filter 2 as LMS, NLMS and RLS are shawfigures 3.9(b)(c) & (d).
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Figure 3.9(a) Abdominal Signal (b) LMS, LMS output (c) LMSLNIS output
(dyiI5, RLS output
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Figure 3.10(a) is the original abdominal signal.eTéutputs generated by the
combination of adaptive filter 1 as NLMS and adegpfilter 2 as LMS, NLMS and RLS
are shown irFigures 3.10(h)(c) & (d). Figure 3.11(a) is the original abdominal signal.
The outputs generated by the combination of adagiier 1 as RLS and adaptive filter 2
as LMS, NLMS and RLS are shownhigures 3.11(h)(c) & (d) .

Optimum Combination of Adaptivefilters

Out of 9 possible combinations of the filters telstithe combination with NLMS
(Figure 3.10) was not fully suppressing the mate#®@G component. LMS, LMS
combination (Figure 3.9) and RLS, LMS (Figure 3.tajnbinations were yielding good
results. LMS, LMS combination was able to extrataf ECG completely and suppress
the maternal component. However noisy components yweesent in this method. RLS,
LMS was yielding comparatively better result. Iseen that the fetal ECG has significant
dominance and maternal ECG is totally suppresséds Tor further analysis the RLS,
LMS combination has been used for two stages gtaggfilters to extract the fetal ECG

by the three different methods proposed in thiptéra

3.3 METHOD | - FECG EXTRACTION METHOD
In the earlier extraction algorithnSyarnalatha and Prasad, 2P0gelded a

FECG signal, which was not totally free from magtrcromponents. The method I-FECG
extraction method is to extract the fetal ECG bppsessing any other components
present in the extracted signal. The extractiofetsl ECG includes the preprocessing of
the abdominal signal using the steps explainedeatian 3.2.1.Then the preprocessed
signal is used to develop the non linear paramé#ter DS (0.02*DS-1) as shown in

Figure 3.2. The adaptive filter has two input signals. Ommal is the scaled, squared

and again scaled thoracic signal and other signéie non linear operator sign&.is



derived by adding the negative of the denoisedasigvith the squared and scaled
denoised signal. The scaling factor has been detedriooking at the amplitude of the
squared signal to match with that of the abdonsigal. The scaling factors have been
chosen such that the adaptive filters are fine dutee extract the desired signal. This
method can totally avoid thoracic signal being rded if a replica of thoracic signal can

be generated.

Denoised signal
(DS)

AECG P=DS (0.02 *DS-1)
—»

Preprocessing ¢
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Adaiive Filter Cancelling
“=TECG/12 > aptive Filter . | \ecc
TECG ¢ c li
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=09 —* Adaptive Filter : MECG

.

| fECG detectc |

v
fECG

Figure 3.12 Block diagram of the FECG extraction method.

Adaptive filter 1 has the two inputs which are tien linear paramete? and the other
from the TECG block. The adaptive filter 1 and adegpfilter 2 uses RLS and LMS

combination to cancel the maternal ECG.

3.3.1 METHOD | — FECG EXTRACTION METHOD —RESULTS

The extraction results of method | are shown inuFég3.13 to Figure 3.17 for
Sista data with different electrode positions. IF&gB.18 is the extracted output for Physio
data. The visual quality of extracted FECG is sé&mrbe good in this method. The
removal of MECG components can be seen clearly tteroutput. Note that the FECG

is extracted even when FECG is overlapped with MEIEG interesting to note that the



algorithm is quite fast in processing the extrattad FECG. The SNR is found to be
11.81, 12.16, 8.55, 20.83 and 8.58 for Sista datadifferent electrode positions. The

SNR for the Physio data is 3.0161.
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Figure 3.13 FECG extraction- Sista (2, 7)

Criginal Signal

50 . . , . .
L=k}
=
=
= BT . \ . \ .
E Z00 200 400 500 &00 700 00
e Extracted FECG
o 50 -
0
=0 ; ; . i ;
200 300 400 500 GO0 700 00
Sample MNao
Figure 3.14 FECG extraction- Sista (3, 7)
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Figure 3.15 FECG extraction-Sista (4, 7)
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Figure 3.16 FECG extraction- Sista (5, 7)
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Figure 3.17 FECG extraction-Sista (6, 7)
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Figure 3.18 FECG extraction-Physio (4,2)
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3.4 METHOD Il - IMPROVED FECG EXTRACTION METHOD
The method Il is the improved FECG extraction et which uses the

refinement of the multi stage adaptive filterednsigThe refinement process is proposed
to further enhance the quality of the extracted 6EChe block diagram of refinement
algorithm is shown in Figure 3.19. In this algomiththe steps used to refine the extracted
FECG are same as the preprocessing methodologysded in section 3.2.1. This

method was yielding a better result than the method

Denoised signal
AECG | Preprocessing & (bS)

—»| Denoising

P=DS (0.02 *D&-1)

A\ 4

@ 4’] Adaptive Filterl |Slzrgglling
TECC L
—» ‘2' =[l Adaptive Filter | Cancelling
y=() ¢ mECC
| fECG detectc |
z =yl 50 i
| Refinement — fECG
Figure 3.19 Block diagram of the FECG extraction with Refinermne
3.4.1 METHOD Il - IMPROVED FECG EXTRACTION METHOD -

RESULTS

The results of method Il are shown in Figure 3@0Figure 3.24 for Sista data

with different electrode positions. Figure 3.2%hs result of the Physio data.
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Figure 3.20 Improved FECG extraction-Sista (2, 7)
The extracted FECG shows the QRS complex of tlze EEEG very clearly. The SNR is
19.42, 14.62, 10.29, 21.64 and 9.68 for the Siata tbr the different electrode positions.
The SNR for the Physio data is 11.9095. These SHRevshow the quality of the

extracted signal is good compared to method I.
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Figure 3.21 Improved FECG extraction-Sista (3, 7)
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Figure 3.22 Improved FECG extraction- Sista (4, 7)
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Figure 3.23 Improved FECG extraction- Sista (5, 7)
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Figure 3.24 Improved FECG extraction-Sista (6, 7)

oo

8]



Criginal Signal
AL T T T

205 -

DWW
20 | -

1 L L L L L L L L
200 400 B00 S00 1000 1200 1400 1s00 1500 2000

Signal Amplitucte

Extracted FECG
10 T T T

=1 o

-10 1 L L L L L L 1 L
=200 400 EO0 =200 1000 1200 1400 1B00 1800 2000

Sample Mo

Figure 3.25 Improved FECG extraction- Physio (4,2)

3.5 METHOD IlI- NOVEL METHOD OF FECG EXTRACTION
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Figure 3.26 Block diagram of the novel method of FECG extracti
Method Il is the novel method of FECG extractidimis novel method of FECG
extraction uses a non linear paramédter DS (K-1) and avoids the post refinement after
FECG detector as shown in Figure 3.26. Once thprpcessing steps are done for the
input signal, the denoised signal is multipliedfagtor K. The adaptive filtering in both
the stages is done by the new non linear pararagiag with the thoracic signal. This
new non linear parameter has yielded a better FE@@pared to the other proposed

methods.



Determination of K value

The K value was determined by studying the vanegiom the peak magnitude of
the power spectral density of the extracted fetalGE The power spectral density was
studied for different values of K ranging from vesyall to vary large value. Studying
the extracted fetal ECG for different values of iKwas assumed that the quality of
extracted fetal ECG is good in the lower range¥Kdietween 1 and 3. Based on this
assumption, the power spectral density for diffex@tues of K ranging from 0.2 to 6 was
studied. The variations of the peak value (dB/Hzbhe power spectral density for these

K values are plotted in Figure 3.27.
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Figure 3.27 Plot of K value versus Power Spectral Density

As the K value increases from 0.2, it reaches atiagpeak value (-18db/Hz) at
K=1.2. Beyond this it starts rising towards zerdHiband reaches 0 db/Hz at K =2.6. The
plot remains constant at 0 db/Hz till K=2.8 andntiséeeply rises after K=2.8. Thus it is
observed the plot can be divided in to three regms K < 2.6, 2.6 <K<2.8 and K>2.8.

The plot for K < 2.6 shows uneven variations in dfiHz value. The region K > 2.8 has



steep rise in the value of db/Hz. Only in the regib6 <K<2.8 the plot has a constant
value of 0 db/Hz. Thus in this region, the K valselot affecting the extraction of fetal
ECG. The region below K<2.6 due to its uneven vans is drastically affecting the
quality of the extracted fetal ECG. The steep aféhe plot in the region for K>2.8, the
extracted fetal ECG is highly corrupted by the meaeECG and by the other artifacts.
Thus the value of K to be chosen should lie betwée 6 to K=2.8. The value chosen in

this work is K =2.6.

3.5.1 METHOD Il — NOVEL METHOD OF FECG EXTRACTION —
RESULTS

The extraction results of method 11l are shown igufe 3.28 to Figure 3.32 for
Sista data for different electrode positions. F&g@r33 is the result of Physio data. The
SNR value is 19.98, 17.29, 11.24, 22.45 and 1lob8ista data. The SNR for the Physio
data is 11.937. The SNR value of this method shawsarked improvement over the
earlier two methods. The result clearly shows thatextracted fetal ECG is better than
previous methods. It is also seen to be noise free.
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Figure 3.28 Novel method of FECG extraction-Sista (2, 7)
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Figure 3.29 Novel method of FECG extraction-Sista (3, 7)
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Figure 3.30 Novel method of FECG extraction-Sista (4, 7)
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Figure 3.31 Novel method of FECG extraction-Sista (5, 7)
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Figure 3.32 Novel method of FECG extraction-Sista (6, 7)
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Figure 3.33 Novel method of FECG extraction-Physio (4, 2)

3.6 EVALUATION AND ANALYSIS OF THE PROPOSED METHODS

Evaluation of the proposed algorithms has beer dsing the following
parameters. They are;
1. Sensitivity (SEN) = TP/ (TP+FN)
2. Specificity (SPE) = TN/ (FP+TN)
3. Positive Predictive Value (PPV) = TP/ (TP+FP)
4. Negative Predictive Value (NPV) = TN/ (FN+TN)
5. Accuracy (ACC) = (TP+TN)/ (TP+FP+FN+TN)

6. Correlation coefficient (CORR) - Between the pasite abdominal signal and the
extracted FECG.



7. Signal to Noise Ratio (SNR) - Signal to noisioraf the extracted FECG

where TP (True positive) is the total number of ifnees peaks detected in extracted
FECG,TN (True Negative) is the total number of rirgapeaks detected in extracted
FECG, FN (False Negative) when an artefact is dedeas negative peak, FP is (False
Positive) when an artefact is detected as a pespiwak. Sensitivity is related to the
positive events correctly detected. Specificityatated to the negative events correctly
detected. Positive predictive Valug related to the ability of detecting true postiv
events. Negative Predictive Value is related to dhdity of detecting true negative
events. Accuracy is related to total positive aredjative events correctly detected.
Correlation coefficient is obtained between the posite abdominal signal and the
extracted FECG. The correlation value of ‘1’ indesathe high presence of maternal
ECG and the value ‘0’ indicates no presence ofl £@G. The signal to noise ratio is
obtained for extracted FECG signal.

In this chapter three different methods of fetalG€xtraction are proposed. All
the methods have been tested and evaluated witbathe data from Sista data set and

Physio data set.

3.6.1 EVALUATION OF METHOD | - FECG EXTRACTION METHOD

The performance of method | tested with data fi®ista is shown in Table 3.1.
The performance parameter SEN, SPE, PPV, NPV ard #&@n electrode position 2, 7
and 3, 7 are seen to have a better performance arethfio other electrode positions.
Electrode position 4, 7 and 6, 7 are having lomaido noise ratio.In electrode position
4,7;5,7 and 6, 7 the correlation is on the higige due to presence of maternal ECG in
the extracted signal. In electrode position 5,&/gpecificity, PPV, NPV and accuracy are

showing a lower value due to the insignificant pree of fetal ECG in the abdominal



signal itself. To conclude, the record from eled&oposition 2,7 have got the best

performance as seen from the table 3.1.This istdu&rge presence of fetal ECG in the

extracted output compared to other electrode jpositi

Table 3.1 Performance of Method I- FECG extraction methadtéSData)

Electrode

Position SEN SPE PPV NPV ACC | CORR | SNR
2,7 0.8 1 1 0.84 0.9| 0.2024| 11.81
3,7 0.72 0.86 0.84 0.75 0.79| 0.2814| 12.16
4.7 0.43 0.73 0.5 0.67 0.61| 0.6220 8.55
5,7 0.75 0.5 0.5 0.5 0.5| 0.5301| 20.83
6,7 0.63 0.67 0.63 0.67 0.65| 0.7199 8.58

3.6.2 EVALUATION OF METHOD II - IMPROVED FECG EXTRACTION
METHOD

The performance of method Il tested with data fi®ista is shown in Table 3.2.

The performance parameter SEN, SPE, PPV, NPV ard #&@n electrode position 2, 7

and 3, 7 are seen to have a better performancearethjo other electrode positions. The

SNR is seento be less in 4, 7 and 6, 7. The @iwalis on the higher side in 4, 7 and 6,7

due to large presence of maternal ECG in the eetlagignal. The correlation is slightly

less in 5, 7 due to less presence of maternal BE@@ever, the electrode position 2, 7

and 3, 7 have no presence of maternal ECG and hieac®rrelation is small.

Table 3.2 Performance of Method Il — Improved FECG extrattioethod (Sista data)

Electrode

Position SEN SPE PPV NPV ACC CORR | SNR

2,7 0.8 1 1 0.8 0.89 0.1546 19.4p
3,7 0.72 0.86 0.84 0.75 0.79 0.2626 14.62
4.7 0.6 0.67 0.7 0.75 0.72 0.5694 10.29
57 0.6 0.54 0.6 0.54 0.57 0.4721 21.64
6,7 0.6 0.72 0.75 0.67 0.7 0.7361 9.68



3.6.3 EVALUATION OF METHOD Ill- NOVEL METHOD OF FECG
EXTRACTION

The performance of method Il tested with data fiBista is shown in Table 3.3.
The elctrode position 2, 7 and 3, 7 are seen te laabetter performance compared to
other electrode positions with respect to SEN, SHEY, NPV and ACC. In this novel
method, SNR is seen to be more in electrode pasitdh 7 and 6, 7 when compared to
method | and method Il. The correlation is on tighér side in 4, 7 and 6, 7 due to
presence of maternal ECG in the extracted signarevas the correlation is slightly less
in 5, 7 due to less presence of maternal ECG.

Table 3.3 Performance of Method Il — Novel method of FECGraction (Sista data)

Electrode

Position SEN SPE PPV NPV ACC CORR | SNR

2,7 1 0.77 0.89 1 0.89 0.187 19.98
3,7 0.72 0.86 0.83 0.75 0.79 0.2553  17.29
4.7 0.75 0.67 0.75 0.67 0.72 0.5882 11.24
57 0.6 0.72 0.67 0.63 0.64 0.4647 22.45
6,7 0.67 0.75 0.75 0.74 0.72 0.6781 11.b1

The correlation in position 2, 7 is very good bessaof no presence of maternal
ECG in the extracted fetal ECG. In electrode posis, 7 even though the correlation is
better some presence of maternal ECG is seen inextracted signal. In over all
comparison the electrode position of 2, 7 and &eryielding better results compared to

other electrode positions.

