

Energy Efficient Techniques for Multi-tasking Embedded

Systems – Cache Design and Task Scheduling Algorithms

THESIS

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

BIJU K R

Under the Supervision of

Prof. S Gurunarayanan

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

March 2009

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

CERTIFICATE

This is to certify that the thesis entitled “Energy Efficient Techniques

for Multi-tasking Embedded Systems – Cache Design and Task

Scheduling Algorithms” and submitted by Mr. Biju K R ID No.

2003PHXF418P for award of Ph.D. degree of the Institute embodies

original work done by him under my supervision.

 Signature of the Supervisor

Date: Name: Dr. S. GURUNARAYANAN

 Professor (Electronics & Instrumentation)

 Dedicated

To God

 for gifting me with the best

Parents, Teachers & Friends

one can have…

ACKNOWLEDGEMENTS
This thesis arose in part out of years of research that has been done. During this period, I have

met several people who have made a significant contribution in assorted ways to the research and

the making of this thesis and who deserve special mention. I am glad to take the opportunity to

convey my gratitude to them in my humble acknowledgement.

In the first place, I deem it a great pleasure to express my gratitude whole-heartedly to Prof. S

Gurunarayanan, Dean, FD II and Admissions for his supervision, valuable advice, suggestions

and guidance from the very early stages of this research as well as giving me extraordinary

experiences throughout the work. Besides providing me unflinching encouragement and support

in various ways, he has also allowed me the freedom to experiment with my innovation which

has in a major proportion enhanced and nourished my intellectual growth.

I am greatly indebted to Prof. J. P. Misra, Unit Chief, IPC Unit, Prof. Sundar Balasubramaniam,

Assistant Unit Chief, IPC Unit and, Dr. T S B Sudarshan, Group Leader, CS-IS Group for their

crucial contribution, constructive comments, motivation and collaboration. I thank them for their

willingness to share their knowledge with me, which was very fruitful in shaping my ideas and

research. I acknowledge their promptness in providing me with all the equipment to facilitate the

research. Collective and individual acknowledgements are due to all my colleagues who have

directly or indirectly helped me in my work.

Thanks are due to the Microsoft Research, India (MSRI) for providing the financial support for

the research. A special word of appreciation is owed to Prof. Rahul Banerjee, Unit Chief,

SDETU for providing the necessary aid, support and facilities on several occasions. Thanks are

due to Prof. L K Maheshwari, Vice-chancellor and Prof. G. Raghurama, Deputy Director

(Academic) for the constant support and concern. I would like to gratefully acknowledge

Prof. Ravi Prakash, Dean, RCD and many others for their indispensable help and for creating a

pleasant working atmosphere.

Words fail me to express my gratitude to my parents and sister who deserve a special mention

for their inseparable support and prayers. Without their care and love, this thesis would not have

been possible. Many thanks are due to Dr. Shikha Tripathi, Mrs. Ashwathi Sidharth, and all my

other friends who were always ready to lend a hand. I thank everybody who was important to the

successful realization of this thesis, as well as express my apology that I could not mention

personally one by one. Finally, I would like to thank God for always guiding me.

i

ABSTRACT

In most Real-Time Embedded Systems, the limited battery life is a major cause of

interest and concern. In a bid to optimize the energy consumption, this issue is

addressed at various levels – Architecture level (memory subsystem, Dynamic

Voltage Scaling / Dynamic Frequency Scaling), Systems level (process management,

memory management and compiler techniques), and Application level (efficient data

structures and algorithm design). Of the various components, the memory subsystem

(architecture level) and the operating system-related activities (systems level) share a

considerable proportion of the energy consumption by Embedded Systems.

This thesis addresses the issue of optimizing energy consumption in Embedded

System at the Architecture and the Systems levels. The primary source of energy

consumption at the architecture level is the memory subsystem, especially the cache

memory architecture. This work presents various techniques to reduce this cache-

related energy consumption, majority of which is attributed to the data movement

across the memory hierarchy demanded and initiated by cache misses. One way to

reduce this energy consumption is to improve the cache performance which entails an

enhanced cache hit rate. This work proposes a new replacement policy called Late

Least Recently Used (LLRU) replacement policy which while deciding on

replacement, particularly considers cache lines that are shared among processes.

Different hardware designs and implementations of the LRU and LLRU replacement

policy have been put forth. Here, a way – predictive placement scheme, a

modification of the way – predictive cache, for reducing the cache access time and

power consumption has also been proposed and evaluated. One other means of

achieving reduced energy consumption in Embedded Systems’ cache is to power

down all the unused data and tag ways. Motivated by this reasoning, this work

proposes two process aware cache architectures, the Process Aware Selective

Placement (PASP) and the Shared Memory Process Aware Selective Placement

(SMPASP) which are designed to facilitate the powering on of only one selected way

and the shutting down of all the other ways. This significantly reduces the dynamic

power consumption of the tag and data arrays.

At the Operating Systems level, there have been three basic approaches to resolve the

power consumption problem: process scheduling techniques, efficient paging systems,

ii

and performance tuning. In this thesis, to improve the energy efficiency at the

Operating Systems level, new scheduling algorithms have been devised. The

scheduling algorithms can achieve energy efficiency in both platform-dependent

(clock, device characteristics, or memory technology) and platform independent

(preemption reduction) scenarios.

This work aims at increasing the platform independent energy efficiency by

optimizing the number of preemptions caused in a schedule. The direct cost among

other overheads associated with preemptions in a schedule is the time and energy

spent for loading and saving the context of relevant processes, which is effectively

nonproductive and hence, this reasoning advocates the design of the proposed

scheduling algorithms. IntFragment – a static real-time scheduling algorithm

establishes this motive. This thesis also proposes two dynamic real-time priority

scheduling algorithms – Earliest Deadline First with Reduced Context Switches

(EDFRCS) and Rate Monotonic with Reduced Context Switches (RMRCS), which

are modifications of EDF and RM respectively. These two schemes also cut down on

the number of preemptions caused in a schedule by allowing the execution of the

currently executing task, whenever possible. The heuristic used in these schemes is

very aggressive and satisfies the scheduling optimality (schedulability) condition of

the respective original algorithms.

An indirect but more significant cost brought about by preemptions is the cache

flushes which may, eventually even increase the cache miss rate. This thesis proposes

a dynamic priority – based Reduced Cache Impact (RCI) algorithm, a modification of

the existing Earliest Deadline First (EDF), which reduces the number of cache impact

points in a schedule.

All the cache architectures were simulated, evaluated and tested for performance

through simulation studies using SPEC95 and Simplescalar benchmarks. The various

scheduling algorithms and cache conscious scheduling algorithms proposed were

simulated and tested using synthetic benchmark suites.

iii

TABLE OF CONTENTS

 LIST OF FIGURES--- vii
 LIST OF TABLES-- xv
 LIST OF ACRONYMS-- xvii

1. INTRODUCTION

1.1 Energy Efficient Cache Architecture----------------------------------- 2
1.2 Energy Efficient Task Scheduling-------------------------------------- 9
1.3 Cache Conscious Scheduling-- 11
1.4 Thesis Organization-- 12

2 LITERATURE SURVEY

2.1 Introduction-- 13
2.2 Cache Architectures--- 14

2.2.1 Replacement Schemes in Cache---------------------------- 16
2.2.2 Energy Efficient Cache Architectures--------------------- 27

2.3 Operating System level Energy Consumption------------------------- 39
2.3.1 Priority-based Dynamic Scheduling Algorithms--------- 41
2.3.2 Energy Efficient Scheduling Algorithms------------------ 41

2.3.2.1 Platform dependent Energy Efficiency------- 42
2.3.2.2 Platform independent Energy Efficiency----- 45

2.4 Cache Conscious Scheduling Algorithms ----------------------------- 50

3 LATE LEAST RECENTLY USED (LLRU) REPLACEMENT STRATEGY
3.1 Introduction -- 55
3.2 Least Recently Used Replacement Strategy----- ---------------------- 55

3.2.1 LRU Replacement Strategy: Algorithm-------------------- 56
3.2.2 Hardware Implementation of LRU Scheme for N – way

set-associative cache-- 57
3.3 Why Late Least Recently Used Scheme? A Motivating Example-- 57
3.4 Late-LRU Replacement Policy--- 58

3.4.1 LLRU Cache Replacement Algorithm---------------------- 59
3.4.2 LLRU Hardware Implementations-------------------------- 60

3.4.2.1 Square Matrix Implementation of LLRU----- 60
3.4.2.2 Counter Implementation of LLRU------------- 62

3.5 Experimental Results and Analysis-------------------------------------- 64
3.5.1 Software Simulator-- 64
3.5.2 Hardware Simulation and Synthesis------------------------- 65

3.6 Conclusion--- 67

4 WAY-PREDICTIVE PLACEMENT CACHE

4.1 Introduction -- 68
4.2 Why Way-prediction Set-associative Caching Scheme---------------- 68
4.3 Way-prediction Set-associative Cache----------------------------------- 69

4.3.1 Algorithm for Way-prediction Cache------------------------ 69

iv

4.3.2 Working of the Way-prediction Cache---------------------- 70
4.3.3 Drawbacks of the Way-Prediction Cache------------------- 71

4.4 Way-predictive Placement Cache--- 72
4.4.1 Algorithm for Way-predictive Placement Scheme--------- 73
4.4.2 Working of the Way-predictive Placement Scheme------- 74
4.4.3 Replacement Algorithm – Aligned LRU (ALRU):

A variant of LRU -- 76
4.4.4 Way-predictive Placement Cache Energy and Access Time

Analysis-- 78
4.4.5 Experimental Setup, Results and Conclusion--------------- 79

4.4.5.1 Experimental Setup------------------------------- 79
4.4.5.2 Results and Discussion--------------------------- 81
4.4.5.3 Way-predictive placement Cache Vs

Way-prediction Cache---------------------------- 83

5 PROCESS AWARE SELECTIVE PLACEMENT SCHEMES
5.1 Introduction --- 85
5.2 Why Process Aware Cache Design?-------------------------------------- 85
5.3 Conventional and Way-prediction Cache Architectures--------------- 87

5.3.1 Algorithm for Conventional Cache-------------------------- 87
5.3.2 Working of the Conventional Cache------------------------- 88
5.3.3 Way-prediction Cache--- 88

5.4 Process Aware Selective Placement (PASP) Cache Architecture---- 89
5.4.1 PASP Algorithm-- --- 92
5.4.2 Power Saving Concerns-- 94
5.4.3 Replacement Support-- 95
5.4.4 Limitation of the PASP Scheme------------------------------- 95

5.5 Shared Memory Process Aware Selective Placement (SMPASP)
Cache Architecture-- 96

5.5.1 SMPASP Algorithm-- 99
5.5.2 Power Saving Concerns-- 103
5.5.3 Replacement Support--- 104

5.6 Energy Analysis-- 104
5.7 Experimental Methodology, Results and Analysis---------------------- 108

5.7.1 Experimental Setup--- 108
5.7.2 Comprehensive Evaluation of Cache------------------------- 109

5.7.2.1 Independent Processes---------------------------- 110
5.7.2.1.1 Cache Hit Rate---------------------------- 110
5.7.2.1.2 First Cycle Cache Hit Rate-------------- 113
5.7.2.1.3 Tag Comparison Count------------------ 116
5.7.2.1.4 Effective Cache Access Time----------- 119

5.7.2.2 Shared Data Among Processes------------------- 122
5.7.2.2.1 Cache Hit Rate---------------------------- 122
5.7.2.2.2 First Cycle Cache Hit Rate-------------- 125
5.7.2.2.3 Tag Comparison Count------------------ 129
5.7.2.2.4 Effective Cache Access Time----------- 131

v

5.7.2.3 Comparative Figures------------------------------ 134
5.7.3 Energy Consumption Measurement-------------------------- 137

5.8 Conclusion-- 144

6 ENERGY EFFICIENT TASK SCHEDULING
6.1 Introduction -- 145
6.2 Assumptions-- 145
6.3 Brute-Force Algorithm for Minimizing Preemptions------------------- 146

6.3.1 Brute-Force Algorithm--- 146
6.4 IntFragment Algorithm-- 147

6.4.1 IntFragment Algorithm--- 149
6.4.2 Schedulability Arguments for IntFragment Algorithm----- 149
6.4.3 Correctness of IntFragment Algorithm----------------------- 152
6.4.4 Proof of Correctness -- 152
6.4.5 Analysis of IntFragment Algorithm--------------------------- 152

6.4.5.1 Complexity of the Algorithm--------------------- 152
6.4.5.2 Quality of the Schedule--------------------------- 153

6.5 Reduced Context Switch (RCS) Scheduling Algorithms (EDFRCS
& RMRCS)-- 155

6.5.1 Algorithms--- 155
6.5.2 Schedulability of the Algorithms------------------------------ 161
6.5.3 Algorithmic Complexity-- 165

6.6 Parameters for Comparison--- 165
6.6.1 Response Time-- 165
6.6.2 Response Time Jitter-- 166
6.6.3 Latency-- 166
6.6.4 Scheduling Complexity--- 167
6.6.5 Preemption Count--- 167
6.6.6 Energy Consumption-- 168

6.7 Comprehensive Evaluation-- 170
6.7.1 Response Time-- 171
6.7.2 Response Time Jitter-- 179
6.7.3 Latency-- 185
6.7.4 Scheduling Complexity--- 189
6.7.5 Preemption Count--- 191
6.7.6 Energy Consumption-- 196

6.8 Conclusion--- 199

7 CACHE CONSCIOUS SCHEDULING

7.1 Introduction-- 201
7.2 A Brute-Force Algorithm for Minimizing Cache Impact-------------- 201

7.2.1 Brute-Force Algorithm for Minimum Cache Impact------ 201
7.3 Reduced Cache Impact (RCI) Real-Time Scheduling Algorithm----- 202

7.3.1 Introduction--- 202
7.3.2 Reduced Cache Impact (RCI) Algorithm-------------------- 205
7.3.3 RCI Algorithm Explanation----------------------------------- 206

vi

7.3.4 Schedulability of the RCI Algorithm------------------------- 208
7.3.5 Analysis of the RCI Algorithm------------------------------- 211

7.3.5.1 Quality of the RCI Schedule--------------------- 211
7.3.5.2 Complexity of the RCI Algorithm-------------- 214

7.4 Comprehensive Evaluation--- 215
7.4.1 Number of Cache Impact Points------------------------------ 215
7.4.2 Number of Preemptions-- 219

7.5 Conclusion-- 223

8 CONCLUSION-- 224

ANNEXURE A--- 228

ANNEXURE B--- 231

B.1. Modularizing the Scheduler-- 231
B.2. Implementation of Priority-based Algorithms in RTLinux-------- 232

B.2.1. Implementation of EDF in RTLinux------------------------- 232
B.2.2. Implementation of RM in RTLinux-------------------------- 232

B.3. Implementation of Energy Efficient Priority-based Real-time
Schedulers-- 235
B.3.1. Implementation of EDFRCS in RTLinux------------------- 235
B.3.2. Implementation of RMRCS in RTLinux-------------------- 235

B.4. Dynamic Loading of Scheduler-- 238
B.5. Verification of Scheduling Algorithm Implementation------------- 238

B.5.1. Verification of Implementation------------------------------- 239

REFERENCES --- 240

PUBLICATIONS --- 258

BRIEF BIOGRAPHY OF CANDIDATE AND SUPERVISOR ------------------------------- 261

 vii

LIST OF FIGURES
FIG CAPTION PAGE NO.

NO.

3.1 LLRU data structure for a 4-way set associative cache
 (Square Matrix implementation)--- 60

3.2 LLRU square matrix implementation--- 61

3.3 LLRU data structure for a 4-way set associative cache
(Counter implementation)-- 63

3.4 LLRU counter implementation-- 63

3.5 LRU and LLRU performance of a 2-way and 4-way (4K cache)
set associative cache-- 65

3.6 LRU and LLRU performance of a 2-way and 4-way (8K cache)
set associative cache--- 65

4.1 4-way set-associative cache (Way prediction cache)----------------------- 70

4.2 4-way set-associative cache (Conventional cache)-------------------------- 75

4.3 Prediction Hit--- 75

4.4 Prediction Miss--- 75

4.5 Tag Comparisons for 8KB cache with 32byte cache line size------------ 81

4.6 Tag Comparisons for 8KB Cache with 64byte cache line size----------- 81

4.7 Tag Comparisons for 8KB Cache with 128byte cache line size----------- 82

4.8 Prediction hit rate for 8KB Cache with 32byte line size------------------ 82

4.9 Prediction hit rate for 8KB Cache with 64byte line size------------------ 83

4.10 Prediction hit rate for 8KB Cache with 128byte line size------------------ 83

5.1 Conventional 4 – way set-associative cache (Conv)------------------------ 87

5.2 PASP Cache Architecture-- 90

5.3 Cache Hit in dedicated cache way--- 90

5.4 Cache Miss in dedicated cache way, checking in the Victim set for
data availability-- 91

5.5 Cache Hit in Victim set (Transferring data to the dedicated cache way
works in the same way as for a Cache Miss)--------------------------------- 91

5.6 SMPASP Cache Architecture with Direct – mapped Shared set----------- 97

5.7 Cache hit in Shared set (Direct-mapped)-------------------------------------- 97

 viii

FIG CAPTION PAGE NO.

NO.

5.8 Cache hit in Shared set (2 – Way set-associative mapping)----------------- 97

5.9 Cache hit in dedicated cache way (non-shared data)------------------------- 98

5.10 Cache miss in dedicated cache way, checking the victim set for data
availability (non – shared data)-- 98

5.11 Cache Hit in Victim set (non – shared data; transferring data to the
dedicated cache way – works in the same way as for a Cache Miss)------ 98

5.12 Cache hit rate Vs SPEC95 Program sets for an 8KB, 4-way SA cache with
16Byte cache line size and a context switch duration of 500 references---- 111

5.13 Cache hit rate Vs Cache line size for an 8KB, 4-way set-associative cache
with a context switch duration of 500 references------------------------------ 112

5.14 Cache hit rate Vs Cache size for a 4-way set-associative cache with 16 Byte
cache line size and a context switch duration of 500 references------------- 112

5.15 Cache hit rate Vs Context switch duration for an 16K, 4-way SA cache
with 16 Byte cache line size--- 113

5.16 First cycle hit rate Vs SPEC95 Program sets for an 8KB, 4-way SA cache
with 16 B cache line size and a context switch duration of 500 references 114

5.17 First cycle hit rate Vs Cache line size for an 8KB, 4-way SA cache
with context switch duration of 500 references-------------------------------- 114

5.18 First cycle hit rate Vs Cache size for a 4-way set-associative cache with
16 Byte cache line size and context switch duration of 500 references---- 115

5.19 First cycle hit rate Vs Context switch duration for a 16K, 4-way
set-associative cache with 16 Byte cache line size--------------------------- 115

5.20 Normalized tag comparison count Vs SPEC95 Program sets for an 8KB,
 4-way set-associative cache with 16Byte cache line size and
context switch duration of 500 references------------------------------------- 117

5.21 Normalized tag comparison count Vs Cache line size for an 8KB,
4-way SA cache with context switch duration of 500 references----------- 117

5.22 Normalized tag comparison count Vs Cache size for a 4-way SA cache
with 16 Byte cache line size and context switch duration of 500 references 118

5.23 Normalized tag comparison count Vs Context switch duration for

an 16K, 4-way set-associative cache with 16 Byte cache line size--------- 118

 ix

FIG CAPTION PAGE NO.

NO.

5.24 Effective cache access time Vs SPEC95 Program sets for an 8KB,
4-way set-associative cache with 16Byte cache line size and
context switch duration of 500 references------------------------------------- 119

5.25 Effective cache access time Vs Cache line size for an 8KB, 4-way SA
cache with context switch duration of 500 references----------------------- 120

5.26 Effective cache access time Vs Cache size for a 4-way SA cache with
 16 Byte cache line size and context switch duration of 500 references--- 121

5.27 Effective cache access time Vs Context switch duration for an 16K,
4-way set-associative cache with 16 Byte cache line size------------------- 121

5.28 Cache hit rate Vs SPEC95 Program sets for an 8KB, 4-way SA cache
With 16B cache line size and context switch duration of 500 references-- 123

5.29 Cache hit rate Vs Cache line size for an 8KB, 4-way set-associative cache
 with context switch duration of 500 references-------------------------------- 124

5.30 Cache hit rate Vs Cache size for a 4-way set-associative cache with
16 Byte cache line size and context switch duration of 500 references---- 124

5.31 Cache hit rate Vs Context switch duration for a 16K, 4-way
set-associative cache with 16 Byte cache line size--------------------------- 125

5.32 First cycle hit rate Vs SPEC95 Program sets for an 8KB, 4-way SA cache
 with 16 B cache line size and context switch duration of 500 references-- 126

5.33 First cycle hit rate Vs Cache line size for an 8KB, 4-way set-associative
cache with context switch duration of 500 references------------------------ 127

5.34 First cycle hit rate Vs Cache size for a 4-way set-associative cache with
16 Byte cache line size and context switch duration of 500 references----- 127

5.35 First cycle hit rate Vs Context switch duration for a 16K, 4-way
set-associative cache with 16 Byte cache line size---------------------------- 128

5.36 Normalized tag comparison count Vs SPEC95 Program sets for an
8KB, 4-way set-associative cache with 16Byte cache line size and
context switch duration of 500 references-------------------------------------- 130

5.37 Normalized tag comparison count Vs Cache line size for an 8KB,
4-way SA cache with context switch duration of 500 references----------- 130

 x

FIG CAPTION PAGE NO.

NO.

5.38 Normalized tag comparison count Vs Cache size for a 4-way SA cache
with 16 B cache line size and context switch duration of 500 references-- 131

5.39 Normalized tag comparison count Vs Context switch duration for an
16K, 4-way set-associative cache with 16 Byte cache line size------------- 131

5.40 Effective access time Vs SPEC 95 Program sets for an 8KB, 4-way
set-associative cache with 16Byte cache line size and context switch
duration of 500 references-- 132

5.41 Effective access time Vs Cache line size for an 8KB, 4-way SA cache
 with context switch duration of 500 references------------------------------- 133

5.42 Effective access time Vs Cache size for a 4-way set-associative cache with
16 Byte cache line size and context switch duration of 500 references---- 133

5.43 Effective access time Vs Context switch duration for an 16K, 4-way
set-associative cache with 16 Byte cache line size---------------------------- 134

5.44 Dynamic power consumption of various architectures Vs Technology for
an 8K, 4-way SA cache with 16B line size and CS duration of 500 traces 138

5.45 Leakage power consumption of various architectures Vs Technology for
an 8K, 4-way SA cache with 16B line size and CS duration of 500 traces 138

5.46 Total power consumption of various architectures Vs Technology for an
8K, 4-way SA cache with 16B line size and CS duration of 500 traces---- 139

5.47 Dynamic power consumption of various architectures Vs Technology for
an 8K, 4-way SA cache with 16B line size and CS duration of 500 traces 141

5.48 Leakage power consumption of various architectures Vs Technology for
an 8K, 4-way SA cache with 16B line size and CS duration of 500 traces 142

5.49 Total power consumption of various architectures Vs Technology for an
8K, 4-way SA cache with 16B line size and CS duration of 500 traces---- 143

6.1 Gantt chart after step 1.1-- 148

6.2 Gantt chart after step 1.2-- 148

6.3 Gantt chart after step 2-- 148

6.4 Gantt chart after step 1.1-- 151

 xi

FIG CAPTION PAGE NO.

NO.

6.5 Gantt chart after step 1.2-- 151

6.6 Gantt chart after step 1.3-- 151

6.7 Gantt chart after step 2.1-- 151

6.8 Gantt chart after step 2.2-- 151

6.9 Schedule obtained by RM and EDF Algorithms------------------------------- 153

6.10 Schedule obtained by the IntFragment algorithm------------------------------ 154

6.11 Schedule obtained by the Brute-Force Technique----------------------------- 154

6.12 Intermediate schedule up to t = 4--- 158

6.13 Intermediate schedule up to t = 7--- 159

6.14 Schedule by EDFRCS for task list in Table 6.7-------------------------------- 159

6.15 Schedule by RM for task list in Table 6.7--------------------------------------- 159

6.16 Schedule by EDF for task list in Table 6.7-------------------------------------- 160

6.17 Schedule by MLLF for task list in Table 6.7------------------------------------ 160

6.18 Schedule with all extension decision points for RMRCS (Table 6.7)------- 160

6.19 Schedule by RMRCS for task list in Table 6.7--------------------------------- 160

6.20 Response Time per Task (# Tasks = 15, Utilization = 55%)----------------- 171

6.21 Response Time per Task (# Tasks = 15, Utilization = 65%)----------------- 171

6.22 Response Time per Task (# Tasks = 15, Utilization = 80%)----------------- 172

6.23 Response Time per Task (# Tasks = 12, Utilization = 100%)---------------- 173

6.24 Response Time per Task (# Tasks = 7, Utilization = 70%)------------------- 175

6.25 Response Time per Task (# Tasks = 12, Utilization = 90%)------------------ 176

6.26 Average Response Time per Utilization (# Tasks = 15)----------------------- 177

 xii

FIG CAPTION PAGE NO.

NO.

6.27 Average Response Time per Number of Tasks (Utilization = 70%)--------- 178

6.28 Average Response Time per Number of Tasks (Utilization = 100%)------- 179

6.29 Absolute Jitter per Task (# Tasks = 12, Utilization = 60%)------------------ 181

6.30 Absolute Jitter per Task (# Tasks = 12, Utilization = 100%)---------------- 181

6.31 Relative Jitter per Task (# Tasks = 12, Utilization = 60%)------------------- 182

6.32 Relative Jitter per Task (# Tasks = 12, Utilization = 100%)------------------ 182

6.33 Average Absolute Jitter per Number of Tasks (Utilization = 65%)---------- 183

6.34 Average Absolute Jitter per Number of Tasks (Utilization = 80%)---------- 184

6.35 Average Absolute Jitter per Number of Tasks (Utilization = 95%)---------- 184

6.36 Latency per Task (# Tasks = 6, Utilization = 65%)---------------------------- 186

6.37 Latency per Task (# Tasks = 14, Utilization = 100%)------------------------- 186

6.38 Average Latency per Utilization (# Tasks = 12) ------------------------------- 187

6.39 Average Latency per Number of Tasks (Utilization = 75%)----------------- 188

6.40 Average Latency per Number of Tasks (Utilization = 100%)--------------- 188

6.41 Preemptions per Utilization (# Tasks = 6)-------------------------------------- 192

6.42 Preemptions per Utilization (# Tasks = 14) ------------------------------------ 193

6.43 Preemptions per Number of Tasks (Utilization = 50%)----------------------- 194

6.44 Preemptions per Number of Tasks (Utilization = 70%)----------------------- 194

6.45 Preemptions per Number of Tasks (Utilization = 80%)----------------------- 195

6.46 Preemptions per Number of Tasks (Utilization = 80%)----------------------- 195

6.47 Preemptions per Number of Tasks (Utilization = 100%)--------------------- 195

6.48 Preemptions per Number of Tasks (Utilization = 100%)--------------------- 196

 xiii

FIG CAPTION PAGE NO.

NO.

7.1 Resultant RCI schedule for the task set given in Table 7.3------------------ 207

7.2 Resultant EDF schedule for the task set given in Table 7.3----------------- 207

7.3 Resultant RM schedule for the task set given in Table 7.3------------------- 207

7.4 Resultant Brute-Force schedule for the task set given in Table 7.3--------- 208

7.5 Resultant EDF schedule for the task set given in Table 7.5------------------ 212

7.6 Resultant RM schedule for the task set given in Table 7.5------------------- 213

7.7 Resultant EDFRCS schedule for the task set given in Table 7.5------------ 213

7.8 Resultant RCI schedule for the task set given in Table 7.5------------------- 213

7.9 Resultant Brute-force schedule for the task set given in Table 7.5---------- 214

7.10 Cache Impact points per Utilization (# Tasks = 3) ---------------------------- 216

7.11 Cache Impact points per Utilization (# Tasks = 8) ---------------------------- 216

7.12 Cache Impact points per Utilization (# Tasks = 14) --------------------------- 217

7.13 Cache Impact points per Utilization (# Tasks = 20) --------------------------- 217

7.14 Cache Impact points per Number of Tasks (Utilization = 50%)-------------- 218

7.15 Cache Impact points per Number of Tasks (Utilization = 70%)-------------- 218

7.16 Cache Impact points per Number of Tasks (Utilization = 85%)-------------- 219

7.17 Cache Impact points per Number of Tasks (Utilization = 100%)------------ 219

7.18 Preemptions per Utilization (# Tasks = 3)--------------------------------------- 220

7.19 Preemptions per Utilization (# Tasks = 8) --------------------------------------- 220

7.20 Preemptions per Utilization (# Tasks =14) -------------------------------------- 221

7.21 Preemptions per Utilization (# Tasks = 20) ------------------------------------- 221

7.22 Preemptions per Number of Tasks (Utilization = 50%)------------------------ 222

 xiv

FIG CAPTION PAGE NO.

NO.

7.23 Preemptions per Number of Tasks (Utilization = 70%)----------------------- 222

7.24 Preemptions per Number of Tasks (Utilization = 85%)----------------------- 222

7.25 Preemptions per Number of Tasks (Utilization = 100%)---------------------- 223

B.1 find_preemptor() function for EDF and RM Schedulers---------------------- 233

B.2 find_new_task() function for EDF and RM Schedulers----------------------- 234

B.3 find_possible_extension_time()-- 236

B.4 rtl_schedule()-- 237

 xv

LIST OF TABLES

TABLE CAPTION PAGE NO.

NO.

3.1 Comparison chart of LRU and LLRU-- 66

4.1 Different cache configurations-- 80

4.2 SPEC 95 Benchmark program traces used for experimentation---------- 80

4.3 Comparison of the way predictive-placement scheme with conventional

 way prediction scheme-- 83

5.1 List of SPEC 95 benchmark suite program sets------------------------------ 109

5.2 Ready Reckoner for choice of cache architecture---------------------------- 144

6.1 Task list for the schedule-- 147

6.2 Job list Jobs, derived from Table 6.1 (Hyperperiod = 8)-------------------- 147

6.3 Task list for which IntFragment algorithm fails to find a valid schedule 149

6.4 Job list derived from table 6.3--- 150

6.5 Task list for which IntFragment algorithm performs better than the other
 scheduling algorithms like RM and EDF------------------------------------ 153

6.6 Job list derived from table 6.5-- 154

6.7 Task List (L)-- 158

6.8 Job list corresponding to L in Table 6.7 (Hyper-period = 20)------------- 158

6.9 Sample experimental values for energy consumption on Linux----------- 169

6.10 (Worst Case) Time Complexity of Scheduling Algorithms---------------- 190

6.11 Estimated Time Complexity of Online Scheduling Algorithms----------- 191

6.12 Estimated Average Preemption Count--- 196

6.13 Estimated Energy Consumption due to Scheduling Decisions and
Preemptions (normalized per job)--- 198

 xvi

TABLE CAPTION PAGE NO.

NO.

6.14 Energy saved by IntFragment algorithm compared to EDF and LLF------ 199

6.15 Ready Reckoner for choice of Scheduling Algorithm------------------------ 200

7.1 Preemption variation (Saving) in % compared to EDF schedule----------- 203

7.2 Cache Impact variation (Saving) in % compared to EDF schedule-------- 204

7.3 Task list for the schedule--- 206

7.4 Job list Jobs, derived from Table 7.3 (Hyperperiod = 30)-------------------- 206

7.5 Task list for the schedule-- 211

7.6 Job list Jobs, derived from Table 7.5 (Hyperperiod = 35)--------------------- 212

B.1 Test case with three tasks--- 239

 xvii

LIST OF ACRONYMS

AFC Application / File level Characterization

ARJ Absolute Response time Jitter

BTB Branch Target Buffer

Conv Conventional

CRPD Cache Related Preemption Delay

DFS Dynamic Frequency Scaling

DVS Dynamic Voltage Scaling

ECAT Effective Cache Access Time

ED Energy Delay

EDF Earliest Deadline First

EDFRCS Earliest Deadline First with Reduced Context Switches

EELRU Early Eviction Least Recently Used

EM Evict Me

FCFS First Come First Serve

FIFO First In First Out

GDR Inter-reference Gap Distribution Replacement

GDS Greedy Dual Size

HBTC History Based Tag Comparison

ICC Indirect Index Cache

IRG Inter Reference Gap

LFU Least Frequently Used

LFUDA Least Frequently Used Dynamic Aging

LLF Least Laxity First

 xviii

LLRU Late Least Recently Used

LPS Limited Preemptive Scheduling

LRU Least Recently Used

MLLF Modified Least Laxity First

MMUF Modified Maximum Urgency First

MQ Multi Queue

MRU Most Recently Used

MUF Maximum Urgency First

PASP Process Aware Selective Placement

PLRU Pseudo Least Recently Used

PSA Predictive Sequential Associative

RAC Reactive Associative Cache

RCI Reduced Cache Impact

RCS Reduced Context Switch

RM Rate Monotonic

RMRCS Rate Monotonic with Reduced Context Switches

RRJ Relative Response time Jitter

SA Set-Associative

SMPASP Shared Memory Process Aware Selective Placement

SOC Spatial Oriented Cache

TOC Temporal Oriented Cache

UBM Unified Buffer Management

WCRT Worst Case Response Time

WP Way Predictive

 CHAPTER 1 - INTRODUCTION

 1

CHAPTER 1

INTRODUCTION

The explosive growth of Embedded System products has forced researchers to address

various issues associated with them like energy consumption and performance. Modern

Embedded Systems are complex integrated systems where real-time tasks execute in

multi-tasking environments and compete for shared resources like processor, memory,

etc. Multitasking is the ability to execute multiple separate tasks in a fashion that is

seemingly simultaneous. The basic requirements of multi-tasking real-time embedded

system are context switching, inter task communication, managing priorities and

establishing timing control for managing multi-tasking in a real-time environment.

There are various factors that influence the performance of Embedded Systems.

Embedded System designers have to strike upon beneficial compromise among the

factors, i.e., size, energy consumption, cost and performance [Chandrakasan 1995]

[Mudge 2000]. The energy consumption in an Embedded System is determined by

functionalities of the system and speed of the processor. Most Embedded Systems are

battery-driven and due to their limited battery life, energy consumption emerges as an

important limiting factor. The energy consumption in an Embedded System can be

addressed at various levels of the design hierarchy such as at the technology level, circuit

level, architecture level, operating system level, and at the compiler level.

The reduction in dynamic energy consumption at the technology and circuit levels can be

accomplished by reducing the average number of circuit switching per clock cycle and

reducing the load capacitance. There exist various techniques to minimize this energy

consumption. The average number of circuit switching is achieved using techniques like

minimizing the Hamming distance between operations/instructions [Lee 2000] or

minimizing the number of operations [Hong 1997]. The load capacitance can be

minimized by using place and route optimizations. The system level energy reduction can

be attained by the Dynamic Voltage Scaling / Dynamic Frequency Scaling (DVS/DFS).

This is achieved by running the real-time tasks at a reduced applied voltage for a longer

time (reduced frequency) while ensuring that no task misses its deadlines. With the

advancement in technology, the most important component of technology level energy

 CHAPTER 1 - INTRODUCTION

 2

consumption is the leakage energy which is due to the leakage current between the supply

voltage and the ground. One of the main components of the leakage energy is the sub-

threshold leakage energy and it is dominated by temperature and threshold voltage. The

static (leakage) energy consumption occurs as long as the CMOS device is powered on.

Instruction scheduling by an energy-aware compiler can reduce the average number of

circuit switching resulting in reduced energy consumption. The Compiler can also be

used to identify shared, spatial and temporal accesses to improve the memory access

performance.

In an Embedded processor, the major source of energy consumption is at the architecture

and operating system levels. At the architecture level, the major source of energy

consumption is the memory subsystem. A significant fraction or part of the memory

subsystem energy consumption is caused by the cache memory activities. This connotes

that saving a considerable portion of energy consumed by the cache memory will have a

considerable impact on the overall energy consumption. Cache memory energy

consumption can be reduced by reducing the cache miss rate, internal activities,

associated control and replacement circuitry and shutting down the unused cache blocks.

In a multi-tasking environment, majority of the cache misses are the aftereffects of task

preemptions (context switches). The time and energy spent in transferring the context of

the tasks and serving cache misses are unproductive. This energy consumption can be

addressed at the operating system level with the help of an efficient task scheduling

algorithm [Xu 2005][Jianli 2005].

This thesis addresses the energy consumption issue of multi-tasking real-time embedded

systems at the architecture and the operating system levels, as the activities at these levels

constitute a majority of the Embedded System energy consumption. In this thesis, various

techniques are proposed to reduce the cache and scheduling-related energy consumption.

1.1. ENERGY EFFICIENT CACHE ARCHITECTURE

The cache memory subsystem consumes a significant amount of energy in Embedded

Systems. One way to reduce cache memory related energy consumption is to reduce the

cache miss rate, which depends on the mapping scheme used. The cache memory

mapping schemes like direct-mapping and set-associative mapping have a substantial

 CHAPTER 1 - INTRODUCTION

 3

impact on the cache miss rate and on the dynamic energy consumption per cache access.

Both these schemes have their own merits and demerits in terms of the dynamic power

consumption and performance. A direct-mapped cache accesses only one tag block and

one data block per cache access, whereas an N-way set-associative cache accesses N tag

blocks and N data blocks per cache access. So the dynamic power consumption of a

direct-mapped cache is much lower as compared to that of a set-associative cache of the

same size. On the other hand, a set-associative cache offers a better cache hit rate and

thus lesser cache miss related energy consumption as compared to that by a direct-

mapped cache. A direct-mapped cache may not always result in less overall power

consumption. Set-associative caches are used for applications, which require a high cache

hit rate and low energy consumption, even though they have an additional overhead of

increased dynamic power consumption for tag comparisons. Moreover, the set-

associative mapping scheme provides adequate support for energy efficient caching

schemes like way shutdown, way concatenation, way prediction and process aware

caching.

Experimental studies [Hennessy 2007] prove that an increase in associativity causes an

accompanied decrease in miss rate, hence reduced energy consumption. For example, the

average miss rate for the SPEC92 benchmark programs is 4.6% for an 8Kbyte direct-

mapped cache, 3.8% for an 8Kbyte 2-way set-associative cache and 2.9% for an 8Kbyte

4-way set-associative cache. Even though the decrease in miss rate is small, set-

associative cache causes a significant performance improvement due to the large cycle

time penalty overhead for a cache miss. Hence, on measuring the performance of a cache

in terms of the energy consumption, a set-associative cache gives better performance than

the direct-mapped cache. The energy consumption characteristic of a cache memory

varies with the cache size as well. Though a small cache size is energy efficient and has

less access latency, it suffers from poor hit rate.

In set-associative and fully associative schemes, the hit rate of the cache depends on the

placement / replacement circuit in use. These schemes use the replacement circuit to

determine the cache lines to be evicted. The replacement algorithm improves the cache

hit rate and hence, reduces the dynamic energy consumption of the cache memory.

 CHAPTER 1 - INTRODUCTION

 4

The replacement schemes are categorized as optimal, random, arrival, recency, frequency

and combinations of some of these based on how they choose a victim line for

replacement. If the selection of a victim line is based on future references, which is

practically impossible for a dynamic-scheduled system, then the replacement strategy to

use is optimal replacement. If the victim line is selected randomly from the set, then the

random replacement is used. If the choice of a victim line is based on the arrival time of

blocks into the cache, then the FIFO replacement algorithm is used. If the selection of a

victim line is based on past references then recency, frequency or combination of recency

and frequency based replacement schemes are used. Some of the commonly used

replacement strategies under recency, frequency and their combinations are Least

Recently Used (LRU), Most Recently Used (MRU), Least Frequently Used (LFU), and

Least Recently/Frequently Used (LRFU) [Smith 1982] [Lee 2001a].

LRU and its variants are the most widely used replacement algorithms for the cache

memory. The performance of these algorithms is good if the workload maintains

temporal locality and is close to that of the optimal replacement algorithm when the

associativity is less. The LRU replacement algorithm is prone to wrong victim line

selection because of bypass block, dead block and live block [Kampe 2004]. LRU can

improve its performance if the bypass block is not allowed to enter into the cache, if the

dead block is replaced at the earliest after leaving the MRU position and if the live block

is held in the cache for a longer period. Some of the other situations where the LRU

performance is not good are multi-tasking systems with a common cache for all the tasks,

wherein the tasks exhibit changes in the memory access pattern during execution.

There exist various replacement algorithms like Early Eviction LRU (EELRU), Pseudo

LRU (PLRU), modified LRU with non-temporal cache hint, Cache System with

Replacement Controls (Cache/RC), Reference Locality Replacement (RLR), Software

assisted LRU, Evict Me (EM) LRU, Self-correcting LRU (SCLRU) and LRU-SEQ,

which address various issues associated with the LRU replacement strategy to improve

cache hit rate.

From the analysis of the LRU replacement strategy, it is found that its performance is not

good for multi-tasking real-time embedded systems with data sharing among tasks [Wang

2004]. The LRU performance degrades further with increase in preemptions between

 CHAPTER 1 - INTRODUCTION

 5

tasks. None of the above mentioned replacement schemes address the issue of increasing

the life span of shared data for improving cache hit performance in multi-tasking real-

time embedded systems with data sharing.

To address this issue, this thesis proposes a new variant of the LRU replacement strategy

called the Late LRU (LLRU) replacement strategy which helps in increasing the life span

of shared cache lines. In LLRU, the shared cache line(s) gets a higher priority over the

non-shared cache lines to guarantee lesser cache misses after preemption. This is because

of the basic understanding that the new process may access the shared cache line. This

scheme expects the compiler to issue the shared information through special instructions

to enable efficient handling of shared pages during replacement. LLRU adds an extra

shared bit per cache line to store this sharing information. The replacement circuit finds

the cache line to be evicted based on the shared bit and the LRU value. A cache simulator

was implemented which uses the Simplescalar benchmark address traces with varying

data sharing for evaluating the cache hit rate of both LRU and LLRU replacement

strategies. The hardware implementations of LRU and LLRU based on the square matrix

as well as the counter were carried out to measure parameters like area, clock frequency,

critical path delay and number of transistors using Modelsim, Leonardo spectrum and IC

station. Though LLRU requires more area and increased number of transistors, this

scheme improves cache hit rate and operating frequency and reduces critical path delay

and effective cache energy consumption over the basic LRU scheme.

Another way of reducing the dynamic energy consumption in the cache memory is to

reduce the internal activity of the cache during a cache access. The internal activities of a

cache are defined as reading and comparing tags in tag arrays, and reading/writing data in

data arrays. The minimum cache internal energy consumption can be achieved if the

cache subsystem encounters minimum conflict misses. It can be further minimized if

each cache hit results in reading and comparing only one tag entry, enabling and

accessing one data entry and if each cache miss results in reading and comparing only

one tag entry, and accessing no data entries. This can be achieved using the techniques of

hardware prefetching, vertical partitioning, horizontal partitioning, reconfiguring cache,

optimizing the control circuitry, making use of the compiler and operating system

information to improve the performance and various combinations of some of these.

 CHAPTER 1 - INTRODUCTION

 6

Horizontal cache partitioning schemes like phased lookup cache, difference bit cache,

partial tag matching cache and way-prediction cache save dynamic energy at the cost of

performance. The way – prediction cache [Inoue 1999] [Inoue 2001] saves a significant

amount of energy by speculatively selecting one way for tag comparison. If the data is

not available in the selected way (prediction miss), all the N-1 ways are enabled for tag

comparisons in the next cycle.

The way – prediction scheme suffers performance degradation because of the cycle time

penalty incurred for handling mispredictions. The way prediction cache uses the most

recently used (MRU) way information of the set to decide the way to be selected. It

requires log2 (N) bits per set to maintain this MRU way information for a N way set-

associative cache. The MRU information of the way prediction cache is stored as a table

where each row (log2 (N) bits) of the table corresponds to a set. This scheme requires a

table lookup to obtain the MRU information of the selected set, which is possible only

after extracting the set number from the physical address. This adds an extra time delay to

the critical path. The performance of this scheme degrades slightly due to the elongated

access time as a result of the table lookup. The way prediction scheme requires k * log2

(N) bits where k indicates the number of sets, to maintain the MRU information and these

bits need to be updated during a misprediction or a cache miss. This increases the

hardware complexity, effective cache access time and consequently, the energy

consumption.

To address these issues, this thesis proposes a new caching scheme called the way

predictive placement scheme which avoids the table lookup and also improves the

prediction hit rate. This is achieved by replacing the table in the way prediction cache

with a global log2 (N)-bit register. To improve the prediction hit rate and the cache hit

rate in a way predictive placement scheme, a modified placement / replacement strategy

called the Aligned LRU (ALRU) replacement strategy is proposed. This strategy aligns

cache lines into the same way, whenever possible. For experimentation, Simplescalar 2.0

[Burger 1997] cache simulator was employed with different cache configurations.

SPEC95 benchmark programs were used to obtain the prediction hit rate, cache hit rate,

number of tag comparisons and the energy saving for various cache configurations of

 CHAPTER 1 - INTRODUCTION

 7

way predictive placement cache. The selection of the SPEC95 benchmark program suite

guarantees uniformity in evaluation as most of the existing cache architectures used this

benchmark program suite for evaluation. The improvement in prediction hit rate, cache

hit rate, number of tag comparisons and effective cache access time results in energy

saving in a way predictive placement cache in comparison with a way prediction cache.

Way predictive placement cache reduces the hardware complexity as well.

Multi-tasking real-time embedded systems prefer partitioning schemes as they reduce the

dynamic energy consumption and make the cache predictable. The cache memory energy

consumption can further be reduced with the help of cache – operating system – compiler

– application program interaction. The energy reduction can be achieved by accurately

predicting the cache line where the required data is available. This interaction can help

the real-time energy aware scheduler to perform better in a multi-tasking environment.

The interaction can also overcome the replacement mistakes because of bypass block,

dead block and live block. Various software-controlled cache architectures transfer

locality related information and information about whether the cache block is a bypass

block, dead block or live block to the hardware through modified instructions. Some of

the existing microprocessors have instructions for flushing the entire cache, cleaning a

cache line and locking a cache line to reduce cache pollution and replacement mistakes.

Though some of the existing cache architectures can control cache pollution and

replacement mistakes to an extent through cache – operating system – compiler

interaction, they are not process aware. These schemes do not use process related

information to improve the cache hit rate, shutdown unused ways and reduce energy

consumption. The cache hit and energy consumption performance of these schemes are

not consistent with varying context switching time. A process aware cache with dynamic

allocation of cache ways can reduce the energy consumption further by shutting down all

the unused ways.

In this thesis, two software controlled process aware energy efficient cache architectures -

Process Aware Selective Placement (PASP) scheme and Shared Memory Process Aware

Selective Placement (SMPASP) scheme are proposed for multi-tasking applications.

These schemes make use of the cache – operating system – compiler interaction. The

PASP scheme consists of an N-way set-associative cache and a small victim set of 3 – 5

 CHAPTER 1 - INTRODUCTION

 8

cache lines. The SMPASP scheme consists of an N-way set-associative cache, a small

victim set of 3 – 5 cache lines and a small shared set. In these schemes, to obtain

consistent performance with varying context switch durations, one way / bank is

allocated dynamically to a process. This converts an N-way set-associative cache into a

direct-mapped cache, thus reducing the circuit complexity (because of replacement

circuit) and dynamic energy consumption. The victim set is used for collecting spill out

data from the dedicated way, thus improving the cache hit performance. The SMPASP

scheme enhances the PASP scheme to further improve the cache performance by

exploiting the large amount of data sharing exhibited among tasks in a multi-tasking real-

time embedded system. In SMPASP scheme, the shared set is used for improving the

cache hit performance by storing all the shared data of various tasks in the multi-tasking

system. The PASP and SMPASP schemes transfer process-related information to the

cache controller through a special instruction, which is added as a part of the context

switching routine. The SMPASP scheme transfers shared information - obtained by using

the compiler - to the cache through modified instructions. This information helps the

cache controller to predict and enable the required cache way / cache line and power

down all the unused cache ways / cache lines which results in reducing the cache miss

rate and energy consumption. These schemes reduce cache misses, first cycle misses,

number of tag comparisons, effective cache access time and dynamic energy

consumption as compared to the conventional and way-prediction cache for both shared

and non-shared data sets. A cache simulator CACHEMEM 1.0 was implemented, which

uses SPEC 95 benchmark address traces with and without data sharing for evaluating the

cache hit rate, first cycle hit rate, number of tag comparisons, and effective cache access

time of the conventional, way prediction, PASP and SMPASP caches. The CACHEMEM

1.0 can accommodate different cache configurations including cache size, cache line size

and context switching duration. The dynamic and leakage power consumption for the

various caching schemes are obtained using the eCACTI cycle-based power estimation

model.

 CHAPTER 1 - INTRODUCTION

 9

1.2. ENERGY EFFICIENT TASK SCHEDULING

Task scheduling in multi-tasking real-time embedded systems constitutes a significant

proportion of the energy consumption at the operating system level. Real-time task

scheduling algorithms primarily focus on generating a feasible schedule without causing

any deadline misses. In multi-tasking real-time embedded systems, constraints like

availability of power, size of the memory, complexity of the algorithm and speed of the

processor may affect the scheduling policies and algorithms. The energy efficient

scheduling techniques designed to minimize the energy consumption in multi-tasking

real-time system can be platform-dependent, which is architecture-specific such as

multiple clock frequencies and multiple voltage levels. The Dynamic Voltage Scaling

(DVS) and Dynamic Frequency Scaling (DFS) are such techniques that are used for

reducing the dynamic energy of a system by executing the jobs at reduced operating

frequencies and voltage levels. There exist platform independent factors such as the idle

time, number of preemptions and cache impact which also affect the time of execution

and energy consumption of a schedule. The preemptions in a schedule result in increased

execution time due to the additional time required for context switch. This additional time

spent during preemptions may affect the schedulability of the task set. The work done

during preemptions is unproductive and hence, the energy consumed by the preemption

routine is waste. A more significant but indirect impact of preemptions is reflected as

cache misses.

There exist various real-time scheduling algorithms in literature which are designed to

reduce the preemption count or its impact on a schedule. The motive of the Modified LLF

(MLLF) and Optimized Minimum Laxity First (OMLF) scheduling algorithms is to fix

the frequent preemption problem of Least Laxity First (LLF). Wang and Saksena [Wang

1999] proposed a fixed priority scheduling algorithm with a regular priority and

preemption threshold to reduce preemptions in the schedule. In this scheme, a task having

a lower preemption threshold than the executing task cannot preempt the executing task,

even if it has a higher regular priority value. Vahid et al. [Vahid 2005] proposed the

Modified Maximum Urgency First (MMUF) algorithm which replaces non-strict LLF in

Maximum Urgency First (MUF) algorithm with MLLF for reducing preemptions and

 CHAPTER 1 - INTRODUCTION

 10

improving the schedulability. The technique proposed by Jianli and Chaitali [Jianli 2005]

demonstrates a preemption control technique for scheduling in processors with Dynamic

Voltage Scaling. This technique is effective in reducing the number of unnecessary

context switches caused by dynamic voltage scaling, particularly under low and medium

processor utilization levels.

Though the above mentioned scheduling algorithms reduce preemptions when compared

with their base versions, they are not aggressive enough to reduce it to the maximum

possible extent. For instance, the number of preemptions in schedules produced by MLLF

and OMLF is still higher than that of the Earliest Deadline First (EDF). Real-time

scheduling algorithms which can reduce the preemptions aggressively, thus improving

the schedulability and reducing the energy consumption are required.

To address this issue, a platform independent static scheduling algorithm called

IntFragment and two platform independent dynamic scheduling algorithms called Earliest

Deadline First with Reduced Context Switch (EDFRCS) and Rate Monotonic with

Reduced Context Switch (RMRCS) are proposed. These real-time scheduling algorithms

aggressively reduce the preemptions in a schedule without requiring extensive

computations. The IntFragment scheduling algorithm reduces the number of context

switches by generating a schedule with maximum fragments in between the execution of

two instances (jobs) of the same task. The adjacent instances of the same task execute as

close as possible or as distant as possible, which results in the creation of the maximum

fragment. The grouping of similar jobs, as described above, results in reducing the cache

impact. The EDFRCS and RMRCS scheduling algorithms try to extend the execution of

currently running task for the maximum possible duration without affecting the

schedulability of other tasks in the system. The heuristic used in these algorithms is not as

simple as the MLLF heuristic, but it is much more efficient than the exhaustive search

proposed by Wang and Saksena [Wang 1999] or the data flow technique proposed by Lee

et al. [Lee 1999]. A simulator which simulates the EDF, RM, LLF, MLLF, IntFragment,

EDFRCS and RMRCS schedules was implemented and the response time, response time

jitter, latency and preemption count was measured using test suites. The test suites are

randomly generated under certain conditions: each test suite is characterized by either a

fixed number of tasks with utilization varying from low (50%) to high (100%) or by a

 CHAPTER 1 - INTRODUCTION

 11

fixed utilization with the number of tasks varying from 2 to 20. Each test suite includes

100 different task sets of varying hyperperiods – from 100 to 32000. The energy

consumption is calculated based on the preemptions and scheduling complexity. EDF,

RM, EDFRCS and RMRCS algorithms were implemented in RTLinux and their

performances were verified.

1.3. CACHE CONSCIOUS SCHEDULING

The preemption of jobs in a multitasking real-time system introduces additional cache

misses in a schedule. This leads to an increase in the task execution-time which leads to

deadline misses by the low priority tasks. As a cache miss consumes more energy than

preemption, the minimum preemption schedule may not be the optimal energy efficient

schedule. Hence, an energy efficient schedule should try to optimize the number of

preemptions and the amount of data transferred across the memory hierarchies. The cache

impact of a program is not constant throughout the program execution because the

amount of data usage differs. Thus establishing the best possible preemption point where

the cache impact is minimal is not a straightforward task.

In multi-tasking real-time systems, deadline misses caused due to cache misses can be

avoided by calculating the tighter upper bound of the cache related preemption delay

(CRPD) of each task accurately and adding it to the worst case execution time of that task

[Lee 1998] [Negi 2003] [Staschulat 2005a]. Lee et al. proposed the Limited Preemptive

Scheduling (LPS) which uses trace-based offline data flow analysis technique to

determine the preemption points where the cache impact is minimal [Lee 1999]. Deadline

misses because of cache misses can be avoided by minimizing the number of

preemptions as cache impact at preemption points is usually high. Various preemption

reduction schedulers like MLLF and OMLF produce a valid schedule with lesser cache

misses than the schedule produced by its base scheduling algorithm (LLF).

None of the above mentioned scheduling policies exploit the properties of a periodic task

set in a multi-tasking real-time system. The cache misses in a schedule can be reduced by

combining jobs with maximum sharing. In a periodic task set, this can be achieved by

combining jobs of the same tasks together as the code section and the global data section

is shared among them.

 CHAPTER 1 - INTRODUCTION

 12

To achieve this, a new cache-conscious scheduling algorithm called Reduced Cache

Impact (RCI) algorithm is proposed, which combines similar jobs of the highest

frequency task together without affecting the schedulability of the task set. RCI produces

a schedule with significant reduction in the number of cache misses and the cache related

preemption delay (CRPD), which results in energy saving. A simulator to calculate

preemption count and cache impact of EDF, RM, LLF and RCI schedule, which uses the

same test suite designed for preemption reduction algorithms was implemented. The

implementation complexity and the schedulability of RCI algorithm were also analyzed.

1.4. THESIS ORGANIZATION
This thesis comprises eight chapters. Chapter 2 reviews various energy efficient cache

architectures, energy aware real-time task scheduling algorithms and cache conscious

real-time scheduling techniques. In Chapter 3, the proposed cache replacement policy

LLRU is explained, experimentally evaluated and analyzed. Chapter 4 focuses on the

issues related to way-prediction scheme and elaborates the proposed way predictive

placement scheme, a modification to overcome some of the drawbacks of the way-

prediction cache. The PASP and SMPASP which are process aware cache architectures

for energy efficient embedded systems are proposed, explained, experimentally evaluated

and analyzed in Chapter 5. In Chapter 6, the preemption reduction heuristic for the real-

time static scheduling algorithm – IntFragment – is proposed. This chapter also proposes

the preemption reduction variants of EDF and RM – EDFRCS and RMRCS respectively

– which aggressively reduce the number of preemptions in a real-time schedule without

causing any deadline misses. All these algorithms and the conventional real-time

scheduling algorithms like EDF, RM, and LLF and MLLF, a reduced preemption version

of LLF are studied in detail against various performance metrics in this chapter. Further,

Chapter 7 proposes a cache conscious real-time scheduling algorithm – RCI – for energy

efficient scheduling. The RCI algorithm is experimentally evaluated and its performance

is analyzed against the EDF, RM and LLF. Chapter 8 concludes the thesis and briefly

explains the future work.

CHAPTER 2 – LITERATURE SURVEY

 13

CHAPTER 2

LITERATURE SURVEY

2.1. INTRODUCTION

The performance, cost, size and power consumption are some of the major concerns in

Embedded Systems design. Reduction in power consumption is one of the most

important tasks in embedded systems as most of the systems are battery operated. The

power consumption issue of embedded systems has been addressed at various levels –

technology level, architecture level, operating systems level, compiler level and system

and application program level. The main sources of power consumption in embedded

systems are at application and system programs level, operating system level and

embedded architecture level.

The power consumed by application and system programs can be reduced by selecting

the right data structure and algorithms for implementation, customizing the programs for

the specific hardware, fine tuning / optimizing the application with the help of a compiler

and reducing the complexity (time and space) of the program, etc.

The power consumed by architecture level can be reduced by redesigning the instruction

set, redesigning / optimizing the memory subsystem, using a configurable architecture,

and managing I/O devices efficiently.

