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ABSTRACT 

In most Real-Time Embedded Systems, the limited battery life is a major cause of 

interest and concern. In a bid to optimize the energy consumption, this issue is 

addressed at various levels – Architecture level (memory subsystem, Dynamic 

Voltage Scaling / Dynamic Frequency Scaling), Systems level (process management, 

memory management and compiler techniques), and Application level (efficient data 

structures and algorithm design). Of the various components, the memory subsystem 

(architecture level) and the operating system-related activities (systems level) share a 

considerable proportion of the energy consumption by Embedded Systems.  

This thesis addresses the issue of optimizing energy consumption in Embedded 

System at the Architecture and the Systems levels. The primary source of energy 

consumption at the architecture level is the memory subsystem, especially the cache 

memory architecture. This work presents various techniques to reduce this cache-

related energy consumption, majority of which is attributed to the data movement 

across the memory hierarchy demanded and initiated by cache misses. One way to 

reduce this energy consumption is to improve the cache performance which entails an 

enhanced cache hit rate. This work proposes a new replacement policy called Late 

Least Recently Used (LLRU) replacement policy which while deciding on 

replacement, particularly considers cache lines that are shared among processes. 

Different hardware designs and implementations of the LRU and LLRU replacement 

policy have been put forth. Here, a way – predictive placement scheme, a 

modification of the way – predictive cache, for reducing the cache access time and 

power consumption has also been proposed and evaluated. One other means of 

achieving reduced energy consumption in Embedded Systems’ cache is to power 

down all the unused data and tag ways. Motivated by this reasoning, this work 

proposes two process aware cache architectures, the Process Aware Selective 

Placement (PASP) and the Shared Memory Process Aware Selective Placement 

(SMPASP) which are designed to facilitate the powering on of only one selected way 

and the shutting down of all the other ways. This significantly reduces the dynamic 

power consumption of the tag and data arrays. 

At the Operating Systems level, there have been three basic approaches to resolve the 

power consumption problem: process scheduling techniques, efficient paging systems, 
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and performance tuning. In this thesis, to improve the energy efficiency at the 

Operating Systems level, new scheduling algorithms have been devised. The 

scheduling algorithms can achieve energy efficiency in both platform-dependent 

(clock, device characteristics, or memory technology) and platform independent 

(preemption reduction) scenarios. 

This work aims at increasing the platform independent energy efficiency by 

optimizing the number of preemptions caused in a schedule. The direct cost among 

other overheads associated with preemptions in a schedule is the time and energy 

spent for loading and saving the context of relevant processes, which is effectively 

nonproductive and hence, this reasoning advocates the design of the proposed 

scheduling algorithms. IntFragment – a static real-time scheduling algorithm 

establishes this motive. This thesis also proposes two dynamic real-time priority 

scheduling algorithms – Earliest Deadline First with Reduced Context Switches 

(EDFRCS) and Rate Monotonic with Reduced Context Switches (RMRCS), which 

are modifications of EDF and RM respectively. These two schemes also cut down on 

the number of preemptions caused in a schedule by allowing the execution of the 

currently executing task, whenever possible. The heuristic used in these schemes is 

very aggressive and satisfies the scheduling optimality (schedulability) condition of 

the respective original algorithms.    

An indirect but more significant cost brought about by preemptions is the cache 

flushes which may, eventually even increase the cache miss rate. This thesis proposes 

a dynamic priority – based Reduced Cache Impact (RCI) algorithm, a modification of 

the existing Earliest Deadline First (EDF), which reduces the number of cache impact 

points in a schedule. 

All the cache architectures were simulated, evaluated and tested for performance 

through simulation studies using SPEC95 and Simplescalar benchmarks. The various 

scheduling algorithms and cache conscious scheduling algorithms proposed were 

simulated and tested using synthetic benchmark suites.   
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CHAPTER 1 

INTRODUCTION 

The explosive growth of Embedded System products has forced researchers to address 

various issues associated with them like energy consumption and performance. Modern 

Embedded Systems are complex integrated systems where real-time tasks execute in 

multi-tasking environments and compete for shared resources like processor, memory, 

etc. Multitasking is the ability to execute multiple separate tasks in a fashion that is 

seemingly simultaneous. The basic requirements of multi-tasking real-time embedded 

system are context switching, inter task communication, managing priorities and 

establishing timing control for managing multi-tasking in a real-time environment.  

There are various factors that influence the performance of Embedded Systems. 

Embedded System designers have to strike upon beneficial compromise among the 

factors, i.e., size, energy consumption, cost and performance [Chandrakasan 1995] 

[Mudge 2000]. The energy consumption in an Embedded System is determined by 

functionalities of the system and speed of the processor. Most Embedded Systems are 

battery-driven and due to their limited battery life, energy consumption emerges as an 

important limiting factor. The energy consumption in an Embedded System can be 

addressed at various levels of the design hierarchy such as at the technology level, circuit 

level, architecture level, operating system level, and at the compiler level. 

The reduction in dynamic energy consumption at the technology and circuit levels can be 

accomplished by reducing the average number of circuit switching per clock cycle and 

reducing the load capacitance. There exist various techniques to minimize this energy 

consumption. The average number of circuit switching is achieved using techniques like 

minimizing the Hamming distance between operations/instructions [Lee 2000] or 

minimizing the number of operations [Hong 1997]. The load capacitance can be 

minimized by using place and route optimizations. The system level energy reduction can 

be attained by the Dynamic Voltage Scaling / Dynamic Frequency Scaling (DVS/DFS). 

This is achieved by running the real-time tasks at a reduced applied voltage for a longer 

time (reduced frequency) while ensuring that no task misses its deadlines. With the 

advancement in technology, the most important component of technology level energy 
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consumption is the leakage energy which is due to the leakage current between the supply 

voltage and the ground. One of the main components of the leakage energy is the sub-

threshold leakage energy and it is dominated by temperature and threshold voltage. The 

static (leakage) energy consumption occurs as long as the CMOS device is powered on.  

Instruction scheduling by an energy-aware compiler can reduce the average number of 

circuit switching resulting in reduced energy consumption. The Compiler can also be 

used to identify shared, spatial and temporal accesses to improve the memory access 

performance.   

In an Embedded processor, the major source of energy consumption is at the architecture 

and operating system levels. At the architecture level, the major source of energy 

consumption is the memory subsystem. A significant fraction or part of the memory 

subsystem energy consumption is caused by the cache memory activities. This connotes 

that saving a considerable portion of energy consumed by the cache memory will have a 

considerable impact on the overall energy consumption. Cache memory energy 

consumption can be reduced by reducing the cache miss rate, internal activities, 

associated control and replacement circuitry and shutting down the unused cache blocks. 

In a multi-tasking environment, majority of the cache misses are the aftereffects of task 

preemptions (context switches). The time and energy spent in transferring the context of 

the tasks and serving cache misses are unproductive. This energy consumption can be 

addressed at the operating system level with the help of an efficient task scheduling 

algorithm [Xu 2005][Jianli 2005].  

This thesis addresses the energy consumption issue of multi-tasking real-time embedded 

systems at the architecture and the operating system levels, as the activities at these levels 

constitute a majority of the Embedded System energy consumption. In this thesis, various 

techniques are proposed to reduce the cache and scheduling-related energy consumption. 

1.1. ENERGY EFFICIENT CACHE ARCHITECTURE 

The cache memory subsystem consumes a significant amount of energy in Embedded 

Systems. One way to reduce cache memory related energy consumption is to reduce the 

cache miss rate, which depends on the mapping scheme used. The cache memory 

mapping schemes like direct-mapping and set-associative mapping have a substantial 
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impact on the cache miss rate and on the dynamic energy consumption per cache access. 

Both these schemes have their own merits and demerits in terms of the dynamic power 

consumption and performance. A direct-mapped cache accesses only one tag block and 

one data block per cache access, whereas an N-way set-associative cache accesses N tag 

blocks and N data blocks per cache access. So the dynamic power consumption of a 

direct-mapped cache is much lower as compared to that of a set-associative cache of the 

same size. On the other hand, a set-associative cache offers a better cache hit rate and 

thus lesser cache miss related energy consumption as compared to that by a direct-

mapped cache. A direct-mapped cache may not always result in less overall power 

consumption. Set-associative caches are used for applications, which require a high cache 

hit rate and low energy consumption, even though they have an additional overhead of 

increased dynamic power consumption for tag comparisons. Moreover, the set-

associative mapping scheme provides adequate support for energy efficient caching 

schemes like way shutdown, way concatenation, way prediction and process aware 

caching.  

Experimental studies [Hennessy 2007] prove that an increase in associativity causes an 

accompanied decrease in miss rate, hence reduced energy consumption. For example, the 

average miss rate for the SPEC92 benchmark programs is 4.6% for an 8Kbyte direct-

mapped cache, 3.8% for an 8Kbyte 2-way set-associative cache and 2.9% for an 8Kbyte 

4-way set-associative cache. Even though the decrease in miss rate is small, set-

associative cache causes a significant performance improvement due to the large cycle 

time penalty overhead for a cache miss.  Hence, on measuring the performance of a cache 

in terms of the energy consumption, a set-associative cache gives better performance than 

the direct-mapped cache. The energy consumption characteristic of a cache memory 

varies with the cache size as well. Though a small cache size is energy efficient and has 

less access latency, it suffers from poor hit rate.  

In set-associative and fully associative schemes, the hit rate of the cache depends on the 

placement / replacement circuit in use. These schemes use the replacement circuit to 

determine the cache lines to be evicted. The replacement algorithm improves the cache 

hit rate and hence, reduces the dynamic energy consumption of the cache memory.  
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The replacement schemes are categorized as optimal, random, arrival, recency, frequency 

and combinations of some of these based on how they choose a victim line for 

replacement. If the selection of a victim line is based on future references, which is 

practically impossible for a dynamic-scheduled system, then the replacement strategy to 

use is optimal replacement. If the victim line is selected randomly from the set, then the 

random replacement is used. If the choice of a victim line is based on the arrival time of 

blocks into the cache, then the FIFO replacement algorithm is used. If the selection of a 

victim line is based on past references then recency, frequency or combination of recency 

and frequency based replacement schemes are used. Some of the commonly used 

replacement strategies under recency, frequency and their combinations are Least 

Recently Used (LRU), Most Recently Used (MRU), Least Frequently Used (LFU), and 

Least Recently/Frequently Used (LRFU) [Smith 1982] [Lee 2001a]. 

LRU and its variants are the most widely used replacement algorithms for the cache 

memory. The performance of these algorithms is good if the workload maintains 

temporal locality and is close to that of the optimal replacement algorithm when the 

associativity is less. The LRU replacement algorithm is prone to wrong victim line 

selection because of bypass block, dead block and live block [Kampe 2004]. LRU can 

improve its performance if the bypass block is not allowed to enter into the cache, if the 

dead block is replaced at the earliest after leaving the MRU position and if the live block 

is held in the cache for a longer period. Some of the other situations where the LRU 

performance is not good are multi-tasking systems with a common cache for all the tasks, 

wherein the tasks exhibit changes in the memory access pattern during execution. 

There exist various replacement algorithms like Early Eviction LRU (EELRU), Pseudo 

LRU (PLRU), modified LRU with non-temporal cache hint, Cache System with 

Replacement Controls (Cache/RC), Reference Locality Replacement (RLR), Software 

assisted LRU, Evict Me (EM) LRU, Self-correcting LRU (SCLRU) and LRU-SEQ, 

which address various issues associated with the LRU replacement strategy to improve 

cache hit rate. 

From the analysis of the LRU replacement strategy, it is found that its performance is not 

good for multi-tasking real-time embedded systems with data sharing among tasks [Wang 

2004]. The LRU performance degrades further with increase in preemptions between 
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tasks. None of the above mentioned replacement schemes address the issue of increasing 

the life span of shared data for improving cache hit performance in multi-tasking real-

time embedded systems with data sharing. 

To address this issue, this thesis proposes a new variant of the LRU replacement strategy 

called the Late LRU (LLRU) replacement strategy which helps in increasing the life span 

of shared cache lines. In LLRU, the shared cache line(s) gets a higher priority over the 

non-shared cache lines to guarantee lesser cache misses after preemption. This is because 

of the basic understanding that the new process may access the shared cache line. This 

scheme expects the compiler to issue the shared information through special instructions 

to enable efficient handling of shared pages during replacement. LLRU adds an extra 

shared bit per cache line to store this sharing information. The replacement circuit finds 

the cache line to be evicted based on the shared bit and the LRU value. A cache simulator 

was implemented which uses the Simplescalar benchmark address traces with varying 

data sharing for evaluating the cache hit rate of both LRU and LLRU replacement 

strategies. The hardware implementations of LRU and LLRU based on the square matrix 

as well as the counter were carried out to measure parameters like area, clock frequency, 

critical path delay and number of transistors using Modelsim, Leonardo spectrum and IC 

station. Though LLRU requires more area and increased number of transistors, this 

scheme improves cache hit rate and operating frequency and reduces critical path delay 

and effective cache energy consumption over the basic LRU scheme. 

Another way of reducing the dynamic energy consumption in the cache memory is to 

reduce the internal activity of the cache during a cache access. The internal activities of a 

cache are defined as reading and comparing tags in tag arrays, and reading/writing data in 

data arrays. The minimum cache internal energy consumption can be achieved if the 

cache subsystem encounters minimum conflict misses. It can be further minimized if 

each cache hit results in reading and comparing only one tag entry, enabling and 

accessing one data entry and if each cache miss results in reading and comparing only 

one tag entry, and accessing no data entries. This can be achieved using the techniques of 

hardware prefetching, vertical partitioning, horizontal partitioning, reconfiguring cache, 

optimizing the control circuitry, making use of the compiler and operating system 

information to improve the performance and various combinations of some of these. 
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Horizontal cache partitioning schemes like phased lookup cache, difference bit cache, 

partial tag matching cache and way-prediction cache save dynamic energy at the cost of 

performance. The way – prediction cache [Inoue 1999] [Inoue 2001] saves a significant 

amount of energy by speculatively selecting one way for tag comparison. If the data is 

not available in the selected way (prediction miss), all the N-1 ways are enabled for tag 

comparisons in the next cycle. 

The way – prediction scheme suffers performance degradation because of the cycle time 

penalty incurred for handling mispredictions. The way prediction cache uses the most 

recently used (MRU) way information of the set to decide the way to be selected. It 

requires log2 (N) bits per set to maintain this MRU way information for a N way set-

associative cache. The MRU information of the way prediction cache is stored as a table 

where each row (log2 (N) bits) of the table corresponds to a set. This scheme requires a 

table lookup to obtain the MRU information of the selected set, which is possible only 

after extracting the set number from the physical address. This adds an extra time delay to 

the critical path. The performance of this scheme degrades slightly due to the elongated 

access time as a result of the table lookup. The way prediction scheme requires k * log2 

(N) bits where k indicates the number of sets, to maintain the MRU information and these 

bits need to be updated during a misprediction or a cache miss. This increases the 

hardware complexity, effective cache access time and consequently, the energy 

consumption.  

To address these issues, this thesis proposes a new caching scheme called the way 

predictive placement scheme which avoids the table lookup and also improves the 

prediction hit rate. This is achieved by replacing the table in the way prediction cache 

with a global log2 (N)-bit register. To improve the prediction hit rate and the cache hit 

rate in a way predictive placement scheme, a modified placement / replacement strategy 

called the Aligned LRU (ALRU) replacement strategy is proposed. This strategy aligns 

cache lines into the same way, whenever possible. For experimentation, Simplescalar 2.0 

[Burger 1997] cache simulator was employed with different cache configurations. 

SPEC95 benchmark programs were used to obtain the prediction hit rate, cache hit rate, 

number of tag comparisons and the energy saving for various cache configurations of 
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way predictive placement cache. The selection of the SPEC95 benchmark program suite 

guarantees uniformity in evaluation as most of the existing cache architectures used this 

benchmark program suite for evaluation. The improvement in prediction hit rate, cache 

hit rate, number of tag comparisons and effective cache access time results in energy 

saving in a way predictive placement cache in comparison with a way prediction cache. 

Way predictive placement cache reduces the hardware complexity as well. 

Multi-tasking real-time embedded systems prefer partitioning schemes as they reduce the 

dynamic energy consumption and make the cache predictable. The cache memory energy 

consumption can further be reduced with the help of cache – operating system – compiler 

– application program interaction. The energy reduction can be achieved by accurately 

predicting the cache line where the required data is available. This interaction can help 

the real-time energy aware scheduler to perform better in a multi-tasking environment. 

The interaction can also overcome the replacement mistakes because of bypass block, 

dead block and live block. Various software-controlled cache architectures transfer 

locality related information and information about whether the cache block is a bypass 

block, dead block or live block to the hardware through modified instructions. Some of 

the existing microprocessors have instructions for flushing the entire cache, cleaning a 

cache line and locking a cache line to reduce cache pollution and replacement mistakes. 

Though some of the existing cache architectures can control cache pollution and 

replacement mistakes to an extent through cache – operating system – compiler 

interaction, they are not process aware. These schemes do not use process related 

information to improve the cache hit rate, shutdown unused ways and reduce energy 

consumption. The cache hit and energy consumption performance of these schemes are 

not consistent with varying context switching time. A process aware cache with dynamic 

allocation of cache ways can reduce the energy consumption further by shutting down all 

the unused ways.   

In this thesis, two software controlled process aware energy efficient cache architectures - 

Process Aware Selective Placement (PASP) scheme and Shared Memory Process Aware 

Selective Placement (SMPASP) scheme are proposed for multi-tasking applications. 

These schemes make use of the cache – operating system – compiler interaction. The 

PASP scheme consists of an N-way set-associative cache and a small victim set of 3 – 5 
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cache lines. The SMPASP scheme consists of an N-way set-associative cache, a small 

victim set of 3 – 5 cache lines and a small shared set. In these schemes, to obtain 

consistent performance with varying context switch durations, one way / bank is 

allocated dynamically to a process. This converts an N-way set-associative cache into a 

direct-mapped cache, thus reducing the circuit complexity (because of replacement 

circuit) and dynamic energy consumption. The victim set is used for collecting spill out 

data from the dedicated way, thus improving the cache hit performance. The SMPASP 

scheme enhances the PASP scheme to further improve the cache performance by 

exploiting the large amount of data sharing exhibited among tasks in a multi-tasking real-

time embedded system. In SMPASP scheme, the shared set is used for improving the 

cache hit performance by storing all the shared data of various tasks in the multi-tasking 

system. The PASP and SMPASP schemes transfer process-related information to the 

cache controller through a special instruction, which is added as a part of the context 

switching routine. The SMPASP scheme transfers shared information - obtained by using 

the compiler - to the cache through modified instructions. This information helps the 

cache controller to predict and enable the required cache way / cache line and power 

down all the unused cache ways / cache lines which results in reducing the cache miss 

rate and energy consumption. These schemes reduce cache misses, first cycle misses, 

number of tag comparisons, effective cache access time and dynamic energy 

consumption as compared to the conventional and way-prediction cache for both shared 

and non-shared data sets.  A cache simulator CACHEMEM 1.0 was implemented, which 

uses SPEC 95 benchmark address traces with and without data sharing for evaluating the 

cache hit rate, first cycle hit rate, number of tag comparisons, and effective cache access 

time of the conventional, way prediction, PASP and SMPASP caches. The CACHEMEM 

1.0 can accommodate different cache configurations including cache size, cache line size 

and context switching duration.  The dynamic and leakage power consumption for the 

various caching schemes are obtained using the eCACTI cycle-based power estimation 

model.  
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1.2. ENERGY EFFICIENT TASK SCHEDULING 

Task scheduling in multi-tasking real-time embedded systems constitutes a significant 

proportion of the energy consumption at the operating system level. Real-time task 

scheduling algorithms primarily focus on generating a feasible schedule without causing 

any deadline misses. In multi-tasking real-time embedded systems, constraints like 

availability of power, size of the memory, complexity of the algorithm and speed of the 

processor may affect the scheduling policies and algorithms. The energy efficient 

scheduling techniques designed to minimize the energy consumption in multi-tasking 

real-time system can be platform-dependent, which is architecture-specific such as 

multiple clock frequencies and multiple voltage levels. The Dynamic Voltage Scaling 

(DVS) and Dynamic Frequency Scaling (DFS) are such techniques that are used for 

reducing the dynamic energy of a system by executing the jobs at reduced operating 

frequencies and voltage levels. There exist platform independent factors such as the idle 

time, number of preemptions and cache impact which also affect the time of execution 

and energy consumption of a schedule. The preemptions in a schedule result in increased 

execution time due to the additional time required for context switch. This additional time 

spent during preemptions may affect the schedulability of the task set. The work done 

during preemptions is unproductive and hence, the energy consumed by the preemption 

routine is waste. A more significant but indirect impact of preemptions is reflected as 

cache misses.  

There exist various real-time scheduling algorithms in literature which are designed to 

reduce the preemption count or its impact on a schedule. The motive of the Modified LLF 

(MLLF) and Optimized Minimum Laxity First (OMLF) scheduling algorithms is to fix 

the frequent preemption problem of Least Laxity First (LLF). Wang and Saksena [Wang 

1999] proposed a fixed priority scheduling algorithm with a regular priority and 

preemption threshold to reduce preemptions in the schedule. In this scheme, a task having 

a lower preemption threshold than the executing task cannot preempt the executing task, 

even if it has a higher regular priority value. Vahid et al. [Vahid 2005] proposed the 

Modified Maximum Urgency First (MMUF) algorithm which replaces non-strict LLF in 

Maximum Urgency First (MUF) algorithm with MLLF for reducing preemptions and 
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improving the schedulability.  The technique proposed by Jianli and Chaitali [Jianli 2005] 

demonstrates a preemption control technique for scheduling in processors with Dynamic 

Voltage Scaling. This technique is effective in reducing the number of unnecessary 

context switches caused by dynamic voltage scaling, particularly under low and medium 

processor utilization levels. 

Though the above mentioned scheduling algorithms reduce preemptions when compared 

with their base versions, they are not aggressive enough to reduce it to the maximum 

possible extent. For instance, the number of preemptions in schedules produced by MLLF 

and OMLF is still higher than that of the Earliest Deadline First (EDF). Real-time 

scheduling algorithms which can reduce the preemptions aggressively, thus improving 

the schedulability and reducing the energy consumption are required. 

To address this issue, a platform independent static scheduling algorithm called 

IntFragment and two platform independent dynamic scheduling algorithms called Earliest 

Deadline First with Reduced Context Switch (EDFRCS) and Rate Monotonic with 

Reduced Context Switch (RMRCS) are proposed. These real-time scheduling algorithms 

aggressively reduce the preemptions in a schedule without requiring extensive 

computations. The IntFragment scheduling algorithm reduces the number of context 

switches by generating a schedule with maximum fragments in between the execution of 

two instances (jobs) of the same task. The adjacent instances of the same task execute as 

close as possible or as distant as possible, which results in the creation of the maximum 

fragment. The grouping of similar jobs, as described above, results in reducing the cache 

impact. The EDFRCS and RMRCS scheduling algorithms try to extend the execution of 

currently running task for the maximum possible duration without affecting the 

schedulability of other tasks in the system. The heuristic used in these algorithms is not as 

simple as the MLLF heuristic, but it is much more efficient than the exhaustive search 

proposed by Wang and Saksena [Wang 1999] or the data flow technique proposed by Lee 

et al. [Lee 1999]. A simulator which simulates the EDF, RM, LLF, MLLF, IntFragment, 

EDFRCS and RMRCS schedules was implemented and the response time, response time 

jitter, latency and preemption count was measured using test suites. The test suites are 

randomly generated under certain conditions: each test suite is characterized by either a 

fixed number of tasks with utilization varying from low (50%) to high (100%) or by a 
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fixed utilization with the number of tasks varying from 2 to 20.  Each test suite includes 

100 different task sets of varying hyperperiods – from 100 to 32000. The energy 

consumption is calculated based on the preemptions and scheduling complexity. EDF, 

RM, EDFRCS and RMRCS algorithms were implemented in RTLinux and their 

performances were verified.  

1.3. CACHE CONSCIOUS SCHEDULING 

The preemption of jobs in a multitasking real-time system introduces additional cache 

misses in a schedule. This leads to an increase in the task execution-time which leads to 

deadline misses by the low priority tasks. As a cache miss consumes more energy than 

preemption, the minimum preemption schedule may not be the optimal energy efficient 

schedule. Hence, an energy efficient schedule should try to optimize the number of 

preemptions and the amount of data transferred across the memory hierarchies. The cache 

impact of a program is not constant throughout the program execution because the 

amount of data usage differs. Thus establishing the best possible preemption point where 

the cache impact is minimal is not a straightforward task.  

In multi-tasking real-time systems, deadline misses caused due to cache misses can be 

avoided by calculating the tighter upper bound of the cache related preemption delay 

(CRPD) of each task accurately and adding it to the worst case execution time of that task 

[Lee 1998] [Negi 2003] [Staschulat 2005a]. Lee et al. proposed the Limited Preemptive 

Scheduling (LPS) which uses trace-based offline data flow analysis technique to 

determine the preemption points where the cache impact is minimal [Lee 1999]. Deadline 

misses because of cache misses can be avoided by minimizing the number of 

preemptions as cache impact at preemption points is usually high. Various preemption 

reduction schedulers like MLLF and OMLF produce a valid schedule with lesser cache 

misses than the schedule produced by its base scheduling algorithm (LLF). 

None of the above mentioned scheduling policies exploit the properties of a periodic task 

set in a multi-tasking real-time system. The cache misses in a schedule can be reduced by 

combining jobs with maximum sharing. In a periodic task set, this can be achieved by 

combining jobs of the same tasks together as the code section and the global data section 

is shared among them. 
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To achieve this, a new cache-conscious scheduling algorithm called Reduced Cache 

Impact (RCI) algorithm is proposed, which combines similar jobs of the highest 

frequency task together without affecting the schedulability of the task set. RCI produces 

a schedule with significant reduction in the number of cache misses and the cache related 

preemption delay (CRPD), which results in energy saving. A simulator to calculate 

preemption count and cache impact of EDF, RM, LLF and RCI schedule, which uses the 

same test suite designed for preemption reduction algorithms was implemented. The 

implementation complexity and the schedulability of RCI algorithm were also analyzed.  

1.4. THESIS ORGANIZATION 
This thesis comprises eight chapters. Chapter 2 reviews various energy efficient cache 

architectures, energy aware real-time task scheduling algorithms and cache conscious 

real-time scheduling techniques.  In Chapter 3, the proposed cache replacement policy 

LLRU is explained, experimentally evaluated and analyzed. Chapter 4 focuses on the 

issues related to way-prediction scheme and elaborates the proposed way predictive 

placement scheme, a modification to overcome some of the drawbacks of the way-

prediction cache. The PASP and SMPASP which are process aware cache architectures 

for energy efficient embedded systems are proposed, explained, experimentally evaluated 

and analyzed in Chapter 5. In Chapter 6, the preemption reduction heuristic for the real-

time static scheduling algorithm – IntFragment – is proposed. This chapter also proposes 

the preemption reduction variants of EDF and RM – EDFRCS and RMRCS respectively 

– which aggressively reduce the number of preemptions in a real-time schedule without 

causing any deadline misses.  All these algorithms and the conventional real-time 

scheduling algorithms like EDF, RM, and LLF and MLLF, a reduced preemption version 

of LLF are studied in detail against various performance metrics in this chapter. Further, 

Chapter 7 proposes a cache conscious real-time scheduling algorithm – RCI – for energy 

efficient scheduling. The RCI algorithm is experimentally evaluated and its performance 

is analyzed against the EDF, RM and LLF. Chapter 8 concludes the thesis and briefly 

explains the future work. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1. INTRODUCTION 

The performance, cost, size and power consumption are some of the major concerns in 

Embedded Systems design. Reduction in power consumption is one of the most 

important tasks in embedded systems as most of the systems are battery operated. The 

power consumption issue of embedded systems has been addressed at various levels – 

technology level, architecture level, operating systems level, compiler level and system 

and application program level. The main sources of power consumption in embedded 

systems are at application and system programs level, operating system level and 

embedded architecture level. 

The power consumed by application and system programs can be reduced by selecting 

the right data structure and algorithms for implementation, customizing the programs for 

the specific hardware, fine tuning / optimizing the application with the help of a compiler 

and reducing the complexity (time and space) of the program, etc. 

The power consumed by architecture level can be reduced by redesigning the instruction 

set, redesigning / optimizing the memory subsystem, using a configurable architecture, 

and managing I/O devices efficiently. 

At the operating systems level, the power consumption reduction issue can be addressed 

by improving the process scheduling techniques, inter process communication 

techniques, paging systems, and performance tuning for the specific hardware.  

This work focuses on optimizing power consumption of embedded real-time systems at 

the architecture and operating system levels. This is because of the understanding that the 

majority of embedded system power consumption is due to memory subsystems and 

operating system functionalities. This chapter discusses various cache architectures 

proposed to minimize power consumption. This chapter also discusses power efficient 

scheduling algorithms and optimal scheduling and caching strategies for power 

efficiency. 
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2.2  CACHE ARCHITECTURES 

Benini and Micheli [Benini 2000] conducted an exhaustive survey on various techniques 

and tools used in system level power optimization. According to Benini and Micheli 

[Benini 2000], one of the major components of architecture level power consumption is 

the memory subsystem. Benini et al. [Benini 2003] analyzed in detail about various 

architectures and optimization techniques used in embedded memories. Panda et al. 

[Panda 2001] surveyed various techniques used in data and memory related optimizations 

in embedded systems. From the analysis [Benini 2003] [Panda 2001], it is clear that 

majority of the memory subsystem power consumption is due to cache memory activities. 

Cache memories remain one of the hot topics in computer architecture research, as the 

ever-increasing speed gap between processor and memory emphasizes the need for more 

efficient memory hierarchy. Studies show that 42% and 23% of the total processor power 

in StrongARM 110 [Montanaro 1997] and Power PC [Bechade 1994] respectively is 

consumed by the cache. These figures show that saving cache energy will have a 

considerable impact on the overall energy consumption. 

Several hardware (architecture level) and software techniques have been proposed to 

reduce the power consumption and improve the performance of memory subsystem. Each 

of these techniques has its own merits and demerits. The hardware techniques may lead 

to complex circuit implementations while incorporating a variety of applications. The 

software techniques tuned for a particular application can hardly be reused for other 

applications. These issues are very crucial for embedded system design as increase in the 

cost of hardware pushes the system towards non-application specific designs. 

Reduction in cache power consumption can be achieved by reducing the number of cache 

misses, latency (delay) per access, power consumption per access, and the cache miss 

penalty, shutting down a part of the cache, reconfiguring the cache for specific 

applications and various combinations of some of these. Various architecture level 

techniques described in literature to attain these, include hardware prefetching, vertical 

cache partitioning, horizontal cache partitioning, reconfiguring cache architecture, 

optimizing cache control circuitry, modifying the replacement circuitry to improve hit 
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rate, making use of the compiler and operating system information (software controlled 

cache) to improve performance and various combinations of some of these.  

The widely used mapping schemes available are direct-mapped, set-associative and fully 

associative. The embedded system requires low power consumption, low access time and 

high cache hit rate. Hence, a suitable mapping scheme should be selected for the purpose. 

A direct-mapped cache maps each memory block to a unique cache block, whether or not 

the cache block is empty. This is the simplest mapping scheme available with minimum 

access delay and circuit complexity. Cache hit rate of this scheme is low, as compared to 

other schemes. The fully associative scheme allows a memory block to be mapped to any 

of the empty cache blocks, if one exists. If there is no empty cache block, a replacement 

policy is used to select one of the cache blocks for replacement. In this case, number of 

tag comparisons required for finding the requested cache line is equal to the number of 

cache lines. The circuit complexity, access delay and dynamic power consumption of this 

method is very high when compared to that of the direct-mapped cache. This scheme 

provides the minimum cache misses (number of cache misses is based on the replacement 

algorithm in use), when compared to all other schemes. The set-associative mapping 

scheme is a compromise between the direct-mapped and fully associative mapping 

schemes.  A set-associative cache divides the cache into sets and allows a memory block 

to be mapped to any of the N empty cache blocks within a set. If all the blocks in the set 

are occupied, then a block is selected for replacement based on the replacement policy in 

use.  