3.6.4 EVALUATION OF DIFFERENT METHODS FOR PHYSIO DATA

The Physio data has only one electrode positiont@w&e abdominal signal. The
different proposed methods are evaluated for tlaita cset only. Hence performance
parameters are evaluated method wise. The perfeen@sults of method |, method II

and method Il of FECG extraction are shown in €hH.



Table 3.4 Performance of different methods (Physio data)

Methods SEN SPE |PPV | NPV | ACC | CORR |SNR
Method |

FECG extraction
method 0.64 0.73 0.7 0.67 0.69 0.4236 3.01b1
Method |1

Improved FECG
extraction method 0.64 0.73 0.7 0.67 0.68 0.0898 | 11.9095

Method |11
Novel method of
FECG extraction| 0.65 0.88| 0.84 0.88 0.8/ 0.4305| 11.937

The method | and method Il have the same perforenaatues with respect to
SEN, SPE, PPV, NPV and ACC. The correlation in méth and method Il are
comparable. The method Il shows a decrease indtrelation coefficient. This is due to
the presence of maternal ECG and probable distomibthe signal due to further
refinement. The method I, method Ill are seenawehlarge SNR compared to method |I.
And method Ill is having the largest value of SNl @erformance parameters compared
to other methods. This clearly shows that methbdsImore efficient in extracting fetal

ECG than method | and method II.

3.6.5 ANALYSIS OF PROPOSED METHODS
The analysis of FECG extraction for performanceapater SEN, SPE, PPV,

NPV, ACC, Correlation coefficient and SNR for nmdhl, method Il and method Il are
shown in section 3.6.5.1 for Sista data and iniee@.6.5.2 for Physio data. The Sista
data is analysed with different electrode posititmslifferent performance parameters.
The X axis indicates the electrode position and Yhaxis indicates the performance

parameter. The points in X axis 2, 3, 4, 5 andebemuivalent to electrode positions 2, 7;



3, 7 etc. The physio data is analysed with differmethods to different performance
parameters. From Figure 3.41 to 3.47, the poirXiaxis 1, 2 and 3 are equivalent to

method |, method Il and method III.

3.6.5.1 ANALYSIS OF MULTI STAGE ADAPTIVE FILTERING
METHODS — SISTA DATA

Figure 3.34 shows the sensitivity plot for methodl land Ill. The sensitivity of
electrode position for 2, 7 in method lIl is maximuecause of the minimum false
negatives detection. In electrode position 5, 7ntle¢hod | is having more sensitivity. For
3,7 electrode position all the methods have theeseatue. In electrode position 4,7 and
6,7 the method Il has more sensitivity. To conelude method Il is a better algorithm

for extraction of FECG.
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Figure 3.34 Plot of Electrode Position versus Sensitivity —{&is
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Figure 3.35 Plot of Electrode Position versus Positive Predécialue -Sista

Figure 3.35 shows the positive predictive plot fieethod 1, Il and I1ll. The PPV
value is more in method Il for electrode positichs7; 5, 7 and 6, 7 because of less
detection of false positive peaks. The reason fethod Il having lower PPV only in
electrode position 2,7 is due to more number cdefgbositive detections. In overall,

method Il performs better for FECG extraction.
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Figure 3.36 Plot of Electrode Position versus Negative predéctialue- Sista

Figure 3.36 shows the negative predictive plotnf@thod I, Il and Ill. In method
[ll, the electrode position 4, 7 has least NPV eahecause of more number of false
negatives detections. However in electrode postiyii ; 5,7 and 6,7 the number of false
negative detections are less which yields bette¥ NBlue. From this analysis, it is

concluded that the method Il performs better.
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Figure 3.37 Plot of Electrode Position versus Specificity- &ist
Figure 3.37 shows the specificity plot for methadllland Ill. In electrode
position 2, 7 and 4,7 the specificity in method ifllless due to more number of false
positive detections. In other electrode positiansthod 1ll dominates due to less no of

false positive detections.
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Figure 3.38 Plot of Electrode Position versus Accuracy - Sista
Figure 3.38 shows the accuracy plot for method knd Ill. The accuracy in
electrode position 2,7 and 3,7 has the same valuealf the methods. In electrode
position 4,7 the method Il and method Il has sdmathigher than the method I. The
accuracy in method Il is high for the electrodesiions 5,7 and 6,7 are due to the less
number of false positive and false negative deiactvhen compared to method | and

method II.
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Figure 3.39 Plot of Electrode Position versus Correlation Cioadht - Sista

Figure 3.39 shows the correlation plot for methodl land 1ll. The correlation
coefficient has been calculated between the exmaéttal ECG and the composite
abdominal signal containing fetal ECG and mateE@G. Since the extracted fetal ECG
signal should not have any trace of maternal EG&cibrrelation will be smaller. On
comparison of three methods, method lIl is seeihawee lesser correlation coefficient
than method | and method Il. Thus it is concludeat the method Il is better method for

extraction of FECG.
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Figure 3.40 Plot of Electrode Position versus SNR - Sista
Figure 3.40 shows the SNR plot for method |, Il #ihdThe SNR is calculated for
the extracted fetal ECG. The low SNR in electrodsitpns 4, 7 and 6, 7 is due to noisy

composite abdominal signal. However by comparinghs three methods the SNR is



high in method Ill. Thus it is concluded that thethod Il is the most suitable method

for extraction of FECG.

3.6.5.2 ANALYSIS OF MULTI STAGE ADAPTIVE FILTERING
METHODS — PHYSIO DATA

The analysis of FECG extraction for method I, mdthband method Il are

shown for Physio data. The performance parameterplatted and shown in the Figures

3.41 to 3.47.
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Figure 3.47 Plot of Methods versus SNR- Physio

The results of the performance parameters ardlag/f

Sensitivity is highest in method Il.

PPV is highest in method lIl.

NPV is highest in method lII.

Accuracy is highest in method 1.

Specificity is highest in method III.

Correlation coefficient of the method | and methib@re having similar value
whereas method Il has lower value.

SNR is highest in method IlI.



From the above observations it is concluded thahaaklll is the most efficient method

for FECG extraction.

3.7 CHAPTER SUMMARY AND CONCLUSION

In this chapter, three methods of FECG extractimmf composite abdominal
signal using multi stage adaptive filtering is psspd. The methods are (1) FECG
Extraction Method (2) Improved FECG Extraction M&dh(3) Novel Method of FECG
Extraction. The algorithms of the three methodsehasen tested with the same data sets
from Sista and Physio. The performance of thesehodkst is evaluated using the
parameters sensitivity, specificity, positive patidie value, negative predictive value,
accuracy, correlation coefficient and SNR. The eatbn and analysis show that all the
methods are performing well. However by comparifighe performance parameters,
method Il — Novel method of FECG extraction seeié more efficient and produces a
high quality of FECG signal. The position of theatode also plays a significant role in
the quality of the signal to have better extractidimd it is found that the electrode

position 2, 7 yields the best quality of FECG sigmang method Il1.



CHAPTER 4

NEW EXTRACTION TECHNIQUES FOR FECG
USING WAVELET- ADAPTIVE FILTERS

4.1 INTRODUCTION

Physiological measurements used for diagnostic quap are frequently
characterized by non stationary time behaviour. Fase patterns, time-frequency
representations are desirable. The Wavelet tramsi®an efficient mathematical tool for
local analysis of fast transient signals and naticstary signals. It represents a very
suitable method for classification of FECG signgitsn the abdominal ECG signal. It
allows the use of long time interval analysis andldg more precise low-frequency
information and short time interval analysis yields high-frequency information. There
are large number of wavelet transforms which inekitlaar, Daubechies, Biorthogonal,
Coiflets and Symmlet. The shape of the waveletbmgrelected and it can be matched to
the shapes of components embedded in the sigrize tnalyzed (Daubechis I., 1992).
There is no absolute way to choose a certain wavEthe choice of the wavelet transform
depends upon the application. Selecting a wavelettion which closely matches the

signal to be processed is very important in theedeh\applications.

4.1.1 WAVELET TRANSFORM

The wavelet transform is a time-scale represemtatechnique (Mallat and
Hwang, 1992). Computing the wavelet transform csinsof breaking up a signal in to
shifted and scaled versions of an original (mothexryelet which is similar to the Fourier
transform which breaks up the original in to sindscoof different frequencies. Wavelet

transform describes a signal by using correlatidth wranslation and dilation of a



function called as mother wavelet. The continuoaselet transform (CWT) is defined as
the sum over all times of the continuous sidg@Imultiplied by scaled, shifted versions

of the mother wavelet((t-t)/s) as shown in equation 4.1(Mallat,1998).

CWT (s,r):%j f () ( LT Xt (4.1)

S

The parameter s is the scale factor (dilation patem that compresses the mother
wavelet and: is the translation of the mother wavelet alongttime axis. The CWT can
be considered as a correlationf@f with the mother wavelet .Higher correlationsgiif
f(t) and mother wavelet show higher similarity. Anginal mother wavelet is chosen
from a predefined set of wavelets. Otherwise, docusvavelet can be constructed. The
wavelet is then stepped through the signal, midtiplvith the signal at every time instant
of interest and integrated to yield a wavelet doefht. The scale of the wavelet is then
changed to compress or dilate it. The new wavetetetgoes the same process of
stepping through the signal, multiplication andegration to yield wavelet coefficients.
This process is repeated for the set of scaleschos

The discrete wavelet transform (DWT) computes fadehts for a dyadic scale
sequence. This means that the wavelet coefficemet®nly calculated for scales based on
the power of two. DWT is defined by splittirfi§) in to smaller non over lapping parts
fi(t), taking a finite number of scales N and dowmpgkng the discrete wavelet

coefficients samples to M, the number of sampldgthfas shown in equation 4.2

D\NTi(s,r,N):<Z ZN:C\/\/'I'i(sj,Tk)>U N (4.2)

j=1 k=1
The computational time is highly reduced in DWT qawed to CWT because the
coefficients are not calculated for every scale mtelgration is replaced by summation,

which is more easily implemented. The DWT is a batethod, which analyses a finite-



length, time-domain signal at different frequen@ntls with different resolutions by
successive decomposition in to coarse approximgté) and coarse detail (cD). The
approximation is the high scale, low frequency conemts of the signal and the details
are the low scale, high frequency components. Thievel wavelet decomposition
structure is shown in Figure 4.1. ‘S’ is the sigoal to cAes are the 5 levels of coarse
approximations and cio cDs are the detail information’s.
'l !
l_ cA5 j cDh5
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Figure 4.15-Level wavelet decomposition

4.1.2 WAVELET DENOISING

Wavelet denoising is based on the assumption keatandom errors in a signal
are present over the entire coefficient. But thheinistic changes are getting captured
in a small number of large coefficients. The wawelenoising method consists of
applying DWT to the original signal, thersholdinget detail and approximation
coefficients and inversing the threshold coeffitseto obtain the time domain denoised
data (Paraschiv- lonescet al., 2002). Denoising was performed by two different
criterions named as hard thresholding and sofstiwieling. In hard thresholding, wavelet
coefficients on some or all scales that are belogergain threshold are believed to be

noise and they are set to be zero. In soft thrdgtml in addition to hard thresholding



coefficients on all coefficients above this thrdghare reduced by the value of the
threshold.

The wavelets are used as a decomposition and siegdool (Najumnissa and
Shenbagadevi, 2008). The performance of the wadeleoising depends upon the type
of wavelet transform, type of the wavelet, therdimg rule and the number of
decomposition levels. The steps for denoising are;

1. Decompose the signal — Choose a wavelet, choosk'tevCompute the

wavelet decomposition of the signal's’ at level.'n’

2. After the wavelet decomposition, the wavelet caggfits are modified and then
the reconstruction takes place.

3. Reconstruction of the signal - Compute wavelet mstroiction using the original
approximation coefficients of level'n’ and the miselil coefficients of level from

‘1ton.

4.1.3 DESIGN OF EXTRACTION SYSTEM

lTECG l TECG

Wavelet Adaptive Adaptive
| Denoising filter 1 P! Filter 2

AECG

A

FECG
Detector +—p FECG

Figure 4.2 The design of the extraction system
The design of the extraction system is shown inufég4.2. In this wavelet
denoising, the decomposition and reconstructionewserformed by coiflets wavelet
because the wavelet functions belonging to thisilfalmave a similar shape of FECG.

And also the energy spectrum is concentrated artmvndrequencies (Mahmoodabasil



al., 2005). The properties of coiflets wavelet ar@dydor this application because it
reduces the noise and provides high resolution wutfhe number of level of
decomposition was set as 5. The denoised sigracenstructed by the approximation
and the processed details. The approximation atallslevere processed by soft Stein’s
unbiased risk estimate (SURE) thresholding rulee Tapproximation and detall

information of the composite abdominal signal iswh in Figure 4.3.
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Figure 4.3Decomposition of the composite abdominal signal
In this method only the approximation coefficiersi®e retained as the signal
carries useful information. This signal is used fiather extraction procedure of FECG.
The information of the level of approximation islesged by visual inspection. The
denoised signal is the input to the two stage aekafittering system. The adaptive filterl
uses the RLS algorithm and the adaptive filter 2susMS algorithm as justified in
section 3.2.4. The output of the second stage aeafiiter forms the input to the FECG

detector.



In this chapter four new algorithms for FECG sigewiraction are introduced
using wavelet and adaptive filtering techniquessknare named as Wavelet Adaptive
Methods (WAF). The types are;

1) WAF Method |

2) WAF Method II

3) WAF Method 1lI

4) WAF Method IV

These algorithms were tested using data from Sisth Physio for different electrode

positions as mentioned in section 3.1.