At the operating systems level, the power consumption reduction issue can be addressed

by improving the process scheduling techniques, inter process communication

techniques, paging systems, and performance tuning for the specific hardware.

This work focuses on optimizing power consumption of embedded real-time systems at

the architecture and operating system levels. This is because of the understanding that the

majority of embedded system power consumption is due to memory subsystems and

operating system functionalities. This chapter discusses various cache architectures

proposed to minimize power consumption. This chapter also discusses power efficient

scheduling algorithms and optimal scheduling and caching strategies for power

efficiency.

CHAPTER 2 – LITERATURE SURVEY

 14

2.2 CACHE ARCHITECTURES

Benini and Micheli [Benini 2000] conducted an exhaustive survey on various techniques

and tools used in system level power optimization. According to Benini and Micheli

[Benini 2000], one of the major components of architecture level power consumption is

the memory subsystem. Benini et al. [Benini 2003] analyzed in detail about various

architectures and optimization techniques used in embedded memories. Panda et al.

[Panda 2001] surveyed various techniques used in data and memory related optimizations

in embedded systems. From the analysis [Benini 2003] [Panda 2001], it is clear that

majority of the memory subsystem power consumption is due to cache memory activities.

Cache memories remain one of the hot topics in computer architecture research, as the

ever-increasing speed gap between processor and memory emphasizes the need for more

efficient memory hierarchy. Studies show that 42% and 23% of the total processor power

in StrongARM 110 [Montanaro 1997] and Power PC [Bechade 1994] respectively is

consumed by the cache. These figures show that saving cache energy will have a

considerable impact on the overall energy consumption.

Several hardware (architecture level) and software techniques have been proposed to

reduce the power consumption and improve the performance of memory subsystem. Each

of these techniques has its own merits and demerits. The hardware techniques may lead

to complex circuit implementations while incorporating a variety of applications. The

software techniques tuned for a particular application can hardly be reused for other

applications. These issues are very crucial for embedded system design as increase in the

cost of hardware pushes the system towards non-application specific designs.

Reduction in cache power consumption can be achieved by reducing the number of cache

misses, latency (delay) per access, power consumption per access, and the cache miss

penalty, shutting down a part of the cache, reconfiguring the cache for specific

applications and various combinations of some of these. Various architecture level

techniques described in literature to attain these, include hardware prefetching, vertical

cache partitioning, horizontal cache partitioning, reconfiguring cache architecture,

optimizing cache control circuitry, modifying the replacement circuitry to improve hit

CHAPTER 2 – LITERATURE SURVEY

 15

rate, making use of the compiler and operating system information (software controlled

cache) to improve performance and various combinations of some of these.

The widely used mapping schemes available are direct-mapped, set-associative and fully

associative. The embedded system requires low power consumption, low access time and

high cache hit rate. Hence, a suitable mapping scheme should be selected for the purpose.

A direct-mapped cache maps each memory block to a unique cache block, whether or not

the cache block is empty. This is the simplest mapping scheme available with minimum

access delay and circuit complexity. Cache hit rate of this scheme is low, as compared to

other schemes. The fully associative scheme allows a memory block to be mapped to any

of the empty cache blocks, if one exists. If there is no empty cache block, a replacement

policy is used to select one of the cache blocks for replacement. In this case, number of

tag comparisons required for finding the requested cache line is equal to the number of

cache lines. The circuit complexity, access delay and dynamic power consumption of this

method is very high when compared to that of the direct-mapped cache. This scheme

provides the minimum cache misses (number of cache misses is based on the replacement

algorithm in use), when compared to all other schemes. The set-associative mapping

scheme is a compromise between the direct-mapped and fully associative mapping

schemes. A set-associative cache divides the cache into sets and allows a memory block

to be mapped to any of the N empty cache blocks within a set. If all the blocks in the set

are occupied, then a block is selected for replacement based on the replacement policy in

use.

While designing a cache, one has to choose between the direct-map and set-associative

mapping schemes as they are the most energy efficient mapping schemes available. Both

these schemes have their own merits and demerits in terms of cache access time, dynamic

power consumption and cache hit rate. A direct-mapped cache accesses only one tag

block and one data block per cache access, where as a N-way set-associative cache

accesses N tag blocks and N data blocks per cache access. Literature shows that a direct-

map cache consumes much lesser dynamic power per cache access than a set-associative

cache. For instance, Hennessy and Patterson [Hennessy 2007] reported 55% more

dynamic power consumption per access for a 4-way set-associative cache as compared to

that of a direct-map cache. For cache sizes of 8K and 16K, a direct-mapped cache

CHAPTER 2 – LITERATURE SURVEY

 16

consumes 74.7% and 68.8% less power respectively than a same sized 8-way set-

associative cache. Also, a direct-mapped cache is 29.5% and 19.3% faster than a same

sized 8-way cache of size of 8kB and 16kB, respectively. A direct-mapped cache is also

simple to design, easy to implement, and accounts for lesser area. But the cache hit rate

of a direct-mapped cache is very poor when compared to that of a set-associative cache

with the same line size and cache size [Hennessy 2007].

Hennessy and Patterson [Hennessy 2007] shown experimentally that an increase in

associativity results in a decrease in the miss rate and hence, reduces power consumption.

This shows that a set-associative cache is favorable for applications that require a high

cache hit rate and low energy consumption, even though it has an additional overhead of

power consumption due to increase in tag comparisons. For example, the average miss

rate for the SPEC92 benchmarks is 4.6% for a direct-mapped 8KB cache, 3.8% for two-

way 8KB set-associative cache and 2.9% for a 4-way 8KB set-associative cache. Though

the miss rate reduction is small, it results in a significant performance improvement

which depends heavily on the hit rate and access time, as the large cycle penalty of a

cache miss is now avoided. So, if we measure the performance of a cache in terms of the

power consumption, the set-associative cache may give better performance than the

direct-mapping scheme because energy overhead due to miss penalty is much higher than

the per access power. Thus, applications which require a higher cache hit rate prefer a

set-associative cache to a direct-mapped cache. The cache power consumption

characteristic varies with the total cache size as well. Small cache size is energy efficient

and has less access latency but suffers because of poor hit rate. Set-associative mapping

scheme also provides support for energy efficient caching schemes like way shutdown,

way concatenation, way prediction and process aware caching efficiently. Thus, set-

associative mapping scheme is chosen for this work.

2.2.1 REPLACEMENT SCHEMES IN CACHE

The three types of misses incurred in the cache are the compulsory, capacity and conflict

misses. A compulsory miss is caused by the first access to a block that has never been in

the cache before. A capacity miss happens when the cache is not big enough to

accommodate all the blocks needed for program execution. A conflict miss occurs when

CHAPTER 2 – LITERATURE SURVEY

 17

multiple blocks map to the same set. This occurs in the direct- mapped and set-

associative cache, but not in the fully associative cache. Conflict misses are the major

cause of cache misses during program execution. The three important factors affecting

cache performance are cache size, cache line (block) size, and cache associativity.

Increase in the cache size results in a reduced number of capacity misses but increased

data access time because of load capacitance. Increase in the cache line size provides a

reduced number of compulsory misses but increased cache miss penalty due to the

increase in data transfer. Increase in associativity results in reduction in the number of

conflict misses but increases the per cache access time.

The ideal cache is one with the minimum number of capacity, compulsory and conflict

misses, minimum per cache access time, minimum cache miss service time, and

minimum load capacitance. The conflict miss rate reduction with minimum cache miss

service time is very important for a high performance cache with low power

consumption. A set-associative mapping scheme offers a good balance of cache hit rate,

cache access time, dynamic power consumption and hardware implementation cost. For a

set-associative cache, improvement in the cache hit rate and hence, reduction in the

dynamic power consumption can be achieved with the help of an efficient replacement

algorithm. A replacement policy determines the effectiveness of this set-associative

scheme with a proper memory block mapping technique. A replacement strategy is

needed when all the cache lines in a set become full and a new block of memory needs to

be placed in the cache memory. The cache controller, with the help of a replacement

algorithm identifies a cache memory line. Then it replaces the line with a new data from

the main memory. The replacement algorithm helps in reducing the number of conflict

misses and hence, the power consumption. The performance of a cache replacement

mechanism mainly depends on how accurately cache can predict the future reference

pattern based on the past references. The future reference pattern may depend on the past

reference pattern and input data. It is relatively easy to find the reference pattern in a

static scheduled system than in a dynamic-scheduled system. The choice of a replacement

policy is one of the most critical cache design issues. Selection of a suitable line/block

replacement algorithm, in the case of fully associative and set-associative caches, can

have a significant impact on the overall system performance.

CHAPTER 2 – LITERATURE SURVEY

 18

The current processors employ various replacement policies such as Random, Round

Robin (or FIFO – First-In-First-Out), LFU (Least Frequently Used), LRU (Least

Recently Used), PLRU (Pseudo LRU), MRU (Most Recently Used) and variants of these

[Smith 1982]. The performance of all these policies are compared and analyzed with

reference to the optimal replacement policy (OPT). The OPT decides the cache line to be

evicted based on future references. This strategy cannot be implemented in the case of

dynamic scheduling systems, as the future cache references are not available [Jeong

1999]. Even if the future references are known, it is impractical to implement this scheme

because of the computational complexity involved in finding the cache line to be evicted.

However, it is very useful in determining the lower limit for the number of cache misses.

As the optimal cache miss performance can be achieved only by knowing the future

references and the future references are unavailable in the case of dynamic scheduling,

one has to go for heuristics near the optimal solution. In general, most of the policies

anticipate the future memory references by looking at the past behavior of programs

(program’s memory access patterns). The purpose of a replacement algorithm is to

identify a cache line which should be purged in order to make room for the newly

referenced cache request that previously experienced a miss in the cache. Relative

performance of these algorithms depends mainly on the length of the history consulted.

The heuristic used for finding a cache line to be evicted can be a random pick from the

available cache lines, a cache block that arrived first in the cache, the least frequently

used cache line, the least recently used cache line, the most recently used cache line or

variants of some of these heuristics.

The random replacement (RAND) heuristic chooses a cache line to be evicted randomly

with all the available cache lines having an equal probability of being evicted. So in

RAND, the cache arbitrarily replaces a block. Though RAND has the minimum

implementation complexity among all the cache replacement algorithms, it may increase

the cache miss rate. An additional hardware cost required for its implementation is only

the random number generator. This scheme doesn’t require any storage facility, as the

cache line to be evicted is not chosen based on past references.

CHAPTER 2 – LITERATURE SURVEY

 19

In the First-In-First-Out (FIFO) replacement scheme, when a replacement is necessary, a

cache block that first entered the cache memory is chosen as the block to be evicted i.e.,

the cache selects a cache block that has been residing in the cache for the longest time.

This scheme is one of the simplest replacement policies to implement. The hardware

implementation of this scheme requires a register per cache line to store the entry time

which is to be compared during a cache miss. One other implementation can be,

maintaining a FIFO queue based on the arrival time of the blocks into the cache. When a

replacement is necessary, the block at the head of the queue is removed.

The Least Frequently Used (LFU) replacement scheme selects the cache line to be

evicted based on the frequency of access of the cache lines. LFU requires maintaining a

frequency count register per cache line and is incremented by one, each time a reference

is made to the cache line. So a register is updated for every cache access. LFU finds the

cache line with the lowest frequency count as the one to be evicted. The LFU cannot

differentiate between references that occurred way in the past and the more recent ones.

Whenever a new block is copied from main memory, the frequency count of that block is

reset to 0. The motivation for using LFU and other frequency-based algorithms is that the

frequency count can be used as an estimate of the probability of a block being referenced.

Updating a register after every cache access increases the cache access time and thus

degrades performance. The hardware implementation complexity of this policy is more as

compared to that of the RAND and FIFO.

The LFU policy can suffer from cache pollution if a previously popular cache line

becomes unpopular. This cache line then remains in the cache for a long time, preventing

other newly or slightly less popular blocks from replacing it. This mainly happens

because of temporal locality, especially after the completion of the execution of a loop

for large iterations. To reduce cache pollution, the replacement scheme should address

not only the access frequency, but also age of the cache line in the cache. One hardware

implementation solution is to introduce a reference count for aging. The reference count

is incremented dynamically for every cache access. Whenever the reference count

exceeds some predetermined maximum value specified by the algorithm, the frequency

count of all the cache lines is reduced. This variant of LFU is called Least Frequently

Used –Dynamic Aging (LFUDA). In LFUDA, the dynamic aging is accomplished by

CHAPTER 2 – LITERATURE SURVEY

 20

shifting the value in each of the frequency count registers by one position to its right

(divided by 2), when the reference count reaches its maximum value. This requires an

additional reference count register which should be updated for every cache access and

which adds an additional overhead to the cache access time and power consumption.

LFUDA increases the cache age during the eviction of a block/object by setting it to the

evicted object’s key value. Thus, the cache age is always less than or equal to the

minimum key value in the cache.

The Least Recently Used (LRU) replacement strategy selects the element that has not

been accessed for the longest period, for eviction. This results in a higher cache hit rate,

at the cost of additional hardware for manipulating / maintaining LRU state information

and decision-making. The basic idea is that the blocks that have been referenced in the

recent past are likely to be referenced again in the near future, because of the temporal

locality of the workload. This policy uses a program’s memory access patterns to guess

that the block that is least likely to be accessed in the near future is the one that has been

accessed least recently. LRU and its variants are the most widely used replacement

strategy in the cache because of their high performance [Smith 1982]. There exist various

ways to implement LRU in hardware, which include Counter, Square matrix, Skewed

matrix, Link list, Phase, and Systolic array method [Sudarshan 2004].

Literature reveals that the LRU strategy performs close to the optimal replacement

strategy, when associativity is less. As the associativity grows, the performance

considerably degrades [Wong 2000]. In fact, in [Al-Zoubi 2004], it is reported that the

optimal performance of a data cache of a certain size is roughly equal to the LRU

performance of a cache twice as big, with the same number of ways.

In the case of FIFO and Random, the replacement circuit complexity and the extra

hardware requirements are relatively less when compared with that of the LRU and LFU

[Deville 1992] [Sukumar 1993]. The implementation complexities of FIFO and Random

schemes are relatively low, irrespective of the associativity. In LRU and LFU strategies,

information update has to happen for each reference to a cache line. FIFO strategy does it

only once when a new page comes into the cache line, whereas in random, modification /

update is not required. So the LRU and LFU take more time per access, when compared

with that of the FIFO and Random replacements. The main drawback of random and

CHAPTER 2 – LITERATURE SURVEY

 21

FIFO replacement strategies is their high cache miss rate in comparison to that of the

LRU and LFU. LRU usually follows stack implementation whereas, FIFO follows a

queue implementation. The most commonly used hardware implementations for the LRU

replacement strategy, are the LRU counter and LRU square matrix. The hardware

components used are storage elements for storing the last reference information and

associated logic circuitry for decision-making. For a square matrix implementation, the

storage elements (D – flip flops) used per set are N2 whereas for a counter

implementation, only N * log2N storage elements are used, where N is the associativity of

the cache. The logic circuit required for selecting the cache line to be evicted is very

small for the square matrix implementation whereas, it is more complex for the counter

implementation. The square matrix implementation is very good for low associativity

caches, but as the associativity increases, the storage element requirement increases

quadratically which makes it unsuitable for high associativity caches. The counter

implementation logic circuit complexity also increases with the associativity, but it

provides a lesser overall complexity as the storage element requirement increases only

linearly, which makes it suitable for high associative caches when compared to the square

matrix implementation [Sudarshan 2004].

According to [Kampe 2004], the LRU is prone to two major types of selection failures.

The first selection failure is to keep a cache block that will not be accessed again until it

leaves the cache. This happens when many blocks are accessed in the Most Recently

Used (MRU) position and are not accessed again there after until the cache line leaves the

cache. Most of these cache lines in this category will have only one cache access and

thus, should be bypassed or replaced immediately than keeping them in the cache for a

long time (called Bypass block). Another occurrence of this type of failure is when cache

lines are accessed repeatedly for several times in the MRU position and then, have no

access thereafter (called Dead block). These blocks should be replaced as soon as they

leave the MRU position in the cache. The second selection failure is to replace a cache

block (Live block) that will be referenced in the immediate future. This happens when a

just replaced cache from the set is accessed right after the next miss. LRU can improve its

performance if the bypass block is not allowed to enter into the cache, the dead block is

CHAPTER 2 – LITERATURE SURVEY

 22

replaced at the earliest after leaving the MRU position and the live block is held in the

cache for a longer period.

There exist various other situations where the LRU does not perform well. One such

situation is in time-shared systems where multiple processes use the same cache and

when there is data streaming in applications. The LRU policy often performs poorly for

applications in which the cache memory requirements and memory access patterns

change during execution. One other drawback for the LRU is that it considers only the

time of the most recent reference to each block for eviction and it cannot differentiate

between frequently and infrequently referenced blocks.

A variant of LRU replacement policy is Early Eviction LRU (EELRU)[Smaragdakis

1999]. The EELRU dynamically chooses to evict the LRU page or the eth most recently

used page. This policy performs LRU replacement by default, but chooses to evict cache

lines early when it observes that too many cache lines are being touched in a roughly

cyclic pattern which is larger than the main memory. The LRU reference history

determines e, the early eviction point, but it is too expensive to store and use in caches.

This approach eliminates capacity page misses in a fully associative memory.

A pseudo LRU (PLRU) method finds the cache line to be evicted from a set that was

assumed to be the least recently accessed and is overwritten. The results show that the

PLRU techniques can approximate and even outperform LRU with much lower

complexity, for a wide range of cache organizations.

Some of the modern processors like Itanium have cache hit instruction(s) to improve

cache performance [Veidenbaum 1999]. The memory accessing instructions of Itanium

can be accompanied by a nt (non-temporal) cache hint. The Itanium-2 implemented a

modified LRU replacement algorithm honoring the nt cache hint [Veidenbaum 1999]. In

case of execution of a memory instruction with nt cache hint, the replacement algorithm

does not change the rank of the touched cache line (in normal case the rank is set as the

highest). In this modified LRU replacement mechanism, the data accessed by instructions

with nt hint is more likely to be evicted on a subsequent cache miss. By not changing the

value of rank in the set, the algorithm retains the old priority of the replaced block and the

data without temporal reuse (Bypass block) does not get preference unnecessarily. This is

CHAPTER 2 – LITERATURE SURVEY

 23

one way of avoiding the Bypass block to become the MRU and in turn, stay in the cache

for a long time. This replacement scheme relies on the compiler to give the nt hint to the

instructions accessing data without temporal reuse. This architecture effectively prevents

cache pollution and thus has the potential to achieve better cache locality.

Maki et al. [Maki 1999] try to improve the LRU replacement decision with the help of an

additional bit (lock/release) per cache line and lock and release operations. This process-

aware scheme reported 60.9% reduction in cache miss ratio and faster execution than the

LRU replacement strategy.

Wang et al. [Wang 2004] proposed a replacement algorithm which improves the cache hit

performance or in the worst case performs similar to LRU for set-associative caches. This

work used compiler-generated auxiliary information to improve the cache replacement

decisions for scientific programs. The compiler generates special purpose instructions to

set the Evict Me (EM) bit and thus explicitly controls cache replacement. One tag bit

(MSB) is used to represent the EM bit. The extra hardware used in Evict-Me cache does

not increase the cycle time as it is not a part of the critical path. This is effective only in

the case of set-associative caches. Results show that the EM bit can reduce miss rates in

set-associative caches up to 45% over the LRU. The EM bit is very similar to Alpha’s

evict instruction [Kessler 1999] except that Alpha’s evict instruction evicts a cache line

immediately and thus requires high precision, whereas the Evict Me scheme evicts the

cache line only when a cache miss happens in the same set. The evict instruction in Alpha

processor is designed mainly to help maintain cache coherency, while Evict Me is for

enhancing locality.

Wong and Baer [Wong 2000] proposed an enhancement for the LRU replacement policy

with a temporal bit per cache line. This temporal bit acts opposite to the EM bit in [Wang

2004], i.e., it specifies the cache lines to be retained in the cache rather than cache lines to

be evicted. The temporal bit settings are determined by offline profiling or an online

hardware history table. This bit is set when there is a cache hit in that line and is reset

when a non-LRU line is evicted from the set.

Rivers et al [Rivers 1998] used a hardware detection unit to dynamically determine the

access as temporal/non-temporal and cacheable/non-cacheable. This information can help

CHAPTER 2 – LITERATURE SURVEY

 24

the LRU to perform better, as a non-cacheable access bypasses the cache to avoid

pollution. Intel IA-64 [Dulong 1998] provides instructions to control caching so that non-

temporal accesses will bypass the cache to avoid cache pollution.

Prabhat Jain et al. [Jain 2001] proposed a software-assisted cache replacement scheme to

kill/keep the cache line. They proposed a methodology which ensures that cache

pollution does not degrade the overall performance when software or hardware

prefetching methods are used. This scheme requires additional software-controlled state

information that affects the cache replacement decision. It uses software instructions to

kill/keep a particular cache line. Kill and keep require one bit of additional state per cache

line. They provided conditions under which kill instructions can be inserted into a

program code, such that the resulting performance is guaranteed to be as good as or better

than the original program execution using standard LRU policy. They combined

prefetching and cache replacement to achieve different associated performance

guarantees.

Martin Kampe et al. [Kampe 2004] proposed Self-correcting LRU, which is based on

LRU augmented with a feedback loop to constantly monitor and correct the mistakes

done during replacement. By adopting mechanisms to detect mistakes in each set of the

data cache, the proposed scheme could reduce the miss rate by up to 24% for a 4-way set-

associative cache.

Praveen Kalla et al. [Kalla 2003] designed a technique (LRU-SEQ) for reducing the

transition energy in instruction cache sub-banks by redirecting the sequential cache fills

to the last bank accessed. By regrouping sequential accesses, the policy reduces inter-

bank transitions and increases the chances that a bank can be shut down for a longer

period (thus, reduces leakage energy). This scheme reduces the total energy by 23% on

an average.

O’Neil et al. proposed the LRU-2 method [O’Neil 1999] that evicts the memory block

with a minimum timestamp of the second to last reference. Wong and Baer [Wong 2000]

enhance the LRU with a temporal bit for each cache line. Lai et al. [Lai 2001] use a

hardware history table to predict when a cache block is dead and which block to prefetch

CHAPTER 2 – LITERATURE SURVEY

 25

and replace the dead one. The drawback of this algorithm is that the size of the history

table limits the length of the history consulted.

Hussein Al-Zoubi et al. [Al-Zoubi 2004] evaluated the LRU, PLRU, OPT, and FIFO with

the SPEC2000 benchmark suite. The PLRU schemes employ approximations of the LRU

mechanism to speed up operations and reduce the complexity of implementations [So

1988]. For the first-level instruction and data caches, the PLRU heuristics are very

efficient in approximating the LRU policy. The PLRU techniques are consistently close

to the LRU during whole program execution. For the second-level unified cache, the

PLRU techniques outperform the LRU for even more cache organizations than those for

the first-level caches.

There exist replacement policies which combine the LRU and LFU replacement

strategies. Frequency Based Replacement (FBR) [Robinson 1990] is one such hybrid

replacement policy. It combines the benefits of both LRU and LFU without the

associated drawbacks. In this scheme, the cache lines in a set are ordered based on the

LRU value, but the replacement is primarily based on the frequency count. So FBR

records the reference count of each cache line to achieve better replacement. The scheme

uses a stack for implementation. The FBR is achieved by dividing the stack (cache) into

three partitions: a new partition, a middle partition and an old partition based on the

reference recency. The old partition contains LRU cache lines; the new partition contains

MRU cache lines and the middle partition contains all the cache lines which are neither

old nor new. If the reference is to a cache line in the new partition, then the reference

count of that cache line is not incremented. This is to ensure that multiple references to

the cache lines in the new partition in a short period of time do not promote them more

than required. If the reference is to a cache line in the old or the middle partitions, then

the reference count of that cache line is incremented by one. The FBR replacement policy

identifies a cache line with the lowest reference count from the old partition for eviction.

In [Lee 2001a], Lee et al. shows that there exists a spectrum of block replacement

policies that subsumes both the LRU and LFU policies. The spectrum is formed

according to how much more weight is given to the recent history over the older history

and is referred to as the Least Recently/Frequently Used (LRFU) policy. LRFU increases

the weight of a memory block by one when it is referenced, and decays the weights of all

CHAPTER 2 – LITERATURE SURVEY

 26

memory blocks according to their backward distance. LRFU policy uses the complete

reference history by using only a few words for each block. It associates each block with

a Combined Recency and Frequency (CRF) value. During a cache miss, the block with

the smallest CRF is selected for eviction. In this scheme, when the k value becomes 0,

then it performs similar to the LFU and when the k value is 1, it matches the LRU.

Though LRFU replacement scheme performs better in many cases in comparison with the

LRU and LFU, it suffers because of its complex hardware implementation, large time

complexity (the time complexity of LRFU varies from O(1) to (log2n) where as LRU

time complexity is O(1)), difficulty in tuning accurately for each system and workload for

maximum performance and difficulty in predetermining the exact optimal scale.

Yannis Smaragdakis [Smaragdakis 2004] shows how to combine any two existing

replacement policies so that the resulting policy can provably, never perform worse than

either of the original policies by more than a small factor. This policy performs very well

with real program data, often outperforming LRU (as well as all the other policies it

adopts) by more than 40%. Jaafar Alghazo et al. [Alghazo 2004] proposed SF-LRU

(Second Chance-Frequency - Least Recently Used) that combines LRU and LFU (Least

Frequently Used) using the second chance concept. Experimental results show that the

SF-LRU significantly reduces the number of cache misses when compared with the LRU

(upto 6.3%) and LFU (upto 9.3%). S-LRU [Kampe 2004] has been proposed to try to

partially take account of the frequencies while making the LRU decisions and to keep the

overhead low.

Inter-reference Gap Distribution Replacement (IGDR) is based on a reference model and

adapts to reference patterns that prefer LRU or LFU. It attaches a weight to each memory

block, and selects the smallest weight block for replacement. The difference in time

between successive references of a memory block is called Inter-Reference Gap (IRG).

This scheme claims achieving cache miss reduction upto 46.1% (19.8% average) and

upto 48.9% (12.9% average) speed up over the LRU scheme when working with

SPEC2000 benchmarks.

Most Recently Used (MRU) policy selects the most recently used cache line from a set

for eviction. This algorithm is not widely used in the cache memory system because of its

bad temporal locality. The Priority Cache (PC) [Aguilar 2004] selects a cache line from a

CHAPTER 2 – LITERATURE SURVEY

 27

set, based on the runtime and compile-time information, for eviction. PC associates a data

priority bit with each cache block. The compiler, through two additional bits associated

with each memory access instruction, assigns priorities. These two bits indicate whether

the data priority bit should be set as good as the priority of the block, i.e. low or high. The

cache block with the lowest priority is the one to be replaced.

In addition to all these replacement policies, there exist various replacement strategies

which are very specific to architectures like victim cache [Jouppi 1990], skewed-

associative cache [Seznec 1993], elbow cache [Spjuth 2004] etc. Comparison of the

widely used replacement algorithms is in Annexure A.

2.2.2 ENERGY EFFICIENT CACHE ARCHITECTURES

Cache memory power analysis reveals that the data lines and data sense amplifiers are the

main sources of power consumption [Wilton 1996]. Wilton and Jouppi [Wilton 1996]

reported power consumption by the data lines and data sense amplifiers as 55%, 65% and

75% of the total cache sub system power consumption for the direct-mapped, 2-way set-

associative and 4-way set-associative mapping schemes respectively. One way to

minimize the dynamic power consumption is to minimize the internal activity of the

cache during a cache access. Minimum cache power consumption can be achieved if the

cache incurs minimum conflict misses. Also, if each cache hit results in reading and

comparing only one tag entry, enabling and accessing only that one data entry and if each

cache miss results in only reading and comparing one tag entry.

Hardware prefetching [Chen 1995] is a popular technique for enhancing the cache

performance in conventional systems. The prefetching techniques try to reduce the cache

miss rate by prefetching instructions into the internal cache. This may result in replacing

useful data in the cache [Gupta 1990]. Unfortunately, most of the existing prefetch

techniques are not very effective in embedded systems because of real time processing

constraints and react to stochastic execution flow.

The real-time / embedded systems employ various partitioning schemes to make cache -

energy efficient and deterministic. This ensures the smooth execution of higher priority

time-critical tasks. A cache partitioning can be either static (fixed) or dynamic. A fixed

partitioning scheme partitions the entire cache into N equal/ unequal sizes and assigns

CHAPTER 2 – LITERATURE SURVEY

 28

them to the tasks. In case of dynamic partitioning scheme, the cache is partitioned based

on various parameters such as the size of the task, priority of the task, number of cache

blocks in use etc.

Another way of partitioning the cache is vertical and horizontal partitioning. The vertical

cache partitioning scheme [Su 1995] aims at optimizing the capacitance of each cache

access by introducing a small cache between the CPU and the main cache. Accessing a

smaller cache needs less power because of low load capacitance. Buffering cache [Bunda

1994], filter cache [Kin 1997] and loop cache [Bajwa 1997] are some of the ways of

realizing the vertical cache partitioning scheme. These schemes result in reducing the

power consumption, but the amount of power saved depends on the spatial locality of the

applications and the cache line sizes.

The buffer cache [Bunda 1994] is closer to the processor than the conventional L1 cache.

In this scheme, the processor checks the availability of data in the block buffer. If it is a

hit, the data is directly read from the block buffer and the cache is not operated. The

cache is operated only if there is a block miss. The effectiveness of block buffering

strongly depends on the spatial locality of applications and the block sizes. The higher the

spatial locality of the access patterns (e.g. an instruction sequence), the larger the amount

of energy which can be saved by block buffering. The block size is also very important in

block buffering.

Bellas et al. [Bellas 1999] proposed a L0 cache to store the most frequently executed

portions of a code. A L0 cache resides between a L1 cache and the processor and is

directly accessed by the processor. The selection of the most frequently executed code to

accommodate in a L0 cache is dynamic. Bajwa et al. proposed a loop cache [Bajwa

1997]. [Kin 1997] used a loop cache to store the most frequently executing instructions

and uses it as a L0 cache. Vahid and Cotterell [Collerell 2002a] [Collerell 2002b]

described the use of a loop cache in embedded system. The content of the loop cache is

loaded dynamically during program execution and used as a static memory. Given their

very small sizes (128–256 bytes), loop caches negatively affect the miss rate, but

decrease the overall energy. When compared with pre-decoded instruction buffers, loop

caches are less energy efficient for programs with very high locality, but they are more

CHAPTER 2 – LITERATURE SURVEY

 29

flexible. The loop cache has a greater area in comparison to a same-sized buffer cache,

because of the tag memory and tag match circuit.

Kin et al. [Kin 1997] proposed the filter cache, a small L1 cache which reduces power

consumption drastically with small performance degradation. In this scheme a small L2

cache which is similar to the conventional L1 cache is placed behind the filter cache to

reduce the cache misses and this explains the performance loss. A typical 256B direct-

mapped filter cache achieves 58% power reduction at the cost of 21% performance

degradation.

A HotSpot cache is used to reduce dynamic power consumption for both instruction and

data caches [Yang 2004]. It adds a small cache between the CPU and L1 instruction

cache. It identifies the frequently accessed instructions dynamically and stores them in a

L0 cache. Yang and Lee [Yang 2004] designed a mechanism that can successfully

identify frequently accessed basic blocks in each program phase at runtime. Only basic

blocks declared as hot blocks are stored in the L0 cache. The L1 cache is augmented with

a block buffer for exploiting spatial locality within a cache line for further energy

savings.

Victim caches [Jouppi 1990] are small, fully-associative buffers that provide limited

additional associativity for heavily utilized entries of a direct-mapped cache. The victim

cache can be accessed in parallel with the main cache (L1) or in the next cycle if and only

if the cache access in the main cache is a miss. The parallel access does not increase the

effective access time much, due to its small size. Accessing the victim cache after

detecting a cache miss in the main cache results in, wasting one cycle in case of a victim

cache hit or cache miss. In this scheme, the victim cache normally employs FIFO

replacement policy. If a match is found in the victim, the cache line in the victim is

swapped with the main cache’s cache line in the specific location. The victim cache

improves the cache performance, but for the average cache access time. Stiliadis and

Varma [Stilliadis 1997] proposed and evaluated an improvement of this scheme, called

the selective victim caching for improving the cache hit rate without affecting the access

time. In this scheme, incoming blocks into the first level cache are placed selectively in

the main cache or a small victim cache by the use of a prediction scheme which is based

on past history. If the probability of a new block to be placed in the cache is less than that

CHAPTER 2 – LITERATURE SURVEY

 30

of the existing block in the cache then the new block is stored in the victim cache.

Otherwise, the new block is stored in the main cache and the existing block in that

location is moved to the victim cache. In addition, block exchange between the main

cache and the victim cache are also performed selectively.

The horizontal partitioning scheme [Su 1995] partitions the cache memory into various

segments. For instance, a 4-way set-associative cache can be partitioned into 4 segments

(also called sub-banks) where each cache way is in one segment. Each segment can be

accessed, shutdown, or activated (power up) individually. So if one can predict the

segment in which the accessed data is available, a majority of the power consumption can

be saved by powering down the remaining segments and thus, eliminating unnecessary

accesses. Power saving in the horizontal partitioning scheme depends on the number of

segments one can turn off while accessing the data. There exist various ways to

accomplish the horizontal partitioning scheme. Cache sub-banking proposed in [Su

1995], is one of the horizontal cache partition techniques which partition the data array of

a cache into several banks called sub-banks. Each sub-bank can be accessed and managed

individually. All the (N-1) sub-banks can be in the power down state while accessing data

from a sub-bank. The amount of power saving and the cache hit performance depends on

the number of sub-banks. Some of the other horizontal partitioning schemes are way

shutdown, way prediction, phase lookup, and various combinations of some of these. One

advantage of the horizontal partitioning scheme over the vertical partitioning scheme is

the effective cache hit time of a horizontal partitioning cache. The effective cache hit

time of a horizontal partitioning cache can be as fast as the conventional cache as the

logic circuit that decides which cache bank to select is simple.

The key to energy reduction is to pinpoint the matching way without probing all of the

ways. One option to avoid high-energy dissipation at the cost of slower access is by using

sequential access, employed in Alpha 21164’s L2 cache [Bannon 1995]. In sequential

access, the cache waits until the tag array determines the matching way, and then

accesses only the matching way of the data array, dissipating about 75% less energy than

a parallel access cache. Sequential access, however, serializes the tag and data arrays,

adding as much as 60% to the cache access time [Powell 2001]. One can implement the

horizontal partitioning scheme (sequential access) in a set-associative cache by accessing

CHAPTER 2 – LITERATURE SURVEY

 31

it like a direct-mapped cache. This is achieved by a phased lookup set-associative cache

[Calder 1996] [Hasegawa 1995] [Lyon 2002]. This cache accesses the tag arrays in the

first phase, and in the second phase, it accesses only the data array corresponding to the

matching tag, if there exists any. This can eliminate most of the unnecessary activities in

data array as the complete data array is in the power down state during the first cycle and

in the second cycle, the segment (cache way) which holds the valid data alone is powered

on, in case of a cache hit. This scheme accesses at most one data array at the cost of

performance overhead due to one extra phase and hence results in a longer cache access

time, though it saves energy.

Juan et al. [Juan 1996] proposed the difference-bit cache which is a 2-way set-associative

cache. This design is to achieve access time close to that of a direct-mapped cache of the

same capacity and line size. This is achieved by a single tag bit and works based on the

fact that two tags of a set have to differ by at least one bit. This is achieved by separating

the selection of a proper way from the detection of a hit, and selecting the way using the

least-significant bit in which both tags of a set differ. The decision of a cache hit in the

difference-bit cache is of one cycle. Zhou and Petrov [Zhou 2006] used the application

knowledge regarding the nature of memory references to eliminate the tag address

translations for most of the cache accesses in a virtual memory system. Application

knowledge regarding the nature of the data memory references is used to distinguish

references as private data and, consequently, handle them in a more energy-efficient way.

In this system, both virtual and physical tags co-exist and for private data, address

translation is avoided by directly using the virtual tag.

A skewed associative cache was first introduced by Seznec et al. [Seznec 1993]. A

skewed cache is conceptually divided into multiple sub-banks, each indexed by a

different hash function. For a skewed 2-way set-associative cache, cache blocks that map

to the same location in one of the banks are likely to map to different locations in the

other. The skewed-associative cache [Seznec 1993] is an alternative option. A two-way

set-associative cache can achieve the equivalent hit performance of a 4-way cache by

employing different mapping functions for each way. One of the challenges with skewed

caches is the replacement algorithm. Since there are no fixed sets, any combination of

victim pairs, one from each bank is possible. This makes it difficult to implement an

CHAPTER 2 – LITERATURE SURVEY

 32

exact ordering-based replacement algorithm like the LRU. To solve this issue, Not

Recently Used, Enhanced (NRUE) [Seznec 1993] replacement scheme has been proposed

which is the best performing replacement algorithm for skewed caches.

[Spjuth 2004] proposed an elbow cache which extends the skewed cache organization. It

adopts a relocation strategy for conflicting blocks. An elbow cache relocates the

conflicting blocks to their alternate locations. This reduces the conflict problems while

consuming less dynamic power. An elbow cache reduces the miss rate at the cost of

complexity.

Another way of accessing the set-associative cache as a direct mapped cache is the

pseudo set-associative cache [Huang 2001][Yongioon 1999] [Agarwal 1993]. Pseudo

Set-Associative Caches are set-associative caches with multiple hit times. It has one tag

array and one data array like a direct-mapped cache. On a miss, an index bit is flipped

and a second cache entry is checked for a hit—the first and second locations thus form a

pseudo-set. Here, dynamic power is reduced at the expense of performance. This scheme

requires extra time whenever prediction results in a miss. Panwar and Rennels [Panwar

1995] proposed a method to skip tag comparisons when accessing the last accessed cache

line again.

Like the Pseudo-associative cache, a Hash-Rehash cache [Agarwal 1988] was proposed

to reduce the miss rate of a direct-mapped cache. It is used to reduce the probability of

thrashing in a cache by providing multiple locations to store data in the cache. When a

memory reference is presented to the cache, the direct-mapped location is checked. If

there is a miss, a hash function is used to index the next cache entry. Like in a pseudo set-

associative cache, the most-recently-accessed cache line will be moved to the direct-

mapped location. However, exchanging large cache lines consumes large amount of

power, cycle time and bus bandwidth. The main drawback of a hash-rehash cache is that

every miss at the first cache address results in a second cache lookup at a rehash address.

The cache miss (miss in both the first and second cache addresses) in the hash-rehash

cache might replace useful data at the hashed location which results in secondary

thrashing. The secondary thrashing affects the performance of this scheme which may

even degrade it to below that of a direct-mapped cache.

CHAPTER 2 – LITERATURE SURVEY

 33

A column-associative cache [Agarwal 1993] improves upon the hash-rehash by inhibiting

a rehash access if the location reached by the first time access itself contains data written

by a hashed address. It employs two different mapping schemes. The first is used when a

cache access is issued, whereas the second is applied only in the case of a miss in the first

attempt. This scheme has an additional bit called a rehash bit per cache entry. This bit

indicates whether the data in the entry was written using a hashing function or not. In

practice, this cache behaves like a 2-way set-associative cache with sequential search and

uses the LRU information to guide both the replacement policy and the search order.

Even in the column-associative cache, thrashing may still occur if data from 3 memory

locations is frequently used and is stored using a common cache address. If the cache is

off-chip, then the swapping of data between cache locations is impractical because of the

latency associated with the off-chip cache.

Hallnor et al. [Hallnor 2004] proposed Indirect Index Cache (IIC) as a mechanism to

achieve full-associativity through software management. The IIC serializes tag

comparison and data lookup by storing a forward pointer in the tag store to identify the

corresponding data line. A cache access in the IIC is performed using a structure similar

to a hash table with chaining. If a matching tag is not found in the set-associative tag-

store, a pointer associated with the set is used as a direct-mapped index into a collision

table. Each entry in this second table provides a pointer to the next member of the

collision chain. The chain is traversed until either a match is found or the maximum chain

length is reached. This scheme requires collision chain traversal, resulting in variable hit

latency and port contention. This scheme also requires swapping of tag entries to reduce

the average hit latency to a reasonable value. IIC also requires software management of

the replacement algorithm.

Patel et al. [Patel 2006] proposed an improved indexing scheme for direct-mapped

caches, which reduces the number of conflict misses by using application-specific

information. This indexing scheme is based on the selection of a subset of the address

bits. The selection is based on the knowledge of the specific addresses used to access the

cache.

CHAPTER 2 – LITERATURE SURVEY

 34

The half-and-half cache [Theobald 1993], reserves half of the cache lines for direct-

mapped access and the other half for associative accesses. This is to exploit the

advantages of both direct-mapping and associativity.

 Dropsho [Dropsho 2002] discussed an accounting cache architecture that is based on the

resizable selective ways cache proposed by Albonesi [Albonesi 1999]. The accounting

cache first accesses a part of the ways of a set-associative cache, known as a primary

access. If there is a miss, then the cache accesses the other ways, known as secondary

access. A swap between the primary and secondary accesses is needed when there is a

miss in the primary and a hit in the secondary access. Energy is saved on a hit during the

primary access but secondary access consumes large amount of power, and cycle time.

Zhang [Zhang 2006] proposed the balanced cache (B-cache) to reduce the miss rate of

direct-mapped caches by balancing the accesses to cache sets. This is achieved by

increasing the decoder length using programmable decoders, and this reduces the

accesses to heavily used sets without dynamically detecting the cache set usage

information. They introduced a replacement policy for B-cache which reduces miss rates

significantly. The B-Cache consumes more power per cache access but exhibits less total

memory access related energy saving due to the miss rate reductions.

Benini et al. [Benini 2000] described an application-driven partitioning of the on-chip

SRAM, based on recursive formulation. This design consists of independently accessible

banks. Gonzalez et al [Gonzalez 1996] proposed a logical partition for the on-chip cache

into the spatial and temporal cache based on the spatial and temporal data. This approach

relies on the dynamic prediction mechanism for the spatial and temporal data which uses

a prediction buffer. Park et al. [Park 2007] presented a dual data cache system structure,

called a co-operative cache system. This design consists of two caches with different

associativity and line sizes, i.e., a direct-mapped temporal-oriented cache (TOC) with an

8 byte line size and a 4-way set-associative spatial oriented cache (SOC) with a 32 byte

line size. They used 8KB TOC and SOC in their design. For a cache read, by default, the

cache probes a TOC block in the first cycle . In case of miss in the TOC block when the

data block is available in the SOC block, access the data from the SOC and the

corresponding TOC block is copied in to the TOC as well. Whenever a cache miss

occurs, the corresponding SOC block is fetched from the main memory to the SOC and

CHAPTER 2 – LITERATURE SURVEY

 35

the corresponding TOC block is copied into the TOC as well. For a cache write, if the

content is available in the TOC, update it directly there. If there is a miss in the TOC but

a hit in the SOC, then the corresponding TOC block is copied from the SOC and

modified. The data in the SOC is not modified because the TOC has a higher priority

than the SOC for a cache read. The cache write into a SOC can be delayed until the

replacement the TOC block.

The Most Recently Used (MRU) cache design [Chang 1987] maintains the MRU

information associated with each set. When searching for data, the block indicated by the

MRU bits is probed. However, the MRU bits must be fetched prior to accessing the

cache. The PSA (Predictive Sequential Associative) cache design [Calder 1996] moves

the prediction procedure to previous stages of the pipeline so that the MRU information is

presented to the cache simultaneously along with the memory reference. The cache

controller attempts to make a prediction speculatively of the way where the required data

may be located. If the prediction is correct, the cache access latency and the power

consumption are similar to those of a direct-mapped cache of the same size.

Inoue et al. [Inoue 1999] [Inoue 2001] proposed the Way prediction set-associative cache

scheme. Way-prediction cache [Inoue 1999] speculatively chooses one cache way before

the cache line access in a set-associative cache. This scheme reduces the number of tag

comparisons by first accessing only the tag array and data array of one way (segment)

that is predicted in the first cycle. All the (N-1) data and tag segments are in the power

down state during this cycle. If a misprediction occurs, then the remaining (N – 1) ways

are accessed in the following cycle. Inoue et al. used log2 (N) bits per set to maintain the

MRU way information which is used for predicting the way. MRU bits of each set have

the information of the recently accessed cache line’s way in that set. If the prediction is

correct, the cache consumes the energy required for only one activated way. Otherwise,

the cache searches all of the ways and consumes energy required for all of them. This

method saves almost (100*(N – 1) / N) % of the energy in an N – way set-associative

cache. Prediction accuracy according to Powell et al. [Powell 2001] is 90% for

instruction and 80% for data.

CHAPTER 2 – LITERATURE SURVEY

 36

Though the way-prediction scheme is very effective in saving power, it suffers from

serious drawbacks, which significantly limit its usage. This scheme suffers performance

degradation because of the cycle time penalty for handling mispredictions. In the way

prediction scheme a table lookup is needed to identify the MRU information of the

selected set. This adds extra time delay to the critical path as one cannot prefetch the

MRU information until the set number is available. One can overcome this using

information available either early in the pipeline, such as the program counter (PC), or

later in the pipeline, such as an XOR-based approximation of the load address [Powell

2001]. Unfortunately, both choices have problems. Way prediction based on information

from early pipeline stages suffers from poor accuracy, and way prediction based on late

pipeline information introduces a way prediction table lookup delay in the cache access

critical path [Batson 2001]. For instance, the way prediction scheme used in [Inoue 1999]

inserts a table lookup after the address generation to identify the predicted way. Another

drawback of the way prediction scheme is that the MRU information does not always

work well with data references [Calder 1996][Batson 2001] [Min 2004].

Powell et al. [Powell 2001] combined way prediction and selective direct-mapping to

reduce the L1 cache dynamic energy without performance degradation. This scheme

predicts the matching way and searches only in that predicted way, thus saving energy.

Albert Ma et al. [Ma 2001] proposed the way memorization cache to reduce fetch energy

in instruction caches. The way memorization cache stores way information (link) within

the instruction cache. It also maintains a valid bit per link to guarantee that the way link is

valid. In the way prediction scheme, reading at least one tag is compulsory for verifying

the prediction correctness. Way memorization requires a link invalidation mechanism to

maintain the coherence of link information.

Batson and Vijay Kumar [Batson 2001] proposed the Reactive Associative Cache (RAC)

which uses both the way prediction and selective direct-mapping schemes. The RAC

provides flexible associativity by placing most blocks in the direct-mapped positions and

reactively displacing only conflicting blocks to set-associative positions. To achieve

direct-mapped hit times, the RAC organizes the data array like a direct-mapped cache,

and the tag array like a set-associative cache. The RAC uses way prediction with

feedback for high prediction accuracy. The RAC uses a PC scheme for implementing

CHAPTER 2 – LITERATURE SURVEY

 37

way prediction. The RAC hit time is within 1% of the direct-mapped cache and is 25%

faster than a 2-way set-associative cache.

Zhang et al. [Zhang 2005] proposed a way-halting cache, which reduces the energy

without performance degradation. This has been achieved with the help of a fully

associative array called halt tag array. The halt tag array predetermines which tags cannot

match due to the mismatch of their lower order 4 bits and halts access to the ways with

known mismatch tags, thus saving power. In this method, some energy is wasted in the

parallel comparison of low-order 4 bit tags in halt tag array. Here, in worst case, the

saving achieved is less.

Energy efficiency can also be achieved by reducing the number of tags for comparisons.

Efthymiou and Garside [Efthymiou 2002], Juan et al. [Juan 1996], Min et al. [Min 2004]

focused on reducing the number of tag bit comparisons (partial tag matching) to save

energy and access time. This method is application-specific and it reduces the energy,

access time and traffic for a specific set of applications, though not for all. Inoue et al.

[Inoue 2002] proposed a history-based tag-comparison scheme (HBTC) for reducing the

energy consumption of direct-mapped instruction caches. HBTC eliminates unnecessary

tag checks at runtime by efficiently exploiting the program execution footprints recorded

in the Branch Target Buffer (BTB) contents. Zhang et al. [Zhang 2003] proposed a way

concatenation cache which is a set-associative cache whose ways can be logically

concatenated to result in a 4-way, 2-way, or direct mapped cache all of the same total

size. Albonesi [Albonesi 1999] proposed the way shutdown cache for reducing the

dynamic power consumption. In this scheme, a simple logic circuit is used to shut down

the cache ways. Zhang et al. [Zhang 2003] proposed the Way shutdown cache which

increases the miss rate but saves static / leakage power. In this scheme all the unused

ways are put into the shutdown state by using circuit level technique proposed by Powell

et al [Powell 2000]. Zhang et al. [Zhang 2003] also proposed cache line size configurable

cache (16, 32, 64 B) by using a small register. Here, a base 16B line size is used and the

larger sizes are implemented by concatenating multiple physical lines. Zhang [Zhang

2007] extended the traditional configurable cache and made the whole on-chip cache

memory capacity available to both instruction and data caches. The capacity can then be

co-allocated between the data and the instruction caches. When compared with the way

CHAPTER 2 – LITERATURE SURVEY

 38

shutdown and way concatenation caches, the capacity co-allocation cache provides a

better solution than increasing the associativity.

Ishihara and Fallah [Ishihara 2005] proposed a non-uniform cache architecture. This

work uses an algorithm for simultaneous cache configuration optimization and code

placement. The non-uniform cache architecture allows different associativity values for

different cache sets. An algorithm determines the optimum number of cache ways for

each cache set and generates a object code suitable for the non-uniform cache memory.

The paper also proposes a compiler technique for reducing redundant cache way accesses

and cache-tag accesses. Aly et al. [Aly 2003] proposed a variable way set-associative

cache to reduce the power consumption without degrading the performance. Static

profiling is used to determine the sets' behavior in a set-associative cache. Each cache set

in this design has a different associativity. Qureshi et al. [Qureshi 2005] proposed the V-

Way Cache, which allows the associativity to vary on a per-set basis by increasing the

number of tag-store entries relative to the number of data lines. This scheme uses Reuse

Replacement, a global replacement policy based on frequency information. The proposed

replacement policy selects a victim within five cycles for 99.3% of the evictions.

Chang et al. [Chang 2004] proposed a value conscious (VC) cache to reduce average

power consumption during a cache access. This is based on the observation that the

majority of the cache access bits are ‘0’. In VC cache power dissipation for accessing a 0

is much less than that for accessing a 1. VC cache achieves this by preventing bitlines

from being discharged while accessing 0. The VC cache is a circuit-level technique

which saves more power, if the data contains more bits with 0 values.

One of the major concerns in conventional memory architecture is that the cache is

transparent to the operating system and application programs (software). The

transparency of the cache cause unnecessary power consumption. Recent studies suggest

the necessity of cache – compiler – operating system – application program interaction to

improve the cache performance. The interaction can reduce the cache power consumption

by accurately predicting the cache set where the required data is available, thus allowing

the other ways to sleep [Yang 2005]. The interaction can also improve cache

predictability and performance by helping in the selection of a victim cache line with

minimum modification in the replacement circuitry [Jain 2001][Wang 2002][Sartor

CHAPTER 2 – LITERATURE SURVEY

 39

2005]. Yang et al. [Yang 2005] proposed a software-controlled cache that allows

application programs to control data allocation on the cache. The mapping between data

types and cache regions is determined statically based on the programmer’s knowledge of

the application behavior and offline profiling information gathered using a cache

simulator. Jain et al. [Jain 2001] uses application-specific information about future

variable accesses from the program analysis (trace analysis) for replacement decisions,

i.e. to keep or evict the cache lines. The compiler can provide information about the

spatial and temporal locality of the loops [Wang 2002] in application programs which

will helps the cache controller to decide on the cache line to be evicted. Wang et al.

[Wang 2002] uses the compiler to find the array elements in a loop that will not be reused

again soon and use them for eviction. Sartor et al. [Sartor 2005] uses compiler locality

hints to keep or evict a cache line. In all the above described software-controlled cache

schemes the information is passed on to the hardware through modified instructions.

Some of the existing microprocessors have instructions that can manage the cache by

either flushing the entire cache or cleaning a given cache line. This gives these processors

the ability to limit cache pollution [Gupta 1990]. One such example is the Compaq Alpha

21264 [Kessler 1998] where the load/store instructions minimize cache pollution by

invalidating a cache line after it is used. The microprocessor can prefetch a line or zero

out a given line [May 1994] [SunMicrosystems 1997] by using these instructions. Few

other processors permit cache line locking within the cache based on the frequency of

usage of the elements in the cache line; mainly for removing those cache lines as

candidates to be replaced [Cyrix 1998] [Cyrix 1999].

2.3 OPERATING SYSTEM LEVEL ENERGY CONSUMPTION

At the operating system level, there have been three primary approaches to address the

energy consumption problem: process scheduling techniques [Smith 1982], paging

systems [Leback 2000], and performance tuning [Acquaviva 2003].

Task Scheduling in real-time systems is a well understood and widely studied issue in

literature. The primary focus of most real-time task scheduling algorithms is to generate a

feasible schedule i.e. a schedule which ensures that no job misses its deadline. In some

real-time systems, additional constraints other than feasibility may also apply. For

CHAPTER 2 – LITERATURE SURVEY

 40

instance, in an embedded system, availability of power, size of the memory and speed of

the processor may, among others, affect the scheduling policies and algorithms

([Kandemir 2003][Dudani 2002] [Pillai 2001] [Pouwelse 2000]).

Task scheduling algorithms may be online or offline. In online scheduling, the scheduling

algorithm competes for the processor time along with the tasks being scheduled and is

dynamic. In offline scheduling, all tasks-related information required for scheduling such

as arrival times, periods, worst case execution times and deadlines are available with the

scheduling algorithm well in advance [Liu 2000]. The offline scheduling usually takes

place external to the executing environment and is static.

One of the most commonly used offline real-time scheduling algorithm is the clock-

driven scheduling algorithm [Liu 2000]. In clock-driven scheduling, a schedule which

satisfies all the task deadlines by taking the worst case execution time into consideration

is found and is fed into the system in the form of a table. The resultant schedule in the

form of a table consists of job / task identifiers and their activation times. The system

then generates timer interrupts to schedule the job(s) / task(s) according to the schedule.

This clock-driven scheduling algorithm is a static algorithm, i.e., if a job finishes its

execution before the worst case execution time and although k other jobs are available for

execution in the system, the clock-driven scheduler will allot the next job to the CPU

only based on the static schedule table entry. Though this scheduling scheme gives the

minimum scheduler overhead, the system throughput and waiting time performance

degrade because of the idle time in the middle of the schedule (which results in the

underutilization of the system). This scheduling algorithm is useful for resource

constrained real-time systems whose tasks execute till the worst case execution time for

almost all cases. The efficiency of the schedule in this case depends on the schedule

provided by the external environment. The scheduler overhead in clock-driven

scheduling is only the time taken by a timer interrupt, which is very small (with O(1)

complexity) when compared with any dynamic scheduling algorithm. Moreover, this

scheduler is forced to modify and reload a new schedule (static schedule table) every time

a new change in the execution time of a task occurs, or a new task is added. Thus, this

makes the scheduler static.

CHAPTER 2 – LITERATURE SURVEY

 41

On the contrary, online scheduling algorithms are capable of taking decisions on-the-fly.

Here, the scheduler also needs to compete with other jobs for the CPU time. This

dynamic scheduler does not leave the CPU idle if any job is ready for execution and also

grabs some CPU time for its execution too. Almost all online scheduling algorithms are

priority-based scheduling algorithms.

2.3.1 PRIORITY-BASED DYNAMIC SCHEDULING ALGORITHMS

The priority-based scheduling algorithms are further categorized into task-level fixed

priority scheduling algorithms, task-level varying but job-level fixed priority scheduling

algorithms and job-level varying priority algorithms. Liu and Layland [Liu 1973] in their

seminal work, proposed the Rate Monotonic (RM) scheduling algorithm for periodic

tasks. The RM is a task-level fixed priority scheduling algorithm where the priority of a

task is inversely proportional to its period. Another most commonly implemented and

analyzed algorithm is the Earliest Deadline First (EDF) [Liu 2000] algorithm. The EDF

bases the priority of a job on its deadline. As the priority is fixed for a specific job but

varies among multiple instances of the same task, EDF is a task-level varying but job-

level fixed priority scheduling algorithm. Least Laxity First (LLF) [Liu 2000] algorithm

is a job-level varying priority scheduling algorithm, where the priority of a job at time t is

inversely proportional to the slack available to that job. The slack of a job is defined as

the difference between the total time available until the job’s deadline and the remaining

execution time of the job in the CPU, i.e., deadline of the job Ji – current time t –

remaining execution time of Ji.

More recently, the proliferation of mobile embedded devices running on limited battery

power has brought in focus the issue of power-aware computing – in particular, power-

aware scheduling. The above mentioned conventional priority-based scheduling

algorithms like RM, EDF and LLF are oriented towards generating a feasible schedule,

rather than an energy efficient schedule. The next section discusses energy efficient

scheduling algorithms.

2.3.2 ENERGY EFFICIENT SCHEDULING ALGORITHMS

The energy consumption of a system with multiple tasks includes the energy

consumption by the CPU and memory for executing the tasks, energy consumption by the

CHAPTER 2 – LITERATURE SURVEY

 42

scheduling process, memory management unit and other operating system functionalities,

and the energy consumption because of the unproductive but unavoidable activities like

context switches, frequency / voltage mode transfer etc. An ideal schedule is the one

which results in optimal power consumption by the CPU, i.e., running the CPU at an

optimal frequency and voltage level for the minimum time duration, optimal number of

memory references, and optimal use of the operating system functionalities like

scheduling, memory management, zero context switches and frequency / voltage mode

transfer.