While designing a cache, one has to choose between the direct-map and set-associative 

mapping schemes as they are the most energy efficient mapping schemes available. Both 

these schemes have their own merits and demerits in terms of cache access time, dynamic 

power consumption and cache hit rate. A direct-mapped cache accesses only one tag 

block and one data block per cache access, where as a N-way set-associative cache 

accesses N tag blocks and N data blocks per cache access. Literature shows that a direct-

map cache consumes much lesser dynamic power per cache access than a set-associative 

cache. For instance, Hennessy and Patterson [Hennessy 2007] reported 55% more 

dynamic power consumption per access for a 4-way set-associative cache as compared to 

that of a direct-map cache. For cache sizes of 8K and 16K, a direct-mapped cache 
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consumes 74.7% and 68.8% less power respectively than a same sized 8-way set-

associative cache. Also, a direct-mapped cache is 29.5% and 19.3% faster than a same 

sized 8-way cache of size of 8kB and 16kB, respectively. A direct-mapped cache is also 

simple to design, easy to implement, and accounts for lesser area. But the cache hit rate 

of a direct-mapped cache is very poor when compared to that of a set-associative cache 

with the same line size and cache size [Hennessy 2007].  

Hennessy and Patterson [Hennessy 2007] shown experimentally that an increase in 

associativity results in a decrease in the miss rate and hence, reduces power consumption.  

This shows that a set-associative cache is favorable for applications that require a high 

cache hit rate and low energy consumption, even though it has an additional overhead of 

power consumption due to increase in tag comparisons. For example, the average miss 

rate for the SPEC92 benchmarks is 4.6% for a direct-mapped 8KB cache, 3.8% for two-

way 8KB set-associative cache and 2.9% for a 4-way 8KB set-associative cache.  Though 

the miss rate reduction is small, it results in a significant performance improvement 

which depends heavily on the hit rate and access time, as the large cycle penalty of a 

cache miss is now avoided. So, if we measure the performance of a cache in terms of the 

power consumption, the set-associative cache may give better performance than the 

direct-mapping scheme because energy overhead due to miss penalty is much higher than 

the per access power.  Thus, applications which require a higher cache hit rate prefer a 

set-associative cache to a direct-mapped cache. The cache power consumption 

characteristic varies with the total cache size as well. Small cache size is energy efficient 

and has less access latency but suffers because of poor hit rate. Set-associative mapping 

scheme also provides support for energy efficient caching schemes like way shutdown, 

way concatenation, way prediction and process aware caching efficiently. Thus, set-

associative mapping scheme is chosen for this work.  

2.2.1 REPLACEMENT SCHEMES IN CACHE 

The three types of misses incurred in the cache are the compulsory, capacity and conflict 

misses. A compulsory miss is caused by the first access to a block that has never been in 

the cache before. A capacity miss happens when the cache is not big enough to 

accommodate all the blocks needed for program execution. A conflict miss occurs when 
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multiple blocks map to the same set. This occurs in the direct- mapped and set-

associative cache, but not in the fully associative cache. Conflict misses are the major 

cause of cache misses during program execution. The three important factors affecting 

cache performance are cache size, cache line (block) size, and cache associativity. 

Increase in the cache size results in a reduced number of capacity misses but increased 

data access time because of load capacitance. Increase in the cache line size provides a 

reduced number of compulsory misses but increased cache miss penalty due to the 

increase in data transfer. Increase in associativity results in reduction in the number of 

conflict misses but increases the per cache access time. 

The ideal cache is one with the minimum number of capacity, compulsory and conflict 

misses, minimum per cache access time, minimum cache miss service time, and 

minimum load capacitance. The conflict miss rate reduction with minimum cache miss 

service time is very important for a high performance cache with low power 

consumption. A set-associative mapping scheme offers a good balance of cache hit rate, 

cache access time, dynamic power consumption and hardware implementation cost. For a 

set-associative cache, improvement in the cache hit rate and hence, reduction in the 

dynamic power consumption can be achieved with the help of an efficient replacement 

algorithm. A replacement policy determines the effectiveness of this set-associative 

scheme with a proper memory block mapping technique. A replacement strategy is 

needed when all the cache lines in a set become full and a new block of memory needs to 

be placed in the cache memory. The cache controller, with the help of a replacement 

algorithm identifies a cache memory line. Then it replaces the line with a new data from 

the main memory. The replacement algorithm helps in reducing the number of conflict 

misses and hence, the power consumption. The performance of a cache replacement 

mechanism mainly depends on how accurately cache can predict the future reference 

pattern based on the past references. The future reference pattern may depend on the past 

reference pattern and input data. It is relatively easy to find the reference pattern in a 

static scheduled system than in a dynamic-scheduled system. The choice of a replacement 

policy is one of the most critical cache design issues. Selection of a suitable line/block 

replacement algorithm, in the case of fully associative and set-associative caches, can 

have a significant impact on the overall system performance. 
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The current processors employ various replacement policies such as Random, Round 

Robin (or FIFO – First-In-First-Out), LFU (Least Frequently Used), LRU (Least 

Recently Used), PLRU (Pseudo LRU), MRU (Most Recently Used) and variants of these 

[Smith 1982]. The performance of all these policies are compared and analyzed with 

reference to the optimal replacement policy (OPT). The OPT decides the cache line to be 

evicted based on future references. This strategy cannot be implemented in the case of 

dynamic scheduling systems, as the future cache references are not available [Jeong 

1999]. Even if the future references are known, it is impractical to implement this scheme 

because of the computational complexity involved in finding the cache line to be evicted. 

However, it is very useful in determining the lower limit for the number of cache misses.  

As the optimal cache miss performance can be achieved only by knowing the future 

references and the future references are unavailable in the case of dynamic scheduling, 

one has to go for heuristics near the optimal solution. In general, most of the policies 

anticipate the future memory references by looking at the past behavior of programs 

(program’s memory access patterns). The purpose of a replacement algorithm is to 

identify a cache line which should be purged in order to make room for the newly 

referenced cache request that previously experienced a miss in the cache. Relative 

performance of these algorithms depends mainly on the length of the history consulted. 

The heuristic used for finding a cache line to be evicted can be a random pick from the 

available cache lines, a cache block that arrived first in the cache, the least frequently 

used cache line, the least recently used cache line, the most recently used cache line or 

variants of some of these heuristics. 

The random replacement (RAND) heuristic chooses a cache line to be evicted randomly 

with all the available cache lines having an equal probability of being evicted. So in 

RAND, the cache arbitrarily replaces a block. Though RAND has the minimum 

implementation complexity among all the cache replacement algorithms, it may increase 

the cache miss rate. An additional hardware cost required for its implementation is only 

the random number generator. This scheme doesn’t require any storage facility, as the 

cache line to be evicted is not chosen based on past references. 
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In the First-In-First-Out (FIFO) replacement scheme, when a replacement is necessary, a 

cache block that first entered the cache memory is chosen as the block to be evicted i.e., 

the cache selects a cache block that has been residing in the cache for the longest time. 

This scheme is one of the simplest replacement policies to implement. The hardware 

implementation of this scheme requires a register per cache line to store the entry time 

which is to be compared during a cache miss. One other implementation can be, 

maintaining a FIFO queue based on the arrival time of the blocks into the cache. When a 

replacement is necessary, the block at the head of the queue is removed. 

The Least Frequently Used (LFU) replacement scheme selects the cache line to be 

evicted based on the frequency of access of the cache lines. LFU requires maintaining a 

frequency count register per cache line and is incremented by one, each time a reference 

is made to the cache line. So a register is updated for every cache access. LFU finds the 

cache line with the lowest frequency count as the one to be evicted. The LFU cannot 

differentiate between references that occurred way in the past and the more recent ones. 

Whenever a new block is copied from main memory, the frequency count of that block is 

reset to 0. The motivation for using LFU and other frequency-based algorithms is that the 

frequency count can be used as an estimate of the probability of a block being referenced. 

Updating a register after every cache access increases the cache access time and thus 

degrades performance. The hardware implementation complexity of this policy is more as 

compared to that of the RAND and FIFO.  

The LFU policy can suffer from cache pollution if a previously popular cache line 

becomes unpopular. This cache line then remains in the cache for a long time, preventing 

other newly or slightly less popular blocks from replacing it. This mainly happens 

because of temporal locality, especially after the completion of the execution of a loop 

for large iterations. To reduce cache pollution, the replacement scheme should address 

not only the access frequency, but also age of the cache line in the cache. One hardware 

implementation solution is to introduce a reference count for aging. The reference count 

is incremented dynamically for every cache access. Whenever the reference count 

exceeds some predetermined maximum value specified by the algorithm, the frequency 

count of all the cache lines is reduced. This variant of LFU is called Least Frequently 

Used –Dynamic Aging (LFUDA). In LFUDA, the dynamic aging is accomplished by 
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shifting the value in each of the frequency count registers by one position to its right 

(divided by 2), when the reference count reaches its maximum value. This requires an 

additional reference count register which should be updated for every cache access and 

which adds an additional overhead to the cache access time and power consumption. 

LFUDA increases the cache age during the eviction of a block/object by setting it to the 

evicted object’s key value. Thus, the cache age is always less than or equal to the 

minimum key value in the cache. 

The Least Recently Used (LRU) replacement strategy selects the element that has not 

been accessed for the longest period, for eviction. This results in a higher cache hit rate, 

at the cost of additional hardware for manipulating / maintaining LRU state information 

and decision-making. The basic idea is that the blocks that have been referenced in the 

recent past are likely to be referenced again in the near future, because of the temporal 

locality of the workload. This policy uses a program’s memory access patterns to guess 

that the block that is least likely to be accessed in the near future is the one that has been 

accessed least recently. LRU and its variants are the most widely used replacement 

strategy in the cache because of their high performance [Smith 1982]. There exist various 

ways to implement LRU in hardware, which include Counter, Square matrix, Skewed 

matrix, Link list, Phase, and Systolic array method [Sudarshan 2004]. 

Literature reveals that the LRU strategy performs close to the optimal replacement 

strategy, when associativity is less. As the associativity grows, the performance 

considerably degrades [Wong 2000]. In fact, in [Al-Zoubi 2004], it is reported that the 

optimal performance of a data cache of a certain size is roughly equal to the LRU 

performance of a cache twice as big, with the same number of ways. 

In the case of FIFO and Random, the replacement circuit complexity and the extra 

hardware requirements are relatively less when compared with that of the LRU and LFU 

[Deville 1992] [Sukumar 1993]. The implementation complexities of FIFO and Random 

schemes are relatively low, irrespective of the associativity. In LRU and LFU strategies, 

information update has to happen for each reference to a cache line. FIFO strategy does it 

only once when a new page comes into the cache line, whereas in random, modification / 

update is not required. So the LRU and LFU take more time per access, when compared 

with that of the FIFO and Random replacements. The main drawback of random and 
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FIFO replacement strategies is their high cache miss rate in comparison to that of the 

LRU and LFU. LRU usually follows stack implementation whereas, FIFO follows a 

queue implementation. The most commonly used hardware implementations for the LRU 

replacement strategy, are the LRU counter and LRU square matrix. The hardware 

components used are storage elements for storing the last reference information and 

associated logic circuitry for decision-making. For a square matrix implementation, the 

storage elements (D – flip flops) used per set are N2 whereas for a counter 

implementation, only N * log2N storage elements are used, where N is the associativity of 

the cache. The logic circuit required for selecting the cache line to be evicted is very 

small for the square matrix implementation whereas, it is more complex for the counter 

implementation. The square matrix implementation is very good for low associativity 

caches, but as the associativity increases, the storage element requirement increases 

quadratically which makes it unsuitable for high associativity caches. The counter 

implementation logic circuit complexity also increases with the associativity, but it 

provides a lesser overall complexity as the storage element requirement increases only 

linearly, which makes it suitable for high associative caches when compared to the square 

matrix implementation [Sudarshan 2004].      

According to [Kampe 2004], the LRU is prone to two major types of selection failures. 

The first selection failure is to keep a cache block that will not be accessed again until it 

leaves the cache. This happens when many blocks are accessed in the Most Recently 

Used (MRU) position and are not accessed again there after until the cache line leaves the 

cache. Most of these cache lines in this category will have only one cache access and 

thus, should be bypassed or replaced immediately than keeping them in the cache for a 

long time (called Bypass block). Another occurrence of this type of failure is when cache 

lines are accessed repeatedly for several times in the MRU position and then, have no 

access thereafter (called Dead block). These blocks should be replaced as soon as they 

leave the MRU position in the cache. The second selection failure is to replace a cache 

block (Live block) that will be referenced in the immediate future. This happens when a 

just replaced cache from the set is accessed right after the next miss. LRU can improve its 

performance if the bypass block is not allowed to enter into the cache, the dead block is 



CHAPTER 2 – LITERATURE SURVEY 

 22

replaced at the earliest after leaving the MRU position and the live block is held in the 

cache for a longer period.  

There exist various other situations where the LRU does not perform well. One such 

situation is in time-shared systems where multiple processes use the same cache and 

when there is data streaming in applications. The LRU policy often performs poorly for 

applications in which the cache memory requirements and memory access patterns 

change during execution. One other drawback for the LRU is that it considers only the 

time of the most recent reference to each block for eviction and it cannot differentiate 

between frequently and infrequently referenced blocks. 

A variant of LRU replacement policy is Early Eviction LRU (EELRU)[Smaragdakis 

1999]. The EELRU dynamically chooses to evict the LRU page or the eth most recently 

used page. This policy performs LRU replacement by default, but chooses to evict cache 

lines early when it observes that too many cache lines are being touched in a roughly 

cyclic pattern which is larger than the main memory. The LRU reference history 

determines e, the early eviction point, but it is too expensive to store and use in caches. 

This approach eliminates capacity page misses in a fully associative memory. 

A pseudo LRU (PLRU) method finds the cache line to be evicted from a set that was 

assumed to be the least recently accessed and is overwritten. The results show that the 

PLRU techniques can approximate and even outperform LRU with much lower 

complexity, for a wide range of cache organizations. 

Some of the modern processors like Itanium have cache hit instruction(s) to improve 

cache performance [Veidenbaum 1999].  The memory accessing instructions of Itanium 

can be accompanied by a nt (non-temporal) cache hint. The Itanium-2 implemented a 

modified LRU replacement algorithm honoring the nt cache hint [Veidenbaum 1999]. In 

case of execution of a memory instruction with nt cache hint, the replacement algorithm 

does not change the rank of the touched cache line (in normal case the rank is set as the 

highest). In this modified LRU replacement mechanism, the data accessed by instructions 

with nt hint is more likely to be evicted on a subsequent cache miss. By not changing the 

value of rank in the set, the algorithm retains the old priority of the replaced block and the 

data without temporal reuse (Bypass block) does not get preference unnecessarily. This is 
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one way of avoiding the Bypass block to become the MRU and in turn, stay in the cache 

for a long time. This replacement scheme relies on the compiler to give the nt hint to the 

instructions accessing data without temporal reuse. This architecture effectively prevents 

cache pollution and thus has the potential to achieve better cache locality. 

Maki et al. [Maki 1999] try to improve the LRU replacement decision with the help of an 

additional bit (lock/release) per cache line and lock and release operations. This process-

aware scheme reported 60.9% reduction in cache miss ratio and faster execution than the 

LRU replacement strategy.  

Wang et al. [Wang 2004] proposed a replacement algorithm which improves the cache hit 

performance or in the worst case performs similar to LRU for set-associative caches. This 

work used compiler-generated auxiliary information to improve the cache replacement 

decisions for scientific programs. The compiler generates special purpose instructions to 

set the Evict Me (EM) bit and thus explicitly controls cache replacement. One tag bit 

(MSB) is used to represent the EM bit. The extra hardware used in Evict-Me cache does 

not increase the cycle time as it is not a part of the critical path. This is effective only in 

the case of set-associative caches. Results show that the EM bit can reduce miss rates in 

set-associative caches up to 45% over the LRU. The EM bit is very similar to Alpha’s 

evict instruction [Kessler 1999] except that Alpha’s evict instruction evicts a cache line 

immediately and thus requires high precision, whereas the Evict Me scheme evicts the 

cache line only when a cache miss happens in the same set. The evict instruction in Alpha 

processor is designed mainly to help maintain cache coherency, while Evict Me is for 

enhancing locality. 

Wong and Baer [Wong 2000] proposed an enhancement for the LRU replacement policy 

with a temporal bit per cache line. This temporal bit acts opposite to the EM bit in [Wang 

2004], i.e., it specifies the cache lines to be retained in the cache rather than cache lines to 

be evicted. The temporal bit settings are determined by offline profiling or an online 

hardware history table. This bit is set when there is a cache hit in that line and is reset 

when a non-LRU line is evicted from the set. 

Rivers et al [Rivers 1998] used a hardware detection unit to dynamically determine the 

access as temporal/non-temporal and cacheable/non-cacheable. This information can help 
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the LRU to perform better, as a non-cacheable access bypasses the cache to avoid 

pollution. Intel IA-64 [Dulong 1998] provides instructions to control caching so that non-

temporal accesses will bypass the cache to avoid cache pollution.  

Prabhat Jain et al. [Jain 2001] proposed a software-assisted cache replacement scheme to 

kill/keep the cache line. They proposed a methodology which ensures that cache 

pollution does not degrade the overall performance when software or hardware 

prefetching methods are used. This scheme requires additional software-controlled state 

information that affects the cache replacement decision. It uses software instructions to 

kill/keep a particular cache line. Kill and keep require one bit of additional state per cache 

line. They provided conditions under which kill instructions can be inserted into a 

program code, such that the resulting performance is guaranteed to be as good as or better 

than the original program execution using standard LRU policy. They combined 

prefetching and cache replacement to achieve different associated performance 

guarantees. 

Martin Kampe et al. [Kampe 2004] proposed Self-correcting LRU, which is based on 

LRU augmented with a feedback loop to constantly monitor and correct the mistakes 

done during replacement. By adopting mechanisms to detect mistakes in each set of the 

data cache, the proposed scheme could reduce the miss rate by up to 24% for a 4-way set-

associative cache.  

Praveen Kalla et al. [Kalla 2003] designed a technique (LRU-SEQ) for reducing the 

transition energy in instruction cache sub-banks by redirecting the sequential cache fills 

to the last bank accessed. By regrouping sequential accesses, the policy reduces inter-

bank transitions and increases the chances that a bank can be shut down for a longer 

period (thus, reduces leakage energy). This scheme reduces the total energy by 23% on 

an average. 

O’Neil et al. proposed the LRU-2 method [O’Neil 1999] that evicts the memory block 

with a minimum timestamp of the second to last reference. Wong and Baer [Wong 2000] 

enhance the LRU with a temporal bit for each cache line. Lai et al. [Lai 2001] use a 

hardware history table to predict when a cache block is dead and which block to prefetch 
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and replace the dead one. The drawback of this algorithm is that the size of the history 

table limits the length of the history consulted. 

Hussein Al-Zoubi et al. [Al-Zoubi 2004] evaluated the LRU, PLRU, OPT, and FIFO with 

the SPEC2000 benchmark suite. The PLRU schemes employ approximations of the LRU 

mechanism to speed up operations and reduce the complexity of implementations [So 

1988]. For the first-level instruction and data caches, the PLRU heuristics are very 

efficient in approximating the LRU policy. The PLRU techniques are consistently close 

to the LRU during whole program execution. For the second-level unified cache, the 

PLRU techniques outperform the LRU for even more cache organizations than those for 

the first-level caches. 

There exist replacement policies which combine the LRU and LFU replacement 

strategies. Frequency Based Replacement (FBR) [Robinson 1990] is one such hybrid 

replacement policy. It combines the benefits of both LRU and LFU without the 

associated drawbacks. In this scheme, the cache lines in a set are ordered based on the 

LRU value, but the replacement is primarily based on the frequency count. So FBR 

records the reference count of each cache line to achieve better replacement. The scheme 

uses a stack for implementation. The FBR is achieved by dividing the stack (cache) into 

three partitions: a new partition, a middle partition and an old partition based on the 

reference recency. The old partition contains LRU cache lines; the new partition contains 

MRU cache lines and the middle partition contains all the cache lines which are neither 

old nor new. If the reference is to a cache line in the new partition, then the reference 

count of that cache line is not incremented. This is to ensure that multiple references to 

the cache lines in the new partition in a short period of time do not promote them more 

than required. If the reference is to a cache line in the old or the middle partitions, then 

the reference count of that cache line is incremented by one. The FBR replacement policy 

identifies a cache line with the lowest reference count from the old partition for eviction. 

In [Lee 2001a], Lee et al. shows that there exists a spectrum of block replacement 

policies that subsumes both the LRU and LFU policies. The spectrum is formed 

according to how much more weight is given to the recent history over the older history 

and is referred to as the Least Recently/Frequently Used (LRFU) policy. LRFU increases 

the weight of a memory block by one when it is referenced, and decays the weights of all 
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memory blocks according to their backward distance. LRFU policy uses the complete 

reference history by using only a few words for each block. It associates each block with 

a Combined Recency and Frequency (CRF) value. During a cache miss, the block with 

the smallest CRF is selected for eviction. In this scheme, when the k value becomes 0, 

then it performs similar to the LFU and when the k value is 1, it matches the LRU. 

Though LRFU replacement scheme performs better in many cases in comparison with the 

LRU and LFU, it suffers because of its complex hardware implementation, large time 

complexity (the time complexity of LRFU varies from O(1) to (log2n) where as LRU 

time complexity is O(1)), difficulty in tuning accurately for each system and workload for 

maximum performance and difficulty in predetermining the exact optimal scale.   

Yannis Smaragdakis [Smaragdakis 2004] shows how to combine any two existing 

replacement policies so that the resulting policy can provably, never perform worse than 

either of the original policies by more than a small factor. This policy performs very well 

with real program data, often outperforming LRU (as well as all the other policies it 

adopts) by more than 40%. Jaafar Alghazo et al. [Alghazo 2004] proposed SF-LRU 

(Second Chance-Frequency - Least Recently Used) that combines LRU and LFU (Least 

Frequently Used) using the second chance concept. Experimental results show that the 

SF-LRU significantly reduces the number of cache misses when compared with the LRU 

(upto 6.3%) and LFU (upto 9.3%). S-LRU [Kampe 2004] has been proposed to try to 

partially take account of the frequencies while making the LRU decisions and to keep the 

overhead low. 

Inter-reference Gap Distribution Replacement (IGDR) is based on a reference model and 

adapts to reference patterns that prefer LRU or LFU. It attaches a weight to each memory 

block, and selects the smallest weight block for replacement. The difference in time 

between successive references of a memory block is called Inter-Reference Gap (IRG). 

This scheme claims achieving cache miss reduction upto 46.1% (19.8% average) and 

upto 48.9% (12.9% average) speed up over the LRU scheme when working with 

SPEC2000 benchmarks. 

Most Recently Used (MRU) policy selects the most recently used cache line from a set 

for eviction. This algorithm is not widely used in the cache memory system because of its 

bad temporal locality. The Priority Cache (PC) [Aguilar 2004] selects a cache line from a 
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set, based on the runtime and compile-time information, for eviction. PC associates a data 

priority bit with each cache block. The compiler, through two additional bits associated 

with each memory access instruction, assigns priorities. These two bits indicate whether 

the data priority bit should be set as good as the priority of the block, i.e. low or high. The 

cache block with the lowest priority is the one to be replaced.  

In addition to all these replacement policies, there exist various replacement strategies 

which are very specific to architectures like victim cache [Jouppi 1990], skewed-

associative cache [Seznec 1993], elbow cache [Spjuth 2004] etc. Comparison of the 

widely used replacement algorithms is in Annexure A. 

2.2.2 ENERGY EFFICIENT CACHE ARCHITECTURES 

Cache memory power analysis reveals that the data lines and data sense amplifiers are the 

main sources of power consumption [Wilton 1996]. Wilton and Jouppi [Wilton 1996] 

reported power consumption by the data lines and data sense amplifiers as 55%, 65% and 

75% of the total cache sub system power consumption for the direct-mapped, 2-way set-

associative and 4-way set-associative mapping schemes respectively. One way to 

minimize the dynamic power consumption is to minimize the internal activity of the 

cache during a cache access. Minimum cache power consumption can be achieved if the 

cache incurs minimum conflict misses. Also, if each cache hit results in reading and 

comparing only one tag entry, enabling and accessing only that one data entry and if each 

cache miss results in only reading and comparing one tag entry.  

Hardware prefetching [Chen 1995] is a popular technique for enhancing the cache 

performance in conventional systems. The prefetching techniques try to reduce the cache 

miss rate by prefetching instructions into the internal cache. This may result in replacing 

useful data in the cache [Gupta 1990]. Unfortunately, most of the existing prefetch 

techniques are not very effective in embedded systems because of real time processing 

constraints and react to stochastic execution flow. 

The real-time / embedded systems employ various partitioning schemes to make cache - 

energy efficient and deterministic. This ensures the smooth execution of higher priority 

time-critical tasks. A cache partitioning can be either static (fixed) or dynamic. A fixed 

partitioning scheme partitions the entire cache into N equal/ unequal sizes and assigns 
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them to the tasks. In case of dynamic partitioning scheme, the cache is partitioned based 

on various parameters such as the size of the task, priority of the task, number of cache 

blocks in use etc. 

Another way of partitioning the cache is vertical and horizontal partitioning. The vertical 

cache partitioning scheme [Su 1995] aims at optimizing the capacitance of each cache 

access by introducing a small cache between the CPU and the main cache. Accessing a 

smaller cache needs less power because of low load capacitance. Buffering cache [Bunda 

1994], filter cache [Kin 1997] and loop cache [Bajwa 1997] are some of the ways of 

realizing the vertical cache partitioning scheme. These schemes result in reducing the 

power consumption, but the amount of power saved depends on the spatial locality of the 

applications and the cache line sizes. 

The buffer cache [Bunda 1994] is closer to the processor than the conventional L1 cache. 

In this scheme, the processor checks the availability of data in the block buffer. If it is a 

hit, the data is directly read from the block buffer and the cache is not operated. The 

cache is operated only if there is a block miss. The effectiveness of block buffering 

strongly depends on the spatial locality of applications and the block sizes. The higher the 

spatial locality of the access patterns (e.g. an instruction sequence), the larger the amount 

of energy which can be saved by block buffering. The block size is also very important in 

block buffering. 

Bellas et al. [Bellas 1999] proposed a L0 cache to store the most frequently executed 

portions of a code.  A L0 cache resides between a L1 cache and the processor and is 

directly accessed by the processor. The selection of the most frequently executed code to 

accommodate in a L0 cache is dynamic. Bajwa et al. proposed a loop cache [Bajwa 

1997]. [Kin 1997] used a loop cache to store the most frequently executing instructions 

and uses it as a L0 cache. Vahid and Cotterell [Collerell 2002a] [Collerell 2002b] 

described the use of a loop cache in embedded system. The content of the loop cache is 

loaded dynamically during program execution and used as a static memory. Given their 

very small sizes (128–256 bytes), loop caches negatively affect the miss rate, but 

decrease the overall energy. When compared with pre-decoded instruction buffers, loop 

caches are less energy efficient for programs with very high locality, but they are more 
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flexible. The loop cache has a greater area in comparison to a same-sized buffer cache, 

because of the tag memory and tag match circuit.  

Kin et al. [Kin 1997] proposed the filter cache, a small L1 cache which reduces power 

consumption drastically with small performance degradation. In this scheme a small L2 

cache which is similar to the conventional L1 cache is placed behind the filter cache to 

reduce the cache misses and this explains the performance loss. A typical 256B direct-

mapped filter cache achieves 58% power reduction at the cost of 21% performance 

degradation.  

A HotSpot cache is used to reduce dynamic power consumption for both instruction and 

data caches [Yang 2004]. It adds a small cache between the CPU and L1 instruction 

cache. It identifies the frequently accessed instructions dynamically and stores them in a 

L0 cache. Yang and Lee [Yang 2004] designed a mechanism that can successfully 

identify frequently accessed basic blocks in each program phase at runtime. Only basic 

blocks declared as hot blocks are stored in the L0 cache. The L1 cache is augmented with 

a block buffer for exploiting spatial locality within a cache line for further energy 

savings.  

Victim caches [Jouppi 1990] are small, fully-associative buffers that provide limited 

additional associativity for heavily utilized entries of a direct-mapped cache. The victim 

cache can be accessed in parallel with the main cache (L1) or in the next cycle if and only 

if the cache access in the main cache is a miss. The parallel access does not increase the 

effective access time much, due to its small size. Accessing the victim cache after 

detecting a cache miss in the main cache results in, wasting one cycle in case of a victim 

cache hit or cache miss. In this scheme, the victim cache normally employs FIFO 

replacement policy. If a match is found in the victim, the cache line in the victim is 

swapped with the main cache’s cache line in the specific location. The victim cache 

improves the cache performance, but for the average cache access time. Stiliadis and 

Varma [Stilliadis 1997] proposed and evaluated an improvement of this scheme, called 

the selective victim caching for improving the cache hit rate without affecting the access 

time. In this scheme, incoming blocks into the first level cache are placed selectively in 

the main cache or a small victim cache by the use of a prediction scheme which is based 

on past history. If the probability of a new block to be placed in the cache is less than that 
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of the existing block in the cache then the new block is stored in the victim cache. 

Otherwise, the new block is stored in the main cache and the existing block in that 

location is moved to the victim cache. In addition, block exchange between the main 

cache and the victim cache are also performed selectively.  

The horizontal partitioning scheme [Su 1995] partitions the cache memory into various 

segments. For instance, a 4-way set-associative cache can be partitioned into 4 segments 

(also called sub-banks) where each cache way is in one segment. Each segment can be 

accessed, shutdown, or activated (power up) individually. So if one can predict the 

segment in which the accessed data is available, a majority of the power consumption can 

be saved by powering down the remaining segments and thus, eliminating unnecessary 

accesses. Power saving in the horizontal partitioning scheme depends on the number of 

segments one can turn off while accessing the data. There exist various ways to 

accomplish the horizontal partitioning scheme. Cache sub-banking proposed in [Su 

1995], is one of the horizontal cache partition techniques which partition the data array of 

a cache into several banks called sub-banks. Each sub-bank can be accessed and managed 

individually. All the (N-1) sub-banks can be in the power down state while accessing data 

from a sub-bank. The amount of power saving and the cache hit performance depends on 

the number of sub-banks. Some of the other horizontal partitioning schemes are way 

shutdown, way prediction, phase lookup, and various combinations of some of these. One 

advantage of the horizontal partitioning scheme over the vertical partitioning scheme is 

the effective cache hit time of a horizontal partitioning cache. The effective cache hit 

time of a horizontal partitioning cache can be as fast as the conventional cache as the 

logic circuit that decides which cache bank to select is simple.   

The key to energy reduction is to pinpoint the matching way without probing all of the 

ways. One option to avoid high-energy dissipation at the cost of slower access is by using 

sequential access, employed in Alpha 21164’s L2 cache [Bannon 1995]. In sequential 

access, the cache waits until the tag array determines the matching way, and then 

accesses only the matching way of the data array, dissipating about 75% less energy than 

a parallel access cache. Sequential access, however, serializes the tag and data arrays, 

adding as much as 60% to the cache access time [Powell 2001]. One can implement the 

horizontal partitioning scheme (sequential access) in a set-associative cache by accessing 
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it like a direct-mapped cache. This is achieved by a phased lookup set-associative cache 

[Calder 1996] [Hasegawa 1995] [Lyon 2002]. This cache accesses the tag arrays in the 

first phase, and in the second phase, it accesses only the data array corresponding to the 

matching tag, if there exists any. This can eliminate most of the unnecessary activities in 

data array as the complete data array is in the power down state during the first cycle and 

in the second cycle, the segment (cache way) which holds the valid data alone is powered 

on, in case of a cache hit. This scheme accesses at most one data array at the cost of 

performance overhead due to one extra phase and hence results in a longer cache access 

time, though it saves energy. 