4.2 WAF METHOD |

Denoised signal

AECG | wavelet (DS) ¥=DS (0.02 *DS-1)
—> Denoising
y
. T Cancelling
Y=TECG/12 Adaptive Filter : | MECG
TECC L
> Adaptive Filter : | Cancelling
L mECG
| fECG detectc |
fECG

Figure 4.4 Block diagram of the WAF -Method |
The block diagram of the proposed algorithm of Whdethod | is shown in
Figure 4.4.The objective of the algorithm is toragt the fetal ECG by suppressing the
maternal ECG and noise from the signal. The abdalnsignal is subjected to wavelet
with 5 levels of denoising. The final approximatiooefficient is taken as the denoised

abdominal signal which is represented as DS. ThesB§uared and scaled and added to



original denoised signal to derive the non lineanametetY. The fetal ECG extraction is
done using this non linear operator define!asDS (0.02*DS-1).
The adaptive filter has the following two inpugsals.
(1) The scaled, squared and scaled thoracic signal.
(2) The non linear operator sigri#l
The adaptive filters 1 and 2 are trained to catleelMECG from the composite
abdominal signal. The RLS, LMS combination has bessd for two stages of adaptive
filtering. The error signal from the adaptive filteis the desired fetal ECG signal which
is further processed by FECG detector to extraetfetal ECG which is totally free from
maternal ECG signals. The results for Sista dathRimysio data are shown in section

421

4.2.1 WAF METHOD | — RESULTS

The proposed Method | uses wavelet denoising and I@ear parameter
¥=DS(0.02 *DS-1) to extract fetal ECG. The extracti@sults are shown from Figure
4.5 to Figure 4.9 for Sista data and Figure 4.1ibeasextracted output for Pysiodata. The
visual inspection shows the suppression of matdf@b in electrode position 2, 7 and
partial presence of maternal ECG in other chani¢le.SNR is found to be 24.20, 14.85,
24.31, 22.96, and 28.14 for sista data and 34.86physio data. This method has
significantly improved the SNR in all the data setken compared to the adaptive

method | as discussed in section 3.3.1.
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Figure 4.7WAF method | — Sista (4, 7)
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Figure 4.10WAF method I Physio (4,2)

4.3 WAF METHOD II
The block diagram of WAF method Il of fetal ECG maxtion with refinement

technique is shown in Figure 4.11.
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Figure 4.11Block diagram of the WAF with refinement -Methdd |

The refinement is done for further improvising theality of the FECG. The
extracted FECG signal from method | is further gmsicessed. The post processing steps
are (i) reading the extracted FECG signal, (ii) asafing the high/low resolution
components (iii) compensating for the phase (ivjiviliey the noise component (v)
separating the noise from the signal (vi) recormsing the signal. This reconstructed
signal is the extracted FECG signal. This WAF mdthavas yielding a better result than
the WAF method I. The refinement results are showsection 4.3.1 for Sista and Physio

data.

4.3.1 WAF METHOD Il — RESULTS

The proposed WAF method Il uses wavelet denoisimtgreon linear parameter
¥Y=DS (0.02 *DS-1) along with refinement. The extractresults are shown from Figure
4.12 to Figure 4.16 for Sista data and Figure 4&1ke extracted output for Physio data.
The visual inspection shows the suppression of maktéCG. The SNR is found to be
26.5, 13.77, 26.78, 26.22, and 31.39 for Sista dada43.81 for Physio data. This method

has significantly improved the SNR in all the da&ts when compared to the WAF



method | and adaptive method Il. The extracted adigs clean and the effect of the
artifacts related spikes were suppressed.
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Figure 4.12WAF method Il — Sista (2, 7)
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Figure 4.13WAF method Il — Sista (3, 7)
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Figure 4.14WAF method Il — Sista (4, 7)
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Figure 4.15WAF method Il — Sista (5, 7)
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Figure 4.17WAF method Il — Physio (4,2)

4.4 WAF METHOD IlI
The block diagram of WAF method Il is shown in &ig 4.18. In this method,

the abdominal signal is denoised and multipliedfdntor K to derive a new non linear

parameteny. This non linear parameter is defined asy = DS (K-1). The K value is



fixed to be 2.6 using the procedure adopted asusésrl in section 3.5. The thoracic
signal remains the same as discussed in WAF mdthad WAF method Il. The results

are shown in section 4.4.1
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Figure 4.18Block diagram of the WAF -method lII

4.4.1 WAF METHOD IlIl — RESULTS

The WAF method Il uses wavelet demajsiand non linear parameter
y=DS(K-1) to extract fetal ECG. The extraction réswre shown from Figure 4.19 to
Figure 4.23 for Sista data and Figure 4.24 is tkteaeted output for Physio data. The
results show that the performance was inferior tdPAMmethod | and WAF method 1.
This is due to the presence of maternal ECG ire#tieacted signal. Even by changing the
value of K linearly, the algorithm failed to suppsethe maternal ECG completely. The
SNR is seen to be 14.18, 11.84, 11.99, 12.34, dntBIfor sista data and 26.13 are for
the physio data. The SNR is seen to be less inadeth when compared to WAF

method | and method II.
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Figure 4.20WAF method Il — Sista (3, 7)
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Figure 4.21WAF method Il — Sista (4, 7)



Criginal Signal
S0 T

T Zoo 300 400 S00 ={ale] Too 300

Signal Amplitude
ol
)

Extracted FECG

O
=0 . 1 . 1 .
200 200 400 500 B00 Foo 200
Sample MNao
Figure 4.22WAF method Ill — Sista (5, 7)
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Figure 4.23WAF method Ill — Sista (6, 7)
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Figure 4.24WAF method Il — Physio (4,2)

4.5 WAF METHOD IV
The block diagram of WAF method IV is shown in Fig4.25.To overcome the

disadvantage of WAF method Ill, the WAF method l'e¥saproposed. In this method, the

denoised signal remains same as in method Ill.eSilne algorithm failed to suppress the



maternal ECG even by changing the value of K lityedine thoracic signal has now been
modified. The thoracic signal is now scaled, thensidered as a second order quadratic
function and again scaled to improve the extractibhe signal extracted by this
technique is better than the WAF method Ill. Howetss method is found to be inferior

to WAF method II. The results of this method arevah in section 4.5.1.
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Figure 4.25Block diagram of the WAF -method IV
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4.5.1 WAF METHOD IV — RESULTS

The WAF method IV uses wavelet denagisiand non linear parameter
Y=DS(K-1) along with the modified thoracic signaldgtract fetal ECG. The extraction
results are shown from Figure 4.26 to Figure 4@0Sista data and Figure 4.31 is the
extracted output for Physio data. The SNR is sedpet 14.35, 12.15, 12.01, 12.03 and
14.82 for Sista data and 31.73 are for the Physia.dThe SNR is increased by this
technique which is better than the WAF methodHibwever this method is found to be

inferior to WAF method II.
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Figure 4.26WAF method IV — Sista (2, 7)
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Figure 4.27WAF method IV — Sista (3, 7)
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Figure 4.28WAF method IV — Sista (4, 7)
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Figure 4.29WAF method IV — Sista (5, 7)
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Figure 4.30WAF method IV — Sista (6, 7)
Criginal Signal
40 . . .
20 =
= MM\/\W
o
=]
= 2of 4
= 200 400 600 800 1000 1200 1400 1600 1800 2000
=
S Extracted FECG
@ 10 . . . : . . . . .
sl i
5| ®
10

. ! . ! . 1 . ! |
200 400 GO0 00 1000 1200 1400 1600 1800 2000
Sample MNao

Figure 4.31WAF method IV — Physio (4,2)

4.6 EVALUATION AND ANALYSIS OF THE PROPOSED METHODS

In this work four different methods of fetal ECGtraction are presented. They

are (1) WAF method |



(2) WAF method I

(3) WAF method Il

(4) WAF method IV

The methods have been tested with the same dagapdiiormance evaluation
has been done by the following parameters. Seitgi{SEN), Specificity (SPE), Positive
PredictiveValue (PPV), Negative Predictive Value (NPV), Acacy (ACC), Correlation

Coefficient (CORR) and Signal to Noise ratio (SNR)mentioned in section 3.6.

4.6.1 EVALUATION OF WAF METHOD |
The performance of WAF method | tested with datenfiSista is shown in Table

4.1. The performance parameters SEN, SPE, PPV, &\fNACC from electrode position

2, 7; 3,7 and 4, 7 are seen to have a better peafoze compared to 5, 7 and 6, 7. In
electrode position 5, 7 the specificity, PPV, NP\ accuracy is showing a lower value
due to the insignificant presence of fetal ECGhm abdominal signal itself. In electrode
position 6,7 the magnitude of maternal ECG is Jarge compared to fetal ECG which

leads to poor value of the performance parameters.

Table 4.1 Performance of WAF Method I( Sista data)

Electrode

position SEN SPE PPV NPV ACC CORR SNR
2,7 0.67 1 1 0.75 0.83 0.1851 24.2Q001
3,7 0.78 0.67 0.7 0.75 0.72 0.7618 14.8498
4.7 0.67 0.7 0.67 0.7 0.68 0.4810 24.3144
5,7 0.6 0.55 0.57 0.5 0.55 0.4039 22.9610
6,7 0.67 0.58 0.57 0.5 0.55 0.4969 28.1437

However, in terms of SNR the electrode position; 2,77 and 6, 7 are having
higher value compared to 3, 7 and 5, 7. In eleetqmakition 3, 7 the correlation is on the

higher side due to presence of maternal ECG iregtieacted signal. To conclude, the



record from electrode position of 2,7 have gotlikst performance indices as seen from

the table 4.1.

4.6.2 EVALUATION OF WAF METHOD I
The performance of WAF method |l tested with daterf Sista is shown in Table

4.2. The performance parameters SEN, SPE, PPV, &feVACC for all the electrode
position are seen to have a better performance amdpo WAF method I. However in
method II, the SNR is seen to be less in 3, 7. itay be due to the noisy maternal ECG
present in the extracted FECG. In electrode positiy 7 and 5, 7 has similar correlation
and SNR. The electrode position 6,7 has got higiR $idd medium correlation. The
lowest correlation is seen in electrode positiory 2and this is due to the absence of
maternal ECG in the extracted FECG.

Table 4.2Performance of WAF Method lI( Sista data)

Electrode

position SEN SPE PPV NPV ACC CORR | SNR

2,7 0.8 1 1 0.83 0.9 0.165 26.5029
3,7 0.72 0.88 0.83 0.7 0.75 0.7586 13.7762
4.7 0.75 0.75 0.75 0.75 0.75 0.3718 26.7895
5,7 0.78 0.67 0.68 0.67 0.68 0.3473 26.2162
6,7 0.67 0.75 0.75 0.67 0.71 0.4085 31.3970

4.6.3 EVALUATION OF WAF METHOD IlI
The performance of WAF method Il tested with datam Sista is shown in

Table 4.3. The electrode position 2, 7 is seenateela better performance compared to
other electrode positions with respect to SEN, SHEY, NPV and ACC. In this WAF

method Ill, SNR is seen to be more for electrodgtimm 2, 7 and 6, 7 when compared to
other electrode positions. The correlation coedfitiis highest in 3, 7 compared to all

other electrode positions due to presence of maté&f@G in the extracted signal. The



electrode position 2, 7 has less correlation coefft due to good extraction of fetal
ECG. Thus the electrode position of 2, 7 is yiejdbetter results in WAF method ||
compared to other electrode positions. Howeverptlegall performance of WAF method

[l is slightly inferior to WAF method | and WAF niigod 1.

Table 4.3Performance of WAF Method Il ( Sista data)

Electrode

position SEN SPE PPV NPV ACC CORR | SNR

2,7 0.79 1 1 0.7 0.79 0.2369 14.1796
3,7 0.7 0.7 0.7 0.7 0.7 0.7144 11.8368
4.7 0.75 0.63 0.67 0.71 0.69 0.597 11.9924
57 0.57 0.64 0.62 0.64 0.61 0.4751 12.3430
6,7 0.67 0.67 0.67 0.67 0.67 0.6883 14.7873

4.6.4 EVALUATION OF WAF METHOD IV

Table 4.4Performance of WAF Method IV (Sista data)

Electrode

position SEN SPE PPV NPV ACC CORR | SNR

2,7 0.67 1 1 0.72 0.82 0.2711 14.3583
3,7 0.63 0.6 0.72 0.6 0.62 0.6929 12.1%89
4.7 0.7 0.67 0.7 0.67 0.69 0.5684 12.0124
5,7 0.67 0.6 0.67 0.6 0.64 0.4491 12.0341
6,7 0.67 0.67 0.67 0.67 0.67 0.6673 14.8282

The performance of WAF method IV tested with datnt Sista is shown in
Table 4.4. The performance indices, correlation 8NRR show a slight improvement in
WAF method IV over WAF method lll. This is due tadification done in the thoracic

signal as is shown in section 4.5. However, thaltesire inferior to WAF method | and

WAF method II.



4.6.5 EVALUATION OF DIFFERENT METHODS FOR PHYSIO DATA
The performance of WAF method I, WAF method IIAWmethod Ill and WAF

method IV for FECG extraction were tested with dfatan Physio and the results are

shown in Table 4.5.

Table 4.5Performance of different methods (Physio data)

Method SEN SPE PPV NPV ACC | CORR| SNR
WAF

Method | | 0.67 0.78 0.75 0.7 0.72 0.4246 34.85
WAF

Method Il | 0.75 0.75 0.75 0.75 0.75| 0.2582 | 43.806
WAF

Method IlI 0.6 0.72 0.75 0.67 0.7 | 0.4873]| 26.1316
WAF

Method IV| 0.68 0.67 0.7 0.75 0.73] 0.3118| 31.7337

17

The WAF method I, WAF method Ill and WAF method Rave comparable

correlation factor and performance indices. In ®oh SNR the method | has the higher

value compared to method Il and method IV. WAF moelt || shows constant value of

performance indices, high SNR and low correlat@actdr. These values indicate that the

WAF method Il performs very well for the case ofyBib data.

4.6.6 ANALYSIS OF WAF METHODS

The analysis of FECG extraction for performanceapater SEN, SPE, PPV,

NPV, ACC, Correlation and SNR for WAF method |, Watethod Il, WAF method Il

and WAF method IV are shown in section 4.6.6.1S@ta data and in section 4.6.6.2 for

Physio data.



4.6.6.1 ANALYSIS OF WAF METHODS — SISTA DATA
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Figure 4.32Plot of Electrode Position versus Sensitivity 1&is
Figure 4.32 shows the sensitivity plot for all WA#ethods. The sensitivity of
electrode position for 3, 7 in method | is high &ese of the minimum false negatives
detection. For 6, 7 electrode position all the radthhave the same value. In electrode
position 2,7; 4,7 and 5,7 the method Il has moreisgity due to less number of false
positive and false negative detections. Hence telode the WAF method Il is having

higher sensitivity compared to the other three washor extraction of FECG.
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Figure 4.33Plot of Electrode Position versus Positive Predécivalue- Sista
Figure 4.33 shows the positive predictive plot &ir WAF methods .The PPV
value is more in WAF method Il for electrode pasis 3, 7; 4, 7; 5,7 and 6, 7 because of

less false positive peaks detection. In electraziitipn 2, 7 all the four methods have the



similar value. Overall, WAF method Il has better\P¥alue compared to other WAF

methods of FECG extraction.
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Figure 4.34Plot of Electrode Position versus Negative Predict/alue- Sista

Figure 4.34 shows the negative predictive plotdtbnWAF methods. It is seen

from the plot that in electrode position 3, 7 thB\Nis more for WAF method | due to

less number of negative false detections. In methtt electrode position 5, 7 has least

NPV value because of more number of false negate¢sctions. The WAF method I

has higher value of NPV in all electrode positiersept 3, 7. This is due to less number

of false detections in the electrode positions 2,7;; 5,7 and 6,7 and more number false

detection in 3,7. From this analysis, it is conelddhat the WAF method Il performs

better than the other WAF methods.
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Figure 4.35PIot of Electrode Position versus Specificity- &ist



Figure 4.35 shows the specificity plot for all WARethods. WAF method IV
shows lowest value of specificity for electrodeipos 3, 7. This is due to presence of
maternal ECG leading to more false positive detesti In all the electrode positions the
WAF method Il indicates high value of specificityeal to less no of false positive
detections. The specificity is higher in WAF methibdompared to all the other WAF
methods.

