
Chapter 1

General Introduction

“Although engineers want always to

make everything better, they cannot

make anything perfect. This basic

characteristic flaw of the products of

the profession’s practitioners is what

drives change and makes achievement

a process rather than simply a goal”.

Henry Petroski

1.1 Motivation

The development in science and technology has made today’s engineering systems,
including interrelated hardware and software units, more useful, sophisticated, pow-
erful, high-tech, and complex as well. Each system comprises of operating units, has
unique features and structures, and hence, system or unit failure at random and re-
pair are having a more substantial effect on the efficiency of the system directly and
economy and society indirectly. The malfunction due to degraded performance or
complete failure of the system or units may lead to decreased reliability and misman-
agement over the period, which governs the loss of time, money, or even sometimes
life also. Random failure of a unit in the machining system enhances the production
loss, manufacturing delay, high expected cost, long runtime. The foremost objective
of the thesis is to optimize and control the function of the system over time to meet
expectation and satisfaction at a minimum long-run expected cost.

The reliability of the machining system is qualitative property refers to the abil-
ity of proper and satisfactory intended functioning over the period. Reliability theory
deals with the laws of the occurrence of failures of the system or units at random.
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The increasing level of sophistication in the state-of-the-art associated processes, de-
sign, and function which implies that reliability issues will not only endure to exist
but are likely to require ever more complicated modeling and sophisticated solu-
tions for which there is need to access system performance measures effectively. For
an assessment, the systems require state-of-the-art mathematical modeling with pre-
cise analysis. Consequently, the study of the reliability characteristics is vital for all
stages from development to application, including design, manufacture, distribution,
or/and operation. Statistical and stochastic models are suitable to evaluate system
performance measures based on unit indices, optimal system design, incurred ex-
pected cost, etc. The in-depth review and analysis are required for the usefulness of
the models and prediction purposes. The study on the issues related to reliability pre-
diction addresses life testing, structural reliability, machine maintenance problems,
and replacement problems.

Because today, the technological system without reliability, availability, main-
tainability, and safety (RAMS) is unthinkable, and the subject for study is progress-
ing. Nowadays, thousands of millions are being disbursed on research to produce so-
phisticated techniques, quality-of-service (QoS), state-of-the-art design, just-in-time
(JIT) maintenance, etc. for the machining system.

In the present thesis, The primary focus is on developing various reliability mod-
els of the unpredictable machining system having multi-unit, which are also prone to
random failure along with discriminate failure processes, repair strategies, and gov-
erning policies. The main emphases have been made on modeling, the methodology
used, analysis for increasing their usefulness in real-time problems. For each stud-
ied model, we extensively discuss realistic model description, analytical or numerical
solution, reliability characteristics or performance indices, optimal governing param-
eters or threshold, and systematic interpretation or future scope. The exact optimal
solution of such a problem is complicated and in many cases, impossible to obtain.

The need for spare units arises if the consequences of a failure or disruption of
the operating unit are not acceptable. The types of machining system in which the
need arises seem to be limitless. The spare unit may be hardware or software in
nature, may be homogeneous or heterogeneous, may be in-house or third-party in
availability. Majorly, this includes power backup, additional storage, extra units,
alternative arrangements, etc. depending on the machining system or requirements.
There are four critical reasons for the provisioning of spare units: safety, security,
financial loss, and data loss.

Safety: The system, organization, process where there is a risk to life or
health, for example, air traffic control, aviation ground lighting, medical equip-
ment/emergency in hospitals, nuclear plants, oil explorations/refineries, etc.
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Security: Security of the system against vandalism and espionage such as in
attack area lighting, communication systems, military installations, etc.

Financial loss: The system where critical industrial processes and high costs
involved such as in manufacturing system, production system, financial insti-
tutions, etc.

Data loss: The system where data and its storage are essential, and data may be
catastrophic and irretrievable, for example, the data processing system, long-
term laboratory type of testing or experiment, etc.

The content of the thesis is state-of-the-art for future study on reliability models
by a research fellow, system designers, system analysts, and practicing engineer. It
includes various well-studied system structures which imitate many real-life prob-
lems of the different area. It also addresses reliability evaluation, optimal system de-
sign, comprehensive algorithm, mathematical tools, and cited references. The unique
features of this thesis on optimal system reliability modeling include

• complex analysis including in-depth literature survey and background knowl-
edge on efficiency comparison

• Markov chain imbeddable structures

• Powerful tools for the development of optimal invariant design

• Application in understanding the behavior and advantages of the system, pre-
dictive, preventive or corrective measures

1.2 Machining System

The machining system can be defined technically as a set of operating units, each
having a specified function, that works in a synchronized way to get the required
quantity of products of the required quality, in the required time, by the best and
more economical way. Machining system performs a sequence of operations that
transform material from a given to the desired form for which three distinct stages:
system planning, operation, and control comprise. The four factors mentioned above
namely quantity, quality, time and cost encompass the machining system and require
special attention and critical research.

The study of the machining system is of the little use unless it is used to obtain
quality products and services at minimum cost, i.e., the cost analysis and reliability
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analysis are over rider factor in all machining system, and the alternative is lim-
ited to by the constraints of physical feasibility. The performance modeling of the
machining system starts with the functional design, which must satisfy the need of
customers, and the design for production. The system analyst must also take into
account the cost incurred in the flow of jobs through the plant, cost of storage of
in-process inventories, cost of maintenance and redundancy, etc.

The judgment of availability/reliability level, a proper replacement policy, main-
tenance policy, procedure, and schedules are some of the managerial responsibilities
which should be taken into consideration for the appropriate functioning of the ma-
chining system. Since the problem of breakdowns and reserves can be seriously
reflected in halts in the machining system, state-of-the-art design of repair facility is
required for smooth production planning and control.

The industrial revolution in the UK after the second world war found the tech-
niques of Operations Research and Queueing Theory of great use in the solution of
many critical issues of machining problems. The application of these techniques
provides a scientific basis to deal with machines and their management, which in-
cludes the art and science of planning, directing, and controlling the operating units,
resources, and human efforts so that the established objective of machining system
may be attained in accordance with accepted policies. Machines and plants, which
breakdown, cause interference, reduce productivity, and increase manufacturing in
lousy conditions. Fault units provide the terrible work, some of which may have to
be scrapped and increase the incurred cost.

Just-in-time maintenance is concerned with the breakdown, which includes re-
pair and/or replacement of the systems and units to maintain the availability of the
machining system. Its function is to keep the operating units in satisfactory operat-
ing condition at minimum cost. Good maintenance also aims to prevent breakdowns
before they occur. The strategy of maintenance is classified into two groups:

• Preventive Maintenance: It is observed with preventing the trouble before it
occurs.

• Corrective Maintenance: It is concerned with corrective the trouble that has
occurred.

1.3 Basic Layout of Machining System

Queueing theory is an application of Probability Theory and Operations Research
dealing with the lack of balance of time between prospective customer’s generation
and service, both at irregular intervals. The rapid and spectacular developments and
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progress of the queueing modeling indicate its tremendous potentialities in promot-
ing and sustaining industrial as well as economic growth and stability. In this thesis,
the analysis have been done the machining units, their capabilities, and limitations,
as well as some of the integration issues via the queue-theoretic approach. There are
basic structures of waiting line problems involved in machining systems in general
which can be classified as follows

(i) Single channel, single phase

(ii) Multiple channels, single phase

(iii) Single channel, multiple phases

(iv) Multiple channels, multiple phases

Arrivals 
Queue 

Service 
facility 

Figure 1.1: Single-channel, single-phase
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Figure 1.2: Single-channel, multi-phase
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Figure 1.3: Multiple-channel, single-phase
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Figure 1.4: Multiple-channel, multiple-phase

Figs. (1.1)-(1.4) depict the basic layout and flow of failed units as a queueing prob-
lem. For example, to get N finished products, manufacturing must require four dif-
ferent operations A, B, C, D. In Fig. (1.5), each operating unit is dedicated to one
operation, and sequential operations are required in tandem arrangement of these
operating units. In the tandem system, if the operating units have heterogeneous
efficiency and characteristics, the system results in unit starve or block. A starved
operating unit is one that must remain idle because of the proceeding unit that can
not supply its output. Similarly, a blocked operating unit is forced to be idle because
it has no place to dispatch. Operating unit failure at random and unpredictable repair
time would also lead to a starve-block situation.

Raw Material

Finished Part

Figure 1.5: Tandom machining system
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To help smooth out this hinderance or variation, the facility of temporary storage
between operating units, referred to as a buffer, as shown in Fig. (1.6) is the necessary
arrangement. In general, the buffer allows operating units to continue working while
another unit undergoes schedule maintenance or repair.

Figure 1.6: Machining system with buffer

The state-of-the-art machining system has the provision of spare units and tools
that permit automatic changing and replacement, which makes them capable of per-
forming a similar operation. The provisioning of spare units also maintains the con-
tinuous functioning of the system even though the operating unit faces random fail-
ure/repair. It is worth-nothing that the provision of the spare units increases the avail-
ability and reliability of the system up to some extent and also increases the incurred
expected total cost.

Fig. (1.7) Illustrates the machining system wherein the failures and repairs are
decoupled in the sense that if a unit fails, it does not hinder the production of the
other. The need for a repair facility can not be avoided in handling and operating the
machining system. The repairman not only repairs the failed units but also helps in
replacing the spare units, routing the sequence, etc. The concept of the additional
repairman is new practice of well-defined system to maintain the backlog
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Figure 1.7: Machine system with spares

The main desirable characteristics of the machining system are flexibility, the
rapid response of customer requests, qualities, and varieties of products. Fig. (1.8)
shows the essential features of the manufacturing system.

Figure 1.8: A flexible manufacturing system

1.4 Machining System in Modernization

Modernization is a socio-economic progressive transition from traditional to ad-
vanced technological machining systems. With the advent of high-tech automation,
we are adapting the modernization paradigm for prompt and reliable services, quality
products, and social progress.