The factors affecting power consumption can be classified as platform-dependent and

platform-independent. The platform-dependent factors are those which require special

architecture level support for energy reduction. Some of the most important platform-

dependent factors affecting the power consumption caused by a schedule are the clock

frequency and the applied voltage of the CPU. These factors are platform-dependent

because the CPU should support the multiple operating frequencies and voltage levels for

making it work, which is not common in usual scenarios. The platform-independent

factors affecting power consumption include context switching, process idle time and

caching impact. The following sections explain in detail about the existing scheduling

algorithms which were designed with the aim of reducing the platform-dependent and

platform-independent power consumptions.

2.3.2.1 Platform-dependent Energy Efficiency

A hard real-time scheduler takes the worst-case execution time into consideration for

determining the schedule. This is to ensure that all the hard real-time tasks meet their

respective deadlines. The actual execution time of the tasks is usually just a fraction of

the worst-case execution time which results in the CPU being idle for a long time. Thus,

to reduce the power consumption of the CPU, the literature adopts two different

strategies. The simplest one is to keep the CPU in power down state when no task is

available for execution. This method is advantageous if the system can allow the CPU to

be in power down mode for a long time as the transfer between power down mode and

active mode takes some time and so, powering down of the CPU should not affect the

execution of the other tasks in the system. The alternate approach to reduce power

CHAPTER 2 – LITERATURE SURVEY

 43

consumption is to reduce the CMOS circuitry power dissipation. Power dissipation in

CMOS technology Pd = Ceff * Vdd
2 * f, where Ceff is the effective switching capacitance,

Vdd is the supply voltage and f is the frequency of the clock [Aydin 2004]. The above

formula suggests that one can achieve reduced power consumption if the supplied

voltage, effective switching capacitance and the frequency of the clock can be reduced.

This is possible only if the CPU supports multiple supply voltage levels and frequencies,

which makes it platform-dependent.

For the processors which support multiple voltage and frequency levels, reduction in

CPU power consumption is possible by reducing the supply voltage and clock frequency,

while still meeting all the task deadlines. This technique is called Voltage Scaling /

Frequency scaling. The voltage / frequency scaling can be static (SVS/SFS) or dynamic

(DVS/DFS).

In SVS / SFS, if the current process utilization is less than 100% even for the worst-case,

then the applied voltage and frequency is scaled down to make the resultant utilization

100%. This works under the principle that if the scheduling algorithm can produce a valid

schedule (if there exists one) when the utilization of the processor is less than or equal to

100%, then the applied voltage and frequency of the CMOS technology can be scaled

down without any job deadline misses. In other words, one can scale up the utilization of

the processor (CPU) by making it work for a longer time with lesser applied voltage and

frequency and thus save dynamic power. If the current utilization of the system is 60%,

by reducing the voltage and frequency (thus increasing the execution time of the task),

statically, the utilization of the processor can be scaled up to 100% without any of the

tasks missing its deadline. In this case the system continues to work with the worst-case

execution time with respect to the new selected frequency and supply voltage. This

requires processors with multiple voltage level and frequency support.

Analysis reveals that the worst-case execution time is a never / rarely occurring case, as

most of the jobs finish their execution well in advance. This leaves the CPU (processor)

idle for a long period, thus resulting in power consumption without any productive work

being done. One way to tackle this issue is to power down the CPU whenever there is no

job readily available for execution. The CPU consumes some time and power to switch

CHAPTER 2 – LITERATURE SURVEY

 44

between the power-down and active state which makes this option ineffective, when the

power down time is small and distributed.

One other way of saving power consumption is by adjusting the supply voltage and

frequency dynamically. This is technique is called Dynamic Voltage Scaling / Dynamic

Frequency Scaling (DVS /DFS) [Gruian 2001] [Krishna 2000] [Pering 1998]. DVS/DFS

reduces the applied voltage and frequency and consequently, increases the execution time

of tasks, while ensuring that none of the task deadlines is missed.

Pillai et al. [Pillai 2001] proposed various DVS algorithms for real-time systems (RT-

DVS) which include cycle conserving DVS for the EDF and RM, and Look – Ahead RT-

DVS. The cycle conserving EDF and RM at first, scale-up the utilization by applying

SVS (reducing the operating frequency and supply voltage). This scheme assumes the

worst-case execution time initially and then executes at a high frequency until the

completion of some jobs. Like in the EDF, the cycle conserving EDF also selects the next

job to run based on the job deadline. Whenever a job is finishing its execution before its

worst-case execution time, the unused CPU time is utilized by recalculating (lowering)

the operating frequency and supply voltage for the ready-to-run jobs. This calculation

uses the actual execution time to find the utilization until a new job of the same task

arrives in the system. On the arrival of a new job of the task, the operating frequency and

supply voltage are recalculated with the worst-case execution time of the job. This is

higher than or equal to the current operating frequency and supply voltage. The cycle

conserving RM works in a similar manner except for the criterion for selection of the

next job to run. In cycle conserving RM, the next job is selected based on the period, not

the deadline. The cycle conserving RM does not perform the schedulability test, as the

test takes O(N2) time, where N is the number of tasks to be scheduled. The Look-Ahead

EDF uses a Look-Ahead technique to determine the future computation need and defers

task execution. This approach is more aggressive than the cycle conserving EDF and RM.

This Look-Ahead scheme looks at the time interval until the next task deadline and tries

to push (defer) as much work as possible beyond the deadline. This scheme sets the

operating frequency and supply voltage to the minimum possible value, so that it can

finish the minimum work to ensure all the future task deadlines. The task of determining

the minimum cycle required and minimum operating frequency is carried out by looking

CHAPTER 2 – LITERATURE SURVEY

 45

at the tasks in the reverse EDF order. Although this scheme aggressively reduces the

processor operating frequency and supply voltage, it ensures that there are sufficient

cycles available for each task to meet its deadline. This approach may thus result in

running the processor at its maximum frequency in order to complete all the deferred

work in time. The authors adopt this strategy keeping in mind the very high chances of

tasks finishing their execution much ahead of their worst-case execution times. In this

case, the system never needs to execute at peak execution rates and thus, this heuristic

allows the system to continue performing (by meeting all the task deadlines) with low

operating frequency and supply voltage.

2.3.2.2 Platform independent Energy Efficiency

One of the most important platform-independent factors affecting power consumption

caused by a schedule is context switching [Mok 1983]. The context switch time is the

time taken to switch between two processes or threads in a schedule. Thus the context

switch duration is a hidden, unproductive duration in a schedule. The context switch

duration includes the time taken for saving the context of the current process / thread and

loading the context of the next process / thread. This implies that when a process finishes

or a new process starts, this interval is not counted as a context switch. Typically, the

duration of a context switch between threads is less than that between processes, though

the former is not insignificant. In this thesis, it is assumed that context switching time

refers to context switching between processes. Most of the issues related to context

switching between processes are applicable to threads as well.

Various factors specific to the architecture and the operating system affect the context

switch duration. For instance, the impact of register sets, floating point units, and caching

schemes on context switching times have been reported [Dittman 2004] [Gooch 1998].

Gooch [Gooch 1998] also refers to the impact of the process queue on the context

switching time – in particular, the strong correlation between context switching time and

the length of the run (process) queue. We conjecture that this may be a consequence of

the time taken for inserting a switched-out process into the data structure for the run

queue. Hence this time is likely to be logarithmically or linearly proportional to the

number of processes in the queue, depending on the data structure used. Though the data

CHAPTER 2 – LITERATURE SURVEY

 46

available is not enough to substantiate our conjecture, hopefully this can be verified

experimentally.

The direct impact of context switches in a schedule is the time spent in the act of context

switching [Acquaviva 2003]. This time is – depending on the specific architecture and the

operating system – small, though not insignificant. The number of context switches in a

schedule may even add up to a significant delay in the execution of a process and thus,

affect its schedulability. The total time spent in context switches also results in wasted

power consumption. An indirect but more significant impact of context switches may be

the data movement caused across the memory hierarchy, i.e., cache block replacement

and page replacement in the RAM. In fact, the additional energy consumption due to this

indirect impact has been reported to be significantly higher [Lee 1998] [Lee 1999]

[Acquaviva 2003].

Available analyses or evaluations of scheduling algorithms in literature do not account

for context switch time. In particular, they use a simplistic model where the context

switch duration is assumed to be 0. This affects the evaluation in two ways: (a) actual

execution times may not match the scheduled times and in particular, the hard real time

tasks may miss deadlines; (b) the context switch is unproductive and the energy

consumed for the operation is a waste and in particular, this may critically impact the

performance of a low power system. An indirect but more significant impact of context

switches may be due to cache flushes. In fact, the additional energy consumption due to

this indirect impact is reported to be significantly higher [Acquaviva 2003].

The amount of energy wasted due to context switches in a schedule is proportional to the

product of the number of context switches in the schedule and the average impact of a

context switch. A power-aware operating system should account for the impact of

scheduling on the power consumption. And a power-aware scheduling algorithm should

account for the impact of context switches on power consumption. Several scheduling

algorithms have been designed to be preemption-aware, i.e. they reduce the number of

preemptions or context switches.

Various techniques have been proposed in literature for reducing the number of context

switches in a schedule. These techniques vary in complexity from simple and inexpensive

CHAPTER 2 – LITERATURE SURVEY

 47

heuristics to exhaustive search. Some techniques attempt to reduce the number of context

switches while others address the indirect impact of context switches by reducing data

movement across the memory hierarchy.

Oh and Yang [Oh 1998] propose a variant of LLF to reduce preemptions in a schedule,

known as Modified LLF (MLLF) by fixing the “frequent preemption problem of LLF”

[Dertouzos 1974] [Mok 1983]. The strict LLF scheduling algorithm suffers because of

the frequent context switches in the schedules generated by it. Frequent context switches

are possible if there are jobs with the same slack. According to the LLF scheduling

algorithm, the slack / laxity of a job is defined as the difference in the time available until

the deadline of the job and the job’s remaining execution time. In strict LLF, the

processes with equal slack / laxity force the scheduler to select the other job to run in the

CPU (context switch) after every 2 units of execution in the CPU. This results in loss of

time and energy which may even cause the missing of deadlines by some of the

processes. When there is a tie in the slack / laxity among processes, the MLLF scheduling

algorithm executes the process with the least deadline while freezing the priority of all

the other processes with the same slack / laxity. This heuristic fixes the frequent context-

switching problem of LLF, without affecting its optimality. The approach is simple and

effective in addressing the limitation of LLF, but it does not aggressively remove

unnecessary context switches. Furthermore, no detailed analysis on the effectiveness of

the algorithm (in reducing preemptions) is available.

Zolfaghari [Zolfaghari 2004] proposed the Optimized Minimum Laxity First (OMLF)

scheduling algorithm which overcomes the drawback (large number of context switches)

of the Minimum Laxity First scheduling algorithm. This scheme nearly follows the

technique followed in MLLF, except that the executing process’s priority also decreases.

In this scheme, the priority of the process with the longest execution time increases more

rapidly than the other processes with the same deadlines. The priority function they used

is different from LLF and MLLF. Hildehrandt, et al. [Hildebrandt 1999] proposed and

evaluated a universal deterministic scheduling coprocessor that implements the

scheduling algorithm, Enhanced Least-Laxity-First-algorithm (ELLF), which can hide the

runtime overhead of the LLF (MLF) algorithm.

CHAPTER 2 – LITERATURE SURVEY

 48

Wang and Saksena [Wang 1999][Wang 2000] describe a fixed priority scheduling

algorithm that reduces context switches. In this model, each task has a regular priority

and a preemption threshold priority. This scheduling algorithm allows a task to disable

preemptions caused by tasks having up to a specified threshold priority, i.e., tasks having

a lower priority than the preemption threshold cannot preempt the running task, even if

the priority of the other task is greater than that of the running task. Tasks having a higher

priority than the preemption threshold are allowed to preempt the running task. Hence, a

certain level of non-preemptability is achieved using the preemption threshold.

Preemption thresholds are assigned by a branch-and-bound algorithm using lateness

heuristic. This paper also proposed an algorithm to find the preemption threshold with

O(N2) complexity. This approach is limited to fixed priority scheduling, as threshold

assignment may take exponential time. The authors claim 15% - 20% increase in

processor utilization as compared to preemptive scheduling.

Stewart and Khosla [Stewart 1991] proposed Maximum Urgency First (MUF) scheduling

algorithm. MUF is an improvement over the RM, which can be used to predictably

schedule dynamically changing systems. MUF is a mixed priority scheduling algorithm

(combination of fixed and dynamic priority algorithms) and combines the advantages of

the RM, EDF and LLF algorithms. The urgency of a task is defined as a combination of

two fixed priorities and one dynamic priority. One of the fixed priorities, called the

criticality, has precedence over the dynamic priority. Meanwhile, the dynamic priority

has precedence over the other fixed priority, which is called user priority. The dynamic

priority is inversely proportional to the laxity of a task. The assignment of criticality and

user priority is done apriori. To assign criticality, the tasks are ordered based on their

period. The first N-tasks (these are the tasks which do not fail, even if there exists

transient overload) whose total worst-case utilization is below 100% are defined as

critical tasks. If a critical task does not fall in the critical set, then the period

transformation is used. A high criticality is assigned for tasks in the critical task group

and low criticality for others. A unique user priority is assigned optimally to every task in

the system. The dynamic priority is the inverse of the laxity / slack of the job. The next

job to run is the one with the highest criticality. If two or more jobs have the same

criticality, then the job with the highest dynamic priority is selected. If there are two or

CHAPTER 2 – LITERATURE SURVEY

 49

more jobs with the same criticality and dynamic priority, then the job with the highest

user priority is selected. If more than one job has the same criticality, dynamic and user

priority, then they are served in a First Come First Serve (FCFS) manner. The MUF

works as RM, where the criticality of every task is different.

Vahid et al. [Vahid 2005] propose a modification to the Maximum Urgency First (MUF)

scheduling algorithm [Stewart 1991] known as Modified Maximum Urgency First

(MMUF). The major drawback of MUF scheduling algorithm is in its rescheduling

operation. The rescheduling operation is performed whenever a task is arriving in the

ready queue [Vahid 2005] [Stewart 1991], which may even cause a critical task to fail in

certain situations. The MUF uses non-strict LLF where the scheduling decision points are

those of arrival or completion of a job. This may result in MUF causing the failure of

critical tasks.

In MMUF, a unique importance parameter is used, instead of using the tasks’ request

interval to create the critical set. MMUF uses the EDF or MLLF for defining the dynamic

priority. This results in reducing unnecessary context switches introduced by LLF. RM,

EDF, LLF and MUF are special cases of MMUF, depending on how the algorithm is

setting the importance parameter and context switch reduction logic. The MMUF offers

better performance (in schedulability) than MUF because of the lesser number of task

preemption counts. It also results in the execution of more non-critical tasks in

overloaded situations.

Apart from the above techniques, there have been other approaches where context switch

reduction has been considered in conjunction with other techniques or goals. For

instance, [Jianli 2005] demonstrates a preemption control technique for scheduling in

processors with Dynamic Voltage Scaling. This technique is effective in reducing

unnecessary context switches caused by dynamic voltage scaling, particularly under low

or medium processor utilization levels. As such, this technique may not be effective in

reducing context switches while scheduling under in non-DVS processors (nor

equivalently under high processor utilization levels when DVS by itself is not useful).

Apart from these efforts on preemption reduction, there have also been several attempts

to characterize energy consumption at the operating system level. In particular, power

CHAPTER 2 – LITERATURE SURVEY

 50

analysis of real-time operating system in [Dick 2000] identifies time and energy profiles

of different operating system functions and the behavioral characterization in [Stewart

1991] includes energy consumption profiles. But such attempts ignore the effect of task

scheduling on energy consumption and do not relate energy savings to other real-time

system performance metrics. Gopalakrishnan and Parulkar [Gopalakrishnan 1996]

characterize the impact of preemptive scheduling on utilization. Here, a similar approach

is adopted in that a count of the number of preemptions is taken, but experimental

evaluation is used as the instrument for comparing the different algorithms.

From literature [Pillai 2001] [Gopalakrishnan 1996], it is evident that the real-time

systems require techniques for power consumption reduction at the operating system

level for better performance. In real-time systems, the optimization of platform-

independent parameters like context switches not only reduces the power consumption,

but also increases the schedulability of the task set. This prompts for the design of

scheduling algorithms – both static and dynamic – which aggressively reduce the context

switches independent of the platform in use.

2.4 CACHE CONSCIOUS SCHEDULING ALGORITHMS

Energy efficiency and time saving can be achieved by minimizing the overheads in a

schedule. One such factor to minimize in a schedule is the number of preemptions as the

time spent on saving and loading the context of processes is unproductive and the energy

used for that is wasted. The direct impact of preemption is the time and energy spent for

saving and loading the context. However, in addition to the direct costs, preemption

introduces indirect costs caused by cache memory flushes. The cache memory blocks

belonging to the preempted process may not be available in the cache when that process

gets the next chance to execute in CPU. This results in a huge amount of data transfer

across the memory-hierarchies, thus causing an increase in power consumption and

execution time. The increasing execution-time of tasks leads to deadline misses by low

priority tasks.

It is not necessary that a schedule with the minimum number of preemptions will cause

minimum cache impact. This is because of the fact that a program in execution consumes

a varying number of cache pages at different points in time. As the cache impact leads to

CHAPTER 2 – LITERATURE SURVEY

 51

a major share of time and power consumption a schedule which generates preemptions at

the minimum cache impact points may perform better than a schedule with the minimum

number of preemptions. The cache related preemption delay (CRPD) may affect the

schedulability of the task set as well.

The main challenge in addressing the schedulability of a real-time system with a cache

memory is its unpredictability because of varying cache related preemption delay. There

are two ways to address this issue. The first way is to use cache partitioning, wherein the

cache memory is divided into disjoint partitions and one or more partitions are dedicated

to each real-time task [Kirk 1989][Liedtke 1997] [Muller 1995] [Wolfe 1994]. In the

cache partitioning techniques, each task is allowed to access only its own partition and

thus, cache related preemption delay is avoided. However, cache partitioning has a

number of drawbacks. One of the main drawbacks is that the existing system (hardware,

software or both) may need to undergo serious modifications for the implementation of

this scheme. Partitioning of the existing cache has also the drawback of limiting the

amount of cache memory that can be used by an individual process at any point of time.

The second way is to incorporate the worst case cache related preemption delay as a part

of the process execution time and then analyze the schedulability with this new worst

case execution time.

Luculli and Natale [Luculli 1997] presented a static scheduling methodology for real-

time tasks whose task layout is known at design time and does not change at runtime.

This work tries to optimize the extrinsic cache misses.

Basumallick and Nilsen [Basumallick 1994] proposed an improvement over RM with an

upper bound on the cache related preemption delay to calculate schedulability. The main

drawback of this technique is that it suffers from the pessimistic utilization bound, i.e.,

many task sets which are failing the schedulability condition can still be executed

successfully. To overcome this problem, Mataix et al. [Mataix 1996] proposed a

technique based on the response time approach. Even in this scheme the pessimistic

assumption that each cache block used by a task replaces a memory block from the cache

that is needed by the preempted task holds true. This leads to an overestimation of the

cache related preemption delay, as it is possible that the replaced memory block is one

CHAPTER 2 – LITERATURE SURVEY

 52

that is no longer needed or one that will be replaced without being referenced even when

there were no preemptions.

Tomiyama and Dutt [Tomiyamay 2000] gave an approach to calculate the tight upper

bound on the Cache Related Preemption Delay (CRPD) which a task might impose by

using integer linear programming. This work determines the program execution path of

the task which requires the maximum number of cache blocks. However, they only

consider direct-mapped instruction cache. The above overestimation is addressed by Lee

et al. in [Lee 1998].

Lee et al. [Lee 1998] proposed a technique to analyze the cache related preemption

delays in fixed priority scheduling for the tasks that cause unpredictable variations in the

execution time. This technique first performs a per task analysis to estimate the cache

related preemption cost for each execution point and then stores this value in a table

called the preemption cost table (for each task). This table provides the upper bound on

the cache related preemption delay for a given number of preemptions. By using the

worst case execution time and the worst case cache related preemption delay, this

technique computes the worst case response time of each task by using a linear

programming technique. Although this technique is more accurate than the techniques

that do not consider the usefulness of cache blocks, it is still subject to a number of

overestimation sources. This solution suffers because of two types of overestimation.

First, when a task is preempted, not all of its useful cache blocks are replaced from the

cache. Second, the worst-case preemption scenario given by the solution may not be

feasible during in the actual execution. This leads to an enhancement of this technique by

the same authors in [Lee 2001b].

Negi et al. [Negi 2003] refined the approach of Lee et al. in [Lee 1998] by applying path

analysis. [Negi 2003] provided a program path analysis technique which will analyzes

both the preempted and the preempting tasks to estimate the CRPD. This technique

improves the accuracy of the analysis by estimating the possible states of the cache at

each possible preemption point than estimating the state of each cache block

independently. However, inter-task cache eviction is not considered. Also, WCRT

analysis is not mentioned in [Negi 2003].

CHAPTER 2 – LITERATURE SURVEY

 53

Lee et al. [Lee 2001b] enhanced the previous technique [Lee 1998] by bounding the

cache related preemption delay in the fixed priority scheduling algorithm for instruction

caches. While calculating the cache related preemption delay, the enhancement takes into

account the relationship between a preempted task and the set of tasks that execute during

preemption. The enhancement also considers the phasing of tasks to eliminate many

infeasible task interactions. These enhancements are passed as constraints to the linear

programming problem to then calculate the guaranteed upper bound on the cache related

preemption delay.

Tan and Mooney [Tan 2004b] [Tan 2004c] proposed to analyze the inter-task cache

eviction. This approach assumes that all cache lines used by the preempted task and

evicted by the preempting task will be reloaded after the preemption. But, Lee et al. [Lee

1998][Lee 2001b] presented that only those cache lines used by “useful" memory blocks

of the preempted task need to be reloaded. In [Tan 2004a], Tan and Mooney focused on

enhancing the previous approach [Tan 2004b] [Tan 2004c] by incorporating “useful"

memory block analysis in the work of Lee et al. So this method first analyzes the

maximum set of memory blocks in the preempted task that can possibly cause a cache

reload. Then, the method incorporates the inter-task cache eviction behavior by

calculating the intersection set of the cache lines used by the preempting task and the

preempted task. The new approach results in a more accurate WCRT method than, that

by Lee et al and Tan and Mooney for a multi-tasking single-processor system, using set-

associative or direct-mapped unified caches.

Staschulat et al [Staschulat 2005a][Staschulat 2005b] proposed the cache related

preemption delay analysis for set-associative instruction caches. In this technique, the

preemption delay analysis is integrated into a scheduling analysis to determine the

response time of tasks accurately. [Staschulat 2005b] used a pseudo-polynomial

algorithm, where the designer can decide the tradeoff between the analysis precision and

the analysis execution time.

Ju et al. [Ju 2007] presented a way to incorporate the cache related preemption delays

(CRPD) in dynamic, preemptive, multitasking real-time schedulers like the EDF. The

CRPD is the delay introduced by the higher priority tasks because of cache misses caused

via preemptions. The proposed implementation had three steps. In the first step, the

CHAPTER 2 – LITERATURE SURVEY

 54

program analysis techniques are used to estimate the maximum CRPD incurred by the

task preemptions. The second step bounds the number of preemptions of each task and

the third step finds the actual execution time of each task with its total CRPD. The

analysis is done by maintaining the possible cache contents at each of the preemption

points of the lower priority tasks and of the high priority tasks. If the resultant execution

times meet the schedulability, then the tasks are schedulable. These tests though better

than the other approaches are not sufficient to find a tight bound for the cache related

preemptions.

Ramaprasad and Mueller [Ramaprasad 2006a] [Ramaprasad 2006b] bound the cache

interference penalty on real-time tasks by providing accurate predictions of the data cache

behavior across preemptions. This is done by deriving the data cache reference pattern for

all scalar and non-scalar references. The effects of cache interferences are analyzed by

identifying the additional misses due to preemptions. This method calculates the tight

upper bound on the number of preemption points for each job of the task and then finds

the worst possible impact caused by it. This work proved by experimentation that it is

sufficient to consider the N most expensive preemption points, where N is the maximum

possible number of preemptions.

Lee et. al [Lee 1998][Lee 1999] proposed a new replacement scheme called Limited

Preemptive Scheduling (LPS) that limits the preemptions to execution points with small

cache related preemption cost. LPS uses data flow analysis techniques to determine the

preemption points with small cache loading costs. LPS reduces the cache related

preemptions at the cost of increasing the blocking delay of higher priority tasks. This

scheme finds a schedule which maximizes the schedulability of a given task set, while

minimizing the cache related preemption delay. The primary limitation of this approach

is that it requires extensive data flow analysis and therefore, may not be suitable for

dynamic scheduling.

CHAPTER 3 – LLRU REPLACEMENT STRATEGY

 55

CHAPTER 3

LATE LEAST RECENTLY USED (LLRU) REPLACEMENT STRATEGY

3.1 INTRODUCTION

The performance of cache memory depends heavily on its hit rate and access time. The classical

approach to improve the cache performance is to increase the hit rate. One way of improving the

hit rate is to reduce the number of conflict misses, which can be achieved by increasing the cache

associativity. In [Hennessy 2007], it is proven that conflict miss reduces from 28% to 4% by

changing associativity from direct mapping to 8 – way set associative. The set associative and

fully associative caching schemes provide an advantage with respect to hit rate over the direct

mapping scheme. The replacement policy used in set associative and fully associative caching

schemes plays an important role in improving the hit rate, as it determines the next cache line to

be replaced.

A replacement strategy is needed when all the cache lines are filled and a new block of memory

needs to be placed in the cache. Cache controller identifies a cache line to be replaced. Then it

replaces that cache line with new data from the main memory. The replacement algorithm used in

cache memory helps in reducing the number of cache misses and thus reduces the power

consumption. This reduction in power consumption for set associative cache can thus be achieved

with the help of an efficient replacement algorithm. The performance of cache replacement

mechanism primarily depends on how accurately the cache can predict the future reference

pattern based on the past references. The future reference pattern may depend on past reference

pattern and input data.

The current processors employ various replacement policies such as Random, Least Recently

Used (LRU), Pseudo LRU (PLRU), Most Recently Used (MRU) and Round robin (or FIFO –

First-In-First-Out).

3.2 LEAST RECENTLY USED (LRU) REPLACEMENT STRATEGY

LRU replacement strategy, as the name implies, replaces the element that has not been accessed

for the longest period. This results in a higher cache hit rate with the cost of additional time and

CHAPTER 3 – LLRU REPLACEMENT STRATEGY

 56

hardware for maintaining LRU state information and decision-making. It is the most widely used

replacement strategy in conventional cache, because of its high performance [Smith 1982]. The

implementation complexity of the LRU scheme increases with increase in associativity [Hennessy

2007][Deville 1992][Sudarshan 2004], thus resulting in consuming more time to detect the line to

be replaced. There exist various ways to implement LRU in hardware, which includes counter,

square matrix, skewed matrix, Link list, Phase, and Systolic array method[Sudarshan 2004].

There also exist a large number of modifications for LRU strategy, which mainly focus on higher

performance and lower implementation complexity [Sudarshan 2004] [Sukumar 1993] [Zhang

1997]. Literature reveals that LRU strategy performs close to optimal replacement, when

associativity is less. As the associativity increases, the performance degrades considerably [Wong

2000].

In this replacement strategy, the LRU information is updated for each reference to a cache line.

LRU takes more time per access of data from cache, compared to FIFO and random

replacements. The LRU algorithm for cache replacement is given below.

3.2.1 LRU REPLACEMENT STRATEGY: ALGORITHM

Input: LRU data structure.

Output: Line number of the Cache line to be evicted (victim line) if CACHE MISS

Search space: All cache lines (N) in a set S.
ON EVERY REFERENCE IN A CACHE SET

begin

if (SQUARE MATRIX implementation) then

if (Reference is CACHE HIT in ith Cache line) then

set ith row of LRU data structure to 1; set ith column of LRU data structure to 0

Victim line number = Row number of LRU data structure with all zeros

if (COUNTER implementation) then

if (Reference is CACHE HIT in ith Cache line) then

for j = 0 to N-1

if (LRUcount[j] > LRUcount[i]) LRUcount[j] = LRUcount[j] – 1;

LRUcount[i] = N-1;

Victim line number = Cache line number whose LRUcount value is zero

end

CHAPTER 3 – LLRU REPLACEMENT STRATEGY

 57

3.2.2 HARDWARE IMPLEMENTATION OF LRU SCHEME FOR N – WAY SET-ASSOCIATIVE CACHE

Most commonly used hardware implementations in LRU are square matrix and counter. The

hardware components required for implementing square matrix LRU for a set is a 2:1 multiplexer,

(log2N):N decoder, N x N storage elements (D – Flip flop), N x log N priority encoder and N -

OR gates. The hardware components required for implementing counter LRU for a set is a 2:1

multiplexer, a N:1 multiplexer, two 1:N demultiplexers, N counters (each counter is of log2N

storage elements, i.e., D – Flip flops), N (log2N)-bit comparators, N x log2N priority encoder and

N - AND gates. With increase in associativity, in case of square matrix LRU implementation, the

number of storage elements increases quadratically (N2) whereas increase is linear (N log N) in

the case of counter. The associated circuit complexity also increases heavily with associativity.

3.3 WHY LATE LEAST RECENTLY USED (LLRU) REPLACEMENT SCHEME?

The need of LLRU replacement strategy is explained with an example. Assume a system has two

ready–to-run processes (P0 and P1) in RAM with 6 non-shared data lines each (P00, P01, P02,

P03, P04 and P05 for Process P0 and P10, P11, P12, P13, P14 and P15 for Process P1) and two

shared data lines that is shared between the two processes (S0 and S1). Also, assume the cache

system is 8 – way set associative, with all the data lines mapped to the same set of the cache. The

access pattern is P00, S0, S1, P01, P02, P03, P04, P05, P10, P11, P12, S0, S1, P13, P14 and P15.

If the replacement scheme is LRU, this pattern will result in 16 cache misses and will repeat for

every hyper period. If we have a replacement strategy where a shared cache line (data line in

cache containing shared data between processes) replacement is delayed for some more time,

which results in a better cache hit rate. According to LLRU, the shared cache lines have shared bit

set to one, which delays the replacement of these pages. This result in reducing the number of

cache misses to 14, from 16. The performance of this algorithm gets even better when the number

of shared cache lines increases. For a system with no shared cache lines, the performance of this

algorithm is the same as that of LRU.

None of the existing replacement policies address the issue of shared cache lines among

processes, as the cache is transparent to the operating system. This work simulates and

synthesizes a replacement scheme called Late LRU (LLRU), which takes shared cache lines into

CHAPTER 3 – LLRU REPLACEMENT STRATEGY

 58

consideration to improve the cache hit rate, thus resulting in reduction in power consumption and

improvement in the cache performance.

To the best of author’s knowledge, this work is the first attempt to address issues related to shared

cache lines during cache replacement. This work is an extension of LRU scheme known as Late-

LRU (LLRU) replacement scheme, which takes care of shared pages while replacement

(repetition). An analysis of the performance of LLRU scheme by using both software

Simplescalar traces and hardware simulation is carried out. Software simulation results provide

cache miss rate measure, whereas, the hardware simulation using Modelsim and Leonardo

Spectrum provides circuit complexity and size.

3.4 LATE-LRU REPLACEMENT POLICY (LLRU)

The proposed scheme, termed as Late – LRU replacement strategy (LLRU) is an augmentation of

LRU replacement strategy, where an additional state affects the replacement decision. Along

with the control bits like valid bit, dirty bit (only for write back policy) and LRU state

information, which influences LRU replacement decision, this scheme introduces one more bit

per cache line termed as ‘shared bit’ to identify the shared cache lines. This bit is used for

identifying the victim line for replacement. By default, the shared bit of all the cache lines is reset.

This is to ensure good performance even when there are no shared pages available in the system.

The shared bit corresponding to a cache line is set if its content is shared between two or more

processes and some of these processes are in ready state, that is, the shared bit is set for the cache

lines that are shared (which are likely to be used by the other ready-to-execute processes). The

shared bit is reset for the non-shared cache lines, as well as for the shared cache lines whose other

sharing processes are not in ready state.

The LLRU replacement policy uses LRU data structures and shared bit. While finding a victim

cache line using LLRU replacement policy, one can assign highest priority to shared cache lines,

so that they can stay back for a longer time in the cache, thus resulting in an increased cache hit

rate. The shared bit of the cache line is reset immediately after the scope expiry, that is, when all

the shared processes complete their execution. In case of a cache miss occurs, the LLRU

replacement algorithm finds a cache line to be evicted and will copy the data requested to that

cache line.

CHAPTER 3 – LLRU REPLACEMENT STRATEGY

 59

This approach is very useful and effective for embedded systems, which are static-scheduled. At

the time of compilation, one can identify the shared contents among the processes and can also

get the sequence of execution of these processes.

3.4.1 LLRU CACHE REPLACEMENT ALGORITHM

Here, LLRU replacement decision is based on LRU data structure and shared bit. If the access is a

cache hit, then the hit signal is set by the cache controller and the LLRU data structure is updated

in the similar fashion as in case of LRU replacement policy. If the access is a cache miss, then

with the help of LRU data structure and shared bit, LLRU decides which cache line to be evicted

within the cache set.

In LLRU, to find the cache line to be evicted, find the line with minimum LRU count and shared

bit status as 0. If each of the cache lines in a set has its shared bit as 1, then apply LRU

replacement policy to find the cache line to be evicted. The LLRU algorithm is given below.

Input: LRU data structure and Shared bits.

Output: Line number of the Cache line to be evicted (victim line) if CACHE MISS

Search space: All cache lines (N) in a set S.
ON EVERY REFERENCE IN A CACHE SET
begin

if (SQUARE MATRIX implementation) then

if (Reference is CACHE HIT in ith Cache line) then

set ith row of LRU data structure to 1; set ith column of LRU data structure to 0

Count number of 1’s in each row of LRU data structure (log2N bits)

Append Shared bit as MSB bit to the count value (log2N + 1 bits)

Victim line number = Row number with minimum count value

if (COUNTER implementation) then

if (Reference is CACHE HIT in ith Cache line) then

for j = 0 to N-1

if (LRUcount[j] > LRUcount[i]) LRUcount[j] = LRUcount[j] – 1;

LRUcount[i] = N-1;

Append Shared bit as MSB to corresponding LRUcount value

Victim line number = Cache line number whose LRUcount value is minimum
end

CHAPTER 3 – LLRU REPLACEMENT STRATEGY

 60

3.4.2 LLRU HARDWARE IMPLEMENTATIONS

LLRU works in the same way as LRU, when none or all of the cache lines in the set are shared. If

any of the cache lines’ shared bit is set, then the decision-making is based on the above mentioned

LLRU strategy. The LLRU replacement circuitry finds a non-shared cache line with minimum

LRU value as the victim cache line for replacement.

The following section describes in detail about square matrix and counter LLRU

implementations.

3.4.2.1 Square Matrix Implementation of LLRU

The LLRU selects least recently used non-shared cache line if there exists at least one non-shared

cache line, otherwise the least recently used shared cache line is used for replacement. This

implementation uses D flip-flops to construct a square matrix LRU and shared bit data structures.

The implementation requires N bits for shared bit data structures per cache set. It requires N x N

bits per cache set to implement a square matrix LRU data structure for a N-way set associative

cache. The global set contains M replications of these data structures, where, M denotes the

number of cache sets available in an N – way set associative cache. In LRU square matrix

implementation, each of the N rows of the data structure maps to one of the N cache lines of a set,

as [Sudarshan 2004]. At reset all data structures are initialized to zero as shown in Figure 3.1.

Fig. 3.1: LLRU data structure for a 4-way set associative cache (Square Matrix implementation)

The cache set identification and working set identification is the same, as in LRU replacement

scheme described in [Sudarshan 2004]. The square matrix LRU data structure follows a simple

logging scheme wherein, it sets the row of access lines to 1 and then sets the column of the access

lines to 0. The number of 1’s in each row is an indication of the order of cache line access. The

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

3

4

1

Shared LRU Matrix

CHAPTER 3 – LLRU REPLACEMENT STRATEGY

 61

cache line corresponding to the row, which has the maximum number of 1’s, is the most recently

used and the cache line corresponding to the row, which has all 0’s is the least recently used. In

case of a cache miss, the corresponding shared bit is concatenated as MSB with the count of 1s in

each row to find the cache line to be evicted. The cache line with minimum resultant count will be

the one to be evicted, when transferring content from main memory.

Figure 3.2 shows the square matrix implementation of LLRU replacement scheme. LLRU

consists of a ‘n’-bit 2-to-1 multiplexer, a n: N decoder, a (N x n)-bit counting circuit

(combinational circuit), a ((n+1) x n)-bit minimum finder circuit, N shared bits, and N x N edge-

triggered D flip-flops with clear and preset. N represents the associativity, while n is log2N.

Fig. 3.2: LLRU square matrix implementation

The circuit works as follows.

The 2:1 multiplexer, log2N x N decoder and N x N edge-triggered D flip-flop work in the same

way, as in LRU. In the case of a hit, the cache line index is given as the select input of the

decoder. The decoder selects the corresponding row and column. The storage element in row is

set and column is reset. The ANDed complement output of the D flip-flops in each row is fed into

CHAPTER 3 – LLRU REPLACEMENT STRATEGY

 62

a counting circuit. The counting circuit counts the number of 1s in the input and gives the

resultant count as the output. The output of the counting circuit is of n bits (log2N), since each

row consists of N elements. The N shared bits are also connected (input) to the minimum finder

block. The shared bit is concatenated as MSB to the count provided by the counting circuit and

this ((log2N) + 1) bits per cache line is input to the minimum finder. The minimum finder finds

the minimum of all the inputs and its output is the cache line to be evicted, according to LLRU

policy. In the case of a miss, this index is given to the multiplexer, which is triggered by the miss

signal to enable it and the corresponding row and column are set and reset respectively. RESET

signal high initializes the matrix by setting all storage elements to zero.

It can be observed that for a cache hit, the delay involved and time required to service the request

is the same as LRU replacement policy. But for a cache miss, as the replacement line has to be

obtained from the minimum finder, a delay is added to the replacement implementation. The

matrix also needs to be updated with the replacement.

Similar to LRU, square matrix LLRU implementation uses simple data structure and requires

minimum associated logic for finding / modifying LRU information. The main drawback of

square matrix method is that it does not scale well for large associativity cache. This is because

the amount of space required for information increases quadratically with N.

3.4.2.2 Counter Implementation of LLRU

Figure 3.3 shows the data structures and its initial values for a 4-way set associative LLRU

counter implementation. In this implementation, a register is used for every individual row to

maintain LRU data structure [Sudarshan 2004]. This implementation uses an edge-triggered

log2N-bit register, which supports operations like reset to zero, decrement by one and load (N-1)

externally for a N-way set associative cache. Each cache line in every set is mapped to a register.

Thus, for higher values of N, the counter LLRU storage space utilization drops exponentially in

comparison with square matrix LLRU implementation.

The values in the register indicate the order in which the cache lines within a set have been

accessed. The smallest value (zero) in register corresponds to the least recently accessed cache

line and the highest value (N-1) corresponds to the most recently accessed cache line. At reset all

the registers and shared bits are initialized to zero.

CHAPTER 3 – LLRU REPLACEMENT STRATEGY

 63

In case of a cache hit, the LLRU counter data structure is updated in same fashion as LRU

counter, i.e., the registers whose value is greater than the active register is decremented by one

and the active register is set to the highest value (N-1).

In case of a cache miss, the shared-bit is concatenated as MSB with LRU register to form a

((log2N)+1)-bit LLRU register. The cache line with minimum resultant register value is the one to

be evicted for transferring content from main memory.

Fig. 3.3: LLRU data structure for a 4-way set associative cache (Counter implementation)

Fig. 3.4: LLRU counter implementation

0

0

0

0

0 0

0 0

0 0

0 0

2

3

4

1

Shared LRU Count

CHAPTER 3 – LLRU REPLACEMENT STRATEGY

 64

The LLRU counter implementation has similar structure as the LRU counter implementation

[Sudarshan 2004]. Figure 3.4 shows the counter implementation of LLRU replacement scheme.

As in LRU, LLRU has a register per cache line to store LRU count information. LLRU has N

shared bits, one per cache line indicating whether the cache line is shared or not. In LRU the

cache line to be evicted is the one with the minimum count value. In case of LLRU, the cache line

to be evicted is the least count non-shared cache line that may not be the least count cache line.

The LLRU replacement circuit is designed in same way as the LRU replacement circuit except

the priority encoder is replaced with the minimum finder. The value of registers and shared bits

are the inputs to the minimum finder. The minimum finder concatenates the shared bit as the

MSB of corresponding register output. This guarantees that the shared cache line’s count will be

high compared to non-shared cache line, thus rendering shared data cache lines a second chance

to reside in the cache. It outputs the index of the cache line, which has the minimum resultant

count value. That cache line in the index is the one to be replaced, if the access is a cache miss.

3.5 EXPERIMENTAL RESULTS AND ANALYSIS

3.5.1 SOFTWARE SIMULATOR

A cache simulator is implemented in C with both LRU and LLRU replacement policies for

experimentation. The experimentation uses Simplescalar benchmark address traces generated

using Simplescalar2.0 simulator [Burger 1997]. In this experiment, 4KB and 8KB, cache sizes are

used. Cache hit rate for 2-way and 4-way set associative cache configurations with data sharing

(10 test cases with data sharing varied between 0% and 100%) is measured and averaged over the

number of test cases. Figure 3.5 and 3.6 show the LRU and LLRU results for 4K, 2-way, 4K, 4-

way, 8K, 2-way and 8K, 4-way set associative cache configurations.

In the worst case, i.e., when no shared cache lines are available, LLRU offers the same

performance as LRU. Depending on the number of shared cache lines, the performance of LLRU

improves. As expected, when the associativity increases, the hit rate of both LRU and LLRU

improves and hence, 8K 4-way set associative cache configuration performs better than 8K 2way

set associative cache configuration. It is also observed that depending on the cache size,

performance varies.

CHAPTER 3 – LLRU REPLACEMENT STRATEGY

 65

In all these configurations, LLRU performs equally good or better than LRU. It is also observed

that depending on the number of shared cache lines, the performance of LLRU improves.

4K Cache Hit for Various Configurations

89
90
91
92
93
94
95
96
97
98
99

Anagram Fmath Llong Lswlr Math Printf

SimpleScalar Benchmark Programs

C
ac

he
 H

it

LRU 2Way LRU 4 Way LLRU 2 Way LLRU 4 Way

Fig. 3.5: LRU and LLRU performance of a 2-way and 4-way (4K cache) set associative cache.

8K Cache Hit for Various Configurations

94.5

95.5

96.5

97.5

98.5

99.5

Anagram Fmath Llong Lswlr Math Printf

SimpleScalar Benchmark Programs

C
ac

he
 H

it

LRU 2Way LRU 4 Way LLRU 2 Way LLRU 4 Way

Fig. 3.6: LRU and LLRU performance of a 2-way and 4-way (8K cache) set associative cache.

3.5.2 HARDWARE SIMULATION AND SYNTHESIS

The verilog implementations of square matrix LRU, counter LRU, square matrix LLRU and

counter LLRU are carried out. These implementations are simulated for a 4-way set associative

cache configuration. The simulation establishes the functional correctness of the various LRU and

LLRU hardware implementations. Simulation is carried out using Modelsim. These

CHAPTER 3 – LLRU REPLACEMENT STRATEGY

 66

implementations are synthesized with Leonardo spectrum using ami05 technology. Area and

other layout details are obtained from the IC station.

Table 3.1 shows the maximum clock frequency, critical path delay, number of transistors used

and the total area occupied for square matrix and counter implementation of LRU and LLRU

replacement strategies. It is evident from the table that the square matrix implementations of the

replacement policies (both LRU and LLRU) are faster, when compared to their counter

implementations, because of reduced critical path delay. The number of transistors used is more

in square matrix implementation compared to counter implementation. So the area occupied by

square matrix implementation is more compared to counter implementation.

Table 3.1: Comparison chart of LRU and LLRU

From Table 3.1 one can observe that the LLRU implementation works at a higher clock frequency

than the corresponding LRU implementation (counter and square matrix implementations of

LRU).This is mainly due to lower critical path delay for LLRU as compared to LRU

implementations. Here, the square matrix LLRU has the least critical path delay (10.47nsec) and

counter LRU has the highest critical path delay (14.75nsec). It is also observed that square matrix

LRU has lower critical path delay (11.4nsec) as compared to counter LLRU (12.19nsec).

It is also observed that LLRU implementations require more number of transistors and more area

than the LRU implementations. LLRU improves the performance of cache and its accessibility, in

the case of shared pages. Hence, the trade off for the area is justifiable for higher performance.

Clock Freq

(MHz)

Critical path

delay (ns)

No. of Transistors

(CMOS)
Area (mm2)

Square Matrix

Implementation

LRU 84.9 11.40 797 0.70

LLRU 92.2 10.47 1212 0.93

Counter

Implementation

LRU 66.1 14.75 784 0.679

LLRU 79.6 12.19 1082 0.899

CHAPTER 3 – LLRU REPLACEMENT STRATEGY

 67

3.6. CONCLUSION

This work focused on the implementation and analysis of a new cache replacement strategy, Late

LRU (LLRU), which particularly considers shared pages among processes, while deciding on

replacement. Hardware implementations of LRU and LLRU based on square matrix as well as

counter were carried out. These implementations were simulated in Modelsim and synthesized in

Leonardo spectrum. Layouts for these hardware architectures have also been obtained, from the

IC station. The cache hit is measured for various cache configurations by using software

simulator and Simplescalar traces. The results thus obtained, were analyzed based on the

parameters like area, clock frequency, critical path delay, number of transistors and cache-hit rate.

From the above results, one can conclude that with minimal extra hardware, LLRU improves the

cache performance significantly. This method guarantees that the performance of the modified

replacement strategy, LLRU is better and at least as good, in the worst case, as the performance of

the original strategy under the LRU replacement policy. It is known that any improvement in

cache performance in embedded systems leads to reduction in power consumption and overall

improvement of the system performance. Thus LLRU replacement scheme can play a significant

role in cache memory design for embedded systems.

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 68

CHAPTER 4

WAY-PREDICTIVE PLACEMENT CACHE

4.1 INTRODUCTION
This chapter focuses on the methods adopted for energy efficient cache designs. Way

prediction set associative cache is modified to improve cache performance in terms of

power, access time and cache hit rate. This chapter discusses way prediction scheme and

its limitations. This chapter also explains way predictive placement scheme, a

modification of way prediction scheme with global prediction, a new technique to

overcome some of the bottlenecks of way prediction scheme. The chapter elaborates on

way predictive placement scheme with two alternatives for replacement strategy: LRU

and aligned LRU (ALRU). This chapter evaluates conventional cache, way prediction

cache and way predictive placement cache using SPEC 95 benchmark suite. The

evaluation is based on number of tag comparisons, prediction hit rate, cache hit rate,

cache access time and energy saving parameters.

4.2 WHY WAY-PREDICTION SET-ASSOCIATIVE CACHING SCHEME?

Cache memory power consumption can be significantly reduced by managing data lines

and sense amplifiers efficiently, as these are the most power consuming modules in cache

memory sub system. Wilton and Jouppi [Wilton 1996] reported the power consumption

of data lines and data sense amplifiers as 55%, 65% and 75% of the total cache

subsystem power consumption for direct, 2-way set associative and 4-way set associative

mapping schemes respectively. Optimal energy efficiency is possible if each cache hit

results in reading and comparing one tag entry, enabling and accessing only one data

entry and if each cache miss results in reading and comparing one tag entry. The key to

obtaining optimality is to pinpoint the matching way without probing all the ways. There

exist various schemes like sequential access, and phased lookup set associative cache.

Both these schemes have performance overhead in terms of extra phase as it takes one

extra cycle to access the cache. A better approach for attaining energy efficiency is to

speculatively choose one way before a cache line access in set associative cache. As

functioning of cache is based on temporal locality, Most Recently Used (MRU) heuristic

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 69

can be very effective. Inoue et al. [Inoue 1999] proposed this as way prediction set

associative cache.

4.3 WAY PREDICTION SET-ASSOCIATIVE CACHE

Figure 4.1 shows the way prediction set associative cache (WP) proposed by Inoue

[Inoue 1999]. The algorithm of the Way Prediction caching scheme with LRU

replacement strategy is as discussed below.

4.3.1 ALGORITHM FOR WAY-PREDICTION CACHE

//Cache operations to be carried out on every reference
begin

Look up the virtual page number in TLB

if (TLB HIT) then

Derive tag (t), index (i) and offset (o) from physical address fetched from TLB.

WaySelect = Prediction Table[i]

CYCLE = 1

while (CYCLE < 4) do

if (CYCLE = 1) then

Enable WaySelectth cache way; Disable all the other N-1 ways

if (Reference is CACHE HIT in ith set, WaySelectth way) then

Read / Write data from / to offset location; Update LRU data structure

CYCLE = 4

else CYCLE = 2

if (CYCLE = 2)

 Disable WaySelectth cache way; Enable all the other N-1 ways

if (Reference is CACHE HIT in ith set) then

Read / Write data from / to offset location; Update LRU data structure

Prediction Table[i] = CACHE HIT Way number

CYCLE = 4

else CYCLE = 3

if (CYCLE = 3)

Transfer data from Main memory to the victim line (selected by LRU

replacement strategy) of ith set

Read / Write data from / to offset location; Update LRU data structure

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 70

Prediction Table[i] = CACHE HIT Way number

CYCLE = 4

if (TLB MISS) then

Generate trap to handle TLB miss

end

4.3.2 WORKING OF THE WAY – PREDICTION CACHE

WP speculatively chooses one way with the help of way enable circuit before starting the

normal cache-access process. This scheme accesses the cache data line and tag line

corresponding to index field in the enabled way. If the prediction is correct, i.e. the tag

field in address reference is matching with the tag field of the selected cache tag line then

the cache access is completed successfully. All the (N-1) ways are in power down state

during this cycle. A wrong prediction can be because of the requested data available in

another cache way of the same set or because of a cache miss. In WP, prediction-miss

results in enabling all the other (N-1) ways and comparing (N-1) tag values with the tag

field of the address reference in the next cycle. If the tag field of the address reference is

matching with any of the (N-1) tag fields of the enabled cache tag lines, then the cache

access has been completed successfully. Otherwise, the access will be cache miss.

Fig. 4.1: 4-way set-associative cache (Way prediction cache)

Inoue et al. used log2 (N) bits per set to maintain the MRU way information, which is

used for predicting the way. MRU bits of each set have information of recently accessed

way of a cache line in that set. If prediction is correct, cache consumes dynamic energy

for only one activated way. Otherwise, it consumes dynamic energy same as conventional

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 71

cache with an additional cycle time penalty for misprediction. This method saves almost

(100*(N – 1) / N) % of the energy in a N – way set associative cache. Prediction

accuracy according to Powell et al. [Powell 2001] is 90% for instruction and 80% for

data.

On a prediction hit, WP consumes energy only for activating the predicted way. In

addition, the cache access can be completed in one cycle. This results in saving 50%,

75%, and 87.5% of the dynamic power for 2-way, 4-way and 8-way set associative cache

configurations respectively. On prediction miss (or cache miss), however, the cache-

access time of the WP increases due to the extra phase.

The average energy consumption (EWP-N-SACache) and the average cache-access time (TWP-

N-SACache) for the N-way set-associative WP (WP-N-SACache) are as follows:

EWP-N-SACache = (ETag + EData) + (1 - PHR) * ((N-1)ETag + (N-1)EData)

TWP-N-SACache = 1 + (1 - PHR)

Where, PHR is prediction-hit rate.

WP improves the Energy – Delay (ED) product (ED= average cache access time *

average energy consumption per cache access) by 60–70% compared to a conventional

set-associative cache.

4.3.3 DRAWBACKS OF THE WAY-PREDICTION CACHE

Though way-prediction scheme is very effective in saving power, it suffers with serious

drawbacks, which significantly limit its usage. This scheme suffers from performance

degradation because of cycle time penalty for handling misprediction. In way prediction

scheme, a table lookup is needed to identify the MRU information of the selected set.

This adds extra time delay to the critical path as one cannot prefetch the MRU

information until the set number is available. As known from literature, the performance

of the existing way prediction with MRU information does not always work well. The

two choices available for a way prediction are to use information available (1) early in

the pipeline, such as the program counter, (2) later in the pipeline, such as a XOR-based

approximation of the load address [Powell 2001]. Each of these methods has its own

demerits. Way prediction based on information from early pipeline stages suffers from

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 72

poor accuracy. To improve the way prediction accuracy, one should go for late pipeline

stage information. But the way prediction based on late pipeline information introduces a

way prediction table lookup delay in the cache access critical path [Batson 2001]. For

instance, the way-prediction scheme used in [Inoue 1999] inserts a table lookup after the

address generation to identify the predicted way. The other drawback of way prediction

scheme is that MRU information does not always work well with data references [Calder

1996][Batson 2001][Min 2004].

Other than time and performance overhead, WP increases hardware complexity of set

associative cache. For a cache containing K sets, K* log2N bits are required for storing

MRU information, where N is the associativity. This information is stored in the form of

a table containing K rows where each row specifies MRU information of the

corresponding cache set. This table is accessed every time (before a cache access) to

determine the last accessed way in that set. This introduces an increase in the cache

access time as it lies in the critical path. In addition extra circuitry is required for enabling

/ disabling the way.

 Though WP reduces the energy consumption of a set associative cache significantly,

there exist scope of improvements in terms of optimizing / avoiding table lookup time,

prediction hit rate and hardware complexity. The following sections explain in detail

about way – predictive placement scheme for set associative cache – a modification over

way – prediction set associative cache to achieve greater energy saving, high prediction

hit, reduced critical path delay, zero table look up and reduced hardware complexity.

4.4 WAY – PREDICTIVE PLACEMENT CACHE

The late pipeline stage information introduces an undesirable way prediction table lookup

delay in the cache critical path. We require a scheme to maximize the prediction,

minimize the delays and save energy significantly. This way-predictive placement

scheme is a modification of way-prediction algorithm, which would help in reducing the

number of tag comparisons, increase way-prediction rate and in turn reducing power

consumption. The proposed scheme uses only log2 N global bits in fixed position for the

entire cache to store the MRU information independent of number of cache sets. This acts

as a unified global MRU for all the sets. This modification helps us to reduce the

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 73

hardware complexity and overcome the table lookup, while using late pipeline

information.

4.4.1 ALGORITHM FOR WAY-PREDICTIVE PLACEMENT SCHEME

//Cache operations to be carried out on every reference
begin

Look up the virtual page number in TLB

if (TLB HIT) then

Derive tag (t), index (i) and offset (o) from physical address fetched from TLB.

WaySelect = Global MRU bits

CYCLE = 1

while (CYCLE < 4) do

if (CYCLE = 1) then

Enable WaySelectth cache way; Disable all the other N-1 ways

if (Reference is CACHE HIT in ith set, WaySelectth way) then

Read/Write data from/to offset location; Update ALRU data structure

CYCLE = 4

else CYCLE = 2

if (CYCLE = 2)

 Disable WaySelectth cache way; Enable all the other N-1 ways

if (Reference is CACHE HIT in ith set) then

Read/Write data from/to offset location; Update ALRU data structure

Global MRU bits = CACHE HIT Way number

CYCLE = 4

else CYCLE = 3

if (CYCLE = 3)

Transfer data from Main memory to the victim line (selected by ALRU

replacement strategy) of ith set

Read/Write data from/to offset location; Update ALRU data structure

Global MRU bits = CACHE HIT Way number

CYCLE = 4

if (TLB MISS) then

Generate trap to handle TLB miss

end

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 74

4.4.2 WORKING OF THE WAY – PREDICTIVE PLACEMENT SCHEME

Conventional cache architecture for a 4-way set-associative cache is as shown in Figure

4.2. Consider an 8KB cache with a line size of 64 bytes. The cache line has 32 sets, thus

the memory address will have 6-bit offset, 5-bit index and remaining 21-bits of tag fields.

This architecture includes 5:32 decoder, word line drivers, four tag arrays, four data

arrays, sense amplifiers, comparators, one multiplexer and output drivers. In addition to

all these, way – predictive placement scheme has log2 N bits to store the MRU way

information and extra circuitry to enable/disable the tag and data arrays. The way –

predictive placement scheme, placement and replacement in the cache are based on this

way information. The way – predictive placement scheme is as shown in Figure 4.3 and

Figure 4.4.

The way – predictive placement scheme has the following changes to the existing way-

prediction schemes. It uses only log2 N bits for the entire cache, irrespective of the

number of cache lines, to store the MRU information. This is a unified MRU for all the

sets. For the cache configuration described above, a way-prediction scheme would need

64 bits for storing the MRU information, whereas, the proposed way – predictive

placement scheme needs only 2 bits. The proposed modification results in reduced

hardware complexity and eliminates the table lookup, while using late pipeline

information. For maximizing the prediction hit using MRU information, modification to

existing scheme has been proposed. The modifications are as follows. Whenever a

decision has to be taken about the page eviction, find if the cache block corresponding to

the current MRU bits (way) in the given line is ready for replacement. This replacement

strategy helps to explore MRU bits information and avoid misprediction between one

index and the other. Secondly, most of the continuously referred pages in different

indexes are aligned i.e., map on to the same way. By doing so, any random access to

these indexes will not result in misprediction. The modified scheme helps in achieving

hardware reduction and energy efficiency.

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 75

Fig. 4.2: 4-way set-associative cache (Conventional cache)

Fig. 4.3: Prediction Hit

Fig. 4.4: Prediction Miss

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 76

On every reference, CPU produces a virtual address. If the corresponding page number is

available in the TLB, then fetch the physical address from the corresponding TLB entry.