Figure 4.36 shows the accuracy plot for all WAFRmes. In electrode position
3,7 WAF method IV shows least value of accuraay ttumore number of false positive
and false negative detections. This is due to ttesgmce of maternal ECG in the
extracted signal. WAF method | show less accuradyeé case of electrode position 5, 7
and 6, 7. This is due to significant presence ofermal ECG. The accuracy in WAF
method Il is high for all the electrode positionsedo the less number of false positive

and false negative detections. Thus WAF method the better method for fetal ECG

extraction in case of accuracy.
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Figure 4.36PIot of Electrode Position versus Accuracy - Sista
Figure 4.37 shows the correlation plot for all iIMAF methods. The correlation

coefficient has been calculated between the exmadéttal ECG and the composite



abdominal signal containing fetal ECG and mateBE@G. Since the extracted fetal ECG

signal should not have any trace of maternal E@&Ztrelation will be smaller.

Correlation Coefficient Plot
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Figure 4.37Plot of Electrode Position versus Correlation Cioadht- Sista

In all the WAF methods, electrode position 3, bwveb the higher correlation
coefficient. This is because of the magnitude efrttaternal ECG is very large compared
to the magnitude of fetal ECG in the recorded alkidahsignal. This leads to large
presence of maternal ECG in the extracted sigmalcdmparison of the four WAF
methods, method Il is seen to have lesser comelaibefficient than the other methods.

Thus it is concluded that the WAF method Il is eethethod for extraction of FECG.
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Figure 4.38 shows the SNR plot for all WAF methoHse SNR is calculated for

the extracted fetal ECG. For all the electrode tmos WAF method 1l and method IV



have similar values of SNR due to presence of mateECG. Only in the case of
electrode position 3, 7 WAF method | has high SMRgared to WAF method Il. In the
case of electrode positions 2, 7; 4, 7; 5, 7 and 6NR is higher in WAF method Il
compared to all other methods. Thus it is conclutthadl the WAF method Il is the most

suitable method for extraction of FECG.

4.6.6.2 ANALYSIS OF WAF METHODS — PHYSIO DATA

The analysis of FECG extraction for WAF method 1AW method Il, WAF
method Il and WAF method IV are shown for Physaiad The performance parameters

are plotted and shown in the Figures 4.39 to 4.45.
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Negative Predictive Value plot
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Figure 4.45Plot of Methods versus SNR- Physio
The results of the performance parameters ardlag/f

» The Sensitivity for all the methods is seen to Vaeyween 0.6 to 0.8 with WAF
method Il having highest value.

» The positive predictive value is seen to be simianethod I, Il and Ill. It falls to
a lower value in method IV.

» The negative predictive value is seen to oscilgitt methods Il and IV having
higher values. Method Ill has the lowest value.

» The specificity value gradually decreases from meéthto method IV. This is due

to large number of false positive detections.



» The Accuracy is oscillating with method Il havinglhest accuracy and method
[Il having lowest accuracy.

» The correlation coefficient is showing an oscillgtaature with method Il having
lowest value and method Il having highest value.

 The SNR also shows the oscillating nature with eth having the highest
value and method Il having the lowest value.

From the above observations of the performance npeter indices, except in

specificity method Il performs better. Thus ic@ncluded that WAF method Il is the

efficient method for FECG extraction.

4.7 CHAPTER SUMMARY AND CONCLUSION

In this chapter, the four methods of FECG extractising WAF are proposed.

They are:

(). WAF METHOD | - FECG extraction which uses vedet denoising and non linear
paramete¥=DS (0.02 *DS-1).

(i) WAF METHOD Il - FECG extraction which uses walet denoising and non linear
paramete’=DS (0.02*DS-1) along with refinement after FECGeator.

(iii) WAF METHOD Il - FECG extraction which usesavelet denoising and non linear
paramete = DS (K-1).

(iv) WAF METHOD IV - FECG extraction which uses weet denoising and non linear
paramete?= DS (K-1) along with the modified thoracic signal.

The algorithms of the four methods have been tewittdthe same data sets from Sista

and Physio. The performance of these methods isuaeal using the parameters

sensitivity, specificity, positive predictive valueegative predictive value, accuracy,
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correlation coefficient and SNR. The evaluation amalysis show that WAF method |
and WAF method Il are performing well. However bymparing all the parameters,
WAF method Il is seen to be more efficient and picess a high quality of FECG signal.
Even in these methods of extractions, it is seanttie position of the electrode plays a
significant role in the quality of the signal. & found that the electrode position 2, 7

yielded the best quality of FECG signal using WAEthod 1.



CHAPTER 5

FECG EXTRACTION USING COMBINATION OF
WAVELET AND SOFT COMPUTING TECHNIQUES

5.1 INTRODUCTION

Over the last few decades, neural networks andyfggsgtems have established
their reputation as an alternative approaches goasiprocessing. Both have certain
advantages. However, their applicability has soneakmess of the individual models.
The advantage of neural networks is to recognieeptitterns and adapt themselves to
cope with changing environment. Fuzzy inferenceesys incorporate human knowledge
and perform inferencing and decision making. Adepfleuro Fuzzy Inference system
(ANFIS) takes the advantages of the combinatiomeafral networks and fuzzy logic.
This artificial intelligence technique called ANFiSused to estimate the maternal ECG
present in the abdominal signal of a pregnant worithen the FECG is extracted by
subtracting the estimated MECG from the abdomiiggdes.

In this chapter, a new method of combining the laylspft computing technique
called ANFIS along with wavelets is proposed taneste the maternal electrocardiogram
(MECG) and to extract the FECG signal from the reothabdominal electrocardiogram
(AECG). Three methods have been proposed namelyéthod |- FECG extraction
using ANFIS (2) Method Il- FECG extraction usingwe&et preprocessing and ANFIS
(3) Method llI- FECG extraction using ANFIS follodidoy wavelet post processing. The
results obtained by three methods were analyzeterims of signal to noise ratio,

correlation coefficients and with performance irdic All the proposed methods were



able to successfully remove the artifacts and ektiiae desired FECG signal. These

algorithms were tested using data from Sista angiBlas mentioned in section 3.1.

5.1.1 ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

Adaptive neuro fuzzy inference system (ANFIS) weginally presented by Jang
(Jang, 1993). It has an architecture and learniraxgalure for the Fuzzy Inference
System (FIS) that uses a neural network learniggrahm for constructing a set of fuzzy
if-then rules with appropriate membership functiqiddFs) from the specified input—
output pairs. This procedure of developing a FlBguthe framework of adaptive neural
networks is called an adaptive neuro fuzzy infeeesigstem. ANFIS has the advantages
of easy implementation and learning ability by cammy the neural networks with fuzzy
inference system (Jang al., 1997). There are two methods that ANFIS learnin
employs for updating membership function parametéty back propagation for all
parameters (a steepest descent method), and (2br&d hmethod consisting of back
propagation for the parameters associated withninet membership functions and least
squares estimation for the parameters associatédté output membership functions.
As a result, the training error decreases, at leastly, throughout the learning process.
Therefore, the more the initial membership fundioesemble the optimal ones, the
easier it will be for the model parameter trainingconverge. Human expertise about the
target system to be modeled may aid in setting hgset initial membership function
parameters in the FIS structure (Jang, 1998% type of fuzzy model uses fuzzy inputs
and rules but its outputs are non-fuzzy sets. (Giedad Sugeno, 1985).

For simplicity, assume that the fuzzy inferenceeayshas two inputs x and y and
one output z. A first-order Takagi and Sugeno furmdel has the following rules,

Rulel: If xis Al and y is B1, then f1 = p1x + gqtyl (5.1)
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Rule2: If x is A2 and y is B2, then f2 = p2x + gq2y2 (5.2)
Here, ‘xis Al and y is B1’ and ‘x is A2 and y i2Bare called as the premise section
(non linear section), while ‘f1 = p1x + gly + rlthff2 = p2x + g2y + r2’ are called as
the consequent section (linear section). i.e plgf2q92, rl, r2 are linear parameters and
Al, A2, Bl, B2 are non linear parameter. The cquesing equivalent ANFIS

architecture is shown in Figure 5.1(Jang, 1993).

5.1.2 ANFIS ARCHITECTURE

ANFIS is a multilayer feed forward network. The tgys architecture consists of
five layers namely; fuzzy layer, product layer, malized layer, de-fuzzy layer and total
output layer. The circular nodes represent thedfiredes whereas the square nodes
represent the nodes which have parameters to b#.ld4e following section discusses
in depth the relationship between the input angwusf each layer in ANFIS.

Layer 1: It is the fuzzy layer .Every node i inghayer is an adaptive node with a node
function. Qy; is the output of thé"inode of the layer I .

Oi=pai(x) fori=1, 2, or

O = usi-2(y) fori=3, 4 (5.3)
x (or y) is the input node i and Ai (or Bi—2) idiaguistic label associated with this node.
ThereforeO,, is the membership grade of a fuzzy set (A1,A2,B)JBZhis work, bell

shaped membership functions(MF) are chosen .

1
X - c,
a.

Ha(x)= 75
L. (5.4)

ai, bi, ci are the premise parameter set to batear



Layer 2: It is the product layer that consistswb thodes labeled d3$. The output is the
product of all the incoming signals.
Ozi=wWi=pa(X)*pusi(y) 1=1,2 (5.5)

Each node represents the firing strength of the. mul, w, are the weight functions of the

next layer.
A1
Wi f = px gy
Fa w, i+ W fy
Az w, *w,
m wy = pax +qy = w fi+ Wi,

Figure5.1 (a) First-order Sugeno fuzzy model (b) correspogdiNFIS architecture.
Layer 3: It is the normalized layer. Every nodethis layer is a fixed node labeled as
Norm. lIts function is to normalize the weight fuoect with the following condition,

where Q; denotes the Layer 3 output .

03. =W = W =12 (56)
Y W1+W2

Outputs are called normalized firing strengths.



Layer 4: It is the defuzzy layer. Every node i Imstlayer is an adaptive node. The
defuzzy relationship between the input and outguhis layer is defined below, where
O,; denotes the layer 4 output .

O, =W f =W (px+qy+r) (5.7)
W is the normalized firing strength from layer 3. @, ri denote the linear parameters

which are also called consequent parameters afdte.
Layer 5: It is the total output layer, whose nodéabeled as sum, which computes the
overall output as the summation of all incomingnaig. The result can be written as

follows where as €) denotes the layer 5 output .

2w
Overalloutput = O, = Z"_"i fi = Izwi

i=1,2 (5.8)

5.1.3 HYBRID LEARNING ALGORITHM
The ANFIS can be trained by a hybrid learning atpar which combines the

gradient descent method and least square methet.dp@ch of hybrid learning consists
of forward pass and backward pass. In the forwass ghe algorithm uses least-squares
method to identify the consequent parameters orlayer 4.In the backward pass the
errors are propagated backward and the premiseampéees are updated by gradient
descent (Jang and Gulley, 1995).The total pararsetas divided in to three. They are;

S = set of total parameters

S1 = set of premise (non linear) parameters.

S2 = set of consequent (linear) parameters.



Table 5.1 shows the passes in the hybrid learniggrithm for ANFIS. In
forward pass, S1 is unmodified and S2 is compusidgua Least Squared Error (LSE)
algorithm (Off-line Learning). i.e The forward pgsopagates the input vector through
the network layer by layer.

Table5.1 Two passes in the hybrid learning algorithm forFASI

Parameters Forward Pass Backward Pass
S1 - Premise Parameters Fixed Gradient Descent
(a, b, c)
S2- Consequent Parameters Least Squares Fixed
(p, G, ) estimator
Signals Node Outputs Error signals

This process is repeated for all the training @éataies and the error measurement
is obtained. In backward pass, S2 is unmodified &hdis computed using a gradient
descent algorithm usually Back propagation. i.etimer is sent back through the network
in a similar manner to back propagation and prempé&ameters are updated by gradient
descent after the back pass. The mathematical @salf the hybrid learning algorithm
was discussed by Jang (Jang, 1993).The hybrid ifgamules not only decrease the
dimensions of the search space in the gradientadethut also accelerate convergence.
In other words, it can speed up the training precard it is more accurate and efficient

than the conventional decent scheme.



5.1.4 MECG CANCELLATION USING ANFIS

(X« = AECG = FECG + MECG) e (FECG)
+
V\Z _>
A
Xu=TECG / Y= MECG,
— AN7é

/

Figure 5.2 Adaptive Noise Cancellation using ANFIS

Figure 5.2 shows the block diagram of the mate&@lG cancellation using
ANFIS.Here one input signal is the abdominal sigia) which is the mixture of MECG
and FECG. In this the noise (MECG) is uncorrelat&t signal (FECG). The other input
signal is thoracic signal (TECG) which is uncortethto FECG but correlated with
MECG. The ANFIS output ¥is MECG which is the estimated thoracic signal by
ANFIS. Since MECG is generated from TECG it is correlated with MEQ@t
uncorrelated with FECG. When MECG and MEG®e close to each other, these two get
cancelled and we get the estimated output signahe&h is the required signal FECG.
The three different methods of extractions suggestethis chapter use the MECG

cancellation technique.

5.2 METHOD I- FECG EXTRACTION USING ANFIS

Method | is the fetal ECG extraction technique gsiiNFIS. The block diagram

of this method is shown in Figure 5.3.
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Abdominal Signal Thoracic Signal
(AECG) (TECG)

v v
ANFIS

A
Estimated Thoracic Signal

N

Estimated FECG

Figure 5.3 FECG extraction using ANFIS

The inputs to the ANFIS are (i) abdominal signalH®G +FECG) acting as the
reference signal (2) thoracic signal (TECG) actasythe desired signal. These two
signals act as the training pair for ANFIS trainifithe ANFIS uses hybrid learning
technique to calculate the linear, non linear patens. Hybrid rule decreases the
dimension of the search space in the gradient rdethd also cuts down the convergence
time. Also the ANFIS is a multilayer network, grandi method learning rule is used to
tune the parameters in the hidden layer. The paeamen the output layer can be
identified by the least squares method. Once tisgydated epoch is reached or the goal
is reached, it stops training and gives the esenh#toracic signal.