Juan et al. [Juan 1996] proposed the difference-bit cache which is a 2-way set-associative 

cache. This design is to achieve access time close to that of a direct-mapped cache of the 

same capacity and line size. This is achieved by a single tag bit and works based on the 

fact that two tags of a set have to differ by at least one bit. This is achieved by separating 

the selection of a proper way from the detection of a hit, and selecting the way using the 

least-significant bit in which both tags of a set differ. The decision of a cache hit in the 

difference-bit cache is of one cycle. Zhou and Petrov [Zhou 2006] used the application 

knowledge regarding the nature of memory references to eliminate the tag address 

translations for most of the cache accesses in a virtual memory system. Application 

knowledge regarding the nature of the data memory references is used to distinguish 

references as private data and, consequently, handle them in a more energy-efficient way. 

In this system, both virtual and physical tags co-exist and for private data, address 

translation is avoided by directly using the virtual tag.  

A skewed associative cache was first introduced by Seznec et al. [Seznec 1993]. A 

skewed cache is conceptually divided into multiple sub-banks, each indexed by a 

different hash function. For a skewed 2-way set-associative cache, cache blocks that map 

to the same location in one of the banks are likely to map to different locations in the 

other. The skewed-associative cache [Seznec 1993] is an alternative option. A two-way 

set-associative cache can achieve the equivalent hit performance of a 4-way cache by 

employing different mapping functions for each way. One of the challenges with skewed 

caches is the replacement algorithm. Since there are no fixed sets, any combination of 

victim pairs, one from each bank is possible. This makes it difficult to implement an 
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exact ordering-based replacement algorithm like the LRU. To solve this issue, Not 

Recently Used, Enhanced (NRUE) [Seznec 1993] replacement scheme has been proposed 

which is the best performing replacement algorithm for skewed caches.  

[Spjuth 2004] proposed an elbow cache which extends the skewed cache organization. It 

adopts a relocation strategy for conflicting blocks. An elbow cache relocates the 

conflicting blocks to their alternate locations. This reduces the conflict problems while 

consuming less dynamic power. An elbow cache reduces the miss rate at the cost of 

complexity. 

Another way of accessing the set-associative cache as a direct mapped cache is the 

pseudo set-associative cache [Huang 2001][Yongioon 1999] [Agarwal 1993]. Pseudo 

Set-Associative Caches are set-associative caches with multiple hit times. It has one tag 

array and one data array like a direct-mapped cache. On a miss, an index bit is flipped 

and a second cache entry is checked for a hit—the first and second locations thus form a 

pseudo-set. Here, dynamic power is reduced at the expense of performance. This scheme 

requires extra time whenever prediction results in a miss. Panwar and Rennels [Panwar 

1995] proposed a method to skip tag comparisons when accessing the last accessed cache 

line again. 

Like the Pseudo-associative cache, a Hash-Rehash cache [Agarwal 1988] was proposed 

to reduce the miss rate of a direct-mapped cache. It is used to reduce the probability of 

thrashing in a cache by providing multiple locations to store data in the cache. When a 

memory reference is presented to the cache, the direct-mapped location is checked. If 

there is a miss, a hash function is used to index the next cache entry. Like in a pseudo set-

associative cache, the most-recently-accessed cache line will be moved to the direct-

mapped location. However, exchanging large cache lines consumes large amount of 

power, cycle time and bus bandwidth. The main drawback of a hash-rehash cache is that 

every miss at the first cache address results in a second cache lookup at a rehash address. 

The cache miss (miss in both the first and second cache addresses) in the hash-rehash 

cache might replace useful data at the hashed location which results in secondary 

thrashing. The secondary thrashing affects the performance of this scheme which may 

even degrade it to below that of a direct-mapped cache.  
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A column-associative cache [Agarwal 1993] improves upon the hash-rehash by inhibiting 

a rehash access if the location reached by the first time access itself contains data written 

by a hashed address. It employs two different mapping schemes. The first is used when a 

cache access is issued, whereas the second is applied only in the case of a miss in the first 

attempt. This scheme has an additional bit called a rehash bit per cache entry. This bit 

indicates whether the data in the entry was written using a hashing function or not. In 

practice, this cache behaves like a 2-way set-associative cache with sequential search and 

uses the LRU information to guide both the replacement policy and the search order. 

Even in the column-associative cache, thrashing may still occur if data from 3 memory 

locations is frequently used and is stored using a common cache address. If the cache is 

off-chip, then the swapping of data between cache locations is impractical because of the 

latency associated with the off-chip cache.  

Hallnor et al. [Hallnor 2004] proposed Indirect Index Cache (IIC) as a mechanism to 

achieve full-associativity through software management. The IIC serializes tag 

comparison and data lookup by storing a forward pointer in the tag store to identify the 

corresponding data line. A cache access in the IIC is performed using a structure similar 

to a hash table with chaining. If a matching tag is not found in the set-associative tag-

store, a pointer associated with the set is used as a direct-mapped index into a collision 

table. Each entry in this second table provides a pointer to the next member of the 

collision chain. The chain is traversed until either a match is found or the maximum chain 

length is reached. This scheme requires collision chain traversal, resulting in variable hit 

latency and port contention. This scheme also requires swapping of tag entries to reduce 

the average hit latency to a reasonable value. IIC also requires software management of 

the replacement algorithm. 

Patel et al. [Patel 2006] proposed an improved indexing scheme for direct-mapped 

caches, which reduces the number of conflict misses by using application-specific 

information. This indexing scheme is based on the selection of a subset of the address 

bits. The selection is based on the knowledge of the specific addresses used to access the 

cache. 
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The half-and-half cache [Theobald 1993], reserves half of the cache lines for direct-

mapped access and the other half for associative accesses. This is to exploit the 

advantages of both direct-mapping and associativity. 

 Dropsho [Dropsho 2002] discussed an accounting cache architecture that is based on the 

resizable selective ways cache proposed by Albonesi [Albonesi 1999]. The accounting 

cache first accesses a part of the ways of a set-associative cache, known as a primary 

access. If there is a miss, then the cache accesses the other ways, known as secondary 

access. A swap between the primary and secondary accesses is needed when there is a 

miss in the primary and a hit in the secondary access. Energy is saved on a hit during the 

primary access but secondary access consumes large amount of power, and cycle time. 

Zhang [Zhang 2006] proposed the balanced cache (B-cache) to reduce the miss rate of 

direct-mapped caches by balancing the accesses to cache sets. This is achieved by 

increasing the decoder length using programmable decoders, and this reduces the 

accesses to heavily used sets without dynamically detecting the cache set usage 

information. They introduced a replacement policy for B-cache which reduces miss rates 

significantly. The B-Cache consumes more power per cache access but exhibits less total 

memory access related energy saving due to the miss rate reductions.  

Benini et al. [Benini 2000] described an application-driven partitioning of the on-chip 

SRAM, based on recursive formulation. This design consists of independently accessible 

banks. Gonzalez et al [Gonzalez 1996] proposed a logical partition for the on-chip cache 

into the spatial and temporal cache based on the spatial and temporal data. This approach 

relies on the dynamic prediction mechanism for the spatial and temporal data which uses 

a prediction buffer. Park et al. [Park 2007] presented a dual data cache system structure, 

called a co-operative cache system. This design consists of two caches with different 

associativity and line sizes, i.e., a direct-mapped temporal-oriented cache (TOC) with an 

8 byte line size and a 4-way set-associative spatial oriented cache (SOC) with a 32 byte 

line size. They used 8KB TOC and SOC in their design. For a cache read, by default, the 

cache probes a TOC block in the first cycle . In case of miss in the TOC block when the 

data block is available in the SOC block, access the data from the SOC and the 

corresponding TOC block is copied in to the TOC as well. Whenever a cache miss 

occurs, the corresponding SOC block is fetched from the main memory to the SOC and 
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the corresponding TOC block is copied into the TOC as well. For a cache write, if the 

content is available in the TOC, update it directly there. If there is a miss in the TOC but 

a hit in the SOC, then the corresponding TOC block is copied from the SOC and 

modified. The data in the SOC is not modified because the TOC has a higher priority 

than the SOC for a cache read. The cache write into a SOC can be delayed until the 

replacement the TOC block.   

The Most Recently Used (MRU) cache design [Chang 1987] maintains the MRU 

information associated with each set. When searching for data, the block indicated by the 

MRU bits is probed. However, the MRU bits must be fetched prior to accessing the 

cache. The PSA (Predictive Sequential Associative) cache design [Calder 1996] moves 

the prediction procedure to previous stages of the pipeline so that the MRU information is 

presented to the cache simultaneously along with the memory reference. The cache 

controller attempts to make a prediction speculatively of the way where the required data 

may be located. If the prediction is correct, the cache access latency and the power 

consumption are similar to those of a direct-mapped cache of the same size. 

Inoue et al. [Inoue 1999] [Inoue 2001] proposed the Way prediction set-associative cache 

scheme. Way-prediction cache [Inoue 1999] speculatively chooses one cache way before 

the cache line access in a set-associative cache. This scheme reduces the number of tag 

comparisons by first accessing only the tag array and data array of one way (segment) 

that is predicted in the first cycle. All the (N-1) data and tag segments are in the power 

down state during this cycle. If a misprediction occurs, then the remaining (N – 1) ways 

are accessed in the following cycle. Inoue et al. used log2 (N) bits per set to maintain the 

MRU way information which is used for predicting the way. MRU bits of each set have 

the information of the recently accessed cache line’s way in that set. If the prediction is 

correct, the cache consumes the energy required for only one activated way. Otherwise, 

the cache searches all of the ways and consumes energy required for all of them. This 

method saves almost (100*(N – 1) / N) % of the energy in an N – way set-associative 

cache.  Prediction accuracy according to Powell et al. [Powell 2001] is 90% for 

instruction and 80% for data. 
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Though the way-prediction scheme is very effective in saving power, it suffers from 

serious drawbacks, which significantly limit its usage. This scheme suffers performance 

degradation because of the cycle time penalty for handling mispredictions. In the way 

prediction scheme a table lookup is needed to identify the MRU information of the 

selected set. This adds extra time delay to the critical path as one cannot prefetch the 

MRU information until the set number is available. One can overcome this using 

information available either early in the pipeline, such as the program counter (PC), or 

later in the pipeline, such as an XOR-based approximation of the load address [Powell 

2001]. Unfortunately, both choices have problems. Way prediction based on information 

from early pipeline stages suffers from poor accuracy, and way prediction based on late 

pipeline information introduces a way prediction table lookup delay in the cache access 

critical path [Batson 2001]. For instance, the way prediction scheme used in [Inoue 1999] 

inserts a table lookup after the address generation to identify the predicted way. Another 

drawback of the way prediction scheme is that the MRU information does not always 

work well with data references [Calder 1996][Batson 2001] [Min 2004].  

Powell et al. [Powell 2001] combined way prediction and selective direct-mapping to 

reduce the L1 cache dynamic energy without performance degradation. This scheme 

predicts the matching way and searches only in that predicted way, thus saving energy. 

Albert Ma et al. [Ma 2001] proposed the way memorization cache to reduce fetch energy 

in instruction caches. The way memorization cache stores way information (link) within 

the instruction cache. It also maintains a valid bit per link to guarantee that the way link is 

valid. In the way prediction scheme, reading at least one tag is compulsory for verifying 

the prediction correctness. Way memorization requires a link invalidation mechanism to 

maintain the coherence of link information. 

Batson and Vijay Kumar [Batson 2001] proposed the Reactive Associative Cache (RAC) 

which uses both the way prediction and selective direct-mapping schemes. The RAC 

provides flexible associativity by placing most blocks in the direct-mapped positions and 

reactively displacing only conflicting blocks to set-associative positions. To achieve 

direct-mapped hit times, the RAC organizes the data array like a direct-mapped cache, 

and the tag array like a set-associative cache. The RAC uses way prediction with 

feedback for high prediction accuracy. The RAC uses a PC scheme for implementing 
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way prediction. The RAC hit time is within 1% of the direct-mapped cache and is 25% 

faster than a 2-way set-associative cache.  

Zhang et al. [Zhang 2005] proposed a way-halting cache, which reduces the energy 

without performance degradation. This has been achieved with the help of a fully 

associative array called halt tag array. The halt tag array predetermines which tags cannot 

match due to the mismatch of their lower order 4 bits and halts access to the ways with 

known mismatch tags, thus saving power. In this method, some energy is wasted in the 

parallel comparison of low-order 4 bit tags in halt tag array. Here, in worst case, the 

saving achieved is less.  

Energy efficiency can also be achieved by reducing the number of tags for comparisons. 

Efthymiou and Garside [Efthymiou  2002], Juan et al. [Juan 1996], Min et al. [Min 2004] 

focused on reducing the number of tag bit comparisons (partial tag matching) to save 

energy and access time. This method is application-specific and it reduces the energy, 

access time and traffic for a specific set of applications, though not for all. Inoue et al. 

[Inoue 2002] proposed a history-based tag-comparison scheme (HBTC) for reducing the 

energy consumption of direct-mapped instruction caches. HBTC eliminates unnecessary 

tag checks at runtime by efficiently exploiting the program execution footprints recorded 

in the Branch Target Buffer (BTB) contents. Zhang et al. [Zhang 2003] proposed a way 

concatenation cache which is a set-associative cache whose ways can be logically 

concatenated to result in a 4-way, 2-way, or direct mapped cache all of the same total 

size. Albonesi [Albonesi 1999] proposed the way shutdown cache for reducing the 

dynamic power consumption. In this scheme, a simple logic circuit is used to shut down 

the cache ways. Zhang et al. [Zhang 2003] proposed the Way shutdown cache which 

increases the miss rate but saves static / leakage power. In this scheme all the unused 

ways are put into the shutdown state by using circuit level technique proposed by Powell 

et al [Powell 2000]. Zhang et al. [Zhang 2003] also proposed cache line size configurable 

cache (16, 32, 64 B) by using a small register. Here, a base 16B line size is used and the 

larger sizes are implemented by concatenating multiple physical lines. Zhang [Zhang 

2007] extended the traditional configurable cache and made the whole on-chip cache 

memory capacity available to both instruction and data caches. The capacity can then be 

co-allocated between the data and the instruction caches. When compared with the way 
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shutdown and way concatenation caches, the capacity co-allocation cache provides a 

better solution than increasing the associativity. 

Ishihara and Fallah [Ishihara 2005] proposed a non-uniform cache architecture. This 

work uses an algorithm for simultaneous cache configuration optimization and code 

placement. The non-uniform cache architecture allows different associativity values for 

different cache sets. An algorithm determines the optimum number of cache ways for 

each cache set and generates a object code suitable for the non-uniform cache memory. 

The paper also proposes a compiler technique for reducing redundant cache way accesses 

and cache-tag accesses. Aly et al. [Aly 2003] proposed a variable way set-associative 

cache to reduce the power consumption without degrading the performance. Static 

profiling is used to determine the sets' behavior in a set-associative cache. Each cache set 

in this design has a different associativity. Qureshi et al. [Qureshi 2005]  proposed the V-

Way Cache, which allows the associativity to vary on a per-set basis by increasing the 

number of tag-store entries relative to the number of data lines. This scheme uses Reuse 

Replacement, a global replacement policy based on frequency information. The proposed 

replacement policy selects a victim within five cycles for 99.3% of the evictions.  

Chang et al. [Chang 2004] proposed a value conscious (VC) cache to reduce average 

power consumption during a cache access. This is based on the observation that the 

majority of the cache access bits are ‘0’. In VC cache power dissipation for accessing a 0 

is much less than that for accessing a 1. VC cache achieves this by preventing bitlines 

from being discharged while accessing 0. The VC cache is a circuit-level technique 

which saves more power, if the data contains more bits with 0 values. 

One of the major concerns in conventional memory architecture is that the cache is 

transparent to the operating system and application programs (software). The 

transparency of the cache cause unnecessary power consumption. Recent studies suggest 

the necessity of cache – compiler – operating system – application program interaction to 

improve the cache performance. The interaction can reduce the cache power consumption 

by accurately predicting the cache set where the required data is available, thus allowing 

the other ways to sleep [Yang 2005]. The interaction can also improve cache 

predictability and performance by helping in the selection of a victim cache line with 

minimum modification in the replacement circuitry [Jain 2001][Wang 2002][Sartor 
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2005]. Yang et al. [Yang 2005] proposed a software-controlled cache that allows 

application programs to control data allocation on the cache. The mapping between data 

types and cache regions is determined statically based on the programmer’s knowledge of 

the application behavior and offline profiling information gathered using a cache 

simulator. Jain et al. [Jain 2001] uses application-specific information about future 

variable accesses from the program analysis (trace analysis) for replacement decisions, 

i.e. to keep or evict the cache lines. The compiler can provide information about the 

spatial and temporal locality of the loops [Wang 2002] in application programs which 

will helps the cache controller to decide on the cache line to be evicted. Wang et al. 

[Wang 2002] uses the compiler to find the array elements in a loop that will not be reused 

again soon and use them for eviction. Sartor et al. [Sartor 2005] uses compiler locality 

hints to keep or evict a cache line. In all the above described software-controlled cache 

schemes the information is passed on to the hardware through modified instructions. 

Some of the existing microprocessors have instructions that can manage the cache by 

either flushing the entire cache or cleaning a given cache line. This gives these processors 

the ability to limit cache pollution [Gupta 1990]. One such example is the Compaq Alpha 

21264 [Kessler 1998] where the load/store instructions minimize cache pollution by 

invalidating a cache line after it is used. The microprocessor can prefetch a line or zero 

out a given line [May 1994] [SunMicrosystems 1997] by using these instructions. Few 

other processors permit cache line locking within the cache based on the frequency of 

usage of the elements in the cache line; mainly for removing those cache lines as 

candidates to be replaced [Cyrix 1998] [Cyrix 1999]. 

2.3   OPERATING SYSTEM LEVEL ENERGY CONSUMPTION 

At the operating system level, there have been three primary approaches to address the 

energy consumption problem: process scheduling techniques [Smith 1982], paging 

systems [Leback 2000], and performance tuning [Acquaviva 2003].  

Task Scheduling in real-time systems is a well understood and widely studied issue in 

literature. The primary focus of most real-time task scheduling algorithms is to generate a 

feasible schedule i.e. a schedule which ensures that no job misses its deadline. In some 

real-time systems, additional constraints other than feasibility may also apply. For 
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instance, in an embedded system, availability of power, size of the memory and speed of 

the processor may, among others, affect the scheduling policies and algorithms 

([Kandemir 2003][Dudani 2002] [Pillai 2001] [Pouwelse 2000]). 

Task scheduling algorithms may be online or offline. In online scheduling, the scheduling 

algorithm competes for the processor time along with the tasks being scheduled and is 

dynamic. In offline scheduling, all tasks-related information required for scheduling such 

as arrival times, periods, worst case execution times and deadlines are available with the 

scheduling algorithm well in advance [Liu 2000]. The offline scheduling usually takes 

place external to the executing environment and is static.  

One of the most commonly used offline real-time scheduling algorithm is the clock-

driven scheduling algorithm [Liu 2000]. In clock-driven scheduling, a schedule which 

satisfies all the task deadlines by taking the worst case execution time into consideration 

is found and is fed into the system in the form of a table. The resultant schedule in the 

form of a table consists of job / task identifiers and their activation times. The system 

then generates timer interrupts to schedule the job(s) / task(s) according to the schedule. 

This clock-driven scheduling algorithm is a static algorithm, i.e., if a job finishes its 

execution before the worst case execution time and although k other jobs are available for 

execution in the system, the clock-driven scheduler will allot the next job to the CPU 

only based on the static schedule table entry. Though this scheduling scheme gives the 

minimum scheduler overhead, the system throughput and waiting time performance 

degrade because of the idle time in the middle of the schedule (which results in the 

underutilization of the system). This scheduling algorithm is useful for resource 

constrained real-time systems whose tasks execute till the worst case execution time for 

almost all cases. The efficiency of the schedule in this case depends on the schedule 

provided by the external environment. The scheduler overhead in clock-driven 

scheduling is only the time taken by a timer interrupt, which is very small (with O(1) 

complexity) when compared with any dynamic scheduling algorithm. Moreover, this 

scheduler is forced to modify and reload a new schedule (static schedule table) every time 

a new change in the execution time of a task occurs, or a new task is added. Thus, this 

makes the scheduler static.  
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On the contrary, online scheduling algorithms are capable of taking decisions on-the-fly. 

Here, the scheduler also needs to compete with other jobs for the CPU time. This 

dynamic scheduler does not leave the CPU idle if any job is ready for execution and also 

grabs some CPU time for its execution too. Almost all online scheduling algorithms are 

priority-based scheduling algorithms.  

2.3.1 PRIORITY-BASED DYNAMIC SCHEDULING ALGORITHMS 

The priority-based scheduling algorithms are further categorized into task-level fixed 

priority scheduling algorithms, task-level varying but job-level fixed priority scheduling 

algorithms and job-level varying priority algorithms. Liu and Layland [Liu 1973] in their 

seminal work, proposed the Rate Monotonic (RM) scheduling algorithm for periodic 

tasks. The RM is a task-level fixed priority scheduling algorithm where the priority of a 

task is inversely proportional to its period. Another most commonly implemented and 

analyzed algorithm is the Earliest Deadline First (EDF) [Liu 2000] algorithm. The EDF 

bases the priority of a job on its deadline. As the priority is fixed for a specific job but 

varies among multiple instances of the same task, EDF is a task-level varying but job-

level fixed priority scheduling algorithm. Least Laxity First (LLF) [Liu 2000] algorithm 

is a job-level varying priority scheduling algorithm, where the priority of a job at time t is 

inversely proportional to the slack available to that job. The slack of a job is defined as 

the difference between the total time available until the job’s deadline and the remaining 

execution time of the job in the CPU, i.e., deadline of the job Ji – current time t – 

remaining execution time of Ji.  

More recently, the proliferation of mobile embedded devices running on limited battery 

power has brought in focus the issue of power-aware computing – in particular, power-

aware scheduling. The above mentioned conventional priority-based scheduling 

algorithms like RM, EDF and LLF are oriented towards generating a feasible schedule, 

rather than an energy efficient schedule. The next section discusses energy efficient 

scheduling algorithms. 

2.3.2 ENERGY EFFICIENT SCHEDULING ALGORITHMS 

The energy consumption of a system with multiple tasks includes the energy 

consumption by the CPU and memory for executing the tasks, energy consumption by the 
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scheduling process, memory management unit and other operating system functionalities, 

and the energy consumption because of the unproductive but unavoidable activities like 

context switches, frequency / voltage mode transfer etc. An ideal schedule is the one 

which results in optimal power consumption by the CPU, i.e., running the CPU at an 

optimal frequency and voltage level for the minimum time duration, optimal number of 

memory references, and optimal use of the operating system functionalities like 

scheduling, memory management, zero context switches and frequency / voltage mode 

transfer.  

The factors affecting power consumption can be classified as platform-dependent and 

platform-independent. The platform-dependent factors are those which require special 

architecture level support for energy reduction. Some of the most important platform-

dependent factors affecting the power consumption caused by a schedule are the clock 

frequency and the applied voltage of the CPU. These factors are platform-dependent 

because the CPU should support the multiple operating frequencies and voltage levels for 

making it work, which is not common in usual scenarios. The platform-independent 

factors affecting power consumption include context switching, process idle time and 

caching impact. The following sections explain in detail about the existing scheduling 

algorithms which were designed with the aim of reducing the platform-dependent and 

platform-independent power consumptions.  

2.3.2.1 Platform-dependent Energy Efficiency 

A hard real-time scheduler takes the worst-case execution time into consideration for 

determining the schedule. This is to ensure that all the hard real-time tasks meet their 

respective deadlines. The actual execution time of the tasks is usually just a fraction of 

the worst-case execution time which results in the CPU being idle for a long time. Thus, 

to reduce the power consumption of the CPU, the literature adopts two different 

strategies. The simplest one is to keep the CPU in power down state when no task is 

available for execution. This method is advantageous if the system can allow the CPU to 

be in power down mode for a long time as the transfer between power down mode and 

active mode takes some time and so, powering down of the CPU should not affect the 

execution of the other tasks in the system. The alternate approach to reduce power 
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consumption is to reduce the CMOS circuitry power dissipation. Power dissipation in 

CMOS technology Pd = Ceff * Vdd
2 * f, where Ceff is the effective switching capacitance, 

Vdd is the supply voltage and f is the frequency of the clock [Aydin 2004]. The above 

formula suggests that one can achieve reduced power consumption if the supplied 

voltage, effective switching capacitance and the frequency of the clock can be reduced. 

This is possible only if the CPU supports multiple supply voltage levels and frequencies, 

which makes it platform-dependent. 

For the processors which support multiple voltage and frequency levels, reduction in 

CPU power consumption is possible by reducing the supply voltage and clock frequency, 

while still meeting all the task deadlines. This technique is called Voltage Scaling / 

Frequency scaling. The voltage / frequency scaling can be static (SVS/SFS) or dynamic 

(DVS/DFS).  

In SVS / SFS, if the current process utilization is less than 100% even for the worst-case, 

then the applied voltage and frequency is scaled down to make the resultant utilization 

100%. This works under the principle that if the scheduling algorithm can produce a valid 

schedule (if there exists one) when the utilization of the processor is less than or equal to 

100%, then the applied voltage and frequency of the CMOS technology can be scaled 

down without any job deadline misses. In other words, one can scale up the utilization of 

the processor (CPU) by making it work for a longer time with lesser applied voltage and 

frequency and thus save dynamic power. If the current utilization of the system is 60%, 

by reducing the voltage and frequency (thus increasing the execution time of the task), 

statically, the utilization of the processor can be scaled up to 100% without any of the 

tasks missing its deadline. In this case the system continues to work with the worst-case 

execution time with respect to the new selected frequency and supply voltage. This 

requires processors with multiple voltage level and frequency support.  

Analysis reveals that the worst-case execution time is a never / rarely occurring case, as 

most of the jobs finish their execution well in advance. This leaves the CPU (processor) 

idle for a long period, thus resulting in power consumption without any productive work 

being done. One way to tackle this issue is to power down the CPU whenever there is no 

job readily available for execution. The CPU consumes some time and power to switch 
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between the power-down and active state which makes this option ineffective, when the 

power down time is small and distributed.  

One other way of saving power consumption is by adjusting the supply voltage and 

frequency dynamically. This is technique is called Dynamic Voltage Scaling / Dynamic 

Frequency Scaling (DVS /DFS) [Gruian 2001] [Krishna 2000] [Pering 1998].  DVS/DFS 

reduces the applied voltage and frequency and consequently, increases the execution time 

of tasks, while ensuring that none of the task deadlines is missed. 

Pillai et al. [Pillai 2001] proposed various DVS algorithms for real-time systems (RT-

DVS) which include cycle conserving DVS for the EDF and RM, and Look – Ahead RT-

DVS. The cycle conserving EDF and RM at first, scale-up the utilization by applying 

SVS (reducing the operating frequency and supply voltage). This scheme assumes the 

worst-case execution time initially and then executes at a high frequency until the 

completion of some jobs. Like in the EDF, the cycle conserving EDF also selects the next 

job to run based on the job deadline. Whenever a job is finishing its execution before its 

worst-case execution time, the unused CPU time is utilized by recalculating (lowering) 

the operating frequency and supply voltage for the ready-to-run jobs. This calculation 

uses the actual execution time to find the utilization until a new job of the same task 

arrives in the system. On the arrival of a new job of the task, the operating frequency and 

supply voltage are recalculated with the worst-case execution time of the job. This is 

higher than or equal to the current operating frequency and supply voltage. The cycle 

conserving RM works in a similar manner except for the criterion for selection of the 

next job to run. In cycle conserving RM, the next job is selected based on the period, not 

the deadline. The cycle conserving RM does not perform the schedulability test, as the 

test takes O(N2) time, where N is the number of tasks to be scheduled. The Look-Ahead 

EDF uses a Look-Ahead technique to determine the future computation need and defers 

task execution. This approach is more aggressive than the cycle conserving EDF and RM. 

This Look-Ahead scheme looks at the time interval until the next task deadline and tries 

to push (defer) as much work as possible beyond the deadline. This scheme sets the 

operating frequency and supply voltage to the minimum possible value, so that it can 

finish the minimum work to ensure all the future task deadlines. The task of determining 

the minimum cycle required and minimum operating frequency is carried out by looking 
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at the tasks in the reverse EDF order. Although this scheme aggressively reduces the 

processor operating frequency and supply voltage, it ensures that there are sufficient 

cycles available for each task to meet its deadline. This approach may thus result in 

running the processor at its maximum frequency in order to complete all the deferred 

work in time. The authors adopt this strategy keeping in mind the very high chances of 

tasks finishing their execution much ahead of their worst-case execution times. In this 

case, the system never needs to execute at peak execution rates and thus, this heuristic 

allows the system to continue performing (by meeting all the task deadlines) with low 

operating frequency and supply voltage.            

2.3.2.2 Platform independent Energy Efficiency 

One of the most important platform-independent factors affecting power consumption 

caused by a schedule is context switching [Mok 1983]. The context switch time is the 

time taken to switch between two processes or threads in a schedule. Thus the context 

switch duration is a hidden, unproductive duration in a schedule. The context switch 

duration includes the time taken for saving the context of the current process / thread and 

loading the context of the next process / thread. This implies that when a process finishes 

or a new process starts, this interval is not counted as a context switch. Typically, the 

duration of a context switch between threads is less than that between processes, though 

the former is not insignificant. In this thesis, it is assumed that context switching time 

refers to context switching between processes. Most of the issues related to context 

switching between processes are applicable to threads as well. 

Various factors specific to the architecture and the operating system affect the context 

switch duration. For instance, the impact of register sets, floating point units, and caching 

schemes on context switching times have been reported [Dittman 2004] [Gooch 1998]. 

Gooch [Gooch 1998] also refers to the impact of the process queue on the context 

switching time – in particular, the strong correlation between context switching time and 

the length of the run (process) queue. We conjecture that this may be a consequence of 

the time taken for inserting a switched-out process into the data structure for the run 

queue. Hence this time is likely to be logarithmically or linearly proportional to the 

number of processes in the queue, depending on the data structure used. Though the data 
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available is not enough to substantiate our conjecture, hopefully this can be verified 

experimentally.  

The direct impact of context switches in a schedule is the time spent in the act of context 

switching [Acquaviva 2003]. This time is – depending on the specific architecture and the 

operating system – small, though not insignificant. The number of context switches in a 

schedule may even add up to a significant delay in the execution of a process and thus, 

affect its schedulability. The total time spent in context switches also results in wasted 

power consumption. An indirect but more significant impact of context switches may be 

the data movement caused across the memory hierarchy, i.e., cache block replacement 

and page replacement in the RAM. In fact, the additional energy consumption due to this 

indirect impact has been reported to be significantly higher [Lee 1998] [Lee 1999] 

[Acquaviva 2003].  

Available analyses or evaluations of scheduling algorithms in literature do not account 

for context switch time. In particular, they use a simplistic model where the context 

switch duration is assumed to be 0. This affects the evaluation in two ways: (a) actual 

execution times may not match the scheduled times and in particular, the hard real time 

tasks may miss deadlines; (b) the context switch is unproductive and the energy 

consumed for the operation is a waste and in particular, this may critically impact the 

performance of a low power system. An indirect but more significant impact of context 

switches may be due to cache flushes. In fact, the additional energy consumption due to 

this indirect impact is reported to be significantly higher [Acquaviva 2003].  

The amount of energy wasted due to context switches in a schedule is proportional to the 

product of the number of context switches in the schedule and the average impact of a 

context switch. A power-aware operating system should account for the impact of 

scheduling on the power consumption. And a power-aware scheduling algorithm should 

account for the impact of context switches on power consumption. Several scheduling 

algorithms have been designed to be preemption-aware, i.e. they reduce the number of 

preemptions or context switches.  

Various techniques have been proposed in literature for reducing the number of context 

switches in a schedule. These techniques vary in complexity from simple and inexpensive 
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heuristics to exhaustive search. Some techniques attempt to reduce the number of context 

switches while others address the indirect impact of context switches by reducing data 

movement across the memory hierarchy.  