Industry 4.0

It is the subclass of the fourth industrial revolution that apprehensions industry prob-
lems and developments. The fourth industrial revolution comprehends areas that are
generally not classified as an industry, such as smart cities for case in point. Industry
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4.0 alludes to the notion of organizations/factories wherein operating units are aug-
mented with wireless connectivity and sensors, coupled to a system that can monitor
the entire production procedure and make peculiar decisions.

Internet of Things (IoT)

It is an arrangement of interrelated computing devices, mechanical and computerized
units, objects, or people that are characterized with unique identifiers (UIDs) and the
ability to transfer information over a network system without individual-to-individual
or individual-to-device physical interaction.

Robotics

Robotics deals with the state-of-the-art design, development, function, and use of
electro-mechanical devices having artificial intelligence, as well as computer systems
for their control, sensory feedback, and information processing. These technologies
are used to develop machines that can supernumerary for humans and replicate hu-
man actions.

Flexible manufacturing system

A flexible manufacturing system (FMS) is another worldview of a manufacturing
system wherein there is some amount of flexibility that permits the system to re-
spond in case of vagaries, which may be predicted or unpredicted. This flexibility
is categorized as routing and machine flexibility. The routing flexibility includes the
system’s efficiency to be changed to produce new product types, and the capacity to
vary the sequence of operations executed on an item. Whereas, machine flexibility
includes the ability to use multiple operating units to perform a similar process on a
product, and also the system’s capabilities to ingest with large-scale changes, such as
in volume, capacity, or capability.

Additive manufacturing

Additive Manufacturing alludes to a procedure by which digital 3D design data is
used to develop the item in layers by depositing material. It describes a specialized
production technique that is distinct from conventional methods of material removal
from a solid block. A variety of plastics, metals, and composite materials may be
used.
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Sustainable manufacturing

It is the conception of produced products through economically-sound processes that
minimize negative environmental impacts while conserving vitality and natural re-
sources.

Renewable and clean production

Renewable production generates items from sustainable sources with little or no pol-
lution or global warming emissions. The clean production industry includes numer-
ous economic activities and is expected to continue to rise rapidly in the future. There
are vast economic opportunities for the organizations and countries that invent, man-
ufacture, and export clean production technologies. Clean and renewable production
sources provide a cleaner, healthier environment. Clean production sources are a
better deal if developed thoughtfully.

Cloud manufacturing

Cloud manufacturing (CMfg) is a novel manufacturing paradigm industrialized from
current standing progressive manufacturing models, e.g., ASP, AM, NM, MGrid.
It also enterprises information technologies under the sustenance of cloud comput-
ing, Internet of Things (IoT), virtualization and service-oriented technologies, and
cutting-edge computing technologies. It renovates manufacturing resources and man-
ufacturing competencies into manufacturing services, which can be accomplished
and worked in an intelligent and integrated way to empower the full sharing and to
circulate of manufacturing resources and manufacturing competences. Cloud manu-
facturing delivers cheap, safe, reliable, high quality, and on-demand manufacturing
services for the whole lifecycle of production.

Cloud data management

Cloud data management is an approach to accomplish data crosswise over cloud plat-
forms, either with or instead of in-house storage. The cloud is valuable as a gathered
information level fiasco recuperation, reinforcement, and long-term archiving.

1.5 Machine Repair Problem

Machine repairing is a typical example of a finite source queueing model, where the
operating units are calling the population of prospective customers, an arrival cor-
responds to a unit breakdown, and the repair crews are the servers. We consider a
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machine repair problem (finite population) consists of identical operating units and
repair crews. The duration of repair timing is identically exponential random vari-
ate with mean 1/µ , and the time that an operating unit remains working follows
an exponential distribution with failure rate λ . Let Pn be the steady-state proba-
bility that there are n failed units in the system. The state transition diagram for
the continuous-time Markov chain (CTMC) involved in machine repair model is de-
picted in Fig. (1.9)

0 1 ... n ... R ... M

λ0 λ1 λn−1 λn
λR−1 λR λM−1

µ 2µ nµ (n+ 1)µ Rµ Rµ Rµ

Figure 1.9: State transition diagram of machining system

The state-dependent failure and repair rates are denoted by λn and µn respectively,
are given by

λn =

(M−n)λ , for 0≤ n < M

0, otherwise
(1.1)

and

µn =

nµ, for 1≤ n < R

Rµ, for R≤ n≤M
(1.2)

The steady-state probability Pn is obtained for this model by solving the Chapman-
Kolmogorov equations which governs the model using the transition failure and re-
pair rates in Eqn’s. (1.1) & (1.2). Therefore, the queue-size distribution can be
obtained by using product-type solution as follows

Pn =



(
M
n

)
ρ

nP0, for 1≤ n < R

(
M
n

)
n!

Rn−RR!
ρ

nP0, for R≤ n≤M

(1.3)

where, ρ = λ

µ
, and P0 can be determined using normalizing condition of probabilities

as follows

P0 =

(
1+

R

∑
n=1

(
M
n

)(
λ

µ

)n

+
M

∑
n=R+1

n!
Rn−RR!

(
λ

µ

)n
)−1

(1.4)

To make the system functioning smoothly, the repair of the failed units has to
be done efficiently and timely. Thus, machine repair is a significant feature of all
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the machining systems. Sometimes it so happens that there is overcrowding, and it
takes a long to the last one to get checked up. The delay in repair may lead to long
queues or waiting lines and blocking in the services. However, it is quite impossible
to predict correctly when and how failed units will arrive and how much time will
failed units take to get repaired. These decisions are often unpredictable in nature.
To overcome these problems, system designer has to increase the service facility, but
at the same time, this will also lead to an increase in the service cost. On the other
hand, providing less service facility would decrease the service cost but cause a long
waiting line. The degraded repair will cause an excessive waiting and result in high
downtime of failed units. In some sense excessive waiting is costly; it may be a
social cost, loss of customer, loss of production, etc. Therefore, the main objective is
to attain stability between the cost of service and the cost of waiting.

1.6 Redundant Machining System

Redundancy is the facility of more than one unit to perform a required function in the
system. The redundancy of units has many applications to increase system reliability
with some additional cost. Redundancy may classify as active or passive, depending
on functioning nature. The active redundant unit presents in parallel to the operating
unit and is always working, whereas passive redundant unit becomes the operating
unit when any unit in operation is not available due to random failure or some other
reasons. The passive redundancy is commonly known as a spare unit or standby unit.
The machining system having the facility of redundancy for the operating unit is
called a redundant machining system. Depending on failure characteristics, passive
redundancy is categorized into three types: hot, warm, and cold

• Hot Redundancy In the hot redundancy, the spare unit is subjected to failure
as the same as an operating unit in an inactive state.

• Warm Redundancy In the warm redundancy, the spare unit is subjected to
failure with some lesser rate as compared to the operating unit in the inactive
state.

• Cold Redundancy In the cold redundancy, the spare unit is not subjected to
failure until it is in an inactive state.

The provision of active and passive redundancy improves the efficiency of the ma-
chining systems at some additional cost. The classification of the redundancy is
depicted in Fig. (1.10).
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Figure 1.10: Classification of redundancy

For the redundant machining system having M operating units and S1 cold spare
units, the birth rate is

λn =


Mλ ; 0≤ n < S1

(M+S1−n)λ ; S1 ≤ n < M+S

0; elsewhere

(1.5)

Similarly, if there are S2 warm spare units in the system, and ν ;0 < ν < λ be failure
rate of spare unit in inactive state, the birth rate is figured as

λn =


Mλ +S2ν ; 0≤ n < S2

(M+S2−n)λ ; S2 ≤ n < M+S2

0; elsewhere

(1.6)

For S3 hot spare units with a failure rate as same as the failure of the operating unit,
the birth rate is characterized as

λn =

(M+S3)λ ; 0≤ n < M+S3

0; elsewhere
(1.7)
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The layout design for the machining system of M operating units along with
provisioning of the mix of S1 cold spare, S2 warm spare and S3 warm spare units
under the care of repair facility having R repairmen is shown in the Fig. (1.11).

S1

S2

S3

Repair facility

Queue

OperatingStandby

Figure 1.11: Machine repair problem with spares

Hence, the birth rate is designated as

λn =



(M+S3)λ +S2ν ; 0≤ n < S1

(M+S3)λ +(S1 +S2−n)ν ; S1 ≤ n < S1 +S2

(M+S1 +S2 +S3−n)λ ; S1 +S2 ≤ n < M+S1 +S2 +S3

0; elsewhere

(1.8)

For the provision of R repairmen in service facility, the death rate for modeling is
formulated as follows

µn =

n µ; 1≤ n < R

R µ; R≤ n≤M+S1 +S2 +S3

(1.9)

1.7 Basic Elements of Queueing System

A queueing system or waiting line model contains input streams of either single
prospective customer/failed unit or batch of customers which wait for getting the
required service if the server is busy; otherwise, receive intended service if the server
is idle. The service facility comprises one or more servers, which are arranged in
different specifications or designs and select the waiting customer for rendering the
necessary service following some pre-specified service discipline or policies. The
queueing system also includes the customer whose service is in progress.
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Figure 1.12: Queueing system

Fig. (1.12) depicts the flow of the customers in the queueing system. Different types
of queueing systems are mainly categorized by the following primary factors.

• Input characteristic

• Service mechanism

• Queue discipline and customer behavior

• Service channels

The brief description of basic elements are underlined as follows

Input characteristic: It specifies the probability law governing the arrival statistics
of the customers at the servers at time t1, t2, ..., tm where tk < tk+1 and k = 1,2, ..,m.
Let τm = tm+1− tm denotes the inter-arrival time between the (m+1)th and mth cus-
tomers. The input characteristic is specified by the probability distribution of the
sequence of arrival instants tm and the sequence of inter-arrival times τm. The nota-
tion N(t) indicates the number of customers in the system at an arbitrary time t.