Now, the output of the ANFIS is the estimated tloarasignal present in the
abdominal signal. The error between the estimabedatic signal and the abdominal
signal gives the FECG. Real data was used toriltesthe effectiveness of the proposed
method in extracting FECG signals. The training Baining procedure is needed only
one time. Thus the computational complexity carrdmuced. The ANFIS converts the
fuzzy inference engine in to an adaptive netwosgk tearns the relationship between the

inputs and outputs.
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5.2.1 FIS STRUCTURE

The basic structure of a Fuzzy Inference SysterS)(Rlaps input characteristics
to input membership functions, input membershipcfiom to rules, rules to a set of
output characteristics, output characteristics otpot membership functions, and the
output membership function to a single-valued outpua decision associated with the
output. In a conventional fuzzy inference systemegpert who is familiar with the target
system to be modeled determines the number of.ruesses where there are no experts
available, the number of membership functions aesigto each input is chosen
empirically. Also, the fuzzy inference system iplgd to modeling systems whose rule
structure is essentially predetermined by the siseterpretation of the characteristics of
the variables in the model. Selecting the membjrihiction and an appropriate number
of membership functions is essential for improvihg convergence speed of the ANFIS

algorithm.

Input Input mf Rule (AND) Operation  Output mf Output

Figure 5.4 ANFIS structure



In this analysis, the generalized bell shape (gif¢lis used for ANFIS training.
The number of membership function for each inpuiatde is determined by a trial and
error processSince the Sugeno type fuzzy model is used, thezd#itation is not
required at the output. Trstructure of ANFIS used for extraction of FECG l®wn in
Figure 5.4.There are two inputs in the input layuzzification is done by layerl
(inputmf) which has 6 membership functions to eagjut. Totally 36 fuzzy rules are
used in layer 2 (Rule). Layer 3 is the normalizlager which is not included in this
architecture. Layer 4 is the defuzzification lageuntmf). Layer 5 is the summation layer.
Two inputs, 6 membership functions generating 3&yuules yieldedlO1 nodes, 108
consequent parameters and 36 premise parameteuseddor training data pair of 601

samples.

5.2.2 METHOD | - FECG EXTRACTION USING ANFIS — RESULTS
The fetal ECG extraction was done using ANFIS asashin Figure 5.3. The

outputs of this method for different channels dreven from Figures 5.5 to 5.9 for Sista
data. Figure 5.10 is the extracted output for Rhgsita. Figure 5.5 shows the abdominal
ECG, estimated thoracic signal and the extracteal #CG using ANFIS method. The
estimated thoracic ECG is closely following the emadl ECG which is present in the
abdominal ECG signal. The estimated TECG is seeresemble the maternal ECG
present in the abdominal signal. The FECG is obthias the error signal between the

estimated TECG and the AECG. The extracted FEC@slioe total absence of MECG.
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Figure5.5 FECG extraction using ANFIS — Sista (2, 7)
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Figure 5.6 FECG extraction using ANFIS — Sista (3, 7)
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Figure5.7 FECG extraction using ANFIS — Sista (4, 7)
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Figure 5.8 FECG extraction using ANFIS — Sista (5, 7)
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Figure 5.9 FECG extraction using ANFIS — Sista (6, 7)
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Figure5.10 FECG extraction using ANFIS — Physio (4,2)



5.3 METHOD II- FECG EXTRACTION USING WAVELET AND ANFIS

In method I, the abdominal ECG is first waveleggprocessed as shown in Figure
5.11.The wavelet preprocessing includes wavelebmposition and reconstruction. The
wavelet decomposition and reconstruction were peréd by coiflets wavelet and only
the approximation coefficients are retained asgaadicarrying the useful information.

The number of levels of decomposition was chosen as

Thoracic Signe
AECG v
——>»{ Wavelet preprocessi » ANFIS ——» Extracted
FECG

Figure5.11 FECG extraction using Wavelet and ANFIS
The property of coiflets wavelet is good for thigpécation because it reduces the noise
and provides high resolution output. Also the cimosevelet has a shape similar to
FECG. The approximation coefficient is taken a®mserfree abdominal signal which is
one of the inputs to ANFIS and the other inpuths thoracic signal. The output of

ANFIS is the extracted fetal ECG.

5.3.1 METHOD II- FECG EXTRACTION USING WAVELET AND ANFIS
— RESULTS

The abdominal ECG is decomposed in to 5 levelsgusiavelet transforms. The
denoised AECG is chosen as the input to the ANEIShawn in Figure 5.11. The outputs
of this method for different channels are showmfreigures 5.12 to 5.16 for Sista data

and Figure 5.17 is for Physio data. The FECG isiobt as the error signal between the



estimated TECG and the wavelet denoised abdomiB&@ The results show that the

extracted FECG along with noisy signal presenhengositions of MECG.
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Figure5.12 FECG extraction using Wavelet and ANFIS — Sista7}§2
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Figure5.13 FECG extraction using Wavelet and ANFIS — Sista/{3,
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Figure5.14 FECG extraction using Wavelet and ANFIS — Sista/{4,
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Figure5.16 FECG extraction using Wavelet and ANFIS — Sista/ {6,
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Figure5.17 FECG extraction using Wavelet and ANFIS — Physi@)(4



5.4 METHOD Il - FECG EXTRACTION USING ANFIS AND WAVELET

Thoracic Sign:

y Error signal

AECG A

—> ANFIS »| Wavelet post processi | .Eét(r:aé:ted

Figure5.18 FECG extraction using ANFIS and Wavelet
In this method, the inputs to the ANFIS are thecaithal signal and the thoracic
signal. The error signal is the FECG signal. And dlecomposed to 5 levels using coiflet
wavelet as shown in Figure 5.18.The approximatioeffecient is taken as a noise free
FECG signalwhich is the output from the wavelet post procesditock. The extracted

FECG of this method for different channels are shawsection 5.4.1

5.4.1 METHOD IlI- FECG EXTRACTION USING ANFIS AND WAVELET
— RESULTS

The fetal ECG extraction was done using ANFIS withvelet post processing as
shown in Figure 5.18. The outputs of this methoddifferent channels are shown from
Figures 5.19 to 5.23 for Sista data and Figure %s2fbr Physio data. The FECG is
obtained as the error signal between the estimBECG and the AECG. This signal is
further processed by wavelets. The extracted FEC@ecomposed in to 5 levels. The

results clearly show that the extracted FECG isentree.
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Figure5.19 FECG extraction using ANFIS and Wavelet — Sista/§2,
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Figure5.20 FECG extraction using ANFIS and Wavelet— Sistar3,
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Figure5.21 FECG extraction using ANFIS and Wavelet — Sista7}4



Criginal Signal
a0 T

5 L
200 300 400 S00 B00 Foo S00

Signal Amplitude
2

Extracted FECG

_Z0 ' L L L L
200 300 400 s00 EO0 Foo 00

Sample Mo

Figure5.22 FECG extraction using ANFIS and Wavelet— Sista7{5,
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Figure5.23 FECG extraction using ANFIS and Wavelet — Sista/ {6,

AbdominalECGE
A0 T T T

20 | —

o

=20

1 1 L 1 L L L '
200 400 s00 00 1000 1z00 1400 1600 1800 2000

Signal Armplituze

Extracted Anfis Wave fECG
20 T T T T T

10 -

Ao -

=20

1 1 L 1 L L L L L
200 400 B0 00 1000 1z00 1400 16500 1800 2000

Sample MNumber

Figure5.24 FECG extraction using ANFIS and Wavelet — Physi@)(4



5.5 EVALUATION AND ANALYSIS OF THE PROPOSED METHODS
The extraction of FECG was done using the followimgthods.

(1) Method I- FECG extraction using ANFIS
(2) Method II- FECG extraction using wavelet pgessing and ANFIS
(3) Method Ill- FECG extraction using ANFIS foll@d by wavelet post
processing.
The methods have been tested with the same dagap8rformance evaluation has been
done by the following parameters. Sensitivity (SENgpecificity (SPE),Positive
Predictive Value (PPV),Negative Predictive Value (NPV),Accurd@&CC),Correlation

Coefficient (CORR) and Signal to Noise ratio (SNR)mentioned in section 3.6.

5.5.1 EVALUATION OF METHOD I-FECG EXTRACTION USING ANFIS
Table 5.2 Performance of method |- FECG extraction using MNESista Data)

Electrode

position SEN SPE PPV NPV ACC | CORR | SNR
2,7 1 1 1 1 1| 0.3888| 28.6781
3,7 0.78 0.75 0.78 0.75 0.77| 0.1922| 26.4579
47 0.8 0.8 0.8 0.8 0.8| 0.2508 | 25.5271
57 0.67 0.7 0.73 0.64 0.68| 0.2882| 19.9250
6,7 0.73 0.73 0.73 0.73 0.73| 0.1846| 23.4564

The performance of ANFIS method | tested with diatem Sista is shown in
Table 5.2. The performance parameter SEN, SPE, RIPY, and ACC from electrode
position 2, 7 and 4, 7 are seen to have a goodmesince compared to other electrode
positions. The performance in electrode positioi & lower to other electrode positions
due to less magnitude of the extracted fetal E@@ldctrode position 6, 7 the dominance

of maternal ECG is very large compared to fetal B@tich leads to lower value of the
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performance parameter but better than electrodé@o$, 7. However in terms of SNR
the entire electrode positions except 5, 7 hawgelavalue. The correlation coefficient in
all the electrode positions has significant valsieggesting a good presence of fetal ECG
and absence of maternal ECG. In electrode pos&iprY the sensitivity, NPV and
accuracy is showing a slightly lower value dueh® insignificant presence of fetal ECG
in the abdominal signal. To conclude, the recoodnfielectrode position of 2, 7 have got

the best performance indices.

5.5.2 EVALUATION OF METHOD Il — FECG EXTRACTION USING
WAVELET AND ANFIS

The performance of wavelet and ANFIS tested wittadeom Sista is shown in
Table 5.3. In electrode position 2,7 ; 4,7 and fgve better performance compared to
3,7 and 6,7. The electrode positions 2, 7 havestime performance in method | and
method Il. However, the electrode position 3, 7 &nd is inferior to method I. In method
I and method I, for electrode position 4, 7 hadve similar performance.

Table 5.3 Performance of method Il - FECG extraction usimyslet and
ANFIS (Sista Data)

Electrode

position SEN SPE PPV NPV ACC | CORR | SNR
2,7 1 1 1 1 1 0.3132 39.31(00
3,7 0.67 0.67 0.67 0.67 0.67 0.1589 38.2865
47 0.75 0.8 0.75 0.8 0.78 0.2258 38.8842
57 0.72 0.8 0.83 0.67 0.75 0.4168 55.1830
6,7 0.67 0.64 0.73 0.64 0.69 0.17833 34.1679

Electrode position 5, 7 is better in method Il. Toerelation coefficient for all electrode
positions except 5, 7 have slightly decreased vadueethod Il compared to method |I.

The decrease in correlation factor is due to theemsed presence of fetal ECG. The SNR
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is increased in all the electrode positions indingathat method 1l can suppress noise in

the extracted FECG than method |.

5.5.3 EVALUATION OF METHOD Ill — FECG EXTRACTION USING
ANFIS AND WAVELET

In electrode position 2,7 all the performance paters are good and same as
method | and method II. In all other electrode poss, the performance parameters are
similar to method | and method Ill. Method Il seeio be superior to method Il in all the
cases.

Table 5.4 Performance of method Il -FECG extraction usingfAS and Wavelet
(Sista Data)

Electrode

position SEN SPE PPV NPV ACC | CORR | SNR
2,7 1 1 1 1 1 0.3816 120.404
3,7 0.75 0.72 0.75 0.72 0.74 0.18Y5 124.005
47 1 0.8 0.75 1 0.88 0.2466 121.402
57 0.67 0.75 0.8 0.6 0.7 0.2761 115.622
6,7 0.7 0.7 0.7 0.7 0.7 0.1853 114.347

The performance of ANFIS followed by wavelet posbgessing method tested
with data from Sista is shown in Table 5.4. Thereation coefficients in all the
electrode positions are slightly higher than methiodnd lower than method I. This
indicates the good quality of the extracted FEGQG&erms of SNR, this method shows a
drastic increase compared to method | and methdchis is because of the ability of the
algorithm to filter out the noise components afte# soft computing stage. In over all
comparison, the electrode position of 2, 7 yields best results compared to other
electrode positions in all the methods. This shdved the position 2, 7 is the optimum

position for recording abdominal ECG. To concludesthod 1l - ANFIS and wavelet
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post processing method is capable of extractingl fBCG in whatever may be the

electrode position.

5.5.4 EVALUATION OF DIFFERENT METHODS FOR PHYSIO DATA

The performance of method |- ANFIS extraction methmethod II- wavelet and
ANFIS extraction method, method IlI- ANFIS and whkteextraction method were tested
with data from Physio and the results are shownTable 5.5. By comparing the
performance parameters and correlation coeffiaieetthod Il and method 1l are having
similar values. This is due to minimum number ofsdapositive and false negative
detections. Method Il and method Il are performbeter than method I. In terms of
SNR there is gradual increase of the value fromhowktl to method Ill. Hence to
conclude for physio data, ANFIS and wavelet postessing method is the best method
for fetal ECG extraction.

Table 5.5 Performance of different methods (Physio data)

Method SEN | SPE | PPV | NPV | ACC | CORR | SNR

Method |
ANFIS
1 0.64| 0.67 1 0.79| 0.2706 15.2725

Method I
Wavelet and ANFIS
extraction method
1 0.8 | 0.84 1 0.9] 0.1935| 36.8038

Method Il
ANFIS and wavelet
extraction method

1 0.8 ] 0.84 1 0.9] 0.1962] 43.6143




5.5.5 ANALYSIS OF PROPOSED METHODS
The analysis of FECG extraction for performanceapater SEN, SPE, PPV,

NPV, ACC, Correlation and SNR for (1) ANFIS —methb@) wavelet preprocessing
followed by ANFIS - method Il (3) ANFIS followed byavelet post processing - method

[Il are shown in section 5.5.5.1 for Sista data &&d5.2 for Physio data.