Oh and Yang [Oh 1998] propose a variant of LLF to reduce preemptions in a schedule, 

known as Modified LLF (MLLF) by fixing the “frequent preemption problem of LLF” 

[Dertouzos 1974] [Mok 1983]. The strict LLF scheduling algorithm suffers because of 

the frequent context switches in the schedules generated by it. Frequent context switches 

are possible if there are jobs with the same slack. According to the LLF scheduling 

algorithm, the slack / laxity of a job is defined as the difference in the time available until 

the deadline of the job and the job’s remaining execution time. In strict LLF, the 

processes with equal slack / laxity force the scheduler to select the other job to run in the 

CPU (context switch) after every 2 units of execution in the CPU. This results in loss of 

time and energy which may even cause the missing of deadlines by some of the 

processes. When there is a tie in the slack / laxity among processes, the MLLF scheduling 

algorithm executes the process with the least deadline while freezing the priority of all 

the other processes with the same slack / laxity. This heuristic fixes the frequent context-

switching problem of LLF, without affecting its optimality. The approach is simple and 

effective in addressing the limitation of LLF, but it does not aggressively remove 

unnecessary context switches. Furthermore, no detailed analysis on the effectiveness of 

the algorithm (in reducing preemptions) is available. 

Zolfaghari [Zolfaghari 2004] proposed the Optimized Minimum Laxity First (OMLF) 

scheduling algorithm which overcomes the drawback (large number of context switches) 

of the Minimum Laxity First scheduling algorithm. This scheme nearly follows the 

technique followed in MLLF, except that the executing process’s priority also decreases. 

In this scheme, the priority of the process with the longest execution time increases more 

rapidly than the other processes with the same deadlines. The priority function they used 

is different from LLF and MLLF.  Hildehrandt, et al. [Hildebrandt 1999] proposed and 

evaluated a universal deterministic scheduling coprocessor that implements the 

scheduling algorithm, Enhanced Least-Laxity-First-algorithm (ELLF), which can hide the 

runtime overhead of the LLF (MLF) algorithm. 
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Wang and Saksena [Wang 1999][Wang 2000] describe a fixed priority scheduling 

algorithm that reduces context switches. In this model, each task has a regular priority 

and a preemption threshold priority. This scheduling algorithm allows a task to disable 

preemptions caused by tasks having up to a specified threshold priority, i.e., tasks having 

a lower priority than the preemption threshold cannot preempt the running task, even if 

the priority of the other task is greater than that of the running task. Tasks having a higher 

priority than the preemption threshold are allowed to preempt the running task. Hence, a 

certain level of non-preemptability is achieved using the preemption threshold. 

Preemption thresholds are assigned by a branch-and-bound algorithm using lateness 

heuristic. This paper also proposed an algorithm to find the preemption threshold with 

O(N2) complexity. This approach is limited to fixed priority scheduling, as threshold 

assignment may take exponential time. The authors claim 15% - 20% increase in 

processor utilization as compared to preemptive scheduling.   

Stewart and Khosla [Stewart 1991] proposed Maximum Urgency First (MUF) scheduling 

algorithm. MUF is an improvement over the RM, which can be used to predictably 

schedule dynamically changing systems. MUF is a mixed priority scheduling algorithm 

(combination of fixed and dynamic priority algorithms) and combines the advantages of 

the RM, EDF and LLF algorithms. The urgency of a task is defined as a combination of 

two fixed priorities and one dynamic priority. One of the fixed priorities, called the 

criticality, has precedence over the dynamic priority. Meanwhile, the dynamic priority 

has precedence over the other fixed priority, which is called user priority. The dynamic 

priority is inversely proportional to the laxity of a task. The assignment of criticality and 

user priority is done apriori. To assign criticality, the tasks are ordered based on their 

period. The first N-tasks (these are the tasks which do not fail, even if there exists 

transient overload) whose total worst-case utilization is below 100% are defined as 

critical tasks. If a critical task does not fall in the critical set, then the period 

transformation is used. A high criticality is assigned for tasks in the critical task group 

and low criticality for others. A unique user priority is assigned optimally to every task in 

the system. The dynamic priority is the inverse of the laxity / slack of the job. The next 

job to run is the one with the highest criticality. If two or more jobs have the same 

criticality, then the job with the highest dynamic priority is selected. If there are two or 
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more jobs with the same criticality and dynamic priority, then the job with the highest 

user priority is selected. If more than one job has the same criticality, dynamic and user 

priority, then they are served in a First Come First Serve (FCFS) manner. The MUF 

works as RM, where the criticality of every task is different.     

Vahid et al. [Vahid 2005] propose a modification to the Maximum Urgency First (MUF) 

scheduling algorithm [Stewart 1991] known as Modified Maximum Urgency First 

(MMUF).  The major drawback of MUF scheduling algorithm is in its rescheduling 

operation. The rescheduling operation is performed whenever a task is arriving in the 

ready queue [Vahid 2005] [Stewart 1991], which may even cause a critical task to fail in 

certain situations. The MUF uses non-strict LLF where the scheduling decision points are 

those of arrival or completion of a job. This may result in MUF causing the failure of 

critical tasks.  

In MMUF, a unique importance parameter is used, instead of using the tasks’ request 

interval to create the critical set. MMUF uses the EDF or MLLF for defining the dynamic 

priority. This results in reducing unnecessary context switches introduced by LLF. RM, 

EDF, LLF and MUF are special cases of MMUF, depending on how the algorithm is 

setting the importance parameter and context switch reduction logic. The MMUF offers 

better performance (in schedulability) than MUF because of the lesser number of task 

preemption counts. It also results in the execution of more non-critical tasks in 

overloaded situations.  

Apart from the above techniques, there have been other approaches where context switch 

reduction has been considered in conjunction with other techniques or goals. For 

instance, [Jianli 2005] demonstrates a preemption control technique for scheduling in 

processors with Dynamic Voltage Scaling. This technique is effective in reducing 

unnecessary context switches caused by dynamic voltage scaling, particularly under low 

or medium processor utilization levels. As such, this technique may not be effective in 

reducing context switches while scheduling under in non-DVS processors (nor 

equivalently under high processor utilization levels when DVS by itself is not useful).  

Apart from these efforts on preemption reduction, there have also been several attempts 

to characterize energy consumption at the operating system level. In particular, power 
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analysis of real-time operating system in [Dick 2000] identifies time and energy profiles 

of different operating system functions and the behavioral characterization in [Stewart 

1991] includes energy consumption profiles. But such attempts ignore the effect of task 

scheduling on energy consumption and do not relate energy savings to other real-time 

system performance metrics. Gopalakrishnan and Parulkar [Gopalakrishnan 1996] 

characterize the impact of preemptive scheduling on utilization. Here, a similar approach 

is adopted in that a count of the number of preemptions is taken, but experimental 

evaluation is used as the instrument for comparing the different algorithms. 

From literature [Pillai 2001] [Gopalakrishnan 1996], it is evident that the real-time 

systems require techniques for power consumption reduction at the operating system 

level for better performance. In real-time systems, the optimization of platform-

independent parameters like context switches not only reduces the power consumption, 

but also increases the schedulability of the task set. This prompts for the design of 

scheduling algorithms – both static and dynamic – which aggressively reduce the context 

switches independent of the platform in use.  

2.4 CACHE CONSCIOUS SCHEDULING ALGORITHMS 

Energy efficiency and time saving can be achieved by minimizing the overheads in a 

schedule. One such factor to minimize in a schedule is the number of preemptions as the 

time spent on saving and loading the context of processes is unproductive and the energy 

used for that is wasted. The direct impact of preemption is the time and energy spent for 

saving and loading the context. However, in addition to the direct costs, preemption 

introduces indirect costs caused by cache memory flushes. The cache memory blocks 

belonging to the preempted process may not be available in the cache when that process 

gets the next chance to execute in CPU. This results in a huge amount of data transfer 

across the memory-hierarchies, thus causing an increase in power consumption and 

execution time. The increasing execution-time of tasks leads to deadline misses by low 

priority tasks. 

It is not necessary that a schedule with the minimum number of preemptions will cause 

minimum cache impact. This is because of the fact that a program in execution consumes 

a varying number of cache pages at different points in time. As the cache impact leads to 
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a major share of time and power consumption a schedule which generates preemptions at 

the minimum cache impact points may perform better than a schedule with the minimum 

number of preemptions. The cache related preemption delay (CRPD) may affect the 

schedulability of the task set as well.  

The main challenge in addressing the schedulability of a real-time system with a cache 

memory is its unpredictability because of varying cache related preemption delay. There 

are two ways to address this issue. The first way is to use cache partitioning, wherein the 

cache memory is divided into disjoint partitions and one or more partitions are dedicated 

to each real-time task [Kirk 1989][Liedtke 1997] [Muller 1995] [Wolfe 1994]. In the 

cache partitioning techniques, each task is allowed to access only its own partition and 

thus, cache related preemption delay is avoided. However, cache partitioning has a 

number of drawbacks. One of the main drawbacks is that the existing system (hardware, 

software or both) may need to undergo serious modifications for the implementation of 

this scheme. Partitioning of the existing cache has also the drawback of limiting the 

amount of cache memory that can be used by an individual process at any point of time. 

The second way is to incorporate the worst case cache related preemption delay as a part 

of the process execution time and then analyze the schedulability with this new worst 

case execution time. 

Luculli and Natale [Luculli 1997] presented a static scheduling methodology for real-

time tasks whose task layout is known at design time and does not change at runtime. 

This work tries to optimize the extrinsic cache misses. 

Basumallick and Nilsen [Basumallick  1994] proposed an improvement over RM with an 

upper bound on the cache related preemption delay to calculate schedulability. The main 

drawback of this technique is that it suffers from the pessimistic utilization bound, i.e., 

many task sets which are failing the schedulability condition can still be executed 

successfully. To overcome this problem, Mataix et al. [Mataix 1996] proposed a 

technique based on the response time approach. Even in this scheme the pessimistic 

assumption that each cache block used by a task replaces a memory block from the cache 

that is needed by the preempted task holds true. This leads to an overestimation of the 

cache related preemption delay, as it is possible that the replaced memory block is one 
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that is no longer needed or one that will be replaced without being referenced even when 

there were no preemptions.  

Tomiyama and Dutt [ Tomiyamay 2000] gave an approach to calculate the tight upper 

bound on the Cache Related Preemption Delay (CRPD) which a task might impose by 

using integer linear programming. This work determines the program execution path of 

the task which requires the maximum number of cache blocks. However, they only 

consider direct-mapped instruction cache. The above overestimation is addressed by Lee 

et al. in [Lee 1998].  

Lee et al. [Lee 1998] proposed a technique to analyze the cache related preemption 

delays in fixed priority scheduling for the tasks that cause unpredictable variations in the 

execution time. This technique first performs a per task analysis to estimate the cache 

related preemption cost for each execution point and then stores this value in a table 

called the preemption cost table (for each task). This table provides the upper bound on 

the cache related preemption delay for a given number of preemptions. By using the 

worst case execution time and the worst case cache related preemption delay, this 

technique computes the worst case response time of each task by using a linear 

programming technique. Although this technique is more accurate than the techniques 

that do not consider the usefulness of cache blocks, it is still subject to a number of 

overestimation sources. This solution suffers because of two types of overestimation.  

First, when a task is preempted, not all of its useful cache blocks are replaced from the 

cache. Second, the worst-case preemption scenario given by the solution may not be 

feasible during in the actual execution. This leads to an enhancement of this technique by 

the same authors in [Lee 2001b]. 

Negi et al. [Negi 2003] refined the approach of Lee et al. in [Lee 1998] by applying path 

analysis. [Negi 2003] provided a program path analysis technique which will analyzes 

both the preempted and the preempting tasks to estimate the CRPD. This technique 

improves the accuracy of the analysis by estimating the possible states of the cache at 

each possible preemption point than estimating the state of each cache block 

independently. However, inter-task cache eviction is not considered. Also, WCRT 

analysis is not mentioned in [Negi 2003]. 
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Lee et al. [Lee 2001b] enhanced the previous technique [Lee 1998] by bounding the 

cache related preemption delay in the fixed priority scheduling algorithm for instruction 

caches. While calculating the cache related preemption delay, the enhancement takes into 

account the relationship between a preempted task and the set of tasks that execute during 

preemption.  The enhancement also considers the phasing of tasks to eliminate many 

infeasible task interactions. These enhancements are passed as constraints to the linear 

programming problem to then calculate the guaranteed upper bound on the cache related 

preemption delay.   

Tan and Mooney [Tan 2004b] [Tan 2004c] proposed to analyze the inter-task cache 

eviction. This approach assumes that all cache lines used by the preempted task and 

evicted by the preempting task will be reloaded after the preemption. But, Lee et al. [Lee 

1998][Lee 2001b] presented that only those cache lines used by “useful" memory blocks 

of the preempted task need to be reloaded. In [Tan 2004a], Tan and Mooney focused on 

enhancing the previous approach [Tan 2004b] [Tan 2004c] by incorporating “useful" 

memory block analysis in the work of Lee et al. So this method first analyzes the 

maximum set of memory blocks in the preempted task that can possibly cause a cache 

reload. Then, the method incorporates the inter-task cache eviction behavior by 

calculating the intersection set of the cache lines used by the preempting task and the 

preempted task. The new approach results in a more accurate WCRT method than, that 

by Lee et al and Tan and Mooney for a multi-tasking single-processor system, using set-

associative or direct-mapped unified caches. 

Staschulat et al [Staschulat 2005a][Staschulat 2005b] proposed the cache related 

preemption delay analysis for set-associative instruction caches. In this technique, the 

preemption delay analysis is integrated into a scheduling analysis to determine the 

response time of tasks accurately. [Staschulat 2005b] used a pseudo-polynomial 

algorithm, where the designer can decide the tradeoff between the analysis precision and 

the analysis execution time.  

Ju et al. [Ju 2007] presented a way to incorporate the cache related preemption delays 

(CRPD) in dynamic, preemptive, multitasking real-time schedulers like the EDF. The 

CRPD is the delay introduced by the higher priority tasks because of cache misses caused 

via preemptions. The proposed implementation had three steps. In the first step, the 
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program analysis techniques are used to estimate the maximum CRPD incurred by the 

task preemptions. The second step bounds the number of preemptions of each task and 

the third step finds the actual execution time of each task with its total CRPD. The 

analysis is done by maintaining the possible cache contents at each of the preemption 

points of the lower priority tasks and of the high priority tasks. If the resultant execution 

times meet the schedulability, then the tasks are schedulable. These tests though better 

than the other approaches are not sufficient to find a tight bound for the cache related 

preemptions. 

Ramaprasad and Mueller [Ramaprasad 2006a] [Ramaprasad 2006b] bound the cache 

interference penalty on real-time tasks by providing accurate predictions of the data cache 

behavior across preemptions. This is done by deriving the data cache reference pattern for 

all scalar and non-scalar references. The effects of cache interferences are analyzed by 

identifying the additional misses due to preemptions. This method calculates the tight 

upper bound on the number of preemption points for each job of the task and then finds 

the worst possible impact caused by it. This work proved by experimentation that it is 

sufficient to consider the N most expensive preemption points, where N is the maximum 

possible number of preemptions. 

Lee et. al [Lee 1998][Lee 1999] proposed a new replacement scheme called Limited 

Preemptive Scheduling (LPS) that limits the preemptions to execution points with small 

cache related preemption cost. LPS uses data flow analysis techniques to determine the 

preemption points with small cache loading costs. LPS reduces the cache related 

preemptions at the cost of increasing the blocking delay of higher priority tasks. This 

scheme finds a schedule which maximizes the schedulability of a given task set, while 

minimizing the cache related preemption delay. The primary limitation of this approach 

is that it requires extensive data flow analysis and therefore, may not be suitable for 

dynamic scheduling. 
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CHAPTER 3 

LATE LEAST RECENTLY USED (LLRU) REPLACEMENT STRATEGY 

3.1 INTRODUCTION 

The performance of cache memory depends heavily on its hit rate and access time. The classical 

approach to improve the cache performance is to increase the hit rate. One way of improving the 

hit rate is to reduce the number of conflict misses, which can be achieved by increasing the cache 

associativity. In [Hennessy 2007], it is proven that conflict miss reduces from 28% to 4% by 

changing associativity from direct mapping to 8 – way set associative. The set associative and 

fully associative caching schemes provide an advantage with respect to hit rate over the direct 

mapping scheme. The replacement policy used in set associative and fully associative caching 

schemes plays an important role in improving the hit rate, as it determines the next cache line to 

be replaced.  

A replacement strategy is needed when all the cache lines are filled and a new block of memory 

needs to be placed in the cache. Cache controller identifies a cache line to be replaced. Then it 

replaces that cache line with new data from the main memory. The replacement algorithm used in 

cache memory helps in reducing the number of cache misses and thus reduces the power 

consumption. This reduction in power consumption for set associative cache can thus be achieved 

with the help of an efficient replacement algorithm. The performance of cache replacement 

mechanism primarily depends on how accurately the cache can predict the future reference 

pattern based on the past references. The future reference pattern may depend on past reference 

pattern and input data. 

The current processors employ various replacement policies such as Random, Least Recently 

Used (LRU), Pseudo LRU (PLRU), Most Recently Used (MRU) and Round robin (or FIFO – 

First-In-First-Out).  

3.2  LEAST RECENTLY USED (LRU) REPLACEMENT STRATEGY 

LRU replacement strategy, as the name implies, replaces the element that has not been accessed 

for the longest period. This results in a higher cache hit rate with the cost of additional time and 
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hardware for maintaining LRU state information and decision-making. It is the most widely used 

replacement strategy in conventional cache, because of its high performance [Smith 1982]. The 

implementation complexity of the LRU scheme increases with increase in associativity [Hennessy 

2007][Deville 1992][Sudarshan 2004], thus resulting in consuming more time to detect the line to 

be replaced. There exist various ways to implement LRU in hardware, which includes counter, 

square matrix, skewed matrix, Link list, Phase, and Systolic array method[Sudarshan 2004]. 

There also exist a large number of modifications for LRU strategy, which mainly focus on higher 

performance and lower implementation complexity [Sudarshan 2004] [Sukumar 1993] [Zhang 

1997]. Literature reveals that LRU strategy performs close to optimal replacement, when 

associativity is less. As the associativity increases, the performance degrades considerably [Wong 

2000].  

In this replacement strategy, the LRU information is updated for each reference to a cache line. 

LRU takes more time per access of data from cache, compared to FIFO and random 

replacements. The LRU algorithm for cache replacement is given below. 

3.2.1 LRU REPLACEMENT STRATEGY: ALGORITHM 

Input: LRU data structure. 

Output: Line number of the Cache line to be evicted (victim line) if CACHE MISS 

Search space: All cache lines (N) in a set S. 
ON EVERY REFERENCE IN A CACHE SET 

begin 

if (SQUARE MATRIX implementation) then 

if (Reference is CACHE HIT in ith Cache line) then 

set ith row of LRU data structure to 1; set ith column of LRU data structure to 0 

Victim line number = Row number of LRU data structure with all zeros 

if (COUNTER implementation) then 

if (Reference is CACHE HIT in ith Cache line) then 

for j = 0 to N-1 

if (LRUcount[j] > LRUcount[i]) LRUcount[j] = LRUcount[j] – 1; 

LRUcount[i] = N-1; 

Victim line number = Cache line number whose LRUcount value is zero 

end 
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3.2.2 HARDWARE IMPLEMENTATION OF LRU SCHEME FOR N – WAY SET-ASSOCIATIVE CACHE 

Most commonly used hardware implementations in LRU are square matrix and counter. The 

hardware components required for implementing square matrix LRU for a set is a 2:1 multiplexer, 

(log2N):N decoder, N x N storage elements (D – Flip flop), N x log N priority encoder and N - 

OR gates. The hardware components required for implementing counter LRU for a set is a 2:1 

multiplexer, a N:1 multiplexer, two 1:N demultiplexers, N counters (each counter is of log2N 

storage elements, i.e., D – Flip flops), N (log2N)-bit comparators, N x log2N priority encoder and 

N - AND gates. With increase in associativity, in case of square matrix LRU implementation, the 

number of storage elements increases quadratically (N2) whereas increase is linear (N log N) in 

the case of counter. The associated circuit complexity also increases heavily with associativity.    

3.3 WHY LATE LEAST RECENTLY USED (LLRU) REPLACEMENT SCHEME?  

The need of LLRU replacement strategy is explained with an example. Assume a system has two 

ready–to-run processes (P0 and P1) in RAM with 6 non-shared data lines each (P00, P01, P02, 

P03, P04 and P05 for Process P0 and P10, P11, P12, P13, P14 and P15 for Process P1) and two 

shared data lines that is shared between the two processes (S0 and S1). Also, assume the cache 

system is 8 – way set associative, with all the data lines mapped to the same set of the cache. The 

access pattern is P00, S0, S1, P01, P02, P03, P04, P05, P10, P11, P12, S0, S1, P13, P14 and P15. 

If the replacement scheme is LRU, this pattern will result in 16 cache misses and will repeat for 

every hyper period. If we have a replacement strategy where a shared cache line (data line in 

cache containing shared data between processes) replacement is delayed for some more time, 

which results in a better cache hit rate. According to LLRU, the shared cache lines have shared bit 

set to one, which delays the replacement of these pages. This result in reducing the number of 

cache misses to 14, from 16. The performance of this algorithm gets even better when the number 

of shared cache lines increases. For a system with no shared cache lines, the performance of this 

algorithm is the same as that of LRU. 

None of the existing replacement policies address the issue of shared cache lines among 

processes, as the cache is transparent to the operating system. This work simulates and 

synthesizes a replacement scheme called Late LRU (LLRU), which takes shared cache lines into 
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consideration to improve the cache hit rate, thus resulting in reduction in power consumption and 

improvement in the cache performance.   

To the best of author’s knowledge, this work is the first attempt to address issues related to shared 

cache lines during cache replacement. This work is an extension of LRU scheme known as Late-

LRU (LLRU) replacement scheme, which takes care of shared pages while replacement 

(repetition). An analysis of the performance of LLRU scheme by using both software 

Simplescalar traces and hardware simulation is carried out.  Software simulation results provide 

cache miss rate measure, whereas, the hardware simulation using Modelsim and Leonardo 

Spectrum provides circuit complexity and size.  

3.4 LATE-LRU REPLACEMENT POLICY (LLRU) 

The proposed scheme, termed as Late – LRU replacement strategy (LLRU) is an augmentation of 

LRU replacement strategy, where an additional state affects the replacement decision.  Along 

with the control bits like valid bit, dirty bit (only for write back policy) and LRU state 

information, which influences LRU replacement decision, this scheme introduces one more bit 

per cache line termed as ‘shared bit’ to identify the shared cache lines. This bit is used for 

identifying the victim line for replacement. By default, the shared bit of all the cache lines is reset. 

This is to ensure good performance even when there are no shared pages available in the system.  

The shared bit corresponding to a cache line is set if its content is shared between two or more 

processes and some of these processes are in ready state, that is, the shared bit is set for the cache 

lines that are shared (which are likely to be used by the other ready-to-execute processes). The 

shared bit is reset for the non-shared cache lines, as well as for the shared cache lines whose other 

sharing processes are not in ready state.   

The LLRU replacement policy uses LRU data structures and shared bit. While finding a victim 

cache line using LLRU replacement policy, one can assign highest priority to shared cache lines, 

so that they can stay back for a longer time in the cache, thus resulting in an increased cache hit 

rate. The shared bit of the cache line is reset immediately after the scope expiry, that is, when all 

the shared processes complete their execution. In case of a cache miss occurs, the LLRU 

replacement algorithm finds a cache line to be evicted and will copy the data requested to that 

cache line. 
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This approach is very useful and effective for embedded systems, which are static-scheduled. At 

the time of compilation, one can identify the shared contents among the processes and can also 

get the sequence of execution of these processes. 

3.4.1 LLRU CACHE REPLACEMENT ALGORITHM 

Here, LLRU replacement decision is based on LRU data structure and shared bit. If the access is a 

cache hit, then the hit signal is set by the cache controller and the LLRU data structure is updated 

in the similar fashion as in case of LRU replacement policy. If the access is a cache miss, then 

with the help of LRU data structure and shared bit, LLRU decides which cache line to be evicted 

within the cache set.  

In LLRU, to find the cache line to be evicted, find the line with minimum LRU count and shared 

bit status as 0. If each of the cache lines in a set has its shared bit as 1, then apply LRU 

replacement policy to find the cache line to be evicted. The LLRU algorithm is given below. 

Input: LRU data structure and Shared bits. 

Output: Line number of the Cache line to be evicted (victim line) if CACHE MISS 

Search space: All cache lines (N) in a set S. 
ON EVERY REFERENCE IN A CACHE SET 
begin 

if (SQUARE MATRIX implementation) then 

if (Reference is CACHE HIT in ith Cache line) then 

set ith row of LRU data structure to 1; set ith column of LRU data structure to 0 

Count number of 1’s in each row of LRU data structure (log2N bits) 

Append Shared bit as MSB bit to the count value (log2N + 1 bits) 

Victim line number = Row number with minimum count value 

if (COUNTER implementation) then 

if (Reference is CACHE HIT in ith Cache line) then 

for j = 0 to N-1 

if (LRUcount[j] > LRUcount[i]) LRUcount[j] = LRUcount[j] – 1; 

LRUcount[i] = N-1; 

Append Shared bit as MSB to corresponding LRUcount value 

Victim line number = Cache line number whose LRUcount value is minimum 
end 
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3.4.2 LLRU HARDWARE IMPLEMENTATIONS 

LLRU works in the same way as LRU, when none or all of the cache lines in the set are shared. If 

any of the cache lines’ shared bit is set, then the decision-making is based on the above mentioned 

LLRU strategy. The LLRU replacement circuitry finds a non-shared cache line with minimum 

LRU value as the victim cache line for replacement.  

The following section describes in detail about square matrix and counter LLRU 

implementations. 

3.4.2.1 Square Matrix Implementation of LLRU 

The LLRU selects least recently used non-shared cache line if there exists at least one non-shared 

cache line, otherwise the least recently used shared cache line is used for replacement. This 

implementation uses D flip-flops to construct a square matrix LRU and shared bit data structures. 

The implementation requires N bits for shared bit data structures per cache set. It requires N x N 

bits per cache set to implement a square matrix LRU data structure for a N-way set associative 

cache. The global set contains M replications of these data structures, where, M denotes the 

number of cache sets available in an N – way set associative cache. In LRU square matrix 

implementation, each of the N rows of the data structure maps to one of the N cache lines of a set, 

as [Sudarshan 2004]. At reset all data structures are initialized to zero as shown in Figure 3.1.  

 

 

 

 

 

 

 

Fig. 3.1: LLRU data structure for a 4-way set associative cache (Square Matrix implementation) 

The cache set identification and working set identification is the same, as in LRU replacement 

scheme described in [Sudarshan 2004]. The square matrix LRU data structure follows a simple 
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cache line corresponding to the row, which has the maximum number of 1’s, is the most recently 

used and the cache line corresponding to the row, which has all 0’s is the least recently used. In 

case of a cache miss, the corresponding shared bit is concatenated as MSB with the count of 1s in 

each row to find the cache line to be evicted. The cache line with minimum resultant count will be 

the one to be evicted, when transferring content from main memory.  

Figure 3.2 shows the square matrix implementation of LLRU replacement scheme. LLRU 

consists of a ‘n’-bit 2-to-1 multiplexer, a n: N decoder, a (N x n)-bit counting circuit 

(combinational circuit), a ((n+1) x n)-bit minimum finder circuit, N shared bits, and N x N edge-

triggered D flip-flops with clear and preset. N represents the associativity, while n is log2N.  

 
Fig. 3.2: LLRU square matrix implementation 

The circuit works as follows. 

The 2:1 multiplexer, log2N x N decoder and N x N edge-triggered D flip-flop work in the same 

way, as in LRU. In the case of a hit, the cache line index is given as the select input of the 

decoder. The decoder selects the corresponding row and column. The storage element in row is 

set and column is reset. The ANDed complement output of the D flip-flops in each row is fed into 
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a counting circuit. The counting circuit counts the number of 1s in the input and gives the 

resultant count as the output. The output of the counting circuit is of n bits (log2N), since each 

row consists of N elements. The N shared bits are also connected (input) to the minimum finder 

block. The shared bit is concatenated as MSB to the count provided by the counting circuit and 

this ((log2N) + 1) bits per cache line is input to the minimum finder. The minimum finder finds 

the minimum of all the inputs and its output is the cache line to be evicted, according to LLRU 

policy. In the case of a miss, this index is given to the multiplexer, which is triggered by the miss 

signal to enable it and the corresponding row and column are set and reset respectively. RESET 

signal high initializes the matrix by setting all storage elements to zero. 

It can be observed that for a cache hit, the delay involved and time required to service the request 

is the same as LRU replacement policy. But for a cache miss, as the replacement line has to be 

obtained from the minimum finder, a delay is added to the replacement implementation. The 

matrix also needs to be updated with the replacement.  

Similar to LRU, square matrix LLRU implementation uses simple data structure and requires 

minimum associated logic for finding / modifying LRU information. The main drawback of 

square matrix method is that it does not scale well for large associativity cache. This is because 

the amount of space required for information increases quadratically with N. 

3.4.2.2 Counter Implementation of LLRU 

Figure 3.3 shows the data structures and its initial values for a 4-way set associative LLRU 

counter implementation. In this implementation, a register is used for every individual row to 

maintain LRU data structure [Sudarshan 2004]. This implementation uses an edge-triggered 

log2N-bit register, which supports operations like reset to zero, decrement by one and load (N-1) 

externally for a N-way set associative cache. Each cache line in every set is mapped to a register. 

Thus, for higher values of N, the counter LLRU storage space utilization drops exponentially in 

comparison with square matrix LLRU implementation.  

The values in the register indicate the order in which the cache lines within a set have been 

accessed. The smallest value (zero) in register corresponds to the least recently accessed cache 

line and the highest value (N-1) corresponds to the most recently accessed cache line. At reset all 

the registers and shared bits are initialized to zero.  
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In case of a cache hit, the LLRU counter data structure is updated in same fashion as LRU 

counter, i.e., the registers whose value is greater than the active register is decremented by one 

and the active register is set to the highest value (N-1).  

In case of a cache miss, the shared-bit is concatenated as MSB with LRU register to form a 

((log2N)+1)-bit LLRU register. The cache line with minimum resultant register value is the one to 

be evicted for transferring content from main memory.  

 

 

 

 

 

 

 

Fig. 3.3: LLRU data structure for a 4-way set associative cache (Counter implementation) 

 
Fig. 3.4: LLRU counter implementation 
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The LLRU counter implementation has similar structure as the LRU counter implementation 

[Sudarshan 2004]. Figure 3.4 shows the counter implementation of LLRU replacement scheme. 

As in LRU, LLRU has a register per cache line to store LRU count information. LLRU has N 

shared bits, one per cache line indicating whether the cache line is shared or not. In LRU the 

cache line to be evicted is the one with the minimum count value. In case of LLRU, the cache line 

to be evicted is the least count non-shared cache line that may not be the least count cache line. 

The LLRU replacement circuit is designed in same way as the LRU replacement circuit except 

the priority encoder is replaced with the minimum finder. The value of registers and shared bits 

are the inputs to the minimum finder. The minimum finder concatenates the shared bit as the 

MSB of corresponding register output. This guarantees that the shared cache line’s count will be 

high compared to non-shared cache line, thus rendering shared data cache lines a second chance 

to reside in the cache. It outputs the index of the cache line, which has the minimum resultant 

count value. That cache line in the index is the one to be replaced, if the access is a cache miss. 

3.5 EXPERIMENTAL RESULTS AND ANALYSIS 

3.5.1 SOFTWARE SIMULATOR 

A cache simulator is implemented in C with both LRU and LLRU replacement policies for 

experimentation. The experimentation uses Simplescalar benchmark address traces generated 

using Simplescalar2.0 simulator [Burger 1997]. In this experiment, 4KB and 8KB, cache sizes are 

used. Cache hit rate for 2-way and 4-way set associative cache configurations with data sharing 

(10 test cases with data sharing varied between 0% and 100%) is measured and averaged over the 

number of test cases. Figure 3.5 and 3.6 show the LRU and LLRU results for 4K, 2-way, 4K, 4-

way, 8K, 2-way and 8K, 4-way set associative cache configurations.  