Service mechanism: The sequence of service times sm specifies the service mecha-
nism where sn represents the time required to serve the nth customer. The successive
duration sm are statistically independent of one another and also of the sequence of
time inter-arrivals τm. Fig. (1.13) depicts the arrival and departure time of the cus-
tomer in the queue.
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Figure 1.13: Arrivals and departures of customers at the queue

Queue discipline and customer behavior: The rule by which the waiting customers
are selected for service is known as queue discipline. The usual discipline is first

come, first serve (FCFS). However, other forms of service discipline may be last in,

first out (LIFO), service in random order (SIRO), priority, processor sharing (PS),
etc. Some governing specifications of design for service facility and customer pat-
tern can also be figured like controlled/uncontrolled arrivals, impatience behavior of
the customers, threshold policies, etc. At the epoch of a busy service facility, the
arriving customer may choose to wait for service, or may immediately decide not to
join the queue, i.e., balking. If a customer joins the queue, becomes impatient after
waiting for some time seeing the long queue, and he decides to leave the queue, this
behavior of the customer is known as reneging. In jockeying, customer switches from
one queue to another queue in the hope of early service or due to some other reasons.

Service channels: The queueing system may have one or more than one service
channel to provide service at the same or different rates to the arriving customers, i.e.,
homogeneous or heterogeneous. Also, the system may have either a limited (finite)
or unlimited (infinite) capacity for holding waiting customers. Also, the population
size of the customers may be finite or infinite.

1.8 Some Important Process

In this section, we extant a brief description of some vital discrete-time and continuous-
time process which are valuable for studies in queueing theory in detail
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1.8.1 Stochastic Process

Let N(t) be a random variable signifying the state of a system at time t for t ≥ 0.
Stochastic process is defined as the collection of such random variable, i.e., {N(t), t ∈
T} where T indicate the domain of time t.

Discrete-time Stochastic Process

The stochastic process with T as a discrete set, i.e., T = {0,1,2, . . .}.

Continuous-time Stochastic Process

The stochastic process with T as a continuous set, i.e., T = {t|t ≥ 0}.

State Space

The collection of all possible values of N(t); t ∈ T is called state space of the stochas-
tic process.

1.8.2 Counting Process

A continuous-time stochastic process {N(t), t ≥ 0} is a counting process if N(t) sat-
isfies

(i) N(t) ≥ 0

(ii) N(t) is the integer valued

(iii) N(t) is a nondecreasing function of t, and

(iv) for s < t, N(t)−N(s) represents the number of events that occur in the interval
(s, t].

1.8.3 Markov Process

A stochastic process is termed as a Markov process if it satisfies Markovian property,
i.e., stochastic behavior of the process in which the future is only dependent on the
present state but independent of the past progress. Mathematically, it is expressed as

P{X(tn + s)≤ x | X(t1) = x1,X(t2) = x2, ...,X(tn) = xn}
= P{X(tn + s)≤ x | X(tn) = xn},s > 0; 0≤ t1 < t2 < ... < tn
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1.8.4 Markov Chain

If the state space S is discrete, i.e., finite or countable infinite set and whose index set
is T = (0,1,2, ...), the Markov process is called the Markov chain.

Continuous-Time Markov Chain

Consider a continuous-time stochastic process {N(t), t ≥ 0}with discrete states 0,1,2, ...
it is known as a continuous-time Markov Chain if the following condition is satisfied

P(N(t +h) = j | N(0) = i,N(x) = ix,0≤ x < t) = P(N(t +h) = j | N(t) = i)∀h≥ 0

Discrete-Time Markov Chain

A discrete-time stochastic process {N(t), t = 0,1,2, . . .} with discrete states 0,1, . . .
is called Markov chain if the equation

P(N(t +1) = j|N(0) = i0,N(1) = i1,N(2) = i2, ...,N(t) = i)

= P(N(t +1) = j|N(t) = i) = Pi j(t)

is satisfied for all possible states of i0, i1, i2, ...it−1, i, j and t ≥ 0. Pi j(t) is known as
the transition probability for the process from the state i at time t to state j at t +1.

1.8.5 Poisson Process

A counting process {N(t), t ≥ 0} is called Poission process with the parameter λ > 0
if the following conditions are satisfied

(i) N(0) = 0

(ii) {N(t), t ≥ 0} has stationary and independent increments

(iii) P(N(t +∆t)−N(t) = 1) = λ (t)∆t +o(∆t), and

(iv) P(N(t +∆t−N(t))> 1) = o(∆t)

In a Poisson process, the number of event in any interval of the length ∆t follows the
Poisson distribution with parameter λ∆t, i.e., for all t ≥ 0 and ∆t > 0

P{N(t +∆t)−N(t) = n}= P(N(∆t) = n) =
λ∆t
n!

e−λ∆t ; n = 0,1,2, ... (1.10)
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1.8.6 Renewal Process

Let {Xt} be independent identically distributed (i.i.d) non-negative random variables,
Xt ∼ F(t) an arbitrary distribution.Then, the counting process

N(t) = max{n | Sn = X1 +X2 +X3 + ...+Xn < t}

is called renewal process. The mean number of events m(t) on (0, t) is called the
renewal function

E[N(t)] = m(t)

Renewal process generalizes the Poisson process by allowing the inter-occerance
time between two successive events to be independent and identically distributed
(iid) random variable having an arbitrary distribution.

1.8.7 Birth and Death Process

A continuous-time Markov chain {N(t), t ≥ 0} with discrete states 0,1, ... and ho-
mogeneous transition rate matrix Vi j is called a birth and death process if vi j = 0 for
all i and j such that |i− j|> 1.

1.8.8 Chapman-Kolmogorov Equation

Using the Markov property of the process, the Chapman-Kolmogorov equation gives
multi-step transition probability from state i to state j over all possible k values and
is expressed by

Pi j(t + s) =
∞

∑
k=0

Pik(t)Pk j(s) (1.11)

This equation describes that in order to move from state i to state j in time t, X(t)

moves to state k in time t and then from k to j in the remaining time s.

1.8.9 Stationary State

In a stationary state, the system is independent of the initial conditions. Let Pn(t)

be the probability that there are n events at time t in the system, then for this state,
solution will be obtained by letting t → ∞, i.e., limt→∞Pn(t) = Pn. This state is also
referred to as time-independent, intransient, homogeneous in time, steady-state, or
limiting state also. It is useful for analyzing the stable or long-run machining system.
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1.8.10 Non-Stationary State

The non-stationary state is equivalently termed as transient state, time-dependent, or
non-limiting state. In this case, the operating characteristics of the queueing system
are dependent on time.This state occurs at the beginning of the operation of the sys-
tem. It is useful for analyzing the new-designing or developing state of the machining
system.

1.9 Some Standard Probability Distribution

Let E be a random experiment and S a sample space associated with the experiment.
A function X assigning to every element s ∈ S, a real number, X(s), is called a ran-

dom variable. There are two types of random variable discrete random variable &
continuous random variable which are characterized by probability density function
f (x) and cumulative distribution function F(x). In addition to unique moment gen-
erating function mX(t), every random variable X has mean E(X) and variance V (X).
The random variable characterizes the event of random failure, repair time, etc. in
the machining system. Some standard distributions are described as follows.

Degenerate Distribution

A discrete random variable X is degenerate variate with parameter c(c ∈ (−∞,∞)) if
its density is

f (x) =

1; x = c

0; x 6= c

For degenerate random variate, we have

E(X) = c and V(X) = 0

Geometric Distribution

A discrete random variable X is said to follow a geometric distribution with parame-
ter p(0 < p < 1) if its density is given by

f (x) =

(1− p)x−1 p; x = 1,2,3, ...

0; elsewhere

Then,
E(X) =

1
p

and V (X) =
q
p2 .q = 1− p
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Binomial Distribution

A discrete random variable X has a binomial distribution with parameters n, (n∈ I+)

and p(0 < p < 1) if its density is given by

f (x) =


(n

x

)
px(1− p)n−x; x = 0,1,2,3, ...,n

0; otherwise

Then, we have
E(X) = np and V (X) = npq, q = 1− p

Poisson Distribution

A discrete random variable X is said to have a Poisson distribution with parameter
k (k > 0) if density function f is given by

f (x) =

e−kkx

x! ; x = 0,1,2,3, ...

0; otherwise

For the Poisson variate,

E(X) = k and V (X) = k

Gamma Distribution

A continuous random variable X with density

f (x) =


λ k

Γ(k)
xk−1e−λx; x > 0

0; x < 0

is said to have gamma distribution with parameters λ (λ > 0) and k (k > 0). So, we
have

E(X) =
k
λ

and V(X) =
k

λ 2

Exponential Distribution

A continuous random variable X with density,

f (x) =

λe−λx; x > 0

0; x < 0
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is said to have exponential distribution with parameter λ (λ > 0). Then,

E(X) =
1
λ

and V(X) =
1

λ 2

Uniform Distribution

A continuous random variable X assuming all values in the interval [a,b],where both
a and b are finite, with density

f (x) =


1

b−a
; a < x < b

0; elsewhere

A uniform variate X over the interval [a,b] has

E(X) =
a+b

2
and V(X) =

(b−a)2

12

Erlang Distribution

A continuous random variable X with density

f (x) =
λ kxk−1e−λx

Γ(k)
; x > 0

where k (k = 1,2,3, ...) is the shape parameter and λ (λ > 0) is the rate parameter, is
said to have Erlang distribution. Hence,

E(X) =
k
λ

and V(X) =
k

λ 2

Hyperexponential Distribution

A continuous random variable X is said to follow k-stage hyperexponential distribu-
tion if its density is given by

f (x) =
k

∑
i=1

aiλie−λix; x≥ 0;0≤ ai ≤ 1, such that
k

∑
i=1

ai = 1

where k = 1,2,3, ... and λi > 0∀ i. So, mean and variance of X are given by

E(X) =
k

∑
i=1

ai

λi
and V (X) = 2

k

∑
i=1

ai

λ 2
i
−
(

k

∑
i=1

ai

λi

)2
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respectively. For this distribution, standard deviation exceeds the mean in general
except for degenerate case when all λi’s are equal.