5.9.5.1 ANALYSIS OF ANFIS METHODS — SISTA DATA
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Figure5.25 Plot of Electrode Position versus Sensitivity- &ist

Figure 5.25 shows the sensitivity plot for ANFISthmls with different electrode
positions. The sensitivity of electrode positiom 8 7 in method | is high because of the
minimum false negatives detection compared to nektthaand method Ill. For 6, 7
electrode position, all the methods have the simiue. In electrode position 4, 7
method Il shows the highest sensitivity becausex@mffalse detections. And in all the
other electrode positions, method IIl is havingikEimperformance as method Il. Hence
to conclude method Il and method Ill have similarfprmance with respect to

sensitivity.
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Figure 5.26 Plot of Electrode Position versus Positive Predécialue-Sista

Figure 5.26 shows the positive predictive plot AFIS methods with different

electrode positions. The PPV value is same andfbigall electrode positions except 3, 7

in method 1l and method Ill. This is due to lesgedéon of false positive peaks. In

electrode position 3, 7, method Il has smaller @adtiPPV. This is due to the presence of

maternal ECG in the extracted signal and its magdeitis comparable to that of fetal

ECG magnitude. In electrode position 3, 7 the PBMe in method Ill is slightly higher

than method Il because the magnitude of the fe@b En the extracted signal is much

higher.
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Figure5.27 Plot of Electrode Position versus Negative Pregict/alue - Sista

Figure 5.27 shows the negative predictive plotAdiFIS methods with different

electrode positions. It is seen from the plot thihthe methods are performing equally
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well in all electrode positions except in 4, 7.the case of electrode position 4, 7 the
method Il was showing a better performance becaidsthe excellent quality of the

extracted signal which is due to minimum numbefatde negative detections.
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Figure 5.28 Plot of Electrode Position versus Specificity- &ist
Figure 5.28 shows the specificity plot for ANFIStimeds with different electrode
positions. The specificity value is similar for #ile methods in electrode positions 2, 7
and 4, 7. Electrode position 3, 7 and 6, 7 havelairbehavior. In electrode position 5, 7,

method Il shows a higher value compared to othehous. The trend is similar in all the

methods.
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Figure5.29 Plot of Electrode Position versus Accuracy —Sista
Figure 5.29 shows the accuracy plot for ANFIS mdthwith different positions.
It is seen from the plot that in electrode pos#i@n 7 has the highest accuracy value in all
the methods because of the good quality of theasigmd also there are no false

129



detections. In electrode position 2,7 and 6, Thelmethods have similar behavior. In 4,
7, method Ill has got the highest value. In elabrposition 3, 7 and 5, 7 the method I
maintains the same trend where as the other metloedschanging the values.
Considering the average performance in 3, 7 and&nd good performance in the other

positions it is concluded that the accuracy is éigh method Il1.
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Figure5.30 Plot of Electrode Position versus Correlation Ciogdht-Sista

Figure 5.30 shows the correlation coefficient pfot ANFIS methods with
different electrode positions. All the methodssgtihe criteria for good extraction based
on the values of correlation coefficient. This meait the ANFIS methods are capable of
extracting fetal ECG with either no or very mininpaiesence of maternal ECG. It is seen
from the plot that the correlation coefficient slsomethod | and method IIl have the
similar behavior in all the electrode positionseThethod Il has an alternating behavior
having small and large values of correlation. Tmatede with respect to correlation

coefficient the method | and method Il have theig performance characteristics.
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Figure 5.31 Plot of Electrode Position versus SNR- Sista

Figure 5.31 shows the SNR plot for ANFIS methodshwdifferent electrode
positions. The SNR is calculated for the extradatdl ECG. It is very clearly seen from
the plot that the method | has the lower value an&dhod Ill has the higher value. In
method Il the SNR is high due to, the extractetlf&CG is further denoised using
wavelets.

By comparing the performance indices for all thecebde positions, it is
observed that the method Il and method Il haveimproved and similar behavior
compared to method |I. However, by comparing theetation coefficient and SNR, it is
concluded that the method Ill is performing betteextracting fetal ECG than the other

two methods.

5.5.5.2 ANALYSIS OF ANFIS METHODS — PHYSIO DATA

The analysis of FECG extraction for all the ANFI®ttrods for Physio data are
discussed in this section. The performance paramate plotted for different methods

and shown in Figures 5.32 to 5.38.
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Figure 5.32 Plot of Methods versus Sensitivity-Physio
Figure 5.32 shows the sensitivity plot for differenethods for physio data. All
the three methods show highest sensitivity. Thiduis complete extraction of fetal ECG
from abdominal signal and no false detections niadéhe methods. Thus, in terms of

sensitivity all the methods are performing equalgjl.
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Figure 5.33 Plot of Methods versus Positive Predictive Valugdii

Figure 5.33 shows the positive predictive plot dofferent methods for physio
data. The plot shows the gradual increases in Péievirom method | to method II.
However, the method Il and method Il have the sammee. This is due to less false
positive detections. Hence in terms of PPV, methodnd method Ill have similar

capabilities of extraction for Physio data.
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Figure5.34 Plot of Methods versus Negative Predictive Valueyd

Figure 5.34 shows the negative predictive plotdidferent methods for physio
data. All the three methods show highest NPV values is due complete extraction of
fetal ECG from abdominal signal and no false negadietections made by the methods.

Thus, in terms of NPV all the methods are perfogregually well.
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Figure 5.35 Plot of Methods versus Specificity — Physio
Figure 5.35 shows the specificity plot for diffetenethods for physio data. The
plot shows the gradual increases in specificityugafrom method | to method II.
However, the method Il and method Il have the sammee. This is due to less false
positive detections. Hence in terms of specificityethod 1l and method 1l have similar

capabilities of extraction for physio data.
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Figure 5.36 Plot of Methods versus Accuracy — Physio
Figure 5.36 shows the accuracy plot for differemtimds for physio data. It is
seen from the plot that the accuracy increases mathod | to method Il. Method Il and
method Il are having the same value. This plotcatks that method Il and method I

are able to fully extract the fetal ECG with nonoinimal false positive and false negative

detections.
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Figure5.37 Plot of Methods versus Correlation Coefficient-RHbys
Figure 5.37 shows the correlation coefficient plot different methods for
physio data. The correlation is seen to decreas@ fmethod | to method Ill. This

indicates complete fetal ECG extraction from theabinal signal with no presence of



maternal ECG. Hence it is concluded that the metthachd method Il have similar

extraction capabilities.
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Figure5.38 Plot of Methods versus SNR- Physio
Figure 5.38 shows the SNR plot for different methdor physio data. The plot
shows the gradual increase of SNR from methodhethod Ill. From this it is concluded
that the method Il is able to extract the fetal&@ith minimum noise. Hence by
comparing the performance indices, correlation fament and SNR it is concluded that
the method Ill- ANFIS followed by wavelet post pessing was yielding a good

extraction.

5.6 CHAPTER SUMMARY AND CONCLUSION
In this chapter three methods were suggested byicomg the soft computing

technique with wavelets. They are:

(1) Method |- FECG extraction using ANFIS

(2) Method II- FECG extraction using wavelet pagessing and ANFIS

(3) Method lll- FECG extraction using ANFIS foll@d by wavelet post processing.
The algorithms of the three methods have beendegth the same data sets from

Sista and Physio. The advantages of these metheds @quires only one abdominal
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signal and one thoracic signal for FECG extractibims is done by applying ANFIS to
identify the non linear relationship between theterzal component in the abdominal
ECG and the thoracic ECG which is assumed to havietal component in it. The FECG
can be extracted by subtracting the MECG signainfrine abdominal signal. The
mathematical analysis is very less because of thaditgtive aspects of the artificial
intelligence. The performance of these methods visluated using the parameters
sensitivity, specificity, positive predictive value@egative predictive value, accuracy,
correlation coefficient and SNR. The case of oysriag of FECG with MECG is seen at
sample 500 in electrode position 2,7 for Sista .date proposed methods are able to
extract FECG present in the abdominal signal ef/¢imei fetal signal is overlapped with
maternal signal. Thus the extracted FECG is theah¢tECG present in the abdominal
signal. The visual quality of the extracted sigigalseen to be better in wavelet post
processed extraction. The electrode positions 3, 7; 4, 7; and 6, 7 the wavelet post
processed technique shows considerable improvemgmerformance indices for Sista
data. However in electrode position 5, 7 the pentorce indices show a marked decrease
in values. This may be due to insignificant presesicFECG in the abdominal signal.

The evaluation and analysis show that the perfocmamdices and the correlation
coefficient are very similar in method Il and medhd for both the data sets. In terms of
SNR method IIl out performs method Il in both trealsets. This may be due to the loss
of quality of the extracted FECG in method Il andynbe the result of losing some FECG
information from the composite signal. Hence itcancluded that method IlI- ANFIS
followed by wavelet post processing is the bestotor fetal ECG extraction from the
abdominal signal. The visual quality indicates thi@a extracted FECG is of superior

guality compared to other methods.



CHAPTER 6

SOFT COMPUTING EXTRACTION TECHNIQUES
DURING EARLY STAGES OF PREGNANCY AND
LABOR

6.1 INTRODUCTION

In the previous chapters (3, 4 & 5), several méshwere proposed to extract fetal
ECG from the composite abdominal signal. They &E&CG Extraction method,
Improved FECG Extraction Method ,Novel Method of(RE Extraction ,WAF Method
I,WAF Method I, WAF Method IlII,WAF Method IV,ANFISmethod of extraction,
wavelet preprocessing followed by ANFIS and ANFIS8lowed by wavelet post
processing. All the above methods were tested thérsame set of data from Sista daisy
and Physio. Out of these methods, soft computimirigues were yielding better
performance and extraction. To confirm the extoacticapabilities, these ANFIS
techniques were further tested with the data dutiegpregnancy period from ¥2o 40"
week, and data during labor before and after oxytadministration. The extraction of
FECG was done using the following methods in thiapter. They are; (1) Method I-
FECG extraction using ANFIS (2) Method Il- FECG rextion using wavelet
preprocessing and ANFIS (3) Method IlII-FECG exti@mttusing ANFIS followed by
wavelet post processing. The algorithms were dgign detail in Chapter 5.The testing
and evaluation of the algorithms was done using dets from 6 patients. They are

» CASE I: data set from gestation agé‘% 40" week with sampling frequency of
1KHz.

» CASE II: Normal pregnancy data set with the sangpfrequency of 250Hz.



« CASE IlII: 40" week data set for normal pregnancy with sampliegdency of 1
KHz.

« CASE IV: 37" week data set from a sport woman having no rigkre§nancy and
sampling frequency is 250Hz.

» CASE V: Data set during labor with no oxytocin adrsiration and sampling
frequency of 400Hz.

» CASE VI: Data set during labor, after oxytocin adisiration with sampling

frequency of 400 Hz.

6.2 RESULTS OF CASE |

Case | is data set from gestation ag@zd 22 40" week with sampling frequency of
1KHz. The table 6.1 presents the number of recosiguals for each week of gestation
age. The testing of algorithms was done for all ideorded signals. The analysis and
evaluation were presented for one recorded sigmaddch week of gestation.

Table 6.1 Gestation weeks and number of recorded signalsse C

Weeksof gestation | Number of recorded signals

22
23
24
25
27
29
30
31
32
33
34
35
37
38
39
40
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Three weeks of data sets are chosen to show thacgah capabilities of the
algorithms during the progression of pregnancy. Beginning week (2%), the middle
week (3?) and end week (§9 of the gestation ages are selected from theablaildata
set. The results of these three weeks of gestagerare shown in this section.

The abdominal signal and the extracted signahefa2 week are shown from
Figure 6.1 to Figure 6.3 for the three proposedhous. In this week the abdominal
signal is seen to be very noisy. The magnitudéefétal ECG is very small compared to
the maternal ECG in the abdominal signal. The fE@G in the abdominal signal is not
dominantly seen. However, the three proposed dlgos were able to extract all the fetal
ECG components. In Figure 6.1, in addition to #@fECG maternal EMG signal along
with noise is present. The fetal ECG is more vesiimh Figure 6.2 and Figure 6.3.
However, the ANFIS and wavelet post processed ndathseen to be less noisy.
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Figure6.1 FECG extraction using ANFIS — %2veek data- Case |
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Figure 6.2 FECG extraction using Wavelet and ANFIS ™feek data- Case |
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Figure 6.3 FECG extraction using ANFIS and Wavelet “28eek data -Case |

The abdominal signal and the extracted signahefa3® week are shown from
Figure 6.4 to 6.6 for the three proposed methods. dbdominal signal in this week has
strong maternal ECG. This is due to increased ngerontractions and the fetal ECG is
not clearly visible in the abdominal signal. Howevthe fetal ECG is visible in the
extracted signal. It is seen from the extractedpwuthat the noise components are

gradually eliminated.
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Figure 6.4 FECG extraction using ANFIS — $3veek data- Case |
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Figure 6.5 FECG extraction using Wavelet and ANFIS “38eek data- Case |
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Figure 6.6 FECG extraction using ANFIS and Wavelet “3geek data- Case |
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Figure 6.7 FECG extraction using ANFIS — 39th week data -Gase
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Figure 6.8 FECG extraction using Wavelet and ANFIS "3geek data -Case |
The abdominal signal and the extracted signahefad” week are shown from
Figure 6.7 to 6.9 for the three proposed methodsing this week the abdominal signal
shows strong presence of fetal ECG along with #ngel magnitude of maternal ECG.
The large magnitude of maternal ECG is due to theng uterine contractions nearing
the delivery period. The strong presence of thel CG in the abdominal signal is due
to the full growth of the fetus nearing the delivgreriod. Out of the three proposed
methods, the ANFIS and wavelet post processed methows clear extraction of fetal

ECG.
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Figure 6.9 FECG extraction using ANFIS and Wavelet "3geek data -Case |

The recordings at 28 -32 weeks of gestation shawaaease in the magnitude of
fetal ECG in the abdominal signal. This is causgthle presence of the vernix caseosa, a
fatty and isolating layer which appears around 2#&kg and starts deteriorating around
32 weeks of gestation. Difficulties in obtainirfgetfetal heart rate in this period have
been reported by several authors. (Bergveld e9&b,10estendorp et al 1989, Taylor et
al 2003). The week wise performance evaluatiordffferent gestation weeks are shown

in Section 6.8.1

6.3 RESULTS OF CASE I

Case Il is the normal pregnancy data set withrapsag frequency of 250Hz.
Figure 6.10 shows the abdominal ECG and the extdetal ECG using ANFIS method.
The FECG is extracted by canceling the thoracic ESigfgal from the abdominal ECG
signal. In Figure 6.11, the results of FECG exioactusing wavelets and ANFIS are
shown. In this method there is a oscillatory pheaoom present in the position of
maternal ECG in the extracted signal. Such a phenom is insignificant in ANFIS
followed by wavelet post processing method as shiovidigure 6.12 where the extracted

FECG is also noise free. Figure 6.10 to Figure 68i@ws the total absence of MECG in
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the extracted FECG. The overlapping of FECG withQ@Eis seen in the abdominal
signal. The proposed methods were able to extFf&d€G even when, FECG is
overlapping with the maternal ECG. Thus the exé@diECG is the actual FECG present
in the abdominal signal. The visual quality of #wdracted signal is seen to be better in

ANFIS & wavelet post processed extraction method.
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Figure 6.10 FECG extraction using ANFIS — Case Il
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Figure 6.11 FECG extraction using Wavelet and ANFIS — Case Il
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Figure 6.12 FECG extraction using ANFIS and Wavelet — Case Il

Signal Amplitude

6.4 RESULTS OF CASE Il
Case lIl is the 4B week data set with a sampling frequency of 1KHgufe 6.13

shows the abdominal signal which has very largemtade of maternal ECG compared
to fetal ECG present in the composite abdominaladiglhe recorded signal has higher
magnitude and large variations due to large cotitnamf uterus nearing the delivery
time. The different methods used in this work aoée a@o suppress maternal ECG and
extract fetal ECG even in the presence of largad®Tawaves as shown in Figures 6.13 to
6.15 The visual quality of extracted FECG showslged decrease in noise content from

Figure 6.13 to Figure 6.15 with significant present fetal ECG.
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Figure 6.13 FECG extraction using ANFIS — Case llI
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Figure 6.14 FECG extraction using Wavelet and ANFIS — Case llI
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Figure 6.15 FECG extraction using ANFIS and Wavelet — Case llI