In the worst case, i.e., when no shared cache lines are available, LLRU offers the same 

performance as LRU. Depending on the number of shared cache lines, the performance of LLRU 

improves. As expected, when the associativity increases, the hit rate of both LRU and LLRU 

improves and hence, 8K 4-way set associative cache configuration performs better than 8K 2way 

set associative cache configuration. It is also observed that depending on the cache size, 

performance varies.  
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In all these configurations, LLRU performs equally good or better than LRU. It is also observed 

that depending on the number of shared cache lines, the performance of LLRU improves. 
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Fig. 3.5: LRU and LLRU performance of a 2-way and 4-way (4K cache) set associative cache. 
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Fig. 3.6: LRU and LLRU performance of a 2-way and 4-way (8K cache) set associative cache. 

3.5.2 HARDWARE SIMULATION AND SYNTHESIS 

The verilog implementations of square matrix LRU, counter LRU, square matrix LLRU and 

counter LLRU are carried out. These implementations are simulated for a 4-way set associative 

cache configuration. The simulation establishes the functional correctness of the various LRU and 

LLRU hardware implementations. Simulation is carried out using Modelsim. These 
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implementations are synthesized with Leonardo spectrum using ami05 technology. Area and 

other layout details are obtained from the IC station. 

Table 3.1 shows the maximum clock frequency, critical path delay, number of transistors used 

and the total area occupied for square matrix and counter implementation of LRU and LLRU 

replacement strategies. It is evident from the table that the square matrix implementations of the 

replacement policies (both LRU and LLRU) are faster, when compared to their counter 

implementations, because of reduced critical path delay. The number of transistors used is more 

in square matrix implementation compared to counter implementation. So the area occupied by 

square matrix implementation is more compared to counter implementation.  

Table 3.1: Comparison chart of LRU and LLRU 

 

From Table 3.1 one can observe that the LLRU implementation works at a higher clock frequency 

than the corresponding LRU implementation (counter and square matrix implementations of 

LRU).This is mainly due to lower critical path delay for LLRU as compared to LRU 

implementations. Here, the square matrix LLRU has the least critical path delay (10.47nsec) and 

counter LRU has the highest critical path delay (14.75nsec). It is also observed that square matrix 

LRU has lower critical path delay (11.4nsec) as compared to counter LLRU (12.19nsec).   

It is also observed that LLRU implementations require more number of transistors and more area 

than the LRU implementations. LLRU improves the performance of cache and its accessibility, in 

the case of shared pages. Hence, the trade off for the area is justifiable for higher performance. 

 

 
Clock Freq 

(MHz) 

Critical path 

delay (ns) 

No. of Transistors 

(CMOS) 
Area (mm2)

Square Matrix 

Implementation 

LRU 84.9 11.40 797 0.70 

LLRU 92.2 10.47 1212 0.93 

Counter 

Implementation 

LRU 66.1 14.75 784 0.679 

LLRU 79.6 12.19 1082 0.899 
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3.6. CONCLUSION 

This work focused on the implementation and analysis of a new cache replacement strategy, Late 

LRU (LLRU), which particularly considers shared pages among processes, while deciding on 

replacement. Hardware implementations of LRU and LLRU based on square matrix as well as 

counter were carried out. These implementations were simulated in Modelsim and synthesized in 

Leonardo spectrum. Layouts for these hardware architectures have also been obtained, from the 

IC station.  The cache hit is measured for various cache configurations by using software 

simulator and Simplescalar traces. The results thus obtained, were analyzed based on the 

parameters like area, clock frequency, critical path delay, number of transistors and cache-hit rate. 

From the above results, one can conclude that with minimal extra hardware, LLRU improves the 

cache performance significantly. This method guarantees that the performance of the modified 

replacement strategy, LLRU is better and at least as good, in the worst case, as the performance of 

the original strategy under the LRU replacement policy. It is known that any improvement in 

cache performance in embedded systems leads to reduction in power consumption and overall 

improvement of the system performance. Thus LLRU replacement scheme can play a significant 

role in cache memory design for embedded systems. 
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CHAPTER 4 

WAY-PREDICTIVE PLACEMENT CACHE 

4.1 INTRODUCTION 
This chapter focuses on the methods adopted for energy efficient cache designs. Way 

prediction set associative cache is modified to improve cache performance in terms of 

power, access time and cache hit rate. This chapter discusses way prediction scheme and 

its limitations. This chapter also explains way predictive placement scheme, a 

modification of way prediction scheme with global prediction, a new technique to 

overcome some of the bottlenecks of way prediction scheme. The chapter elaborates on 

way predictive placement scheme with two alternatives for replacement strategy: LRU 

and aligned LRU (ALRU). This chapter evaluates conventional cache, way prediction 

cache and way predictive placement cache using SPEC 95 benchmark suite. The 

evaluation is based on number of tag comparisons, prediction hit rate, cache hit rate, 

cache access time and energy saving parameters. 

4.2 WHY WAY-PREDICTION SET-ASSOCIATIVE CACHING SCHEME? 

Cache memory power consumption can be significantly reduced by managing data lines 

and sense amplifiers efficiently, as these are the most power consuming modules in cache 

memory sub system. Wilton and Jouppi [Wilton 1996] reported the power consumption 

of data lines and data sense amplifiers as 55%, 65% and 75% of the total cache 

subsystem power consumption for direct, 2-way set associative and 4-way set associative 

mapping schemes respectively. Optimal energy efficiency is possible if each cache hit 

results in reading and comparing one tag entry, enabling and accessing only one data 

entry and if each cache miss results in reading and comparing one tag entry. The key to 

obtaining optimality is to pinpoint the matching way without probing all the ways. There 

exist various schemes like sequential access, and phased lookup set associative cache. 

Both these schemes have performance overhead in terms of extra phase as it takes one 

extra cycle to access the cache. A better approach for attaining energy efficiency is to 

speculatively choose one way before a cache line access in set associative cache. As 

functioning of cache is based on temporal locality, Most Recently Used (MRU) heuristic 
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can be very effective. Inoue et al. [Inoue 1999] proposed this as way prediction set 

associative cache.  

4.3 WAY PREDICTION SET-ASSOCIATIVE CACHE 

Figure 4.1 shows the way prediction set associative cache (WP) proposed by Inoue 

[Inoue 1999]. The algorithm of the Way Prediction caching scheme with LRU 

replacement strategy is as discussed below. 

4.3.1 ALGORITHM FOR WAY-PREDICTION CACHE 

//Cache operations to be carried out on every reference 
begin 

Look up the virtual page number in TLB 

if (TLB HIT) then  

Derive tag (t), index (i) and offset (o) from physical address fetched from TLB. 

WaySelect = Prediction Table[i] 

CYCLE = 1 

while (CYCLE < 4) do 

if (CYCLE = 1) then 

Enable WaySelectth cache way; Disable all the other N-1 ways   

if (Reference is CACHE HIT in ith set, WaySelectth way) then 

Read / Write data from / to offset location; Update LRU data structure 

CYCLE = 4 

else CYCLE = 2 

if (CYCLE = 2) 

  Disable WaySelectth cache way; Enable all the other N-1 ways 

if (Reference is CACHE HIT in ith set) then 

Read / Write data from / to offset location; Update LRU data structure 

Prediction Table[i] = CACHE HIT Way number 

CYCLE = 4 

else CYCLE = 3 

if (CYCLE = 3) 

Transfer data from Main memory to the victim line (selected by LRU 

replacement strategy) of ith set 

Read / Write data from / to offset location; Update LRU data structure 
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Prediction Table[i] = CACHE HIT Way number 

CYCLE = 4 

if (TLB MISS) then 

Generate trap to handle TLB miss 

end 

4.3.2 WORKING OF THE WAY – PREDICTION CACHE 

WP speculatively chooses one way with the help of way enable circuit before starting the 

normal cache-access process. This scheme accesses the cache data line and tag line 

corresponding to index field in the enabled way. If the prediction is correct, i.e. the tag 

field in address reference is matching with the tag field of the selected cache tag line then 

the cache access is completed successfully. All the (N-1) ways are in power down state 

during this cycle. A wrong prediction can be because of the requested data available in 

another cache way of the same set or because of a cache miss. In WP, prediction-miss 

results in enabling all the other (N-1) ways and comparing (N-1) tag values with the tag 

field of the address reference in the next cycle. If the tag field of the address reference is 

matching with any of the (N-1) tag fields of the enabled cache tag lines, then the cache 

access has been completed successfully. Otherwise, the access will be cache miss. 

 
Fig. 4.1: 4-way set-associative cache (Way prediction cache) 

Inoue et al. used log2 (N) bits per set to maintain the MRU way information, which is 

used for predicting the way. MRU bits of each set have information of recently accessed 

way of a cache line in that set. If prediction is correct, cache consumes dynamic energy 

for only one activated way. Otherwise, it consumes dynamic energy same as conventional 
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cache with an additional cycle time penalty for misprediction. This method saves almost 

(100*(N – 1) / N) % of the energy in a N – way set associative cache.  Prediction 

accuracy according to Powell et al. [Powell 2001] is 90% for instruction and 80% for 

data. 

On a prediction hit, WP consumes energy only for activating the predicted way. In 

addition, the cache access can be completed in one cycle. This results in saving 50%, 

75%, and 87.5% of the dynamic power for 2-way, 4-way and 8-way set associative cache 

configurations respectively. On prediction miss (or cache miss), however, the cache-

access time of the WP increases due to the extra phase.  

The average energy consumption (EWP-N-SACache) and the average cache-access time (TWP-

N-SACache) for the N-way set-associative WP (WP-N-SACache) are as follows: 

EWP-N-SACache = (ETag + EData) + (1 - PHR) * ((N-1)ETag + (N-1)EData) 

TWP-N-SACache = 1 + (1 - PHR) 

Where, PHR is prediction-hit rate. 

WP improves the Energy – Delay (ED) product (ED= average cache access time * 

average energy consumption per cache access) by 60–70% compared to a conventional 

set-associative cache. 

4.3.3 DRAWBACKS OF THE WAY-PREDICTION CACHE 

Though way-prediction scheme is very effective in saving power, it suffers with serious 

drawbacks, which significantly limit its usage. This scheme suffers from performance 

degradation because of cycle time penalty for handling misprediction. In way prediction 

scheme, a table lookup is needed to identify the MRU information of the selected set. 

This adds extra time delay to the critical path as one cannot prefetch the MRU 

information until the set number is available. As known from literature, the performance 

of the existing way prediction with MRU information does not always work well. The 

two choices available for a way prediction are to use information available (1) early in 

the pipeline, such as the program counter, (2) later in the pipeline, such as a XOR-based 

approximation of the load address [Powell 2001]. Each of these methods has its own 

demerits. Way prediction based on information from early pipeline stages suffers from 
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poor accuracy. To improve the way prediction accuracy, one should go for late pipeline 

stage information. But the way prediction based on late pipeline information introduces a 

way prediction table lookup delay in the cache access critical path [Batson 2001]. For 

instance, the way-prediction scheme used in [Inoue 1999] inserts a table lookup after the 

address generation to identify the predicted way. The other drawback of way prediction 

scheme is that MRU information does not always work well with data references [Calder 

1996][Batson 2001][Min 2004].  

Other than time and performance overhead, WP increases hardware complexity of set 

associative cache. For a cache containing K sets, K* log2N bits are required for storing 

MRU information, where N is the associativity. This information is stored in the form of 

a table containing K rows where each row specifies MRU information of the 

corresponding cache set. This table is accessed every time (before a cache access) to 

determine the last accessed way in that set. This introduces an increase in the cache 

access time as it lies in the critical path. In addition extra circuitry is required for enabling 

/ disabling the way. 

 Though WP reduces the energy consumption of a set associative cache significantly, 

there exist scope of improvements in terms of optimizing / avoiding table lookup time, 

prediction hit rate and hardware complexity. The following sections explain in detail 

about way – predictive placement scheme for set associative cache – a modification over 

way – prediction set associative cache to achieve greater energy saving, high prediction 

hit, reduced critical path delay, zero table look up and reduced hardware complexity.  

4.4 WAY – PREDICTIVE PLACEMENT CACHE 

The late pipeline stage information introduces an undesirable way prediction table lookup 

delay in the cache critical path. We require a scheme to maximize the prediction, 

minimize the delays and save energy significantly. This way-predictive placement 

scheme is a modification of way-prediction algorithm, which would help in reducing the 

number of tag comparisons, increase way-prediction rate and in turn reducing power 

consumption. The proposed scheme uses only log2 N global bits in fixed position for the 

entire cache to store the MRU information independent of number of cache sets. This acts 

as a unified global MRU for all the sets. This modification helps us to reduce the 
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hardware complexity and overcome the table lookup, while using late pipeline 

information. 

4.4.1 ALGORITHM FOR WAY-PREDICTIVE PLACEMENT SCHEME 

//Cache operations to be carried out on every reference 
begin 

Look up the virtual page number in TLB 

if (TLB HIT) then  

Derive tag (t), index (i) and offset (o) from physical address fetched from TLB. 

WaySelect = Global MRU bits 

CYCLE = 1 

while (CYCLE < 4) do 

if (CYCLE = 1) then 

Enable WaySelectth cache way; Disable all the other N-1 ways   

if (Reference is CACHE HIT in ith set, WaySelectth way) then 

Read/Write data from/to offset location; Update ALRU data structure 

CYCLE = 4 

else CYCLE = 2 

if (CYCLE = 2) 

  Disable WaySelectth cache way; Enable all the other N-1 ways 

if (Reference is CACHE HIT in ith set) then 

Read/Write data from/to offset location; Update ALRU data structure 

Global MRU bits = CACHE HIT Way number 

CYCLE = 4 

else CYCLE = 3 

if (CYCLE = 3) 

Transfer data from Main memory to the victim line (selected by ALRU 

replacement strategy) of ith set 

Read/Write data from/to offset location; Update ALRU data structure 

Global MRU bits = CACHE HIT Way number 

CYCLE = 4 

if (TLB MISS) then 

Generate trap to handle TLB miss 

end 



CHAPTER 4 – WAY–PREDICTIVE PLACEMENT CACHE 

 74

4.4.2 WORKING OF THE WAY – PREDICTIVE PLACEMENT SCHEME 

Conventional cache architecture for a 4-way set-associative cache is as shown in Figure 

4.2. Consider an 8KB cache with a line size of 64 bytes. The cache line has 32 sets, thus 

the memory address will have 6-bit offset, 5-bit index and remaining 21-bits of tag fields. 

This architecture includes 5:32 decoder, word line drivers, four tag arrays, four data 

arrays, sense amplifiers, comparators, one multiplexer and output drivers. In addition to 

all these, way – predictive placement scheme has log2 N bits to store the MRU way 

information and extra circuitry to enable/disable the tag and data arrays. The way – 

predictive placement scheme, placement and replacement in the cache are based on this 

way information. The way – predictive placement scheme is as shown in Figure 4.3 and 

Figure 4.4. 

The way – predictive placement scheme has the following changes to the existing way-

prediction schemes. It uses only log2 N bits for the entire cache, irrespective of the 

number of cache lines, to store the MRU information. This is a unified MRU for all the 

sets. For the cache configuration described above, a way-prediction scheme would need 

64 bits for storing the MRU information, whereas, the proposed way – predictive 

placement scheme needs only 2 bits. The proposed modification results in reduced 

hardware complexity and eliminates the table lookup, while using late pipeline 

information. For maximizing the prediction hit using MRU information, modification to 

existing scheme has been proposed. The modifications are as follows. Whenever a 

decision has to be taken about the page eviction, find if the cache block corresponding to 

the current MRU bits (way) in the given line is ready for replacement. This replacement 

strategy helps to explore MRU bits information and avoid misprediction between one 

index and the other. Secondly, most of the continuously referred pages in different 

indexes are aligned i.e., map on to the same way. By doing so, any random access to 

these indexes will not result in misprediction. The modified scheme helps in achieving 

hardware reduction and energy efficiency. 
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Fig. 4.2: 4-way set-associative cache (Conventional cache) 

 
Fig. 4.3: Prediction Hit 

 
Fig. 4.4: Prediction Miss 
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On every reference, CPU produces a virtual address. If the corresponding page number is 

available in the TLB, then fetch the physical address from the corresponding TLB entry. 

In way – predictive placement scheme, for a cache access, depending on the value of 

global MRU bits, only one data-way and tag-way are enabled with the help of tag and 

data way selection circuitry. If the prediction is a hit i.e. if the tag value of the selected 

cache line (in the enabled cache way) is matching with the address’s tag bits, then access 

the data from the corresponding offset. Update the LRU bits of the corresponding set.  

If the prediction is a miss, then in the next cycle, enable all the other (N-1) data and tag 

ways, where N is the associativity and compare the tags of (N-1) cache lines of the set 

which are selected based on index bits, to see whether the required data is available in the 

cache. If the data is available in the cache, access the data from the offset location of the 

cache line. Update the MRU prediction bits with the new way identifier. Update the LRU 

replacement circuitry of the corresponding set accordingly. If the required page is not 

available in cache, then transfer page from main memory into the specific cache line 

(victim cache line) of the set specified by LRU replacement algorithm. After transferring 

data from main memory to the selected cache line, access the required data from the 

offset location of the cache line. Update the MRU prediction bits with the new way 

identifier. Update the LRU replacement circuitry of the corresponding set accordingly.  

The prediction accuracy can be improved if one can modify the replacement circuitry. 

The modified replacement algorithm should provide better alignment of data lines in the 

same way. Next section explains in detail about the modified LRU replacement strategy. 

A cache miss will always lead to a prediction miss. So the performance of way – 

predictive placement scheme depends on cache miss and prediction miss rates. 

4.4.3 REPLACEMENT ALGORITHM - ALIGNED LRU (ALRU): A VARIANT OF LRU 

Performance of a way – prediction set-associative cache can be improved by reducing 

number of mispredictions and cache misses. To achieve this, a new replacement strategy 

named Aligned LRU (ALRU) is employed, which aligns the data pages in the same cache 

block wherever possible.  
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//Algorithm for Cache Placement / Replacement for way – predictive placement scheme 

Input: LRU data structure, Global MRU bits. 

Output: Line number of the Cache line to be evicted (victim line) if CACHE MISS 

Search space: All cache lines (N) in a set S. 
ON EVERY REFERENCE IN A CACHE SET 

begin 

predict = Global MRU bits 

if (Reference is CACHE HIT in ith Cache line) then 

for j = 0 to N-1 

if (LRUcount[j] > LRUcount[i]) LRUcount[j] = LRUcount[j] – 1; 

LRUcount[i] = N-1; 

if (LRUcount[predict] < N/2) then 

Victim line number = predict 

else  

Victim line number = Cache line number whose LRUcount value is zero 

end 

The replacement algorithm used in way – predictive placement scheme is a variant of 

LRU, which replaces one of the LRU pages in the cache set. If the last predicted cache 

block is one of the candidates for replacement (i.e. the block with LRU count less than 

(N/2)), then select that cache block as the victim block to load data from primary 

memory. This guarantees that most of the cache blocks are aligned to the predicted cache 

way and thus further improve the prediction accuracy. 

The prediction correctness can increase with cache page size and can decrease with 

associativity. Theoretically, with increase in associativity, power consumed 

approximately reduces by a factor of (N-1) / N for best case, where N is the cache 

associativity. The power saved in cache increases with increase in block size, as more 

number of references will fall in the same block. It is not recommended to increase the 

cache size beyond a limit because of the data transfer delays (miss penalty) and the load 

capacitance. The worst-case power consumption by any way prediction cache scheme is 

the same as that of the traditional cache. Similar to the proposed scheme, way – 

prediction cache also has more average access time than conventional cache. Way – 
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predictive placement cache has lesser average access time because of zero table lookup 

time and better prediction accuracy.   

4.4.4 WAY – PREDICTIVE PLACEMENT CACHE ENERGY AND ACCESS TIME ANALYSIS 

The equations for average energy consumption and average cache access time for N – 

way set associative way – predictive placement cache are the same as for way – 

prediction cache except the fact that prediction hit rate is higher and table lookup power 

is saved. The prediction hit rate is high because of the Aligned LRU replacement strategy 

implementation with the help of global prediction bits. The average energy consumption 

(EWPP-N-SACache) and the average cache-access time (TWPP-N-SACache) for the N-way set-

associative Way – predictive placement cache (WPP-N-SACache) are as follows: 

EWPP-N-SACache = (ETag + EData) + (1 - PHR) * ((N-1)ETag + (N-1)EData) 

TWPP-N-SACache = 1 + (1 - PHR) Where PHR is prediction-hit rate. 

Energy analysis using energy dissipation per cache access model 

Energy efficiency of proposed scheme is measured as the difference in energy dissipation 

by the different caching schemes. In this work the energy dissipation per cache access 

model proposed by Zhang et al. [Zhang 2005] is considered. 

Edec  represents the energy dissipation of the address decoder 

Emux  represents the energy dissipation of the multiplexer and output driver 

Etagline  represents the energy dissipation of one tag line 

Edataline  represents the energy dissipation of one data line 

Epreline  represents the energy dissipation of one-line’s precharging 

Ecomline represents the energy dissipation of one-line’s comparator 

Esaline  represents the energy dissipation of one-line’s sense amplifier circuit 

Etagway  represents the energy dissipation of one tag way 

Edataway represents the energy dissipation of one data way 

Epreway  represents the energy dissipation of one way’s precharging 

Ecomway represents the energy dissipation of one way’s comparator 
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Esaway  represents the energy dissipation of one way’s sense amplifier circuit 

Etab represents the energy dissipation of table lookup 

The energy equations of conventional, way prediction and way predictive placement 4 -

way set-associative cache can be computed as follows: 

Eway = (Etagline + Edataline + Epreline + Ecomline + Esaline)*       

  cachesize/(associativity * cachelinesize)           (4.1)         

Conventional cache (Econ) 

Econ = Edec + Emux + (4 * Eway )      (4.2) 

Way Prediction cache, 

Prediction Hit Energy (EPhit) 

EPhit = Edec + Emux + Eway + Etab     (4.3) 

Prediction miss (EPmiss) and Cache Miss (ECmiss) 

EPmiss =  ECmiss = 2*(Edec + Emux + Etab) + (4* Eway)   (4.4) 

Total Energy 

ETotal = Phit * EPhit + (1–Phit – Cmiss) * EPmiss+ Cmiss * ECmiss (4.5) 

Way Predictive placement cache, 

Prediction Hit Energy (EPhit) 

EPhit = Edec + Emux + Eway      (4.6) 

Prediction miss (EPmiss) and Cache Miss (ECmiss) 

EPmiss =  ECmiss = 2*(Edec + Emux) + (4* Eway)    (4.7) 

Total Energy 

ETotal = Phit * EPhit + (1–Phit – Cmiss) * EPmiss+ Cmiss * ECmiss (4.8) 

4.4.5 EXPERIMENTAL SETUP, RESULTS AND DISCUSSION 

4.4.5.1 Experimental setup 

For the above calculations, Simplescalar 2.0 [Burger 1997] cache simulator was 

employed with different cache configurations. SPEC95 benchmark programs [SPEC95] 

are used to obtain the prediction hit rate and the number of tag comparisons required to 
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execute each of the selected programs. The selection of SPEC95 benchmark program 

suite guarantees uniformity in evaluation as most of the existing cache architectures used 

this benchmark program suite for evaluation.  

Input: Cache configuration (shown in Table 4.1) and the trace file from SPEC95 

benchmark programs (shown in Table 4.2) to be used to emulate cache behavior. 

The different parameters that were varied are as shown in Table 4.1. 

Table 4.1: Different cache configurations 

Cache Parameters Range 

Cache size 8K (in Bytes) 

Block size 32, 64, 128 (in Bytes)

Cache associativity 2, 4, 8 

Table 4.2: SPEC 95 Benchmark program traces used for experimentation 

Exp. No. Benchmark Program Exp. No. Benchmark Program 

1 applu 7 mgrid 

2 compress95 8 tomcatv 

3 fpppp 9 su2cor 

4 hydro2d 10 swim 

5 ijpeg 11 vortex 

6 m88ksim 12 Wave5 

Cache Algorithm: Way – predictive placement scheme 

Replacement algorithm: a variant of LRU – Aligned LRU (ALRU) 

Output: 

To estimate the prediction accuracy: Number of hits in first cycle, number of hits in 

second cycle (mispredictions) 

To determine the algorithm efficiency: Total number of cache hits and cache misses 

To provide an estimate of the power consumed: Number of tag comparisons required. 
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4.4.5.2 Results and discussion 

Figure 4.5 to 4.7 shows the percentage of tag comparisons in a conventional cache that is 

required for a 4-way set associative way predictive placement cache with 8KB cache size 

and 32B, 64B and 128B cache line sizes respectively. This experimentation measures the 

number of tag comparisons for various SPEC 95 benchmark program suite with 2, 4, and 

8 as associativity. From Figure 4.5 to 4.7 one can observe that number of tag comparisons 

is different for different cache configurations. Increase in associativity results in lesser 

number of tag comparisons, thus higher savings. 
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Fig. 4.5: Tag Comparisons for 8KB cache with 32byte cache line size 
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Fig. 4.6: Tag Comparisons for 8KB Cache with 64byte cache line size 

Figure 4.8 to 4.10 shows the prediction hit rate of a 4-way set associative way predictive 

placement cache with 8KB cache size and 32B, 64B and 128B cache line sizes 
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respectively. This experimentation measures the number of prediction hits over total 

references for various SPEC 95 benchmark program suite with 2, 4 and 8 as associativity. 

From Figure 4.8 to 4.10, one can observe that prediction hit rate reduces with 

associativity, but still accomplishes the objective of providing an improvement over the 

way – prediction scheme. Because of low prediction hit rate, higher associativity results 

in high average access time. In all these cases, power saving of this method is better than 

conventional cache and way prediction cache. The results are summarized in Table 4.3.  
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Fig. 4.7: Tag Comparisons for 8KB Cache with 128byte cache line size 
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Fig. 4.8: Prediction hit rate for 8KB Cache with 32byte line size 
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Prediction hit Vs Benchmark Programs
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Fig. 4.9: Prediction hit rate for 8KB Cache with 64byte line size 
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Fig. 4.10: Prediction hit rate for 8KB Cache with 128byte line size 

Table 4.3: Comparison of the way predictive-placement scheme with conventional way 

prediction scheme 

Data Cache Way Predictive 
Placement Cache 

Way Prediction 
Cache [Inoue 1999] 

Average Cache Predict Hit 90.31% 86% 
Average Cache Hit 92.92% NA 
Average Tag Comparison 32.26% NA 
Average Increase in Effective 
Cache Access Time 9.69% 12.975% 

Average Energy Saving 67.75% 64.75% 
 

4.4.5.3 Way – predictive placement Cache Vs Way-prediction Cache 

For a 4 – way set-associative cache, the average results of way – predictive placement 

and way – prediction cache as compared with conventional set associative cache are as 

shown in Table-4.3. The prediction hit rate on an average, using the way-predictive 
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placement scheme, is 90.31% as compared to 86% for way prediction scheme. The 

prediction hit rate for conventional cache is always 100%, as all the ways will be 

available for comparison. The average cache hit for a way predictive placement scheme is 

92.92%, which is almost the same as conventional and way prediction scheme. The 

average tag comparisons of way predictive placement scheme reduces by 67.75% 

compared to conventional cache, whereas in predictive placement scheme it reduces by 

64.75%. The energy saving required for (N-1) tag arrays and data arrays, (N-1) 

comparators, and (N-1) sense amplifiers amounts to a reduction in 67.75% of energy 

compared to conventional cache. The energy saving reported for way prediction cache is 

64.75%. For the prediction miss an extra cycle is needed to enable the remaining (N-1) 

ways. The average effective access time thus increases by 9.69% and 12.975% for way 

predictive placement scheme and way-prediction scheme respectively as compared to 

conventional set associative cache. The performance improvement of the predictive-

placement scheme, with respect to prediction hit rate and energy saving is 5% and 4.63% 

respectively than the way-prediction cache. 

From the simulation result, it is evident that due to high prediction accuracy the proposed 

scheme saves 67.75% of energy consumption as compared to conventional cache. The 

improvement in energy saving is achieved due to the replacement policy ALRU and by 

eliminating the table lookup. The proposed scheme reduces the hardware requirements as 

it reduces the prediction bits from Number of cache sets * log2 N to log2 N. The role of 

additional hardware is mainly for selectively enabling and disabling the tag and data 

arrays which is needed for way prediction scheme as well. In case of a conventional 

cache organization, all the tag and data arrays are enabled for every data access and hence 

the enabling / disabling circuit is not required. 
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CHAPTER 5 

PROCESS AWARE SELECTIVE PLACEMENT SCHEMES 

5.1 INTRODUCTION 

This chapter focuses on process aware energy-efficient cache design for Embedded 

Systems. This chapter presents two new software controlled energy-efficient process-

aware caching schemes for an N-way set-associative cache: (i) a process-aware selective 

placement scheme (PASP) with a victim set and (ii) a shared memory process-aware 

selective placement (SMPASP) scheme with small shared and victim sets. These two 

schemes aim at reducing the power consumption and improving the cache hit rate of 

process aware caches. This chapter elaborates on the working of the proposed process 

aware cache designs with placement and replacement support. In this chapter, the 

proposed schemes are evaluated and compared with the conventional set-associative 

cache and way prediction cache with respect to the cache hit rate, dynamic and leakage 

power consumption, with the tag comparison count in particular, for various cache sizes, 

cache line sizes and context switch durations. This performance evaluation is carried out 

with independent processes and processes which exhibit a considerable amount of data 

sharing among them. This chapter evaluates the number of tag comparisons and the 

number of hits obtained for the main cache, victim cache and shared cache separately for 

various cache configurations (cache size, cache line size and context switch duration) by 

using a cache simulator CACHEMEM 1.0 in conjunction with the traces of SPEC 95 

benchmark suite programs extracted using the SimpleScalar 2.0 simulator. The dynamic 

and leakage power consumption for the various caching schemes are obtained using 

eCACTI cycle-based power estimation model.  

5.2 WHY PROCESS AWARE CACHE DESIGN? 

The conventional N-way set-associative data cache enables all the N tag ways for parallel 

comparisons while searching the requested data in the cache which results in high 

dynamic power consumption. One way to minimize the dynamic power consumption is 

to minimize the internal cache activity during cache access. An ideal situation on a cache 

hit is to read and compare only one tag entry and access one data entry, whereas on a 
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cache miss, it is to read and compare only one tag entry. This can be achieved by 

accessing the set-associative cache as a direct-mapped cache, which requires only one tag 

comparison to find if the referenced data is available in the cache.  

This can be achieved by using a way prediction cache, but in the way prediction cache, 

the cache lines can be placed in any of the sub banks (usually one sub bank is a cache 

way). This makes it impossible to put sub banks into deep sleep mode, as the time taken 

for wake-up from deep sleep mode to active mode is large. This adversely affects the 

power consumption and performance of the way prediction cache. One solution to this 

problem is to dedicate one sub bank per process and to switch between the sub banks 

only when a context switch occurs. This is achieved in the proposed work by assigning 

one dedicated cache way to one process. This converts the N-way set-associative cache 

into a direct-mapped cache for the currently running process and all the other cache ways 

can be in deep sleep mode, until a context switch takes place. The context switching 

information has to be passed on to the cache controller using special instructions. This 

results in saving a significant amount of cache power consumption.      

Increased power saving is also achieved by reducing the number of conflict misses i.e., 

by cutting down on the miss penalty overhead. Shutting down N-1 cache ways for a long 

time results in saving power, but making use of only 1/Nth of the cache size for a process 

may degrade the cache hit performance and thus, the increased power consumption. In 

both Process Aware Selective Placement (PASP) and Shared Memory Process Aware 

Selective Placement (SMPASP) designs, a process-aware, software-controlled way-

selective placement cache mechanism with a victim set is used to improve the hit rate. 

These schemes thus improve the cache hit rate by providing a small victim set for the 

spill-out data from the main cache and by modifying the replacement scheme.  

Most of the current day Embedded System applications are multithreaded with a large 

amount of data sharing among the threads, which, if properly exploited may yield a better 

cache hit rate. A software-controlled cache is used in the proposed scheme to improve the 

performance, wherein the operating system can partially control the availability of data in 

the cache by transferring process-related and data sharing-related information to the 

cache controller for improving the cache hit rate. To facilitate the efficient handling of 

shared data among processes, the SMPASP scheme is proposed. This scheme improves 
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the cache performance by providing a small shared set for the shared data among 

processes and by modifying the replacement scheme.  