Hypoexponential or Generalized Erlang Distribution

A continuous random variable X is said to have hypoexponential or generalized Er-
lang distribution it its probability density function with parameters λ1,λ2, ...,λk(λi >

0∀ i) is given by

f (x) =
k

∑
i=1

λie−λix

(
k

∏
j=1, j 6=i

λ j

λ j−λi

)
; x≥ 0

The coefficient of variation is less than 1, i.e., standard deviation is less than mean.
The mean and variance are respectively as follows

E(X) =
k

∑
i=1

1
λi

and V (X) =
k

∑
i=1

1
λ 2

i

Normal Distribution

A continuous random variable X with density

f (x) =
1√

2πσ
e−

(x−µ)2

2σ2 ; −∞ < x < ∞

is said to have normal distribution with parameters µ (−∞ < µ < ∞) and σ (σ > 0).
The mean and variance of X are respectively given by

E(X) = µ and V (X) = σ
2

If µ = 0 and σ2 = 1, X is known as standard normal variate.

1.10 Solution Techniques

The queueing models involved in the modeling of the machining system can be
solved by using several analytical and numerical techniques to obtain the stationary
or non-stationary queue-size distribution. The results are also useful for sensitivity
and optimal analysis of the machining system. In this section, we outline some tech-
niques that are used to solve the queueing models investigated in the present thesis.

Let {X(t), t ≥ 0} be a finite state continuous-time Markov chain with state space
t. Let Q = (rmn) be a generator matrix where rmn,m 6= n represents the transition rate



26 Chapter 1. General Introduction

to state n from state m and diagonal element rmn =−rmn =−∑m=n rmn. Now assume
that k be the number of non-zero entries in Q and the unconditional probability of the
continuous-time Markov chain at time t in state m is Pm(t). Then, transition state is
represented by the row vector P(t). Now Chapman-Kolmogorov difference equation
governing the behavior of continuous-time Markov chain is

d P(t)
dt

= Q(t)P(t); P(0) = P0 (1.12)

where P0 denote the initial probability vector of the continuous-time Markov chain,
P(t) is transient-state probability vector.

The solution of Eqn. (1.12) provides non-stationary queue-size distribution of
the queue. For the stationary solution, the Eqn. (1.12) is deduced to system of linear
equation on limiting t→ ∞ as

QP = 0 (1.13)

The stationary solution also satisfies the normalizing condition of the probability

eT P = 1 (1.14)

1.10.1 Transient Solution Method

Analytically, Eqn. (1.12) gives

P(t) = P(0)e
∫

Q(t)dt = P(0)ePt (1.15)

where ePt , exponential matrix is defined by Taylor series

ePt =
∞

∑
i=0

(Pt)i

i!
(1.16)

This method is significantly advantageous overimplicit ODE method.

1.10.2 Runge-Kutta Method

The governing system of differential equations for machining system with initial
condition Eqn. (1.12) can be re-written as

d P(t)
dt

= f (t,P); P(t0) = P0 (1.17)
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When the function f and the data t0, P0 are known, according to Runge-Kutta proce-
dure, we have

Pn+1 = Pn +
1
6
(k1 +2k2 +2k3 +k4) ,

tn+1 = tn +h

for n = 0, 1, 2, 3, ..., using

k1 = h f (tn,Pn),

k2 = h f
(

tn +
h
2
,Pn +

k1

2

)
,

k3 = h f
(

tn +
h
2
,Pn +

k2

2

)
,

k4 = h f (tn +h,Pn +k3) .

Here Pn+1 is the fourth order approximation of P(tn+1), and the next value (Pn+1) is
determined from the current value (Pn) plus the weighted-average of four increments,
where each increment is the product of the size of the interval, h, and a projected
slope quantified by function f on the right-hand side of the differential equation.

1.10.3 Supplementary Variable Technique

Non-Markovian queues can be solved by practicing of the embedded Markov chain
or by employing the supplementary variable method. The supplementary variable
technique facilitates transforming a continuous-time non-Markovian process to the
Markovian process by adding additional variable(s) in state-space called the supple-
mentary variable. The supplementary variable is continuous and makes the result-
ing process a continuous state space and continuous-time Markov process. Resultant
Markovian based modeling is computationally easy to solve. For the queueing model
with either general interarrival time (GI) or general service time (G) wherein a pair
of variable, N(t) defining the state of the system at time t and X(t) representing the
expanded time of the customers, are used. The expanded time may be elapsed or re-
maining time. Therefore, non-Markovian process {N(t)} changed to the Markovian
process {N(t),X(t)}, which can be solved on employing the Lagrangian method.

1.10.4 Matrix Inversion Method

The primary method for solving the general system of a linear equation Eqn. (1.13)
is called the matrix inversion method. Matrix inversion method mainly consists of
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two parts: Forward elimination and Backward elimination
Forward Elimination: Step-by-step reduction of the system size yielding either a
degenerate equation with no solution (which indicates the system has no solution)
or an equivalent more straightforward system of equations in triangular or echelon
form.
Backward Elimination: Step-by-step back-substitution to calculate the solution of
the simpler system.

1.10.5 Matrix Analytic Method

The matrix analytic method is a procedure to determine the stationary probability
distribution of a Markov chain which has a reiterating structure after some point and
a unbounded state space in no more than one dimension. Such models are often
designated as M/G/1 type Markov chains because they can figure transitions in an
M/G/1 queueing model. The method is a more intricate form of the matrix geomet-
ric method and is the classical solution technique for M/G/1 chains.

A stochastic matrix of an M/G/1 type is one of the form

Q =



B0 B1 B2 B3 · · ·
A0 A1 A2 A3 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

... . . .


where Bi and Ai are k×k matrices, if Q is irreducible and positive recurrent then the
stationary queue-size distribution is specified by the solution to the equations

QP = P and eT P = 1 (1.18)

where e epitomizes a vector of suitable dimension with all values equal to 1. Match-
ing the dimensional structure of Q, P is partitioned to P1, P2, P3, ...To calculate these
probabilities, the column stochastic matrix G is computed such that

G =
∞

∑
i=0

GiAi
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G is called the auxiliary matrix. Matrices are defined

Āi+1 =
∞

∑
j=i+1

G j−i−1A j (1.19)

B̄i =
∞

∑
j=i

G j−iB j (1.20)

then P0 is found by solving

B̄0P0 = P0eT + eT

(
I−

∞

∑
i=1

Āi

)−1
∞

∑
i=1

B̄i

P0 = 1

and hence,

Pi = (I− Ā1)
−1

[
B̄i+1P0 +

i−1

∑
j=1

Āi+1− jP j

]
, i≥ 1

1.10.6 Successive Over Relaxation

In numerical linear algebra, the technique of successive over relaxation (SOR) is a
modified scheme of the Gauss-Seidel procedure for determining the solution of a
linear system of equations, ensuing in faster convergence. A analogous method can
be used for any slowly converging iterative procedure.

Assumed a system of n linear equations with n unknown P derived from Eqn.’s
(1.13) and (1.13) omitting the redundant equation such that

QP = b (1.21)

where Q is coefficient matrix, P is column vector of unknowns, and b is column
vector of right hand sides of the system of equation.

Q =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann

 , P =


P1

P2
...

Pn

 , b =


b1

b2
...

bn


Then, Q can be disintegrated into a diagonal matrix D, and strictly lower and upper
triangular matrices L and U such that

Q = D+L+U
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The system of linear equations QP = b can be restructured as

(D+ωL)P = ωb− [ωU+(ω−1)D]P

for a constant ω > 1, referred as the relaxation factor. The scheme of successive over
relaxation is an iterative procedure that solves the left hand side of this expression
for P, using previous value for P on the right hand side. Analytically, this can be
transcribed as

P(k+1) = (D+ωL)−1(
ωb− [ωU+(ω−1)D]P(k))= LwP(k)+ c

where P(k) is the kth approximation or iteration of P and P(k+1) is the next or k+ 1
iteration of P. However, by captivating advantage of the triangular form of (D+ωL),
the elements of P(k+1) can be computed sequentially using forward substitution

P(k+1)
i = (1−ω)P(k)

i +
ω

aii

(
bi−∑

j<i
ai jP

(k+1)
j −∑

j>i
ai jP

(k)
j

)
, i = 1,2, . . . ,n

1.10.7 Eigenvalue and Eigenvector

Let Q be any square matrix. A scalar λ is referred as an eigenvalue of Q if there
exists a non-zero (column) vector P such that

QP = λP (1.22)

Any vector satisfying the Eqn.(1.22) is called an eigenvector of Q corresponding to
the eigenvalue λ .

1.10.8 Laplace Transform

Assume f (t) be a real-valued function of real variable t, defined for t > 0. Let s be a
variable that assume to be real, and consider the function F̄(s) defined by

F̄(s) =
∫

∞

0
e−st f (t)dt (1.23)

for all values of s for which this integral exists.The function F̄(s) = L{ f (t)} by the
integral is called the Laplace transform of the function f (t). With the help of Laplace
transform, the system of differential equations with initial conditions is transform
into system of linear equations which is computationally easy to solve.
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1.11 Performance Characteristics of the Machining Sys-
tem

Performance characteristics are the epitome of the modeling for the analysis of the
system understudies. It may be classified as queueing characteristics and reliabil-
ity characteristics since both are worthy in the framework of analysis of the real-
time systems. Performance characteristics are derived in terms of parameters, rates,
thresholds, state of the machining system, etc.

Consider the machining system comprises of M operating units and S spare units
having state-dependent breakdown rates and repair rates λn and µn, respectively. The
state transition diagram of the machine repair problem is depicted in Fig. (1.14).