6.5 RESULTS OF CASE IV

Case IV is the 37week data set from a sport woman having no rigirefinancy
and with sampling frequency of 250Hz. In this céise abdominal signal shows no
overlapping between the fetal ECG and maternal EBIGo the numbers of FECG
components present in the signal are more comgarprkevious data sets. The proposed
methods are able to extract all the fetal ECG prteisethe composite abdominal signal as

shown in Figures 6.16 to 6.18. The FECG is the adamti component in extracted signal.
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Figure 6.17 FECG extraction using Wavelet and ANFIS — Case IV
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Figure 6.18 FECG extraction using ANFIS and Wavelet — Case IV



6.6 RESULTS OF CASE V

Case V is the data set which is recorded duringorlalwithout oxytocin
administration with sampling frequency of 400 Hil the methods were able to extract
FECG successfully and suppress the maternal EC&viery large extent as shown in
Figures 6.19 to 6.21 The visual quality of the acted signal in Figure 6.19 and Figure
6.21 are similar. However in Figure 6.20 there snall presence of maternal ECG at

sample number 950 in the extracted FECG signal.
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Figure 6.19 FECG extraction using ANFIS — Case V
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Figure 6.20 FECG extraction using Wavelet and ANFIS — Case V



Driginal Signal
a0 T

S0 1 1 1 1 L
S00 B0 Foo SO0 S00 1000

Signal Amplitude
FX
g

Extracted FECG

a0

DW&MWWM

50 ' 1 1 1 L
400 s00 BO0 Foo s00 g00 10an

Sarmple MNao

Figure 6.21 FECG extraction using ANFIS and Wavelet — Case V

6.7 RESULTS OF CASE VI

Case VI is the data set which is recorded duringorda after oxytocin
administration with sampling frequency of 400 HheTrecorded abdominal signal has
higher magnitude and large variations due to largatraction caused by oxytocin
administration. The signal at sample 700 is overdapwith large maternal ECG followed
by followed by large T wave. Even in such situatithe overlapped FECG was extracted.
The algorithms are able to extract even if the lr@sdas fluctuations due to the uterine
contractions. The visual quality of extracted FEGKbws gradual decrease in noise
content as seen from Figures 6.22 to 6.24.
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Figure 6.22 FECG extraction using ANFIS — Case VI
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Figure 6.23 FECG extraction using Wavelet and ANFIS — Case VI
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Figure 6.24 FECG extraction using ANFIS and Wavelet — Case VI

6.8 EVALUATION AND ANALYSIS OF THE DIFFERENT CASES WITH
THE PROPOSED METHODS

The proposed methods have been analyzed for thieyqofeextracted FECG. The
parameters used to assess the quality of the FE€Gsignal to noise ratio (SNR),

correlation coefficients (CORR) and performanceded as mentioned in section 3.6.



6.8.1 EVALUATION AND ANALYSIS OF CASE |
Table 6.2 Week wise Performance Evaluation for ANFIS methddase |

W eek SEN SPE PPV NPV ACC | CORR | SNR
22 0.86 0.72 0.75 0.84 0.79 0.2706 | 15.2723
23 0.69 0.63 0.65 0.67 0.666 0.1484 | 19.9865
24 0.77 0.54 0.63 0.7 0.66| 0.1586 | 38.0658
25 0.86 0.5 0.63 0.78 0.68 0.1408 | 13.5391
27 0.62 0.62 0.62 0.62 0.62 0.1136 | 20.1669
29 0.59 0.71 0.67 0.71 0.65 0.0768 | 36.2712
30 0.57 0.79 0.73 0.65 0.68 0.158 | 43.3239
31 0.67 0.56 0.6 0.63 0.61] 0.1058 | 42.8171
32 0.67 0.61 0.64 0.65 0.64 0.1539 | 45.6173
33 0.92 0.42 0.62 0.84 0.67 0.1111 | 31.0299
34 0.58 0.75 0.7 0.64 0.67| 0.1125 | 34.2874
35 0.6 0.67 0.64 0.63 0.64 0.0922 | 45.5558
37 0.65 0.67 0.65 0.65 0.68 0.0882 | 43.6325
38 0.64 0.91 0.88 0.72 0.77 0.1305 | 42.3448
39 0.57 1 1 0.7 0.79| 0.124 | 37.4008
40 0.83 1 1 0.86 0.92| 0.1482 | 39.1487

The week wise performance evaluation is shown fibable 6.2 to 6.4 for
different methods of Case I. The plots of the abpaemmeters are shown from Figures
6.25 to 6.31 with respect to gestation weeks.

Table 6.3 Week wise Performance Evaluation for Wavelet andF¥Nmethod — Case |

W eek SEN SPE PPV NPV ACC | CORR | SNR
22 0.8 1 1 0.84 0.9 | 0.1935 | 36.8042
23 0.73 0.6 0.64 0.69 0.66 0.1247 | 48.7634
24 1 0.67 0.75 1 0.84| 0.1536 | 65.9958
25 0.79 0.57 0.65 0.73 0.68 0.1038 | 31.1383
27 0.62 0.62 0.62 0.62 0.64 0.099 | 35.5483
29 0.59 0.71 0.67 0.71 0.65 0.0736 | 62.3414
30 0.6 0.9 0.86 0.69 0.75 0.154 | 79.3182
31 0.58 0.75 0.7 0.64 0.67| 0.1031 | 66.5387
32 0.72 0.65 0.67 0.69 0.68 0.1487 | 72.3639
33 0.91 0.46 0.63 0.84 0.68 0.1059 | 62.626
34 0.55 0.82 0.75 0.64 0.68 0.106 62.994
35 0.64 0.64 0.64 0.64 0.64 0.0906 | 66.6977
37 0.85 0.57 0.65 0.8 0.71] 0.0864 | 70.7803
38 0.7 0.9 0.88 0.82 0.8| 0.1277 | 69.334
39 0.57 1 1 0.7 0.79| 0.1184 | 62.5112
40 0.83 1 1 0.86 0.92| 0.1437 | 68.852




Table 6.4 Week wise Performance Evaluation for ANFIS and VWetwaethod — Case |

Week SEN SPE PPV NPV ACC | CORR SNR
22 0.83 0.83 0.83 0.83 0.83 0.1962 | 43.6144
23 0.55 0.91 0.86 0.67 0.73 0.1262 | 53.5337
24 1 0.8 0.84 1 0.9 | 0.1542 | 79.1955
25 0.92 0.5 0.65 0.88 0.71] 0.0953 50.714
27 0.62 0.62 0.62 0.62 0.62 0.1032 | 53.7831
29 0.62 0.77 0.62 0.67 0.69 0.0737 | 93.1423
30 0.67 0.89 0.88 0.73 0.78 0.1541 | 99.3541
31 0.6 0.8 0.75 0.67 0.7 | 0.1039 | 100.9372
32 0.83 0.58 0.67 0.72 0.71 0.1488 | 101.6783
33 0.91 0.45 0.63 0.83 0.68 0.1062 | 72.1489
34 0.75 0.75 0.75 0.75 0.75 0.1069 | 73.2829
35 0.67 0.67 0.67 0.67 0.67] 0.0906 | 99.0459
37 0.91 0.58 0.67 0.88 0.74 0.0864 | 93.8987
38 0.7 0.9 0.8 0.75 0.8 | o0.128 81.8657
39 0.67 1 1 0.75 0.83| 0.1182 | 79.6384
40 1 1 1 1 1 0.1443 | 77.7112

Figure 6.25shows the sensitivity plot for different methods@dse |. It is seen
from the plot that the sensitivity is higher in tie weeks from 2% to 258" and from 3%
to 40". The period from 27 to 32'¥ week shows less sensitivity because of vernix

caseosa, a fatty and isolating layer which detatés the detection process.

Sensitivity plot
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Figure 6.25 Plot of Gestation weeks versus Sensitivity — Case |
The quality of the recorded signal, during diffdreveeks determines the sensitivity.
Even though the signal is weak in"2@eek all the methods are able to extract fetal ECG

totally. The change in the trend of sensitivityaihthe three methods looks similar. The
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sensitivity is lower in the ANFIS method and higleANFIS and wavelet method. This

confirms that the ANFIS wavelet processing metlsosiitable method for extraction.
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Figure 6.26 Plot of Gestation weeks versus Positive Predidiaikeie — Case |

Figure 6.26shows the positive predictive plot for different timeds of Case I. In
all the three methods the change in the trendnees&venthough the signal is weak in
22" week, method Il is able to extract fetal ECG fgttthus giving the PPV value of 1.
However, method Il is also successful in extragtof fetal ECG with the value of
0.8.During the gestation week from™2@® 32" week the method Il and method Il is able
to extract in better way than the method I. The RIRM shows that the method Il and
method Ill has the similar behavior except in feweks. In 48 week, all the methods
were able to extract the fetal ECG because of d@ngel magnitude of fetal ECG. To
conclude, the method Il and method Il are perfogrequally well with respect to PPV.

Figure 6.27/hows the negative predictive plot for differentthoels of Case I. All
the methods were able to extract the fetal EC®én22® week because of the less noisy
abdominal signal. This is due to less uterine #gtiAs the gestation weeks increases the
noise in the abdominal signal also increases. Atagen age increases, the NPV value is
higher in the method Il and method Il comparedntethod I. However, the NPV value is
smaller during 2% to 32 week because of the quality of the sigrsalft It is seen from

the plot that the ANFIS followed by wavelet is ylglg a better extraction.
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Negative predictive Value Plot
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Figure 6.27 Plot of Gestation weeks versus Negative Predidfaieie — Case |

Figure 6.28shows the specificity plot for different methods @dse I. As seen
from the plot, the method Il is performing very wat 22" week by no false negative
detections. All the methods are performing equadl from 38" week onwards. Even,
during the onset of vernix caseosa the methods able to extract fetal ECG with
minimum number of false negative detections seethbyincreased value of specificity.

To conclude method Il and method Il are performwvegl with respect to specificity.
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Figure 6.28 Plot of Gestation weeks versus Specificity — Case |
Figure 6.29shows the accuracy plot for different methods o$eCh It is seen
from the plot all the methods are in similar trewith very slight differences. The
accuracy value is higher in %2and 48 week because of no false detections being made.

The weeks during the onset of vernix caseosa sheset value of accuracy due to some
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false detection because of the quality of the pabisignal. It is concluded that the

method Il is performing better.

1o Accuracy Plot
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Figure 6.29 Plot of Gestation weeks versus Accuracy — Case |
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Figure 6.30 Plot of Gestation weeks versus Correlation Coefiti- Case |

Figure 6.3Gshows the correlation coefficient plot for diffetenethods of Case I.
During the 22° week the correlation coefficient is seen to belgmin method Il and
method Ill. From 28 week onwards all the three methods have the samavior. It is
seen that the method Il and method Ill are capablkextracting fetal ECG during early
stages pregnancy. However, the correlation coefficvalue has increased from'"29
week to 38 week due to the vernix caseosa which affects traityy of the signal. In
terms of correlation coefficient it is concludeditmethod Il and method Il are equally

extracting the fetal ECG.



Figure 6.31shows the SNR plot for different methods of Cask is very clear
from the plot that the SNR value for method Illhigher than the other two methods in

all gestation weeks. The trend of SNR is similaalirthe cases.

SNR Plot
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Figure 6.31 Plot of Gestation weeks versus SNR — Case |
By comparing all the performance indices and datign coefficient it is
concluded that method Il and method Il are the&cigiit methods for extracting the fetal
ECG from the abdominal signal. On comparing SNRntlg¢hod 1l performs better than
method Il. The visual quality of the extracted sigim this method also justifies the same.
Hence it is concluded that ANFIS followed by wavedea superior method for fetal ECG

extraction.

6.8.2 EVALUATION AND ANALYSIS OF CASE I

The performance indices, correlation coefficiemtl &NR were done for case Il
with the three different methods. The results dews in table 6.5. For all the three
methods the performance indices have the same.vBhieindicates that all the methods

could detect fetal ECG completely without any falsgection.



Table 6.5 Performance Evaluation for Case |l

METHODS SEN | SPE | PPV | NPV | ACC | CORR SNR
Method I- ANFIS 1 1 1 1 1| 0.388828.6781
Method Il- Wavelet preprocessing
& ANFIS 1 1 1 1 1|0.3132| 39.3100
Method llI- ANFIS & wavelet post
processing ] 1 1 1 10.3816| 120.404

The correlation is seen to be similar in methodd enethod Il as shown in Figure 6.32.
However, method Il has a low value suggesting betteraction. Figure 6.33 shows the

drastic increase in SNR in method Ill compared otive methods.
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Figure 6.33 Plot of Methods versus SNR — Case Il



On comparing performance indices, correlation ¢oieffit and SNR, ANFIS followed by

wavelet post processing is found to be the betethad for extraction.

6.8.3 EVALUATION AND ANALYSIS OF CASE Il

The performance evaluation of case Il is showtable 6.6. Method | and
method Il have the same performance indices ang alese correlation coefficient. All
the performance indices have the same and maximaloe \n ANFIS & wavelet post
processing method.

Table 6.6 Performance Evaluation for Case Il

METHODS SEN | SPE | PPV | NPV | ACC | CORR SNR
Method I- ANFIS 0.83 1 1 0.86| 0.92| 0.148p39.1487
Method Il- Wavelet preprocessing
& ANFIS 0.83|1 1 0.86] 0.92] 0.143768.852
Method Ill- ANFIS & wavelet post
processing 1 1 1 1 1 0.144377.7112

Figure 6.34 and Figure 6.35 are plots for correfattoefficient and SNR. The
correlation coefficient for all the methods has s$imailar range of values. Method Il has
the the highest value of SNR. Thus comparing peréoice indices, correlation
coefficient and SNR it is concluded that the ANRISvavelet post processing method is

the best method.
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SNR Plot
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Figure 6.35 Plot of Methods versus SNR — Case Il

6.8.4 EVALUATION AND ANALYSIS OF CASE IV

The performance evaluation for case IV is showtalle 6.7. All the performance
indices have the same and maximum value in methadd method Il which indicates

no false detections in the extraction.

Table 6.7 Performance Evaluation for Case IV

METHODS SEN | SPE | PPV | NPV | ACC | CORR SNR
Method I- ANFIS 0.83 1 1 0.85| 0.91] 0.328B325.0311
Method Il- Wavelet preprocessing
& ANFIS 1 1 1 1 1 0.2791 40.6417
Method IlI- ANFIS & wavelet post
processing 1 1 1 1 1 0.319] 119.1923

Figure 6.36 and Figure 6.37 shows the plot foredation coefficient and SNR for
case |V. The correlation is seen to be very clasaethod | and method Il. By comparing
SNR, the ANFIS & wavelet post processed method thashighest value. Hence to

conclude ANFIS followed by wavelet post processsithe better method for extraction.
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6.8.5 EVALUATION AND ANALYSIS OF CASE V

The performance evaluation for case V is showalite 6.8. This is a case of data
set during labor without drug administration.