5.3 CONVENTIONAL AND WAY – PREDICTION CACHE ARCHITECTURES 

The proposed schemes (PASP and SMPASP) are compared with the 4-way set-

associative conventional (Conv) and way prediction (WP) schemes with respect to the 

cache hit rate, number of tag comparisons, dynamic, leakage and the total power 

consumption for various cache sizes, cache line sizes and context switch durations. The 

conventional cache architecture for a 4-way set-associative cache is shown in Figure 5.1. 

 
Fig. 5.1: Conventional 4 – way set-associative cache (Conv) 

Consider an 8KB, 4 – way set-associative cache with 64 – byte line size. The cache line 

has 32 sets, thus the memory address will have a 6-bit offset, 5-bit index and remaining 

21-bits of tag fields. This architecture includes a 5:32 address decoder for tag and data, 

word line drivers, four tag arrays, four data arrays, sense amplifiers, comparators, read 

and write column multiplexers, multiplexer drivers, one output multiplexer and output 

drivers. The algorithm of the Conventional caching scheme is as discussed below. 

5.3.1 ALGORITHM FOR CONVENTIONAL CACHE 

//Cache operations to be carried out on every reference 
begin 

Look up the virtual page number in TLB 

if (TLB HIT) then  

Derive tag (t), index (i) and offset (o) from physical address fetched from TLB. 

if (Reference is CACHE HIT in any one of the cache line in ith set) then 
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Read / Write data from / to offset location;  

Update Replacement circuit of ith set accordingly 

if (Reference is CACHE MISS in ith set) then 

Transfer data from Main memory to the victim line (selected by the replacement 

strategy in use) of ith set 

Read / Write data from / to offset location;  

Update Replacement circuit of ith set accordingly 

if (TLB MISS) then 

Generate trap to handle TLB miss 

end 

5.3.2  WORKING OF THE CONVENTIONAL CACHE 

A data access request to the conventional N-way set-associative cache is handled as 

follows. On every cache reference, search for the virtual page number in the TLB. If the 

virtual page number is available in the TLB, fetch the corresponding physical page 

address from the TLB. The offset bits of the requested address are used to find the exact 

byte in a cache line after locating the same. The index bits are fed as input to the decoder. 

Each decoder output line is used to activate one cache set, i.e., N data and tag arrays of 

the N-way set-associative cache. ‘N’ data and tag arrays are read out simultaneously 

through the sense amplifier. N comparators compare the selected address tags in parallel 

to find which one, if any, out of the N tags is matching with the tag bits of the requested 

address. The data corresponding to the tag match is selected using the multiplexer and 

output driver and the replacement circuitry of the corresponding set is updated 

accordingly. If none of the tags matches then cache line to be evicted is found using the 

replacement circuit of the corresponding set. Transfer the requested data from the main 

memory to the selected cache line and update the replacement circuit of the set 

accordingly. Data is read from the offset location of the selected cache line. 

5.3.3  WAY – PREDICTION CACHE 

A detailed explanation of the way-prediction cache proposed by Inoue et al. [Inoue 1999] 

was provided in the Section 4.2.  In this scheme, cache line selection is based on the 

MRU information of the index corresponding to which N bits per cache set are used to 

store the Most Recently Used (MRU) way information. For the cache configuration 
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example in section 5.2, 64 bits are needed to store the MRU information. This 

information is stored as a way-prediction table of 32 entries. The data is selected only if 

the tag bits of the required address matches with the tag value of the predicted way index 

bits. If the prediction is a miss, then in the next cycle, the remaining 3 tag ways and data 

ways are enabled for comparison. This results in spending an extra cycle to find the 

availability of data in the cache and hence, performance is compromised. Non-

availability of data in cache causes cache miss. The replacement algorithm based on the 

Least Recently Used (LRU) policy decides the victim cache line. This scheme requires 64 

bits to save the most recently used (MRU) way information and extra cycles for both 

prediction miss and cache miss.  

5.4 PROCESS AWARE SELECTIVE PLACEMENT CACHE ARCHITECTURE  

One of the major concerns in the conventional memory architecture is that the cache is 

transparent to the operating system and application programs. Recent studies suggest the 

necessity of cache – compiler – operating system – application program interaction to 

improve the performance. The interaction can reduce cache power consumption by 

accurately predicting the cache set where the required data is available, thus deactivating 

the other ways [Yang 2005]. The interaction can also improve cache predictability and 

performance by helping the selection of the victim cache line with minimum modification 

in the replacement circuitry [Jain 2001][Wang 2002][Sartor 2005]. The proposed scheme 

uses software-controlled cache for reduction in power consumption by shutting down N-1 

cache ways and reducing the conflict misses. Here, a process-aware, software-controlled 

way-selective placement cache mechanism with a victim set is employed. This scheme 

thus improves the cache hit rate and reduces the power consumption by providing a small 

victim set for the spill-out data from the main cache and by modifying the replacement 

scheme.  

The proposed design, PASP scheme is as shown in Figures 5.2 to 5.5. Figure 5.2 shows 

the PASP cache architecture for the 4-way set-associative cache architecture. Figures 5.3 

to 5.5 shows the various cache-related operations associated with the PASP cache where 

the highlighted parts represent the active cache blocks. 
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Fig. 5.2: PASP Cache Architecture 

This scheme has an N-way set-associative cache (N=4 here), a small fully associative 

victim cache of 3 to 5 cache lines, one 8 – bit register per cache way to store the process-

related information, log2 N – bits per cache way to store the LRU way information and a 

power management unit to activate / inactivate the selected cache ways and the victim 

set, as shown in Figure 5.3. The fully-associative victim set is available for all the 

processes and is used to collect the spill-out pages from the main cache. This set 

improves the cache hit rate, with the help of the FIFO replacement policy. 

 
Fig. 5.3: Cache Hit in dedicated cache way 
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Fig. 5.4: Cache Miss in dedicated cache way, checking in the Victim set for data 

availability 

In the proposed scheme, one way is assigned to one process. The data pages 

corresponding to the currently executing process are available in either this dedicated 

way or the victim set. This results in enabling either only the assigned way or the victim 

set for tag comparisons, as shown in Figure 5.3 and Figure 5.4 respectively. For better 

power optimization, the entire main cache is disabled while searching the data in the 

victim set, as highlighted in Figure 5.4. The ways which do not belong to the currently 

executing process are shut down to save dynamic power consumption. A significant 

amount of dynamic power saving is possible with this scheme.   

 
Fig. 5.5: Cache Hit in Victim set (Transferring data to the dedicated cache way – 

works in the same way as for a Cache Miss) 



CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES 

 92

For a static process scheduling scheme, the process-related information is available at 

compile time itself, whereas in a dynamic process scheduling scheme, this information is 

available at runtime only. In this scheme, the operating system transfers the process 

information to the cache controller with the help of special instructions [Jain 2001][Sartor 

2005]. With this information, the cache controller enables different ways for different 

processes. The context switch routine of the operating system issues special instruction(s) 

for transferring the process identification information to the cache controller. If the 

process identifier already exists in one of the ways’ register, then the corresponding way 

is powered up and remaining N-1 ways are powered down. If the process identifier 

information is not available in any of the registers, then the cache controller finds the way 

with the minimum LRU value and allocates the way to the process by invalidating all the 

existing data in that way. Whenever a process terminates, the operating system notifies 

the cache controller, so that the LRU count of that way is set to zero and all the data in 

that way is invalidated. By default, the victim set is in the sleep state and is activated only 

if the requested data is not available in the dedicated way assigned to the process.    

5.4.1 PASP ALGORITHM 

The algorithm of the Process Aware Selective Placement (PASP) caching scheme is as 

discussed below. 

//Cache operations to be carried out on every reference 
begin 

Look up the virtual page number in TLB 

if (TLB HIT) then  

Fetch physical address from TLB 

Derive tag (t), index (i) and offset (o) for the Main cache. 

Derive tag (tv) and offset (ov) for the Victim set 

WaySelect = Dedicated Cache way of the currently running process 

WaySelectth way enabled; All other N-1 ways in deep sleep; Victim set in sleep 

CYCLE = 1 

while (CYCLE < 4) do 

if (CYCLE = 1) then 

if (Reference is CACHE HIT in ith set, WaySelectth way) then 

Read/Write data from/to offset location of ith block in WaySelectth way 
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CYCLE = 4 

else  

CYCLE = 2 

Enable Victim set 

if (CYCLE = 2) 

if (Reference is CACHE HIT in Victim set) then 

Transfer ith block in WaySelectth way to FIFO location in Victim set 

Transfer CACHE HIT Victim set block to ith block in WaySelectth way 

Read/Write data from/to offset location of ith block in WaySelectth way 

Update FIFO replacement circuit of Victim set 

CYCLE = 4 

else CYCLE = 3 

if (CYCLE = 3) 

Transfer ith block in WaySelectth way to FIFO location in Victim set 

 Transfer data from Main memory to ith block in WaySelectth way 

Read/Write data from/to offset location of ith block in WaySelectth way 

Update FIFO replacement circuit of Victim set 

if (TLB MISS) then 

Generate trap to handle TLB miss 

end 

The process aware selective placement (PASP) set-associative cache works as follows. 

The cache obtains the physical address of the requested reference in the same manner as 

the conventional cache. For every cache access, only the dedicated cache way of that 

process is enabled with the help of the power management unit and cache controller. In 

this manner, the set-associative cache is virtually acts as a direct-mapped cache. The 

corresponding line index of the dedicated cache way is searched for a tag match, as 

shown in Figure 5.3. On a cache hit, the data from the corresponding offset location is 

accessed. This results in 75% dynamic power reduction as compared to a conventional 4-

way set-associative cache. A tag miss in this scheme can be either because of a miss in 

the dedicated cache way, but a hit in the victim set (Primary miss but secondary hit) or 

because of a secondary cache miss, where the requesting data is not available in the 

dedicated cache way as well as in the victim set. Every prediction miss in the dedicated 

cache way causes the victim set to be enabled, as shown in Figure 5.4 by the power 



CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES 

 94

management unit and control circuitry in the next cycle for tag comparisons. If any of the 

tags in the victim set matches, then the corresponding cache line of the victim set is 

swapped with the indexed location of the dedicated cache way (Figure 5.5). The FIFO 

bits of the victim set lines are updated accordingly. In the case of a miss in the victim set, 

the required page is copied from the main memory to the indexed location of the 

dedicated cache way and any existing valid cache line in corresponding location of the 

dedicated way is moved into the victim set with the FIFO bits of the victim set lines 

being updated accordingly.  

5.4.2 POWER SAVING CONCERNS 

This implementation has the advantage of a direct mapped cache, which simplifies the 

circuit and mainly helps in reducing the dynamic power consumption caused by 

additional tag comparisons and the replacement circuitry. The cache access time of the 

PASP cache during a cache hit is the same as that of a direct-mapped cache. The 

proposed scheme provides a better performance (cache hit rate and dynamic power 

consumption) for processes with frequent context switches, as the recently used previous 

process cache lines are still available in its dedicated cache way.  This scheme is power 

efficient, as it is found from the experimentation that about 85% of the data cache 

references are directly from the dedicated cache way and very few references are directed 

to the victim set. The victim set is enabled only when the data is not available in the 

dedicated cache way and it helps in improving the cache hit rate, thus saving the dynamic 

power consumption significantly.  

The size of the victim set influences the hit rate and the power consumption. If the size of 

the victim set is more, the overall hit rate of the cache system increases, but the number 

of parallel comparators and the dynamic power required also increases, which may 

degrade the performance. So the size of the victim set should be a balanced compromise 

between the number of comparators and the miss rate. Theoretically, with an increase in 

the associativity, the dynamic power consumption approximately reduces by a factor of 

(N-1) / N for the best case, where N is the cache associativity. The power saving will be 

more for a cache with a larger cache line size because of the improved hit rate, as large 

number of references fall within the same page. 
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5.4.3 REPLACEMENT SUPPORT 

The replacement support is critical to achieve high performance. The PASP cache uses 

direct replacement in the dedicated cache way similar to a direct-mapped cache resulting 

in the dynamic power saving and reduced circuit complexity. Any spill-out cache line 

from the main cache is moved to the victim set. The victim set follows FIFO replacement 

policy, which makes the replacement circuitry simple. During a victim set hit, whenever a 

cache line is transferred from the victim set to the corresponding main cache’s dedicated 

way, that cache line in the victim set is made invalid. If the dedicated cache way has a 

valid cache line, then that cache line is moved to the victim set and the FIFO bits of the 

victim set lines are modified appropriately. 

5.4.4 LIMITATION OF THE PASP SCHEME 

The PASP scheme reduces the dynamic power consumption significantly, but the 

performance of this scheme is affected when the required data is shared among many 

processes. In other words, the same cache data block may exist in more than one way at 

the same time, thus resulting in coherency issues.  

For instance, say, two processes P1 and P2 are sharing a cache line S1. Assume the 

execution sequence is P1 accessing the shared line S1, followed by a context switch to P2 

and then P2 accessing the same shared line S1. When P1 accesses the shared line S1 for 

the first time, a cache miss occurs and S1 is placed in the way assigned to P1, say, way 0. 

When a context switch occurs and P2 starts its execution with its dedicated cache way as 

way 1, a request generated for cache line S1 results in a cache miss, as S1 is not available 

in way 1 and in the victim set. Thus, a copy of S1 from the main memory is placed in 

way 1. This results in having the same cache line in more than one way at the same time. 

In the PASP scheme, to avoid cache coherency problem, the system checks for the 

existence of the same cache line in other ways and invalidate them, before copying the 

corresponding shared line to the cache line of the currently executing process’s dedicated 

way. This adds an overhead to the system, as all the ways have to be powered up for tag 

comparisons resulting into performance degradation for the PASP set-associative cache 

with a large amount of shared data. To overcome this performance overhead, a new 
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Shared Memory Process Aware Selective Placement (SMPASP) caching scheme is 

proposed. 

5.5 SHARED MEMORY PROCESS AWARE SELECTIVE PLACEMENT (SMPASP) CACHE 

ARCHITECTURE  

This section explains a Shared Memory Process Aware Selective Placement (SMPASP) 

scheme for an N-way set-associative cache, designed to efficiently handle shared data 

among processes, using a small shared set and victim set. This scheme is primarily 

designed to avoid coherency issues encountered when using the PASP scheme for 

processes sharing data among them by allocating a separate small shared set to hold the 

shared data. It aims at reducing the dynamic power consumption of the set-associative 

cache architecture and enhancing performance with respect to the cache hit rate. 

Figure 5.6 represents the Shared Memory Process Aware Selective Placement (SMPASP) 

scheme for the 4-way set-associative cache architecture. Figures 5.7 to 5.11 shows the 

various cache-related operations associated with the SMPASP cache (the highlighted 

parts in the figures represent the active cache blocks). Similar to the PASP cache, the 

Shared Memory Selective Placement Cache also has a small fully associative victim set 

for collecting spill-out pages from the main cache. The Shared Memory Selective 

Placement Cache has an additional small set called the shared set to hold the shared data. 

This proposed cache architecture has two variations, based on the mapping scheme – 

direct-mapped as shown in Figure 5.7 or 2-way set-associative as shown in Figure 5.8 

shared set. The Shared Memory Selective Placement Cache architecture contains four 

registers (8-bit) to store the process identifiers, four 2-bit LRU registers for finding the 

least recently used way, one decoder for the main cache, one decoder for the 2-way set-

associative / direct-mapped shared set (5:32 decoder for the 8KB main cache, 3:8 / 4:16 

decoder for the 2-way set-associative / direct-mapped shared set), word line drivers, 

relevant number of tag arrays, data arrays and comparators, sense amplifiers, one / two 

multiplexer(s) and output drivers.  



CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES 

 97

 
Fig. 5.6: SMPASP Cache Architecture with Direct – mapped Shared set. 

 
Fig. 5.7: Cache hit in Shared set (Direct-mapped). 

 
Fig. 5.8: Cache hit in Shared set (2 – Way set-associative mapping). 
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Fig. 5.9: Cache hit in dedicated cache way (non-shared data). 

 
Fig. 5.10: Cache miss in dedicated cache way, checking the victim set for data 

availability (non – shared data) 

 

Fig. 5.11: Cache Hit in Victim set (non – shared data; transferring data to the 

dedicated cache way – works in the same way as for a Cache Miss) 
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In this scheme, an incoming reference is classified into a shared or a non-shared data 

reference with the help of compiler information. In case of a cache hit, the non-shared 

data is available either in the dedicated way of the main cache or in the victim set. The 

shared data is available only in the shared set. The compiler and the operating system are 

modified to be intelligent enough to provide the above mentioned sharing information of 

the incoming data reference and the process-related information to the cache controller 

using special instructions [Jain 2001][Sartor 2005]. This information is used to enable / 

disable the cache ways, and to select either the main cache or the shared set for cache line 

replacement, during a cache miss. 

Whenever a context switch occurs or a new process is executed, the operating system 

passes the process identifier information to the cache controller. The cache controller 

compares the new identifier value against a 8-bit value stored in each of the ‘N’ registers. 

If any of the values matches, then the corresponding way is enabled and all the other N-1 

cache ways are disabled. The LRU count of this enabled way is set to the maximum and 

the LRU count of all the other ways are modified accordingly. If the new process 

identifier value does not match with any of the existing values in the registers, then the 

cache way with the minimum LRU count is selected and assigned to this process by 

storing the process identifier value in the 8-bit register of the selected way, after 

invalidating all the cache lines of the selected way and modifying the LRU count of all 

the other ways accordingly.  

Whenever a process terminates, the operating system transfers this information to the 

cache controller. The cache controller sets the LRU count of the way dedicated to that 

process to the minimum and invalidates all the cache lines of that way. 

5.5.1. SMPASP ALGORITHM 

The algorithm of the shared memory process aware selective placement (SMPASP) 

caching scheme is as follows. 

//Cache operations to be carried out on every reference 
begin 

Look up the virtual page number in TLB 

if (TLB HIT) then  

Fetch physical address from TLB 
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Derive tag (t), index (i) and offset (o) for the Main cache. 

Derive tag (tv) and offset (ov) for the Victim set 

Derive tag (ts), index (is) and offset (os) for the Shared set. 

WaySelect = Dedicated Cache way of the currently running process 

if (Reference is Shared) then 

WaySelectth way in sleep; All other N-1 ways in deep sleep  

Victim set in sleep; Shared set Enabled 

if (Reference is CACHE HIT in Shared set) then 

if (Shared set is SET ASSOCIATIVE) then 

Read/Write data from/to offset location of CACHE HIT block in is th set of 

the Shared set 

Update LRU Replacement circuit of is th set in Shared set 

if (Shared set is DIRECT MAPPED) then 

Read/Write data from/to offset location of CACHE HIT block (is th block) of 

the Shared set 

if (Reference is CACHE MISS in Shared set) then 

if (Shared set is SET ASSOCIATIVE) then 

Transfer data from Main memory to LRU block of ith set in Shared set 

Read/Write data from/to offset location of LRU block in is th set of the 

Shared set 

Update LRU Replacement circuit of is th set in Shared set 

if (Shared set is DIRECT MAPPED) then 

Transfer data from Main memory to ith block in Shared set 

Read/Write data from/to offset location of  is th block of Shared set 

if (Reference is NOT Shared) 

WaySelectth way Enabled; All other N-1 ways in deep sleep  

Victim set in sleep; Shared set in sleep 

CYCLE = 1 

while (CYCLE < 4) do 

if (CYCLE = 1) then 

if (Reference is CACHE HIT in ith set, WaySelectth way) then 

Read/Write data from/to offset location of ith block in WaySelectth way 

CYCLE = 4 

else  

CYCLE = 2 
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Enable Victim set 

if (CYCLE = 2) 

if (Reference is CACHE HIT in Victim set) then 

Transfer ith block in WaySelectth way to FIFO location in Victim set 

Transfer CACHE HIT Victim set block to ith block in WaySelectth way 

Read/Write data from/to offset location of ith block in WaySelectth way 

Update FIFO replacement circuit of Victim set 

CYCLE = 4 

else CYCLE = 3 

if (CYCLE = 3) 

Transfer ith block in WaySelectth way to FIFO location in Victim set 

 Transfer data from Main memory to ith block in WaySelectth way 

Read/Write data from/to offset location of ith block in WaySelectth way 

Update FIFO replacement circuit of Victim set 

if (TLB MISS) then 

Generate trap to handle TLB miss 

end 

A data access request to the SMPASP cache is handled as follows.  

When the CPU issues an address reference, the TLB is first checked to find the 

corresponding physical address. If the logical reference is a TLB hit, then the physical 

reference from the TLB is extracted and fed as input to the cache controller. If the logical 

reference is not available in the TLB, then a trap to handle the TLB miss is generated. 

The cache controller has the sharing information about the cache reference beforehand by 

obtaining it from an earlier pipeline stage. Based on this information, with the help of a 

power management unit, the cache controller activates either a dedicated cache way of 

the executing process or the shared set. If the cache reference is a shared one, then the 

physical reference is for the shared set, which is either direct mapped or 2-way set-

associative. If the cache reference is non-shared, then the physical reference is for the 

main cache or for the victim set. 

For a non-shared data reference, in the first cycle, the dedicated cache way of the 

currently executing process is searched for the referenced data page (Figure 5.9). The tag 

value for the main cache is compared with the tag stored in the indexed line of that 
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dedicated way. If a cache hit occurs in the main cache, then the data is accessed from the 

offset location of the selected cache line in the same cycle. If the non-shared requested 

data is not available in the dedicated way, then the victim set is activated in the next cycle 

as shown in Figure 5.10 and searched for the availability of the requested cache line. The 

victim set follows fully associative mapping scheme. In the case of a cache hit in the 

victim set, the cache line in the indexed location of the dedicated way is moved to the 

FIFO location of the victim set and the requested data in the victim set is moved to the 

indexed location of the dedicated way as shown in Figure 5.11. The requested data is 

accessed from the offset location and the FIFO replacement circuit of the victim set is 

updated accordingly. If the referenced data is not available in the victim set, then the 

cache line in the index location of the dedicated way is moved to the FIFO location of the 

victim set and the data from the main memory is copied to the indexed location of the 

dedicated way. The requested data is accessed from the offset location and the FIFO 

replacement circuit of the victim set is updated accordingly. 

For a shared data reference, the requested tag value is compared with the tag value stored 

in the shared set indexed line(s). The shared set may be direct-mapped as shown in Figure 

5.7 or 2-way set-associative as shown in Figure 5.8. If a cache hit occurs in the shared 

set, then the data is accessed from the offset location of the selected cache line in the 

same cycle. The LRU bit, in the case of the 2-way set-associative implementation of the 

shared set, is modified accordingly, i.e., if the cache reference is from way 1 of the shared 

set, then the LRU bit of the referenced index is set to 0, whereas if the cache reference is 

from way 2 of the shared set, then the LRU bit is set to 1. This makes the replacement 

circuit simple and requires only K additional bits for the replacement circuitry, where K 

is the number of sets in the shared set. If the requesting shared data is not available in the 

shared set, then the requested shared data is copied from the main memory to the indexed 

location of the shared set (LRU replacement circuit finds the cache line to be evicted in 

case of the 2 – way set-associative shared set). The requested data is accessed from the 

offset location and the LRU bit of the indexed location is updated in case of the 2 – way 

set-associative shared set. 
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5.5.2 POWER SAVING CONCERNS 

The experimental results presented in Section 5.7 show that the proposed implementation 

saves 67% power in case of a 4-way set-associative cache, as compared to the 

conventional cache architecture. The reduction in power consumption is mainly due to 

the fact that 75% of the main cache is shut down all the time in case of the proposed 

scheme. The shared set is powered on, only if the cache reference is shared. The victim 

set is active only if the cache reference is non-shared and the cache line is not available in 

the dedicated cache way of the main cache. Experimental results show that 90% of the 

data cache references are either from the dedicated cache way or from the shared set and 

very few references are directed to the victim set. Based on the sharing information 

available, the proposed scheme enables only one tag bank, one data bank in the main 

cache or the relevant tag and data bank(s) in the shared set. Thus, the total number of tag 

comparisons is reduced in the case of a hit in the shared set, to 1 if the shared set is 

direct-mapped, or 2 if the shared set is 2-way set-associative, as compared to ‘N’ for a 

conventional N-way set-associative cache. A miss in the shared set directly results in a 

cache miss, thus copying the requested data page from the main memory to the shared 

set. Even for a non-shared data reference, in case of a hit in the main cache, the number 

of tag comparisons is reduced to 1. In case of a miss in the dedicated cache way, the 

victim set is searched in the next cycle. As the hit rate of the main cache and shared set 

itself is more than 90%, this impact due to the victim set is negligible. Hence, a 

significant amount of dynamic power saving is possible with this scheme.   

Theoretically, with an increase in the associativity, the dynamic power consumption 

approximately reduces by a factor of (N-1) / N for the best case, where N is the cache 

associativity. The power saving is more for a cache with a larger page size because of the 

improved hit rate, as a larger number of references are from the same page. Increasing the 

size of the victim set, although improves hit rate, has a considerable impact on the power 

consumed due to increased number of tag comparisons. This demands that the size of the 

victim set be a beneficial compromise between the number of comparators and the miss 

rate. The size of the shared set is only controlled by the percentage of shared pages that 

may exist among the processes. 
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As the proposed scheme is process-aware, it may also ensure better performance for the 

processes with frequent context switches, as the recently used pages of the previously 

executed process are still available in its dedicated cache way. It also ensures better 

performance than the conventional cache for processes with shared pages among them, as 

the number of tag comparisons are considerably reduced in both the direct-mapped and 2-

way set-associative shared set implementations. This implementation has the advantage 

of a simple replacement circuitry (the main cache and shared set follow direct mapping) 

which helps in reducing the dynamic power consumption further. The victim set is 

enabled only when the non-shared cache reference is not available in the dedicated cache 

way. The victim set serves the purpose of reducing the miss rate, thus saving dynamic 

power consumption significantly. 

5.5.3 REPLACEMENT SUPPORT  

In SMPASP, rudimentary replacement is used in each of the dedicated cache ways, as it 

is treated like a direct-mapped cache. This gives a great advantage over the conventional 

and way-prediction schemes. Each spill-out page from the main cache is directed to the 

victim set. The victim set follows FIFO replacement policy, which makes the 

replacement circuitry simple. It uses log2M bits per cache line, where M is the number of 

cache lines in the victim set, for storing the FIFO information. In case of a hit in the 

victim set, the cache line in the dedicated cache is transferred to the FIFO cache line of 

the victim set. The selected victim cache line is transferred to the dedicated cache way, 

the copy in the victim set is made invalid and its FIFO count is set to the least. The FIFO 

count of all the other cache lines is modified and that of the new cache line (the last spill-

out page from the main cache) is set to the maximum, making it the most recent in the 

victim set. For the shared set, if the shared set is direct-mapped, then the selected cache 

line is directly replaced, but if the mapping is 2-way set-associative, then the LRU bit is 

used to find the least recently used cache line for replacement.   

5.6 ENERGY ANALYSIS 

The energy efficiency of the proposed scheme is measured using the ‘Energy dissipation 

per cache access’ model proposed by Zhang et al. [Zhang 2005], i.e., the energy 

efficiency is estimated by measuring the difference in the energy dissipation per cache 
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access. The energy consumption corresponding to each cache component is defined as 

follows.  

Edec  represents the energy dissipation of the address decoder 

Emux  represents the energy dissipation of the multiplexer and output driver 

Etagline  represents the energy dissipation of one tag line 

Edataline  represents the energy dissipation of one data line 

Epreline  represents the energy dissipation of one-line’s precharging 

Ecomline represents the energy dissipation of one-line’s comparator 

Esaline  represents the energy dissipation of one-line’s sense amplifier circuit 

Etagway  represents the energy dissipation of one tag way 

Edataway represents the energy dissipation of one data way 

Epreway  represents the energy dissipation of one way’s precharging 

Ecomway represents the energy dissipation of one way’s comparator 

Esaway  represents the energy dissipation of one way’s sense amplifier circuit 

EVictim  represents the energy dissipation associated with the fully associative victim set 

with M cache lines 

EShared represents the energy dissipation associated with the direct-mapped shared set. 

cachesize represents the size of the cache in Bytes 

cachelinesize represents the size of one cache block and 

N represents the associativity of the cache 

The energy equations of the conventional set-associative, way-prediction, process aware 

selective placement and the shared memory process aware selective placement N-way 

set-associative cache can be computed as follows: 

Eway = (Etagline + Edataline + Epreline + Ecomline + Esaline)  

* cachesize/(N * cachelinesize)     (5.1)         

Evictim = M*( Etagline + Edataline + Epreline + Ecomline + Esaline )    (5.2) 

Eshared = Edec + Etagline + Edataline + Epreline + Ecomline + Esaline     (5.3) 
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Conventional cache (Conv): 

 Energy per cache access (EConv), 

EConv = Edec + Emux + (N * Eway )     (5.4) 

 

Way Prediction cache (WP): 

Prediction Hit Energy (EPhit), 

EPhit = Edec + Emux + Eway      (5.5) 

Prediction Miss Energy (EPmiss) and Cache Miss Energy (ECmiss), 

EPmiss = ECmiss = 2*(Edec + Emux) + (N* Eway)    (5.6) 

Total Energy per cache access (ETotal), 

ETotal = Phit * EPhit + (1–Phit – Cmiss) * EPmiss+ Cmiss * ECmiss (5.7) 

Where, Phit refers to the percentage of prediction hits (i.e.), Phit = number of 

prediction hits / total number of cache accesses and Cmiss refers to the percentage 

of cache misses, which are secondary misses. 

 

Process Aware Selective Placement cache (PASP): 

Cache Hit Energy in the dedicated cache way (EDed_hit), 

EDed_hit = Edec + Emux + Eway      (5.8) 

 Primary Cache Miss Energy (EVictim_hit)  

and Secondary Cache Miss Energy (ECmiss), 

  EVictim_hit = ECmiss = Edec + Emux + Eway + Evictim   (5.9) 

 Total Energy per cache access (EPASP), 

  EPASP = Ded_hit * EDed_hit + (1 – Ded_hit – Cmiss) * EVictim_hit 

+ Cmiss * ECmiss                (5.10) 

Where, Ded_hit refers to the percentage of hits in the dedicated way (i.e.), 

Ded_hit = number of hits in the dedicated cache way / total number of cache 

accesses. 
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Shared Memory Process Aware Selective Placement cache (SMPASP): 

 Cache Hit Energy in the dedicated cache way (EDed_hit) – non shared references, 

  EDed_hit = Edec + Emux + Eway                      (5.11) 

 Cache Hit Energy in the Shared cache set (EShared_hit) – shared references, 

  EShared_hit = Eshared                (5.12) 

 Primary Cache Miss Energy (EVictim_hit) – non shared references, 

  EVictim_hit = Edec + Emux + Eway + Evictim             (5.13) 

 Shared Cache Miss Energy (EShared_miss) – shared references, 

  EShared_miss = Eshared                (5.14) 

 Secondary Cache Miss Energy (EnonShared_miss) – non shared references, 

  EnonShared_miss = Edec + Emux + Eway + Evictim             (5.15) 

 Total Energy per cache access for the Shared data (Eshared_Total), 

  Eshared_Total=(Shared_hit* EShared_hit)+(1–Shared_hit)*EShared_miss      (5.16) 

Where, Shared_hit refers to the percentage of shared set hits (i.e.), 

Shared_hit = number of shared set hits / total number of shared set accesses. 

Total Energy per cache access for the non-Shared data (EnonShared_Total), 

EnonShared_Total = Ded_hit * EDed_hit + (1 - nonSharedMiss - Ded_hit) *  

EVictim_hit + nonSharedMiss * EnonShared_miss           (5.17) 

Where, nonSharedMiss refers to the percentage of secondary cache misses for the 

non-shared data (i.e.), nonSharedMiss = number of secondary cache misses for 

the non-shared data / total number of cache accesses for the non-shared data. 