0 1 ... S-1 S S+1 ... M+S-1 M+S

λ0 λ1 λS−2 λS−1 λS λS+1 λM+S−2 λM+S−1

µ1 µ2 µS−1 µS µS+1 µS+2 µM+S−1 µM+S

Figure 1.14: State transition diagram for MRP with standby

1.11.1 Queueing Characteristics

The state of the machining system, in general, characterized in terms of the expected
number of failed or working units in the system, which define various queueing char-
acteristics as follows

Expected number of failed units

Let N(t) be a number of failed unit in the system at time t. The expected number of
the failed unit in the system at time t is defined as

EN(t) =
M+S

∑
n=0

nPn(t) (1.24)

Throughput of the system

The throughput of the system demarcated as the mean number of repaired units at
time t and is expected as

τ(t) =
M+S

∑
n=1

µn Pn(t) (1.25)
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Expected number of operating units

Expected number of the operating units in the system at time t is expressed as

EO(t) =
M

∑
n=0

(M−n)Pn(t) (1.26)

Expected number of spare units

Expected number of spare unit in the system at time t is defined as

ES(t) =
S

∑
n=0

(S−n)Pn(t) (1.27)

Machine availability

Machine availability at time t is defined as the proportion of the expected number of
working units in the system at time t out of the total number of units available in the
system initially

MA(T ) = 1− EN(t)
M+S

(1.28)

Expected delay time

The expected delay time is defined as the ratio of the expected number of failed units
in the system and the throughput of the system at time t.

ED(t) =
EN(t)
τ(t)

(1.29)

Effective failure rate

Effective failure rate of the unit is defined as

λe f f =
M+S−1

∑
n=0

λnPn(t) (1.30)

Expected waiting time

Expected waiting time of the failed unit for being repaired is defined as

EW (t) =
EN(t)
λe f f

(1.31)
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Probability that server is Idle

It is defined as the probability that there is no failed unit in the system at time t and
is expressed as

PI(t) = P(N(t) = 0) = P0(t) (1.32)

Probability that server is busy

It is defined as probability that there is at least one failed unit in the system at time t

and is expressed as
PB(t) = 1−PI(t) (1.33)

1.11.2 Reliability Characteristics

Reliability characteristics encompass not only units and systems but also the tech-
nical, operational, management activities involved in the machining system. For
defining various reliability characteristics, we consider the machining system com-
prises with M operating units and S spare units with state-dependent rates λn and
µn respectively for breakdown and repair. The state transition diagram for the ma-
chine interference problem is depicted in Fig. (1.15) wherein system gets failed if all
available operating units and spare units fail.

0 1 ... S-1 S S+1 ... M+S-1 M+S

λ0 λ1 λS−2 λS−1 λS λS+1 λM+S−2

λM+S−1

µ1 µ2 µS−1 µS µS+1 µS+2 µM+S−1

Figure 1.15: State transition diagram for system failure

Reliability

Let T be the time-to-failure of the system T is the continuous random variable char-
acterized by probability density function f (t) and cumulative distribution function
F(t). Reliability of a system or unit at time t is defined to be the probability that sys-
tem or unit will perform an intended function without failure over the interval (0, t),
a specific period, under certain stated operating conditions. It is the probability of a
nonfailure over time. Mathematically,

R(t) = Pr{T ≥ t}=
∫

∞

t
f (u)du = 1−F(t) (1.34)

where R(t) ≥ 0, R(0) = 1, and lim
t→∞

R(t) = 0. F(t) is also known as unreliability.

Reliability R(t) is non-increasing function of t satisfies dR(t)
dt =− f (t)
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Failure frequency

It measures the number of times the system fail in unit interval of time. It is defined
as

FF(t) = λM+S−1PM+S−1(t) (1.35)

Mean time-to-failure (MT T F)

Mean time-to-failure (MT T F) describes the expected time-to-failure for a non-repairable
system. MT T F can be mathematically calculated as

MT T F =
∫

∞

0
u f (u)du =

∫
∞

0
R(s)ds (1.36)

System availability

The availability of the system is defined as the probability that a unit or system is
carrying out its required function at a given point of time when used under stated
operating conditions. Mathematically, it is expressed as

Av = 1−PM+S(t) (1.37)

1.12 Different Arrangements in the Machining Sys-
tem

For the seek of high reliability, less expected total cost, better performance of the
machining system, different arrangements of units, alternative policies are required
to study in detail. For that purpose, we summarize some common arrangements in
brief.

1.12.1 Redundancy

Redundancy is a facility of the existence of more than the required units for perform-
ing the intended function.

Passive redundancy

The redundancy wherein the alternative units of performing the function are inop-
erative until required and are switched on to working upon failure of the operating
unit.
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Active redundancy

The redundancy wherein all redundant units are functioning simultaneously rather
than being switched on when required.

Mixed spare redundancy

The redundancy wherein the alternative unit of performing the function are of differ-
ent types in failure characteristics, i.e., the mix of hot, warm, and cold spare units.

1.12.2 K−out-of−M:G system

The system which is functioning if at least K of its M units are operative. According
to this arrangement, the maximum of M−K units is allowed to fail before the system
fails.

1

2

K

M

Figure 1.16: K−out of−M:G system

1.12.3 K−out-of−M:F System

The system which is not functioning when at least K of its M units are inoperative. In
this arrangement, the maximum of K units is allowed to fail before the system fails.

1.12.4 (m,M) Machining System

Suppose a system comprises M identical and independent units of performing the
function in normal conditions. For the successful operation of the system in short
mode, at least m units should be operative, such system knows as (m,M) machining
system. This arrangement allows the maximum L = M−m+1 units failure.
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1.12.5 N-Policy

N policy is the repair-controlled policy in which the repairman initiates the repair
process when there is an accumulation of N failed units in the system and continues
until the system is empty. It refers to one of the different vacation policy also.

1
0

1
1

...
1

N-1
1
N

1
N+1

...
1

M-1
1
M

0
0

0
1

0
N-1

λ0 λ1 λN−2 λN−1 λN λN+1 λM−2 λM−1

µ µ µ µ µ µ µ µ

ε

λ0 λ1 λN−2

λ
N
−
1

Figure 1.17: State transition diagram of MRP with N-policy

1.12.6 T -Policy

In T policy, repairman takes a vacation of t time unit after completion of each busy
period.

1.12.7 D-Policy

D policy is also a repair-controlled policy in which repairman activates for repair
when the accumulative services time of failed units in the system exceed threshold
D.

1.12.8 F-Policy

F policy is a controlled joining policy in which the caretaker of the failed unit is not
permissible to join the system if the system’s state achieves the capacity of the system
K and continues forbidden until there is only F failed units remain in the system.

1
0

1
1

...
1
F-1

1
F

1
F+1

...
1

K-2
1

K-1

0
0

0
1

0
F-1

0
F

0
F+1

0
K-2

0
K-1

0
K

λ0 λ1 λF−2 λF−1 λF λF+1 λK−3 λK−2

µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ

λ K
−1γγγγγ

Figure 1.18: State transition diagram of MRP with F-policy
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1.12.9 Series System

It is an arrangement of the multi-units such that the system is said to be working if
and only if all the units in the system are operative. The layout of the series system
is depicted in Fig. (1.19)

C1 C1 · · · Cn

Figure 1.19: Multi-units series system

Let Xi be time-to-failure of ith unit with reliability Ri(t) and Ys be the time-to-
failure of the system having n units. Hence, Ys is defined as

Ys = min{X1,X2, ...,Xn}

and therefore, the reliability of the series system is given as

Rs(t) = R1(t)R2(t)...Rn(t)

1.12.10 Parallel System

It is a configuration of the multi-units such that the system is said to be working iff at
least one unit in the system is operative. The layout of the parallel system is pictured
in Fig. (1.20).

C1

C2

Cn

...

Figure 1.20: Multi-units parallel system

Hence, the time-to-failure Ys of the system which has n units with time-to-failure
Xi and reliability Ri(t) is characterized as

Ys = max{X1,X2, ...,Xn}
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and hence, the reliability of the parallel system is given as

Rs(t) = 1− (1−R1(t))(1−R2(t)) ...(1−Rn(t))

1.13 Fuzzy Number and Fuzzy Arithmetic

Let U be the universe of discourse, U = {u1,u2, . . . ,un}. A fuzzy set Ã on U is a set
of ordered pairs
{(u1,ηÃ(u1)),(u2,ηÃ(u2)), . . . ,(un,ηÃ(un))}

where ηÃ : U→ [0,1] is the membership function of Ã and ηÃ(ui) indicates the grade
of membership of ui in Ã.

Definition 1.13.1. A fuzzy set Ã on the universe of discourse U is convex if and only

if ∀ui,u j ∈U, ηÃ(β ui +(1−β )u j)≥min(ηÃ(ui),ηÃ(u j)), where β ∈ [0,1].

Definition 1.13.2. A fuzzy set Ã on the universe of discourse U is classified as a

normal fuzzy set if ∃ui ∈U, ηÃ(ui) = 1.

Definition 1.13.3. A fuzzy number is a fuzzy set on the universe of discourse U when

it is both convex and normal.

Definition 1.13.4. The α-cut Ãα of the fuzzy set Ã on the universe of discourse U is

defined as Ãα = {ui |ηÃ(ui) ≥ α,ui ∈U}, where α ∈ [0,1]. It is crisp set in nature.

If α2 ≥ α1, then a
(α2)

1 ≥ a
(α1)

1 and a
(α1)

2 ≥ a
(α2)

2 i.e.
[
a
(α1)

1 ,a
(α1)

2

]
⊇
[
a
(α2)

1 ,a
(α2)

2

]
or Ãα1

⊇ Ãα2
. By decomposition theorem, fuzzy number is union of all α-cuts, i.e.,

Ã =
⋃
α

Ãα ;α ∈ [0,1] .