Table6.8 Performance Evaluation for Case V

METHODS SEN | SPE | PPV | NPV | ACC | CORR SNR
Method I- ANFIS 1 75| 8| .75 .8 0.466143.1815
Method Il- Wavelet preprocessing
& ANFIS 1 1 1 1 1| 0.5494| 100.2257
Method llI- ANFIS & wavelet post
processing ] 1 1 1 10.5645| 142.5646




All the performance indices have the same and maximalue in method Il and method
[ll. Figure 6.38 and Figure 6.39 are the correlatoefficient and SNR plots for case V.
The correlation coefficient is smaller in methodnd higher in method ll. Also,
SNR is higher in method Ill and lower in methodBly comparing the performance
parameters, correlation coefficient and SNR itasatuded that the ANFIS followed by

wavelet post processing method is the best method.
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Figure 6.39 Plot of Methods versus SNR — Case V



6.8.6 EVALUATION AND ANALYSIS OF CASE VI

The evaluation for case VI is shown in table 6.9.

Table 6.9 Performance Evaluation for Case VI

METHODS SEN | SPE | PPV | NPV | ACC | CORR SNR
Method I- ANFIS 1 75| .8 1 .88 0.277342.1720
Method Il- Wavelet preprocessing
& ANFIS 1 | .85| .88 1 92| 0.2773| 97.9669
Method IlI- ANFIS & wavelet post
processing 1 1 1 1 1 [0.2927] 124.0231

This is a case of data set during labor with drdgiaistration. This increases the
contractile activity of the uterus. All the methodgere able to extract fetal ECG
completely. Method | and method Il are performinguisimilar way. All the performance

indices have the same and maximum value in ANFI8a&elet post processing method.
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Figure 6.40 Plot of Methods versus Correlation Coefficient s€¥I
Figure 6.40 and 6.41 are the plots for correlatioefficient and SNR for case VI.
The value of correlation coefficient in all the fmedls suggests that the maternal ECG is
totally absent. The SNR has the highest value inhate Ill. To conclude ANFIS
followed by wavelet post processing method is HestFECG extraction with drug

administration.
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6.9 CHAPTER SUMMARY AND CONCLUSION
In this chapter, three methods proposed in chdptemely (1) Method I- FECG

extraction using ANFIS (2) Method II- FECG extractiusing wavelet preprocessing and
ANFIS (3) Method IlI- FECG extraction using ANFISliowed by wavelet post
processing were tested with the data during thgramecy period from 29 to 40" week
and during labor before and after oxytocin admiatgn. In the cases discussed, the
correlation coefficient is similar in method Il aneethod Ill. The comparison between all
the methods, in all the cases shows that the SNRjiest in ANFIS followed by wavelet
post processing method. This method shows consifteraprovement in performance
indices also. To conclude the correlation coefficieSNR and performance indices
indicate that the ANFIS & wavelet post processirgthod is more preferred method for
FECG extraction. The visual quality indicates tha extracted FECG is of superior
quality in ANFISfollowed by wavelet post processmgthod. This method is capable of
extracting FECG even when, the FECG is overlappindpn MECG. And also the
morphology of the extracted FECG remains same tacahi be used by the physicians to

diagnose.



CHAPTER 7
CONCLUSIONS

In this research, new methods of extracting fetattrocardiogram signals from
the maternal abdominal recordings were proposeddandloped. Fetal ECG extraction
methods are using multi stage adaptive filteringyelets, and soft computing techniques.
These methods were evaluated on the real signaddferent patients. The algorithms
were designed to cancel the maternal ECG from biimminal signal and enhance the
fetal ECG signal. The main contribution of this wowas to develop ten processing
algorithms that use information of fetal and contating signals and improve the
quality of the extracted FECG. The extracted FEC@nf different algorithms were
evaluated with performance indices; Sensitivity N$E Specificity (SPE),Positive
Predictive Value (PPV),Negative Predictive ValueP{y,Accuracy (ACC),Correlation

Coefficient (CORR) and Signal to Noise ratio (SNR).

7.1 CONCLUSIONS

In chapter 3, three different methods for fetal@&€xtraction using multi stage
adaptive filtering were developed. These are naase(l) Method |- FECG Extraction
Method (2) Method IlI-lmproved FECG Extraction Methd3) Method - Il Novel
Method of FECG Extraction. These proposed methodteatl the fetal ECG by
preprocessing of the abdominal ECG and subsequaewetation of the maternal ECG
by multi stage adaptive filtering. The preprocegsstage is required to remove the DC
signal, baseline wander, power line interferenceé amy other noise components. Using
the preprocessed signal, a non linear operatob&es defined. The inability of the one

adaptive filter, to cancel maternal ECG completedyg led to the addition of the second
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stage. The optimum combination of adaptive filtevas chosen as RLS and LMS
algorithms. The method | and method Il uses the esamon linear parameter
¥Y=DS(0.02*DS-1). Method 1l is different from methddas it uses a new stage of
refinement. The different non linear operators hhetped to reduce the maternal ECG.
The method IIl uses the non linear paraméter DS (K-1) for the extraction of fetal
ECG. The K value has been optimized by studyingpiwer spectral density variations
of the extracted FECG signal. By comparing thegremfince indices, it is concluded that
all the three methods were performing well. Howevgy comparing the correlation
coefficient and SNR it is concluded that the methbdvas seen to be better method for
FECG extraction.

In chapter 4, four different methods for fetal E€&racting using combinations
of the wavelet and adaptive filters have been sstgge These are named as (1) WAF
Method | (2) WAF Method Il (3) WAF Method Il (4) WF Method IV. The wavelets
are used here as a 5 level decomposition and degoisol. The approximation
coefficient of the abdominal signal is further presed by adaptive filtering stages. The
methods are differentiated based on the non lipaaameter being used. The method |
and method Il uses the same non linear paramgter®S (0.02*DS-1). The method I
uses the additional stage for refinement. The mkthiouses the non linear parameter
Y=DS(K-1) for the fetal ECG extraction. The method uses the same nonlinear
parameter as method Il but with the modified tloarasignal. The comparison of the
methods was made using the parameter indices,|aoore coefficient and SNR. It is
found that the WAF method Il yielded the best gyaif fetal ECG signal.

In chapter 5, three different methods were propasing the combination of soft
computing techniques and wavelets. These are nas\¢tl) Method |- FECG extraction

using ANFIS (2) Method II- FECG extraction usingwe&et preprocessing and ANFIS
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(3) Method Ill- FECG extraction using ANFIS follodeby wavelet post processing.
These methods use adaptive maternal cancellatabmitpues. The ANFIS is trained to
identify the thoracic signal in the composite abdwhsignal. The estimated thoracic
signal is used to extract FECG. Out of these, ntetthaand method Il make use of

wavelets as a preprocessing tool and post processal. All the three soft computing

methods are capable of extracting fetal ECG. Butgaring the performance indices and
correlation coefficient, the method Il and methddate similar. On comparing SNR, the
method Ill out performs method II.

Table 7.1Summary of the proposed methods

Methods SEN| SPE| PPV | NPV | ACC | CORR | SNR
Method |- FECG extraction
method 0.8 1 1 0.84 0.9 0.2024 11.81
Method Il — Improved FECG
extraction method 0.8 1 1 0.8 0.89| 0.1546 | 19.42
Method Il — Novel method of
FECG extraction 1 0.77/0.89| 1 0.89(0.187 | 19.98
WAF Method | 067 1 1 0.75/ 0.83 0.1851 24.2001
WAF Method Il 0.8 1 1 0.83| 0.9 | 0.165 | 26.5029
WAF Method Il 079 1 1 0.7 0.79| 0.2369 | 14.1796
WAF Method IV 067 ]| 1 1 0.72| 0.82/ 0.2711| 14.3583
Method |- ANFIS extraction
method 1 1 1 1 1 0.3888 28.6781
Method Il - Wavelet and ANFIS
extraction method 1 1 1 1 1 |0.3132| 39.3100
Method IIl -ANFIS and
Wavelet extraction method 1 1 1 1 1 0.3816 | 120.404

Comparing all the ten proposed methods for the sdate sets from Sista and
Pyhsio, it is noted that soft computing technigaes performing better. To confirm the
robustness of the algorithms these methods wetleefutested with data during the early

stages of pregnancy period from"2® 403" week and during the labor with and without
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oxytocin administration. Six cases were tested thedevaluation results show that the
ANFIS followed by wavelet post processing is monefgrred method for FECG
extraction. In table 7.1 a general comparison islenaetween the proposed methods for
the data set from Sista. Accordingly each propasethods has its own benefits and
limitations. The highlighted methods are the bettethods in adaptive filtering, wavelet
adaptive filtering and soft computing techniques.

To conclude, all the ten proposed methods were ablextract the fetal ECG
when it is overlapped with the maternal ECG. Alk®se methods have an advantage of
using only one abdominal signal and one thoragnaifor FECG extraction. Compared
to adaptive and wavelet adaptive methods, thecaoitputing methods were performing
better. Mathematical analysis is very less in thethod because of the qualitative aspect
of the artificial intelligence. Since this techn&uses neural network it requires fewer
inputs to extract the FECG signal. Convergence i8rless compared to methods using
neural network alone due to the hybrid rule usedh@ ANFIS technique. ANFIS
methods can separate the FECG without dividingstgeals into different frames. After
removing the major interference (MECG) from the EEGt is easier to suppress the
noise using the wavelets. In these soft computieghods, ANFIS followed by wavelet
post processing is well suited for FECG extractibnis technique is able to extract the
fetal ECG in the early stages of pregnancy. Siheentorphology of the extracted FECG
using this technique remains same, it can be ugédebphysician to diagnose.

It is believed that the proposed methods are Spaliyf powerful in the following
cases.

* To extract the FECG signal from the composite alidahsignals and to

improve the quality of fetal ECG extraction everridg the early stages of

pregnancy and labor.
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» Development of different methods for cancellatioh roaternal cardiac
interference using any electrode position from ipldt channels with
minimum influence on fetal ECG components as lognaternal R peaks are
detected from the noisy data.

» Decomposition of the abdominal signals to imprdwequality of extraction.

» Fetal cardiac signal detection using fetal cargieaks.

* More generally denoising and enhancement of theaisg

Extraction of FECG in overlapping case with MECG.

The decomposition techniques though simple, haseeis such as signal mixture,
degenerosity and noise which limits their perforoeof these methods. The methods
proposed in this work have the benefits of nondinéltering without losing any
significant data. The methods proposed are noplacement but rather complements for
the existing methods. Due to various measuremeunpsefetal conditions and gestation
ages, SNR etc it is neither reasonable nor possilpeesent a universal filtering solution.
What is feasible is to focus on specific applicasicuch as fetal R peak detection using
fixed electrode position and for specific ranges g&stational age. However, for
morphological studies a combination of decompasitind filtering methods may be
required.

The methods that were developed are based on rmh&@G cancellation and
detection of fetal ECG. Although this is an impattéactor that can improve the signal
quality it can be considered as a point of weakniss the R peaks of the fetus are not
well detected in filtering methodB1 multi stage adaptive filtering and wavelet - jgiilse
filtering techniques, the complete cancellationnwdternal ECG is not seen in certain
electrode positions. This is predominant when thatermal ECG is very large in

magnitude compared to fetal ECG. Some componenishvao not belong to fetal ECG
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also appear in the extracted signal. This may Istaken as fetal ECG component by the
detection algorithm. Despite these limitations igiht be argued that these techniques are
able to perform better. It should be noted, thatgeaeral filtering procedure has been

developed which can be applied to normal and ababatrdominal signal.

Table 7.2Summary of the existing methods and the proposedtads

Author Method Accuracy
Pieriet al. 2001 Matched filter 65%
Mooneyet al. 1995 Adaptive algorithm 85 %
Azad, 2000 Fuzzy Approach 89 %
Ibrahimyet al.2003 Statistical analysis 89%
Swarnalatha & Prasad. 2010 Multi stage Adaptikers 89%
Swarnalatha & Prasad.* Wavelet-Adaptive filtering 90%
Campset al. 2001 FIR Neural Networks 91 %
Karvouniset al. 2004 Complex wavelets 98 %
Khameneet al. 2000 Quadratic spline wavelet 100%
Swarnalatha & Prasad.* ANFIS & wavelet postproedssiethod  100%

* Journal in press.
Comparison of existing methods and the proposed ntebvd
The table 7.2 summarizes the results obtained bgrahethods in the literature

for fetal ECG extraction. The different proposedtimes are compared to other existing
methods in terms of accuracy. It should be notetl tiiere is lack of standard reference
data base available in the literature. This meaas different methods in the literature
cannot be directly compared since they were ewvaduaising different data sets. The
majority of the methods were either tested usinglsmumber of simulated signals or

with real recordings.



7.2 SPECIFIC CONTRIBUTIONS

Specific contributions of this study are:

(i) The proposed research work extracts the fe@GBby two lead signals which
are the abdominal signal and thoracic signal oftla¢her’s abdomen and thorax region.

(i) The fetal ECG extraction based on adaptivesa@ancellation is more suitable
due to computational simplicity and ease of impletagon. Hence, the proposed method
includes preprocessing, modification of thoracgnai and multi stage adaptive filtering
for extraction even if FECG over laps with MECG.

(i) The multi stage adaptive filtering is combaevith wavelet processing for
better fetal ECG extraction.

(iv)Soft computing techniques to extract the f&&lG signal are proposed. This
method cancels the MECG present in the abdomigabsusing hybrid neuro fuzzy logic

technique which combines the advantages of neetalark and fuzzy logic technique.

7.3 FUTURE SCOPE OF WORK
There are number of questions to be answeredsdrkihd of work. Some of the

questions concerning the extraction and analysistaf cardiac signals are suggested.

» Further study of the performance limits of the f&&G signal extraction in other
environments and for different sets of abdominghails is necessary. Especially
for the quasi periodic signal case (P,Q,R,S andmponent waves repeatedly
occur in the ECG signal), the extracted fetal E@faals are clinically acceptable.
This calls for further experiments of the fetal E€&raction approach on actual
abdominal ECG signal.

* There are several elements in the ECG signal semaralgorithm that can be

modified to improve performance of the fetal ECGrastion.
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* The disadvantage of the multi stage adaptive iiiiterand wavelet adaptive
filtering techniques is to change the shape ofekieacted fetal ECG in some
electrode positions depending on the duration @htiaternal ECG and fetal ECG.

» Better FECG extraction may be possible if thera iori knowledge about the
morphology of the maternal ECG signal and the fe2G.

» Development of FECG extraction technique with sngfhannel abdominal signal
using ANFIS methods.

» Clinical validation of the proposed methods shdwddconsidered in future works.
The proposed methods were presented as processilsgaind were validated on

discrete data bases each having different samfseiggencies. Due to lack of unique data
base recorded at different gestational ages anoh frarious subjects, the proposed
methods have a limited testing. Thus before takipgany of the proposed methods for

clinical studies it should be further tested wittique fetal data base.
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