 Total Energy per cache access (ESMPASP), 

  ESMPASP = (Shared * Eshared_Total) + (1 – Shared) * EnonShared_Total      (5.18) 

Where, Shared refers to the percentage of shared set accesses (i.e.), Shared = 

number of shared set accesses / total number of accesses for the entire cache 

subsystem. The energy equations can be modified to simulate a 2-way set-

associative shared set, which also causes a considerable power saving. 
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5.7 EXPERIMENTAL METHODOLOGY, RESULTS AND ANALYSIS 

5.7.1 EXPERIMENTAL SETUP 

The experimental setup used, measures the cache hit rate, first cycle hit rate, effective 

cache access time and the power consumption, with the number of tag comparisons in 

particular. The experimental setup uses a cycle simulator of a cache based on an in-order 

process model, namely, CACHEMEM 1.0 along with SPEC95 benchmark [SPEC95] 

suite program traces, extracted by using SimpleScalar 2.0 simulator [Burger 1997], for 

determining the cache hit rate for the different caching schemes considered for analysis. 

The effective cache access time is calculated using the cache hit rate and first cycle hit 

rate with the first cycle cache hit access time assumed to be one cycle. The access time of 

a first cycle cache miss where the requested data is available in the cache is assumed as 

two cycles while the cache miss processing is assumed to consume 10 cycles. The energy 

components are obtained using the power estimation model, eCACTI cycle simulator 

[Mamidipaka 2004].  

CACHEMEM 1.0 is designed to simulate a 4-way set-associative cache with varying 

cache sizes (1KB, 2KB, 4KB, 8KB, 16KB and 64KB) and line sizes (8, 16, 32, 64, 128, 

and 256 bytes). The setup simulates a multitasking system, where more than one process 

is ready to run and is available in the main memory. The system uses a fixed quantum 

time (100, 200, 500 and 1000 traces) to switch between processes using Round Robin 

scheduling and is measured as the number of traces executed from a SPEC95 benchmark 

file. This cache simulator measures the cache hit rate, first cycle hit rate, tag comparison 

count and effective cache access time of all configurations of cache line size, cache size, 

context switch duration and SPEC95 benchmark program suite set (with and without data 

sharing among processes) for different caching schemes like the conventional set-

associative cache, way prediction cache, Process Aware Selective Placement (PASP) 

cache, Shared Memory Process Aware Selective Placement (SMPASP) cache 

architectures with the direct-mapped shared set and the Shared Memory Process Aware 

Selective Placement (SMPASP) cache architecture with 2-way set-associative shared set. 

In CACHEMEM 1.0, one SPEC95 benchmark program is considered as a process and the 

program set consists of four processes. The power components for the analysis are 
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obtained by modifying the power analysis model, eCACTI for a specific architecture. The 

model assumes only cache read operation / no cache write model. In the case of a cache 

hit, the access time is assumed to be one clock cycle. A cache miss results in writing a 

tag/data block value into the selected tag/data arrays of the cache. Thus, a cache miss 

results in one cache read and two cache-write operations, which take 9 additional cycles. 

Most of the existing cache architectures in literature use SPEC 95 as benchmark program 

suite which prompted us to select SPEC 95 over SPEC 2000. The SPEC 2000 benchmark 

program suite is too big for embedded cache architectures. The number of traces 

generated by SPEC 95 benchmark program suite is less in comparison with SPEC 2000 

benchmark program suite which makes it a better choice for embedded applications. 

Moreover evaluation with some of the SPEC 2000 benchmark suite traces shows similar 

performance as that of SPEC 95 benchmark program suite traces. So in this work we use 

SPEC 95 benchmark program suite for evaluation. 

5.7.2 COMPREHENSIVE EVALUATION OF CACHE 

Table 5.1: List of SPEC 95 benchmark suite program sets 

Exp. No.  SPEC 95 benchmark program set Data Sharing (in %) 

1 compress95, mgrid, fpppp, applu 32.02 

2 mgrid, fpppp, applu, swim 34.85 

3 fpppp, applu, swim, su2cor 34.90 

4 applu, swim, su2cor, tomcatv 32.19 

5 swim, su2cor, tomcatv, wave5 31.87 

6 su2cor, tomcatv, wave5, ijpeg 26.35 

7 tomcatv, wave5, ijpeg, hydro2d 26.53 

8 wave5, ijpeg, hydro2d, turb3d 29.05 

9 ijpeg, hydro2d, turb3d, vortex 29.24 

10 hydro2d, turb3d, vortex, perl 29.49 

The cache hit rate is estimated using the cycle-based simulator, CACHEMEM 1.0 for the 

different caching algorithms. The following table shown in Table 5.1 gives different 
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SPEC95 benchmark program sets used for the experimentation. The data sharing column 

gives the percentage of data shared among the processes of a certain program set. 

Based on the data sharing among processes, the experimental results are categorized into 

two cases: (i) Independent processes where the processes do not share any data among 

them and (ii) Processes where the data section of the processes are shared and the OS and 

compiler provide the sharing-related information. This work used the above mentioned 

experimental setup to measure various cache related parameters. 

5.7.2.1 Independent processes 

In this case, it is ensured that the processes do not share any data among them.  It is 

observed that the PASP and SMPASP (both direct mapped and 2-way set associative 

shared set) cache architectures have the same cache hit rate, first cycle hit rate, number of 

tag comparisons and effective cache access time for all the cache configurations, while 

experimenting with SPEC 95 benchmark programs as independent processes. This is 

because the shared set in SMPASP architecture is always powered off as the independent 

processes will not have any shared data, which makes these two selective placement 

architectures identical. The conventional cache offers lesser effective access time 

compared to all the other schemes, if the overall cache hit rates are uniform and the first 

cycle hit rate of the way prediction, PASP and SMPASP cache architectures is lesser than 

the conventional cache hit rate. 

5.7.2.1.1 Cache Hit Rate 

The hit rates of various cache architectures are analyzed with respect to the SPEC95 

benchmark program sets, cache line size, cache size and context switch duration.  The 

cache hit rate of the conventional and the way prediction cache architectures is always the 

same, irrespective of the cache configurations and program sets. This is attributed to the 

fact that these two architectures make use of the complete cache and have the same 

replacement scheme.  

The cache hit rates of an 8K, 4-way set-associative cache for various SPEC95 benchmark 

program sets running as independent processes is shown in Fig. 5.12.  It is observed from 

the results that the PASP and SMPASP cache architectures offer better cache hit rates for 
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the majority of the benchmark program sets with different cache size, line size and 

context switch duration.  
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Fig. 5.12: Cache hit rate Vs SPEC95 Program sets for an 8KB, 4-way set-associative 

cache with 16Byte cache line size and context switch duration of 500 references 

Figure 5.13 represents the cache hit rate vs cache line sizes chart for an 8K, 4-way set-

associative cache, running SPEC95 benchmark program sets as independent processes. It 

is observed from these results that irrespective of the architecture the cache hit rate 

increases with increase in the cache line size, as a greater number of references fall within 

the same page [Hennessy 2007]. It is also observed that in most of the cases the PASP 

and SMPASP cache architectures perform better than their conventional and way 

prediction counterparts. This cache hit performance difference is more significant for 

smaller cache line size values. 

The cache hit rate vs cache size for an 8K, 4-way set-associative cache running SPEC95 

benchmark program sets as independent processes is shown in Figure 5.14.  From the 

experimentation, it is clear that for all the architectures, the cache hit rate increases with 

increase in the cache size. It is also observed that for smaller cache sizes (less than 

32KB), the PASP and SMPASP cache architectures offer higher cache hit rate, as 

compared to the conventional and way prediction architecture. 
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Cache Hit Vs Cache Line Size
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Fig. 5.13: Cache hit rate Vs Cache line size for an 8KB, 4-way set-associative cache with 

context switch duration of 500 references 
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Fig. 5.14: Cache hit rate Vs Cache size for a 4-way set-associative cache with 16 Byte 

cache line size and context switch duration of 500 references 

The cache hit rate vs context switch duration for a 4-way set-associative cache running 

SPEC95 benchmark program sets as independent processes is shown in Figure 5.15. It is 

observed from the experimental results that the cache hit performance of the PASP and 

SMPASP architectures does not degrade with context switch duration. This is because in 

both these schemes, local replacement equivalent to direct mapping takes place as one 

way is dedicated to a process. A slight variation of the cache hit rate is possible in 

selective placement schemes owing to the replacement strategy in victim set which is 

global. This hardly affects the performance as the victim set is very rarely used because 

of high first cycle hit rate. Each of the conventional and way prediction cache 

architectures varies its performance with context switch duration. This is due to the 
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global replacement strategy, which may replace some cache lines of the next process to 

execute causing performance variation with the context switching point. One can 

statically analyze the trace files to get the best context switching points where the cache 

impact will be least [Lee 1998][Lee 1999]. The brute-force analysis of finding the best 

context switch point is an NP-hard problem [Lee 1998][Lee 1999]. It is also observed 

that the PASP and SMPASP cache architectures offer a higher cache hit rate compared to 

their conventional and way prediction counterparts for all the context switch durations. 
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Fig. 5.15: Cache hit rate Vs Context switch duration for a 16K, 4-way set-associative 

cache with 16 Byte cache line size 

5.7.2.1.2 First Cycle Cache Hit Rate 

The first cycle hit rate of various cache architectures is analyzed with respect to the 

SPEC95 benchmark program sets, cache line size, cache size and context switch duration.  

The first cycle hit rate of the way prediction cache architecture is always less than that of 

the conventional cache architecture. In case of the conventional cache architecture, all 

cache hits happen in the first cycle, i.e., the first cycle hit is equal to the cache hit whereas 

in the way prediction scheme, a first cycle hit occurs only when the prediction is correct, 

which is usually 80-85% of the total cache hits.  

The first cycle hit rates of an 8K, 4-way set-associative cache for various SPEC95 

benchmark program sets running as independent processes is shown in Figure 5.16.  It is 

observed from the experimental results that the PASP and SMPASP cache architectures 

offer greater first cycle hit rates as compared to the way prediction cache for all the 

benchmark program sets, irrespective of the cache size, line size and context switch 
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duration. The high first cycle hit rate of the PASP and SMPASP cache can be attributed 

to the use of local replacement scheme and process aware cache architecture design. It is 

also seen that in some cases, the cache hit rate of the conventional cache is falling behind 

that of the PASP and SMPASP schemes. 
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Fig. 5.16: First cycle hit rate Vs SPEC95 Program sets for an 8KB, 4-way set-associative 

cache with 16 Byte cache line size and context switch duration of 500 references 
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Fig. 5.17: First cycle hit rate Vs Cache line size for an 8KB, 4-way set-associative cache 

with context switch duration of 500 references 

The first cycle hit rate for different cache architectures vs cache line size for an 8K, 4-

way set-associative cache running SPEC95 benchmark program sets as independent 

processes is shown in Figure 5.17.  It is observed from the results that for all the 

architectures, the first cycle hit rate increases with increase in the cache line size. The 

PASP and SMPASP schemes offer higher first cycle hit rate when compared to the way 
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prediction scheme, but this difference in the first cycle hit rate of the PASP and SMPASP 

over the way prediction scheme shrinks with increase in the cache line size. 
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Fig. 5.18: First cycle hit rate Vs Cache size for a 4-way set-associative cache with 16 

Byte cache line size and context switch duration of 500 references 
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Fig. 5.19: First cycle hit rate Vs Context switch duration for a 16K, 4-way set-associative 

cache with 16 Byte cache line size 

The first cycle hit rate vs cache sizes for an 8K, 4-way set-associative cache running 

SPEC95 benchmark program sets as independent processes is shown in Figure 5.18.  

Here, it is observed that for all the architectures the first cycle hit rate increases with 

increase in the cache size. It is also found that the PASP and SMPASP cache 

architectures offer higher first cycle hit rate for all cache sizes compared to the way 

prediction cache architecture. The figure shows that for smaller cache sizes (<32K), the 

first cycle hit rate of the PASP and SMPASP is better than the cache hit rate of 
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conventional cache and for larger caches (>32KB), the cache hit rate of conventional 

cache is better than first cycle hit rate of PASP and SMPASP architectures.  

The first cycle hit rate vs context switch duration chart for a 4-way set-associative cache 

running SPEC95 benchmark program sets as independent processes is shown in Figure 

5.19. The simulation results clearly show that the PASP and SMPASP cache architectures 

always provide better first cycle hit rates than the way prediction cache architecture. 

5.7.2.1.3 Tag Comparison Count 

The tag comparison count for the different cache architectures is analyzed with respect to 

the SPEC95 benchmark program sets, cache line size, cache size and context switch 

duration. The tag comparisons can act as a measure of the number of active data banks 

and tag banks while running the benchmark program set and can be used as an indirect 

measure of the energy consumption of the cache memory. The number of tag 

comparisons is normalized over the number of total references in the benchmark program 

set under consideration. For a single reference, the normalized number of tag 

comparisons is N (where N is the cache associativity) for all configurations of the 

conventional cache, as parallel comparisons are carried out in all the N cache lines. The 

normalized number of tag comparisons for the conventional cache is always high as 

compared to the other architectures, irrespective of the cache configuration, program set 

and data sharing. It is also observed that with increase in the first cycle hit rate, the tag 

comparison count decreases as the additional cycles are avoided, thus reducing the 

number of tag comparisons.  

The normalized number of tag comparison count of an 8K, 4-way set-associative cache 

for various SPEC95 benchmark program sets running as independent processes is shown 

in Figure 5.20.  It is observed from the experimental results that the PASP and SMPASP 

cache architectures yield reduced number of tag comparisons, and thus reduced energy 

consumption for all the benchmark program sets. As the number of tag comparisons 

lowers for cache architectures with high first cycle hit rate, the PASP and SMPASP 

schemes always offer better performance. 

The normalized tag comparison count for different cache architectures vs cache line sizes 

for an 8K, 4-way set-associative cache running SPEC95 benchmark program sets as 
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independent processes is shown in Figure 5.21. It is observed from the simulation results 

that for the way prediction, PASP and SMPASP cache architectures the number of tag 

comparisons reduce with increase in cache line size and thus reduced number of active 

cache banks. The difference in the tag comparison count and the cache energy consumption 

for the PASP and SMPASP over that of the way prediction scheme is pronounced for 

smaller cache line sizes. 
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Fig. 5.20: Normalized tag comparison count Vs SPEC95 Program sets for an 8KB, 4-way 

set-associative cache with 16Byte cache line size and context switch duration of 500 

references 
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Fig. 5.21: Normalized tag comparison count Vs Cache line size for an 8KB, 4-way set-

associative cache with context switch duration of 500 references 

The normalized tag comparison count vs cache size chart for an 8K, 4-way set-

associative cache running on SPEC95 benchmark program sets as independent processes 

is shown in Figure 5.22.  It is observed from the simulation results that for the case of 

way prediction, PASP and SMPASP cache architectures the number of tag comparison 



CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES 

 118

reduces with increase in cache size. It is also observed that the difference in the tag 

comparison count of PASP and SMPASP over the way prediction cache architecture 

increases with increase in the cache size.  

Normalized Tag comparisons Vs Cache Size

1.44

1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

1K 2K 4K 8K 16K 32K 64K
Cache Size

N
or

m
al

iz
ed

 T
ag

 c
om

pa
ris

on
s

Way Predict PASP SMPASP_Direct SMPASP_2WaySA

 
Fig. 5.22: Normalized tag comparison count Vs Cache size for a 4-way set-associative 

cache with 16 Byte cache line size and context switch duration of 500 references 
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Fig. 5.23: Normalized tag comparison count Vs Context switch duration for an 16K, 4-

way set-associative cache with 16 Byte cache line size 

The normalized tag comparison count vs context switch duration for a 4-way set-

associative cache for SPEC95 benchmark program sets running as independent processes 

is shown in Figure 5.23.  It is observed that the PASP and SMPASP always provide a 

lesser tag comparison count and consumes less energy as compared to conventional and 

way prediction scheme. The number of tag comparisons in case of PASP and SMPASP 

architectures does not vary with context switch duration whereas in case of the way 

prediction cache the number of tag comparisons decreases with increase in the context 
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switch duration. This is attributed to the global replacement strategy used in way 

prediction cache which may replace some of the cache lines of the next process. 

5.7.2.1.4 Effective Cache Access Time 

The effective cache access time of various cache architectures is analyzed with respect to 

SPEC95 benchmark program sets, cache line size, cache size and context switch duration.  

The effective cache access time (ECAT) is calculated using the following formula 

ECAT=(First cycle hit * 1) + ((Cache hit – First cycle hit)*2) + (Cache miss * 10) 5.19 

Equation 19 assumes that the first cycle hit takes one clock cycle in all architectures. The 

way prediction, PASP and SMPASP cache architectures take two clock cycles to handle 

the first cycle miss but cache hit condition while cache miss processing will takes 10 

cycles to complete. Similar to the cache hit rate and the first cycle hit rate performance, 

the PASP and SMPASP cache architectures have the same ECAT for all the cache 

configurations while running on SPEC95 benchmark programs as independent processes. 

The ECAT of the conventional cache is always lower than the ECAT of the way 

prediction cache architectures irrespective of the configurations, program sets and data 

sharing. From the equation, it is evident that the ECAT for all cache architectures 

depends on its first cycle hit rate and cache hit rate. 
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Fig. 5.24: Effective cache access time Vs SPEC95 Program sets for an 8KB, 4-way set-

associative cache with 16Byte cache line size and context switch duration of 500 

references 
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The ECAT of an 8K, 4-way set-associative cache for various SPEC95 benchmark 

program sets running as independent processes is shown in Figure 5.24.  It is observed 

from the experimental results that the PASP and SMPASP cache architectures offer lesser 

ECAT value for majority of the benchmark program sets. The ECAT performance 

follows the same pattern observed while evaluating cache hit rate and first cycle hit rate 

performances. From these experimental results it can be concluded that in case of 

independent processes, if the cache hit rate is same, the way prediction cache architecture 

yields a higher ECAT value compared to other cache architectures. 

The ECAT of different cache architectures vs cache line sizes for an 8K, 4-way set-

associative cache running on SPEC95 benchmark program sets as independent processes 

is shown in Figure 5.25. It is observed that in case of all the architectures, the ECAT 

value reduces with increase in the cache line size. Irrespective of the cache line size, the 

ECAT value of the way prediction cache architecture is high as compared to other cache 

architectures and this difference in ECAT over other architectures reduces with increase 

in the cache line size. This is because of the cache hit rate and first cycle hit rate.  
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Fig. 5.25: Effective cache access time Vs Cache line size for an 8KB, 4-way set-

associative cache with context switch duration of 500 references 

The ECAT vs cache size for a 4-way set-associative cache running SPEC95 benchmark 

program sets as independent processes is shown in Figure 5.26.  It is observed from the 

experimental results that for all the architectures the ECAT value decreases with increase 

in the cache size. It is also observed that the PASP and SMPASP cache architectures 

offer lower ECAT value compared to the conventional and way prediction architectures 



CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES 

 121

for cache sizes less than 32KB. The conventional cache architecture performs better for 

large cache sizes. The way prediction cache architecture performance with respect to 

ECAT is poor compared to the other cache architectures.  

Effective AccessTime Vs Cache Size

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

1K 2K 4K 8K 16K 32K 64K
Cache Size

Ef
fe

ct
iv

e 
A

cc
es

sT
im

e
Conv Way Predict PASP SMPASP_Direct SMPASP_2WaySA

 
Fig. 5.26: Effective cache access time Vs Cache size for a 4-way set-associative cache 

with 16 Byte cache line size and context switch duration of 500 references 

The relationship between the ECAT of various cache architectures and the context switch 

duration, for an 8K, 4-way set associative cache running on SPEC95 benchmark program 

sets as independent processes is shown in Figure 5.27. 
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Fig. 5.27: Effective cache access time Vs Context switch duration for an 16K, 4-way set-

associative cache with 16 Byte cache line size 

It is observed from the experimental results that the ECAT performance of the PASP and 

SMPASP does not degrade with the context switch duration. This is due to the local 

replacement carried out in both these schemes with one way dedicated to a process. A 
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slight variation of the cache hit rate is possible because of the victim set replacement 

policy which is global. Each of the conventional and way prediction cache architectures 

varies its ECAT performance with context switch duration. It is also observed that the 

PASP and SMPASP cache architectures offer lower ECAT value compared to the 

conventional and way prediction architectures for all the context switch durations. 

5.7.2.2 Shared Data among processes 

In this section data sharing among the processes is discussed. The data section of the 

programs is shared and the sharing among the processes varies from 25% to 35% as 

shown in Table 5.1. This section analyses the cache hit rate, first cycle cache hit rate, tag 

comparison count and the effective cache access time for various cache configurations of 

the conventional cache, way prediction cache, PASP cache, SMPASP cache with direct 

mapped shared set and the SMPASP cache with 2-way set-associative shared set running 

processes with data sharing among them.  

It is observed that the SMPASP (both direct-mapped and 2-way set-associative shared 

set) always has a better cache hit rate and first cycle hit rate than the PASP cache 

architecture for all cache configurations while running SPEC95 benchmark programs as 

processes with data sharing among them, thus justifying the purpose of its design. The 

better cache hit performance in case of SMPASP is mainly due to the shared cache set 

which stores all the shared cache lines. Between the two variants of SMPASP, the 

SMPASP architecture with the 2-way set-associative shared set offers a higher cache hit 

rate and first cycle hit rate as compared to the SMPASP architecture with direct-mapped 

shared set. The cache hit rate of the conventional and way prediction cache architectures 

is always the same irrespective of the configuration program set and data sharing as these 

two architectures make use of the complete cache and have the same placement and 

replacement schemes. The cache hit, first cycle hit, tag comparison count and ECAT 

performance of PASP cache architecture degrades slightly because of the overhead 

incurred while handling shared data. 

5.7.2.2.1 Cache Hit Rate 

The hit rate of various cache architectures is analyzed with respect to the SPEC95 

benchmark program sets, cache line size, cache size and the context switch duration.   
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The cache hit rate of an 8K, 4-way set-associative cache for various SPEC95 benchmark 

program sets running as processes with data sharing among them is shown in Figure 5.28.  

It is observed from the experimental results that the SMPASP cache architectures 

performs equally good or better for a majority of the benchmark program sets compared 

to the conventional, way prediction and PASP cache architectures. 
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Fig. 5.28: Cache hit rate Vs SPEC95 Program sets for an 8KB, 4-way set-associative 

cache with 16Byte cache line size and context switch duration of 500 references 

The cache hit rate vs cache line size chart for an 8K, 4-way set-associative cache running 

SPEC95 benchmark program sets as processes with data sharing is shown in Figure 5.29.  

It is observed that similar to the instance of independent processes, irrespective of the 

cache architecture, cache hit rate increases with increase in the cache line size. It is also 

noted that irrespective of the cache line size, the SMPASP architecture performs better 

than the other architectures. For all the configurations, the SMPASP with 2-way set-

associative shared set provides the best cache hit performance because of the shared set. 

The cache hit rate vs cache size for an 8K, 4-way set-associative cache running SPEC95 

benchmark program sets as processes with data sharing is shown in Figure 5.30. It is 

found from the experimental results that similar to the independent processes, irrespective 

of cache architecture, the cache hit rate increases with increase in the cache size. It is also 

observed that the SMPASP cache architecture offers high cache hit rate in comparison 

with the conventional and way prediction architectures, for cache sizes less than 32KB. 

The conventional and way prediction cache architectures perform better for large cache 
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sizes. The SMPASP with 2-way set-associative cache performs better than the SMPASP 

with direct mapped cache and PASP cache architectures. 
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Fig. 5.29: Cache hit rate Vs Cache line size for an 8KB, 4-way set-associative cache with 

context switch duration of 500 references 
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Fig. 5.30: Cache hit rate Vs Cache size for a 4-way set-associative cache with 16 Byte 

cache line size and context switch duration of 500 references 

The cache hit rate vs context switch duration for a 4-way set-associative cache running 

SPEC95 benchmark program sets as processes with data sharing is shown in Figure 5.31.  

It is noted that the context switching does not affect the performance of the SMPASP 

architecture as in this scheme local replacement is carried out by assigning one dedicated 

way to a process.  A slight variation in cache hit rate is possible because of the global 

victim cache replacement policy but it hardly affects the performance, as the victim set is 

rarely used owing to very high first cycle hit rate. The PASP cache hit performance 

increases with lengthening of the context switch duration. This is because of the shared 



CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES 

 125

cache line access by other processes. In case of the PASP architecture, if the context 

switch duration is high, the system performs as if only one process is executing which 

results in an improved cache hit performance.  
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Fig. 5.31: Cache hit rate Vs Context switch duration for a 16K, 4-way set-associative 

cache with 16 Byte cache line size 

The cache hit performance of the conventional and way prediction cache architectures 

varies with change in context switch duration due to the use of global replacement 

strategy. It is also seen that the SMPASP cache architecture offers high cache hit rate 

compared to all other architectures, irrespective of the context switch duration. The 

SMPASP with 2-way set-associative shared set provides a better cache hit rate compared 

to SMPASP with direct mapped shared set. 

5.7.2.2.2 First Cycle Hit Rate 

The first cycle hit rate for various cache architectures is analyzed with respect to the 

SPEC95 benchmark program sets, cache line size, cache size and the context switch 

duration.  It is observed that the SMPASP (both direct-mapped and 2-way set-associative 

shared set) always exhibits a better first cycle hit rate than its way prediction and PASP 

counterparts for all cache configurations while running the SPEC95 benchmark programs 

as processes with data sharing among them. This is mainly due to the fact that the shared 

set in the SMPASP architecture stores all the shared cache lines, which results in a better 

first cycle hit rate. The SMPASP architecture with 2-way set-associative shared set offers 

higher first cycle hit rate compared to the SMPASP architecture with direct-mapped 

shared set. 
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The first cycle hit rates of an 8K, 4-way set-associative cache for various SPEC95 

benchmark program sets running as processes with data sharing among them is shown in 

Figure 5.32.  It is observed from the experimental results that the SMPASP cache 

architecture performs equally good or better for a majority of the benchmark program 

sets compared to the conventional cache architecture. It is also observed that the 

SMPASP cache architecture outperforms the way prediction and PASP cache 

architectures for all the benchmark program sets, thus fulfilling its purpose. Though the 

first cycle hit performance of the PASP cache architecture degrades slightly because of 

the inefficiency in managing shared data, it still performs better than the way prediction 

cache architecture in many cases. The high first cycle hit rate of the PASP and SMPASP 

compared to the way prediction scheme is attributed to the local replacement strategy 

used in these two schemes and the process aware cache architecture. It can also be noted 

that in many cases, the cache hit rate of the conventional cache is falling behind the 

SMPASP first cycle hit rate. 
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Fig. 5.32: First cycle hit rate Vs SPEC95 Program sets for an 8KB, 4-way set-associative 

cache with 16 Byte cache line size and context switch duration of 500 references 

Figure 5.33 represents the relationship between the first cycle hit rate and the cache line 

size for an 8K, 4-way set associative cache running SPEC95 benchmark program sets as 

processes with data sharing.  The experimental results reveal that similar to the 

independent processes, irrespective of the cache architecture, the first cycle hit rate also 

increases with increase in the cache line size. It is also observed that irrespective of the 

cache line size, the SMPASP architecture performs better than its way prediction and 
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PASP counterparts. For all the configurations, the SMPASP with 2-way set-associative 

shared set provides better first cycle hit performance compared to SMPASP with direct-

mapped shared set. It is also observed that irrespective of the cache line size, the first 

cycle hit rate of the PASP architecture is better than that of the way prediction scheme. 
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Fig. 5.33: First cycle hit rate Vs Cache line size for an 8KB, 4-way set-associative cache 

with context switch duration of 500 references 
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Fig. 5.34: First cycle hit rate Vs Cache size for a 4-way set-associative cache with 16 

Byte cache line size and context switch duration of 500 references 

The first cycle hit rate vs cache size for an 8K, 4-way set-associative cache running 

SPEC95 benchmark program sets as processes with data sharing is shown in Figure 5.34. 

It is found from the experimental results that as in the case of independent processes, 

irrespective of the cache architecture, the first cycle hit rate increases with increase in the 

cache size. It is also observed that the SMPASP cache architecture offers better first cycle 
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hit rate compared to the cache hit rate of the conventional cache architecture for cache 

sizes less than 32KB. The conventional cache architecture gives a better performance for 

very large cache sizes. The SMPASP with 2-way set-associative cache performs better 

than the SMPASP with direct-mapped cache and the PASP cache architectures. It is also 

observed that for cache sizes less than 32KB, the first cycle hit rate of the PASP 

architecture is better than way prediction scheme. 

The first cycle hit rate vs the context switch duration chart for a 4-way set-associative 

cache running SPEC95 benchmark program sets as processes with data sharing is shown 

in Figure 5.35.  It is observed from the experimental results that context switching does 

not affect the performance of SMPASP architecture as in this scheme local replacement 

is carried out by assigning one dedicated way to a process. In case of PASP architecture, 

if the context switch duration is high, then the system performs as if only one process is 

executing which results in an improved first cycle hit performance. The first cycle hit 

performance of the conventional and way prediction cache architectures varies with 

change in context switch duration due to the use of global replacement strategy. The 

SMPASP cache architecture offers a high first cycle hit rate compared to all other 

architectures, irrespective of the context switch duration. The PASP cache architecture 

offers a high first cycle hit rate compared to the way prediction cache architecture for all 

the context switch durations. 
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Fig. 5.35: First cycle hit rate Vs Context switch duration for a 16K, 4-way set-associative 

cache with 16 Byte cache line size 
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5.7.2.2.3 Tag Comparison Count 

The tag comparison count for different cache architectures is analyzed with respect to the 

SPEC95 benchmark program sets, cache line size, cache size and the context switch 

duration.  The number of tag comparisons is normalized over the total number of 

references in the benchmark program set. The normalized tag comparison count is N 

(where N is the cache associativity) for all the conventional cache configurations as it 

carries out a parallel comparison in all the N cache lines of the selected set. It is observed 

that the SMPASP with direct-mapped shared set always outperforms all the other 

architectures with respect to tag comparisons count for all the configurations, context 

switch durations, program sets and data sharing. The SMPASP with 2-way set-

associative shared set gives a higher tag comparison count when compared to the 

SMPASP with direct-mapped shared set because of the additional tag comparisons in the 

shared set. The normalized tag comparison count for the conventional cache is always 

high in comparison to other architectures irrespective of the configurations, context 

switch durations, program set and data sharing. These results also reveal that with 

increase in the first cycle hit rate, the tag comparison count decreases. The tag 

comparison count of SMPASP with 2-way set-associative shared set increases with 

shared data as additional tag comparisons have to be performed in the shared set. The tag 

comparisons are also a measure of how many data banks and tag banks are active while 

running the benchmark program set. 

The normalized tag comparison count of an 8K, 4-way set-associative cache for various 

SPEC95 benchmark program sets running as processes with data sharing among them is 

shown in Figure 5.36. The SMPASP with direct-mapped shared set cache architecture 

offers the least tag comparison count for all the benchmark program sets compared to the 

other architectures. The normalized tag comparison count vs cache line size and 

normalized tag comparison count vs cache size for an 8K, 4-way set-associative cache 

running SPEC95 benchmark program sets as processes with data sharing are shown in 

Figure 5.37 and Figure 5.38 respectively. It is again verified here that similar to the 

independent processes, the tag comparison count reduces with increase in the cache line 

size and cache size for the way prediction, PASP and SMPASP cache architectures. This 

is attributed to the increased first cycle and cache hit rates. 
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Normalized Tag comparisons Vs Benchmark Programs
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Fig. 5.36: Normalized tag comparison count Vs SPEC95 Program sets for an 8KB, 4-way 

set-associative cache with 16Byte cache line size and context switch duration of 500 

references 
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Fig. 5.37: Normalized tag comparison count Vs Cache line size for an 8KB, 4-way set-

associative cache with context switch duration of 500 references 

Figure 5.39 presents the relationship between the normalized tag comparison count and 

the context switch duration for a 4-way set-associative cache running SPEC95 

benchmark program sets as processes with data sharing. It is observed that the context 

switching does not affect the performance of the SMPASP architecture. This is attributed 

to the local replacement carried out in this scheme with one way dedicated to a process. 