Let Ã and B̃ be two fuzzy numbers on the universe of discourse U with the mem-
bership functions ηÃ and ηB̃ respectively, where ηÃ : U → [0,1] and ηB̃ : U → [0,1]
and let x and y be two real numbers in U . Using Zadeh’s extension principle, the
fuzzy number arithmetic operation � (fuzzy number addition ⊕, fuzzy number sub-
traction 	, fuzzy number multiplication ⊗, fuzzy number division �) is defined as
follows

ηÃ�B̃(z) =
∨

z=x.y
(ηÃ(x)∧ηB̃(y)) (1.38)

where ‘.’ is addition(+), subtraction(-), multiplication(×), or division(/) for real
numbers if fuzzy arithmetic operation � is either fuzzy number addition ⊕, fuzzy
number subtraction 	, fuzzy number multiplication ⊗, or fuzzy number division �
respectively.
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A fuzzy number Ã on the universe of discourse U may be characterized by a
trapezoidal distribution function parametrized by a quadruplet (a,b,c,d). The mem-
bership grade function of the fuzzy number Ã is defined as

ηÃ(u) =



0; u < a
u−a
b−a ; a≤ u≤ b

1, b≤ u≤ c
d−u
d−c ; c≤ u≤ d

0; u > d

(1.39)

Let Ã and B̃ be two trapezoidal fuzzy numbers parametrized by the quadruplet
(a1,b1,c1,d1) and (a2,b2,c2,d2) respectively, where a1 ≤ a2, b1 ≤ b2, c1 ≤ c2 and
d1 ≤ d2. The α-cut of corresponding trapezoidal fuzzy numbers respectively are
given by

Ãα = [(b1−a1)α +a1,−(d1− c1)α +d1]

B̃α = [(b2−a2)α +a2,−(d2− c2)α +d2]; α ∈ [0,1]
(1.40)

The resultant α-cut is crisp interval. Using α-cut approach, the fuzzy arithmetic
operations of the trapezoidal fuzzy numbers Ã and B̃ can be expressed as interval
arithmetic on α-cuts. Let I1 = [l1,u1], I2 = [l2,u2] are two crisp intervals. The basic
interval arithmetic operations are defined as follows

I1⊕ I2 = [l1,u1]⊕ [l2,u2] = [l1 + l2,u1 +u2]

I1	 I2 = [l1,u1]	 [l2,u2] = [l1−u2,u1− l2]

I1⊗ I2 = [l1,u1]⊗ [l2,u2] = [{l1l2∧ l1u2∧u1l2∧u1u2}, {l1l2∨ l1u2∨u1l2∨u1u2}]

I1� I2 = [l1,u1]� [l2,u2] =

[{
l1
l2
∧ l1

u2
∧ u1

l2
∧ u1

u2

}
,

{
l1
l2
∨ l1

u2
∨ u1

l2
∨ u1

u2

}]
(1.41)

For example, let Ã and B̃ be two trapezoidal fuzzy numbers, where Ã = (1,2,4,6)
and B̃ = (2,5,6,8). The α-cuts are Ãα = [α + 1,6− 2α], B̃α = [3α + 2,8− 2α].
Then, based on above defined interval arithmetic Eqn(1.41), we have

Ãα ⊕ B̃α = [α +1,6−2α]⊕ [3α +2,8−2α] = [4α +3,14−4α]
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Ãα 	 B̃α = [α +1,6−2α]	 [3α +2,8−2α] = [3α−7,4−5α]

Ãα ⊗ B̃α = [α +1,6−2α]⊗ [3α +2,8−2α]

= [min{(α +2)(3α +2),(6−2α)(8−2α),(α +1)(8−2α),(6−2α)(3α +2)} ,
max{(α +2)(3α +2),(6−2α)(8−2α),(α +1)(8−2α),(6−2α)(3α +2)}]

= [3α
2 +5α +2,4α

2−28α +48]

and

Ãα � B̃α = [α +1,6−2α]� [3α +2,8−2α]

=

[
min

{
α +1
3α +2

,
α +1

8−2α
,
6−2α

3α +2
,
6−2α

8−2α

}
,

max
{

α +1
3α +2

,
α +1

8−2α
,
6−2α

3α +2
,
6−2α

8−2α

}]
=

[
α +1

8−2α
,
6−2α

3α +2

]
Hence, we have the membership of Ã⊕ B̃

Ã⊕ B̃ =
⋃
α

(
Ã⊕ B̃

)
α
=
⋃
α

(
Ãα ⊕ B̃α

)
=



0; u < 3
u−3

4 ; 3≤ u≤ 7

1; 7≤ u≤ 10
14−u

4 ; 10≤ u≤ 14

0; u > 14

= (3,7,10,14)

Similarly, the membership function for Ã	 B̃, Ã⊗ B̃, Ã� B̃ respectively are as fol-
lows

Ã	 B̃ =
⋃
α

(
Ã	 B̃

)
α
=
⋃
α

(
Ãα 	 B̃α

)
=



0; u <−7
u+7

3 ; −7≤ u≤−4

1, −4≤ u≤−1
4−u

5 ; −1≤ u≤ 4

0; u > 4

= (−7,−4,−1,4)
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Ã⊗ B̃ =
⋃
α

(
Ã⊗ B̃

)
α
=
⋃
α

(
Ãα ⊗ B̃α

)
=



0; u < 2
√

12u+1−5
6 ; 2≤ u≤ 10

1; 10≤ u≤ 24
7−
√

u+1
2 , 24≤ u≤ 48

0; u > 48

and

Ã� B̃ =
⋃
α

(
Ã� B̃

)
α
=
⋃
α

(
Ãα � B̃α

)
=



0; u < 1
8

8u−1
2u+1 ; 1

8 ≤ u≤ 1
3

1; 1
3 ≤ u≤ 4

5
6−2u
3u+2 ; 4

5 ≤ u≤ 3

0; u > 3

The membership function corresponding to the result for fuzzy arithmetic operation
for fuzzy number is depicted in the Fig. (1.21).
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Figure 1.21: Fuzzy arithmetic

In general, fuzzy number addition ⊕ and fuzzy number subtraction 	 of two
trapezoidal fuzzy numbers are the trapezoidal fuzzy number. It is not true generally
for fuzzy multiplication ⊗ and fuzzy division �. The resultants are fuzzy sets.

1.14 Review of literature

The machining systems have permeated all areas of our lives in diverse activities.
The machining systems are becoming ever more complex as technological advances
permit ever-faster performance. As time progresses, an operating unit becomes prone
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to failure. The failure of units may result in loss of production, money, goodwill, etc..
Provisioning of spare units and corrective maintenance provided by the repair facility
resume the perfect operation of the machining system again. In the modern context,
failure and repair are coupled events in a typical machining system.

1.14.1 Literature on Queueing theory of Historical Importance

Queueing theory gets its inception fame with the sequence of paper on telecommuni-
cation by Danish Engineer, A. K. Erlang. His Impressive contribution to tele-traffic
has stimulated and continue to stimulate an enormous volume of work on queueing
models. Technical analysis of the queueing system grew considerably with the ad-
vent of Operation Research in the late 1940s and early 1950s. During the past, the
literature on the subject has grown tremendously. Applications have extended into
several areas. Interesting and fruitful interactions between theoretical structures and
practical applications have led to the rapid development of the subject.

Several researchers have contributed a great deal towards its theoretical devel-
opment, while professionals have made equally significant contributions. Besides
Erlang, two other most notable pioneers and contributions are Pollaczek in the thir-
ties through the sixties and Takacs for last six decades. The first textbook on the
subject, Queue, Inventories, and Maintenance was written in 1959 by Morse [14].
Saaty [148] wrote his famous book Elements of Queueing Theory with Apllications

in 1961, Kleinrock [103] completed his book Queueing System in 1976. The new
significance of queueing theory was also done by Borel, Kendall, Khintchine, and
Kolmogorov. Extensive work has been done on the queueing systems in different
frameworks for many years. The literature on queues has been quite vast. Here, we
restrict ourselves to the development of queueing models, which are closely related
to our investigations on prediction of performance of machining system.

Worthy and notable works have been done by several researchers on the perfor-
mance modeling of machine repair problems (MRP). Now, we focus on a brief survey
of the past literature in the areas. Plam [137] considered the single server machine
interference problem with Poisson input and exponential service time distribution.
Phipps [140], Naor [132], Morse [130], Jaiswal [86], Ferdinand [42], Osaki [135],
Maritas [128] studied machine repair problems and suggested various measures of
interest from theoretical as well as application viewpoints.

1.14.2 Literature on Machine Repair Problem with Spare

The spare provisioning is an important aspect of have reliable machining systems.
Taylor and Jackson [166] conceptualized first time the MRP with cold spare units
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provisioning. It is noticed that in the past, many researchers have worked on MRP
with the cold spare (cf. Schouten et al. [168]; Wang [174]). There are some notable
works on MRP with warm spares also (cf. Albright [4]; Sivazlian and Wang [162],
Wang [170], Wang and Sivazlian [172]) present in literature. Some other practition-
ers incorporated the mixed type of spares in MRPs (cf. Sztrik [164], Wang [175],
Wang [173], Wang and Kuo [180], Rao and Gupta [147], Jain and Baghel [69]). The
pioneer works for modeling of spare units in machining system can be found in the
contribution of the following researchers in Table (1.1).