In way – predictive placement scheme, for a cache access, depending on the value of

global MRU bits, only one data-way and tag-way are enabled with the help of tag and

data way selection circuitry. If the prediction is a hit i.e. if the tag value of the selected

cache line (in the enabled cache way) is matching with the address’s tag bits, then access

the data from the corresponding offset. Update the LRU bits of the corresponding set.

If the prediction is a miss, then in the next cycle, enable all the other (N-1) data and tag

ways, where N is the associativity and compare the tags of (N-1) cache lines of the set

which are selected based on index bits, to see whether the required data is available in the

cache. If the data is available in the cache, access the data from the offset location of the

cache line. Update the MRU prediction bits with the new way identifier. Update the LRU

replacement circuitry of the corresponding set accordingly. If the required page is not

available in cache, then transfer page from main memory into the specific cache line

(victim cache line) of the set specified by LRU replacement algorithm. After transferring

data from main memory to the selected cache line, access the required data from the

offset location of the cache line. Update the MRU prediction bits with the new way

identifier. Update the LRU replacement circuitry of the corresponding set accordingly.

The prediction accuracy can be improved if one can modify the replacement circuitry.

The modified replacement algorithm should provide better alignment of data lines in the

same way. Next section explains in detail about the modified LRU replacement strategy.

A cache miss will always lead to a prediction miss. So the performance of way –

predictive placement scheme depends on cache miss and prediction miss rates.

4.4.3 REPLACEMENT ALGORITHM - ALIGNED LRU (ALRU): A VARIANT OF LRU

Performance of a way – prediction set-associative cache can be improved by reducing

number of mispredictions and cache misses. To achieve this, a new replacement strategy

named Aligned LRU (ALRU) is employed, which aligns the data pages in the same cache

block wherever possible.

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 77

//Algorithm for Cache Placement / Replacement for way – predictive placement scheme

Input: LRU data structure, Global MRU bits.

Output: Line number of the Cache line to be evicted (victim line) if CACHE MISS

Search space: All cache lines (N) in a set S.
ON EVERY REFERENCE IN A CACHE SET

begin

predict = Global MRU bits

if (Reference is CACHE HIT in ith Cache line) then

for j = 0 to N-1

if (LRUcount[j] > LRUcount[i]) LRUcount[j] = LRUcount[j] – 1;

LRUcount[i] = N-1;

if (LRUcount[predict] < N/2) then

Victim line number = predict

else

Victim line number = Cache line number whose LRUcount value is zero

end

The replacement algorithm used in way – predictive placement scheme is a variant of

LRU, which replaces one of the LRU pages in the cache set. If the last predicted cache

block is one of the candidates for replacement (i.e. the block with LRU count less than

(N/2)), then select that cache block as the victim block to load data from primary

memory. This guarantees that most of the cache blocks are aligned to the predicted cache

way and thus further improve the prediction accuracy.

The prediction correctness can increase with cache page size and can decrease with

associativity. Theoretically, with increase in associativity, power consumed

approximately reduces by a factor of (N-1) / N for best case, where N is the cache

associativity. The power saved in cache increases with increase in block size, as more

number of references will fall in the same block. It is not recommended to increase the

cache size beyond a limit because of the data transfer delays (miss penalty) and the load

capacitance. The worst-case power consumption by any way prediction cache scheme is

the same as that of the traditional cache. Similar to the proposed scheme, way –

prediction cache also has more average access time than conventional cache. Way –

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 78

predictive placement cache has lesser average access time because of zero table lookup

time and better prediction accuracy.

4.4.4 WAY – PREDICTIVE PLACEMENT CACHE ENERGY AND ACCESS TIME ANALYSIS

The equations for average energy consumption and average cache access time for N –

way set associative way – predictive placement cache are the same as for way –

prediction cache except the fact that prediction hit rate is higher and table lookup power

is saved. The prediction hit rate is high because of the Aligned LRU replacement strategy

implementation with the help of global prediction bits. The average energy consumption

(EWPP-N-SACache) and the average cache-access time (TWPP-N-SACache) for the N-way set-

associative Way – predictive placement cache (WPP-N-SACache) are as follows:

EWPP-N-SACache = (ETag + EData) + (1 - PHR) * ((N-1)ETag + (N-1)EData)

TWPP-N-SACache = 1 + (1 - PHR) Where PHR is prediction-hit rate.

Energy analysis using energy dissipation per cache access model

Energy efficiency of proposed scheme is measured as the difference in energy dissipation

by the different caching schemes. In this work the energy dissipation per cache access

model proposed by Zhang et al. [Zhang 2005] is considered.

Edec represents the energy dissipation of the address decoder

Emux represents the energy dissipation of the multiplexer and output driver

Etagline represents the energy dissipation of one tag line

Edataline represents the energy dissipation of one data line

Epreline represents the energy dissipation of one-line’s precharging

Ecomline represents the energy dissipation of one-line’s comparator

Esaline represents the energy dissipation of one-line’s sense amplifier circuit

Etagway represents the energy dissipation of one tag way

Edataway represents the energy dissipation of one data way

Epreway represents the energy dissipation of one way’s precharging

Ecomway represents the energy dissipation of one way’s comparator

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 79

Esaway represents the energy dissipation of one way’s sense amplifier circuit

Etab represents the energy dissipation of table lookup

The energy equations of conventional, way prediction and way predictive placement 4 -

way set-associative cache can be computed as follows:

Eway = (Etagline + Edataline + Epreline + Ecomline + Esaline)*

 cachesize/(associativity * cachelinesize) (4.1)

Conventional cache (Econ)

Econ = Edec + Emux + (4 * Eway) (4.2)

Way Prediction cache,

Prediction Hit Energy (EPhit)

EPhit = Edec + Emux + Eway + Etab (4.3)

Prediction miss (EPmiss) and Cache Miss (ECmiss)

EPmiss = ECmiss = 2*(Edec + Emux + Etab) + (4* Eway) (4.4)

Total Energy

ETotal = Phit * EPhit + (1–Phit – Cmiss) * EPmiss+ Cmiss * ECmiss (4.5)

Way Predictive placement cache,

Prediction Hit Energy (EPhit)

EPhit = Edec + Emux + Eway (4.6)

Prediction miss (EPmiss) and Cache Miss (ECmiss)

EPmiss = ECmiss = 2*(Edec + Emux) + (4* Eway) (4.7)

Total Energy

ETotal = Phit * EPhit + (1–Phit – Cmiss) * EPmiss+ Cmiss * ECmiss (4.8)

4.4.5 EXPERIMENTAL SETUP, RESULTS AND DISCUSSION

4.4.5.1 Experimental setup

For the above calculations, Simplescalar 2.0 [Burger 1997] cache simulator was

employed with different cache configurations. SPEC95 benchmark programs [SPEC95]

are used to obtain the prediction hit rate and the number of tag comparisons required to

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 80

execute each of the selected programs. The selection of SPEC95 benchmark program

suite guarantees uniformity in evaluation as most of the existing cache architectures used

this benchmark program suite for evaluation.

Input: Cache configuration (shown in Table 4.1) and the trace file from SPEC95

benchmark programs (shown in Table 4.2) to be used to emulate cache behavior.

The different parameters that were varied are as shown in Table 4.1.

Table 4.1: Different cache configurations

Cache Parameters Range

Cache size 8K (in Bytes)

Block size 32, 64, 128 (in Bytes)

Cache associativity 2, 4, 8

Table 4.2: SPEC 95 Benchmark program traces used for experimentation

Exp. No. Benchmark Program Exp. No. Benchmark Program

1 applu 7 mgrid

2 compress95 8 tomcatv

3 fpppp 9 su2cor

4 hydro2d 10 swim

5 ijpeg 11 vortex

6 m88ksim 12 Wave5

Cache Algorithm: Way – predictive placement scheme

Replacement algorithm: a variant of LRU – Aligned LRU (ALRU)

Output:

To estimate the prediction accuracy: Number of hits in first cycle, number of hits in

second cycle (mispredictions)

To determine the algorithm efficiency: Total number of cache hits and cache misses

To provide an estimate of the power consumed: Number of tag comparisons required.

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 81

4.4.5.2 Results and discussion

Figure 4.5 to 4.7 shows the percentage of tag comparisons in a conventional cache that is

required for a 4-way set associative way predictive placement cache with 8KB cache size

and 32B, 64B and 128B cache line sizes respectively. This experimentation measures the

number of tag comparisons for various SPEC 95 benchmark program suite with 2, 4, and

8 as associativity. From Figure 4.5 to 4.7 one can observe that number of tag comparisons

is different for different cache configurations. Increase in associativity results in lesser

number of tag comparisons, thus higher savings.

Tag Comparison Vs Benchmark Programs

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12
Benchmark Programs

Ta
g

C
om

pa
ris

on

2-way 4-way 8-way

Fig. 4.5: Tag Comparisons for 8KB cache with 32byte cache line size

Tag Comparison Vs Benchmark Programs

25

35

45

55

65

1 2 3 4 5 6 7 8 9 10 11 12
Benchmark Programs

Ta
g

C
om

pa
ris

on

2-way 4-way
8-way

Fig. 4.6: Tag Comparisons for 8KB Cache with 64byte cache line size

Figure 4.8 to 4.10 shows the prediction hit rate of a 4-way set associative way predictive

placement cache with 8KB cache size and 32B, 64B and 128B cache line sizes

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 82

respectively. This experimentation measures the number of prediction hits over total

references for various SPEC 95 benchmark program suite with 2, 4 and 8 as associativity.

From Figure 4.8 to 4.10, one can observe that prediction hit rate reduces with

associativity, but still accomplishes the objective of providing an improvement over the

way – prediction scheme. Because of low prediction hit rate, higher associativity results

in high average access time. In all these cases, power saving of this method is better than

conventional cache and way prediction cache. The results are summarized in Table 4.3.

Tag Comparison Vs Benchmark Programs

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12
Benchmark Programs

Ta
g

C
om

pa
ris

on

2-way 4-way
8-way

Fig. 4.7: Tag Comparisons for 8KB Cache with 128byte cache line size

Prediction hit Vs Benchmark Programs

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12
Benchmark Programs

Pr
ed

ic
tio

n
hi

t

2-way 4-way 8-way

Fig. 4.8: Prediction hit rate for 8KB Cache with 32byte line size

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 83

Prediction hit Vs Benchmark Programs

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12
Benchmark Programs

Pr
ed

ic
tio

n
hi

t

2-way 4-way 8-way

Fig. 4.9: Prediction hit rate for 8KB Cache with 64byte line size

Prediction hit Vs Benchmark Programs

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12
Benchmark Programs

 P
re

di
ct

io
n

hi
t

2-way 4-way 8-way

Fig. 4.10: Prediction hit rate for 8KB Cache with 128byte line size

Table 4.3: Comparison of the way predictive-placement scheme with conventional way

prediction scheme

Data Cache Way Predictive
Placement Cache

Way Prediction
Cache [Inoue 1999]

Average Cache Predict Hit 90.31% 86%
Average Cache Hit 92.92% NA
Average Tag Comparison 32.26% NA
Average Increase in Effective
Cache Access Time 9.69% 12.975%

Average Energy Saving 67.75% 64.75%

4.4.5.3 Way – predictive placement Cache Vs Way-prediction Cache

For a 4 – way set-associative cache, the average results of way – predictive placement

and way – prediction cache as compared with conventional set associative cache are as

shown in Table-4.3. The prediction hit rate on an average, using the way-predictive

CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE

 84

placement scheme, is 90.31% as compared to 86% for way prediction scheme. The

prediction hit rate for conventional cache is always 100%, as all the ways will be

available for comparison. The average cache hit for a way predictive placement scheme is

92.92%, which is almost the same as conventional and way prediction scheme. The

average tag comparisons of way predictive placement scheme reduces by 67.75%

compared to conventional cache, whereas in predictive placement scheme it reduces by

64.75%. The energy saving required for (N-1) tag arrays and data arrays, (N-1)

comparators, and (N-1) sense amplifiers amounts to a reduction in 67.75% of energy

compared to conventional cache. The energy saving reported for way prediction cache is

64.75%. For the prediction miss an extra cycle is needed to enable the remaining (N-1)

ways. The average effective access time thus increases by 9.69% and 12.975% for way

predictive placement scheme and way-prediction scheme respectively as compared to

conventional set associative cache. The performance improvement of the predictive-

placement scheme, with respect to prediction hit rate and energy saving is 5% and 4.63%

respectively than the way-prediction cache.

From the simulation result, it is evident that due to high prediction accuracy the proposed

scheme saves 67.75% of energy consumption as compared to conventional cache. The

improvement in energy saving is achieved due to the replacement policy ALRU and by

eliminating the table lookup. The proposed scheme reduces the hardware requirements as

it reduces the prediction bits from Number of cache sets * log2 N to log2 N. The role of

additional hardware is mainly for selectively enabling and disabling the tag and data

arrays which is needed for way prediction scheme as well. In case of a conventional

cache organization, all the tag and data arrays are enabled for every data access and hence

the enabling / disabling circuit is not required.

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 85

CHAPTER 5

PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

5.1 INTRODUCTION

This chapter focuses on process aware energy-efficient cache design for Embedded

Systems. This chapter presents two new software controlled energy-efficient process-

aware caching schemes for an N-way set-associative cache: (i) a process-aware selective

placement scheme (PASP) with a victim set and (ii) a shared memory process-aware

selective placement (SMPASP) scheme with small shared and victim sets. These two

schemes aim at reducing the power consumption and improving the cache hit rate of

process aware caches. This chapter elaborates on the working of the proposed process

aware cache designs with placement and replacement support. In this chapter, the

proposed schemes are evaluated and compared with the conventional set-associative

cache and way prediction cache with respect to the cache hit rate, dynamic and leakage

power consumption, with the tag comparison count in particular, for various cache sizes,

cache line sizes and context switch durations. This performance evaluation is carried out

with independent processes and processes which exhibit a considerable amount of data

sharing among them. This chapter evaluates the number of tag comparisons and the

number of hits obtained for the main cache, victim cache and shared cache separately for

various cache configurations (cache size, cache line size and context switch duration) by

using a cache simulator CACHEMEM 1.0 in conjunction with the traces of SPEC 95

benchmark suite programs extracted using the SimpleScalar 2.0 simulator. The dynamic

and leakage power consumption for the various caching schemes are obtained using

eCACTI cycle-based power estimation model.

5.2 WHY PROCESS AWARE CACHE DESIGN?

The conventional N-way set-associative data cache enables all the N tag ways for parallel

comparisons while searching the requested data in the cache which results in high

dynamic power consumption. One way to minimize the dynamic power consumption is

to minimize the internal cache activity during cache access. An ideal situation on a cache

hit is to read and compare only one tag entry and access one data entry, whereas on a

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 86

cache miss, it is to read and compare only one tag entry. This can be achieved by

accessing the set-associative cache as a direct-mapped cache, which requires only one tag

comparison to find if the referenced data is available in the cache.

This can be achieved by using a way prediction cache, but in the way prediction cache,

the cache lines can be placed in any of the sub banks (usually one sub bank is a cache

way). This makes it impossible to put sub banks into deep sleep mode, as the time taken

for wake-up from deep sleep mode to active mode is large. This adversely affects the

power consumption and performance of the way prediction cache. One solution to this

problem is to dedicate one sub bank per process and to switch between the sub banks

only when a context switch occurs. This is achieved in the proposed work by assigning

one dedicated cache way to one process. This converts the N-way set-associative cache

into a direct-mapped cache for the currently running process and all the other cache ways

can be in deep sleep mode, until a context switch takes place. The context switching

information has to be passed on to the cache controller using special instructions. This

results in saving a significant amount of cache power consumption.

Increased power saving is also achieved by reducing the number of conflict misses i.e.,

by cutting down on the miss penalty overhead. Shutting down N-1 cache ways for a long

time results in saving power, but making use of only 1/Nth of the cache size for a process

may degrade the cache hit performance and thus, the increased power consumption. In

both Process Aware Selective Placement (PASP) and Shared Memory Process Aware

Selective Placement (SMPASP) designs, a process-aware, software-controlled way-

selective placement cache mechanism with a victim set is used to improve the hit rate.

These schemes thus improve the cache hit rate by providing a small victim set for the

spill-out data from the main cache and by modifying the replacement scheme.

Most of the current day Embedded System applications are multithreaded with a large

amount of data sharing among the threads, which, if properly exploited may yield a better

cache hit rate. A software-controlled cache is used in the proposed scheme to improve the

performance, wherein the operating system can partially control the availability of data in

the cache by transferring process-related and data sharing-related information to the

cache controller for improving the cache hit rate. To facilitate the efficient handling of

shared data among processes, the SMPASP scheme is proposed. This scheme improves

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 87

the cache performance by providing a small shared set for the shared data among

processes and by modifying the replacement scheme.

5.3 CONVENTIONAL AND WAY – PREDICTION CACHE ARCHITECTURES

The proposed schemes (PASP and SMPASP) are compared with the 4-way set-

associative conventional (Conv) and way prediction (WP) schemes with respect to the

cache hit rate, number of tag comparisons, dynamic, leakage and the total power

consumption for various cache sizes, cache line sizes and context switch durations. The

conventional cache architecture for a 4-way set-associative cache is shown in Figure 5.1.

Fig. 5.1: Conventional 4 – way set-associative cache (Conv)

Consider an 8KB, 4 – way set-associative cache with 64 – byte line size. The cache line

has 32 sets, thus the memory address will have a 6-bit offset, 5-bit index and remaining

21-bits of tag fields. This architecture includes a 5:32 address decoder for tag and data,

word line drivers, four tag arrays, four data arrays, sense amplifiers, comparators, read

and write column multiplexers, multiplexer drivers, one output multiplexer and output

drivers. The algorithm of the Conventional caching scheme is as discussed below.

5.3.1 ALGORITHM FOR CONVENTIONAL CACHE

//Cache operations to be carried out on every reference
begin

Look up the virtual page number in TLB

if (TLB HIT) then

Derive tag (t), index (i) and offset (o) from physical address fetched from TLB.

if (Reference is CACHE HIT in any one of the cache line in ith set) then

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 88

Read / Write data from / to offset location;

Update Replacement circuit of ith set accordingly

if (Reference is CACHE MISS in ith set) then

Transfer data from Main memory to the victim line (selected by the replacement

strategy in use) of ith set

Read / Write data from / to offset location;

Update Replacement circuit of ith set accordingly

if (TLB MISS) then

Generate trap to handle TLB miss

end

5.3.2 WORKING OF THE CONVENTIONAL CACHE

A data access request to the conventional N-way set-associative cache is handled as

follows. On every cache reference, search for the virtual page number in the TLB. If the

virtual page number is available in the TLB, fetch the corresponding physical page

address from the TLB. The offset bits of the requested address are used to find the exact

byte in a cache line after locating the same. The index bits are fed as input to the decoder.

Each decoder output line is used to activate one cache set, i.e., N data and tag arrays of

the N-way set-associative cache. ‘N’ data and tag arrays are read out simultaneously

through the sense amplifier. N comparators compare the selected address tags in parallel

to find which one, if any, out of the N tags is matching with the tag bits of the requested

address. The data corresponding to the tag match is selected using the multiplexer and

output driver and the replacement circuitry of the corresponding set is updated

accordingly. If none of the tags matches then cache line to be evicted is found using the

replacement circuit of the corresponding set. Transfer the requested data from the main

memory to the selected cache line and update the replacement circuit of the set

accordingly. Data is read from the offset location of the selected cache line.

5.3.3 WAY – PREDICTION CACHE

A detailed explanation of the way-prediction cache proposed by Inoue et al. [Inoue 1999]

was provided in the Section 4.2. In this scheme, cache line selection is based on the

MRU information of the index corresponding to which N bits per cache set are used to

store the Most Recently Used (MRU) way information. For the cache configuration

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 89

example in section 5.2, 64 bits are needed to store the MRU information. This

information is stored as a way-prediction table of 32 entries. The data is selected only if

the tag bits of the required address matches with the tag value of the predicted way index

bits. If the prediction is a miss, then in the next cycle, the remaining 3 tag ways and data

ways are enabled for comparison. This results in spending an extra cycle to find the

availability of data in the cache and hence, performance is compromised. Non-

availability of data in cache causes cache miss. The replacement algorithm based on the

Least Recently Used (LRU) policy decides the victim cache line. This scheme requires 64

bits to save the most recently used (MRU) way information and extra cycles for both

prediction miss and cache miss.

5.4 PROCESS AWARE SELECTIVE PLACEMENT CACHE ARCHITECTURE

One of the major concerns in the conventional memory architecture is that the cache is

transparent to the operating system and application programs. Recent studies suggest the

necessity of cache – compiler – operating system – application program interaction to

improve the performance. The interaction can reduce cache power consumption by

accurately predicting the cache set where the required data is available, thus deactivating

the other ways [Yang 2005]. The interaction can also improve cache predictability and

performance by helping the selection of the victim cache line with minimum modification

in the replacement circuitry [Jain 2001][Wang 2002][Sartor 2005]. The proposed scheme

uses software-controlled cache for reduction in power consumption by shutting down N-1

cache ways and reducing the conflict misses. Here, a process-aware, software-controlled

way-selective placement cache mechanism with a victim set is employed. This scheme

thus improves the cache hit rate and reduces the power consumption by providing a small

victim set for the spill-out data from the main cache and by modifying the replacement

scheme.

The proposed design, PASP scheme is as shown in Figures 5.2 to 5.5. Figure 5.2 shows

the PASP cache architecture for the 4-way set-associative cache architecture. Figures 5.3

to 5.5 shows the various cache-related operations associated with the PASP cache where

the highlighted parts represent the active cache blocks.

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 90

Fig. 5.2: PASP Cache Architecture

This scheme has an N-way set-associative cache (N=4 here), a small fully associative

victim cache of 3 to 5 cache lines, one 8 – bit register per cache way to store the process-

related information, log2 N – bits per cache way to store the LRU way information and a

power management unit to activate / inactivate the selected cache ways and the victim

set, as shown in Figure 5.3. The fully-associative victim set is available for all the

processes and is used to collect the spill-out pages from the main cache. This set

improves the cache hit rate, with the help of the FIFO replacement policy.

Fig. 5.3: Cache Hit in dedicated cache way

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 91

Fig. 5.4: Cache Miss in dedicated cache way, checking in the Victim set for data

availability

In the proposed scheme, one way is assigned to one process. The data pages

corresponding to the currently executing process are available in either this dedicated

way or the victim set. This results in enabling either only the assigned way or the victim

set for tag comparisons, as shown in Figure 5.3 and Figure 5.4 respectively. For better

power optimization, the entire main cache is disabled while searching the data in the

victim set, as highlighted in Figure 5.4. The ways which do not belong to the currently

executing process are shut down to save dynamic power consumption. A significant

amount of dynamic power saving is possible with this scheme.

Fig. 5.5: Cache Hit in Victim set (Transferring data to the dedicated cache way –

works in the same way as for a Cache Miss)

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 92

For a static process scheduling scheme, the process-related information is available at

compile time itself, whereas in a dynamic process scheduling scheme, this information is

available at runtime only. In this scheme, the operating system transfers the process

information to the cache controller with the help of special instructions [Jain 2001][Sartor

2005]. With this information, the cache controller enables different ways for different

processes. The context switch routine of the operating system issues special instruction(s)

for transferring the process identification information to the cache controller. If the

process identifier already exists in one of the ways’ register, then the corresponding way

is powered up and remaining N-1 ways are powered down. If the process identifier

information is not available in any of the registers, then the cache controller finds the way

with the minimum LRU value and allocates the way to the process by invalidating all the

existing data in that way. Whenever a process terminates, the operating system notifies

the cache controller, so that the LRU count of that way is set to zero and all the data in

that way is invalidated. By default, the victim set is in the sleep state and is activated only

if the requested data is not available in the dedicated way assigned to the process.

5.4.1 PASP ALGORITHM

The algorithm of the Process Aware Selective Placement (PASP) caching scheme is as

discussed below.

//Cache operations to be carried out on every reference
begin

Look up the virtual page number in TLB

if (TLB HIT) then

Fetch physical address from TLB

Derive tag (t), index (i) and offset (o) for the Main cache.

Derive tag (tv) and offset (ov) for the Victim set

WaySelect = Dedicated Cache way of the currently running process

WaySelectth way enabled; All other N-1 ways in deep sleep; Victim set in sleep

CYCLE = 1

while (CYCLE < 4) do

if (CYCLE = 1) then

if (Reference is CACHE HIT in ith set, WaySelectth way) then

Read/Write data from/to offset location of ith block in WaySelectth way

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 93

CYCLE = 4

else

CYCLE = 2

Enable Victim set

if (CYCLE = 2)

if (Reference is CACHE HIT in Victim set) then

Transfer ith block in WaySelectth way to FIFO location in Victim set

Transfer CACHE HIT Victim set block to ith block in WaySelectth way

Read/Write data from/to offset location of ith block in WaySelectth way

Update FIFO replacement circuit of Victim set

CYCLE = 4

else CYCLE = 3

if (CYCLE = 3)

Transfer ith block in WaySelectth way to FIFO location in Victim set

 Transfer data from Main memory to ith block in WaySelectth way

Read/Write data from/to offset location of ith block in WaySelectth way

Update FIFO replacement circuit of Victim set

if (TLB MISS) then

Generate trap to handle TLB miss

end

The process aware selective placement (PASP) set-associative cache works as follows.

The cache obtains the physical address of the requested reference in the same manner as

the conventional cache. For every cache access, only the dedicated cache way of that

process is enabled with the help of the power management unit and cache controller. In

this manner, the set-associative cache is virtually acts as a direct-mapped cache. The

corresponding line index of the dedicated cache way is searched for a tag match, as

shown in Figure 5.3. On a cache hit, the data from the corresponding offset location is

accessed. This results in 75% dynamic power reduction as compared to a conventional 4-

way set-associative cache. A tag miss in this scheme can be either because of a miss in

the dedicated cache way, but a hit in the victim set (Primary miss but secondary hit) or

because of a secondary cache miss, where the requesting data is not available in the

dedicated cache way as well as in the victim set. Every prediction miss in the dedicated

cache way causes the victim set to be enabled, as shown in Figure 5.4 by the power

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 94

management unit and control circuitry in the next cycle for tag comparisons. If any of the

tags in the victim set matches, then the corresponding cache line of the victim set is

swapped with the indexed location of the dedicated cache way (Figure 5.5). The FIFO

bits of the victim set lines are updated accordingly. In the case of a miss in the victim set,

the required page is copied from the main memory to the indexed location of the

dedicated cache way and any existing valid cache line in corresponding location of the

dedicated way is moved into the victim set with the FIFO bits of the victim set lines

being updated accordingly.

5.4.2 POWER SAVING CONCERNS

This implementation has the advantage of a direct mapped cache, which simplifies the

circuit and mainly helps in reducing the dynamic power consumption caused by

additional tag comparisons and the replacement circuitry. The cache access time of the

PASP cache during a cache hit is the same as that of a direct-mapped cache. The

proposed scheme provides a better performance (cache hit rate and dynamic power

consumption) for processes with frequent context switches, as the recently used previous

process cache lines are still available in its dedicated cache way. This scheme is power

efficient, as it is found from the experimentation that about 85% of the data cache

references are directly from the dedicated cache way and very few references are directed

to the victim set. The victim set is enabled only when the data is not available in the

dedicated cache way and it helps in improving the cache hit rate, thus saving the dynamic

power consumption significantly.

The size of the victim set influences the hit rate and the power consumption. If the size of

the victim set is more, the overall hit rate of the cache system increases, but the number

of parallel comparators and the dynamic power required also increases, which may

degrade the performance. So the size of the victim set should be a balanced compromise

between the number of comparators and the miss rate. Theoretically, with an increase in

the associativity, the dynamic power consumption approximately reduces by a factor of

(N-1) / N for the best case, where N is the cache associativity. The power saving will be

more for a cache with a larger cache line size because of the improved hit rate, as large

number of references fall within the same page.

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 95

5.4.3 REPLACEMENT SUPPORT

The replacement support is critical to achieve high performance. The PASP cache uses

direct replacement in the dedicated cache way similar to a direct-mapped cache resulting

in the dynamic power saving and reduced circuit complexity. Any spill-out cache line

from the main cache is moved to the victim set. The victim set follows FIFO replacement

policy, which makes the replacement circuitry simple. During a victim set hit, whenever a

cache line is transferred from the victim set to the corresponding main cache’s dedicated

way, that cache line in the victim set is made invalid. If the dedicated cache way has a

valid cache line, then that cache line is moved to the victim set and the FIFO bits of the

victim set lines are modified appropriately.

5.4.4 LIMITATION OF THE PASP SCHEME

The PASP scheme reduces the dynamic power consumption significantly, but the

performance of this scheme is affected when the required data is shared among many

processes. In other words, the same cache data block may exist in more than one way at

the same time, thus resulting in coherency issues.

For instance, say, two processes P1 and P2 are sharing a cache line S1. Assume the

execution sequence is P1 accessing the shared line S1, followed by a context switch to P2

and then P2 accessing the same shared line S1. When P1 accesses the shared line S1 for

the first time, a cache miss occurs and S1 is placed in the way assigned to P1, say, way 0.

When a context switch occurs and P2 starts its execution with its dedicated cache way as

way 1, a request generated for cache line S1 results in a cache miss, as S1 is not available

in way 1 and in the victim set. Thus, a copy of S1 from the main memory is placed in

way 1. This results in having the same cache line in more than one way at the same time.

In the PASP scheme, to avoid cache coherency problem, the system checks for the

existence of the same cache line in other ways and invalidate them, before copying the

corresponding shared line to the cache line of the currently executing process’s dedicated

way. This adds an overhead to the system, as all the ways have to be powered up for tag

comparisons resulting into performance degradation for the PASP set-associative cache

with a large amount of shared data. To overcome this performance overhead, a new

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 96

Shared Memory Process Aware Selective Placement (SMPASP) caching scheme is

proposed.

5.5 SHARED MEMORY PROCESS AWARE SELECTIVE PLACEMENT (SMPASP) CACHE

ARCHITECTURE

This section explains a Shared Memory Process Aware Selective Placement (SMPASP)

scheme for an N-way set-associative cache, designed to efficiently handle shared data

among processes, using a small shared set and victim set. This scheme is primarily

designed to avoid coherency issues encountered when using the PASP scheme for

processes sharing data among them by allocating a separate small shared set to hold the

shared data. It aims at reducing the dynamic power consumption of the set-associative

cache architecture and enhancing performance with respect to the cache hit rate.

Figure 5.6 represents the Shared Memory Process Aware Selective Placement (SMPASP)

scheme for the 4-way set-associative cache architecture. Figures 5.7 to 5.11 shows the

various cache-related operations associated with the SMPASP cache (the highlighted

parts in the figures represent the active cache blocks). Similar to the PASP cache, the

Shared Memory Selective Placement Cache also has a small fully associative victim set

for collecting spill-out pages from the main cache. The Shared Memory Selective

Placement Cache has an additional small set called the shared set to hold the shared data.

This proposed cache architecture has two variations, based on the mapping scheme –

direct-mapped as shown in Figure 5.7 or 2-way set-associative as shown in Figure 5.8

shared set. The Shared Memory Selective Placement Cache architecture contains four

registers (8-bit) to store the process identifiers, four 2-bit LRU registers for finding the

least recently used way, one decoder for the main cache, one decoder for the 2-way set-

associative / direct-mapped shared set (5:32 decoder for the 8KB main cache, 3:8 / 4:16

decoder for the 2-way set-associative / direct-mapped shared set), word line drivers,

relevant number of tag arrays, data arrays and comparators, sense amplifiers, one / two

multiplexer(s) and output drivers.

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 97

Fig. 5.6: SMPASP Cache Architecture with Direct – mapped Shared set.

Fig. 5.7: Cache hit in Shared set (Direct-mapped).

Fig. 5.8: Cache hit in Shared set (2 – Way set-associative mapping).

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 98

Fig. 5.9: Cache hit in dedicated cache way (non-shared data).

Fig. 5.10: Cache miss in dedicated cache way, checking the victim set for data

availability (non – shared data)

Fig. 5.11: Cache Hit in Victim set (non – shared data; transferring data to the

dedicated cache way – works in the same way as for a Cache Miss)

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 99

In this scheme, an incoming reference is classified into a shared or a non-shared data

reference with the help of compiler information. In case of a cache hit, the non-shared

data is available either in the dedicated way of the main cache or in the victim set. The

shared data is available only in the shared set. The compiler and the operating system are

modified to be intelligent enough to provide the above mentioned sharing information of

the incoming data reference and the process-related information to the cache controller

using special instructions [Jain 2001][Sartor 2005]. This information is used to enable /

disable the cache ways, and to select either the main cache or the shared set for cache line

replacement, during a cache miss.

Whenever a context switch occurs or a new process is executed, the operating system

passes the process identifier information to the cache controller. The cache controller

compares the new identifier value against a 8-bit value stored in each of the ‘N’ registers.

If any of the values matches, then the corresponding way is enabled and all the other N-1

cache ways are disabled. The LRU count of this enabled way is set to the maximum and

the LRU count of all the other ways are modified accordingly. If the new process

identifier value does not match with any of the existing values in the registers, then the

cache way with the minimum LRU count is selected and assigned to this process by

storing the process identifier value in the 8-bit register of the selected way, after

invalidating all the cache lines of the selected way and modifying the LRU count of all

the other ways accordingly.

Whenever a process terminates, the operating system transfers this information to the

cache controller. The cache controller sets the LRU count of the way dedicated to that

process to the minimum and invalidates all the cache lines of that way.

5.5.1. SMPASP ALGORITHM

The algorithm of the shared memory process aware selective placement (SMPASP)

caching scheme is as follows.

//Cache operations to be carried out on every reference
begin

Look up the virtual page number in TLB

if (TLB HIT) then

Fetch physical address from TLB

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 100

Derive tag (t), index (i) and offset (o) for the Main cache.

Derive tag (tv) and offset (ov) for the Victim set

Derive tag (ts), index (is) and offset (os) for the Shared set.

WaySelect = Dedicated Cache way of the currently running process

if (Reference is Shared) then

WaySelectth way in sleep; All other N-1 ways in deep sleep

Victim set in sleep; Shared set Enabled

if (Reference is CACHE HIT in Shared set) then

if (Shared set is SET ASSOCIATIVE) then

Read/Write data from/to offset location of CACHE HIT block in is th set of

the Shared set

Update LRU Replacement circuit of is th set in Shared set

if (Shared set is DIRECT MAPPED) then

Read/Write data from/to offset location of CACHE HIT block (is th block) of

the Shared set

if (Reference is CACHE MISS in Shared set) then

if (Shared set is SET ASSOCIATIVE) then

Transfer data from Main memory to LRU block of ith set in Shared set

Read/Write data from/to offset location of LRU block in is th set of the

Shared set

Update LRU Replacement circuit of is th set in Shared set

if (Shared set is DIRECT MAPPED) then

Transfer data from Main memory to ith block in Shared set

Read/Write data from/to offset location of is th block of Shared set

if (Reference is NOT Shared)

WaySelectth way Enabled; All other N-1 ways in deep sleep

Victim set in sleep; Shared set in sleep

CYCLE = 1

while (CYCLE < 4) do

if (CYCLE = 1) then

if (Reference is CACHE HIT in ith set, WaySelectth way) then

Read/Write data from/to offset location of ith block in WaySelectth way

CYCLE = 4

else

CYCLE = 2

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 101

Enable Victim set

if (CYCLE = 2)

if (Reference is CACHE HIT in Victim set) then

Transfer ith block in WaySelectth way to FIFO location in Victim set

Transfer CACHE HIT Victim set block to ith block in WaySelectth way

Read/Write data from/to offset location of ith block in WaySelectth way

Update FIFO replacement circuit of Victim set

CYCLE = 4

else CYCLE = 3

if (CYCLE = 3)

Transfer ith block in WaySelectth way to FIFO location in Victim set

 Transfer data from Main memory to ith block in WaySelectth way

Read/Write data from/to offset location of ith block in WaySelectth way

Update FIFO replacement circuit of Victim set

if (TLB MISS) then

Generate trap to handle TLB miss

end

A data access request to the SMPASP cache is handled as follows.

When the CPU issues an address reference, the TLB is first checked to find the

corresponding physical address. If the logical reference is a TLB hit, then the physical

reference from the TLB is extracted and fed as input to the cache controller. If the logical

reference is not available in the TLB, then a trap to handle the TLB miss is generated.

The cache controller has the sharing information about the cache reference beforehand by

obtaining it from an earlier pipeline stage. Based on this information, with the help of a

power management unit, the cache controller activates either a dedicated cache way of

the executing process or the shared set. If the cache reference is a shared one, then the

physical reference is for the shared set, which is either direct mapped or 2-way set-

associative. If the cache reference is non-shared, then the physical reference is for the

main cache or for the victim set.

For a non-shared data reference, in the first cycle, the dedicated cache way of the

currently executing process is searched for the referenced data page (Figure 5.9). The tag

value for the main cache is compared with the tag stored in the indexed line of that

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 102

dedicated way. If a cache hit occurs in the main cache, then the data is accessed from the

offset location of the selected cache line in the same cycle. If the non-shared requested

data is not available in the dedicated way, then the victim set is activated in the next cycle

as shown in Figure 5.10 and searched for the availability of the requested cache line. The

victim set follows fully associative mapping scheme. In the case of a cache hit in the

victim set, the cache line in the indexed location of the dedicated way is moved to the

FIFO location of the victim set and the requested data in the victim set is moved to the

indexed location of the dedicated way as shown in Figure 5.11. The requested data is

accessed from the offset location and the FIFO replacement circuit of the victim set is

updated accordingly. If the referenced data is not available in the victim set, then the

cache line in the index location of the dedicated way is moved to the FIFO location of the

victim set and the data from the main memory is copied to the indexed location of the

dedicated way. The requested data is accessed from the offset location and the FIFO

replacement circuit of the victim set is updated accordingly.

For a shared data reference, the requested tag value is compared with the tag value stored

in the shared set indexed line(s). The shared set may be direct-mapped as shown in Figure

5.7 or 2-way set-associative as shown in Figure 5.8. If a cache hit occurs in the shared

set, then the data is accessed from the offset location of the selected cache line in the

same cycle. The LRU bit, in the case of the 2-way set-associative implementation of the

shared set, is modified accordingly, i.e., if the cache reference is from way 1 of the shared

set, then the LRU bit of the referenced index is set to 0, whereas if the cache reference is

from way 2 of the shared set, then the LRU bit is set to 1. This makes the replacement

circuit simple and requires only K additional bits for the replacement circuitry, where K

is the number of sets in the shared set. If the requesting shared data is not available in the

shared set, then the requested shared data is copied from the main memory to the indexed

location of the shared set (LRU replacement circuit finds the cache line to be evicted in

case of the 2 – way set-associative shared set). The requested data is accessed from the

offset location and the LRU bit of the indexed location is updated in case of the 2 – way

set-associative shared set.

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 103

5.5.2 POWER SAVING CONCERNS

The experimental results presented in Section 5.7 show that the proposed implementation

saves 67% power in case of a 4-way set-associative cache, as compared to the

conventional cache architecture. The reduction in power consumption is mainly due to

the fact that 75% of the main cache is shut down all the time in case of the proposed

scheme. The shared set is powered on, only if the cache reference is shared. The victim

set is active only if the cache reference is non-shared and the cache line is not available in

the dedicated cache way of the main cache. Experimental results show that 90% of the

data cache references are either from the dedicated cache way or from the shared set and

very few references are directed to the victim set. Based on the sharing information

available, the proposed scheme enables only one tag bank, one data bank in the main

cache or the relevant tag and data bank(s) in the shared set. Thus, the total number of tag

comparisons is reduced in the case of a hit in the shared set, to 1 if the shared set is

direct-mapped, or 2 if the shared set is 2-way set-associative, as compared to ‘N’ for a

conventional N-way set-associative cache. A miss in the shared set directly results in a

cache miss, thus copying the requested data page from the main memory to the shared

set. Even for a non-shared data reference, in case of a hit in the main cache, the number

of tag comparisons is reduced to 1. In case of a miss in the dedicated cache way, the

victim set is searched in the next cycle. As the hit rate of the main cache and shared set

itself is more than 90%, this impact due to the victim set is negligible. Hence, a

significant amount of dynamic power saving is possible with this scheme.

Theoretically, with an increase in the associativity, the dynamic power consumption

approximately reduces by a factor of (N-1) / N for the best case, where N is the cache

associativity. The power saving is more for a cache with a larger page size because of the

improved hit rate, as a larger number of references are from the same page. Increasing the

size of the victim set, although improves hit rate, has a considerable impact on the power

consumed due to increased number of tag comparisons. This demands that the size of the

victim set be a beneficial compromise between the number of comparators and the miss

rate. The size of the shared set is only controlled by the percentage of shared pages that

may exist among the processes.

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 104

As the proposed scheme is process-aware, it may also ensure better performance for the

processes with frequent context switches, as the recently used pages of the previously

executed process are still available in its dedicated cache way. It also ensures better

performance than the conventional cache for processes with shared pages among them, as

the number of tag comparisons are considerably reduced in both the direct-mapped and 2-

way set-associative shared set implementations. This implementation has the advantage

of a simple replacement circuitry (the main cache and shared set follow direct mapping)

which helps in reducing the dynamic power consumption further. The victim set is

enabled only when the non-shared cache reference is not available in the dedicated cache

way. The victim set serves the purpose of reducing the miss rate, thus saving dynamic

power consumption significantly.

5.5.3 REPLACEMENT SUPPORT

In SMPASP, rudimentary replacement is used in each of the dedicated cache ways, as it

is treated like a direct-mapped cache. This gives a great advantage over the conventional

and way-prediction schemes. Each spill-out page from the main cache is directed to the

victim set. The victim set follows FIFO replacement policy, which makes the

replacement circuitry simple. It uses log2M bits per cache line, where M is the number of

cache lines in the victim set, for storing the FIFO information. In case of a hit in the

victim set, the cache line in the dedicated cache is transferred to the FIFO cache line of

the victim set. The selected victim cache line is transferred to the dedicated cache way,

the copy in the victim set is made invalid and its FIFO count is set to the least. The FIFO

count of all the other cache lines is modified and that of the new cache line (the last spill-

out page from the main cache) is set to the maximum, making it the most recent in the

victim set. For the shared set, if the shared set is direct-mapped, then the selected cache

line is directly replaced, but if the mapping is 2-way set-associative, then the LRU bit is

used to find the least recently used cache line for replacement.

5.6 ENERGY ANALYSIS

The energy efficiency of the proposed scheme is measured using the ‘Energy dissipation

per cache access’ model proposed by Zhang et al. [Zhang 2005], i.e., the energy

efficiency is estimated by measuring the difference in the energy dissipation per cache

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 105

access. The energy consumption corresponding to each cache component is defined as

follows.

Edec represents the energy dissipation of the address decoder

Emux represents the energy dissipation of the multiplexer and output driver

Etagline represents the energy dissipation of one tag line

Edataline represents the energy dissipation of one data line

Epreline represents the energy dissipation of one-line’s precharging

Ecomline represents the energy dissipation of one-line’s comparator

Esaline represents the energy dissipation of one-line’s sense amplifier circuit

Etagway represents the energy dissipation of one tag way

Edataway represents the energy dissipation of one data way

Epreway represents the energy dissipation of one way’s precharging

Ecomway represents the energy dissipation of one way’s comparator

Esaway represents the energy dissipation of one way’s sense amplifier circuit

EVictim represents the energy dissipation associated with the fully associative victim set

with M cache lines

EShared represents the energy dissipation associated with the direct-mapped shared set.

cachesize represents the size of the cache in Bytes

cachelinesize represents the size of one cache block and

N represents the associativity of the cache

The energy equations of the conventional set-associative, way-prediction, process aware

selective placement and the shared memory process aware selective placement N-way

set-associative cache can be computed as follows:

Eway = (Etagline + Edataline + Epreline + Ecomline + Esaline)

* cachesize/(N * cachelinesize) (5.1)

Evictim = M*(Etagline + Edataline + Epreline + Ecomline + Esaline) (5.2)

Eshared = Edec + Etagline + Edataline + Epreline + Ecomline + Esaline (5.3)

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 106

Conventional cache (Conv):

 Energy per cache access (EConv),

EConv = Edec + Emux + (N * Eway) (5.4)

Way Prediction cache (WP):

Prediction Hit Energy (EPhit),

EPhit = Edec + Emux + Eway (5.5)

Prediction Miss Energy (EPmiss) and Cache Miss Energy (ECmiss),

EPmiss = ECmiss = 2*(Edec + Emux) + (N* Eway) (5.6)

Total Energy per cache access (ETotal),

ETotal = Phit * EPhit + (1–Phit – Cmiss) * EPmiss+ Cmiss * ECmiss (5.7)

Where, Phit refers to the percentage of prediction hits (i.e.), Phit = number of

prediction hits / total number of cache accesses and Cmiss refers to the percentage

of cache misses, which are secondary misses.

Process Aware Selective Placement cache (PASP):

Cache Hit Energy in the dedicated cache way (EDed_hit),

EDed_hit = Edec + Emux + Eway (5.8)

 Primary Cache Miss Energy (EVictim_hit)

and Secondary Cache Miss Energy (ECmiss),

 EVictim_hit = ECmiss = Edec + Emux + Eway + Evictim (5.9)

 Total Energy per cache access (EPASP),

 EPASP = Ded_hit * EDed_hit + (1 – Ded_hit – Cmiss) * EVictim_hit

+ Cmiss * ECmiss (5.10)

Where, Ded_hit refers to the percentage of hits in the dedicated way (i.e.),

Ded_hit = number of hits in the dedicated cache way / total number of cache

accesses.

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 107

Shared Memory Process Aware Selective Placement cache (SMPASP):

 Cache Hit Energy in the dedicated cache way (EDed_hit) – non shared references,

 EDed_hit = Edec + Emux + Eway (5.11)

 Cache Hit Energy in the Shared cache set (EShared_hit) – shared references,

 EShared_hit = Eshared (5.12)

 Primary Cache Miss Energy (EVictim_hit) – non shared references,

 EVictim_hit = Edec + Emux + Eway + Evictim (5.13)

 Shared Cache Miss Energy (EShared_miss) – shared references,

 EShared_miss = Eshared (5.14)

 Secondary Cache Miss Energy (EnonShared_miss) – non shared references,

 EnonShared_miss = Edec + Emux + Eway + Evictim (5.15)

 Total Energy per cache access for the Shared data (Eshared_Total),

 Eshared_Total=(Shared_hit* EShared_hit)+(1–Shared_hit)*EShared_miss (5.16)

Where, Shared_hit refers to the percentage of shared set hits (i.e.),

Shared_hit = number of shared set hits / total number of shared set accesses.

Total Energy per cache access for the non-Shared data (EnonShared_Total),

EnonShared_Total = Ded_hit * EDed_hit + (1 - nonSharedMiss - Ded_hit) *

EVictim_hit + nonSharedMiss * EnonShared_miss (5.17)

Where, nonSharedMiss refers to the percentage of secondary cache misses for the

non-shared data (i.e.), nonSharedMiss = number of secondary cache misses for

the non-shared data / total number of cache accesses for the non-shared data.

 Total Energy per cache access (ESMPASP),

 ESMPASP = (Shared * Eshared_Total) + (1 – Shared) * EnonShared_Total (5.18)

Where, Shared refers to the percentage of shared set accesses (i.e.), Shared =

number of shared set accesses / total number of accesses for the entire cache

subsystem. The energy equations can be modified to simulate a 2-way set-

associative shared set, which also causes a considerable power saving.

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 108

5.7 EXPERIMENTAL METHODOLOGY, RESULTS AND ANALYSIS

5.7.1 EXPERIMENTAL SETUP

The experimental setup used, measures the cache hit rate, first cycle hit rate, effective

cache access time and the power consumption, with the number of tag comparisons in

particular. The experimental setup uses a cycle simulator of a cache based on an in-order

process model, namely, CACHEMEM 1.0 along with SPEC95 benchmark [SPEC95]

suite program traces, extracted by using SimpleScalar 2.0 simulator [Burger 1997], for

determining the cache hit rate for the different caching schemes considered for analysis.

The effective cache access time is calculated using the cache hit rate and first cycle hit

rate with the first cycle cache hit access time assumed to be one cycle. The access time of

a first cycle cache miss where the requested data is available in the cache is assumed as

two cycles while the cache miss processing is assumed to consume 10 cycles. The energy

components are obtained using the power estimation model, eCACTI cycle simulator

[Mamidipaka 2004].

CACHEMEM 1.0 is designed to simulate a 4-way set-associative cache with varying

cache sizes (1KB, 2KB, 4KB, 8KB, 16KB and 64KB) and line sizes (8, 16, 32, 64, 128,

and 256 bytes). The setup simulates a multitasking system, where more than one process

is ready to run and is available in the main memory. The system uses a fixed quantum

time (100, 200, 500 and 1000 traces) to switch between processes using Round Robin

scheduling and is measured as the number of traces executed from a SPEC95 benchmark

file. This cache simulator measures the cache hit rate, first cycle hit rate, tag comparison

count and effective cache access time of all configurations of cache line size, cache size,

context switch duration and SPEC95 benchmark program suite set (with and without data

sharing among processes) for different caching schemes like the conventional set-

associative cache, way prediction cache, Process Aware Selective Placement (PASP)

cache, Shared Memory Process Aware Selective Placement (SMPASP) cache

architectures with the direct-mapped shared set and the Shared Memory Process Aware

Selective Placement (SMPASP) cache architecture with 2-way set-associative shared set.

In CACHEMEM 1.0, one SPEC95 benchmark program is considered as a process and the

program set consists of four processes. The power components for the analysis are

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 109

obtained by modifying the power analysis model, eCACTI for a specific architecture. The

model assumes only cache read operation / no cache write model. In the case of a cache

hit, the access time is assumed to be one clock cycle. A cache miss results in writing a

tag/data block value into the selected tag/data arrays of the cache. Thus, a cache miss

results in one cache read and two cache-write operations, which take 9 additional cycles.

Most of the existing cache architectures in literature use SPEC 95 as benchmark program

suite which prompted us to select SPEC 95 over SPEC 2000. The SPEC 2000 benchmark

program suite is too big for embedded cache architectures. The number of traces

generated by SPEC 95 benchmark program suite is less in comparison with SPEC 2000

benchmark program suite which makes it a better choice for embedded applications.

Moreover evaluation with some of the SPEC 2000 benchmark suite traces shows similar

performance as that of SPEC 95 benchmark program suite traces. So in this work we use

SPEC 95 benchmark program suite for evaluation.

5.7.2 COMPREHENSIVE EVALUATION OF CACHE

Table 5.1: List of SPEC 95 benchmark suite program sets

Exp. No. SPEC 95 benchmark program set Data Sharing (in %)

1 compress95, mgrid, fpppp, applu 32.02

2 mgrid, fpppp, applu, swim 34.85

3 fpppp, applu, swim, su2cor 34.90

4 applu, swim, su2cor, tomcatv 32.19

5 swim, su2cor, tomcatv, wave5 31.87

6 su2cor, tomcatv, wave5, ijpeg 26.35

7 tomcatv, wave5, ijpeg, hydro2d 26.53

8 wave5, ijpeg, hydro2d, turb3d 29.05

9 ijpeg, hydro2d, turb3d, vortex 29.24

10 hydro2d, turb3d, vortex, perl 29.49

The cache hit rate is estimated using the cycle-based simulator, CACHEMEM 1.0 for the

different caching algorithms. The following table shown in Table 5.1 gives different

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 110

SPEC95 benchmark program sets used for the experimentation. The data sharing column

gives the percentage of data shared among the processes of a certain program set.

Based on the data sharing among processes, the experimental results are categorized into

two cases: (i) Independent processes where the processes do not share any data among

them and (ii) Processes where the data section of the processes are shared and the OS and

compiler provide the sharing-related information. This work used the above mentioned

experimental setup to measure various cache related parameters.

5.7.2.1 Independent processes

In this case, it is ensured that the processes do not share any data among them. It is

observed that the PASP and SMPASP (both direct mapped and 2-way set associative

shared set) cache architectures have the same cache hit rate, first cycle hit rate, number of

tag comparisons and effective cache access time for all the cache configurations, while

experimenting with SPEC 95 benchmark programs as independent processes. This is

because the shared set in SMPASP architecture is always powered off as the independent

processes will not have any shared data, which makes these two selective placement

architectures identical. The conventional cache offers lesser effective access time

compared to all the other schemes, if the overall cache hit rates are uniform and the first

cycle hit rate of the way prediction, PASP and SMPASP cache architectures is lesser than

the conventional cache hit rate.

5.7.2.1.1 Cache Hit Rate

The hit rates of various cache architectures are analyzed with respect to the SPEC95

benchmark program sets, cache line size, cache size and context switch duration. The

cache hit rate of the conventional and the way prediction cache architectures is always the

same, irrespective of the cache configurations and program sets. This is attributed to the

fact that these two architectures make use of the complete cache and have the same

replacement scheme.

The cache hit rates of an 8K, 4-way set-associative cache for various SPEC95 benchmark

program sets running as independent processes is shown in Fig. 5.12. It is observed from

the results that the PASP and SMPASP cache architectures offer better cache hit rates for

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 111

the majority of the benchmark program sets with different cache size, line size and

context switch duration.

Cache Hit Vs Benchmark Programs

82

83

84

85

86

87

88

89

1 2 3 4 5 6 7 8 9 10
Benchmark Programs

C
ac

he
 H

it
Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.12: Cache hit rate Vs SPEC95 Program sets for an 8KB, 4-way set-associative

cache with 16Byte cache line size and context switch duration of 500 references

Figure 5.13 represents the cache hit rate vs cache line sizes chart for an 8K, 4-way set-

associative cache, running SPEC95 benchmark program sets as independent processes. It

is observed from these results that irrespective of the architecture the cache hit rate

increases with increase in the cache line size, as a greater number of references fall within

the same page [Hennessy 2007]. It is also observed that in most of the cases the PASP

and SMPASP cache architectures perform better than their conventional and way

prediction counterparts. This cache hit performance difference is more significant for

smaller cache line size values.

The cache hit rate vs cache size for an 8K, 4-way set-associative cache running SPEC95

benchmark program sets as independent processes is shown in Figure 5.14. From the

experimentation, it is clear that for all the architectures, the cache hit rate increases with

increase in the cache size. It is also observed that for smaller cache sizes (less than

32KB), the PASP and SMPASP cache architectures offer higher cache hit rate, as

compared to the conventional and way prediction architecture.

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 112

Cache Hit Vs Cache Line Size

70

75

80

85

90

95

100

8B 16B 32B 64B 128B 256B
Cache Line Size

C
ac

he
 H

it

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.13: Cache hit rate Vs Cache line size for an 8KB, 4-way set-associative cache with

context switch duration of 500 references

Cache Hit Vs Cache Size

81.5

82

82.5

83

83.5

84

84.5

85

85.5

86

1K 2K 4K 8K 16K 32K 64K
Cache Size

C
ac

he
 H

it

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.14: Cache hit rate Vs Cache size for a 4-way set-associative cache with 16 Byte

cache line size and context switch duration of 500 references

The cache hit rate vs context switch duration for a 4-way set-associative cache running

SPEC95 benchmark program sets as independent processes is shown in Figure 5.15. It is

observed from the experimental results that the cache hit performance of the PASP and

SMPASP architectures does not degrade with context switch duration. This is because in

both these schemes, local replacement equivalent to direct mapping takes place as one

way is dedicated to a process. A slight variation of the cache hit rate is possible in

selective placement schemes owing to the replacement strategy in victim set which is

global. This hardly affects the performance as the victim set is very rarely used because

of high first cycle hit rate. Each of the conventional and way prediction cache

architectures varies its performance with context switch duration. This is due to the

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 113

global replacement strategy, which may replace some cache lines of the next process to

execute causing performance variation with the context switching point. One can

statically analyze the trace files to get the best context switching points where the cache

impact will be least [Lee 1998][Lee 1999]. The brute-force analysis of finding the best

context switch point is an NP-hard problem [Lee 1998][Lee 1999]. It is also observed

that the PASP and SMPASP cache architectures offer a higher cache hit rate compared to

their conventional and way prediction counterparts for all the context switch durations.

Cache Hit Vs Context Switch Duration

84.5

84.55

84.6

84.65

84.7

84.75

100 200 500 1000
Context Switch Duration

C
ac

he
 H

it

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.15: Cache hit rate Vs Context switch duration for a 16K, 4-way set-associative

cache with 16 Byte cache line size

5.7.2.1.2 First Cycle Cache Hit Rate

The first cycle hit rate of various cache architectures is analyzed with respect to the

SPEC95 benchmark program sets, cache line size, cache size and context switch duration.

The first cycle hit rate of the way prediction cache architecture is always less than that of

the conventional cache architecture. In case of the conventional cache architecture, all

cache hits happen in the first cycle, i.e., the first cycle hit is equal to the cache hit whereas

in the way prediction scheme, a first cycle hit occurs only when the prediction is correct,

which is usually 80-85% of the total cache hits.

The first cycle hit rates of an 8K, 4-way set-associative cache for various SPEC95

benchmark program sets running as independent processes is shown in Figure 5.16. It is

observed from the experimental results that the PASP and SMPASP cache architectures

offer greater first cycle hit rates as compared to the way prediction cache for all the

benchmark program sets, irrespective of the cache size, line size and context switch

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 114

duration. The high first cycle hit rate of the PASP and SMPASP cache can be attributed

to the use of local replacement scheme and process aware cache architecture design. It is

also seen that in some cases, the cache hit rate of the conventional cache is falling behind

that of the PASP and SMPASP schemes.

First Cycle Hit Vs Benchmark Programs

81

82

83

84

85

86

87

88

89

1 2 3 4 5 6 7 8 9 10
Benchmark Programs

Fi
rs

t C
yc

le
 H

it

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.16: First cycle hit rate Vs SPEC95 Program sets for an 8KB, 4-way set-associative

cache with 16 Byte cache line size and context switch duration of 500 references

First Cycle Hit Vs Cache Line Size

65

70

75

80

85

90

95

100

8B 16B 32B 64B 128B 256B
Cache Line Size

Fi
rs

t C
yc

le
 H

it

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.17: First cycle hit rate Vs Cache line size for an 8KB, 4-way set-associative cache

with context switch duration of 500 references

The first cycle hit rate for different cache architectures vs cache line size for an 8K, 4-

way set-associative cache running SPEC95 benchmark program sets as independent

processes is shown in Figure 5.17. It is observed from the results that for all the

architectures, the first cycle hit rate increases with increase in the cache line size. The

PASP and SMPASP schemes offer higher first cycle hit rate when compared to the way

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 115

prediction scheme, but this difference in the first cycle hit rate of the PASP and SMPASP

over the way prediction scheme shrinks with increase in the cache line size.

First Cycle Hit Vs Cache Size

80

81

82

83

84

85

86

1K 2K 4K 8K 16K 32K 64K
Cache Size

Fi
rs

t C
yc

le
 H

it
Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.18: First cycle hit rate Vs Cache size for a 4-way set-associative cache with 16

Byte cache line size and context switch duration of 500 references

First Cycle Vs Context Switch Duration

81

81.5

82

82.5

83

83.5

84

84.5

85

100 200 500 1000
Context Switch Duration

Fi
rs

t C
yc

le
 H

it

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.19: First cycle hit rate Vs Context switch duration for a 16K, 4-way set-associative

cache with 16 Byte cache line size

The first cycle hit rate vs cache sizes for an 8K, 4-way set-associative cache running

SPEC95 benchmark program sets as independent processes is shown in Figure 5.18.

Here, it is observed that for all the architectures the first cycle hit rate increases with

increase in the cache size. It is also found that the PASP and SMPASP cache

architectures offer higher first cycle hit rate for all cache sizes compared to the way

prediction cache architecture. The figure shows that for smaller cache sizes (<32K), the

first cycle hit rate of the PASP and SMPASP is better than the cache hit rate of

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 116

conventional cache and for larger caches (>32KB), the cache hit rate of conventional

cache is better than first cycle hit rate of PASP and SMPASP architectures.

The first cycle hit rate vs context switch duration chart for a 4-way set-associative cache

running SPEC95 benchmark program sets as independent processes is shown in Figure

5.19. The simulation results clearly show that the PASP and SMPASP cache architectures

always provide better first cycle hit rates than the way prediction cache architecture.

5.7.2.1.3 Tag Comparison Count

The tag comparison count for the different cache architectures is analyzed with respect to

the SPEC95 benchmark program sets, cache line size, cache size and context switch

duration. The tag comparisons can act as a measure of the number of active data banks

and tag banks while running the benchmark program set and can be used as an indirect

measure of the energy consumption of the cache memory. The number of tag

comparisons is normalized over the number of total references in the benchmark program

set under consideration. For a single reference, the normalized number of tag

comparisons is N (where N is the cache associativity) for all configurations of the

conventional cache, as parallel comparisons are carried out in all the N cache lines. The

normalized number of tag comparisons for the conventional cache is always high as

compared to the other architectures, irrespective of the cache configuration, program set

and data sharing. It is also observed that with increase in the first cycle hit rate, the tag

comparison count decreases as the additional cycles are avoided, thus reducing the

number of tag comparisons.

The normalized number of tag comparison count of an 8K, 4-way set-associative cache

for various SPEC95 benchmark program sets running as independent processes is shown

in Figure 5.20. It is observed from the experimental results that the PASP and SMPASP

cache architectures yield reduced number of tag comparisons, and thus reduced energy

consumption for all the benchmark program sets. As the number of tag comparisons

lowers for cache architectures with high first cycle hit rate, the PASP and SMPASP

schemes always offer better performance.

The normalized tag comparison count for different cache architectures vs cache line sizes

for an 8K, 4-way set-associative cache running SPEC95 benchmark program sets as

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 117

independent processes is shown in Figure 5.21. It is observed from the simulation results

that for the way prediction, PASP and SMPASP cache architectures the number of tag

comparisons reduce with increase in cache line size and thus reduced number of active

cache banks. The difference in the tag comparison count and the cache energy consumption

for the PASP and SMPASP over that of the way prediction scheme is pronounced for

smaller cache line sizes.

Normalized Tag comparisons Vs Benchmark Programs

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56

1 2 3 4 5 6 7 8 9 10
Benchmark Programs

N
or

m
al

iz
ed

 T
ag

 c
om

pa
ris

on
s

Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.20: Normalized tag comparison count Vs SPEC95 Program sets for an 8KB, 4-way

set-associative cache with 16Byte cache line size and context switch duration of 500

references

Normalized Tag comparisons Vs Cache Line Size

1

1.2

1.4

1.6

1.8

2

8B 16B 32B 64B 128B 256B
Cache Line Size

N
or

m
al

iz
ed

 T
ag

 c
om

pa
ris

on
s

Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.21: Normalized tag comparison count Vs Cache line size for an 8KB, 4-way set-

associative cache with context switch duration of 500 references

The normalized tag comparison count vs cache size chart for an 8K, 4-way set-

associative cache running on SPEC95 benchmark program sets as independent processes

is shown in Figure 5.22. It is observed from the simulation results that for the case of

way prediction, PASP and SMPASP cache architectures the number of tag comparison

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 118

reduces with increase in cache size. It is also observed that the difference in the tag

comparison count of PASP and SMPASP over the way prediction cache architecture

increases with increase in the cache size.

Normalized Tag comparisons Vs Cache Size

1.44

1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

1K 2K 4K 8K 16K 32K 64K
Cache Size

N
or

m
al

iz
ed

 T
ag

 c
om

pa
ris

on
s

Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.22: Normalized tag comparison count Vs Cache size for a 4-way set-associative

cache with 16 Byte cache line size and context switch duration of 500 references

Normalized Tag comp. Vs Context Switch Duration

1.45

1.47

1.49

1.51

1.53

1.55

1.57

100 200 500 1000
Context Switch Duration

N
or

m
al

iz
ed

 T
ag

 c
om

pa
ris

on
s

Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.23: Normalized tag comparison count Vs Context switch duration for an 16K, 4-

way set-associative cache with 16 Byte cache line size

The normalized tag comparison count vs context switch duration for a 4-way set-

associative cache for SPEC95 benchmark program sets running as independent processes

is shown in Figure 5.23. It is observed that the PASP and SMPASP always provide a

lesser tag comparison count and consumes less energy as compared to conventional and

way prediction scheme. The number of tag comparisons in case of PASP and SMPASP

architectures does not vary with context switch duration whereas in case of the way

prediction cache the number of tag comparisons decreases with increase in the context

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 119

switch duration. This is attributed to the global replacement strategy used in way

prediction cache which may replace some of the cache lines of the next process.

5.7.2.1.4 Effective Cache Access Time

The effective cache access time of various cache architectures is analyzed with respect to

SPEC95 benchmark program sets, cache line size, cache size and context switch duration.

The effective cache access time (ECAT) is calculated using the following formula

ECAT=(First cycle hit * 1) + ((Cache hit – First cycle hit)*2) + (Cache miss * 10) 5.19

Equation 19 assumes that the first cycle hit takes one clock cycle in all architectures. The

way prediction, PASP and SMPASP cache architectures take two clock cycles to handle

the first cycle miss but cache hit condition while cache miss processing will takes 10

cycles to complete. Similar to the cache hit rate and the first cycle hit rate performance,

the PASP and SMPASP cache architectures have the same ECAT for all the cache

configurations while running on SPEC95 benchmark programs as independent processes.

The ECAT of the conventional cache is always lower than the ECAT of the way

prediction cache architectures irrespective of the configurations, program sets and data

sharing. From the equation, it is evident that the ECAT for all cache architectures

depends on its first cycle hit rate and cache hit rate.

Effective AccessTime Vs Benchmark Programs

2

2.1

2.2

2.3

2.4

2.5

2.6

1 2 3 4 5 6 7 8 9 10
Benchmark Programs

Ef
fe

ct
iv

e
A

cc
es

sT
im

e

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.24: Effective cache access time Vs SPEC95 Program sets for an 8KB, 4-way set-

associative cache with 16Byte cache line size and context switch duration of 500

references

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 120

The ECAT of an 8K, 4-way set-associative cache for various SPEC95 benchmark

program sets running as independent processes is shown in Figure 5.24. It is observed

from the experimental results that the PASP and SMPASP cache architectures offer lesser

ECAT value for majority of the benchmark program sets. The ECAT performance

follows the same pattern observed while evaluating cache hit rate and first cycle hit rate

performances. From these experimental results it can be concluded that in case of

independent processes, if the cache hit rate is same, the way prediction cache architecture

yields a higher ECAT value compared to other cache architectures.

The ECAT of different cache architectures vs cache line sizes for an 8K, 4-way set-

associative cache running on SPEC95 benchmark program sets as independent processes

is shown in Figure 5.25. It is observed that in case of all the architectures, the ECAT

value reduces with increase in the cache line size. Irrespective of the cache line size, the

ECAT value of the way prediction cache architecture is high as compared to other cache

architectures and this difference in ECAT over other architectures reduces with increase

in the cache line size. This is because of the cache hit rate and first cycle hit rate.

Effective AccessTime Vs Cache Line Size

1

1.5

2

2.5

3

3.5

4

8B 16B 32B 64B 128B 256B
Cache Line Size

E
ffe

ct
iv

e
A

cc
es

sT
im

e

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.25: Effective cache access time Vs Cache line size for an 8KB, 4-way set-

associative cache with context switch duration of 500 references

The ECAT vs cache size for a 4-way set-associative cache running SPEC95 benchmark

program sets as independent processes is shown in Figure 5.26. It is observed from the

experimental results that for all the architectures the ECAT value decreases with increase

in the cache size. It is also observed that the PASP and SMPASP cache architectures

offer lower ECAT value compared to the conventional and way prediction architectures

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 121

for cache sizes less than 32KB. The conventional cache architecture performs better for

large cache sizes. The way prediction cache architecture performance with respect to

ECAT is poor compared to the other cache architectures.

Effective AccessTime Vs Cache Size

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

1K 2K 4K 8K 16K 32K 64K
Cache Size

Ef
fe

ct
iv

e
A

cc
es

sT
im

e
Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.26: Effective cache access time Vs Cache size for a 4-way set-associative cache

with 16 Byte cache line size and context switch duration of 500 references

The relationship between the ECAT of various cache architectures and the context switch

duration, for an 8K, 4-way set associative cache running on SPEC95 benchmark program

sets as independent processes is shown in Figure 5.27.

Effective AccessTime Vs Context Switch Duration

2.37

2.375

2.38
2.385

2.39

2.395

2.4

2.405
2.41

2.415

2.42

100 200 500 1000
Context Switch Duration

Ef
fe

ct
iv

e
A

cc
es

sT
im

e

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.27: Effective cache access time Vs Context switch duration for an 16K, 4-way set-

associative cache with 16 Byte cache line size

It is observed from the experimental results that the ECAT performance of the PASP and

SMPASP does not degrade with the context switch duration. This is due to the local

replacement carried out in both these schemes with one way dedicated to a process. A

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 122

slight variation of the cache hit rate is possible because of the victim set replacement

policy which is global. Each of the conventional and way prediction cache architectures

varies its ECAT performance with context switch duration. It is also observed that the

PASP and SMPASP cache architectures offer lower ECAT value compared to the

conventional and way prediction architectures for all the context switch durations.

5.7.2.2 Shared Data among processes

In this section data sharing among the processes is discussed. The data section of the

programs is shared and the sharing among the processes varies from 25% to 35% as

shown in Table 5.1. This section analyses the cache hit rate, first cycle cache hit rate, tag

comparison count and the effective cache access time for various cache configurations of

the conventional cache, way prediction cache, PASP cache, SMPASP cache with direct

mapped shared set and the SMPASP cache with 2-way set-associative shared set running

processes with data sharing among them.

It is observed that the SMPASP (both direct-mapped and 2-way set-associative shared

set) always has a better cache hit rate and first cycle hit rate than the PASP cache

architecture for all cache configurations while running SPEC95 benchmark programs as

processes with data sharing among them, thus justifying the purpose of its design. The

better cache hit performance in case of SMPASP is mainly due to the shared cache set

which stores all the shared cache lines. Between the two variants of SMPASP, the

SMPASP architecture with the 2-way set-associative shared set offers a higher cache hit

rate and first cycle hit rate as compared to the SMPASP architecture with direct-mapped

shared set. The cache hit rate of the conventional and way prediction cache architectures

is always the same irrespective of the configuration program set and data sharing as these

two architectures make use of the complete cache and have the same placement and

replacement schemes. The cache hit, first cycle hit, tag comparison count and ECAT

performance of PASP cache architecture degrades slightly because of the overhead

incurred while handling shared data.

5.7.2.2.1 Cache Hit Rate

The hit rate of various cache architectures is analyzed with respect to the SPEC95

benchmark program sets, cache line size, cache size and the context switch duration.

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 123

The cache hit rate of an 8K, 4-way set-associative cache for various SPEC95 benchmark

program sets running as processes with data sharing among them is shown in Figure 5.28.

It is observed from the experimental results that the SMPASP cache architectures

performs equally good or better for a majority of the benchmark program sets compared

to the conventional, way prediction and PASP cache architectures.

Cache Hit Vs Benchmark Programs

81

82

83

84

85

86

87

88

89

1 2 3 4 5 6 7 8 9 10
Benchmark Programs

C
ac

he
 H

it

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.28: Cache hit rate Vs SPEC95 Program sets for an 8KB, 4-way set-associative

cache with 16Byte cache line size and context switch duration of 500 references

The cache hit rate vs cache line size chart for an 8K, 4-way set-associative cache running

SPEC95 benchmark program sets as processes with data sharing is shown in Figure 5.29.

It is observed that similar to the instance of independent processes, irrespective of the

cache architecture, cache hit rate increases with increase in the cache line size. It is also

noted that irrespective of the cache line size, the SMPASP architecture performs better

than the other architectures. For all the configurations, the SMPASP with 2-way set-

associative shared set provides the best cache hit performance because of the shared set.

The cache hit rate vs cache size for an 8K, 4-way set-associative cache running SPEC95

benchmark program sets as processes with data sharing is shown in Figure 5.30. It is

found from the experimental results that similar to the independent processes, irrespective

of cache architecture, the cache hit rate increases with increase in the cache size. It is also

observed that the SMPASP cache architecture offers high cache hit rate in comparison

with the conventional and way prediction architectures, for cache sizes less than 32KB.

The conventional and way prediction cache architectures perform better for large cache

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 124

sizes. The SMPASP with 2-way set-associative cache performs better than the SMPASP

with direct mapped cache and PASP cache architectures.

Cache Hit Vs Cache Line Size

70

75

80

85

90

95

100

8B 16B 32B 64B 128B 256B
Cache Line Size

C
ac

he
 H

it
Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.29: Cache hit rate Vs Cache line size for an 8KB, 4-way set-associative cache with

context switch duration of 500 references

Cache Hit Vs Cache Size

81

82

83

84

85

86

1K 2K 4K 8K 16K 32K 64K
Cache Size

C
ac

he
 H

it

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.30: Cache hit rate Vs Cache size for a 4-way set-associative cache with 16 Byte

cache line size and context switch duration of 500 references

The cache hit rate vs context switch duration for a 4-way set-associative cache running

SPEC95 benchmark program sets as processes with data sharing is shown in Figure 5.31.

It is noted that the context switching does not affect the performance of the SMPASP

architecture as in this scheme local replacement is carried out by assigning one dedicated

way to a process. A slight variation in cache hit rate is possible because of the global

victim cache replacement policy but it hardly affects the performance, as the victim set is

rarely used owing to very high first cycle hit rate. The PASP cache hit performance

increases with lengthening of the context switch duration. This is because of the shared

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 125

cache line access by other processes. In case of the PASP architecture, if the context

switch duration is high, the system performs as if only one process is executing which

results in an improved cache hit performance.

Cache Hit Vs Context Switch Duration

83

83.5

84

84.5

85

85.5

100 200 500 1000
Context Switch Duration

C
ac

he
 H

it
Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.31: Cache hit rate Vs Context switch duration for a 16K, 4-way set-associative

cache with 16 Byte cache line size

The cache hit performance of the conventional and way prediction cache architectures

varies with change in context switch duration due to the use of global replacement

strategy. It is also seen that the SMPASP cache architecture offers high cache hit rate

compared to all other architectures, irrespective of the context switch duration. The

SMPASP with 2-way set-associative shared set provides a better cache hit rate compared

to SMPASP with direct mapped shared set.

5.7.2.2.2 First Cycle Hit Rate

The first cycle hit rate for various cache architectures is analyzed with respect to the

SPEC95 benchmark program sets, cache line size, cache size and the context switch

duration. It is observed that the SMPASP (both direct-mapped and 2-way set-associative

shared set) always exhibits a better first cycle hit rate than its way prediction and PASP

counterparts for all cache configurations while running the SPEC95 benchmark programs

as processes with data sharing among them. This is mainly due to the fact that the shared

set in the SMPASP architecture stores all the shared cache lines, which results in a better

first cycle hit rate. The SMPASP architecture with 2-way set-associative shared set offers

higher first cycle hit rate compared to the SMPASP architecture with direct-mapped

shared set.

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 126

The first cycle hit rates of an 8K, 4-way set-associative cache for various SPEC95

benchmark program sets running as processes with data sharing among them is shown in

Figure 5.32. It is observed from the experimental results that the SMPASP cache

architecture performs equally good or better for a majority of the benchmark program

sets compared to the conventional cache architecture. It is also observed that the

SMPASP cache architecture outperforms the way prediction and PASP cache

architectures for all the benchmark program sets, thus fulfilling its purpose. Though the

first cycle hit performance of the PASP cache architecture degrades slightly because of

the inefficiency in managing shared data, it still performs better than the way prediction

cache architecture in many cases. The high first cycle hit rate of the PASP and SMPASP

compared to the way prediction scheme is attributed to the local replacement strategy

used in these two schemes and the process aware cache architecture. It can also be noted

that in many cases, the cache hit rate of the conventional cache is falling behind the

SMPASP first cycle hit rate.

First Cycle Hit Vs Benchmark Programs

81

82

83

84

85

86

87

88

89

1 2 3 4 5 6 7 8 9 10
Benchmark Programs

Fi
rs

t C
yc

le
 H

it

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.32: First cycle hit rate Vs SPEC95 Program sets for an 8KB, 4-way set-associative

cache with 16 Byte cache line size and context switch duration of 500 references

Figure 5.33 represents the relationship between the first cycle hit rate and the cache line

size for an 8K, 4-way set associative cache running SPEC95 benchmark program sets as

processes with data sharing. The experimental results reveal that similar to the

independent processes, irrespective of the cache architecture, the first cycle hit rate also

increases with increase in the cache line size. It is also observed that irrespective of the

cache line size, the SMPASP architecture performs better than its way prediction and

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 127

PASP counterparts. For all the configurations, the SMPASP with 2-way set-associative

shared set provides better first cycle hit performance compared to SMPASP with direct-

mapped shared set. It is also observed that irrespective of the cache line size, the first

cycle hit rate of the PASP architecture is better than that of the way prediction scheme.

First Cycle Hit Vs Cache Line Size

69

74

79

84

89

94

99

8B 16B 32B 64B 128B 256B
Cache Line Size

Fi
rs

t C
yc

le
 H

it

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.33: First cycle hit rate Vs Cache line size for an 8KB, 4-way set-associative cache

with context switch duration of 500 references

First Cycle Hit Vs Cache Size

80

81

82

83

84

85

86

1K 2K 4K 8K 16K 32K 64K
Cache Size

Fi
rs

t C
yc

le
 H

it

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.34: First cycle hit rate Vs Cache size for a 4-way set-associative cache with 16

Byte cache line size and context switch duration of 500 references

The first cycle hit rate vs cache size for an 8K, 4-way set-associative cache running

SPEC95 benchmark program sets as processes with data sharing is shown in Figure 5.34.

It is found from the experimental results that as in the case of independent processes,

irrespective of the cache architecture, the first cycle hit rate increases with increase in the

cache size. It is also observed that the SMPASP cache architecture offers better first cycle

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 128

hit rate compared to the cache hit rate of the conventional cache architecture for cache

sizes less than 32KB. The conventional cache architecture gives a better performance for

very large cache sizes. The SMPASP with 2-way set-associative cache performs better

than the SMPASP with direct-mapped cache and the PASP cache architectures. It is also

observed that for cache sizes less than 32KB, the first cycle hit rate of the PASP

architecture is better than way prediction scheme.

The first cycle hit rate vs the context switch duration chart for a 4-way set-associative

cache running SPEC95 benchmark program sets as processes with data sharing is shown

in Figure 5.35. It is observed from the experimental results that context switching does

not affect the performance of SMPASP architecture as in this scheme local replacement

is carried out by assigning one dedicated way to a process. In case of PASP architecture,

if the context switch duration is high, then the system performs as if only one process is

executing which results in an improved first cycle hit performance. The first cycle hit

performance of the conventional and way prediction cache architectures varies with

change in context switch duration due to the use of global replacement strategy. The

SMPASP cache architecture offers a high first cycle hit rate compared to all other

architectures, irrespective of the context switch duration. The PASP cache architecture

offers a high first cycle hit rate compared to the way prediction cache architecture for all

the context switch durations.

First Cycle Hit Vs Context Switch Duration

82.5

83

83.5

84

84.5

85

85.5

100 200 500 1000
Context Switch Duration

Fi
rs

t C
yc

le
 H

it

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.35: First cycle hit rate Vs Context switch duration for a 16K, 4-way set-associative

cache with 16 Byte cache line size

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 129

5.7.2.2.3 Tag Comparison Count

The tag comparison count for different cache architectures is analyzed with respect to the

SPEC95 benchmark program sets, cache line size, cache size and the context switch

duration. The number of tag comparisons is normalized over the total number of

references in the benchmark program set. The normalized tag comparison count is N

(where N is the cache associativity) for all the conventional cache configurations as it

carries out a parallel comparison in all the N cache lines of the selected set. It is observed

that the SMPASP with direct-mapped shared set always outperforms all the other

architectures with respect to tag comparisons count for all the configurations, context

switch durations, program sets and data sharing. The SMPASP with 2-way set-

associative shared set gives a higher tag comparison count when compared to the

SMPASP with direct-mapped shared set because of the additional tag comparisons in the

shared set. The normalized tag comparison count for the conventional cache is always

high in comparison to other architectures irrespective of the configurations, context

switch durations, program set and data sharing. These results also reveal that with

increase in the first cycle hit rate, the tag comparison count decreases. The tag

comparison count of SMPASP with 2-way set-associative shared set increases with

shared data as additional tag comparisons have to be performed in the shared set. The tag

comparisons are also a measure of how many data banks and tag banks are active while

running the benchmark program set.

The normalized tag comparison count of an 8K, 4-way set-associative cache for various

SPEC95 benchmark program sets running as processes with data sharing among them is

shown in Figure 5.36. The SMPASP with direct-mapped shared set cache architecture

offers the least tag comparison count for all the benchmark program sets compared to the

other architectures. The normalized tag comparison count vs cache line size and

normalized tag comparison count vs cache size for an 8K, 4-way set-associative cache

running SPEC95 benchmark program sets as processes with data sharing are shown in

Figure 5.37 and Figure 5.38 respectively. It is again verified here that similar to the

independent processes, the tag comparison count reduces with increase in the cache line

size and cache size for the way prediction, PASP and SMPASP cache architectures. This

is attributed to the increased first cycle and cache hit rates.

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 130

Normalized Tag comparisons Vs Benchmark Programs

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1 2 3 4 5 6 7 8 9 10Benchmark Programs

N
or

m
al

iz
ed

 T
ag

 c
om

pa
ris

on
s

Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.36: Normalized tag comparison count Vs SPEC95 Program sets for an 8KB, 4-way

set-associative cache with 16Byte cache line size and context switch duration of 500

references

Normalized Tag comparisons Vs Cache Line Size

1

1.3

1.6

1.9

2.2

8B 16B 32B 64B 128B 256B
Cache Line Size

N
or

m
al

iz
ed

 T
ag

 c
om

pa
ris

on
s

Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.37: Normalized tag comparison count Vs Cache line size for an 8KB, 4-way set-

associative cache with context switch duration of 500 references

Figure 5.39 presents the relationship between the normalized tag comparison count and

the context switch duration for a 4-way set-associative cache running SPEC95

benchmark program sets as processes with data sharing. It is observed that the context

switching does not affect the performance of the SMPASP architecture. This is attributed

to the local replacement carried out in this scheme with one way dedicated to a process.

A slight variation of the cache hit rate is possible because of the global victim cache

replacement policy but this hardly affects the performance as the victim is rarely used

because of high first cycle hit rate. The number of tag comparisons of the PASP reduces

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 131

with increase in the context switch duration. If the context switch interval is high, then

the PASP cache performs as if only one process is executing (without shared data) which

results in an improved cache hit performance for the PASP architecture. The tag

comparison count performance of the conventional and way prediction cache

architectures varies with change in context switch duration due to the use of global

replacement strategy, poor prediction hit and poor cache hit.

Normalized Tag comparisons Vs Cache Size

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1K 2K 4K 8K 16K 32K 64KCache Size

N
or

m
al

iz
ed

 T
ag

 c
om

pa
ris

on
s

Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.38: Normalized tag comparison count Vs Cache size for a 4-way set-associative

cache with 16 Byte cache line size and context switch duration of 500 references

Normalized Tag comp. Vs Context Switch Duration

1.4

1.44

1.48

1.52

1.56

1.6

1.64

1.68

1.72

100 200 500 1000
Context Switch Duration

N
or

m
al

iz
ed

 T
ag

 c
om

pa
ris

on
s

Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.39: Normalized tag comparison count Vs Context switch duration for an 16K, 4-

way set-associative cache with 16 Byte cache line size

5.7.2.2.4 Effective Cache Access Time (ECAT)

As observed in the cache hit rate and first cycle hit rate performances, the ECAT

performance of the SMPASP (both direct-mapped and 2-way set-associative shared set)

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 132

cache architecture is better than that of all the other cache architectures and context

switch duration for all the cache configurations. This is because the shared set of the

SMPASP architecture stores all the shared cache lines which results in a better cache hit

and first cycle hit performance. The SMPASP with 2-way set-associative shared set

offers better performance than the SMPASP with direct-mapped cache owing to the

cache hit rate and first cycle hit rate. The ECAT of conventional cache architecture is

always lower than that of the way predictive cache architecture, irrespective of the

configuration, program set, context switch duration and data sharing which is attributed

to the high first cycle hit performance.

Effective AccessTime Vs Benchmark Programs

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

1 2 3 4 5 6 7 8 9 10
Benchmark Programs

Ef
fe

ct
iv

e
A

cc
es

sT
im

e

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.40: Effective access time Vs SPEC 95 Program sets for an 8KB, 4-way set-

associative cache with 16Byte cache line size and context switch duration of 500

references

The ECAT of an 8K, 4-way set-associative cache for various SPEC95 benchmark

program sets running as processes with data sharing among them is shown in Figure 5.40.

It is observed that the PASP and SMPASP cache architectures offer lesser ECAT for a

majority of the benchmark program sets. The ECAT performance follows the same

pattern of the cache hit rate and first cycle hit rate performances, as ECAT depends on

the first cycle hit rate and the overall cache hit rate. The SMPASP with 2-way shared set

offers a lesser ECAT in comparison with the SMPASP with direct-mapped shared set,

which is again due to the high first cycle hit rate.

The ECAT vs the cache line size and ECAT vs cache size for an 8K, 4-way set-

associative cache for various SPEC95 benchmark program sets running as processes with

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 133

data sharing among them is shown in Figure 5.41 and Figure 5.42 respectively. The

experimental results reveal that similar to the case of independent processes, here also,

irrespective of the cache architecture, the ECAT decreases with increase in the cache line

size and cache size. It is also observed that for cache sizes less than 32KB, the SMPASP

cache architecture offers low ECAT compared to the other architectures. The

conventional and way prediction cache architectures perform better for very large cache

sizes.

Effective AccessTime Vs Cache Line Size

1

1.5

2

2.5

3

3.5

4

8B 16B 32B 64B 128B 256B
Cache Line Size

Ef
fe

ct
iv

e
A

cc
es

sT
im

e

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.41: Effective access time Vs Cache line size for an 8KB, 4-way set-associative

cache with context switch duration of 500 references

Effective AccessTime Vs Cache Size

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

1K 2K 4K 8K 16K 32K 64K
Cache Size

E
ffe

ct
iv

e
A

cc
es

sT
im

e

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.42: Effective access time Vs Cache size for a 4-way set-associative cache with 16

Byte cache line size and context switch duration of 500 references

The ECAT vs context switch duration for a 4-way set-associative cache for various

SPEC95 benchmark program sets running as processes with data sharing among them is

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 134

shown in Figure 5.43. The results confirm that the context switching does not affect the

ECAT performance of the SMPASP architecture. This is because context switching does

not affect the cache hit rate and first cycle hit rate of the SMPASP architectures. The

ECAT of the PASP reduces with increase in the context switch duration. If the context

switch interval is high, then the PASP cache performs as if only one process is executing

(without shared data) which results in an improved cache hit performance for the PASP

architecture. The ECAT performance of the conventional and way prediction cache

architectures varies with change in context switch duration due to the use of global

replacement strategy, poor prediction hit and poor cache hit.

Effective AccessTime Vs Context Switch Duration

2.3

2.35

2.4

2.45

2.5

2.55

100 200 500 1000
Context Switch Duration

Ef
fe

ct
iv

e
A

cc
es

sT
im

e

Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

Fig. 5.43: Effective access time Vs Context switch duration for an 16K, 4-way set-

associative cache with 16 Byte cache line size

5.7.2.3 Comparative Figures

The cache hit rate of the conventional and way prediction cache architecture is always the

same for all the cache configurations irrespective of the level of sharing among the

processes. The cache hit rate of the PASP cache, SMPASP cache with direct-mapped

shared set, SMPASP cache with 2-way set-associative shared set is always the same for

all the configurations, when the processes have no sharing among them. The cache hit

rate of the PASP / SMPASP cache architecture varies from -2% to +2% of that of the

conventional / way prediction cache architectures for all the cache configurations and

benchmark program sets, when processes have no shared data among them. The

performance of the PASP cache architecture degrades for the shared benchmark program

sets. The cache hit rate of the PASP cache, SMPASP cache with direct-mapped shared

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 135

set, and SMPASP cache with 2-way set-associative shared set architecture varies from -

5% to +0.1%, -1.3% to +1.85% and -0.5% to +2.1% respectively of that of the

conventional / way prediction cache architectures for all the cache configurations and

benchmark program sets when the processes exhibit data sharing among them.

The first cycle hit rate of the PASP cache, SMPASP cache with direct mapped shared set,

SMPASP cache with 2-way set-associative shared set is always the same for all

configurations when the processes do not share data among them. The first cycle hit rate

of the PASP / SMPASP cache architecture improves from 1% to 10% of that of the way

prediction cache architectures for all the cache configurations and benchmark program

sets, when processes have no shared data among them. However, the PASP cache

architecture degrades its performance for shared benchmark program sets. The first cycle

hit rate of the SMPASP cache with 2-way set-associative shared set is higher than that of

the PASP cache and SMPASP cache with direct-mapped shared set for all the cache

configurations and benchmark program sets, when processes demonstrate data sharing

among them. The first cycle hit rate of the PASP cache, SMPASP cache with direct-

mapped shared set, and SMPASP cache with 2-way set-associative shared set cache

architecture varies from -3.5% to +5%, +0.75% to +9.75% and +1% to +10%

respectively of that of the way prediction cache architecture for all the cache

configurations and benchmark program sets, when processes exhibit data sharing among

them.

The tag comparison count of the PASP cache, SMPASP cache with direct-mapped shared

set, and the SMPASP cache with 2-way set-associative shared set is always the same for

all configurations when the processes do not share any data among them. The tag

comparison count of the PASP / SMPASP cache architecture reduces by 50% to 75% of

that of the conventional cache architecture for all the cache configurations and

benchmark program sets, when processes have no shared data among them. The number

of tag comparisons of the PASP / SMPASP cache architecture reduces by 1.2% to 9% of

that of the way prediction architecture for all the cache configurations and benchmark

program sets. The PASP cache architecture performance degrades in the case of shared

benchmark program sets. The number of tag comparisons of the SMPASP cache with

direct-mapped shared set is lesser than that of the PASP cache and SMPASP cache with

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 136

2-way set-associative shared set for all the cache configurations and benchmark program

sets, when processes share data among them. The tag comparison count of PASP cache,

SMPASP cache with direct-mapped shared set, and SMPASP cache with 2-way set-

associative shared set architecture varies from +48% to +72.5%, +51% to +73% and

+43% to +66% respectively of that of the conventional cache architecture for all the

cache configurations and benchmark program sets, when processes have data sharing

among them. The number of tag comparisons of PASP cache, SMPASP cache with

direct-mapped shared set, and SMPASP cache with 2-way set-associative shared set

architecture varies from -4.8% to +2.75%, +2% to +10% and -20% to -5.7% respectively

of that of the way prediction cache architecture for all the cache configurations and

benchmark program sets, when processes share data among them.

The ECAT of the PASP cache, SMPASP cache with direct-mapped shared set, and the

SMPASP cache with 2-way set-associative shared set is always the same for all

configurations when the processes have no sharing among them. The ECAT of the PASP

/ SMPASP cache architecture varies from -6.85% to +3.6% of that of the conventional

cache architecture for all the cache configurations and benchmark program sets. The

ECAT of the PASP / SMPASP cache architecture varies from -4.8% to +4.8% of that of

the way prediction architecture for all the cache configurations and benchmark program

sets. The PASP cache architecture performance degrades for shared benchmark program

sets. The effective cache access time of SMPASP cache with 2-way set-associative

shared set is less than that of the PASP cache and SMPASP cache with direct-mapped

shared set for all the cache configurations and benchmark program sets, when processes

have data sharing among them. The effective cache access time of the PASP cache,

SMPASP cache with direct-mapped shared set, and SMPASP cache with 2-way set-

associative shared set architecture varies from -10% to +0.1%, -3.5% to +4.4% and -1.4%

to +5% respectively of that of the conventional cache architectures for all the cache

configurations and benchmark program suite. The effective cache access time of the

PASP cache, SMPASP cache with direct-mapped shared set, and SMPASP cache with 2-

way set-associative shared set architecture varies from -9% to +1.4%, -1.9% to +4.8%

and -0.6% to +5.5% respectively of that of the way prediction cache architecture for all

the cache configurations and benchmark program sets.

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 137

5.7.3 Energy Consumption Measurement

Here, the energy components for analysis are obtained by using the power estimation

model, the eCACTI cycle simulator [Mamidipaka 2004]. The eCACTI simulates any

specified cache architecture and measures the dynamic and leakage energy of different

cache components for various nanometer technologies. These dynamic and leakage

energy component values are then used to find the dynamic, leakage and total energy

consumption of different architecture implementations such as the conventional cache,

way prediction cache, PASP cache, SMPASP cache with direct-mapped shared set and

SMPASP cache with 2-way set-associative shared set. With the help of the above

experimental results such as the cache hit rate, prediction hit rate, victim hit rate, shared

hit rate for a given input program set (both for shared and independent processes), the

dynamic, leakage and total energy of the cache, while executing these programs is

obtained.

The dynamic, leakage and the total power consumption of various cache architectures for

different nanometer technologies while running SPEC95 benchmark program sets as

independent processes is shown in Figure 5.44, 5.45 and 5.46 respectively. The

configuration used for the given analysis is an 8K, 16B, 4 – way set-associative cache

with a context switching duration of 500 traces and the input program set 6, as given

Table 5.1. From the results, it is evident that the PASP and SMPASP architectures save

significant amount of power when compared to the conventional and way prediction

schemes. The power components for the PASP, SMPASP with direct-mapped shared set

and SMPASP with 2 – way set-associative shared set are equal for the instance of

independent processes, as here, the shared set of the SMPASP architecture is completely

shutdown.

The dynamic, leakage and total power consumption of the PASP and SMPASP cache

architectures executing independent processes is always lesser than that of its

conventional and way prediction counterparts, irrespective of nanometer technology in

use. The dynamic power consumption of the PASP and SMPASP cache architectures is

less as 75% of the main cache is in sleep state throughout the execution and its high first

cycle hit rate makes the victim cache usage minimal. The dynamic power saving of the

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 138

PASP and SMPASP architectures over the conventional and way prediction cache varies

from 61.6% to 62.03% and 8.76% to 8.873% respectively. The way prediction cache

saves 57.913% to 58.331% of dynamic power of that of the conventional cache

architecture. It is also clear from the figure depicted below that the dynamic power

consumption of each of the architectures reduces with advancement in technology. All

the cache architectures reduce their dynamic power consumption by at least 8 times as the

technology advances from 180nm to 70nm.

Dynamic Power Vs Technology

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

180nm 130nm 100nm 70nmTechnology

Lo
g(

D
yn

am
ic

 P
ow

er
)

Conv Way Predict PASP SMPASP Direct SMPASP 2-Way

Fig. 5.44: Dynamic power consumption of various architectures Vs Technology for an

8K, 4-way set-associative cache with 16B line size and context switch duration of 500

references.

Leakage Power Vs Technology

-0.5

0

0.5

1

1.5

2

2.5

3

180nm 130nm 100nm 70nm
Technology

Lo
g(

Le
ak

ag
e

Po
w

er
)

Conv Way Predict PASP SMPASP Direct SMPASP 2-Way

Fig. 5.45: Leakage power consumption of various architectures Vs Technology for an

8K, 4-way set-associative cache with 16B line size and context switch duration of 500

references

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 139

The leakage power consumption of the PASP and SMPASP cache architectures is lesser

than that of the conventional and way prediction cache architectures due to its lower

effective cache access time, high first cycle hit rate and high cache hit rate. The leakage

power saving of the PASP and SMPASP architectures over their conventional and way

prediction counterparts is around 0.78% and 7.44% respectively. The leakage power

consumption of the conventional cache is lesser than that of the way prediction cache by

7.2%. This is because of the extra cycle penalty during a prediction miss and poor first

cycle and cache hit rates. It is also observed that the leakage power consumption of each

of the architectures increases with advancement in technology. All the cache architectures

increase their leakage power consumption by around 572 times as the technology moves

from 180nm to 70nm.

Total Power Vs Technology

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

180nm 130nm 100nm 70nm
Technology

Lo
g(

To
ta

l P
ow

er
)

Conv Way Predict PASP SMPASP Direct SMPASP 2-Way

Fig. 5.46: Total power consumption of various architectures Vs Technology for an 8K,

4-way set-associative cache with 16B line size and context switch duration of 500

references

The total power consumption of cache architecture is the sum of its dynamic and leakage

power components. So the same trend mentioned above is followed by total power

consumption as well. The total power consumption of the PASP and SMPASP cache

architectures is lower than that of the conventional and way prediction cache

architectures. It is evident from the results that initially (from 180nm to 100nm) the total

power consumption decreases with advancement in technology. This performance

improvement is mainly attributed to the dynamic power consumption reduction. But the

advancement in technology causes the leakage power consumption to rise for all the

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 140

cache architectures, which results in the increasing total power consumption with further

technology advancement. This fact can be very well observed as the technology advances

from 100nm to 70nm, where the total power consumption is pretty high compared to that

of the 100nm technology. This increase in total power consumption is thus due to the

huge increase in leakage power consumption with technology advancement. The total

power saving of the PASP and SMPASP architectures over the conventional and way

prediction cache architectures varies from 26.494% to 61.5829% and 7.75% to 8.76%

respectively. The way prediction cache saves 20.32% to 57.893% of the total power of

conventional cache architecture.

The dynamic, leakage and the total power consumption of various cache architectures for

different nanometer technologies while running SPEC95 benchmark program sets as

processes with data sharing among them is shown in Figure 5.47, 5.48 and 5.49

respectively. The configuration for this analysis is an 8K, 16B, 4 – way set-associative

cache with a context switching duration of 500 traces and input SPEC program sets as set

no. 6 shown in Table 5.1 wherein 26.35% of the data is shared. From the figures, it is

evident that the PASP and SMPASP architectures save significant amount of power

compared to the conventional and way prediction schemes. The dynamic and total power

consumption of the PASP and SMPASP cache with direct mapped shared set and

SMPASP with 2-way set-associative shared set architectures executing processes

exhibiting data sharing among them is always lesser than that of the conventional and

way prediction cache architectures, irrespective of the nanometer technology in use.

It is clear from the results that the dynamic power consumption of each of the

architectures reduces with the advancement in technology. All the cache architectures

reduce their dynamic power consumption by at least 8 times, as the technology moves

from 180nm to 70nm. The dynamic power consumption of the SMPASP cache with

direct mapped shared set is lower than that of any of the other cache architectures. The

dynamic power consumption of the SMPASP cache with direct mapped shared set

performs slightly better than the SMPASP cache with 2-way set-associative shared set

because of the extra power required for the functioning of the multiplexer, comparators

and data output. The dynamic power saving of the SMPASP cache with direct-mapped

shared set architecture over the conventional, way prediction, PASP and SMPASP cache

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 141

with 2-way set-associative shared set varies from 65.1% to 65.5%, 16.86% to 16.92%,

11.67% to 11.74%, and 0.15% to 0.45% respectively. The dynamic power saving of the

SMPASP cache with 2-way set-associative shared set architecture over the conventional,

way prediction and PASP varies from 64.93% to 65.41%, 16.48% to 16.8%, and 11.33%

to 11.56% respectively. The dynamic power saving of the PASP cache architecture over

the conventional and way prediction varies from 60.45% to 60.89%, and 5.81% to 5.92%

respectively.

Dynamic Power Vs Technology

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

180nm 130nm 100nm 70nm
Technology

Lo
g(

D
yn

am
ic

 P
ow

er
)

Conv Way Predict PASP SMPASP Direct SMPASP 2-Way

Fig. 5.47: Dynamic power consumption of various architectures Vs Technology for an

8K, 4-way set-associative cache with 16B line size and context switch duration of 500

references

The leakage power consumption of the conventional cache architecture is lower than that

of the way prediction, PASP and SMPASP cache architectures. The SMPASP cache

architecture shows extra leakage power consumption because of the additional shared and

victim sets, while the PASP cache architecture shows extra leakage power consumption

because of the victim set. The leakage power consumption of the conventional cache

architecture is lower than that of the way prediction cache because of the extra cycle

overhead to handle a prediction miss in a way prediction cache. The leakage power

consumption of the PASP cache architecture is lower than that of the way prediction

cache architecture. This is because the victim set has very less leakage power

consumption in comparison to the effective cache access time reduction over that of the

way prediction cache. The SMPASP cache with 2-way set-associative shared set has

lower leakage power consumption in comparison to that of the SMPASP cache with

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 142

direct-mapped cache because of the reduction in the effective cache access time. Each of

the cache architectures increases its leakage power consumption by around 572 times, as

technology advances from 180nm to 70nm. The leakage power savings of the

conventional cache architecture over way prediction, PASP, SMPASP with direct

mapped shared set and SMPASP with 2-way set associative shared set cache is around

6.61%, 2.08%, 9.72% and 9.2% respectively. The leakage power consumption of the

PASP cache architecture is lower than that of the way prediction, SMPASP with direct

mapped shared set and SMPASP with 2-way set-associative shared set cache

architectures by 4.62%, 7.8% and 7.27% respectively. The leakage power consumption of

the way prediction cache architecture is lower than that of the SMPASP with direct-

mapped shared set and SMPASP with 2-way set-associative shared set cache

architectures by 3.33%, and 2.77% respectively. The leakage power consumption of the

SMPASP with 2-way set-associative shared set cache architecture is lower than that of

the SMPASP with direct-mapped shared set cache architecture by around 0.57%.

Leakage Power Vs Technology

-0.5

0

0.5

1

1.5

2

2.5

3

180nm 130nm 100nm 70nm

Technology

Lo
g(

Le
ak

ag
e

Po
w

er
)

Conv Way Predict PASP SMPASP Direct SMPASP 2-Way

Fig. 5.48: Leakage power consumption of various architectures Vs Technology for an

8K, 4-way set-associative cache with 16B line size and context switch duration of 500

references

The total power consumption of the SMPASP cache with direct-mapped shared set is

better than that of all the other cache architectures for technologies older than 180nm. For

cache technologies greater than 100nm and less than 180nm, the SMPASP cache with 2-

way set-associative shared set architecture is better than all the other architectures. For

technologies like 70nm, the PASP cache architecture gives lesser total power

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 143

consumption than the other architectures. The total power consumption increases for

SMPASP cache because of the huge increase in leakage power with advancement in

technology. For 70nm technology, the majority of power consumption (58% in

conventional cache, 78% in way prediction and PASP, 82% in SMPASP) is due to the

leakage power component. It is observed from the results that initially (from 180nm to

100nm), the total power consumption decreases with advancement in technology. This

performance improvement is mainly because of the reduction in the dynamic power

consumption. But the advancement in technology increases the leakage power

consumption of all the cache architectures, which results in increased total power

consumption with technology advancement. This can be seen in 70nm technology, where

the total power consumption increases when compared to that of the 100nm technology.

Total Power Vs Technology

2.3

2.5

2.7

2.9

3.1

3.3

3.5

180nm 130nm 100nm 70nm
Technology

Lo
g(

To
ta

l P
ow

er
)

Conv Way Predict PASP SMPASP Direct SMPASP 2-Way

Fig. 5.49: Total power consumption of various architectures Vs Technology for an 8K,

4-way set-associative cache with 16B line size and context switch duration of 500

references

The total power savings of the SMPASP cache with 2-way set-associative shared set

cache architecture over the conventional, way prediction, PASP and SMPASP cache with

direct mapped shared set cache architectures varies from 51.9% to 64.9% (21.58% for

70nm), 9.74% to 16.47% (1.46% for 70nm), 4.53% to 11.32% (-3.63% for 70nm) and -

0.45% to 0.15% respectively. The performance of the SMPASP with direct-mapped

shared set is almost the same as SMPASP cache with 2-way set-associative shared set

cache architecture. The PASP cache saves 49.62% to 60.43% (24.33% for 70nm), 5.46%

to 5.81% (4.91% for 70nm) of the total power consumed by the conventional and way

CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES

 144

prediction cache architectures respectively. The way prediction cache saves 46.72% to

57.99% (20.42% for 70nm) of the total power consumed by the conventional cache

architecture.

5.8 CONCLUSION

Here, the two proposed schemes – the process aware selective placement (PASP) and the

shared memory process aware selective placement (SMPASP) caching scheme that

efficiently handles shared data among processes – are discussed in detail. They are also

evaluated experimentally and compared with the existing cache architectures with respect

to different performance metrics and the results are analyzed with prime focus on

reduction in energy consumption and cache hit rate performance enhancement. Table 5.2

presents a comprehensive summary of this evaluation in the form of desired performance

characteristics and the corresponding choice of the appropriate cache architectures.

Table 5.2: Ready Reckoner for choice of cache architecture

Desired performance characteristic Suitable cache architecture

Low dynamic power consumption for

data access
SMPASP

High cache hit rate SMPASP / Conventional cache

Low leakage energy for data accesses Conventional cache

Low Effective Cache Access Time

 > 32KB

 <=32KB

SMPASP

Conventional Cache

Low total energy consumption for only

non-shared data
PASP / SMPASP

Low total energy consumption for shared and

non-shared data access
SMPASP

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 145

CHAPTER 6

ENERGY EFFICIENT TASK SCHEDULING

6.1 INTRODUCTION

This chapter discusses various scheduling algorithms which will reduce the preemptions

(thus context switches) in a real-time schedule. The main objective behind reducing

preemptions is to reduce power consumption due to preemptions. Our approach leads to

platform-independent scheduling algorithms with reduced power consumption. This is

achieved by applying heuristics to reduce the number of preemptions. We present a static

algorithm (IntFragment) and two dynamic priority algorithms (EDFRCS and RMRCS).

The latter are variants of the Earliest Deadline First (EDF) and Rate Monotonic (RM)

algorithms respectively. We also present a rigorous evaluation of these scheduling

algorithms.

6.2 ASSUMPTIONS

1. All tasks are periodic and preemptible.

2. For each task type T, the arrival time of the first job is time 0.

3. For each task type T, the period, denoted by period(T) is known and the period of

job Ji, where job Ji is the ith instance of T, denoted by period(Ji) = period(T).

4. All tasks in the task set are in phase. The arrival time of job Ji, denoted by

arrTime(Ji) = (i-1)*period(T).

5. For each task type T, the worst case execution time, denoted by exeTime(T) is

known. The worst case execution time of job Ji, denoted by exeTime(Ji) =

exeTime(T).

6. For each task type T, the deadline, denoted by deadline(T) is known and is the

same as period(T). The deadline of job Ji, denoted by deadline(Ji) = i * period(T).

This can also be expressed as deadline(Ji) = arrTime(Ji) + period(Ji).

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 146

6.3 A BRUTE – FORCE ALGORITHM FOR MINIMIZING PREEMPTIONS

We present an offline algorithm that inspects valid schedules to find one with minimum

preemptions. This takes O(H!) time, where H is the hyper-period and we use it as a

standard to measure the effectiveness of other algorithms.

6.3.1 BRUTE – FORCE ALGORITHM
Input: Hyper-period H and a list of job records, Jobs (ordered based on arrTime)

Output: A feasible schedule, if it exists and the least number of preemptions.

Steps
1. Generate all schedules P of Jobs i.e. divide each job into sub-jobs of unit execution time and

compute all schedulable permutations of the list of sub-jobs.

2. MinConSw = H; CurSchedule=first schedule in P.

3. For each permutation Pi in P,

a. Check if Pi is feasible (All jobs in Pi meet its deadline)

b. If yes, then count the number of preemptions, say m’;

If (m’ < MinConSw) , then MinConSw=m’; CurSchedule=Pi.

4. If (MinConSw = H) then output ‘Infeasible’

5. Else output CurSchedule and MinConSw.

Finding all permutations, though offline, for a given task set (S) is impractical, if H is

large. Some of the optimization conditions like ‘only one job of a task will be available in

the ready queue at a time’, ‘if any job misses its deadline, the schedule is not feasible’

etc. can be introduced to reduce the number of feasible permutations. This requires a

good understanding of the assumptions made for the real-time scheduling. Another way

of reducing the complexity is to introduce heuristics to simplify the search and obtain a

near-optimal solution. This may adversely affect efficiency and schedulability.

Required:

An algorithm which can compute a feasible schedule (if one exists) in polynomial time,

such that the number of preemptions in the schedule is low. One such heuristic to find a

feasible schedule with minimum number of preemptions is IntFragment scheduling

algorithm.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 147

6.4 INTFRAGMENT ALGORITHM

The IntFragment is an offline, hard real-time scheduling algorithm for a periodic task set

that reduces the number of preemptions. The heuristic used for minimizing the number of

preemptions is to minimize the fragmentation of schedulable intervals. Under the

assumptions in section 6.2, given a list of task types L, ordered by their periods, one can

pre-compute the following easily:

Hyper-period H and a list of job records Jobs, lexicographically ordered by the key

(p(t(j)), t(j)), where each record has a job identifier j, task type t(j), deadline d(j), arrival

time a(j) and execution time e(j). The key (p(t(j)), t(j)) orders tasks based on the period

p(t(j)). If the period of tasks is the same, then the task number (which is unique) is

assigned as the key. The basic idea behind the IntFragment algorithm is to provide the

maximum fragment size for the greater period tasks to execute. This is achieved by

executing an even instance of the task (even job: job having value of odd variable as

false) and its immediate next odd instance of the same task (odd job) as distant in time as

possible. The execution of the previously mentioned odd instance of the task (odd job)

and its immediate next even instance of the same task (even job) will be as close as

possible. This allocation results in creating a big fragment in the schedule. With the help

of an example we discuss the working of IntFragment algorithm.

Table 6.1: Task list for the schedule

Task Arrival Time Period Exec. Time

A 0 2 1

B 0 8 4

Table 6.2: Job list derived from table 6.1

Job Arrival Time Deadline Exec. Time

A1 0 2 1

A2 2 4 1

A3 4 6 1

A4 6 8 1

B 0 8 4

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 148

Table 6.1 provides the task set S. Table 6.2 provides the arrival time, deadline and

execution time of all the jobs corresponding to each of the tasks in Table 6.1. In this case,

IntFragment heuristic is applied as follows:

Step 1 Take Task A’s jobs from Table 6.2 (A1, A2, A3, and A4). Assign odd as true.

Step 1.1 The variable odd is true, so schedule A1 in the first feasible slot (i.e. time 0

to 1) and A4 in the last feasible slot (i.e. time 7 to 8) as shown in Figure 6.1. Change

odd to false and continue.

Step 1.2 The variable odd is false, so schedule A2 in the last feasible slot (i.e. time 3

to 4) and A3 in the first feasible slot (i.e. time 4 to 5) as shown in Figure 6.2. As all

the jobs in Task A have been scheduled, move to Task B.

Step 2 Take Task B’s job from Table 6.2. As Task B has only one job, schedule job B in

the first feasible slot (time 1 to 3 and time 5 to 7), as shown in Figure 6.3. At the end of

time slot 3, it has to be preempted and rescheduled at the end of time slot 5. The resultant

schedule has one preemption.

Fig. 6.1: Gantt chart after step 1.1

Fig. 6.2: Gantt chart after step 1.2

Fig. 6.3: Gantt chart after step 2

This idea can be written as IntFragment algorithm as follows:

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 149

6.4.1 INTFRAGMENT ALGORITHM

Input: Hyper-period H and a list of job records J (ordered as above)

Output: A feasible schedule, if it exists and the number of preemptions.

 Steps
1. odd = true

2. Let Ji, Ji+1, … Jk be all the jobs of task T

a. If (odd) then schedule Ji,, Jk in the first and last feasible slots respectively

b. Else schedule Ji, Jk in the last and first feasible slots respectively

c. odd = !odd

d. i=i+1; k=k-1;

 e. Repeat steps 2.a to 2.d until k <= i

f. If (k==i), then schedule Ji in the first feasible slot

3. Repeat steps 1 and 2, until no more tasks are left

4. Output the schedule and the number of preemptions in the schedule

The main advantage of this scheme is the simplicity of its heuristics. The resultant

IntFragment schedule is likely to reduce preemptions, as it reduces fragmentation of

intervals, thereby allowing jobs to fit into these intervals, thus executing without

preemptions. An indirect, but equally important benefit is improving the cache impact.

As the IntFragment algorithm combines jobs of the same task together, the amount of

cache flushes in the schedule is reduced. The resultant schedule produced by IntFragment

algorithm helps in saving time and power by reducing preemptions and cache flushes.

6.4.2. SCHEDULABILITY ARGUMENTS FOR INTFRAGMENT ALGORITHM

Algorithm IntFragment may fail to find a feasible schedule for some inputs that admit

feasible schedules.

For instance, consider the input from Table 6.3. Table 6.4 gives the arrival time, deadline

and execution time of all the jobs corresponding to each of the tasks in Table 6.3.

Table 6.3: Task list for which IntFragment algorithm fails to find a valid schedule

Task Arrival Time Period Exec. Time

A 0 3 1

B 0 5 3

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 150

Table 6.4: Job list derived from table 6.3

Job Arrival Time Deadline Exec. Time

A1 0 3 1

A2 3 6 1

A3 6 9 1

A4 9 12 1

A5 12 15 1

B1 0 5 3

B2 5 10 3

B3 10 15 3

In this case, IntFragment heuristic is applied as follows:

Step 1 Take Task A’s jobs from Table 6.4 (A1, A2, A3, A4 and A5). Assign odd as true.

Step 1.1 The variable odd is true. So, schedule A1 in the first feasible slot (i.e. time 0

to 1) and A5 in the last feasible slot (i.e. time 14 to 15), as shown in Figure 6.4.

Change odd to false and continue.

Step 1.2 The variable odd is false. So, schedule A2 in the last feasible slot (i.e. time 5

to 6) and A4 in the first feasible slot (i.e. time 9 to 10), as shown in Figure 6.5.

Change odd to true and continue.

Step 1.3 As pointers first and last point to the same location, schedule A3 in the first

feasible slot (i.e. time 6 to 7), as shown in Figure 6.6. As all the jobs in Task A have

been scheduled, move to Task B.

Step 2 Take Task B’s jobs from Table 6.4 (B1, B2, and B3). Assign odd as true.

Step 2.1 The variable odd is true. So, schedule B1 in the first feasible slot (i.e. time 1

to 4) and B3 in the last feasible slot (i.e. time 11 to 14), as shown in Figure 6.7.

Change odd to false and continue.

Step 2.2 The variable odd is false. So, schedule B2 in the first feasible slot. B2 needs

3 units of execution time between time 5 and 10. But A2, A3 and A4 are occupying

one unit each between time 5 and 10, which makes B2 unschedulable as shown in

Figure 6.8. The scheduling algorithm failed to provide a valid schedule, though there

exists one.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 151

Fig. 6.4: Gantt chart after step 1.1

Fig. 6.5: Gantt chart after step 1.2

Fig. 6.6: Gantt chart after step 1.3

Fig. 6.7: Gantt chart after step 2.1

Fig. 6.8: Gantt chart after step 2.2

Such failures happen typically when the utilization is high. The following schedulability

test states a sufficient condition for the algorithm to find a feasible schedule.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 152

Given a set of N independent tasks on a uniprocessor under the assumption in 6.2, if for

each task i, (p(i) - Σj < i (⎡p(i) / p(j)⎤ * e(j))) <= e(i) (6.1)

where p(i) is the period of task i and e(i) is the execution time of task i, then a feasible

schedule (if one exists) can be found using IntFragment algorithm.

6.4.3. CORRECTNESS OF INTFRAGMENT ALGORITHM

Given a set of N independent tasks on a uniprocessor under the assumption in 6.2,

Algorithm IntFragment generates a feasible schedule, if one exists and if the

schedulability test is satisfied.