Table 1.1: Contributions on MRP with spares

Authors Year Key Feature Methodology
Madhu Jain [72] 2013 Machine repair system,

Markovian model, Priority
queue, Transient, Mixed
standbys, Queue size,
Availability

Runge-Kutta method,
Neuro-fuzzy

Madhu Jain, Chan-
dra Shekhar and
Shalini Shukla [85]

2013 Markovian queue, Ma-
chine repair, Warm spares,
Switching failure, Com-
mon cause failure, Partial
breakdown

Matrix method

Chongquan Zhong
and Haibo Jin [207]

2014 Cold standby, Semi-
Markov process, Preven-
tive maintenance

Laplace transform

Wei Huang, James
Loman,Thomas
Song [66]

2015 Reliability modeling,
Warm standby, Active
turned into standby, Ex-
ponential distribution,
Product expansion,Monte
Carlo simulation

Analytical solutions

Baoliang Liu,
Lirong Cui, Yanqing
Wen and Jingyuan
Shen[125]

2015 Reliability, Phase-types
distribution, Cold spare,
Multiple Vacations,
Vacation interruption

Matrix method

Jau Chuan Ke, Tzu
Hsin Liu, Dong Yuh
Yang [98]

2016 Optimization, Probabilis-
tic global search, Lau-
sanne method, Sensitivity
analysis

Supplementary variable
technique
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Ching Chang Kuo
and Jau Chuan Ke
[111]

2016 Switching failure,
Standby, Unreliable
server, General repair,
Availability

Supplementary variable
technique

M. Sadeghi and E.
Roghanian [149]

2017 Markov process, Switch-
ing mechanisms, Reliabil-
ity, MTTF, Steady-state,
Availability

Matrix method

Chen Wu Lin [28] 2018 Machine repair problem,
Recovery policy, Warm
Spare, Reliability, Retrial
queue, Sensitivity analysis

Cramer’s rule method

Kamlesh Kumar,
Madhu Jain, and
Chandra Shekhar
[108]

2019 Machine repair, Thresh-
old F-policy, Warm stand-
bys, Two heterogeneous
servers, Queue size

Cramer’s rule method

1.14.3 Contributions in Machine Repair Problem with Switching
Failure and Common Cause Failure

Switching failure

The spare unit is used for keeping the uninterrupted functioning of the redundant
machining system. The spare unit automatically becomes operative as soon as there
is a failure of the operating unit. The automatic switching is possible only when the
spare unit switches successfully and efficiently. If the spare unit fails in the switch-
ing process, the system is not able to replace the failed units. Before the provisioning
of spare units in any machining system, it is necessary to ensure that the spare unit
switches over to the primary system promptly in place of failed units for uninter-
rupted functioning of the system. But, due to some reasons such as poor automation
and mishandling, sometimes, it has been observed that switching fails with a prob-
ability q, known as a switching failure of spare unit. This process continues for all
available standbys until a successful switching or exhaust of all available standby in
the pool occurs.
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Figure 1.22: State transition diagram of MRP with switching failure
(Ωn = Mλ q̄qn,Ψn = MλqS−n,Λn = Mλ q̄+(S−n)ν)

Common cause failure

In some cases, the system fails due to the simultaneous failure of one or more units
due to common factors. These types of failures which are caused by some common
causes are called common cause failures and result in substantial economic losses.
Common cause failures may arise due to general power supply failure, environmental
conditions (e.g., earthquake, flood, etc.), general maintenance problems, etc. Such
failures are rarely confrontation in the machining system, including manufacturing
systems, transport systems, communication networks, etc., but lead to huge losses.
State transition diagram for model of machine repair in which each unit can fail
individually with failure rate λ as well as system can fail with common cause failure
rate λc(λc� λ ).

0 1 ... n M-1 M

λ0 λ1 λn−1 λn λM−2 λM−1 + λc

µ µ µ µ µ µ

λc
λc

λc
λc
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Figure 1.23: State transition diagram of MRP with common cause failure

The remarkable work done on switching failure and common cause failure is
compiled in Table (1.2)
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Table 1.2: Contributions in MRP with switching failure & common cause failure

Authors Year Key Feature Methodology
Jyh Bin Ke, Jyh Wei
Chen and Kuo Hsi-
ung Wang [67]

2011 Mean time-to-failure,
Reboot delay, Reliability,
Sensitivity, Switching
failure

Cramer rule method

Kuo Hsiung Wang,
Tseng Chang Yen
and Yu Chiang Fang
[184]

2012 Availability, Imperfect
coverage, Warm spare
units

Supplementary variable

Madhu Jain, Chan-
dra Shekhar and
Shalini Shukla[85]

2013 Markovian queue, Ma-
chine repair, Warm spares,
Switching failure, Com-
mon cause failure, Partial
breakdown

Matrix method

Madhu Jain, Ritu
Gupta[73]

2014 System availability, Relia-
bility, Markov model, Hu-
man error, Common cause
failure

Runge-Kutta method

Ying Lin Hsu, Jau
Chuan Ke, Tzu Hsin
Liu, and Chia Huang
Wu[63]

2014 Machine availability, Re-
boot delay, Repair pres-
sure coefficient, Switching
failures

Probabilistic global
search Lausanne
method

Madhu Jain [68] 2016 Redundant system, Mixed
spares, Imperfect repair,
Transient probabilities,
Availability, Delayed
repair, Reboot, Switching
failure

Runge-Kutta method

Chandra Shekhar,
Madhu Jain, Ather
Aziz Raina, and Ra-
jesh Prasad Mishra
[153]

2017 Machine repair, Spare
provisioning, Geomet-
ric reneging, Switching
failure, Reliability, MT T F

Runge-Kutta method
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Siamak Alizadeh
and Srinivas Srira-
mula [5]

2018 Markov chains, Safety
instrumented systems,
Safety related systems,
Common cause failure,
Process demand, Haz-
ardous event frequency

Matrix method

Jiang Cheng,
Yinghui Tang and
Miaomiao Yu [29]

2019 Micro-inverters, Common
cause failure, Solar energy
generating system, Relia-
bility, Switch failure

Laplace - Stieltjes
transform (LST)

1.14.4 Contributions in Machine Repair Problem with Imperfect
Coverage and Reboot Delay

A redundant system with spare units provisioning should include some means by
which units can be detected, isolated, and reconfigured in the event of failures; This
process is often called redundancy management with perfect coverage. In real-world
systems, redundancy management tasks can rarely be done with certainty, and as a
result, such the system gets hinder and requires some efficient corrective measures.
The system is said to be subject to Imperfect coverage. The corrective measures may
include a reboot or recovery process, which increases the delay time. Rebooting is
a process by which a hinder machining system is restarted intentionally to remove
the unpredictable fault. The reboot can be either hard wherein the system power is
physically resprouted and returned, allowing the initial boot of the unit, or a soft,
where the system restarts without the need to interrupt power. The reboot process is
a quick process that extracts the faulty unit and reconfigures the system.

Some notable researches in past on imperfect coverage and reboot delay are sum-
marized in the following Table (1.3)

Table 1.3: Contributions in MRP with imperfect coverage & reboot delay

Authors Year Key Feature Methodology
Jau Chuan Ke, Ying
Lin Hsu, Tzu Hsin
Liu, and Zhe George
Zhang [93]

2013 Imperfect coverage, Ma-
chine availability, Reboot
delay, Service pressure

Probabilistic global
search Lausanne
method
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Madhu Jain and Ritu
Gupta [74]

2013 Reliability, Multiple vaca-
tions, Imperfect fault cov-
erage, Optimal replace-
ment policy

Supplementary variable
technique

Kuo Hsiung Wang,
Tseng Chang Yen and
Jen Ju Jian [185]

2013 Imperfect coverage, Mean
time-to-system failure,
Reboot delay, Service
pressure condition, Relia-
bility, Sensitivity analysis

Cramer rule method

Jau Chuan Ke and
Tzu Hsin Liu [96]

2014 Availability, Imperfect
coverage, Reboot delay,
Sensitivity analysis

Supplementary variable
technique

Kuo Hsiung Wang, Je
Hung Su, Dong Yuh
Yang [181]

2014 Cost optimization, Imper-
fect coverage, Sensitivity
analysis

Newton-quasi method

Madhu Jain, Rakesh
Kumar Meena [76]

2017 Fault tolerant system,
Server vacation, Machine
repair, Queue length, Im-
perfect coverage, Reboot,
Unreliable server

Runge-Kutta method

Chandra Shekhar,
Madhu Jain, Ather
Aziz Raina, Javid
Iqbal[155]

2018 Reliability, Fault tolerant
system, Active redun-
dancy, Reboot, Recovery
delay, Common cause
failure

Cramer rule method

Tseng Chang Yen,
Kuo Hsiung Wang
[198]

2018 Availability, Comparisons,
Imperfect coverage, Relia-
bility, spare switching fail-
ures

Matrix method

Ching Chang Kuo,
Jau Chuan Ke [110]

2019 Series system, Reboot de-
lay, Unreliable server, Re-
pair

Supplementary vari-
ables technique

1.14.5 Fuzzy Machine Repair Problem

Fuzzy sets and fuzzy logic is extremely useful to many real-time problems involved
in research and development of technological-social-economic process, including
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engineering problem (mechanical, civil, chemical, electrical, aerospace, biomedi-
cal, agricultural, computer, environmental, industrial, geological and mechatronics),
computer software development, natural science (Mathematics, Biology, Chemistry,
and Physics), medical science, social science (economics, management, political sci-
ence, and psychology), and public policy. Fuzzy set and fuzzy logic are the appro-
priate tools to translate the vagueness or uncertainty due to linguistic errors, experi-
mental errors, etc. It is well-defined with a membership grade function.

Fuzzy logic has been used most successfully in many fields, such as image pro-
cessing, control systems engineering systems, power engineering, industrial automa-
tion, robotics, consumer electronics, and optimization. Fuzzy queues are also more
useful and realistic than commonly used crisp queues. Therefore, fuzzy queues with
vague and uncertain information are much more valuable and practical than com-
monly used crisp queues.

To deal with uncertain information in decision making, Zadeh [199] introduced
the concept of fuzziness. The idea of fuzzy logic has been applied in various frame-
works by different researchers. Li and Lee [120] investigated the analytical result
for two individual queues M/F/1/∞ and FM/FM/1/∞ where F denotes the fuzzy
time, and FM indicates the exponential distribution with fuzzified parameter. No-
bel research works on fuzzified machining problems are available in the following
research publications in Table (1.4)

Table 1.4: Contributions in MRP with fuzzy parameters

Authors Year Key Feature Methodology
Chiang Kao, Chang
Chung Li, Shih Pin
Chen [91]

1999 Queueing theory, Paramet-
ric prograamming, Mem-
bership functions

α-cut approach

Shih Pin Chen [24] 2004 Fuzzy set, Finite capacity,
Membership function

α-cut approach

Shih Pin Chen [27] 2006 Machine interference
problem; Fuzzy sets,
Mathematical program-
ming

α-cut approach

Shih Pin Chen [26] 2006 Machine repair, Machine
interference, Fuzzy sets,
Non-linear programming

α-cut approach

Jau Chuan Ke, Hsin
I. Huang, Chuen
Horng Lin [94]

2006 Fuzzy sets, Multiple vaca-
tion, Parametric nonlinear
programming

α-cut approach
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Harish Garg [48] 2013 Reliability, Availabil-
ity optimization, Fuzzy
confidence interval

PSO, Fuzzy methodol-
ogy

Chandra Shekhar,
Madhu Jain, Sid-
dharth Bhatia [154]

2014 Availability, Membership
function, Machine repair
problem, Cold standby,
Reboot delay

α-cut approach

Madhu Jain, Rakesh
Kumar Meena [76]

2017 Threshold policy, Va-
cation, Machine repair,
Neuro-fuzzy inference
system

Runge-Kutta method

Sudeep Singh
Sanga, Madhu Jain
[151]

2019 Double orbits Retrial,
fuzzy queue α-cut
Parametric non-linear
programing

Genetic algorithm

1.14.6 Machine Repair Problem with Vacation

In any real-time framework, when there is no failed unit in the system, it is always a
better policy to administer a leave of the server to reduce the cost of service. There
are many types of vacation strategy; Some common and important vacations are as
follows

• N-policy: The server initiates rendering service only when there are N failed
units in the system and continues until all failed units get repaired.