6.4.4. PROOF OF CORRECTNESS

By induction on the number of jobs per task Ti.

Algorithm makes sure all jobs of higher frequency tasks already scheduled

In each step of the algorithm, there are two cases to consider:

Step 1 Two selected jobs are scheduled in the first and last feasible slots of the

interval. Then the other jobs must be schedulable in the remaining part of the interval.

(i) For the job executing in the first feasible slot, the algorithm follows task level

fixed priority scheduling (RM) and will be feasible if it is RM feasible.

(ii) For the job executing in the last feasible slot, the algorithm guarantees a feasible

execution if no job of lower frequency tasks has deadline between this job’s

arrival time and deadline.

Step 2 Two selected jobs are scheduled such that they split the interval into two

intervals. The remaining jobs must still be schedulable, albeit requiring one extra

preemption.

By inductive hypothesis, if the schedulability of the smaller job list(s) is assumed to

be true, then by an inductive step, the full job list is schedulable.

End of Proof

6.4.5. ANALYSIS OF INTFRAGMENT ALGORITHM

6.4.5.1. Complexity of the Algorithm

Claim: The worst case time complexity of Algorithm IntFragment is

pmax * ΣT ∈ Tasks H/p(T) (6.2)

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 153

where pmax is the maximum among the periods of all tasks, H is the hyper-period, and

p(T) is the period of task T.

Proof: The outer loop in Algorithm IntFragment executes n times where n is the number

of tasks. The inner loop executes k (T) times where k(T) = H/p(T) is the number of jobs

or instances of task T. So, the total number of iterations is ΣT ∈ Tasks H/p(T). And in each

iteration, the amount of work done to find a feasible slot is less than p(T). Thus the total

work done is pmax * ΣT ∈ Tasks H/p(T).

End of Proof

6.4.5.2. Quality of the Schedule

Since the objective is to minimize the number of preemptions, the algorithm is evaluated

using the metric described below and compared with other algorithms.

Consider the example of Tables 6.1 and 6.2. Algorithm IntFragment produces a schedule

with one preemption as shown in Figure 6.3. In comparison, for the same input, both the

RM algorithm and the EDF algorithm produce a schedule with 3 preemptions as shown in

Figure 6.9.

Fig. 6.9: Schedule obtained by Rate Monotonic and Earliest Deadline First Algorithms

Although Algorithm IntFragment typically fares better than other real-time priority-based

dynamic scheduling algorithms in reducing preemptions, it does not necessarily produce

a schedule with the least number of preemptions. This is explained with the help of the

following example.

Table 6.5: Task list for which IntFragment algorithm performs better than the other

scheduling algorithms like Rate Monotonic and EDF

Task Arrival Time Period Exec. Time

A 0 2 1

B 0 10 4

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 154

Table 6.6: Job list derived from table 6.5

Consider the input from Table 6.5. Table 6.6 gives the arrival time, deadline and

execution time of all the jobs corresponding to each of the tasks in Table 6.5.

For this input, Algorithm IntFragment produces a schedule with 2 preemptions as shown

in Figure 6.10, while there exists a feasible schedule with one preemption as shown in

Figure 6.11. Thus, Algorithm IntFragment is an approximation algorithm.

Fig. 6.10: Schedule obtained by the IntFragment algorithm

Fig. 6.11: Schedule obtained by the Brute-Force Technique

Worst-case Approximation Claim:

Let I be an input of T tasks. If I admits a feasible schedule and satisfies the Schedulability

Test 6.2.4, then Algorithm IntFragment will produce a feasible schedule, with at most

O(T2) preemptions.

Job Arrival Time Deadline Exec. Time

A1 0 2 1

A2 2 4 1

A3 4 6 1

A4 6 8 1

A5 8 10 1

B 0 10 4

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 155

Although this may imply that a schedule produced by Algorithm IntFragment is infinitely

worse compared to Brute-Force minimal preemption schedule, in practice, it produces far

fewer number of preemptions in most cases.

6.5 REDUCED CONTEXT SWITCH (RCS) SCHEDULING ALGORITHMS

(EDFRCS AND RMRCS)

6.5.1 ALGORITHMS

This approach to preemption (context switch) reduction is similar to the one used in

MLLF [Oh 1998] and MMUF [Vahid 2005]: defer the preemption of an active process

when it can be guaranteed that any process that is delayed will not miss its deadline. But

the heuristic in MLLF / MMUF is weak: preemption is deferred only when there is a tie

in the priority (i.e. laxity in this case): the possibility of delaying a higher priority process

without the delayed process missing the deadline is not considered.

We adopt a more aggressive approach that considers deferrals in the preemption of an

active process even in the presence of higher priority processes – without affecting the

schedulability of the delayed processes. The adopted heuristic below maximizes the

extension period of the active process by considering the deadlines of all processes in the

ready queue whose priority is same as or higher than the active process. Based on this

heuristic, a scheduling algorithm (RCSS) is developed, parameterized by a priority

function. By choosing the appropriate priority function, variants of EDF (named

EDFRCS) and of RM (named RMRCS) are obtained from this RCSS algorithm. The

schedulability of tasks is preserved by these variants i.e. the variant (say RMRCS) is

optimal if and when the original algorithm (say RM) is optimal.

The following notation is used in the RCSS algorithms:

readyQ(t) : the ready queue at time t, ordered by priority.

priority(J) : the priority of Job J.

extension_time(J,t): maximum possible extension time for job J at time t.

deadline(J) : deadline of a job J.

period(J) : period of a job J (i.e period of task T, where J is an instance of T).

execution_time(J) : execution time of a job J.

remaining_time(J,t) : execution time of a job J, still remaining at time t.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 156

slack(J,t) : deadline(J) – t – remaining_time(J,t)

Reduced Context Switches Scheduling (RCSS) Algorithm

Input: A list L of tasks T1, T2, … Tn, their periods and execution times and

 A priority function priority that is job-level fixed.

Output: A feasible schedule for L or failure.
begin

Let Cur be the job with the highest priority; schedule Cur;

For every time unit t when there is at least one arrival or a departure or a deferred switch

Let J be the job with the highest priority in readyQ(t) .

if (Cur is to depart)

then Cur = J ; schedule Cur;

else if (priority(Cur) >= priority(J))

then continue with Cur;

else ExtensionTime_Cur = extension_time(Cur, t);

 if (ExtensionTime_Cur==0)

 then preempt Cur; Cur = J; schedule Cur;

 else if (ExtensionTime_Cur > 0)

 then mark a deferred switch at t + ExtensionTime_Cur;

 continue with Cur upto t + ExtensionTime_Cur;

else fail;

end RCSS

function int extension_time(current_job, t)

begin

Let j1, j2, …, jm be the jobs in readyQ(t) such that

priority(j1) >= priority(j2) >= … >= priority(jm) >= priority(current_job)

return mini[slack(ji, t) – Σk<i(remaining_time(jk,t)+ceil((deadline(ji)-

deadline(jk))/period(jk)) * execution_time(jk))];

end extension_time

Variants of Rate Monotonic (RM) scheduling algorithm and Earliest Deadline First

(EDF) are easily obtained from the above algorithm (RCSS) by specifying the

appropriate priority function as listed below.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 157

Rate Monotonic with Reduced Context Switches (RMRCS) Algorithm

Input: A list L of tasks T1, T2, … Tn, their periods and execution times.

Output: A feasible schedule if L is RM-schedulable, failure otherwise.
begin

(1) Define the priority function as priority(J) = H / period(T) where, T is a task in L, J is a job

(instance) of T and H is the hyper-period for L.

(2) Execute RCSS.

end RMRCS

Earliest Deadline First with Reduced Context Switches (EDFRCS) Algorithm

Input: A list L of tasks T1, T2, … Tn, their periods and execution times.

Output: A feasible schedule if L is schedulable, failure otherwise.
begin

 (1) Define the priority function as priority (J) = -1 * deadline(J) for any job J.

 (2) Execute RCSS.

end EDFRCS.

Note on EDFRCS:

1. Observe that in this case, the fail statement in Algorithm RCSS will never be

reached if the input L has a feasible schedule because the scheduling decisions align

with EDF.

2. The extension time for any job may be increased further by replacing the use of ceil

with the use of floor in the function extension_time(), without affecting feasibility.

End of Note

The working of algorithms (EDFRCS) and (RMRCS) is explained with the help of an

example. Consider the following list of tasks given in Table 6.7. Table 6.8 gives the

arrival time, execution time and deadline of all the jobs corresponding to each of the tasks

in Table 6.7. The jobs in Table 6.8 are arranged in the order of deadline and when the

deadlines are the same, then in the order of arrival – as this is the likely arrangement of a

queue.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 158

Table 6.7: Task List (L)

Table 6.8: Job list corresponding to L in Table 6.7 (Hyper-period = 20)

The working of EDFRCS is illustrated with the above list of jobs. The resultant schedules

till time t=4 and till time t=7 is shown in Figure 6.12 and Figure 6.13 respectively. The

final schedule for this example will be as in Figure 6.14.

Fig. 6.12: Intermediate schedule up to t = 4

Task Arrival Time Period Execution Time

T1 0 4 1

T2 0 5 2

T3 0 20 7

Job (Task) Arrival Time Execution

Time

Deadline

J1 (T1) 0 1 4

J2 (T2) 0 2 5

J3 (T1) 4 1 8

J4 (T2) 5 2 10

J5 (T1) 8 1 12

J6 (T2) 10 2 15

J7 (T1) 12 1 16

J8 (T3) 0 7 20

J9 (T2) 15 2 20

J10 (T1) 16 1 20

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 159

Fig. 6.13: Intermediate schedule up to t = 7

Fig. 6.14: Schedule by EDFRCS for task list in Table 6.7

Observe that EDFRCS outputs a schedule with just one preemption. As opposed to this,

RM produces the schedule in Figure 6.15 (number of preemptions = 5), EDF produces

the schedule in Figure 6.16 (number of preemptions = 3) and MLLF produces the

schedule in Figure 6.17 (number of preemptions = 3). Furthermore, the minimum

possible number of preemptions in a feasible schedule is 1 for this task set (this can be

verified easily).

For this particular example, RMRCS also outputs the same schedule i.e. the number of

preemptions is 1. The extension points are shown in Figure 6.18 and the final schedule is

as in Figure 6.19.

Fig. 6.15: Schedule by RM for task list in Table 6.7

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 160

Fig. 6.16: Schedule by EDF for task list in Table 6.7

Fig. 6.17: Schedule by MLLF for task list in Table 6.7

.

Fig. 6.18: Schedule with extension decision points for RMRCS for task list in Table 6.7

Fig. 6.19: Schedule by RMRCS for task list in Table 6.7

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 161

This example demonstrates that RMRCS and EDFRCS are aggressive in eliminating

preemptions whenever possible, while the other algorithms are not. Our experimental

results in Section 6.5 confirm this argument.

6.5.2 SCHEDULABILITY OF THE ALGORITHMS

The adopted heuristic preserves schedulability of scheduling decisions i.e. RMRCS and

EDFRCS are schedulable if and when RM and EDF (respectively) are schedulable.

Some notations used in the proofs below:

• A schedule S is a sequence of runs, where each run is a tuple of an identifier, a start

time and an end time.

• To identify some runs of a schedule but ignore others, the notation used is:

((R1, t1, u1), S1, (R2,t2,u2), S2, …, Sn-1, (Rn,tn,un), Sn)

where, each tuple (Ri, ti, ui) is a run starting at ti and ending at ti+ui and each Si is a

sequence of runs – possibly empty – occurring between runs (Ri-1,ti-1, ui-1) and

(Ri,ti,ui).

• Given a schedule S, we use NCS(S) to denote the number of preemptions in S.

The following lemma is used in proving the theorems stated below and it can be

informally stated as:

The extension step in RCSS – the step that continues the active process – does not affect

schedulability.

Lemma 1:

Let S be a feasible schedule: ((R1,t1,u1), S1, (R2,t2,u2), S2, …, Sm-1, (Rm,tm,um), Sm)

where, all Ri, 1 <= i <= m are runs of the same job B. Assume S was generated by a

priority scheduling algorithm.

Let U be the schedule (((R1,R2...Rk-1,Rk’), t1, u1+u2+…+uk-1+uk’), S1, S2, Sk-1,

(Rk’’,tk+uk’, uk-uk’), Sk, … (Rm,tm,um), Sm), where, some runs of B at the beginning

of S have been merged into a single run, and one run (Rk), has been partly merged.

Assume extension_time(B, t1+u1) >= (u2+u3+…uk-1+uk’) (6.3)

Then U is feasible and NCS(U) <= NCS(S)

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 162

Proof:

Let C be any job such that priority(C) >= priority(B).

Define P(C,t) = { D | D is in readyQ(t) and priority(D) >= priority(C) }

Define I(C,t) = { TD | D is in P(C,t) and D is an instance of task TD }

Let Rem(C,t) be the time required for all remaining runs - at time t - of all jobs of the

tasks in I(C,t).
Then by definition of the function extension_time,

slack(C, t) – Rem(C,t) >= extension_time(B, t) (6.4)

Let Sij be any run of a job F, such that (Sij, tij, uij) ε Si, for some i s.t. 1 <= i <= k.

 and priority(F) >= priority(B)

Then by (6.4),

tij + uij + extension_time(B, t1+u1) <= tij + uij + slack(F, t1+u1) – Rem(F, , t1+u1)

i.e. tij + uij + extension_time(B, t1+u1) <= tij + uij + slack(F, t1+u1) – Rem(F, t1+u1)

i.e. tij + uij + extension_time(B, t1+u1)<=tij + uij + slack(F, tij + uij) – Rem(F, tij+uij)

which, by definition of slack results in

tij + uij + extension_time(B, t1+u1)<= deadline(F) (6.5)

So, by assumption (6.3) and (6.5),

tij+uij+(u2+u3+…+uk-1+uk’) <= deadline of F.

Thus, any delayed run Sij in schedule S, will not cause any run of any higher priority job

F to miss its deadline i.e. U is feasible. Furthermore, observe that the numbers of runs

of jobs other than B remain unchanged from S to U; whereas the number of runs of B

may be reduced, i.e. NCS(U) <= NCS(S)

End of Proof

Corollary 1 is a special case of Lemma 1, where all the runs of a particular job are

merged into one.

Corollary 1:

Let S be a feasible schedule ((R1, t1, u1), S1, (R2,t2,u2), S2, …, Sm-1, (Rm,tm,um), Sm)

where all Ri, 1 <= i <= m are runs of the same job B. Assume S was generated by a

priority scheduling algorithm.

Let U’ be the schedule (((R1,R2...,Rm), t1, u1+u2+…+um), S1, S2, Sm) where all runs

of B in S have been merged into a single run.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 163

Assume that extension_time(B, t1+u1)>= (u2+u3+…um).

Then U’ is feasible and NCS(U’) <= NCS(S)

Proof:

By Lemma 1, with k=m and uk = uk’.

End of Proof

Theorem 1:

If a task set is RM-schedulable, then it is RMRCS-schedulable and RMRCS outputs a

schedule with no more preemptions than the schedule output by RM.

Proof:

Let S be the job set corresponding to the given task set. We need to prove that the

schedule generated by RMRCS for S is feasible, if there is a feasible schedule generated

by RM for S. In each iteration of the loop in Step (2)of RCSS, the scheduling decision

is

• either the same as the decision RM would take

• or a decision that does not affect feasibility, but may reduce preemptions.

Assume in this case, RCSS is executed with the priority function set by RMRCS.

There are five branches of the if-then-else statement in each iteration of the loop in

Step(2) of RCSS.

Branch 1: Cur terminates; RCSS schedules the highest priority job from readyQ. So

would RM.

Branch 2: priority(Cur) is at least as high as the priority of any job in readyQ. RCSS

continues to run Cur. So would RM.

Branch 3: extension_time(Cur,t) returns 0. Cur cannot be continued without affecting

the schedulability of other jobs. RCSS preempts Cur and schedules the highest priority

job from readyQ. So would RM.

Branch 4: Cur can be extended up to extension_time(Cur,t). RCSS extends the

execution of Cur. This leads to two possibilities:

(a) Some future runs of Cur are merged into the current run possibly including a partial

run. This is equivalent to transforming S, (a feasible schedule output by RM)

 ((R1, t1, u1), S1, (R2,t2,u2), S2, …, Sm-1, (Rm,tm,um), Sm)

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 164

where all Ri are runs of Cur and R1 is the current run into a schedule U

(((R1,R2...Rk-1,Rk’),t1, u1+u2+…+uk-1+uk’),S1,…,Sk-1, (Rk’’,tk+uk’,uk-uk’), Sk, …

(Rm,tm,um),Sm)

where some subsequent runs of Cur in S have been merged into the current run R1.

By Lemma 1, feasibility is invariant under this transformation and NCS(U) <= NCS(S).

(b) All future runs of Cur are merged into the current run. This is equivalent to

transforming S, a feasible schedule output by RM

((R1, t1, u1), S1, (R2,t2,u2), S2, …, Sm-1, (Rm,tm,um), Sm)

where all Ri, 1 <= i <= m are runs of Cur and R1 is the current run, into a schedule U’

(((R1,R2...,Rm), t1, u1+u2+…+um), S1, S2, Sm)

where all subsequent runs of Cur in S have been merged into the current run R1.

By Corollary 1, feasibility is invariant under this transformation and NCS(U’) <=

NCS(S).

Branch 5: extension_time(Cur,t)<0 (i.e.) the current run has consumed a part of the

runtime of a higher priority job. RCSS fails but in this case, the rest of the jobs would

not be schedulable by RM either.

Thus, we have shown that a single iteration of the loop in Step (2) of RCSS makes a

decision that is as feasible as RM. Hence, by induction on the number of iterations of

the loop, we conclude that RMRCS outputs a schedule that is feasible, if RM outputs a

feasible schedule for the same input.

Furthermore, each iteration of the loop in Step (2) of RCSS will introduce no additional

preemptions than RM would. In fact, as argued above, Branches 1, 2, 3 and 5 agree

with a decision RM would make, and Branch 4 may reduce the number of preemptions

in comparison with RM.

End of Proof

Theorem 2: If a task set is EDF-schedulable, then it is EDFRCS-schedulable and

EDFRCS outputs a schedule with no more preemptions than the schedule output by EDF.

Proof:

Similar to the proof for Theorem 1 with the assumption priority(J) = -1 * deadline(J)

for any job J.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 165

The scheduling decisions in each iteration of the loop in Step(2) of RCSS either agree

with the scheduling decisions of EDF (because of the priority assumption) or perform a

transformation on an EDF schedule (which preserves feasibility as per Lemma 1 or

Corollary 1).

End of Proof

6.5.3 ALGORITHMIC COMPLEXITY

Every scheduling decision of RCSS is either a priority decision or an extension decision.

In the former case, the time taken for a scheduling decision is O(logN), where N is the

number of tasks. The O(logN) factor arises because the ready queue is at any time t,

sorted by priority. When a scheduling decision requires the computation of extension

period, the time taken is O(logN + m*m), where m is the number of jobs of higher

priority than the active job. The worst case value for m is O(N). Thus the worst case

response time of our scheduling algorithm is O(N*N). But in practice, the value of m is

more likely to be less than N. Particularly for high priority jobs, the value of m will be

much less than N.

6.6 PARAMETERS FOR COMPARISON

We evaluated our algorithms IntFragment, RMRCS and EDFRCS and compared them

with other priority scheduling algorithms like RM, EDF, LLF and MLLF. We use the

approach in [Buttazzo 2005] in our evaluation. In this section, we briefly review the

parameters used for evaluation and their significance.

The task set listed in Table 6.7 is used to illustrate the metrics. The job set corresponding

to the above task set along with the deadlines is given in Table 6.8. Also, assume that

Figure 6.16 is the resultant schedule by which these jobs are to be executed.

6.6.1 RESPONSE TIME

For all real-time systems, the Response Time of a job is an important quality metric of a

schedule.

For a periodic task T, the Maximum Response Time is evaluated over all jobs:

Maximum Response time of T = maxi (responseTime(Ti))

where responseTime(Ti) = finish-time(Ti) – arrival-time(Ti)

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 166

where T1, T2, … are the jobs corresponding to task T.

For example, the Maximum Response Time of T2 is max (3, 2, 2, 4) = 4.

For the purpose of evaluation, the Maximum Response Time values are normalized with

respect to execution times of the corresponding tasks, so that a normalized value of 1

corresponds to the least possible response time.

6.6.2 RESPONSE TIME JITTER

In real-time control systems, predictability of the output (or responses) is an important

issue. Predictability is affected by variation in the response time among jobs of the same

task. This is referred to as Response Time Jitter [Buttazzo 2005] [Marti 2002].

Two different jitters are usually defined - Absolute Response-Time Jitter (ARJ) and

Relative Response-Time Jitter (RRJ).

ARJ(T) = maxi(responseTime(Ti)) – mini(responseTime(Ti))

RRJ(T) = maxi(|(responseTime(Ti+1) – responseTime(Ti))|)

where T1, T2, … are the jobs corresponding to task T.

For example, from the above task set, for task T2 with 4 instances (J2, J4, J6 and J9),

ARJ(T2) = max (3, 2, 2, 4) – min (3, 2, 2, 4) = 2.

and RRJ(T2) = max (1, 0, 2, 1) = 2

For the purpose of evaluation, the Jitter values are normalized with respect to the periods

of the corresponding tasks, so that a normalized value of 1 corresponds to the worst

possible jitter in an optimal schedule.

6.6.3 LATENCY

In real-time control systems, input-output latency of a job is another important metric of

task schedules [Buttazzo 2005] [Cervin 2003].

For a task T, the maximum input-output latency is defined as

L(T) = maxi(finish-time(Ti) – start-time(Ti))

where T1, T2, … are the jobs corresponding to task T.

For example, for Task T2 above with 4 instances (J2, J4, J6, and J9),

L(T2) = max{(3–1), (7–5), (12–10), (19–17)} = 2

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 167

For the purpose of evaluation, the Latency values are normalized with respect to

execution times of the corresponding tasks, so that a normalized value of 1 corresponds

to the least possible latency.

6.6.4 SCHEDULING COMPLEXITY

The algorithmic complexity of a priority scheduling algorithm is the product of the

number of decision points (i.e. number of scheduling decisions) and the complexity per

scheduling decision.

Given a set of tasks S with hyper-period H, the algorithmic complexity for algorithm A is

TA(H,S) = decisions(A,H, S) * Tdec(A,H, S)

where decisions defines the number of decision points to be made by the scheduling

algorithm and Tdec defines the time complexity of a single decision.

For the purpose of evaluation, the number of decision points is normalized with respect to

the number of jobs. The complexity of a scheduling decision depends on implementation

issues such as whether the algorithm can be realized using a fixed number of priority

levels or that the number of priority levels changes dynamically. In the latter case, the

time taken for activities such as insertion or deletion of jobs in the priority queue affects

the complexity. The time taken for insertion or deletion is a function of the length of the

priority queue [Gooch 1998]. The length of the queue is bounded by the number of tasks

for any periodic task set.

6.6.5 PREEMPTION COUNT

Preemptive scheduling in real-time systems has merits and demerits: no online algorithm

can be optimal without using preemptions [Liu 2000] [Mok 1983] but on the other hand,

preemptions can add significant overhead to the schedule as such [Tan 2002].
Preemptions result in both time and energy overheads [Buttazzo 2005][Mok 1983]

[Gopalakrishnan 1996] but the precise evaluation of such overheads - particularly the

energy overhead - has been lacking. In this work, preemptions initiated due to tasks

blocking on their own - say for resource requirements – are ignored and only preemptions

introduced by scheduling are considered exclusively, as focus here, is on the evaluation

of scheduling algorithms. The impact of preemptions on utilization and energy

consumption is not straightforward – particularly due to data movement within the

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 168

memory hierarchy. All preemptions may not cause data movement but whenever data

movement results, this part of the overhead may be much more significant than that

caused by just a switching of tasks. This implies that the time spent in switching contexts

may be variable and in turn may increase response time and response time jitter for tasks.

The measurement of the overhead due to data movement within the memory hierarchy is

beyond the scope of this work. Thus it is restricted to counting the preemptions in the

schedule output by an algorithm. This is similar to the approach in [Gopalakrishnan

1996], but here, focus is on experimental evaluation. In the above example (Table 6.7),

for the given schedule, the preemption count is 3 (each of which is marked as CS in

Figure 6.16).

Liu [Liu 2000] argues that 2*N, where N is the number of jobs, is the upper bound for the

number of preemptions in a schedule, decided by job-level priorities. The reasoning is

simple: each job may cause a switch once when it starts and once when it ends, observing

that if a job is preempted in between, then this preemption gets attributed to the beginning

or end of some other job. Of course, this does not apply for fully online algorithms like

LLF: for instance, two jobs J1 and J2 arriving at time 0 with the same deadlines 2t and

execution times t will be switched every two time units and rather unnecessarily at that.

On the other hand, the theoretical upper bound may not be a close estimate of the actual

number of preemptions for the other algorithms. For the purpose of evaluation,

preemption counts are normalized with respect to the number of jobs i.e. preemptions are

considered as a function of the total number of jobs in a schedule. This makes particular

sense when the preemption overhead is compared with the overhead due to scheduling

decisions, as the number of scheduling decisions usually depends on the number of jobs,

among other factors.

The impact of the number of preemptions on utilization (i.e. on time) is theoretically

analyzed in [Gopalakrishnan 1996], based on various preemptive models. Here, this

impact is evaluated using experimental measurements.

6.6.6 ENERGY CONSUMPTION

As real-time embedded systems often operate under limited battery power, the amount of

energy consumed is a critical issue. So, task-scheduling algorithms for such systems need

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 169

to be energy-conscious. Scheduling algorithms impact energy consumption in two ways:

by the time taken to schedule tasks and by the number of preemptions they induce

[Buttazzo 2005][Mok 1983]. Four different components of energy consumption have

been attributed to scheduling [Tan 2002]: Timer Interrupt Energy, Scheduling Energy,

Context Switch Energy and Signal Handling Energy. The sample experimental values

obtained on Linux are cited in [Tan 2002].

Table 6.9: Sample experimental values for energy consumption of Linux OS on arm

architecture from Tan et al. [Tan 2002]

Component Energy (in nJ)

Context Switch Energy 12500

Timer Interrupt 450

Scheduling Energy 1200

Signal Handling Energy 3200

malloc call 123

file open system call 2351

Table 6.9 lists energy consumption for a few common operations for the purpose of

comparison: even scheduling energy is significant in comparison with calls to malloc or

open, although context switch energy may be an order of magnitude larger than that of

scheduling energy. Signal Handling Energy and Timer Interrupt Energy are specific to

the platform (i.e., the architecture and the operating system), but fairly independent of

scheduling algorithms. It is important to observe that Scheduling Energy and Context

Switch Energy are identified separately because each scheduler invocation may not result

in a preemption (i.e., a context switch). The energy value cited above under the Context

Switch Energy component includes energy consumed by data movement in the memory

hierarchy. Isolated measurements of energy consumption are harder because data

movements are dependent on many factors including nature of application, input profile,

allocation policies etc.

A simpler measure, with a compromise on accuracy, is used in this analysis: the number

of preemptions in a schedule. Lesser preemptions always result in less energy

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 170

consumption, but may or may not result in significant energy reduction as data movement

may still not be reduced.

Another factor in measuring preemption overhead depends upon the task model on a

platform: whether tasks are lightweight (ala threads) or heavy weight (ala processes).

Thread switching usually causes less overhead than process switching. For instance,

[Acquaviva 2003] reports an average of 860 nJ as the energy consumed per thread switch

in an eCOS system running on a StrongArm 1100 processor at its peak frequency

(221.2MHz). This is an order of magnitude smaller than the 12500 nJ listed above in

Table 6.13. Again, using preemption count as the metric abstracts away from these details

and allows for the comparison of scheduling algorithms. This comparative analysis of

scheduling algorithms uses two metrics for energy consumption: the time spent by the

algorithm on scheduling decisions and the number of preemptions in the resultant

schedule.

6.7 COMPARATIVE EVALUATION

In this section, we present the results of our evaluation. Experimental measurements for

each of the metrics – discussed in section 6.6 - are summarized; along with analysis and

comparison. The experimental setup includes simulations of all the seven algorithms and

various test suites randomly generated under certain conditions: each test suite is

characterized by either a fixed number of tasks with utilization varying from low (50%)

to high (100%) or by a fixed utilization with the number of tasks varying from 2 to 20.

Each test suite includes 100 different task sets of varying hyperperiods – from 100 to

32000. The results obtained are then averaged over these 100 test suites as appropriate.

Schedulability is not included as a metric here in this evaluation as schedulability

analyses of RM, EDF and LLF have been dealt with extensively in the literature, whereas

RMRCS, EDFRCS, and MLLF are optimality-preserving variants of RM, EDF, and LLF

respectively. The schedulability of IntFragment algorithm is discussed in Section 6.4

extensively. In the cases of RM and RMRCS, only those task sets that are RM-

schedulable are considered for the following analyses. This does introduce a bias - albeit

a predictable one - in favor of these two algorithms. Wherever this is an issue, this fact is

addressed explicitly in the analysis.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 171

6.7.1 RESPONSE TIME

For the purpose of evaluation, here, the response times are normalized over execution

times of the corresponding tasks and the tasks are ordered by decreasing frequency. The

following plots in Figures 6.20, 6.21 and 6.22 shows the variation of response times of

tasks for the various algorithms for task set of a particular size and at a fixed utilization.

Response Time Vs Tasks (# Tasks = 15, Utilization = 55%)

0

20

40

60

80

100

120

140

160

180

200

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Tasks

R
es

po
ns

e
Ti

m
e

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.20: Response Time per Task (# Tasks = 15, Utilization = 55%)

Response Time Vs Tasks (# Tasks = 15, Utilization = 65%)

0

20

40

60

80

100

120

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Tasks

R
es

po
ns

e
Ti

m
e

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.21: Response Time per Task (# Tasks = 15, Utilization = 65%)

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 172

Response Time Vs Tasks (# Tasks = 15, Utilization = 80%)

0

10

20

30

40

50

60

70

80

90

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Tasks

Re
sp

on
se

 T
im

e

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.22: Response Time per Task (# Tasks = 15, Utilization = 80%)

It is observed that RM’s response time for the highest frequency task is always 1,

irrespective of the number of tasks and the utilization. This behavior is attributed to the

fact that RM is a task-level fixed priority scheduling algorithm where the period of a task

decides its priority. The traditional algorithms (RM, EDF, and LLF) do not show any real

difference – among themselves – in response time behavior and the response time

increases exponentially with decreasing frequency of the tasks. Among the preemption

reduction algorithms, MLLF results in schedules with same response times as those

produced by LLF. But the RCS algorithms (RMRCS and EDFRCS) result in schedules

where the response times of higher frequency tasks are much larger than in schedules

produced by RM and EDF respectively. This increase in response times can be attributed

to the fact that a lower priority task may continue execution in preference to a higher

priority task due to the preemption reduction heuristic used by RMRCS and EDFRCS,

thus resulting in a higher response time for the higher frequency tasks (than their

traditional counterparts) and a lower response time for the lower frequency tasks. This

heuristic thus explains the trend exhibited by the RCS algorithms (i.e.) decreasing

response time of tasks with decreasing frequency. IntFragment gives the highest response

time for all tasks, except for the lowest frequency task at very high utilizations. This

highest response time for tasks is owing to the fact that IntFragment schedules the

execution of tasks in a way that minimizes the fragmentation of schedulable intervals. It

means that it schedules a task's instances in the currently available first and last feasible

slots (i.e.) as far as possible within the period, and thus this task scheduled for the last

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 173

feasible slot gives rise to the highest response time of tasks. But for the case of the lowest

frequency task, scheduling the higher frequency tasks as far as possible within the period

creates the maximum fragment for the lower frequency tasks to execute with the least

possible number of preemptions. This results in the lowest frequency task executing well

in advance of its deadline, which considerably reduces the finish time, resulting in the

least response time of the lowest frequency task at high utilizations. This behavior can be

noted at 100% utilization in Figure 6.23.

Response Time Vs Tasks (# Tasks = 12, Utilization = 100%)

0

20

40

60

80

100

120

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Tasks

R
es

po
ns

e
Ti

m
e

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.23: Response Time per Task (# Tasks = 12, Utilization = 100%)

From Figures 6.20, 6.21, and 6.22, the difference in the response time behavior of

algorithms with respect to utilization can also be studied. With increase in utilization, in

the case of the traditional algorithms and MLLF, the response time of tasks increases. For

these algorithms, at low utilizations, all tasks are scheduled at the earliest feasible slots

and hence the response time is lower. As the utilization increases, the increased execution

time of tasks contributes to a greater finish time limit and hence the increase in response

time at high utilizations. But for IntFragment, the response time decreases with increase

in utilization. In IntFragment, the heuristic applied causes the response time of the

highest frequency task to be a fixed value (determined by its period). It schedules the

adjacent two instances of the immediate lower frequency task in the currently available

first and last feasible slots, as mentioned in 6.4. Thus, the response time of that instance

which is scheduled for the last feasible slot is affected by the execution time of the

highest frequency task. Continuing this trend, it is inferred that as the frequency

decreases, the response time of tasks is influenced by the execution times of tasks having

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 174

a higher frequency. So, therefore, this explains the decreasing response time of tasks

(except the highest frequency task) for IntFragment with increase in utilization, as the

execution time of a task increases with increased utilization.

The RCS algorithms show a decrease in the response times of higher frequency tasks

with increased utilization and an increase in response times, in the case of lower

frequency tasks. This is because the increased execution time causes the extension time

of lower frequency tasks to be reduced, resulting in the earlier preemption of the lower

frequency tasks and eventually in their increased response time. This earlier preemption

of lower frequency tasks also causes the higher frequency tasks to execute sooner than

would be possible at a lower utilization and hence the reduced response time of higher

frequency tasks with increasing utilization.

Studying the response time behavior of tasks against a combination of a particular range

of utilizations and frequencies, the trends observed are ploted as below.

• For high and intermediate frequency tasks,

 RM < EDF ≤ MLLF <LLF < EDFRCS ≤ RMRCS < IntFragment

The response times of higher and intermediate frequency tasks exhibited by RCS

algorithms can be attributed to the fact that a lower priority task may continue execution

in preference to a higher priority task due to the preemption reduction heuristic used by

RMRCS and EDFRCS. But these response times are lesser than those exhibited by

IntFragment, as IntFragment schedules the execution of tasks in a way that minimizes the

fragmentation of schedulable intervals. It schedules the higher and intermediate

frequency tasks as far as possible within their period, thus creating the maximum

fragment for the lower frequency tasks to execute. This results in the higher and

intermediate frequency tasks having a greater response time. This is shown in Figure

6.24. It is also observed that this behavior does not change much with change in

utilization from 55% to 70%.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 175

Response Time Vs Tasks (# Tasks = 7, Utilization = 70%)

0

5

10

15

20

25

30

35

40

45

T1 T2 T3 T4 T5 T6 T7

Tasks

R
es

po
ns

e
Ti

m
e

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.24: Response Time per Task (# Tasks = 7, Utilization = 70%)

It is also noted that for tasks with intermediate frequency, at high utilizations (>75%) in

the case of large task set sizes (>8), LLF sometimes gives greater response time than the

RCS algorithms, but less than IntFragment. This trend can be noted in Figure 6.23,

presented earlier. This increase in the response times of tasks in the case of LLF may

again be attributed to the nature of LLF as a job-level varying priority algorithm, i.e., it is

possible that at times, an instance of an intermediate frequency task may have a lesser

priority (greater slack time) when compared to a lower frequency task and hence, the

increase in response time of intermediate frequency tasks when compared to that for the

RCS algorithms.

For lower frequency tasks

• At low utilizations - The trend is the same as for higher and intermediate frequency

tasks.

• At high utilizations

• For some of the lower frequency tasks,

 RM ≤ RMRCS < EDFRCS < EDF ≤ MLLF <LLF < IntFragment

This trend can be noted in Figures 6.23 and 6.25.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 176

Response Time Vs Tasks (# Tasks = 12, Utilization = 90%)

0

10

20

30

40

50

60

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Tasks

R
es

po
ns

e
Ti

m
e

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.25: Response Time per Task (# Tasks = 12, Utilization = 90%)

Here, EDFRCS algorithm shows a lesser response time than LLF, MLLF and even EDF

owing to its preemption heuristic which favors the delayed preemption of lower

frequency tasks, resulting in their lesser response times. At higher utilizations, many task

sets fail to be RM-schedulable and in turn, RMRCS-schedulable also and as only

schedulable tasks are considered in this analysis, the results turn out to be biased toward

RM and RMRCS.

• For the lowest frequency task

• In case of smaller task sets (excluding 100% utilization)

 RMRCS ≤ EDFRCS <RM < EDF ≤ MLLF < LLF < IntFragment.

• IntFragment gives the least response time for the lowest frequency task at 100%

utilization, irrespective of the task set size. For task set sizes greater than 12,

this fact holds true even for high utilizations like 90% onwards (Figures 6.23

and 6.25). It is also noted that as the number of tasks increases, this fact is true

even for a utilization of 80%.

Figure 6.26 is used to study the average response time of tasks against utilization for all

the algorithms. The average response time at a particular utilization described here is

evaluated as the mean of the response times of all the tasks in the task set at that fixed

utilization and hence, as mentioned in the response time evaluation of tasks, the average

response time of tasks also increases slowly or remains constant with increased utilization

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 177

for all the algorithms, except IntFragment, where the average response time decreases

linearly with utilization. For all the algorithms except IntFragment, at low utilizations

(implying lesser execution time), all tasks are scheduled at the earliest feasible slots

(priority-based algorithms) and hence the response time is lower. As the utilization

increases, the increased execution time of tasks contributes to a greater finish time limit

and hence the increase in response time at high utilizations. In IntFragment, the decrease

in average response time of tasks with increase in utilization is closely associated with the

fact that the response time of tasks decreases with utilization. At low utilizations, the

response time is high while the execution time is low resulting in a high normalized

response time, while at higher utilizations, the response time reduces and execution time

increases, thus contributing to a lower normalized response time. Hence the average

response time of tasks also reduces with increased utilization. The RCS algorithms and

IntFragment show consistently higher average response times than the traditional

algorithms due to their preemption reduction heuristics. The average response time

behavior of tasks is not showing any significant change with increase in number of tasks.

Avg. Response Time Vs Utilization (#Tasks = 15)

3

13

23

33

43

53

63

73

50 55 60 65 70 75 80 85 90 95 100

Utilization

A
vg

. R
es

po
ns

e
Ti

m
e

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.26: Average Response Time per Utilization (# Tasks = 15)

Comparing the average response time of tasks against the number of tasks for a fixed

utilization (Figure 6.27 and 6.28), it is seen that an increase in the number of tasks results

in a linear increase (for #tasks ≤15) in the average response time for IntFragment, while

all of the other algorithms grow slowly with the number of tasks. The traditional

algorithms (RM, EDF and LLF), MLLF and RCS algorithms schedule tasks in the

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 178

earliest feasible slots (i.e., they are priority-based algorithms), thus causing the average

response time to be a function of the sum of the execution times (lesser than their

periods) of the tasks involved. This also explains the fact that the average response time

of tasks in the case of these algorithms is very low at low utilizations and considerably

high at higher utilizations. For IntFragment, in an aim to minimize the number of

preemptions, tasks are scheduled as distant as possible within their periods, thus

rendering the average response time of tasks for IntFragment to be a function of the

periods of tasks (usually greater than the execution times) resulting in the average

response time of IntFragment to be significantly greater than that for the other algorithms.

Moreover, with increase in the number of tasks while keeping the utilization fixed, the

execution time of tasks is reduced. Hence, this explains that with increase in the number

of tasks, there is an exponential increase in the average response time for IntFragment,

while all of the other algorithms grow slowly with the number of tasks.

The following trend is thus generally noted in the performance of the algorithms with

respect to average response time of tasks, as seen in all the Figures above.

IntFragment > EDFRCS ≥ RMRCS > LLF > MLLF ≥ EDF > RM

Avg. Response Time Vs # Tasks (Utilization = 70%)

1

11

21

31

41

51

2 5 8 10 13 15 18 20

Tasks

A
vg

. R
es

po
ns

e
Ti

m
e

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.27: Average Response Time per Number of Tasks (Utilization = 70%)

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 179

Avg. Response Time Vs # Tasks (Utilization = 100%)

1

6

11

16

21

26

31

36

41

2 5 8 10 13 15 18 20

Tasks

A
vg

. R
es

po
ns

e
Ti

m
e

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.28: Average Response Time per Number of Tasks (Utilization = 100%)

6.7.2 RESPONSE TIME JITTER

The jitter values are normalized over periods of the corresponding tasks and the tasks are

ordered by decreasing frequency. The Absolute Response Time Jitter (ARJ) and Relative

Response Time Jitter (RRJ) for different tasks for fixed utilization values are measured

and the Figures 6.29 and 6.30 show the ARJ values per task for a fixed number of tasks in

a task set and at a fixed utilization.

It can be observed that the RM algorithm gives the least jitter for almost all tasks. RM’s

jitter for the highest frequency task is always 0, irrespective of the number of tasks and

the utilization as RM’s priority function is based on the period of the task. Among the

traditional algorithms (RM, EDF and LLF) and MLLF, the EDF, LLF, and MLLF

algorithms exhibit large jitter for the higher frequency tasks than RM at high utilizations.

Still, it is observed that the jitter of these algorithms (RM, EDF, LLF and MLLF) for

higher frequency tasks is negligible, when compared with that of the RCS algorithms and

IntFragment.

It is noted that the absolute jitter remains low (as a proportion of the period) for the lower

frequency tasks for all the scheduling algorithms. On the other hand, for the higher

frequency jobs, the RCS algorithms and IntFragment exhibit very high jitter (close to one

full period in some cases). This above mentioned behavior of RCS algorithms can be

explained by the fact that an instance of a higher frequency task may be scheduled early

due to its high priority (frequency or deadline) or may be scheduled late due to continued

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 180

execution of lower frequency job(s) to avoid preemption, thereby resulting in the

variation (i.e. jitter) in response times. The reason attributed to the above mentioned

behavior of IntFragment can be that for IntFragment, in an aim to minimize the number

of preemptions, the higher frequency tasks are scheduled as distant as possible within

their periods, thus causing the response time of higher frequency tasks to vary from just

their execution time up to their one full period. This variation accounts for the high

response time jitter values of higher frequency tasks for IntFragment. From these

observations, it is obvious that the jitter exhibited by the RCS algorithms and

IntFragment reduces greatly with decrease in frequency.

The following trend is generally noted for these algorithms with respect to response time

jitter of tasks:

RM < EDF ≤ MLLF ≤ LLF < EDFRCS ≤ RMRCS < IntFragment

This trend is observed in Figure 6.29. However, at a higher utilization (Figure 6.30),

some of the algorithms show marked deviation from the above behavior for lower and

intermediate frequency tasks (i.e.) the trend changes to

 RM < EDF ≤ MLLF < RMRCS ≤ EDFRCS < LLF < IntFragment

Figure 6.30 shows the normalized ARJ values per task at 100% utilization. It is observed

that in this case of a fully loaded system, all the other algorithms exhibit higher jitter

compared to RM and RMRCS for lower frequency tasks and LLF shows a pronounced

increase in jitter for these tasks compared to all the other algorithms. It must be observed

that these results appear to be different from those in [Buttazzo 2005] because we

consider only RM-schedulable task sets for RM and RMRCS. If all the task sets are

included in this analysis, then at high utilizations, RM and RMRCS would exhibit higher

response times for low frequency tasks as compared to EDF and EDFRCS respectively.

This behavior is in agreement with the results reported in [Buttazzo 2005], but such

performance analysis may not be relevant for tasks that are missing the deadline anyway.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 181

Absolute Jitter Vs Tasks (# Tasks = 12, Utilization = 60%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Tasks

A
bs

ol
ut

e
Ji

tt
er

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.29: Absolute Jitter per Task (# Tasks = 12, Utilization = 60%)

Absolute Jitter Vs Tasks (# Tasks = 12, Utilization = 100%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Tasks

Ab
so

lu
te

 J
itt

er

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.30: Absolute Jitter per Task (# Tasks = 12, Utilization = 100%)

In the plots shown in Figures 6.29 and 6.30, the lowest frequency task is an anomalous

case, because often there is exactly one instance of such a task within a hyperperiod and

hence jitter (i.e. variation in response times) is non-existent.

Also, our experiments showed no difference in comparative behavior among these

algorithms with respect to absolute jitter versus relative jitter as shown in Figures 6.31

and 6.32.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 182

Relative Jitter Vs Tasks (# Tasks = 12, Utilization = 60%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Tasks

R
el

at
iv

e
Ji

tte
r

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.31: Relative Jitter per Task (# Tasks = 12, Utilization = 60%)

Relative Jitter Vs Tasks (# Tasks = 12, Utilization = 100%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Tasks

R
el

at
iv

e
Ji

tte
r

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.32: Relative Jitter per Task (# Tasks = 12, Utilization = 100%)

Attempting to note the variation (jitter) shown in response times of tasks by various

algorithms against utilization, it is found that the absolute response time jitter per task

increases or remains constant with utilization for all the scheduling algorithms except

IntFragment, where the absolute response time jitter of tasks decreases linearly with

increased load. All the algorithms except IntFragment are priority-based algorithms

which spare no idle time for the processor as long as a job is ready for execution and

hence the response time of jobs of the same task do not tend to vary too much except at

very high utilizations, where the response time jitter increases exponentially. Among the

traditional algorithms, LLF shows a greater increase as it a job-level varying priority

algorithm which causes the response time of jobs of a task to fluctuate and hence the

increased jitter. The above noted trend of decrease in response time jitter with increased

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 183

utilization can be explained as: IntFragment schedules tasks such that the response time

of the highest frequency task is a fixed value (determined by its period) at a particular

utilization. It schedules the instances of the immediate lower frequency task in the

currently available earliest and last feasible slots (which none of the other algorithms do).

Thus, the response time of that instance which is scheduled for the last feasible slot is

affected by the execution time of the highest frequency task and its response time reduces

with increase in the execution time of the highest frequency task. On the other hand, the

response time of that instance which is scheduled for the earliest feasible slot increases

with increase in the execution time of the highest frequency task resulting in the absolute

jitter of this second highest frequency task reducing with increase in the execution time

(caused by increase in load) of the highest frequency task. This fact remains true as the

frequency decreases and hence the decrease.

With focus on the average variation (jitter) in the response time behavior of tasks for the

different scheduling algorithms, the following plots (Figures 6.33, 6.34 and 6.35) show

the variation of average response time jitter of tasks for the various scheduling algorithms

against the number of tasks in a task set for a fixed utilization.

Avg. Absolute Jitter Vs Tasks (Utilization = 65%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tasks

A
vg

. A
bs

ol
ut

e
Ji

tt
er

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.33: Average Absolute Jitter per Number of Tasks (Utilization = 65%)

It is seen that the average response time jitter for IntFragment increases linearly with

increase in the number of tasks, while for the other algorithms, the average jitter remains

almost constant. Among the traditional algorithms, the trend observed is RM < EDF ≤

MLLF ≤ LLF. The RCS algorithms exhibit considerably greater average response time

jitter than these traditional algorithms, with EDFRCS giving a slightly greater average

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 184

response time jitter than RMRCS at high utilizations. With increase in the number of

tasks for a fixed utilization, IntFragment gives a greater average response time jitter than

the RCS algorithms. For IntFragment, the average response time jitter of tasks increases

exponentially with increasing number of tasks up to a task set size of 6. From Figures

6.33, 6.34 and 6.35, it can also be seen that with increase in utilization, the average

response time jitter for all the algorithms increases except IntFragment, where the effect

is reverse, that is, the average response time jitter decreases with increase in utilization.

The slightly anomalous trend observable between 90% and 100% utilization is due to the

fact that the trend lines for RM and RMRCS include only task sets that are RM-

schedulable.

Avg. Absolute Jitter Vs Tasks (Utilization = 80%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tasks

A
vg

. A
bs

ol
ut

e
Ji

tt
er

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.34: Average Absolute Jitter per Number of Tasks (Utilization = 80%)

Avg. Absolute Jitter Vs Tasks (Utilization = 95%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tasks

A
vg

. A
bs

ol
ut

e
Ji

tt
er

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.35: Average Absolute Jitter per Number of Tasks (Utilization = 95%)

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 185

The above mentioned facts about average absolute jitter of tasks holds true for average

relative jitter of tasks also, for each scheduling algorithm under consideration.

6.7.3 LATENCY

The following plots (Figures 6.36 and 6.37) show the latency of tasks in task set

schedules generated by the various algorithms for a fixed task set size and at a fixed

utilization. The latency values are normalized over execution times of the corresponding

tasks and the tasks are ordered by decreasing frequency.

It is noted that at low utilizations (≤70), with decrease in frequency, all algorithms except

the RCS algorithms increase the latency of tasks linearly or remain constant for higher

frequency tasks and reduces latency slightly for lower frequency tasks, irrespective of the

number of tasks. This slight reduction for lower frequency tasks observed predominantly

in the case of IntFragment, may be due to the fact that IntFragment aims at providing the

maximum for the lower frequency tasks to execute in order to reduce preemptions. This

trend at low utilizations can be observed in Figure 6.36. The RCS algorithms show a

linear increase throughout with decreasing frequency due to the preemption reduction

logic. It is also observed that at high utilizations, there is an exponential increase in the

latency of tasks with decreasing frequency of tasks. This fact holds true for each

algorithm under consideration, irrespective of the task set size and utilization.

Irrespective of the scheduling algorithm, more often, at high utilizations, the execution of

higher frequency tasks is carried out at a cost of preemptions of the lower frequency tasks

thus resulting in an increase in the finish time of the lower frequency tasks and hence the

increase in latency with decrease in frequency. This exponential increase in latency with

decrease in frequency can be noted in Figure 6.37. In addition, it is noted that with

increase in utilization (Figure 6.37), this exponential growth in the latency of lower

priority tasks becomes more pronounced.

Here, it is also noticed that almost all the algorithms are providing a normalized latency

value that is close to 1 (the least possible latency value) for the highest frequency task,

irrespective of the number of tasks and utilization. The RCS algorithms (EDFRCS and

RMRCS) consistently exhibit the least latencies at all utilizations for all tasks (except for

the lowest frequency task at high utilizations) because of its preemption reduction logic.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 186

For the lowest frequency task, at high utilizations (excluding 100% utilization),

IntFragment provides the least latency due to its heuristic of minimizing the

fragmentation of schedulable intervals. At 100% utilization, the 0% idle time of the

processor results in multiple internal fragments which cause preemption of the lower

frequency tasks more frequently and hence, IntFragment comes second to EDFRCS in

providing the least latency for the lowest frequency task. This characteristic is noted in

Figure 6.37. The traditional algorithms (RM, EDF and LLF) and MLLF do not fair too

well at this metric owing to the increased number of preemptions in their schedules. LLF

gives the worst latencies in almost all the frequencies irrespective of the task set size and

utilization owing to its laxity metric and hence, increased number of preemptions as can

be observed in Figure 6.37.

Latency Vs Tasks (# Tasks=6, Utilization = 65%)

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

1 2 3 4 5 6

Tasks

La
te

nc
y

INTFRAGMENT RM LLF MLLF EDFRCS RMRCS

Fig. 6.36: Latency per Task (# Tasks = 6, Utilization = 65%)

Latency Vs Tasks (# Tasks = 14, Utilization = 100%)

0.9

2.9

4.9

6.9

8.9

10.9

12.9

14.9

16.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Tasks

La
te

nc
y

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.37: Latency per Task (# Tasks = 14, Utilization = 100%)

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 187

Comparing the latency of tasks against utilization, it is observed that the latency of tasks

increases with utilization levels for all algorithms, irrespective of the task set size. With

increase in utilization, the execution time increases and hence, the possibility of increased

number of preemptions arises, thus contributing to increased latency.

Figure 6.38 shows the average latencies of tasks against utilization levels for the various

algorithms. As noted above, the average latency also increases with utilization (≤ 85) for

all algorithms. The RCS algorithms consistently provide the least average latencies. The

preemption reduction algorithms perform slightly better than their counterparts in all

cases: EDFRCS vs. EDF, RMRCS vs. RM, and MLLF vs. LLF. Among the traditional

algorithms, LLF has the worst latencies particularly at high utilizations. Both of these

observations can be explained by the fact that reduced preemptions increase the chances

of continued execution of any job, thereby reducing its latency. This difference between

the traditional and the preemption-reducing algorithms is more pronounced at higher

utilizations because the traditional algorithms (RM, EDF and LLF) induce more

preemptions at higher utilizations. The trend followed by the algorithms with respect to

average latencies of tasks for low utilizations (< 80), irrespective of the task set size is:

 IntFragment > LLF >MLLF >RM > EDF > RMRCS ≥ EDFRCS

At higher utilizations (≥80), LLF induces more preemptions and hence gives the worst

average latencies at high utilizations.

Avg Latency Vs Utilization (# Tasks = 12)

1

2

3

4

5

6

7

50 55 60 65 70 75 80 85 90 95 100

Utilization

A
vg

 L
at

en
cy

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.38: Average Latency per Utilization (# Tasks = 12)

The plots in Figures 6.39 and 6.40 show the average latency of tasks against the number

of tasks at a fixed load. It is observed that an increase in the number of tasks results in an

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 188

increase in the average latency for all scheduling algorithms at all loads due to an

increase in the number of preemptions. The increase for LLF is more pronounced at high

utilizations as it is a job-level varying priority algorithm which causes an increased

number of preemptions.

Avg Latency Vs Tasks (Utilization = 75)

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tasks

Av
g

La
te

nc
y

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.39: Average Latency per Number of Tasks (Utilization = 75%)

IntFragment is designed with the aim of minimizing the fragmentation of schedulable

intervals, which causes the average latency of tasks to be very low (next to RCS

algorithms) for smaller task sets (Figure 6.40). With increase in the task set size, the

internal fragmentation caused induces increased number of preemptions, thus increasing

the finish time and hence, the increase in average latency.

Avg Latency VsTasks (Utilization = 100%)

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tasks

Av
g

La
te

nc
y

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.40: Average Latency per Number of Tasks (Utilization = 100%)

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 189

6.7.4 SCHEDULING COMPLEXITY

The worst case time complexity of Algorithm IntFragment is

pmax * Σt Є Tasks (H / p(t))

where, pmax is the maximum among the periods of all tasks, H is the hyper-period, and

p(t) is the period of task t.

As mentioned in Section 6.4.4, the time complexity of an online scheduling algorithm A

can be expressed as:

TA(H,S) = decisions(A,H, S) * Tdec(A,H, S)

For RM and EDF, the number of decision points is 2*N, where N is the number of jobs

for the task set S, because RM and EDF consider every job arrival and departure. For

LLF and MLLF, the number of decision points is H, the hyper-period, because these are

totally on-line algorithms, by definition [Mok 1983]. The RCS algorithms also behave

like RM and EDF, except when they defer a preemption. Each deferred switch adds

another decision point. It is not easy to theoretically estimate the number of deferred

switches, as this depends on various parameters of the task set, but the upper bound on

the number of deferred switches is a small fraction of N, the number of jobs, and it grows

with |S|, the number of tasks in the input task set. Thus the number of decision points for

the RCS algorithms is (2+d)*N in the worst case, where d is a slowly growing function of

|S|. These complexity measures are summarized in Table 6.10.

The time taken per scheduling decision is dependent on the way in which priority-based

selection is implemented. For RM, it is possible to implement this selection in O(1) time

by assigning a fixed priority to each task (as the inverse of its period). For EDF, a fixed

priority implementation is not possible and the time for selection is dependent on whether

or not the data structure used for the ready queue is ordered. If an ordered queue is

maintained (i.e., a priority queue), then the time taken per EDF scheduling decision

would be O(log m). Else, it would be O(m), where m is the queue length [Gooch 1998].

Although the value of m is not easily predictable, it has an upper bound of |S|.

The complexity of a single scheduling decision in LLF or MLLF varies on whether or not

the priority (i.e. the slack time) of the current job changes – w. r. t. the highest priority

job in the queue – in between two decisions. If there is a relative priority change, then

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 190

this new priority value has to be compared with the updated priorities of all the other

processes in the queue. In this case, the time complexity of a single scheduling decision is

O(m), where m is the queue length. If the priority does not change, the time taken for the

scheduling decision is just the comparison between the current job and the highest

priority job in the queue. In the latter case, the complexity of the scheduling decision is

O(1).

For the RCS algorithms, the time taken for a single scheduling decision is dominated by

the extension function [Raveendran 2006] with complexity O(p*p), where p is the

number of jobs of priority higher than the current job. The upper bound for p is |S|. These

complexity measures are summarized in Table 6.10. The last column of Table 6.10 lists

the scheduling complexity of each algorithm.

Table 6.10: (Worst Case) Time Complexity of Scheduling Algorithms

Algorithms Decision Points
Per Decision
Complexity

Scheduling
Complexity

RM 2*N O(1) O(2*N)
EDF 2*N O(log m) O(2*N*log|S|)
LLF H O(m) O(H*log|S|)
MLLF H O(m) O(H*log|S|)

RMRCS
(2+d)*N where d grows very

slowly w.r.t |S|
O(p*p) O((2+d)*N*|S|*|S|)

EDFRCS
(2+d)*N where d grows very

slowly w.r.t |S|
O(p*p) O((2+d)*N*|S|*|S|)

where H is Hyper-period, N is number of jobs, |S| is number of tasks, m is queue length,

p is number of higher priority jobs and d is number of deferred switches.

The average case complexities are harder to estimate theoretically. For instance, the

average value of m (i.e. queue length) is not easily predicted. The queue length over a

large number of test cases has been experimentally measured. The average queue length

for all the algorithms is approximately 1.25*log|S|. Thus, the average case time

complexity of EDF is O(2*N*log(1.25*log|S|)).