• Multiple vacation: On repairing all failed units, the server takes leave for a
random period. At the end of the vacation, if it finds no waiting failed unit, it
takes another vacation of random period, otherwise initiates to serve the failed
units.

• Single vacation: At the end of the vacation, if it finds no waiting failed unit, it
stays idle in the system until the failed unit arrives.

• Working vacation: During vacation, the server may also function for the sys-
tem remotely at a lesser repair rate. It is known as a working vacation. Working
vacation helps failed units or systems to reduce waiting time and increase sys-
tem efficiency. Working vacation may be multiple or single.

• Vacation interruption: Sometimes on vacation, failed units experience long
waiting delay. To diminish the long waiting delay, the system uses a unique
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strategy to call server for rendering the repair before the scheduled end of va-
cation time and is referred as vacation interruption. The policy for vacation
interruption may be waiting time of failed units or the number of failed units
in the system.

In this thesis, we investigate working vacation and vacation interruption in MRP.
From inception to development of working vacation and its interruption is studied
extensively in past. Some of published articles are tabulated in the following Ta-
ble (1.5).

Table 1.5: Contributions in MRP with working vacation & vacation interruption

Authors Year Key Feature Methodology
Kuo Hsiung Wang,
Wei Lun Chen and
Dong Yuh Yang
[176]

2009 Cost Optimization, Work-
ing vacation

Newton’s method

Mian Zhang and
Zhengtng Hou [202]

2010 Working vacations, Vaca-
tion interruption, M/G/1
queue

Method of supplemen-
tary variable

Mian Zhang and
Zhengtng Hou [201]

2011 Markovian arrival precess,
Vacation interruption,
Working vacations

Censoring technique,
matrix-analytic method

Charan Jeet Singh,
Madhu Jain and Bi-
nay Kumar [160]

2012 State dependent, Queue,
Arbitrary service time, Va-
cation, Average queue

Supplementary variable

Baoliang Liu,
Lirong Cui, Yanqing
Wen and Jingyuan
Shen [125]

2015 Reliability, Phase-type
distribution, Multiple
vacations, Working
vacations, Vacation
interruptions

Matrix-analytic method

Doo Ho Lee and Bo
Keun Kim [114]

2015 M/G/1 queue, Single
working vacation, Vaca-
tion interruption, Sojourn
time

Laplace- Stieltjes trans-
form

Kaili Li, Jinting
Wang, Yanjia Ren
and Jingwei Chang
[119]

2016 Queueing,Working va-
cation, Vacation inter-
ruptions, Equilibrium
strategies, Stationary
distribution

Transient solution
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P. Rajadurai, M.C.
Saravanarajan
and V.M. Chan-
drasekaran [145]

2018 Retrial queues, Feedback,
Working vacation, Balk-
ing, Server breakdown

Supplementary variable
method

P. Rajadurai, M.C.
Saravanarajan
and V.M. Chan-
drasekaran [144]

2018 G−queue, Working vaca-
tions, Vacation interrup-
tion

Supplementary variable
technique

Wojciech M. Kempa
and Martyna Kobiel-
nik [102]

2018 Finite buffer, Integral
equations, Queue-size
distribution, Transient
state, Working vacation

Laplace transforms

Dong Yuh Yang
and Chih Lung
Tsao[192]

2019 MTTF, Reliability, Retrial,
Steady-state availability,
Working vacation

Cramer’s rule

1.14.7 Machine Repair Problem with Newton-quasi Method

Finite-dimensional non-linear problems are generally solved by iteration. In 1959,
Davidon [33] disuse on the minimization problem and Brocken [17] for systems of
equations introduced new techniques that were iterative, quite unlike to any other
method in use at the time. These papers have undergone a large amount of research
in the late sixties and early seventies. Fletcher and Powell [43] presented signifi-
cant revisions and explanations of Davidon’s work and gave rise to a new class of
algorithms, called Newton-quasi, variable metric, variance, secant, update or modi-
fication methods. Applications of Newton-quasi method in machine repair problem
and queueing problem have been sought in the work of following contributors in
Table (1.6).

Table 1.6: Contributions in MRP with Newton-quasi method

Authors Year Key Feature Methodology
Kuo Hsiung Wang
and Dong Yuh Yang
[183]

2009 F-policy, Optimization,
Startup, Server break-
downs

Matrix analytical
method, Newton-quasi
method

Kuo Hsiung Wang,
Wei Lun Chen and
Dong Yuh Yang
[176]

2009 Cost Optimization, Work-
ing vacation

Newton’s method
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Chia Huang Wu and
Jau Chuan Ke [186]

2010 Cost, Balk, Renege Matrix analytic ap-
proach, Newton-quasi
method

Dong Yuh Yang,
Kuo Hsiung Wang
and Chia Huang Wu
[193]

2010 F-policy, Optimization,
Sensitivity analysis,
Working vacation

Newton-quasi method

Jau Chuan Ke, Chia
Huang Wu and Wen
Lea Pearn [93]

2011 Bernoulli vacation sched-
ule, Single vacation policy

Matrix analytic ap-
proach, Newton-quasi
method

Jau Chuan Ke, Ying
Lin Hsu, Tzu Hsin
Liu and Zhe George
Zhang [187]

2013 Imperfect coverage, Ma-
chine availability, Reboot
delay, Service pressure

Probabilistic global
search Lausanne
method

Chia Huang Wu,
Wen Chiung Lee,
Jau Chuan Ke and
Tzu Hsin Liu [97]

2014 Cost, Controllable repair
policy

Particle swarm op-
timization, Newton-
quasi method

Jau Chuan Ke, Tzu
Hsin Liu and Chia
Huang Wu [195]

2015 Multiple heterogeneous
repairmen, Profit

Probabilistic global
search Lausanne,
Newton-quasi method

Dong Yuh Yang and
Ying Yi Wu [195]

2017 Optimization, Reneging,
Working breakdown

Newton-quasi method,
Runge-Kutta method

Fu Min Chang, Tzu
Hsin Liu and Jau
Chuan Ke [22]

2018 Queueing, Feedback,
Impatience, Optimization,
Unreliable-server

Newton-quasi (QN)
method

1.14.8 Machine Repair Problem with Supplementary Variable

The supplementary variable technique is also one of the basic techniques that have
been applied to solving queueing problems. The researchers have made a lot of con-
tributions to predict the performance of queueing systems in different frameworks
using this technique. The supplementary variable technique was introduced by Cox
[32]. Keilson and Kooharian [101] studied time-dependent queueing processes us-
ing supplementary variable technique. The major contributions on queueing and
MRP via supplementary variable technique are also cited in research articles by Hok-
stad[60], Lee [115], etc.
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Choi and Park [30] studied M/G/1 retrial queue with the Bernoulli feedback
schedule by considering supplementary variable technique. A G/M(a,b)/1 queue
with server vacation using supplementary variable technique was given by Choi and
Han [31]. Mittler and Kern [129] studied machine interference problems with gen-
erally distributed failure, repair, and walking times. Wang and Kuo [179] used the
recursive method using the supplementary variable technique wherein the supple-
mentary variable is the remaining service time. The recent works for the develop-
ment of supplementary variable technique with elapsed or remaining time in MRP or
queueing problems are tabulated in the Table (1.7)

Table 1.7: Contributions in MRP with supplementary variable method

Authors Year Key Feature Methodology
Hirokazu Ozaki and
Atsushi Kara [136]

2012 Shared protection systems,
Probability distribution,
Survival function, MTTF

Supplementary variable
method

Vijay Vir Singh,
Mangey Ram
and Dilip Kumar
Rawal[161]

2013 Controller failure, Mainte-
nance model, MTTF

Supplementary variable
method

Shan Gao, Jinting
Wang, Wei Wayne
Li[46]

2014 Retrial queue, Working va-
cation, Vacation interrup-
tion, Conditional stochas-
tic decomposition

Supplementary variable
method

Ching Chang Kuo
and Jau Chuan Ke
[111]

2016 Switching failure,
Standby, Unreliable
server, General repair,
Availability

Supplementary variable
technique

Jau Chuan Ke, Tzu
Hsin Liu, Dong Yuh
Yang [98]

2016 Optimization, Probabilis-
tic global search Lausanne
method

Supplementary variable
technique

S. Pradhan and U.C.
Gupta [142]

2017 Batch-arrival, Batch-
service, Queueing, Joint
distribution, Multiple
roots

Supplementary variable

Dong Yuh Yang and
Ya Dun Chang [191]

2018 Busy period, Cost opti-
mization, Retrial, Machine
availability

Supplementary variable
technique
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Madhu Jain,
Sandeep Kaur
and Parminder
Singh [75]

2019 Non-Markovian, Un-
reliable server, Vaca-
tion,Queue length, Bulk
input

Supplementary variable
technique

Ching Chang Kuo
and Jau Chuan Ke
[110]

2019 Series system,Imperfect
coverage, Reboot delay,
Unreliable server, Repair

Supplementary variable
technique

Madhu Jain, Rakesh
Kumar Meena and
Pankaj Kumar [77]

2019 Maintenance, Availability,
Imperfect recovery, Vaca-
tion, Reboot delay

Supplementary variable
technique