For LLF and MLLF, although the number of decision points is H, the number of points at

which the priorities have to be updated is significantly less. As already discussed,

priorities are to be updated only when the priority of the current job changes with respect

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 191

to the highest priority job in the queue. These values have been estimated experimentally

to be approximately 2.37*N and 2.35*N for LLF and MLLF respectively. Again, as

already discussed, updating priorities takes time proportional to m, the length of the

queue, and the average value for m as mentioned above is 1.25*log|S|. Thus, the average

case time complexities for LLF and MLLF would be O(H+2.96*N*log|S|) and

O(H+2.94*N*log|S|) respectively.

For the RCS algorithms, the experimentally estimated average number of decision points

are 2.06*N. The experimentally estimated average value of p, the number of higher

priority jobs, is approximately 0.6*log|S|. Thus, the average case time complexity of both

RMRCS and EDFRCS is O(0.74*N*log|S|*log|S|). These average case complexity

measures are summarized in Table 6.11.

Table 6.11: Estimated(Average Case) Time Complexity of Online Scheduling Algorithms

Algorithms Decision Points
Per Decision
Complexity

Scheduling Complexity

RM 2*N O(1) O(2*N)
EDF 2*N O(log(1.25*log|S|)) O(2*N*log(1.25*log|S|))

LLF
H decisions and
2.37*N updates

O(1.25*log|S|) O(H+2.96*N*log|S|)

MLLF
H decisions and
2.35*N updates

O(1.25*log|S|) O(H+2.94*N*log|S|)

RMRCS 2.06*N O(0.36*log|S|*log|S|) O(0.74*N*log|S|*log|S|)
ECFRCS 2.06*N O(0.36*log|S|*log|S|) O(0.74*N*log|S|*log|S|)

6.7.5 PREEMPTION COUNT

The preemption count values obtained are normalized over the number of jobs and the

tasks are ordered by decreasing frequency. The trend observed among the algorithms

with respect to the number of preemptions introduced in the resulting schedules is as

follows:

EDFRCS ≤ RMRCS < IntFragment < EDF < RM < MLLF < LLF

The plots in Figures 6.41 and 6.42 represent preemption count against utilization for task

sets with a fixed number of tasks. It is observed that the number of preemptions increases

with increase in utilization, irrespective of the number of tasks due to increase in

execution time and schedulability constraints.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 192

It is seen that the RCS algorithms show significant reduction in preemptions compared to

their traditional counterparts, irrespective of the utilizations. For instance, at 50%

utilization, EDF results in an average of 0.27 preemptions per job, whereas EDFRCS

results in an average of 0.0725 preemptions per job, which is about a 73% reduction. For

a fully loaded system (100% utilization), EDF results in an average of 0.662 preemptions

per job, whereas EDFRCS results in 0.22 preemptions per job, which is about a 66%

reduction. The reductions are similar for RMRCS versus RM. IntFragment also

establishes its objective of minimizing the number of preemptions, though second to the

RCS algorithms. In the same test case listed above, (i.e.) at 50% utilization, IntFragment

results in an average of 0.126 preemptions per job, which is about a 53% reduction over

EDF. Also, for a fully loaded system, IntFragment results in an average of 0.353

preemptions per job, which is about a 47% reduction over EDF. In the case of

IntFragment, reduced number of preemptions occurs when the periods of tasks are in

multiples. If not so, then the multiple internal fragments caused results in an increased

number of preemptions. No such behavior would be noted in the case of RCS algorithms

even if the periods of the lower frequency tasks are not multiples of those of the higher

frequency tasks. MLLF on the other hand, reduces preemptions significantly with respect

to LLF at high utilizations. But it is important to note that MLLF still results in more

preemptions than EDF or RM.

Context Switch Vs Utilization (# Tasks = 6)

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

50 55 60 65 70 75 80 85 90 95 100

Utilization

C
on

te
xt

 S
w

itc
h

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.41: Preemptions per Utilization (# Tasks = 6)

In [Buttazzo 2005], it is shown that EDF results in lesser preemptions than RM. The

obtained results confirm this: EDF results in about 1% to 6% lesser preemptions than RM

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 193

on an average. Similarly, EDFRCS also results in lesser preemptions than RMRCS, but

the difference is often small with a maximum of 2% in the chosen test cases. It is also

noted that the increase in the number of preemptions in EDFRCS and RMRCS with the

increase in utilization is very less due to the regress preemption reduction heuristic. In

case of IntFragment, it is seen that with the increase in utilization, the number of

preemptions increases more steeply than EDFRCS and RMRCS, but less compared to the

other traditional algorithms. Among the traditional algorithms, LLF's preemption count

increases very steeply with increase in utilization and performs very poorly at high

utilizations (≥ 80%) due to frequent priority changes of jobs owing to the laxity metric.

Context Switch Vs Utilization (# Tasks = 14)

0

0.3

0.6

0.9

1.2

1.5

50 55 60 65 70 75 80 85 90 95 100

Utilization

C
on

te
xt

 S
w

itc
h

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.42: Preemptions per Utilization (# Tasks = 14)

The plots below (Figures 6.43 to 6.48) represent preemption count against the number of

tasks in a task set with a fixed utilization. It is observed that for each scheduling

algorithm under consideration, the number of preemptions decreases with increase in the

number of tasks at a fixed utilization, irrespective of the utilization. This behavior is

attributed to the fact that an increase in the number of tasks at a fixed utilization causes

the execution time per task to reduce, resulting in reduced preemptions between

completions of jobs. As the number of tasks in the task set increases, preemption

reduction is more pronounced for the RCS algorithms and IntFragment: EDFRCS and

IntFragment reduce the preemption count by at least 82% and 48% respectively with

respect to EDF at all utilization levels, when the task set size is 20. MLLF shows

significant reductions over LLF in preemption count when the number of tasks is smaller,

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 194

but this is partly explained by the fact that the preemption count for LLF itself is higher

when the task set is smaller.

Context Switches Vs # of Tasks (Utilization = 50%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of Tasks

C
on

te
xt

 S
w

itc
he

s

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.43: Preemptions per Number of Tasks (Utilization = 50%)

It is also observed that for smaller sets, the number of preemptions introduced by MLLF

is very large in comparison to RM and EDF, but as the number of tasks increases, MLLF

produces preemptions close to EDF and RM. Evidently, LLF and MLLF are not suitable

for generating power-aware schedules of smaller task sets. The preemption reduction

brought about by MLLF over LLF (almost 50%) is presented more clearly in Figures

6.46 and 6.48.

Context Switches Vs # of Tasks (Utilization = 70%)

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of Tasks

C
on

te
xt

 S
w

itc
he

s

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

Fig. 6.44: Preemptions per Number of Tasks (Utilization = 70%)

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 195

Context Switches Vs # of Tasks (Utilization = 80%)

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of Tasks

C
on

te
xt

 S
w

itc
he

s

INTFRAGMENT EDF RM EDFRCS RMRCS

Fig. 6.45: Preemptions per Number of Tasks (Utilization = 80%)

Context Switches Vs # of Tasks (Utilization = 80%)

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of Tasks

C
on

te
xt

 S
w

itc
he

s

LLF MLLF

Fig. 6.46: Preemptions per Number of Tasks (Utilization = 80%)

Context Switches Vs # of Tasks (Utilization = 100%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of Tasks

C
on

te
xt

 S
w

itc
he

s

INTFRAGMENT EDF RM EDFRCS RMRCS

Fig. 6.47: Preemptions per Number of Tasks (Utilization = 100%)

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 196

Context Switches Vs # of Tasks (Utilization = 100%)

0

5

10

15

20

25

30

35

40

45

50

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of Tasks

C
on

te
xt

 S
w

itc
he

s

LLF MLLF

Fig. 6.48: Preemptions per Number of Tasks (Utilization = 100%)

It is observed that the average number of preemptions per job grows monotonically with

increasing utilization for a fixed number of tasks for each algorithm under consideration.

Except in the case of LLF, this growth is often linear. Furthermore, the average

preemption count decreases with increasing number of tasks in the task set. More

precisely, it is estimated here, that the normalized average preemption count is a linear

function of 1/|S|, where S is the task set. Based on these observations, the estimated

average pre-emption counts for all the online algorithms except LLF are summarized in

Table 6.12.

Table 6.12 Estimated Average Preemption Count

Algorithm Preemption Count

RM O((0.42+2.7/|S|)*N*U

EDF O((0.45+2.1/|S|)*N*U

MLLF O((10.9/|S|)*N*U

RMRCS O((1.9/|S|)*N*U

EDFRCS O((1.9/|S|)*N*U

N – number of jobs |S| - number of tasks U – utilization (between 0 and 1)

6.7.6 ENERGY CONSUMPTION

As observed in Section 6.6.6, energy consumption overhead due to scheduling depends

on two factors: scheduling decisions and preemptions. Among online scheduling

algorithms, based on the time spent on scheduling decisions, RM appears to be the least

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 197

energy-consuming algorithm closely followed by EDF. Based on the number of

preemptions, the RCS algorithms turn out to be the least energy consuming algorithms

followed by IntFragment. Although the number of preemptions in a schedule depends on

various characteristics, the RCS algorithms invariably offer a significant reduction in the

number of preemptions. For the purpose of a head-to-head comparison of the energy

consumption impact among the online scheduling algorithms, the time spent on

scheduling decisions and the time delay introduced due to preemptions, both amortized

over N (the number of jobs) are compared. Since the scheduling complexity may depend

on |S|, the size of the task set, whereas the preemption count may depend on |S| as well as

U, the utilization as a fraction between 0 and 1, the comparison for specific values of |S|

and U is performed. For instance, the average time complexity amortized per job for EDF

is 2*log(1.25*log|S|) and the average number of preemptions produced by EDF

amortized per job is (0.45+2.1/|S|)*U. Assuming that Es is the energy consumed per unit

time of scheduling and Ec is the average energy consumed per preemption, the above two

formulae are evaluated for specific values of |S| and U, say for 10 and 0.5 respectively as

follows:

Energy Spent on Per Job Scheduling Decision for EDF

 = 2*log (1.25*log (10))*Es = 4.33Es and

Energy Spent on Per Job Preemption for EDF

 = (0.45+2.1/10)*0.5*Ec = 0.33Ec

So, in the case of EDF, the total energy impact of scheduling can be formulated as

4.33Es+0.33Ec per job for task sets of size 10 and for a utilization level of 50%. Table

6.13 below summarizes these values for different combinations of |S| and U values.

Table 6.13 can be used a ready reckoner for energy consumption tradeoffs: for instance,

for a Ec/Es ratio of 50, one can observe that preemption energy is likely to dominate and

hence the RCS algorithms are likely to offer energy savings of the order of 50% or more

compared to RM or EDF; whereas if the Ec/Es ratio is around 10, then one can observe

that the RCS algorithms may still offer energy savings for small task set but for large task

sets they spend more energy on scheduling decisions than they save on preemptions.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 198

Table 6.13: Estimated Energy Consumption due to Scheduling Decisions and

Preemptions (normalized per job)

|S| U RM EDF MLLF *RCS

5 0.5 2Es+0.48Ec 3.04Es+0.44Ec H`+6.83Es+1.09Ec 3.99Es+0.19Ec

5 0.7 2Es+0.67Ec 3.04Es+0.61Ec H`+6.83Es+1.53Ec 3.99Es+0.27Ec

5 0.9 2Es+0.86Ec 3.04Es+0.78Ec H`+6.83Es+1.96Ec 3.99Es+0.34Ec

10 0.5 2Es+0.35Ec 4.33Es+0.33Ec H`+9.77Es+0.55Ec 8.13Es+0.10Ec

10 0.7 2Es+0.48Ec 4.33Es+0.46Ec H`+9.77Es+0.76Ec 8.13Es+0.13Ec

10 0.9 2Es+0.62Ec 4.33Es+0.59Ec H`+9.77Es+0.98Ec 8.13Es+0.17Ec

20 0.5 2Es+0.28Ec 5.28Es+0.28Ec H`+12.71Es+0.27Ec 13.82Es+0.05Ec

20 0.7 2Es+0.39Ec 5.28Es+0.39Ec H`+12.71Es+0.38Ec 13.82Es+0.07Ec

20 0.9 2Es+0.50Ec 5.28Es+0.50Ec H`+12.71Es+0.49Ec 13.82Es+0.09Ec

*RCS denotes RMRCS or EDFRCS.

where H` is a constant multiple of hyperperiod H, Es is energy consumption per unit time

spent in scheduling decisions and Ec is energy consumption per preemption.

Given the earlier reports on energy measurements [Acquaviva 2003][Tan 2002], context-

switching energy Ec is an order of magnitude larger than scheduling energy and as each

scheduling decision is likely to require several instructions, an Ec/Es value close to 100 is

expected. However, this value also depends on several factors including architectural

constraints, operating system implementation issues, whether thread switching or process

switching is involved, and how much data movement is involved in a preemption. Thus,

this table is useful in practice only in conjunction with specific experimental

measurements of energy consumption on the target platform. But the table does give a

good indication of when preemption reduction is worth considering and when it is not.

Also, it can be observed that the MLLF algorithm performs very badly with respect to

energy consumption as it always spends more time on scheduling decisions than the RCS

algorithms and the number of preemptions produced by MLLF is no better than that

produced by EDF.

IntFragment is a static scheduling algorithm with O(1) online decision making time

complexity. The number of preemptions saved in a schedule contributes to energy saving

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 199

directly. The saving of energy per unit time (one second) for IntFragment with respect to

EDF and LLF algorithms when measured with 10 different task sets (utilization varying

from 50% to 70%) is presented in Table 6.14.

Table 6.14: Energy saved by IntFragment algorithm compared to EDF and LLF

Exp.

No

Energy Saved w.r.t. EDF Energy Saved w.r.t. LLF

Min (uJ) Max (mJ) Min (uJ) Max (mJ)

1 482.22 3.584 502.74 3.736

2 376.2 2.796 376.2 2.796

3 461.7 3.431 502.74 3.736

4 372.78 2.77 372.78 2.77

5 307.8 2.287 307.8 2.287

6 485.64 3.609 485.64 3.609

7 485.64 3.609 506.16 3.762

8 478.8 3.558 478.8 3.558

9 543.78 4.041 543.78 4.041

10 478.8 3.558 478.8 3.558

6.8. CONCLUSION

We have described the IntFragment, EDFRCS and RMRCS algorithms along with

analysis and experimental evaluation of the same. We have also compared these

algorithms with EDF, RM and LLF on various metrics. A comprehensive summary of

this evaluation is presented (Table 6.15) in the form of desired performance

characteristics and the corresponding choice of scheduling algorithms. The dynamic

priority scheduling algorithms like EDF and RM along with their energy efficient

variants EDFRCS and RMRCS were implemented in RTLinux. Four implemented

scheduling algorithms were verified with many test cases and varying attributes of tasks.

The implementation results support the simulation results discussed in section 6.7.

CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING

 200

Table 6.15: Ready Reckoner for choice of Scheduling Algorithm

Desired Performance

Characteristic
Choice of Scheduling Algorithm

Low Response Time RM under low load and EDF under high load

Low Response Time Jitter
RM, if jitter is critical only for high frequency tasks

RM, under low load and EDF under high load

Low Latency EDFRCS

Ease of Implementation RM under low load and EDF under high load

Low Energy Consumption

EDFRCS for small task sets

Ec/Es ≥50

 EDFRCS (Irrespective of task set size)

Ec/Es around 10

 RM under low load and EDF under high load

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

201

CHAPTER 7

CACHE CONSCIOUS SCHEDULING

7.1 INTRODUCTION

This chapter discusses a cache conscious dynamic priority-based real-time scheduling

algorithm which reduces the cache impact caused by a real-time schedule. The main

objective behind reducing the cache impact caused by a real-time schedule is to optimize

the energy consumption due to data movements across the memory hierarchies. This

work aims at providing a platform-independent scheduling algorithm which yields a

reduced cache impact and increased power savings. This chapter explains a branch and

bound approach to determine the schedule that causes the least cache impacts. This

chapter also proposes a dynamic priority – based Reduced Cache Impact (RCI)

modification to the Earliest Deadline First (EDF) real-time scheduling algorithm.

The assumptions made in section 6.2 are applicable here as well. In this work, the cache

impact is measured as the total number of switching between jobs of different tasks. This

is because the jobs of the same task will share the entire code area and a part of the data

area, which makes the cache impact very minimal. This work also assumes that all the

jobs require as much memory space as to cause the entire previous job’s content to be

flushed out of the cache completely.

7.2 A BRUTE – FORCE ALGORITHM FOR MINIMIZING CACHE IMPACT

We describe an offline algorithm that inspects all valid schedules to find one with

minimum cache impact. This takes O(H!) (where H is the hyper-period) time and we use

it as a standard to measure the effectiveness of other algorithms.

7.2.1 BRUTE-FORCE ALGORITHM FOR MINIMUM CACHE IMPACT

Inputs: hyper-period H, a list of job records Jobs

Output: A feasible schedule, if one exists, with minimum possible cache impact.

Steps:
1. Generate all schedules P of Jobs i.e. divide each job into sub-jobs of unit execution time and

compute all permutations of the list of sub-jobs.

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

202

2. m=H; feasible =FALSE; cur = the first schedule in P.

3. for each permutation Pi in P,

a. check if Pi is feasible

b. if yes, then feasible = TRUE,

 Compute the cache impact count m’;

 if (m’ < m), then m = m’; cur=Pi.

4. if (feasible = FALSE) then output ‘infeasible’

5. else output cur and m.

Finding all permutations, though offline, for a given task set (S) is impractical, if H is

large. Thus, this stresses the need for an online scheduling algorithm which can compute

a feasible schedule, if one exists in polynomial time with minimum cache impact.

7.3 REDUCED CACHE IMPACT (RCI) REAL-TIME SCHEDULING ALGORITHM

The objective of this work is to design an online dynamic, priority-based scheduling

algorithm for hard real-time systems such that the generated schedule has the minimum

possible cache impact. This work considers only periodic tasks.

7.3.1 INTRODUCTION

A preemption results in storing the context of the currently running process and loading

the context of the next job to be executed. Most of the newly selected process’ contents

may not be available in the cache, which results in initiating data movement across the

memory hierarchy. As the size of the cache is very small, almost all the preemption

points are also cache impact points. The cache impact caused at preemption point is a

subset of the total cache impact caused by the resultant schedule. The preemption points

are the points where majority of the cache impacts take place. This premise puts forth an

efficient solution that to reduce the cache impact, it is required to reduce the number of

preemptions. The factors affecting the number of preemptions caused in a schedule

include the number of tasks and the system utilization. Another solution would be to

combine similar jobs together. This can be achieved by combining consecutive instances

of the same task together as they share the code area and a portion of their data areas.

However, combining consecutive instances of many tasks may result in an increase in the

number of preemptions due to the fragmentation of the time frame, and thus leads to a

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

203

greater cache impact. The experimental results given in Table 7.1 justify this argument.

Though the preemption count of the schedule increases while trying to combine more

number of tasks, yet the schedule gives a better cache impact than that caused by the EDF

schedule as shown in Table 7.2. The preemption count and the cache impact obtained

from the schedule while combining instances of the ‘N’ higher frequency tasks is

compared with those obtained from the schedule generated by EDF. In this experiment, N

is varied from 1 to 10 for test cases with 20 tasks. From Tables 7.1 and 7.2, it is observed

that for all the test cases, combining instances of the highest frequency task alone results

in a significant preemption reduction and hence, greater cache impact saving. This

motivates the design of an energy efficient scheduling algorithm called the Reduced

Cache Impact (RCI) scheduling algorithm, which reduces both the number of

preemptions and the cache impact as compared to the EDF. This is achieved by

combining the maximum possible instances of the highest frequency task.

Table 7.1: Preemption variation (% saving caused by combining instances of ‘N’ higher

frequency tasks) as compared to the EDF schedule

Utilization N=1 N=3 N=5 N=8 N=10

50 +7.49 –7.55 –14.04 –16.79 –17.11
55 +6.92 –8.24 –15.10 –18.37 –18.74
60 +7.22 –7.91 –15.23 –18.52 –19.05
65 +6.81 –9.21 –16.54 –20.18 –20.82
70 +7.05 –9.42 –17.23 –21.35 –22.23
75 +6.57 –10.54 –18.65 –23.22 –24.09
80 +7.27 –10.36 –18.39 –23.20 –24.25
85 +7.06 –11.00 –20.27 –25.24 –26.47
90 +7.23 –10.96 –20.16 –25.66 –26.73
95 +7.34 –11.49 –21.00 –27.03 –28.05
100 +6.85 –12.00 –21.69 –27.58 –28.76

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

204

Table 7.2: Cache Impact variation (% saving caused by combining instances of ‘N’

higher frequency tasks) as compared to EDF schedule

Utilization N=1 N=3 N=5 N=8 N=10

50 +7.04 +5.10 +3.99 +3.42 +3.34
55 +7.58 +5.29 +4.00 +3.25 +3.16
60 +8.42 +5.80 +4.20 +3.36 +3.22
65 +9.02 +5.74 +3.98 +2.93 +2.76
70 +9.72 +5.98 +3.91 +2.65 +2.40
75 +10.29 +5.95 +3.63 +2.20 +1.94
80 +11.17 +6.22 +3.70 +2.06 +1.73
85 +11.72 +6.22 +3.13 +1.32 +0.93
90 +11.52 +6.14 +3.19 +1.29 +0.94
95 +12.20 +6.17 +2.94 +0.72 +0.37
100 +12.39 +6.11 +2.69 +0.52 +0.12

RCI is an online dynamic priority-based real-time scheduling algorithm designed to

minimize the cache impact of a given schedule. The proposed scheduling algorithm aims

at reducing the amount of data transferred across the memory hierarchy with the least

number of cache block replacements. This work adopts the heuristic of executing

instances of the highest frequency task together, if possible, to minimize the cache

impact. The execution of all the other task instances follows EDF scheduling policy. The

jobs (instances) of the highest frequency task can be numbered as odd or even. This

heuristic defers the execution of all the even jobs of the highest frequency task to the

maximum possible extent and schedules all the odd jobs of the highest frequency task for

execution as early as possible. The scheduling algorithm guarantees the successful

execution of all the other jobs (if utilization is less than or equal to 100%) while deciding

upon deferral and immediate execution of the instances of the highest frequency task.

Basically, the system follows EDF with 100% schedulability, i.e., instances of all the

tasks except those of the highest frequency task follow the EDF strategy for scheduling

decisions. The proposed algorithm is described below.

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

205

7.3.2 REDUCED CACHE IMPACT (RCI) ALGORITHM

The following notation is used in the RCI algorithm:

readyQ(t) : the ready queue at time t, ordered by deadline.

deadline(J) : deadline of a job J.

execution_time(J) : execution time of a job J.

Algorithm Reduced Cache Impact Scheduling (RCIS)

Input: A list L of tasks T1, T2, … Tn, their periods and execution times and

A priority function priority, that is job-level fixed (-1 *deadline(J)).

Output: A feasible schedule for L or failure.

begin

Let the deferred switch be initialized as the Hyper period

Let Cur be the job selected by findNextJobToExecute(readyQ(t), t) function at time 0 and

deferred switch be the value set by findNextJobToExecute(readyQ(t), t)function at time 0.

For every time unit t when there is at least one arrival or a departure or a deferred switch

if (Cur is to depart OR new Job Arrived OR t = deferred switch time) then

Cur1 = findNextJobToExecute(readyQ(t), t) ;

if (Cur1 = = Cur) then schedule Cur;

else
preempt Cur; Cur = Cur1; schedule Cur;

end RCIS

function Job findNextJobToExecute(readyQ(t), t)

begin

Let Cur be the job with the highest priority in readyQ(t)

if (Cur is the even instance of the highest frequency task) then

deferredSwitchTime_Cur = maxDeferredTime(Cur,t);

if (deferredSwitchTime_Cur > 0) then

find the next highest priority Job J in readyQ(t),

 if no other jobs exist then J=Cur;

if (J <> Cur) then

deferred switch = t + deferredSwitchTime_Cur; return J;

return Cur;

end findNextJobToExecute

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

206

function int maxDeferredTime(job, t)

begin

 return deadline(job) – t – execution time(job);

end maxDeferredTime

7.3.3 RCI ALGORITHM EXPLANATION

The working of the proposed algorithm is explained with the following task set in Table

7.3.

Table 7.3: Task list for the schedule

Task Arrival Time Period Execution Time Deadline

T0 0 5 1 5

T1 0 15 6 15

T2 0 30 12 30

Table 7.4: Job list Jobs, derived from Table 7.3 (Hyperperiod = 30)

Job Arrival Time Deadline Execution Time

J0 (T0) 0 5 1

J1 (T0) 5 10 1

J2 (T0) 10 15 1

J3 (T0) 15 20 1

J4 (T0) 20 25 1

J5(T0) 25 30 1

J6(T1) 0 15 6

J7(T1) 15 30 6

J8(T2) 0 30 12

The RCI scheduling algorithm schedules the task set i.e., the corresponding job set given

in Table 7.3 and Table 7.4. The ready queue is maintained in a sorted fashion according

to the priority of jobs, where priority of a job J is defined as (-1*deadline (J)).

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

207

Figure 7.1 shows the resultant schedule generated by the RCI scheduler. The number of

cache impact points in this schedule is 8 and the number of preemption points in the

schedule is 3. Figures 7.2 and 7.3 show the resultant EDF and RM schedules respectively

for the same task set. The number of cache impact points and the number of preemption

points in the EDF schedule is 12 and 4 respectively.

Fig. 7.1: Resultant RCI schedule for the task set given in Table 7.3

Fig. 7.2: Resultant EDF schedule for the task set given in Table 7.3

Fig. 7.3: Resultant RM schedule for the task set given in Table 7.3

The number of cache impact points and the number of preemption points in the RM

schedule is 13 and 5 respectively. From this, one can observe that the EDF and RM

scheduling algorithms perform badly when compared to the RCI scheduling algorithm

J3

J8

J6
J0 J1

J6

J8

J2 J4

J7

J8

J5

Cache Impact Points (8) and Preemption Points (3)

0 4 5 6 8 14 15 16 22 24 25 26 30

J3

J8

J6
J0 J1

J6

J
8

J2 J4

J7 J7
J5

Cache Impact Points (12) and Preemption Points (4)

0 1 5 6 8 10 11 15 16 20 21 23 30

J8

29

25

J3

J
8 J6

J0 J1

J6

J
8

J2 J4

J7 J7
J5

Cache Impact Points (13) and Preemption Points (5)

0 1 5 6 8 10 11 15 16 20 21 23 30

J8

26

J8

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

208

both in terms of the cache impact and preemption count. The brute-force result for the

same task set is given in Figure 7.4. The brute-force approach gives the number of cache

impact points as 8 and the number of preemptions as 1. From this, one can observe that

RCI scheduling algorithm provides near optimal solution for cache impact points in

almost all the cases.

Fig. 7.4: Resultant Brute-Force schedule for the task set given in Table 7.3

7.3.4 SCHEDULABILITY OF THE RCI ALGORITHM

The adopted heuristic preserves the optimality of scheduling decisions i.e., RCI is

optimal if and when EDF is optimal. As EDF is schedulable for all the periodic task sets

with tasks having their deadlines equal to their respective periods and the task set

utilization <=1, the RCI is also schedulable.

Some notations used in the proofs presented below:

• A schedule S is a sequence of runs, where each run is an instance of a task or a

portion of it.

• To identify some runs of a schedule the following notation used is:

(A1, B1,C1,, S1, A2, S1, T1,S2,, Sm)

where, Ai to Ti are the ith instances of the different tasks in a task set.

• Given a schedule S, NCI(S) denotes the number of cache impact points in S.

The following lemma is used in proving the theorems stated below and it can be

informally stated as:

The deferral step in RCI – the step that postpone the execution of an even instance of the

highest frequency task – does not affect schedulability.

Lemma 1:

Let S be a feasible schedule: (A1, B1, C1, ….. S1, A2, …… Sm) where, A1 to S1 are the

first instance of the tasks in the task set and A2 to Sm are the second instance to mth

J3

J8

J6
J0 J1

J8

J2 J4

J7
J5

Cache Impact Points (8) and Preemption Points (1)

0 1 7 8 14 15 16 22 23 29 30

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

209

instance of the tasks in the task set. Assume S was generated by a priority scheduling

algorithm.

Let U be the schedule (B1, C1, ….. S1, A1, A2, …… Sm), where, the instance A1 of the

highest frequency task is delayed to the maximum possible extent while ensuring that

each of these jobs does not miss its deadline, thus schedulability is maintained and U is

feasible with NCI(U) <= NCI(S)

Proof:

Let A1 be the highest priority job in the ready queue, i.e., priority(A1) >= priority(Ji) for

all i. Let t1 be the time when A1 is the highest priority job in the ready queue and t2 the

deadline(A1). The maximum time one can postpone the execution of this job in a

schedule is deferred time, given by

deferred time = (deadline(A1) – execution_time(A1) – current time)

During this time period for which the execution of A1 is deferred, jobs whose priority

less than A1 are scheduled for execution. Each of the jobs executing between time t1 and

time t2 thus advances its execution time by execution_time(A1). Then A1 executes from

(t2 – execution_time(A1)) to t2.

This provides a valid schedule without any deadline miss. The resultant schedule also has

lesser or atmost an equal number of cache impact points as compared to the previous

schedule as similar jobs A1 and A2 are combined together at t2.

Thus, any delayed run of the highest priority job in schedule S, will not cause any run of

any other lower priority job F to miss its deadline. So U is feasible. Furthermore, observe

that the number of cache impact points differs by 1 between S and U; i.e. NCI(U) <=

NCI(S)

End of Proof

Theorem 1:

Given a set of N independent, preemptable and periodic tasks on a uniprocessor such that

their relative deadlines are equal to their respective periods. Algorithm RCI generates a

feasible schedule, if one exists and if the task set is EDF-schedulable. The RCI outputs a

schedule with no more cache impact points than that in the EDF schedule.

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

210

Proof:

Let S be the job set corresponding to the given task set. The objective is to prove that the

schedule generated by RCI for S is feasible, if there is a feasible schedule generated by

EDF for S. In each iteration of the loop, RCI algorithm calls findNextJobToExecute

function to determine the next job to execute in the CPU. The findNextJobToExecute

function calls maxDeferredTime function only if the highest priority job in the ready

queue is an even instance of the highest frequency task. So the scheduling decision is

• Either the same as the decision EDF would take, i.e., the highest priority job (in

other words, the shortest deadline job) will be the next job to execute in the CPU.

• Or if the highest priority job is an even instance of the highest frequency task,

then execute the next available highest priority job for ‘k’ units of time, where k is

the maximum deferrable duration of the highest priority job without affecting any

job’s deadline. This decision does not affect the feasibility and optimality of the

schedule, moreover, it may reduce the number of cache impact points.

There are five possible cases in RCI scheduling. They are:

Case 1: The highest priority job in the ready queue is not an instance of the highest

frequency task; RCI schedules the highest priority job from the ready queue. So would

EDF.

Case 2: The highest priority job in the ready queue is an instance of the highest frequency

task but is an odd instance of the highest frequency task; RCI schedules the highest

priority job from the ready queue. So would EDF.

Case 3: The highest priority job in the ready queue is an instance of the highest frequency

task and is an even instance of the highest frequency task. But the maxDeferredTime of

the job is zero; RCI schedules the highest priority job from the ready queue. So would

EDF.

Case 4: The highest priority job in the ready queue is an instance of the highest frequency

task and is an even instance of the highest frequency task. The maxDeferredTime of the

job is greater than zero but there is no other job available in the ready queue; RCI

schedules the highest priority job from ready queue. So would EDF.

Case 5: The highest priority job in the ready queue is an instance of the highest frequency

task and is an even instance of the highest frequency task. The maxDeferredTime of the

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

211

job is greater than zero and there is more than one job available in the ready queue; RCI

schedules the second highest priority job from the ready queue for a duration of

maxDeferredTime duration or until a new arrival or departure occurs. This leads to

combine adjacent instances of the highest frequency task, if possible, which results in

reducing the cache impact points by one, or in the worst-case, the number of cache

impact points is the same as that by EDF without affecting the schedulability of the task

set. By Lemma 1, feasibility is invariant under this transformation and NCI(U) <= NCI(S).

Thus, it is shown that a single iteration of the loop in RCI results in a decision that is as

feasible as one by the EDF. Hence, by induction on the number of iterations of the loop,

one can conclude that the RCI outputs a schedule that is feasible, if EDF outputs a

feasible schedule for the same input.

Furthermore, each iteration of the loop in RCI introduces no additional cache impact

points than the EDF would. In fact, as argued above, possibilities 1, 2, 3 and 4 agree with

a decision EDF would make, and possibility 5 may reduce the number of cache impact

points in comparison with EDF.

End of Proof

7.3.5 ANALYSIS OF THE RCI ALGORITHM

7.3.5.1 Quality of the RCI schedule

The quality of the RCI scheduling algorithm is analyzed with the following example. The

task set is given in Table 7.5 and the job list derived from the given task set is given in

Table 7.6. The resultant schedule produced by EDF, RM, EDFRCS, RCI and Brute-force

approach is shown in Figure 7.5, 7.6, 7.7, 7.8, and 7.9 respectively.

Table 7.5: Task list for the schedule

Task Arrival Time Period Execution Time Deadline

T0 0 5 1 5

T1 0 7 3 7

T2 0 35 13 35

From the resultant schedule it is evident that the RCI scheduling algorithm performs far

better than the EDF and RM scheduling algorithms. The EDF scheduling algorithm

produces a schedule with 6 preemptions and 18 cache impact points. The RM scheduling

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

212

algorithm, which always produces greater or an equal number of preemptions and cache

impact points as compared to the EDF schedule, produces 8 preemptions and 20 cache

impact points.

Table 7.6: Job list Jobs, derived from Table 7.5 (Hyperperiod = 35)

Job Arrival Time Deadline Execution Time

J0 (T0) 0 5 1

J1 (T0) 5 10 1

J2 (T0) 10 15 1

J3 (T0) 15 20 1

J4 (T0) 20 25 1

J5(T0) 25 30 1

J6(T0) 30 35 1

J7(T1) 0 7 3

J8(T1) 7 14 3

J9(T1) 14 21 3

J10(T1) 21 28 3

J11(T1) 28 35 3

J12(T2) 0 35 13

Fig. 7.5: Resultant EDF schedule for the task set given in Table 7.5

0 1 4 5 6 7 10 11 14 15 16 18 20 21 24 25 26 31 32 35

J
0

J7
J
1
2

J
1

J
2

J
3

J
4

J
5

J
6

J8 J
9

J9 J10 J11
J12 J

1
2

J12 J
1
2

J12

Cache Impact Points (18) and Preemption Points (6)

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

213

Fig. 7.6: Resultant RM schedule for the task set given in Table 7.5

Fig. 7.7: Resultant EDFRCS schedule for the task set given in Table 7.5

Fig. 7.8: Resultant RCI schedule for the task set given in Table 7.5

The resultant RCI schedule performs far better than the EDF and RM schedule both in

terms of number of the preemptions and cache impact points. For the same task set, the

RCI scheduling algorithm produces 4 preemptions and 13 cache impact points. Though

the EDFRCS scheduling algorithm produces lesser number of preemptions as compared

to the RCI scheduling algorithm, it still produces greater or an equal number of cache

impact points in comparison with the RCI schedule. For the given task set, the EDFRCS

produces only 2 preemptions whereas, the RCI produces 4 preemptions. But the number

of cache impact points in EDFRCS schedule is 14, which is greater than the 13 cache

impact points produced by the RCI schedule.

0 1 4 5 6 7 10 11 14 15 16 18 20 21 24 25 26 28 30 31 32 35

J
0

J7
J
1
2

J
1

J
2

J
3

J
4

J
5

J8 J
9

J9 J10
J12 J

1
2

J12 J
1
2

J
1
2

Cache Impact Points (20) and Preemption Points (8)

J
6

J
1
1

J
1
1

J
1
2

0 1 4 9 10 13 14 17 18 24 25 28 29 32 33 35

J
0

J7
J12

J
1

J
2

J
3

J
4

J
5

J
6

J8 J9 J10 J11
J12 J12

Cache Impact Points (14) and Preemption Points (2)

0 3 4 5 6 7 10 14 15 16 19 21 24 25 26 31 34 35

J
0

J7
J
1
2

J
1

J
2

J
3

J
4

J
5

J
6

J8 J9 J10 J11
J12 J

1
2

J12 J12

Cache Impact Points (13) and Preemption Points (4)

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

214

Though the RCI scheduling algorithm produces a schedule with lesser number of cache

impact points when compared to other dynamic scheduling algorithms like EDF, RM,

LLF, MLLF, and EDFRCS, it is not the optimal schedule. Figure 7.9 shows the Brute-

force schedule with an optimal number of cache impact points. The number of cache

impact points in Brute-force algorithm is 12. This proves that the RCI is a near-optimal

heuristic for reducing the number of cache impact points in a schedule.

Fig. 7.9: Resultant Brute-force schedule for the task set given in Table 7.5

7.3.5.2 Complexity of the RCI Algorithm

The RCI scheduling algorithm calls the findNextJobToExecute function to identify the

next job to execute in the CPU. For all cases in the ready queue except for an even

instance of the highest frequency task, the RCI algorithm (findNextJobToExecute

function) performs similar to the EDF and the complexity of the scheduling algorithm is

O(N). This is because the selection of the next job to run in the CPU takes O(1) time, if

the ready queue is a priority queue. In this case, maintaining the ready queue such that it

remains sorted always takes O(N) complexity. If the ready queue is not a priority queue

then searching the highest priority ready-to-run job in the unsorted list takes O(N) time.

The special case encountered by the RCI scheduler is when the highest priority job in the

ready queue is an even instance of the highest frequency task. In this case, the

findNextJobToExecute function in the RCI scheduler calls the maxDeferredTime

function to calculate the maximum possible deferred time. Based on the maximum

deferred time, the findNextJobToExecute module selects the highest priority or the

second highest priority job for execution. If the second highest priority job is selected,

then the deferred time is set as an additional scheduler invocation point. The worst

possible scenario occurs when it is required to execute both the findNextJobToExecute

0 3 4 5 6 10 11 14 17 19 20 21 24 29 30 31 34 35

J
0

J7
J
1
2

J
1

J
2

J
3

J
4

J
5

J
6

J8 J9 J10 J11
J
1
2

J12 J12 J12

Cache Impact Points (12) and Preemption Points (4)

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

215

and maxDefferedTime functions for finding the next job to run in the CPU. In this case

the complexity of the selection is the summation of the time complexity of

findNextJobToExecute and maxDeferredTime functions. The complexity of the

findNextJobToExecute function is O(1), as it checks only the head of the queue to find

whether the highest priority task is an even instance of the highest frequency task. The

maxDeferredTime function also has a time complexity of O(1) as the maximum deferred

time of the highest priority task is based on only the deadline, execution time and the

current time of the task. As the worst case time complexity for finding the next job to

execute in the CPU is O(1), and the worst case time complexity for inserting a job into

the ready queue (priority queue) is O(N), the resultant time complexity of the RCI

scheduling algorithm is O(N) which is same as that of the EDF scheduling algorithm.

7.4 COMPARATIVE EVALUATION

In this section, the evaluation and comparison of the RCI scheduling algorithm against

various dynamic priority-based scheduling algorithms like EDF, RM and LLF for

periodic real-time tasks is carried out. This section compares the quality of schedules of

all these algorithms in terms of the number of cache impact points and the number of

preemption points. The experimental measurements for each of the metrics are shown;

the results for the different algorithms are analyzed and compared. The experimental

setup includes a simulation of all the algorithms and different test suites generated under

certain conditions: each test suite is characterized by either a fixed number of tasks with

utilization varying from low (50%) to high (100%) or by a fixed utilization with the

number of tasks varying from 2 to 20. Each test suite includes 100 different task sets of

varying hyperperiods – from 100 to 32000. The results obtained are then averaged over

these 100 test suites as appropriate. Schedulability is not included as a metric in this

evaluation as RCI is schedulable if EDF schedulable.

7.4.1 NUMBER OF CACHE IMPACT POINTS

The cache impact count values obtained during the experimentation are normalized over

the number of jobs and the tasks are ordered by non-increasing frequency. The trend

observed among the algorithms with respect to the number of cache impact points

introduced in the resulting schedules is RCI <=EDF <=RM <= LLF.

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

216

The charts below (Figure 7.10 to 7.13) represent the cache impact count against

utilization for task sets with a fixed number of tasks. It is observed that the number of

cache impact points increases with increase in utilization, irrespective of the number of

tasks due to the increase in execution time and schedulability constraints.

Cache Impact Vs Utilization (#Tasks=3)

0.5

1

1.5

2

2.5

3

3.5

4

50 55 60 65 70 75 80 85 90 95 100
Utilization

C
ac

he
 Im

pa
ct

RCI EDF RM LLF

Fig. 7.10: Cache Impact points per Utilization (# Tasks = 3)

It is seen that the RCI algorithm exhibits a significant reduction in the number of cache

impact points when compared to their traditional counterparts, irrespective of the

utilization level, thus fulfilling the purpose of their design. For instance, at 50%

utilization, EDF results in an average of 1.143 cache impact points per job, whereas RCI

results in an average of 1.01 cache impact points per job, which is a 13% reduction. For a

fully loaded system, EDF results in an average of 1.6 cache impacts per job, whereas RCI

results in 1.28 cache impact points per job, which is about a 25% reduction.

CacheImpact Vs Utilization (#Tasks=8)

1

1.5

2

2.5

3

3.5

50 55 60 65 70 75 80 85 90 95 100
Utilization

C
ac

he
 Im

pa
ct

RCI EDF RM LLF

Fig. 7.11: Cache Impact points per Utilization (# Tasks = 8)

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

217

Cache Impact Vs Utilization (# Tasks=14)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

50 55 60 65 70 75 80 85 90 95 100
Utilization

C
ac

he
 Im

pa
ct

RCI EDF RM LLF

Fig. 7.12: Cache Impact points per Utilization (# Tasks = 14)

Cache Impact Vs Utilization (#Tasks=20)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

50 55 60 65 70 75 80 85 90 95 100
Utilization

C
ac

he
 Im

pa
ct

RCI EDF RM LLF

Fig. 7.13: Cache Impact points per Utilization (# Tasks = 20)

The result also confirms that the EDF produces lesser number of cache impact points than

RM and LLF. EDF outputs schedules that have about 1% lesser cache impact points than

RM on an average. Similarly, LLF introduces greater cache impact points compared to

the RCI, EDF and RM. The RCI scheduling algorithm eliminates around 15% and 35%

of the cache impact points in an LLF schedule when the utilization is 50% and 100%

respectively. Among the traditional algorithms, LLF's cache impact count increases

drastically with increase in utilization and it performs poorly at high utilizations

(>= 80%), due to the frequent changes in the priority of jobs.

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

218

Cache Impact Vs #Tasks (Utilization=50%)

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#Tasks

C
ac

he
 Im

pa
ct

RCI EDF RM LLF

Fig. 7.14: Cache Impact points per Number of Tasks (Utilization = 50%)

Cache Impact Vs #Tasks (Utilization=70%)

0.5

0.7

0.9

1.1

1.3

1.5

1.7

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#Tasks

C
ac

he
 Im

pa
ct

RCI EDF RM LLF

Fig. 7.15: Cache Impact points per Number of Tasks (Utilization = 70%)

The charts below (Figure 7.14 to 7.17) represent the cache impact count against the

number of tasks in a task set with a fixed utilization. It is observed that for each

scheduling algorithm under consideration, the number of cache impact points initially

increases with increase in number of tasks (till number of tasks <=8) and then stabilizes

in and around that value.

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

219

Cache Impact Vs #Tasks (Utilization=85%)

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#Tasks

C
ac

he
 Im

pa
ct

RCI EDF RM LLF

Fig. 7.16: Cache Impact points per Number of Tasks (Utilization = 85%)

Cache Impact Vs #Tasks (Utilization=100%)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#Tasks

U
til

iz
at

io
n

RCI EDF RM LLF

Fig. 7.17: Cache Impact points per Number of Tasks (Utilization = 100%)

7.4.2 NUMBER OF PREEMPTIONS

The preemption count values obtained are normalized over the number of jobs and the

tasks are ordered by decreasing frequency. The trend observed among the algorithms

with respect to the number of preemptions introduced in the resulting schedules is as

follows: RCI <=EDF <=RM <= LLF

The charts below (Figure 7.18 to 7.21) represent the preemption count against utilization

for task sets with a fixed number of tasks. It is observed that the number of preemptions

increases with increase in utilization, irrespective of the task set size, due to the increase

in execution time and schedulability constraints.

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

220

Preemptions Vs Utilization (#Tasks=3)

0

0.5

1

1.5

2

2.5

3

50 55 60 65 70 75 80 85 90 95 100
Utilization

Pr
ee

m
pt

io
ns

RCI EDF RM LLF

Fig. 7.18: Preemptions per Utilization (# Tasks = 3)

Preemptions Vs Utilization (#Tasks=8)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

50 55 60 65 70 75 80 85 90 95 100

Utilization

Pr
ee

m
pt

io
ns

RCI EDF RM LLF

Fig. 7.19: Preemptions per Utilization (# Tasks = 8)

It is seen that the RCI algorithms show a significant reduction in the preemption count

when compared to their traditional counterparts, irrespective of the utilizations. For

instance, at 50% utilization, EDF results in an average of 0.25 preemptions per job,

whereas RCI results in an average of 0.20 preemptions per job, which is about a 25%

reduction. For a fully loaded system (100% utilization), EDF results in an average of

0.602 preemptions per job, whereas RCI results in 0.49 preemptions per job, which is

about a 22% reduction. The preemption reduction by RCI when compared to that by the

RM and LLF at 50% utilization is 23% and 33% respectively. The preemption reduction

by the RCI when compared to that of the RM and LLF at 100% utilization is 26% and

229% respectively. LLF's preemption count increases drastically with an increase in

utilization and it performs poorly at high utilizations (>= 80%) due to the frequent

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

221

changes in the priority of jobs owing to the laxity metric. A detailed analysis of the EDF,

RM, and LLF is presented in Chapter 6. The charts below (Figure 7.22 to 7.25) represent

the preemption count against the number of tasks in a task set with a fixed utilization. It is

observed that for each scheduling algorithm under consideration, the number of context

switches decreases with an increase in the number of tasks at a fixed utilization,

irrespective of the utilization. This behavior is attributed to the fact that an increase in the

number of tasks at a fixed utilization causes the execution time per task to reduce,

resulting in reduced preemptions before the completion of jobs.

Preemptions Vs Utilization (#Tasks=14)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 55 60 65 70 75 80 85 90 95 100
Utilization

Pr
ee

m
pt

io
ns

RCI EDF RM LLF

Fig. 7.20: Preemptions per Utilization (# Tasks =14)

Preemptions Vs Utilization (#Tasks=20)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

50 55 60 65 70 75 80 85 90 95 100
Utilization

Pr
ee

m
pt

io
ns

RCI EDF RM LLF

Fig. 7.21: Preemptions per Utilization (# Tasks = 20)

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

222

Preemptions Vs #Tasks (Utilization=50%)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#Tasks

Pr
ee

m
pt

io
ns

RCI EDF RM LLF

Fig. 7.22: Preemptions per Number of Tasks (Utilization = 50%)

Preemptions Vs #Tasks (Utilization=70%)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#Tasks

Pr
ee

m
pt

io
ns

RCI EDF RM LLF

Fig. 7.23: Preemptions per Number of Tasks (Utilization = 70%)

Preemptions Vs #Tasks (Utilization=85%)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#Tasks

Pr
ee

m
pt

io
ns

RCI EDF RM LLF

Fig. 7.24: Preemptions per Number of Tasks (Utilization = 85%)

CHAPTER 7 – CACHE CONSCIOUS SCHEDULING

223

Preemptions Vs #Tasks (Utilization=100%)

0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#Tasks

Pr
ee

m
pl

tio
ns

RCI EDF RM LLF

Fig. 7.25: Preemptions per Number of Tasks (Utilization = 100%)

As the number of tasks in the task set increases, preemption reduction is less pronounced

for the RCI algorithm. This is because all the algorithms, except the RCI reduce the

preemption count with increase in the number of tasks in the task set, but RCI performs

consistently, irrespective of number of jobs. Thus preemption reduction is less

pronounced for the RCI algorithm with a larger number of tasks. A detailed analysis of

the EDF, RM, and LLF with regard to preemption reduction is presented in Chapter 6.

7.5 CONCLUSION

In this chapter, initially, a discussion on the general Brute-Force algorithm that

determines the schedule with the minimum possible cache impact points has been

presented, following which the newly designed cache impact point reduction-specific

scheduling algorithm (i.e.) RCI algorithm has been discussed theoretically and then

evaluated experimentally too using various task sets and by varying the different

parameters of the number of preemptions and number of cache impact points. The results

thus obtained have been analyzed and compared against the traditional algorithms for

different performance metrics. The RCI scheduling algorithm reduces the number of

cache impact points up to 25%, 26% and 35% of those generated by the EDF, RM and

LLF respectively. The RCI scheduling algorithm also reduces the number of preemptions

up to 22%, 26% and 229% of those generated by the EDF, RM and LLF respectively,

thus establishing its objective.

CHAPTER 8 - CONCLUSION

 224

CHAPTER 8

CONCLUSION

This thesis addresses the energy consumption issues in multi-tasking real-time embedded

systems at the architecture level and the operating system level. This is achieved by

proposing various techniques to reduce cache and scheduling-related energy

consumption. This chapter summarizes the major contributions made and points out some

of the possible extensions of the work.

In this thesis, architecture level energy efficiency is achieved by improving the cache hit

rate by modifying the LRU replacement strategy, reducing the internal activity, hardware

complexity, prediction miss rate and the effective cache access time of a way prediction

cache, which is an energy efficient cache architecture and by designing process aware

cache architectures that achieve reduced energy consumption while running multi-tasking

real-time applications. The operating system level energy efficiency is achieved by

designing static and dynamic real-time scheduling algorithms resulting in reduced

preemptions and by designing a dynamic real-time scheduling algorithm causing reduced

cache impacts. Chapter 2 summarized the major work done in the area of energy efficient

cache architecture and real-time task scheduling. Chapters 3, 4 and 5 addressed different

cache memory-related techniques to reduce energy consumption. Chapter 6 dealt with

reduction of scheduling-related energy consumption due to preemptions and Chapter 7

elaborated on the technique based on cache-conscious scheduling to reduce the cache-

related energy consumption caused by the scheduler.

Chapter 3 of this thesis focused on the design, implementation and analysis of a new

variant of LRU replacement strategy called the LLRU, which helps in increasing the life

span of shared cache lines with the help of compiler information. The cache hit rate for

various cache configurations employing the LRU and LLRU replacement strategies was

measured using a software simulator with Simplescalar benchmark address traces. The

hardware implementations of the LRU and LLRU based on the square matrix and counter

designs were carried out using the tools ModelSim and Leonardo Spectrum. The layouts

of these hardware architectures were also obtained from the tool IC station. The results

CHAPTER 8 - CONCLUSION

 225

thus obtained, were analyzed, evaluated and compared on the basis of parameters like

area, clock frequency, critical path delay, number of transistors and the cache hit rate.

The LLRU hardware implementation offers a higher clock frequency and lesser critical

path delay, but it demands more number of transistors and area. The experimental

analysis reveals that with minimal extra hardware, the LLRU improves cache

performance significantly.

Chapter 4 dealt with designing energy efficient cache architecture. The work explains and

evaluates a modification of the way prediction scheme – way predictive placement

scheme – to improve the cache performance in terms of power, access time, prediction hit

rate and cache hit rate with lesser hardware complexity. This is achieved by replacing the

MRU table in way prediction scheme with a register i.e., local prediction in way

prediction scheme is modified with global prediction in way predictive placement

scheme. To improve the prediction hit rate and cache hit rate in way predictive placement

scheme, a modified placement / replacement strategy called the ALRU replacement

strategy was proposed. The conventional cache, way prediction cache and the way

predictive placement cache were evaluated using the Simplescalar 2.0 cache simulator

with SPEC95 benchmark suite. Based on evaluation results given in Table 4.2, one can

comprehend that the way predictive placement cache performs better than the way

prediction cache. Way predictive placement cache reduces the hardware complexity from

k * log2 N bits to log2 N bits where k is the number of sets and N is the associativity.

The concept of process aware energy efficient cache design for Embedded Systems is

oriented towards achieving energy efficiency in Embedded Systems. Chapter 5 presents

two new process aware energy efficient caching schemes for an N-way set-associative

cache: (i) a process aware selective placement scheme (PASP) with a victim set and (ii) a

shared memory process aware selective placement (SMPASP) scheme with small shared

and victim sets. These schemes work based on the cache – operating system – compiler

interaction. These two schemes aim at bringing down the power consumption while

improving the cache hit rate of the process aware cache. Here, the proposed schemes

were assessed and compared with the conventional set-associative and way – prediction

cache with respect to the first cycle hit rate, cache hit rate, number of tag comparisons,

CHAPTER 8 - CONCLUSION

 226

effective cache access time, dynamic power consumption and leakage power

consumption for various cache configurations. This performance evaluation was carried

out with independent processes and with processes which exhibit a considerable amount

of data sharing among them. A cache simulator CACHEMEM 1.0 with configurable

cache size, cache line size and context switching duration was implemented. The

simulator used SPEC95 benchmark address traces for evaluation. The dynamic and

leakage power consumption for the various caching schemes were obtained using the

eCACTI cycle-based power estimation model. A comprehensive summary of this

evaluation is presented in Table 5.2, in the form of desired performance characteristics

and the corresponding choice of the appropriate cache architectures.

Chapter 6 discussed the techniques adopted to reduce power consumption at the operating

system level. Here, various scheduling algorithms which reduce the number of

preemptions in a real-time schedule were discussed. This work proposed and

implemented a platform independent static scheduling algorithm called IntFragment and

two platform independent dynamic scheduling algorithms called EDFRCS and RMRCS.

These algorithms reduce the power consumption by aggressively reducing preemptions

without extensive computations. All these scheduling algorithms were discussed

theoretically and evaluated experimentally using various task sets by varying different

parameters like task set size, utilization and hyper-period. The results obtained were

analyzed and compared with EDF, RM, LLF and MLLF against the different

performance metrics of response time, response time jitter, latency, scheduling

complexity, preemption count and energy consumption. A summary of this evaluation is

presented in Table 6.16, in the form of desired performance characteristics and the

corresponding choice of scheduling algorithms has been put forth. The EDF, RM,

EDFRCS and RMRCS scheduling algorithms were implemented and tested in the

RTLinux real-time operating system.

Chapter 7 of this thesis talked about cache-conscious dynamic priority-based real-time

scheduling algorithm called the RCI which reduces the cache impact of a real-time

schedule. This work decreases the energy consumed by reducing the cache impact, i.e.,

reduction in data movements across memory hierarchies demanded by preemptions. The

CHAPTER 8 - CONCLUSION

 227

RCI, a modification of EDF, was discussed theoretically and evaluated experimentally

too, using various task sets by varying different parameters like task set size, utilization

and hyper-period. The results obtained were analyzed and compared with the EDF, RM

and LLF against the number of preemptions and number of cache impact points. The RCI

scheduling algorithm reduces the number of cache impact points by up to 25%, 26% and

35% of those caused by EDF, RM and LLF respectively. The RCI scheduling algorithm

also reduces the number of preemptions by up to 22%, 26% and 229% of those caused by

the EDF, RM and LLF algorithms respectively.

Further analysis and experimentation in the area of energy efficient embedded systems

includes an extension of the EDFRCS and RMRCS, i.e., applying preemption reduction

heuristics to platform-dependent algorithms like DVS and DFS for better power saving.

Nowadays, the requirements of an embedded system are varied at different points of

time. Sometimes, the embedded system demands high response time and at some other

times, it should work with minimum energy consumption or minimum latency.

Achieving all of these with a single scheduling algorithm is a cumbersome task. This

requires a new combo design with multiple scheduling algorithms as a part of the

scheduler. Future work in this area is oriented towards designing such a scheduler which

can select a suitable scheduling algorithm on-the-fly according to the requirements, thus

achieving the required performance. The design of an optimal energy efficient dynamic

scheduling algorithm with optimal cache impact and preemptions supporting DVS / DFS

is a potential future research area. The entire research is based on the assumption that the

Embedded System is a uniprocessor machine. In the future, some of the system side

assumptions like a uniprocessor model to a multicore one and distributed systems and

other real-time task set assumptions like the task period is equal to its deadline, which

implies only one instance of a task is available in the ready queue at any point of time,

etc. can be relaxed. In the area of cache architecture, further work includes the

modification of PASP and SMPASP cache architectures to allocate variable number of

ways to a process based on some parameters like priority, cache usage and the cache hit

rate of a process. This will improve the utilization of the cache when less number of

processes are executing. Later, one can also explore the possibility of adopting these

techniques in multi-threaded multi-core architectures.

ANNEXURE A – CACHE REPLACEMENT ALGORITHMS

228

ANNEXURE A – COMPARISON CHART OF CACHE REPLACEMENT ALGORITHMS

Replace
ment

Algorit
hms

Cache
miss
rate

w.r.t.
LRU

Speedup
(ECAT)

Action on cache
hit

Action on cache
miss

Additional Energy
Required

Hardware
Complexity

Additional
instructions

needed

L1 DC /
IC / DC

& IC / L2

LRU REFER
ENCE

REFERE
NCE

Update LRU
counters

Update LRU
counters

N log2 N bits per set
and associated circuitry

N log2 N bits per
set NIL L1 DC &

IC / L2

OPT Up by
70% MIN NA NA NA NA NIL L1 DC &

IC / L2

RAND Less by
22%

Average
22%

slower
NONE Update a register log2 N bits and Pseudo

Random generator

Pseudo Random
generator + log2 N

bits
NIL L1 DC &

IC / L2

FIFO Less by
20%

Average
20%

slower
NONE Update FIFO

counter
N log2 N bits per set

and associated circuitry
N log2 N bits per

set NIL L1 DC &
IC / L2

LFU Less by
18%

Average
18%

slower

Update LFU
counter

Update LFU
counter

N log2 X bits per set
and associated circuitry

N log2 X bits per
set NIL L1 DC &

IC / L2

LFUDA Less by
15%

Average
15%

slower

Update LFU
counters + shift
LFU counters if

reference
counter = MAX

Update LFU
counter + shift

LFU counters if
reference counter

= MAX

log2 X bits reference
counter and shifting
operation after every

MAX references

N log2 X bits per
set + log2 X bits for
reference counter

NIL L1 DC &
IC / L2

MRU
Less by

at least -
100%

At least -
100%

Update MRU
counters

Update MRU
counters

N log2 N bits per set
and associated circuitry

N log2 N bits per
set NIL L1 DC &

IC / L2

EELRU Up by
30%

Best case
30%
faster

Update counters Update counters

K log2 X + 2 log2 X
bits per set, associated
circuitry and feedback

logic

K log2 X bits per
set + 2 log2 X for

total no. of page ref
per recency region
+ feed back circuit

NIL L2

PLRU Up by
2.5%

Best case

2.5%
faster

Update MRU
bits

Update MRU
bits

N bits per set and

associated circuitry

N bits per set NIL L1 DC &
IC / L2

ANNEXURE A – CACHE REPLACEMENT ALGORITHMS

229

MLRU Up by
12%

12%
faster

Update LRU
counters

Update LRU
counters and
non-temporal

(nt) bit

N log2 N + N bits per
set and associated

circuitry

N log2 N + N bits
per set

Additional cache
hint instructions
to transfer non-
temporal hint

L1 DC

CACHE
/ RC

Up by
60.9%

12%
faster

Update LRU
counters

Update LRU
counters and

lock/ release bit

N log2 N + N bits per
set and associated

circuitry

N log2 N + N bits
per set

Additional
instructions for
lock and release

operations

L1 DC

PRL Up by
12%

12%
faster

Update LRU
counters and
temporal bits

Update LRU
counters and
temporal bits

N log2 N + N bits per
set, its associated

circuitry and profiling

N log2 N + N bits
per set

Modified Load
instructions to set
temporal bit and

non-temporal
instructions to

reset temporal bit

L2

ORL Up by
20%

20%
faster

Update LRU
counters,

temporal bits
and locality

table

Update LRU
counters,

temporal bits and
locality table

N log2 N + N bits per
set, locality table and
associated circuitry

N log2 N + N bits
per set + locality

table
NIL L2

NTS Up by
53%

5KB NTS
cache is
12.6%

faster than
8KB DM

cache

Update non
temporal data
detection Unit

and LRU
counters in FA /

NT bit DM.

Update LRU
counters and
temporal bits

N bits for NT in DM +
non temporal data

detection unit + N log2
N bits for FA and

associated circuitry for
all these.

N bits for NT in
DM + non

temporal data
detection unit + N
log2 N bits for FA

NIL L1 DC

SOFTW
ARE

ASSIST
ED

LRU

Up by
36%

36%
faster

(Improve
ment in
cycles is
14.37%)

Update LRU
counters, kill bit

and keep bit

Update LRU
counters, kill bit

and keep bit

N log2 N + 2N bits per
set and associated
circuitry for Kill,
Conditional Kill,

flexible Keep and fixed
Keep

N log2 N + 2N bits
per set

Kill, Conditional
Kill, flexible

Keep and fixed
Keep instructions

L1 DC &
IC

EMLR
U

Up by
21%

16%
faster

Update LRU
counters and
temporal bits

Update LRU
counters and
temporal bits

N log2 N + N bits per
set and its associated

circuitry

N log2 N + N bits
per set

Additional cache
hint instructions
to transfer nt hint

L1 DC &
IC / L2

ANNEXURE A – CACHE REPLACEMENT ALGORITHMS

230

LLRU Up by
30%

Best case
30%
faster

Update LRU
counters

Update LRU
counters and

shared bit

N log2 N + N bits per
set and associated

circuitry

N log2 N + N bits
per set

Additional
instruction to set
and clear shared

bit

L1 DC

SCLRU Up by
24%

Best case
24%
faster

Update LRU
counters, AI tags
and some state

bits

Update LRU
counters, AI
tags, HLE,

HMRU, SD,
LRUV and MHT

bits

[N*(16 bit AI + 1 bit
HLE+ 1 bit HMRU)] +
[28 bit SD + 16 bit AI +

1 bit LRUV] and
associated circuitry

[N*(16 bit AI + 1
bit HLE+ 1 bit

HMRU)] + [28 bit
SD + 16 bit AI + 1

bit LRUV]

NIL L2

LRU-
SEQ

Varies
from

-0.4% to
+0.05%

0.36%
Update LRU
counters and

Pway

Update LRU
counters, Pway

and Pline

Reduction of energy by
23% w.r.t. LRU

N log2 N + 2 log2
N bits per set NIL L1 DC &

IC

SFLRU

Up to
6.3%
(DC)
Up to
9.3%
(IC)

6.3%
(DC) and
9.3% (IC)

faster

Update LRU &
LFU registers

Update LRU &
LFU registers

N log2 N + N log2 X
bits per set and
associated logic

N log2 N + N log2
X bits per set NIL L1 DC &

IC

IGDR

Up to
46.1%
(19.8%
avg), 16
cycles
cache
miss
time

48.9%
(12.9%

avg) faster

Stores IRG of
the cache block
and updates the

block
information

Replacement
occurs in main

directory (and in
ghost directory if

block does not
exist), and

update all the
counters (CL,

LA, RC and SC)

Main directory, ghost
directory, all the
counters and the

associated circuitry

42.5KB for 512KB
cache NIL L2

DTTM Data Transfer Time from Main Memory, N Number of Ways, X Maximum count value,

K Number of blocks in Main Memory / Number of sets in Cache, CL Current Memory Block Class

LA Virtual Time of the Last Reference, RC Reference Count, SC Number of Consecutive References

DC Data Cache, IC Instruction Cache, DC&IC Applicable to Data and Instruction Cache

 ANNEXURE B – RTLINUX IMPLEMENTATIONS

231

Annexure B – IMPLEMENTATION OF SCHEDULING ALGORITHMS IN

RTLINUX

This section explains in detail about the modifications done in RTLinux in order to

modularize the scheduler and implement various priority based real-time scheduling

algorithms like EDF, RM, EDFRCS and RMRCS.

B.1. MODULARIZING THE SCHEDULER

The RTLinux scheduler implements both the dispatching and scheduling algorithms in

the same function which makes the modifications hard. In order to implement and test

various scheduling algorithms effectively under the same framework, the scheduler needs

to be modularized. In this work, modularization of the scheduler is done by abstracting

away the scheduling algorithm from the dispatching function written in rtl_schedule().

The default rtl_schedule() function consists of following steps:

1. Cycle through all tasks and add pending signal bits to the tasks.

2. Find the new task to be scheduled.

3. Find a preemptor for the new task.

4. If scheduler is running in one-shot mode, set the timer.

5. Dispatch the new task (and handle its signals as well).

We implemented the scheduler as two functions - find_new_task() and find_preemptor()

in a file named rtlinux/schedulers/rtl_sched_fixp.c. This abstraction provides the

flexibility of implementing any new scheduling algorithms without affecting dispatcher.

For the EDF implementation, an additional field named deadline representing deadline of

the task is added in rtl_thread_struct data structure. For the RCS algorithms, the fields

remaining_time and execution_time are added in rtl_thread_struct data structure. With

the addition of remaining_time, the scheduler has the additional responsibility of

updating it. This is done by adding a field came_to_cpu_time in rtl_thread_struct data

structure. When the rtl_schedule()function is about to return, it updates the

came_to_cpu_time of the thread going to be scheduled.

 ANNEXURE B – RTLINUX IMPLEMENTATIONS

232

B.2. IMPLEMENTATION OF PRIORITY-BASED ALGORITHMS IN RTLINUX

Two priority based schedulers namely EDF and RM were implemented during the course

of this work. The default RTLinux scheduler is a fixed priority scheduler, in which the

scheduling decision is based on sched_param.sched_priority.

In priority based schedulers, deadline field of the rtl_thread_struct is modified by

rtl_schedule() function. Whenever a new job arrives in the system (detected by now >=

t resume_time), the rtl_schedule() function sets the deadline to resume_time + period.

This function also checks whether the current time (now) is greater than the deadline. For

all the tasks whose current time is greater than deadline, the function checks for existence

of any task with non-zero remaining_time. A Non-zero remaining_time when the current

time is greater than deadline concludes that the task missed its deadline and requires

debugging of scheduling logic.

B.2.1. Implementation of EDF in RTLinux

EDF scheduler selects the tasks based on deadlines i.e. lower the deadline higher the

priority. The file rtl_sched_edf.c implements functions find_preemptor() (Figure B.1) and

find_new_task() (Figure B.2). In the case of EDF, the find_new_task() function takes

decisions based on deadlines. If no real time thread is found in the system, then it

schedules the Linux thread or any other aperiodic task (based on priority). The source

files rtl_sched_edf.c and rtl_sched.c are compiled to create rtl_sched_edf.o.

B.2.2. Implementation of RM in RTLinux

Rate monotonic scheduler schedules the tasks based on periods i.e. lower the period

higher the priority. Figures B.1 and B.2 show the functions find_preemptor() and

find_new_task() which are used for finding the smallest period real-time task if there

exist any. If no such task is found, it schedules the Linux thread or any other aperiodic

task (based on priority). The source files rtl_sched_rm.c and rtl_sched.c are compiled to

create rtl_sched_rm.o.

 ANNEXURE B – RTLINUX IMPLEMENTATIONS

233

Fig. B.1: find_preemptor() function for EDF and RM Schedulers

 ANNEXURE B – RTLINUX IMPLEMENTATIONS

234

Fig. B.2: find_new_task() function for EDF and RM Schedulers

 ANNEXURE B – RTLINUX IMPLEMENTATIONS

235

B.3. IMPLEMENTATION OF ENERGY EFFICIENCY PRIORITY-BASED REAL-TIME
SCHEDULERS

As discussed in section 6.5, the RCSS algorithm is used to reduce the number of

preemptions in a schedule. For the RCSS implementation, we added remaining_time and

execution_time fields to the rtl_thread_struct data structure.

The RCS algorithm discussed in section 6.5 is coded as a separate function in rtl_sched.c

file, and is called by rtl_schedule() function. This function finds the maximum possible

extension time up to which currently running task can continue its execution without any

deadline miss. If the possible extension time is greater than zero then set the future

preempt_time of the currently running task accordingly and allow it to continue. The

rtl_sched.c is renamed to rtl_sched_rcs.c.

B.3.1. Implementation of EDFRCS in RTLinux

The implementation of EDFRCS is almost similar to EDF. The only difference is the

addition of find_permissible_extension_time() function (Figure B.3) in rtl_sched.c. The

source file of the new scheduler is named as rtl_sched_rcs.c. All the common

implementations (with EDF) are accessed from rtl_sched_edf.c. The source files

rtl_sched_edf.c and rtl_sched_rcs.c are compiled to create rtl_sched_edf_rcs.o.

B.3.2. Implementation of RMRCS in RTLinux

The implementation of RMRCS is almost similar to RM. Like in EDFRCS, the only

difference is the addition of find_permissible_extension_time() function (Figure B.3) in

rtl_sched.c. The source file of the new scheduler is named as rtl_sched_rcs.c. All the

common implementations (with RM) are accessed from rtl_sched_rm.c. The source files

rtl_sched_rm.c and rtl_sched_rcs.c are compiled to create rtl_sched_rm_rcs.o.

Figure B.4 shows the skeleton of modified rtl_schedule() with call to

find_permissible_time(), i.e., reduced context switch algorithm included. In addition to

all these, a new function call pthread_set_worst_exec_time() is added to the system.

Through this function call a module can set worst case execution times.

 ANNEXURE B – RTLINUX IMPLEMENTATIONS

236

Fig. B.3: find_possible_extension_time()

 ANNEXURE B – RTLINUX IMPLEMENTATIONS

237

Fig. B.4: rtl_schedule()

 ANNEXURE B – RTLINUX IMPLEMENTATIONS

238

B.4. DYNAMIC LOADING OF SCHEDULER

We implemented four dynamic priority scheduling algorithms, namely EDF, EDFRCS,

RM, and RMRCS as modules in RTLinux. One of the major issues in testing these

algorithms is the overhead of compiling the kernel again and again in order to insert the

appropriate scheduling algorithm. The required scheduling module has to be inserted into

the kernel while loading RTLinux. The simplest way to resolve this issue is to compile all

the scheduler implementations in advance and choose the required scheduler at the time

of RTLinux startup. The selection of a scheduler can be achieved with the help of a

configuration file.

RTLinux boots up when user executes rtlinux start in the command prompt, which fires a

shell script named rtlinux. This shell script scans the /usr/rtlinux-3.2/modules directory

and acquires the module list and loads them. User modules can be loaded later

(manually). At startup, the shell script reads the configuration file provided by the user to

insert the appropriate scheduler module into the kernel.

B.5. VERIFICATION OF SCHEDULING ALGORITHM IMPLEMENTATION

The kernel module creates a periodic thread which executes an infinite loop i.e., it keeps

on iterating until the kernel module is unloaded. The C code of the task in RTLinux is

given below. The kernel module serves as the task and one iteration of the while loop

simulates one job of the periodic task.

while (1) {

 for(i=0;i<1000000;i++)

clock_gethrtime(CLOCK_REALTIME);

 jobno++;

 pthread_wait_np ();

}

If the period of the real-time task is very small, then the real-time task will occupy the

CPU for almost all the time which results in starvation of general-Linux task. The priority

scheduling algorithms like EDF and RM can be verified with the help of the above

mentioned C program along with the addition of deadline field in rtl_thread_struct data

 ANNEXURE B – RTLINUX IMPLEMENTATIONS

239

structure. The verification of EDFRCS and RMRCS can be carried out with the help of C

program along with the addition of deadline, remaining_time, execution_time and

came_to_CPU fields in rtl_thread_struct data structure. The remaining execution time of

the thread is managed with the help of came_to_CPU field. The worst case execution

time of the thread has to be pre-declared with pthread_set_worst_case_exec_time()

function before making the thread into a periodic thread.

B.5.1. Verification of Implementation
Table B.1 shows the task set used for experimentally evaluating the RTLinux scheduler

with EDF, EDFRCS, RM and RMRCS as scheduling algorithms. The task set in Table

B.1 has 3 periodic tasks. This experimentation uses three modules (one per task) T1, T2

and T3. These tasks were designed with the assumption that deadline of the task is

equivalent to its period. The utilization of the tasks is 12.5%, 3.33% and 60% for T1, T2

and T3 respectively. In literature and in previous discussions we assumed that all tasks in

the task set are inphase and running the experimentation till hyper-period will guarantee a

valid schedule. For the RTLinux scheduler evaluation these assumptions does not hold

true as all tasks cannot be released at the same time because of the uniprocessor

constraint. Thus in this experimentation, we took the schedule of the first 40 seconds

(hyper-period = 30 seconds) for analysis.

Table B.1: Test case with three tasks

For the given task set (Table B.1) with 75.83% utilization, EDF and RM produced valid

schedules with 10 preemptions where as EDFRCS and RMRCS produced valid schedules

with 3 preemptions. This shows the efficiency of RCS algorithms in reducing

preemptions.

Task Arrival
time (sec) Period (sec) Worst case

Execution time (sec) Deadline (sec)

T1 0 2 0.25 2

T2 0 3 0.1 3

T2 0 5 3 5

 240

REFERENCES

[Acquaviva 2003] A. Acquaviva, L. Benini and B. Ricco, "Energy Characterization of

Embedded Real-time Operating Systems", in Proceedings of the Workshop on

Compilers and Operating Systems for Low Power, pp. 53 – 73, December 2003.

[Agarwal 1988] A. Agarwal, J. Hennesy and M. Horowits, "Cache Performance of

Operating Systems and Multiprogramming", ACM Transactions on Computer Systems,

vol. 6, issue 4, pp. 393 – 431, 1988.

[Agarwal 1993] A. Agarwal and S. D. Pudar, “Column Associative Caches: A Technique

for Reducing the Miss Rate of Direct mapped Caches”, in Proceedings of 35th Annual

International Symposium on Computer Architecture, pp. 179 – 190, May 1993.

[Aguilar 2004] J. Aguilar and E. L. Leiss, “An Adaptive Coherence – Replacement

Protocol for Web Proxy Cache Systems”, Communication and Systems, vol. 8, issue 1,

pp. 1 – 14, 2004.

[Al-Zoubi 2004] H. Al-Zoubi, A. Milenkovic and M. Milenkovic, “Performance

Evaluation of Cache Replacement Policies for the SPEC CPU2000 Benchmark Suite”, in

Proceedings of the 42nd Annual Southeast regional conference, pp. 267 – 272, April 2004.

[Albonesi 1999] D. H. Albonesi, "Selective Cache Ways: On-demand Cache Resource

Allocation", in Proceedings of the 32nd Annual ACM/IEEE International Symposium on

Microarchitecture, pp. 248 – 259, November 1999.

[Alghazo 2004] J. Alghazo, A. Akaaboune and N. Botros, “SF-LRU Cache Replacement

Algorithm”, In Proceedings of the Records of the 2004 International Workshop on

Memory Technology, Design and Testing, pp. 19 – 24, August 2004.

[Aly 2003] R. E. Aly, B. R. Nallamilli and M. A. Bayoumi, “Variable-way Set

Associative Cache Design for Embedded System Applications”, in Proceedings of the

46th IEEE International Midwest Symposium on Circuits and Systems, pp. 1435 – 1438,

December 2003.

 241

[Aydin 2004] H. Aydin, D. Mosse, P. Mejı´a-Alvarez, “Power-Aware Scheduling for

Periodic Real-Time Tasks”, IEEE Transactions on Computers, vol. 53, issue 5, pp. 584 –

600, 2004.

[Bajwa 1997] R. S. Bajwa, M. Hiraki, H. Kojima, D. J. Gorny, K. Nitta, A. Shridhar, K.

Seki and K. Sasaki, “Instruction Buffering to Reduce Power in Processors for Signal

Processing”, IEEE Transactions on Very Large Scale Integrated System, vol. 5, issue 4,

pp. 417–424, 1997.

[Bannon 1995] P. Bannon and J. Keller, “Internal Architecture of Alpha 21164

microprocessor”, in Proceedings of the 40th IEEE Computer Society International

Conference, pp. 79 – 87, March 1995.

[Basumallick 1994] S. Basumallick and K. Nilsen, “Cache Issues in Real-Time Systems”,

in First ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Real-Time

Systems, June 1994.

[Batson 2001] B. Batson and T. N. Vijaykumar, “Reactive Associative Caches”, in

Proceedings of the 2001 International Conference on Parallel Architectures and

Compilation Techniques, pp. 49 – 60, September 2001.

[Bechade 1994] R. Bechade, R. Flaker, B. Kauffmann, S. Kenyon, C. London, S. Mahin,

K. Nguyan, D. Pham, A. Roberts, S. Ventrone and T. Vonreyn, “A 32b 66 MHz 1.8 W

Microprocessor”, in Proceedings of the International Solid-State Circuits Conference, pp.

208 –209, February 1994.

[Bellas 1999] N. Bellas, I. Hajj and C. Polychronopoulos, “Using Dynamic Cache

Management Techniques to Reduce Energy in a High-Performance Processor”, in

Proceedings of the 1999 international Symposium on Low Power Electronics and Design,

pp. 64 – 69, August 1999.

[Benini 2000] L. Benini and G. D. Micheli, “System-Level Power Optimization:

Techniques and Tools”, ACM Transactions on Design Automation of Electronic

Systems, vol. 5, issue 2, pp. 115–192, April 2000.

 242

[Benini 2003] L. Benini, A. Macii and M. Poncino, “Energy-Aware Design of Embedded

Memories: A Survey of Technologies, Architectures, and Optimization Techniques”,

ACM Transactions on Embedded Computing Systems, vol. 2, issue 1, pp. 5–32, February

2003.

[Bunda 1994] J. Bunda, W.C. Athas and D. Fussell, “Evaluating Power Implication of

CMOS Microprocessor Design Decisions”, in Proceedings of the 1994 International

Workshop on Low Power Design, pp. 147 – 152, April 1994.

[Burger 1997] D. Burger and T. M. Austin, “The Simplescalar Tool Set, Version 2.0.”,

Technical report, University of Wisconsin, Madison, Computer Science Department,

1997.

[Buttazzo 2005] G. C. Buttazzo, “Rate Monotonic vs. EDF: judgement day”, Real Time

Systems, Kluwer Academic Publishers, vol. 29, issue 1, pp. 5 – 26, January 2005.

[Calder 1996] B. Calder, D. Grunwald and J. Emer, “Predictive Sequential Associative

Cache”, in Proceedings of the 2nd International Symposium on High-Performance

Computer Architecture, pp. 244–253, February 1996.

[Cervin 2003] A. Cervin, “Integrated Control and Real-time Scheduling”, Doctoral

Dissertation, ISRN LUTFD2/TFRT-1065- SE, Department of Automatic Control, Lund,

2003.

[Chandrakasan 1995] A. P. Chandrakasan and R. W. Brodersen, “Low Power Digital

CMOS Design”, Kluwer Academic Publishers, USA, 1995.

[Chang 1987] J. H. Chang, H. Chao and K. So, “Cache Design of a Sub Micron CMOS

System/370”, in Proceedings of the 14th Annual International Symposium on Computer

Architecture, pp. 208 – 213, June 1987.

[Chang 2004] Y. Chang, C-L. Yang and F. Lai, “Value-Conscious Cache: Simple

Technique for Reducing Cache Access Power”, in Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition, pp. 16 – 21, February 2004.

 243

[Chen 1995] T. F. Chen and J. L. Baer, “Effective Hardware-Based Data Prefetching for

High Performance Processors”, IEEE Transactions on Computers, vol. 44, issue 5, pp.

609 – 623, May 1995.

[Collerell 2002a] S. Collerell and F. Vahid, “Tuning of Loop Cache Architectures to

Programs in Embedded System Design”, in Proceedings of the 15th International

symposium on System Synthesis, pp. 8 – 13, October 2002.

[Collerell 2002b] S. Collerell and F. Vahid, “Synthesis of Customized Loop Caches for

Core-Based Embedded System”, in Proceedings of the 2002 IEEE/ACM international

Conference on Computer-aided design, pp. 655 – 662, November 2002.

[Cyrix 1998] "Cyrix Cyrix 6X86MX Processor.", 1998.

[Cyrix 1999] "Cyrix. Cyrix MII Databook.", 1999.

[Dertouzos 1974] M. L. Dertouzos, “Control Robotics: the Procedural Control of

Physical Processes,” Information Processing 74, North-Holland Publishing Company, pp.

807 – 813, 1974.

[Deville 1992] Y. Deville and J. Gobert, “A Class of Replacement Policies for Medium

and High-Associativity Structures”, ACM SIGARCH Computer Architecture News, vol.

20, issue 1, pp. 55-64, March 1992.

[Dick 2000] R. P. Dick, G. Lakshminarayana, A. Raghunathan and N. K. Jha, “Power

Analysis of Embedded Operating Systems”, in Proceedings of the 37th Annual ACM/

IEEE Design Automation Conference, pp. 312 – 315, June 2000.

[Dittman 2004] B. Dittman, “Strategied for Minimizing Context Switch Times in Large

Register set Environment with Primary Focus on the PowerPC Architecture with Floating

Point and AltiVec Extensions”, Quadros Systems. http://www.rtxc.com/pdf/article_esd-

conference_05-08-2004.pdf, August 2004.

 244

[Dropsho 2002] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H. Albonesi, S.

Dwarkadas, G. Semeraro, G. Magkis and M. L. Scott, “Integrating Adaptive On-chip

Storage Structures for Reduced Dynamic Power”, in Proceedings of the 11th International

Conference on Parallel Architectures and Compilation Techniques, pp. 141 – 152, 2002.

[Dudani 2002] A. Dudani, F. Mueller and Y. Zhu, “Energy Conserving Feedback EDF

Scheduling for Embedded Systems with Real-Time Constraints”, in Proceedings of the

Joint Conference on Languages, Compilers and Tools for Embedded Systems: Software

and Compilers for Embedded Systems, vol. 37, issue 7, pp. 213 – 222, June 2002.

[Dulong 1998] C. Dulong, “The IA-64 Architecture at Work”, IEEE Transactions on

Computers, vol. 31, issue 7, pp. 24 – 32, July 1998.

[Efthymiou 2002] A. Efthymiou and J. D. Garside, “An Adaptive Serial-parallel CAM

Architecture for Low Power Cache Blocks”, in Proceedings of the International

Symposium on Low Power Electronics and Design, pp. 136 – 141, August 2002.

[Gonzalez 1996] R. Gonzalez and M. Horowitz, “Energy Dissipation in General Purpose

Microprocessors”. IEEE Journal of Solid-State Circuits, vol. 31, issue 9, pp. 1277–1284,

1996.

[Gooch 1998] Richard Gooch, “Linux Scheduler Benchmark Results”,

http://www.atnf.csiro.au/people/rgooch/benchmarks/linux-scheduler.html , September,

1998.

[Gopalakrishnan 1996] R. Gopalakrishnan and G. M. Parulkar, “Bringing Real-time

Scheduling Theory and Practice Closer for Multimedia Computing”, ACMSIGMETRICS

Performance Evaluation Review, vol. 24, issue 1, pp. 1-12, 1996.

[Gruian 2001] F. Gruian, “Hard Real-time Scheduling for Low Energy using Stochastic

Data and DVS Processors”, in Proceedings of the International Symposium on Low-

Power Electronics and Design, pp. 46 – 51, August 2001.

 245

[Gupta 1990] R. Gupta and C. Chi, “Improving Instruction Cache Behavior by Reducing

Cache Pollution”, in Proceedings of the 1999 ACM/IEEE Conference on

Supercomputing, pp. 82 – 91, November 1990.

[Hallnor 2004] E. G. Hallnor and S. K. Reinhardt, “A Compressed Memory Hierarchy

using an Indirect Index Cache” in Proceedings of the 3rd workshop on Memory

Performance issues: in Conjunction with the 31st International Symposium on Computer

Architecture, pp. 9 - 15 , 2004.

[Hasegawa 1995] A. Hasegawa, I. Kawasaki, K. Yamada, S. Yoshioka, S. Kawasaki and

P. Biswas, “Sh3: High Code Density, Low Power”, IEEE Micro, vol. 15, issue 6, pp. 11 –

19, 1995.

[Hennessy 2007] J. L. Hennessy and D. A. Patterson, “Computer Architecture: A

Quantitative Approach”, 4th Edition, Morgan-Kaufmann Publishing Co., 2007.

[Hildebrandt 1999] J. Hildebrandt, F. Golatowski and D. Timmermann, “Scheduling

Coprocessor for Enhanced Least-Laxity-First Scheduling in Hard Real-Time Systems”, in

Proceedings of 11th Euromicro Conference on Real-Time Systems, pp. 208 – 215, June

1999.

[Hong 1997] I. Hong and M. M. Potkonjak, “Power Optimization Using Divide-and-

Conquer Techniques for Minimization of the Number of Operations”, in Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design, pp. 108-113,

November 1997.

[Huang 2001] M. Huang, J. Renau, S. Yoo and J. Terrellas, “L1 Data Cache

Decomposition for Energy Efficiency”, in Proceedings of the International Symposium

on Low Power Electronics and Design, pp. 10 – 15, August 2001.

[Inoue 1999] K. Inoue, T. Ishihara and K. Murakami, “Way-predicting Set-Associative

Cache for High Performance and Low Energy Consumption”, in Proceedings of the 1999

International Symposium on Low Power Electronics and Design, pp. 273–275, August

1999.

 246

[Inoue 2001] K. Inoue, “High-Performance Low-Power Cache Memory Architectures”,

Ph.D. Thesis, Kyushu University, January 2001.

[Inoue 2002] K. Inoue, V.G. Moshnyaga and K. Murakami, “A History-Based I-Cache

for Low-Energy Multimedia Applications” in Proceedings of the 2002 International

Symposium on Low Power Electronics and Design, pp. 148 – 153, August, 2002.

[Ishihara 2005] T. Ishihara and F. Fallah, “A Non-Uniform Cache Architecture for Low

Power System Design”, in Proceedings of the 2002 International Symposium on Low

Power Electronics and Design, pp. 363 – 368, August 2005.

[Jain 2001] P. Jain, S. Devadas, D. Engels and L. Rudolph, “Software-Assisted Cache

Replacement Mechanisms for Embedded Systems”, in Proceedings of the International

Conference on Computer-Aided Design, pp. 119-126, November 2001.

[Jeong 1999] J. Jeong and M. Duhois, “Optimal Replacements in Caches with Two Miss

Costs”, in Proceedings of the 11th Annual ACM symposium on Parallel Algorithms and

Architectures, pp. 155 – 164, June 1999.

[Jianli 2005] Z. Jianli and C. Chaitali, “System-Level Energy-Efficient Dynamic Task

Scheduling”, in Proceedings of the 42nd Annual Conference on Design Automation, pp.

628 – 631, June 2005.

[Jouppi 1990] N. P. Jouppi, “Improving Direct-mapped Cache Performance by the

Addition of a Small Fully-associative Cache and Prefetch Buffers”, in Proceedings of the

17th Annual International Symposium on Computer Architecture, vol. 18, issue 3, pp. 364

– 373, May 1990.

[Ju 2007] L. Ju, S. Chakraborty and A. Roychoudhury, “Accounting for Cache-Related

Preemption Delay in Dynamic Priority Schedulability Analysis”, in Proceedings of the

Conference on Design, Automation and Test in Europe, pp. 1623-1628, April 2007.

[Juan 1996] T. Juan, T. Lang and J. J. Navarro, “The Difference-bit Cache”, ACM

SIGARCH Computer Architecture News, vol. 24, issue 2, pp. 11 – 120, 1996.

 247

[Kalla 2003] P. Kalla, X. S. Hu and J. Henkel, “LRU-SEQ: A Novel Replacement Policy

for Transition Energy Reduction in Instruction Caches”, in Proceedings of the 2003

IEEE/ACM International Conference on Computer-aided design, pp. 518 – 522,

November 2003.

[Kampe 2004] Martin Kampe, Per Stenstrom and Michel Dubois, “Self-Correcting LRU

Replacement Policies”, in Proceedings of the 1st Conference on Computing Frontiers, pp.

181 – 191, April 2004.

[Kandemir 2003] M. Kandemir, G. Chen, W. Zhang and I. Kolcu, “Data Space Oriented

Scheduling in Embedded Systems”, in Proceedings of the Conference on Design,

Automation and Test in Europe – Volume 1, pp. 10416 - 10421, March 2003.

[Kessler 1998] R. Kessler, "The Alpha 21264 Microprocessor: Out-Of-Order Execution

at 600 Mhz", http://www.hotchips.org/archives/hc10/2_Mon/HC10.S1/HC10.1.1.pdf, Hot

Chips, 1998.

[Kessler 1999] R. E. Kessler, E. J. McLellan and D.A. Webb, “The Alpha 21264

microprocessor architecture”, Technical report, http://www.compaq.com/AlphaServer/

download/ev6chip.pdf, November 1999.

[Kin 1997] J. Kin, M. Gupta and W. H. Mangione-Smith, “The Filter Cache: An Energy

Efficient Memory Structure”, in Proceedings of 30th Annual International Symposium on

Microarchitecture, pp. 184 – 193, December 1997.

[Kirk 1989] D.B. Kirk, “SMART (Strategic Memory Allocation for Real-Time) Cache

Design”, in Proceedings of the 10th Real-Time Systems Symposium, pp. 229-237,

December 1989.

[Krishna 2000] C. M. Krishna and Y. H. Lee, “Voltage-clock-scaling techniques for low

power in hard real-time systems”, in Proceedings of the IEEE Real-Time Technology and

Applications Symposium, pp. 156-165, May 2000.

 248

[Lai 2001] A. Lai, C. Fide and B. Falsafi, “Dead-block prediction & dead-block

correlating prefetchers”, ACM SIGARCH Computer Architecture News, vol. 29, issue 2,

pp. 144 – 154, 2001.

[Leback 2000] A. Lebeck, X. Fan, H. Zeng and C. Ellis, “Power Aware Page Allocation”,

ACM SIGOPS Operating Systems Review, vol. 34, issue 5, pp. 105–116, 2000.

[Lee 1998] C-G. Lee, J. Hahn, Y-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee

and C. S. Kim, “Analysis of cache-related preemption delay in fixed-priority preemptive

scheduling”, in Proceedings of IEEE Transactions on Computers, pp. 700–713, June

1998.

[Lee 1999] S. Lee, S. L. Min, C. S. Kim, C. G. Lee and M. Lee, “Cache-Conscious

Limited Preemptive Scheduling”, Real-Time Systems, vol. 17, issue 2-3, pp. 257–282,

1999.

[Lee 2000] C. Lee, J. K. Lee and T. Hwang, “Compiler Optimization on Instruction

Scheduling for Low-Power”, in Proceedings of the 13th International Symposium on

System Synthesis, pp. 55-60, September 2000.

[Lee 2001a] D. Lee, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho and C. S. Kim,

“LRFU: A Spectrum of Policies that Subsumes the Least Recently Used and Least

Frequently Used Policies”, IEEE Transactions on Computers, vol. 50, issue 12, pp. 1352-

1360, December 2001.

[Lee 2001b] C-G Lee, Y-M Seo, S. L. Min, S. Hong and C. S. Kim, “Bounding Cache-

Related Preemption Delay for Real-Time Systems”, IEEE Transactions on Software

Engineering, vol. 27, issue 9, pp. 805 – 826, September 2001.

[Liedtke 1997] J. Liedtke, H. HaÈrtig and M. Hohmuth, “OS-Controlled Cache

Predictability for Real-Time Systems”, in Proceedings of 3rd Real-Time Technology and

Applications Symposium, pp. 213 – 227, June 1997.

 249

[Liu 1973] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming

in Hard Real- Time Environment”, Journal of ACM (JACM), vol. 20, issue 1, pp. 46 –

61, January 1973.

[Liu 2000] J. W. S. Liu, “Real Time Systems”, ISBN 9780130996510, Prentice Hall,

March 2000.

[Luculli 1997] G. Luculli and M. D. Natale, “A Cache-Aware Scheduling Algorithm for

Embedded Systems”, in Proceedings of the 18th IEEE Real- Time Systems Symposium,

pp. 199 – 209, December 1997.

[Lyon 2002] T. Lyon, E. Delano, C. McNairy and D. Mulla, “Data Cache Design

Considerations for the Itanium2 Processor”, in Proceedings of the IEEE International

Conference on Computer Design: VLSI in Computers and Processors, pp. 356 – 363,

September 2002.

[Ma 2001] A. Ma, M. Zhang and K. Asanovi´c, “Way Memoization to Reduce Fetch

Energy in Instruction Caches”, in 28th ISCA Workshop on Complexity Effective Design,

Gothenburg, June 2001.

[Maki 1999] N. Maki, K. Hoson and A. Ishida, “A Data-Replace-Controlled Cache

Memory System and its Performance Evaluations”, in Proceedings of the IEEE Region

10 Conference, pp. 471 – 474, September 1999.

[Mamidipaka 2004] M. Mamidipaka and N. Dutt, “eCACTI: An Enhanced Power

Estimation Model for On-chip Caches”, Technical report, Center for Embedded

Computer Systems, Donald Dren School of Information and Computer Science,

University of California, Irvine, http://www.cecs.uci.edu/technical_report/TR04-28.pdf,

September 2004.

[Marti 2002] P. Marti, G. Fohler, K. Ramamritham and J. M. Fuertes, “Control

Performance of Flexible Timing Constraints for Quality-of-Control Scheduling”, in

Proceedings of the 23rd IEEE Real-Time System Symposium, pp. 91 – 102, December

2002.

 250

[Mataix 1996] J.V. B. Mataix, J. J. S. Martin, R. Ors, P. Gil and A. Wellings, “Adding

Instruction Cache Effect to Schedulability Analysis of Preemptive Real-Time Systems”,

in Proceedings of the Second Real-Time Technology and Applications Symposium, pp.

204 – 213, June 1996.

[May 1994] C. May, E. Silha, R. Simpson and H. T. Warren, “The PowerPC

Architecture: A Specification for a New Family of RISC Processors”, Morgan Kaufmann

Publishers, Inc., 1994.

[Min 2004] R. Min, Z. Xu, Y. Hu and W. Jone, “Partial Tag Comparison: A New

Technology for Power-Efficient Set-Associative Cache Designs”, in Proceedings of the

17th International Conference on VLSI Design, page 183 – 188, August 2004.

[Mok 1983] A. K. Mok, “Fundamental Design Problems of Distributed Systems for the

Hard-Real-Time Environment”, Ph.D.Thesis, Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts,

May 1983.

[Montanaro 1997] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper, D. W.

Dobberpuhl, P. M. Donahue, J. Eno, G. W. Hoeppner, D. Kruckemyer, T. H. Lee, P.C.

M. Lin, L. Madden, D. Murray, M. H. Pearce, S. Santhanam, K. J. Snyder, R. Stephany

and S. C. Thierauf, “A 160MHz, 32-b, 0.5-W CMOS RISC microprocessor”, Digital

Technical Journal, vol.9, issue 1, pp 49 - 62, 1997.

[Mudge 2000] T. Mudge, “Power: A First Class Design Constraint for Future

Architectures”, in Proceedings of the International Conference on High Performance

Computing, pp. 215 – 224, December 2000.

[Muller 1995] F. Muller, “Compiler Support for Software-based Cache Partitioning”, in

Proceedings of the Second ACM SIGPLAN Workshop Languages, Compilers, and Tools

for Real-Time Systems, pp. 125 – 133, June 1995.

 251

[Negi 2003] H. Negi, T. Mitra and A. Roychoudhury, “Accurate Estimation of Cache-

related Preemption Delay", in Proceedings of the 1st IEEE / ACM / IFIP International

Conference on Hardware/Software Codesign and System Synthesis, pp. 201-206, October

2003.

[O’Neil 1999] E. J. O’Neil, P. E. O’Neil and G. Weikum, “An Optimality Proof of the

LRU-K Page Replacement Algorithm”, Journal of ACM, vol. 46, issue 1, pp. 92-112,

1999.

[Oh 1998] S. H. Oh and S. M. Yang, “A Modified Least-Laxity-First Scheduling

Algorithm for Real-Time Tasks”, in Proceedings of the 5th International Conference on

Real-Time Computing Systems and Applications, pp. 31 – 36, October 1998.

[Panda 2001] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C.

Kulkarni, A. Vandercappelle and P. G. Kjeldsberg, “Data and Memory Optimization

Techniques for Embedded Systems”, ACM Transactions on Design Automation of

Electronic Systems, vol. 6, issue 2, pp. 149–206, April 2001.

[Panwar 1995] R. Panwar, and D. Rennels, “Reducing the frequency of Tag Compares

for Low Power I-Cache”, in Proceedings of the 1995 International Symposium on Low

Power Electronics and Design, pp. 57 – 63, April 1995.

[Park 2007] G-H. Park, K-W. Lee, T-D. Han and S-D. Kim, “Cooperative Cache System:

A Low Power Cache System for Embedded Processors”, IEICE Transactions on

Electronics, vol. E90–C, issue 4, pp. 708 – 717, April 2007.

[Patel 2006] K. Patel, L. Benini, E. Macii and M. Poncino, “Reducing Conflict Misses by

Application-Specific Reconfigurable Indexing”, IEEE Transactions on Computer – Aided

Design of Integrated Circuits and Systems, vol. 25, issue. 12, pp. 2626 – 2637, 2006.

[Pering 1998] T. Pering, T. D. Burd and R. W. Brodersen, “The Simulation and

Evaluation of Dynamic Voltage Scaling Algorithms”, in Proceedings of the 1998

International Symposium on Low Power Electronics and Design, pp. 76 – 81, August

1998.

 252

[Pillai 2001] P. Pillai and K. G. Shin, “Real-Time Dynamic Voltage Scaling for Low-

Power Embedded Operating Systems”, in Proceedings of the 18th ACM Symposium on

Operating Systems Principles, pp. 89 – 102, October 2001.

[Pouwelse 2000] J. Pouwelse, K. Langendoen and H. Sips, “Dynamic Voltage Scaling on

a Low-Power Microprocessor”, UbiCom Technical Report 2000/3, Delft University of

Technology, pp. 1 – 4, 2000.

[Powell 2001] M. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi and K. Roy,

“Reducing Set-Associative Cache Energy via Way-Prediction and Selective Direct-

Mapping”, in Proceedings of the 34th International Symposium on Micro architecture, pp.

54 – 65, December 2001.

[Qureshi 2005] M. K. Qureshi, D. Thompson and Y. N. Patt, “The V-Way Cache:

Demand-Based Associativity via Global Replacement”, in Proceedings of the 32nd

International Symposium on Computer Architecture, pp. 544 – 555, June 2005.

[Ramaprasad 2006a] H. Ramaprasad and F. Mueller, “Bounding Preemption Delay

within Data Cache Reference Patterns for Real-Time Tasks” in Proceedings of the 12th

IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 71 – 80,

April 2006.

[Ramaprasad 2006b] H. Ramaprasad and F. Mueller, “Tightening the Bounds on Feasible

Preemption Points”, in Proceedings of the 27th IEEE International Real-Time Systems

Symposium, pp. 212-224, December 2006.

[Raveendran 2006] B. Raveendran, S. Balasubramaniam, K. D. Prasad and S.

Gurunarayanan, “Variants of Priority Scheduling Algorithms for Reduced Context

Switches in Real Time System”, in Proceedings of the International Conference on

Distributed Computing and Networking, pp. 466 – 478, December 2006.

[Rivers 1998] J. A. Rivers, E. S. Tam, G. S. Tyson, E. S. Davidson and M. Farrens,

“Utilizing Reuse Information in Data Cache Management”, in Proceedings of the 1997

ACM International Conference on Supercomputing, pp. 449–456, July 1998.

 253

[Robinson 1990] J. T. Robinson and M. V. Devarakonda, “Data Cache Management

Using Frequency-Based Replacement”, in Proceedings of the 1990 ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems, pp. 134-142, May

1990.

[Sartor 2005] J. B. Sartor, S. Venkiteswaran, K. S. McKinley and Z. Wang, “Cooperative

Caching with Keep-Me and Evict-Me”, in Proceedings of the 9th Annual Workshop on

Interaction between Compilers and Computer Architectures, pp. 46 – 57, February 2005.

[Seznec 1993] A. Seznec and F. Bodin, “Skewed-associative Caches”, in Proceedings of

the 5th International PARLE Conference on Parallel Architectures and Languages Europe,

pp. 304 – 316, June 1993.

[Smaragdakis 1999] Y. Smaragdakis, S. Kaplan and P. Wilson, “EELRU: Simple and

Effective Adaptive Page Replacement”, in Proceedings of the 1999 ACM SIGMETRICS

Joint International Conference on Measurement and Modeling of Computer Systems, pp.

122 – 133, May 1999.

[Smaragdakis 2004] Y. Smaragdakis, “General Adaptive Replacement Policies”, in

Proceedings of the 4th International Symposium on Memory Management, pp. 108 – 119,

October 2004.

[Smith 1982] A. J. Smith, “Cache memories”, Computer Survey, vol. 14, issue. 3, pp.

473-530, 1982.

[So 1988] K. So and R. N. Rechtshaffen, “Cache Operations by MRU Change”, IEEE

Transaction on Computers, vol. 37, issue 6, pp. 700-707, 1988.

[SPEC95] “SPEC95 benchmark suite”, http://www.specbench.org/

[Spjuth 2004] M. Spjuth, M. Karlsson and E. Hagersten, “Low-Power and Conflict

Tolerant Cache Design”, Technical Report 2004-024, Department of Information

Technology, Uppsala University, 2004.

 254

[Staschulat 2005a] J. Staschulat, S. Schliecker and R. Ernst, “Scheduling Analysis of

Real-Time Systems with Precise Modeling of Cache Related Preemption Delay”, in

Proceedings of the 17th Euromicro Conference on Real-Time Systems, pp. 41 – 48, July

2005.

[Staschulat 2005b] J. Staschulat and R. Ernst, “Scalable Precision Cache Analysis for

Preemptive Scheduling” in Proceedings of the 2005 ACM SIGPLAN/SIGBED

Conference on Languages, Compilers, and Tools for Embedded System, pp. 157 – 165,

June 2005.

[Stewart 1991] D. B. Stewart and P. K. Khosla, “Real-Time Scheduling of Dynamically

Reconfigurable Systems,” in Proceedings of the IEEE International Conference on

Systems Engineering, pp. 139 – 142, August 1991.

[Stilliadis 1997] D. Stiliadis and A. Varma, “Selective Victim Caching: A Method to

Improve the Performance of Direct-Mapped Caches”, IEEE Transactions on Computers,

vol. 46, issue 5, 1997.

[Su 1995] C-L. Su and A. M. Despain, “Cache Design Trade-Offs for Power and

Performance Optimization: A Case Study”, in Proceedings of the International

Symposium on Low Power and Design, pp. 63 – 68, April 1995.

[Sudarshan 2004] T S B Sudarshan, R. Abbas and S. Vijayalakshmi, “Highly Efficient

LRU Implementations for High Associativity Cache Memory”, in Proceedings of the 12th

IEEE International Conference on Advanced Computing and Communications, pp. 87-

95, December 2004.

[Sukumar 1993] R. A. Sukumar and S. G. Abraham, “Efficient Simulation of Caches

Under Optimal Replacement with Application to Miss Characterization”, in Proceedings

of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer

System, pp. 24-35, May 1993.

[SunMicrosystems 1997] SunMicrosystems (July 1997.). UltraSparc User’s Manual.

 255

[Tan 2002] T. K. Tan, A. Raghunathan and N. K. Jha, “Embedded Operating System

Energy Analysis and Macro-modeling”, in Proceedings of the IEEE International

Conference on Computer Design: VLSI in Computers and Processors, pp. 515 – 522,

May 2002.

[Tan 2004a] Y. Tan and V. Mooney, “Integrated Intra- and Inter-Task Cache Analysis for

Preemptive Multi-tasking Real-time Systems”, in Proceedings of the International

Workshop on Software and Compilers for Embedded Systems, pp. 182-199, September

2004.

[Tan 2004b] Y. Tan and V. Mooney, “Timing Analysis for Preemptive Multi-tasking

Real-Time Systems”, in Proceedings of Design, Automation and Test in Europe, pp.

1034-1039, February 2004.

[Tan 2004c] Y. Tan and V. Mooney, “Timing Analysis for Preemptive Multi-tasking

Real-time Systems with Caches”, Technical Report, GIT-CC-04-02, Georgia Institute of

Technology, February 2004.

[Theobald 1993] K. B. Theobald, H. H. J. Hum and G. R. Gao, “A Unified Framework

for Hybrid Access Cache Design and Its Applications”, ACAPS Technical Memo 65,

December 1993.

[Tomiyamay 2000] H. Tomiyamay and N. D. Dutt, “Program Path Analysis to Bound

Cache-Related Preemption Delay in Preemptive Real-Time Systems”, in Proceedings of

the 8th International Workshop on Hardware/Software Codesign, pp. 67 – 71, May 2000.

[Vahid 2005] S. Vahid, T. Z. Saman and N. Muhmoud, “A Modified Maximum Urgency

First Scheduling Algorithm for Real-Time Tasks”, Transactions on Engineering,

Computing and Technology, http://enformatika.org/data/v9/v9-4.pdf, vol. 9, issue 4, pp.

19 – 23, 2005.

[Veidenbaum 1999] A. V. Veidenbaum, W. Tang, R. Gupta, R. Nicolau and X. Ji,

“Adapting Cache Line Size to Application Behavior”, in Proceedings of the 13th

International Conference on Supercomputing, pp. 145-154, June 1999.

 256

[Wang 1999] Y. Wang and M. Saksena, “Scheduling Fixed-Priority Tasks with

Preemption Threshold”, in Proceedings of the 6th International Conference on Real-Time

Computing Systems and Applications, pp. 328 – 335, December 1999.

[Wang 2000] Y. Wang and M. Saksena, “Scalable Real-time System Design Using

Preemption Thresholds”, in Proceedings of the 21th IEEE Symposium on Real-Time

Systems, pp. 25 – 34, November 2000.

[Wang 2002] Z. Wang, K. S. McKinley, A. L. Rosenberg and C. C. Weems, “Using the

Compiler to Improve Cache Replacement Decisions”, in Proceedings of the 2002

International Conference on Parallel Architectures and Compilation Techniques, pp. 199

– 208, September 2002.

[Wang 2004] Z. Wang, “Cooperative Hardware/Software Caching for Next-Generation

Memory Systems”, Ph.D.Thesis, Department of Computer Science, University of

Massachusetts, Amherst, Massachusetts, February 2004.

[Wilton 1996] S. J. E. Wilton and N. P. Jouppi, “CACTI: An Enhanced Cache Access

and Cycle Time Model”, IEEE Journal of Solid-State Circuits, vol. 31, issue 5, pp. 677 –

688, 1996.

[Wolfe 1994] A. Wolfe, “Software-Based Cache Partitioning for Real-Time

Applications”, Journal of Computer and Software Engineering, vol. 2, issue 3, 1994.

[Wong 2000] W. A. Wong and J-L Baer, “Modified LRU Policies for Improving Second-

level Cache Behavior”, in Proceedings of the 6th International Symposium on High-

Performance Computer Architecture, pp. 49– 60, January 2000.

[Xu 2005] R. Xu, D. Mosse and R. Melhem, “Minimizing Expected Energy in Real-time

Embedded Systems”, in Proceedings of the 5th ACM International Conference on

Embedded Software, pp. 251 – 254, September 2005.

[Yang 2004] C-L Yang and C-H Lee, “HotSpot cache: joint temporal and spatial locality

exploitation for I-cache energy reduction”, in Proceedings of the 2004 International

Symposium on Low Power Electronics and Design, pp. 114 – 119, August 2004.

 257

[Yang 2005] C-L Yang, H-W Tseng, C-C Ho and J-L Wu, “Software Controlled Cache

Architecture for Energy Efficiency”, IEEE Transactions on Circuits and Systems for

Video Technology, vol. 15, issue 5, pp. 634 – 644, 2005.

[Yongioon 1999] L. Yongioon and B-K, Chung, “Pseudo 3-Way Set-Associative cache:

A Way of Reducing Miss Ratio with Fast Access Time”, in Proceedings of the IEEE

Conference on Electrical and Computer Engineering, pp. 391 – 396, May 1999.

[Zhang 1997] C. Zhang, X. Zhang and Y. Yan, “Two Fast and High- Associativity Cache

Schemes,” IEEE Micro Magazine, vol. 17, issue 5, pp. 40- 49, September 1997.

[Zhang 2003] C. Zhang, F. Vahid and W. Najjar, “A Highly-Configurable Cache

Architecture for Embedded Systems”, ACM SIGARCH Computer Architecture News,

vol. 31, issue 2, pp. 136 – 146, 2003.

[Zhang 2005] C. Zhang, F. Vahid, J. Yang and W. Najjar, “A Way-Halting Cache for

Low-Energy High-Performance Systems”, ACM Transactions on Architecture and Code

Optimization, vol. 2, issue 1, pp. 34 – 54, 2005.

[Zhang 2006] C. Zhang, “Balanced Cache: Reducing Conflict Misses of Direct-Mapped

Caches through Programmable Decoders”, ACM SIGARCH Computer Architecture

News, vol. 34, issue 2, pp. 155-166, 2006.

[Zhang 2007] C. Zhang, “Capacity Co-allocation Configurable Cache for Low Power

Embedded Systems”, in Proceedings of International Conference on Computer Design,

pp. 405 – 410, October 2007.

[Zhou 2006] X. Zhou and P. Petrov, “Low Power Cache Organization through Selective

Tag Translation for Embedded Processors with Virtual Memory Support”, in

Proceedings of the 16th ACM Great Lakes Symposium on VLSI, pp. 398 – 403, April

2006.

[Zolfaghari 2004] B. Zolfaghari, “A Dynamic Scheduling Algorithm with Minimum

Context Switches for Spacecraft Avionics Systems”, in Proceedings of the 2004 IEEE

Aerospace Conference, pp. 2618 – 2624, March 2004.

 258

LIST OF PUBLICATIONS

JOURNAL PAPERS

1. Biju Raveendran, T S B Sudarshan, S Twinkle and S Gurunarayanan, “Shared

Memory Process Aware Selective Placement Data Cache for Low Energy Embedded

Systems”, Journal of Systems Architecture, Elsevier The EURO Micro Journal

(Accepted and to appear)

2. Biju Raveendran, T S B Sudarshan and S Gurunarayanan, “Modified Way Predictive

Set-Associative Cache for Energy Efficient Embedded Systems”, GESTS International

Transactions on Computer Science and Engineering, vol. 51, issue 1, ISSN 1738-

6438, pp. 93 – 98, December 2008.

3. Biju Raveendran, Sundar Balasubramaniam and S Gurunarayanan, “Reduced

Preemptions(RP): A Preemption Reduction Heuristic for Power Aware Off-line

Scheduling”, GESTS International Transactions on Computer Science and

Engineering, vol. 51, issue 1, ISSN 1738-6438, pp. 167 – 172, December 2008.

4. Biju Raveendran, T S B Sudarshan and S Gurunarayanan, “Cache Memory Design

with Late Replacements for Embedded Systems”, International Journal of Lateral

Computing, vol. 3, issue 1, ISSN 0973-208X, pp. 39-45, August 2006.

CONFERENCE PAPERS

5. Biju Raveendran , Sundar Balasubramaniam and S. Gurunarayanan, “Evaluation of

Priority Based Real Time Scheduling Algorithms: Choices and Tradeoffs”, in

Proceedings of the 23rd Annual ACM Symposium on Applied Computing, pp. 302-

307, March 2008.

 259

6. Biju Raveendran, T S B Sudarshan, Avinash Patil, Komal Randive and S

Gurunarayanan, “Predictive Placement Scheme for Set-Associative Cache for Energy

Efficient Embedded System”, in Proceedings of International Conference on Signal

Processing, Communications and Networking, pp. 152-157, January 2008.

7. Biju Raveendran, T S B Sudarshan, Dlip Kumar, Priyanaka Tugudu and S

Gurunarayanan, “LLRU: Late LRU Replacement Strategy for Power Efficient

Embedded Cache”, in Proceedings of 15th IEEE International Conference on

Advanced Computing and Communications, pp. 339-344, December 2007.

8. Biju Raveendran, T S B Sudarshan, Avinash Patil, Komal Randive and S

Gurunarayanan, “An Energy Efficient Selective Placement Scheme for Set-Associative

Data Cache in Embedded System”, in Proceedings of ESA'07- The 2007 International

Conference on Embedded Systems and Applications, pp. 188 – 194, June 2007.

9. Biju Raveendran, J P Misra, Karan Bhatnagar and S Gurunarayanan, “EFFS:

Efficient Flash File System for Wireless Sensor Nodes”, in Proceedings of ESA'07-

The 2007 International Conference on Embedded Systems and Applications, pp. 159

– 165, June 2007.

10. Biju Raveendran, T S B Sudarshan S Gurunarayanan, “Selective Placement Data

Cache for Low Energy Embedded System”, in Proceedings of 14th IEEE International

Conference on Advanced Computing and Communications, pp. 473-476, December

2006.

11. Biju Raveendran, Sundar Balasubramaniam, K Durga Prasad and S.

Gurunarayanan, “Variants of Priority Scheduling Algorithms for Reduced Context

Switches in Real Time System”, in Proceedings of the 8th International Conference on

Distributed Computing and Networking, Lecture Notes in Computer Science, pp.

466-478, December 2006.

 260

12. Biju Raveendran , Sundar Balasubramaniam , K Durga Prasad and S.

Gurunarayanan, “A Context-Switch Reduction Heuristic for Power-Aware Off-line

Scheduling”, in Proceedings of the 11th Asia-Pacific Computer Systems Architecture

Conference, Lecture Notes in Computer Science, pp. 404-411, September 2006.

13. Biju Raveendran, T S B Sudarshan, and S Gurunarayanan, “Cache Memory Design

with Late Replacements for Embedded Systems”, in Proceedings of 2nd International

Conference on Embedded Systems, Mobile Communication and Computing, pp 76-

90, August 2006.

 261

BRIEF BIOGRAPHY OF CANDIDATE

Biju K R is a fulltime research scholar in Computer Science & Information Systems

Group in Birla Institute of Technology and Science, Pilani since January 2004. Prior to

this he worked as a Software Engineer at Cognizant Technology Solutions from 2001 to

2003. He obtained his Bachelors of Engineering (Electronics & Communication) from

Madras University (MGR Engineering College, Chennai), and Masters of Technology

(Information Technology) from IIIT – Pondicherry (Now a part of Pondicherry

Engineering College), Pondicherry in 1999 & 2001 respectively. He is a Microsoft

Research India Fellow since June 2004. His research interests are Real-Time Scheduling

algorithms, Embedded Operating Systems, Energy Efficient File Systems, Energy

Efficient Storage Systems, and Energy Efficient Architectures for Embedded Systems.

BRIEF BIOGRAPHY OF SUPERVISOR

Dr. S Gurunarayanan is Professor in Electronics and Instrumentation Group (Dean

Admissions & Faculty Division II) in Birla Institute of Technology and Science, Pilani.

He obtained Masters in Science (Physics) from Alagappa University, Karaikudi, Masters

in Engineering (Systems & Information), from Birla Institute of Technology and Science,

Pilani, and Ph.D. (Electronics) from Birla Institute of Technology and Science, Pilani in

1987, 1990 and 2000 respectively. He has several publications in National and

International Journals. His research interests are Degital Design and Computer

Architecture, VLSI Design, Embedded Systems.