A slight variation of the cache hit rate is possible because of the global victim cache 

replacement policy but this hardly affects the performance as the victim is rarely used 

because of high first cycle hit rate. The number of tag comparisons of the PASP reduces 
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with increase in the context switch duration. If the context switch interval is high, then 

the PASP cache performs as if only one process is executing (without shared data) which 

results in an improved cache hit performance for the PASP architecture. The tag 

comparison count performance of the conventional and way prediction cache 

architectures varies with change in context switch duration due to the use of global 

replacement strategy, poor prediction hit and poor cache hit.  
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Fig. 5.38: Normalized tag comparison count Vs Cache size for a 4-way set-associative 

cache with 16 Byte cache line size and context switch duration of 500 references 
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Fig. 5.39: Normalized tag comparison count Vs Context switch duration for an 16K, 4-

way set-associative cache with 16 Byte cache line size 

5.7.2.2.4 Effective Cache Access Time (ECAT) 

As observed in the cache hit rate and first cycle hit rate performances, the ECAT 

performance of the SMPASP (both direct-mapped and 2-way set-associative shared set) 
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cache architecture is better than that of all the other cache architectures and context 

switch duration for all the cache configurations. This is because the shared set of the 

SMPASP architecture stores all the shared cache lines which results in a better cache hit 

and first cycle hit performance. The SMPASP with 2-way set-associative shared set 

offers better performance than the SMPASP with direct-mapped cache owing to the 

cache hit rate and first cycle hit rate. The ECAT of conventional cache architecture is 

always lower than that of the way predictive cache architecture, irrespective of the 

configuration, program set, context switch duration  and data sharing which is attributed 

to the high first cycle hit performance.     
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Fig. 5.40: Effective access time Vs SPEC 95 Program sets for an 8KB, 4-way set-

associative cache with 16Byte cache line size and context switch duration of 500 

references 

The ECAT of an 8K, 4-way set-associative cache for various SPEC95 benchmark 

program sets running as processes with data sharing among them is shown in Figure 5.40.  

It is observed that the PASP and SMPASP cache architectures offer lesser ECAT for a 

majority of the benchmark program sets. The ECAT performance follows the same 

pattern of the cache hit rate and first cycle hit rate performances, as ECAT depends on 

the first cycle hit rate and the overall cache hit rate. The SMPASP with 2-way shared set 

offers a lesser ECAT in comparison with the SMPASP with direct-mapped shared set, 

which is again due to the high first cycle hit rate. 

The ECAT vs the cache line size and ECAT vs cache size for an 8K, 4-way set-

associative cache for various SPEC95 benchmark program sets running as processes with 



CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES 

 133

data sharing among them is shown in Figure 5.41 and Figure 5.42 respectively. The 

experimental results reveal that similar to the case of independent processes, here also, 

irrespective of the cache architecture, the ECAT decreases with increase in the cache line 

size and cache size. It is also observed that for cache sizes less than 32KB, the SMPASP 

cache architecture offers low ECAT compared to the other architectures. The 

conventional and way prediction cache architectures perform better for very large cache 

sizes. 
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Fig. 5.41: Effective access time Vs Cache line size for an 8KB, 4-way set-associative 

cache with context switch duration of 500 references 
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Fig. 5.42: Effective access time Vs Cache size for a 4-way set-associative cache with 16 

Byte cache line size and context switch duration of 500 references 

The ECAT vs context switch duration for a 4-way set-associative cache for various 

SPEC95 benchmark program sets running as processes with data sharing among them is 
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shown in Figure 5.43. The results confirm that the context switching does not affect the 

ECAT performance of the SMPASP architecture. This is because context switching does 

not affect the cache hit rate and first cycle hit rate of the SMPASP architectures. The 

ECAT of the PASP reduces with increase in the context switch duration. If the context 

switch interval is high, then the PASP cache performs as if only one process is executing 

(without shared data) which results in an improved cache hit performance for the PASP 

architecture. The ECAT performance of the conventional and way prediction cache 

architectures varies with change in context switch duration due to the use of global 

replacement strategy, poor prediction hit and poor cache hit.  
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Fig. 5.43: Effective access time Vs Context switch duration for an 16K, 4-way set-

associative cache with 16 Byte cache line size 

5.7.2.3 Comparative Figures 

The cache hit rate of the conventional and way prediction cache architecture is always the 

same for all the cache configurations irrespective of the level of sharing among the 

processes. The cache hit rate of the PASP cache, SMPASP cache with direct-mapped 

shared set, SMPASP cache with 2-way set-associative shared set is always the same for 

all the configurations, when the processes have no sharing among them. The cache hit 

rate of the PASP / SMPASP cache architecture varies from -2% to +2% of that of the 

conventional / way prediction cache architectures for all the cache configurations and 

benchmark program sets, when processes have no shared data among them. The 

performance of the PASP cache architecture degrades for the shared benchmark program 

sets.   The cache hit rate of the PASP cache, SMPASP cache with direct-mapped shared 
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set, and SMPASP cache with 2-way set-associative shared set architecture varies from -

5% to +0.1%, -1.3% to +1.85% and -0.5% to +2.1% respectively of that of the 

conventional / way prediction cache architectures for all the cache configurations and 

benchmark program sets when the processes exhibit data sharing among them.  

The first cycle hit rate of the PASP cache, SMPASP cache with direct mapped shared set, 

SMPASP cache with 2-way set-associative shared set is always the same for all 

configurations when the processes do not share data among them. The first cycle hit rate 

of the PASP / SMPASP cache architecture improves from 1% to 10% of that of the way 

prediction cache architectures for all the cache configurations and benchmark program 

sets, when processes have no shared data among them. However, the PASP cache 

architecture degrades its performance for shared benchmark program sets. The first cycle 

hit rate of the SMPASP cache with 2-way set-associative shared set is higher than that of 

the PASP cache and SMPASP cache with direct-mapped shared set for all the cache 

configurations and benchmark program sets, when processes demonstrate data sharing 

among them. The first cycle hit rate of the PASP cache, SMPASP cache with direct-

mapped shared set, and SMPASP cache with 2-way set-associative shared set cache 

architecture varies from -3.5% to +5%, +0.75% to +9.75% and +1% to +10% 

respectively of that of the way prediction cache architecture for all the cache 

configurations and benchmark program sets, when processes exhibit data sharing among 

them. 

The tag comparison count of the PASP cache, SMPASP cache with direct-mapped shared 

set, and the SMPASP cache with 2-way set-associative shared set is always the same for 

all configurations when the processes do not share any data among them. The tag 

comparison count of the PASP / SMPASP cache architecture reduces by 50% to 75% of 

that of the conventional cache architecture for all the cache configurations and 

benchmark program sets, when processes have no shared data among them. The number 

of tag comparisons of the PASP / SMPASP cache architecture reduces by 1.2% to 9% of 

that of the way prediction architecture for all the cache configurations and benchmark 

program sets. The PASP cache architecture performance degrades in the case of shared 

benchmark program sets. The number of tag comparisons of the SMPASP cache with 

direct-mapped shared set is lesser than that of the PASP cache and SMPASP cache with 
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2-way set-associative shared set for all the cache configurations and benchmark program 

sets, when processes share data among them. The tag comparison count of PASP cache, 

SMPASP cache with direct-mapped shared set, and SMPASP cache with 2-way set-

associative shared set architecture varies from +48% to +72.5%, +51% to +73% and 

+43% to +66% respectively of that of the conventional cache architecture for all the 

cache configurations and benchmark program sets, when processes have data sharing 

among them. The number of tag comparisons of PASP cache, SMPASP cache with 

direct-mapped shared set, and SMPASP cache with 2-way set-associative shared set 

architecture varies from -4.8% to +2.75%, +2% to +10% and -20% to -5.7% respectively 

of that of the way prediction cache architecture for all the cache configurations and 

benchmark program sets, when processes share data among them. 

The ECAT of the PASP cache, SMPASP cache with direct-mapped shared set, and the 

SMPASP cache with 2-way set-associative shared set is always the same for all 

configurations when the processes have no sharing among them. The ECAT of the PASP 

/ SMPASP cache architecture varies from -6.85% to +3.6% of that of the conventional 

cache architecture for all the cache configurations and benchmark program sets. The 

ECAT of the PASP / SMPASP cache architecture varies from -4.8% to +4.8% of that of 

the way prediction architecture for all the cache configurations and benchmark program 

sets. The PASP cache architecture performance degrades for shared benchmark program 

sets. The effective cache access time of SMPASP cache with 2-way set-associative 

shared set is less than that of the PASP cache and SMPASP cache with direct-mapped 

shared set for all the cache configurations and benchmark program sets, when processes 

have data sharing among them. The effective cache access time of the PASP cache, 

SMPASP cache with direct-mapped shared set, and SMPASP cache with 2-way set-

associative shared set architecture varies from -10% to +0.1%, -3.5% to +4.4% and -1.4% 

to +5% respectively of that of the conventional cache architectures for all the cache 

configurations and benchmark program suite. The effective cache access time of the 

PASP cache, SMPASP cache with direct-mapped shared set, and SMPASP cache with 2-

way set-associative shared set architecture varies from -9% to +1.4%, -1.9% to +4.8% 

and -0.6% to +5.5% respectively of that of the way prediction cache architecture for all 

the cache configurations and benchmark program sets. 
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5.7.3 Energy Consumption Measurement 

Here, the energy components for analysis are obtained by using the power estimation 

model, the eCACTI cycle simulator [Mamidipaka 2004]. The eCACTI simulates any 

specified cache architecture and measures the dynamic and leakage energy of different 

cache components for various nanometer technologies. These dynamic and leakage 

energy component values are then used to find the dynamic, leakage and total energy 

consumption of different architecture implementations such as the conventional cache, 

way prediction cache, PASP cache, SMPASP cache with direct-mapped shared set and 

SMPASP cache with 2-way set-associative shared set. With the help of the above 

experimental results such as the cache hit rate, prediction hit rate, victim hit rate, shared 

hit rate for a given input program set (both for shared and independent processes), the 

dynamic, leakage and total energy of the cache, while executing these programs is 

obtained.  

The dynamic, leakage and the total power consumption of various cache architectures for 

different nanometer technologies while running SPEC95 benchmark program sets as 

independent processes is shown in Figure 5.44, 5.45 and 5.46 respectively. The 

configuration used for the given analysis is an 8K, 16B, 4 – way set-associative cache 

with a context switching duration of 500 traces and the input program set 6, as given 

Table 5.1. From the results, it is evident that the PASP and SMPASP architectures save 

significant amount of power when compared to the conventional and way prediction 

schemes. The power components for the PASP, SMPASP with direct-mapped shared set 

and SMPASP with 2 – way set-associative shared set are equal for the instance of 

independent processes, as here, the shared set of the SMPASP architecture is completely 

shutdown.  

The dynamic, leakage and total power consumption of the PASP and SMPASP cache 

architectures executing independent processes is always lesser than that of its 

conventional and way prediction counterparts, irrespective of nanometer technology in 

use. The dynamic power consumption of the PASP and SMPASP cache architectures is 

less as 75% of the main cache is in sleep state throughout the execution and its high first 

cycle hit rate makes the victim cache usage minimal. The dynamic power saving of the 
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PASP and SMPASP architectures over the conventional and way prediction cache varies 

from 61.6% to 62.03% and 8.76% to 8.873% respectively. The way prediction cache 

saves 57.913% to 58.331% of dynamic power of that of the conventional cache 

architecture. It is also clear from the figure depicted below that the dynamic power 

consumption of each of the architectures reduces with advancement in technology. All 

the cache architectures reduce their dynamic power consumption by at least 8 times as the 

technology advances from 180nm to 70nm. 
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Fig. 5.44: Dynamic power consumption of various architectures Vs Technology for an 

8K, 4-way set-associative cache with 16B line size and context switch duration of 500 

references. 
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Fig. 5.45: Leakage power consumption of various architectures Vs Technology for an 

8K, 4-way set-associative cache with 16B line size and context switch duration of 500 

references 
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The leakage power consumption of the PASP and SMPASP cache architectures is lesser 

than that of the conventional and way prediction cache architectures due to its lower 

effective cache access time, high first cycle hit rate and high cache hit rate. The leakage 

power saving of the PASP and SMPASP architectures over their conventional and way 

prediction counterparts is around 0.78% and 7.44% respectively. The leakage power 

consumption of the conventional cache is lesser than that of the way prediction cache by 

7.2%. This is because of the extra cycle penalty during a prediction miss and poor first 

cycle and cache hit rates. It is also observed that the leakage power consumption of each 

of the architectures increases with advancement in technology. All the cache architectures 

increase their leakage power consumption by around 572 times as the technology moves 

from 180nm to 70nm. 
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Fig. 5.46: Total power consumption of various architectures Vs Technology for an 8K, 

4-way set-associative cache with 16B line size and context switch duration of 500 

references 

The total power consumption of cache architecture is the sum of its dynamic and leakage 

power components. So the same trend mentioned above is followed by total power 

consumption as well. The total power consumption of the PASP and SMPASP cache 

architectures is lower than that of the conventional and way prediction cache 

architectures. It is evident from the results that initially (from 180nm to 100nm) the total 

power consumption decreases with advancement in technology. This performance 

improvement is mainly attributed to the dynamic power consumption reduction. But the 

advancement in technology causes the leakage power consumption to rise for all the 
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cache architectures, which results in the increasing total power consumption with further 

technology advancement. This fact can be very well observed as the technology advances 

from 100nm to 70nm, where the total power consumption is pretty high compared to that 

of the 100nm technology. This increase in total power consumption is thus due to the 

huge increase in leakage power consumption with technology advancement. The total 

power saving of the PASP and SMPASP architectures over the conventional and way 

prediction cache architectures varies from 26.494% to 61.5829% and 7.75% to 8.76% 

respectively. The way prediction cache saves 20.32% to 57.893% of the total power of 

conventional cache architecture. 

The dynamic, leakage and the total power consumption of various cache architectures for 

different nanometer technologies while running SPEC95 benchmark program sets as 

processes with data sharing among them is shown in Figure 5.47, 5.48 and 5.49 

respectively. The configuration for this analysis is an 8K, 16B, 4 – way set-associative 

cache with a context switching duration of 500 traces and input SPEC program sets as set 

no. 6 shown in Table 5.1 wherein 26.35% of the data is shared. From the figures, it is 

evident that the PASP and SMPASP architectures save significant amount of power 

compared to the conventional and way prediction schemes. The dynamic and total power 

consumption of the PASP and SMPASP cache with direct mapped shared set and 

SMPASP with 2-way set-associative shared set architectures executing processes 

exhibiting data sharing among them is always lesser than that of the conventional and 

way prediction cache architectures, irrespective of the nanometer technology in use. 

It is clear from the results that the dynamic power consumption of each of the 

architectures reduces with the advancement in technology. All the cache architectures 

reduce their dynamic power consumption by at least 8 times, as the technology moves 

from 180nm to 70nm. The dynamic power consumption of the SMPASP cache with 

direct mapped shared set is lower than that of any of the other cache architectures. The 

dynamic power consumption of the SMPASP cache with direct mapped shared set 

performs slightly better than the SMPASP cache with 2-way set-associative shared set 

because of the extra power required for the functioning of the multiplexer, comparators 

and data output. The dynamic power saving of the SMPASP cache with direct-mapped 

shared set architecture over the conventional, way prediction, PASP and SMPASP cache 
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with 2-way set-associative shared set varies from 65.1% to 65.5%, 16.86% to 16.92%, 

11.67% to 11.74%, and 0.15% to 0.45% respectively. The dynamic power saving of the 

SMPASP cache with 2-way set-associative shared set architecture over the conventional, 

way prediction and PASP varies from 64.93% to 65.41%, 16.48% to 16.8%, and 11.33% 

to 11.56% respectively. The dynamic power saving of the PASP cache architecture over 

the conventional and way prediction varies from 60.45% to 60.89%, and 5.81% to 5.92% 

respectively. 
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Fig. 5.47: Dynamic power consumption of various architectures Vs Technology for an 

8K, 4-way set-associative cache with 16B line size and context switch duration of 500 

references 

The leakage power consumption of the conventional cache architecture is lower than that 

of the way prediction, PASP and SMPASP cache architectures. The SMPASP cache 

architecture shows extra leakage power consumption because of the additional shared and 

victim sets, while the PASP cache architecture shows extra leakage power consumption 

because of the victim set. The leakage power consumption of the conventional cache 

architecture is lower than that of the way prediction cache because of the extra cycle 

overhead to handle a prediction miss in a way prediction cache. The leakage power 

consumption of the PASP cache architecture is lower than that of the way prediction 

cache architecture. This is because the victim set has very less leakage power 

consumption in comparison to the effective cache access time reduction over that of the 

way prediction cache. The SMPASP cache with 2-way set-associative shared set has 

lower leakage power consumption in comparison to that of the SMPASP cache with 
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direct-mapped cache because of the reduction in the effective cache access time. Each of 

the cache architectures increases its leakage power consumption by around 572 times, as 

technology advances from 180nm to 70nm. The leakage power savings of the 

conventional cache architecture over way prediction, PASP, SMPASP with direct 

mapped shared set and SMPASP with 2-way set associative shared set cache is around 

6.61%, 2.08%, 9.72% and 9.2% respectively. The leakage power consumption of the 

PASP cache architecture is lower than that of the way prediction, SMPASP with direct 

mapped shared set and SMPASP with 2-way set-associative shared set cache 

architectures by 4.62%, 7.8% and 7.27% respectively. The leakage power consumption of 

the way prediction cache architecture is lower than that of the SMPASP with direct-

mapped shared set and SMPASP with 2-way set-associative shared set cache 

architectures by 3.33%, and 2.77% respectively. The leakage power consumption of the 

SMPASP with 2-way set-associative shared set cache architecture is lower than that of 

the SMPASP with direct-mapped shared set cache architecture by around 0.57%. 
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Fig. 5.48: Leakage power consumption of various architectures Vs Technology for an 

8K, 4-way set-associative cache with 16B line size and context switch duration of 500 

references 

The total power consumption of the SMPASP cache with direct-mapped shared set is 

better than that of all the other cache architectures for technologies older than 180nm. For 

cache technologies greater than 100nm and less than 180nm, the SMPASP cache with 2-

way set-associative shared set architecture is better than all the other architectures. For 

technologies like 70nm, the PASP cache architecture gives lesser total power 



CHAPTER 5 – PROCESS AWARE SELECTIVE PLACEMENT SCHEMES 

 143

consumption than the other architectures. The total power consumption increases for 

SMPASP cache because of the huge increase in leakage power with advancement in 

technology. For 70nm technology, the majority of power consumption (58% in 

conventional cache, 78% in way prediction and PASP, 82% in SMPASP) is due to the 

leakage power component. It is observed from the results that initially (from 180nm to 

100nm), the total power consumption decreases with advancement in technology. This 

performance improvement is mainly because of the reduction in the dynamic power 

consumption. But the advancement in technology increases the leakage power 

consumption of all the cache architectures, which results in increased total power 

consumption with technology advancement. This can be seen in 70nm technology, where 

the total power consumption increases when compared to that of the 100nm technology.  
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Fig. 5.49: Total power consumption of various architectures Vs Technology for an 8K, 

4-way set-associative cache with 16B line size and context switch duration of 500 

references 

The total power savings of the SMPASP cache with 2-way set-associative shared set 

cache architecture over the conventional, way prediction, PASP and SMPASP cache with 

direct mapped shared set cache architectures varies from 51.9% to 64.9% (21.58% for 

70nm), 9.74% to 16.47% (1.46% for 70nm), 4.53% to 11.32% (-3.63% for 70nm) and -

0.45% to 0.15% respectively. The performance of the SMPASP with direct-mapped 

shared set is almost the same as SMPASP cache with 2-way set-associative shared set 

cache architecture. The PASP cache saves 49.62% to 60.43% (24.33% for 70nm), 5.46% 

to 5.81% (4.91% for 70nm) of the total power consumed by the conventional and way 
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prediction cache architectures respectively. The way prediction cache saves 46.72% to 

57.99% (20.42% for 70nm) of the total power consumed by the conventional cache 

architecture. 

5.8 CONCLUSION 

Here, the two proposed schemes – the process aware selective placement (PASP) and the 

shared memory process aware selective placement (SMPASP) caching scheme that 

efficiently handles shared data among processes – are discussed in detail. They are also 

evaluated experimentally and compared with the existing cache architectures with respect 

to different performance metrics and the results are analyzed with prime focus on 

reduction in energy consumption and cache hit rate performance enhancement. Table 5.2 

presents a comprehensive summary of this evaluation in the form of desired performance 

characteristics and the corresponding choice of the appropriate cache architectures.   

Table 5.2: Ready Reckoner for choice of cache architecture 

Desired performance characteristic Suitable cache architecture 

Low dynamic power consumption for  

data access 
SMPASP 

High cache hit rate SMPASP / Conventional cache 

Low leakage energy for data accesses Conventional cache 

Low Effective Cache Access Time 

                                                      > 32KB 

                                                      <=32KB 

 

SMPASP 

Conventional Cache 

Low total energy consumption for only  

non-shared data 
PASP / SMPASP 

Low total energy consumption for shared and 

non-shared data access 
SMPASP 
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CHAPTER 6 

ENERGY EFFICIENT TASK SCHEDULING 

6.1 INTRODUCTION 

This chapter discusses various scheduling algorithms which will reduce the preemptions 

(thus context switches) in a real-time schedule. The main objective behind reducing 

preemptions is to reduce power consumption due to preemptions. Our approach leads to 

platform-independent scheduling algorithms with reduced power consumption. This is 

achieved by applying heuristics to reduce the number of preemptions. We present a static 

algorithm (IntFragment) and two dynamic priority algorithms (EDFRCS and RMRCS). 

The latter are variants of the Earliest Deadline First (EDF) and Rate Monotonic (RM) 

algorithms respectively. We also present a rigorous evaluation of these scheduling 

algorithms. 

6.2 ASSUMPTIONS 

1. All tasks are periodic and preemptible.  

2. For each task type T, the arrival time of the first job is time 0. 

3. For each task type T, the period, denoted by period(T) is known and the period of 

job Ji, where job Ji is the ith instance of T, denoted by period(Ji) = period(T). 

4. All tasks in the task set are in phase. The arrival time of job Ji, denoted by 

arrTime(Ji) = (i-1)*period(T). 

5. For each task type T, the worst case execution time, denoted by exeTime(T) is 

known. The worst case execution time of job Ji, denoted by exeTime(Ji) = 

exeTime(T). 

6. For each task type T, the deadline, denoted by deadline(T) is known and is the 

same as period(T). The deadline of job Ji, denoted by deadline(Ji) = i * period(T). 

This can also be expressed as deadline(Ji) = arrTime(Ji) + period(Ji). 
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6.3   A BRUTE – FORCE ALGORITHM FOR MINIMIZING PREEMPTIONS 

We present an offline algorithm that inspects valid schedules to find one with minimum 

preemptions. This takes O(H!) time, where H is the hyper-period and we use it as a 

standard to measure the effectiveness of other algorithms. 

6.3.1 BRUTE – FORCE ALGORITHM 
Input: Hyper-period H and a list of job records, Jobs (ordered based on arrTime) 

Output: A feasible schedule, if it exists and the least number of preemptions. 

Steps 
1. Generate all schedules P of Jobs i.e. divide each job into sub-jobs of unit execution time and 

compute all schedulable permutations of the list of sub-jobs. 

2. MinConSw = H; CurSchedule=first schedule in P. 

3. For each permutation Pi in P, 

a. Check if Pi is feasible (All jobs in Pi meet its deadline) 

b. If yes, then count the number of preemptions, say m’;   

If (m’ < MinConSw) , then MinConSw=m’; CurSchedule=Pi. 

4. If (MinConSw = H) then output ‘Infeasible’ 

5. Else output CurSchedule and MinConSw. 

Finding all permutations, though offline, for a given task set (S) is impractical, if H is 

large. Some of the optimization conditions like ‘only one job of a task will be available in 

the ready queue at a time’, ‘if any job misses its deadline, the schedule is not feasible’ 

etc. can be introduced to reduce the number of feasible permutations. This requires a 

good understanding of the assumptions made for the real-time scheduling. Another way 

of reducing the complexity is to introduce heuristics to simplify the search and obtain a 

near-optimal solution. This may adversely affect efficiency and schedulability.  

Required:  

An algorithm which can compute a feasible schedule (if one exists) in polynomial time, 

such that the number of preemptions in the schedule is low. One such heuristic to find a 

feasible schedule with minimum number of preemptions is IntFragment scheduling 

algorithm. 
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6.4   INTFRAGMENT ALGORITHM 

The IntFragment is an offline, hard real-time scheduling algorithm for a periodic task set 

that reduces the number of preemptions. The heuristic used for minimizing the number of 

preemptions is to minimize the fragmentation of schedulable intervals. Under the 

assumptions in section 6.2, given a list of task types L, ordered by their periods, one can 

pre-compute the following easily: 

Hyper-period H and a list of job records Jobs, lexicographically ordered by the key 

(p(t(j)), t(j)), where each record has a job identifier j, task type t(j), deadline d(j), arrival 

time a(j) and execution time e(j). The key (p(t(j)), t(j)) orders tasks based on the period 

p(t(j)). If the period of tasks is the same, then the task number (which is unique) is 

assigned as the key. The basic idea behind the IntFragment algorithm is to provide the 

maximum fragment size for the greater period tasks to execute. This is achieved by 

executing an even instance of the task (even job: job having value of odd variable as 

false) and its immediate next odd instance of the same task (odd job) as distant in time as 

possible. The execution of the previously mentioned odd instance of the task (odd job) 

and its immediate next even instance of the same task (even job) will be as close as 

possible. This allocation results in creating a big fragment in the schedule. With the help 

of an example we discuss the working of IntFragment algorithm.  

Table 6.1: Task list for the schedule 

Task Arrival Time Period Exec. Time 

A 0 2 1 

B 0 8 4 

Table 6.2: Job list derived from table 6.1 

Job Arrival Time Deadline Exec. Time 

A1 0 2 1 

A2 2 4 1 

A3 4 6 1 

A4 6 8 1 

B 0 8 4 
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Table 6.1 provides the task set S. Table 6.2 provides the arrival time, deadline and 

execution time of all the jobs corresponding to each of the tasks in Table 6.1. In this case, 

IntFragment heuristic is applied as follows: 

Step 1 Take Task A’s jobs from Table 6.2 (A1, A2, A3, and A4). Assign odd as true.  

Step 1.1 The variable odd is true, so schedule A1 in the first feasible slot (i.e. time 0 

to 1) and A4 in the last feasible slot (i.e. time 7 to 8) as shown in Figure 6.1. Change 

odd to false and continue. 

Step 1.2 The variable odd is false, so schedule A2 in the last feasible slot (i.e. time 3 

to 4) and A3 in the first feasible slot (i.e. time 4 to 5) as shown in Figure 6.2. As all 

the jobs in Task A have been scheduled, move to Task B. 

Step 2 Take Task B’s job from Table 6.2. As Task B has only one job, schedule job B in 

the first feasible slot (time 1 to 3 and time 5 to 7), as shown in Figure 6.3. At the end of 

time slot 3, it has to be preempted and rescheduled at the end of time slot 5. The resultant 

schedule has one preemption. 

 

Fig. 6.1: Gantt chart after step 1.1 

 
Fig. 6.2: Gantt chart after step 1.2 

 
Fig. 6.3: Gantt chart after step 2 

This idea can be written as IntFragment algorithm as follows: 
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6.4.1 INTFRAGMENT ALGORITHM 

Input: Hyper-period H and a list of job records J (ordered as above)  

Output: A feasible schedule, if it exists and the number of preemptions. 

 Steps 
1. odd = true 

2. Let Ji, Ji+1, … Jk  be all the jobs of  task  T 

a. If  (odd ) then schedule Ji,, Jk in the first and last feasible slots respectively 

b. Else schedule Ji, Jk in the last and first feasible slots respectively 

c. odd = !odd 

d. i=i+1; k=k-1; 

        e. Repeat steps 2.a to 2.d until k <= i 

f. If (k==i), then schedule Ji in the first feasible slot 

3. Repeat steps 1 and 2, until no more tasks are left 

4. Output the schedule and the number of preemptions in the schedule 

The main advantage of this scheme is the simplicity of its heuristics. The resultant 

IntFragment schedule is likely to reduce preemptions, as it reduces fragmentation of 

intervals, thereby allowing jobs to fit into these intervals, thus executing without 

preemptions. An indirect, but equally important benefit is improving the cache impact. 

As the IntFragment algorithm combines jobs of the same task together, the amount of 

cache flushes in the schedule is reduced. The resultant schedule produced by IntFragment 

algorithm helps in saving time and power by reducing preemptions and cache flushes. 

6.4.2. SCHEDULABILITY ARGUMENTS FOR INTFRAGMENT ALGORITHM 

Algorithm IntFragment may fail to find a feasible schedule for some inputs that admit 

feasible schedules. 

For instance, consider the input from Table 6.3. Table 6.4 gives the arrival time, deadline 

and execution time of all the jobs corresponding to each of the tasks in Table 6.3. 

Table 6.3: Task list for which IntFragment algorithm fails to find a valid schedule 

Task Arrival Time Period Exec. Time 

A 0 3 1 

B 0 5 3 
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Table 6.4: Job list derived from table 6.3 

Job Arrival Time Deadline Exec. Time 

A1 0 3 1 

A2 3 6 1 

A3 6 9 1 

A4 9 12 1 

A5 12 15 1 

B1 0 5 3 

B2 5 10 3 

B3 10 15 3 

In this case, IntFragment heuristic is applied as follows: 

Step 1 Take Task A’s jobs from Table 6.4 (A1, A2, A3, A4 and A5). Assign odd as true.  

Step 1.1 The variable odd is true. So, schedule A1 in the first feasible slot (i.e. time 0 

to 1) and A5 in the last feasible slot (i.e. time 14 to 15), as shown in Figure 6.4. 

Change odd to false and continue. 

Step 1.2 The variable odd is false. So, schedule A2 in the last feasible slot (i.e. time 5 

to 6) and A4 in the first feasible slot (i.e. time 9 to 10), as shown in Figure 6.5. 

Change odd to true and continue. 

Step 1.3 As pointers first and last point to the same location, schedule A3 in the first 

feasible slot (i.e. time 6 to 7), as shown in Figure 6.6. As all the jobs in Task A have 

been scheduled, move to Task B. 

Step 2 Take Task B’s jobs from Table 6.4 (B1, B2, and B3). Assign odd as true.   

Step 2.1 The variable odd is true. So, schedule B1 in the first feasible slot (i.e. time 1 

to 4) and B3 in the last feasible slot (i.e. time 11 to 14), as shown in Figure 6.7. 

Change odd to false and continue. 

Step 2.2 The variable odd is false. So, schedule B2 in the first feasible slot. B2 needs 

3 units of execution time between time 5 and 10. But A2, A3 and A4 are occupying 

one unit each between time 5 and 10, which makes B2 unschedulable as shown in 

Figure 6.8.  The scheduling algorithm failed to provide a valid schedule, though there 

exists one. 
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Fig. 6.4: Gantt chart after step 1.1 

 
Fig. 6.5: Gantt chart after step 1.2 

 
Fig. 6.6: Gantt chart after step 1.3 

 
Fig. 6.7: Gantt chart after step 2.1 

         
Fig. 6.8: Gantt chart after step 2.2 

Such failures happen typically when the utilization is high. The following schedulability 

test states a sufficient condition for the algorithm to find a feasible schedule. 
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Given a set of N independent tasks on a uniprocessor under the assumption in 6.2, if for 

each task i,  (p(i) - Σj < i ( ⎡p(i) / p(j)⎤ * e(j))) <= e(i)    (6.1) 

where p(i) is the period of task i and e(i) is the execution time of task i, then a feasible 

schedule (if one exists) can be found using IntFragment algorithm.  

6.4.3. CORRECTNESS OF INTFRAGMENT ALGORITHM 

Given a set of N independent tasks on a uniprocessor under the assumption in 6.2, 

Algorithm IntFragment generates a feasible schedule, if one exists and if the 

schedulability test is satisfied. 

6.4.4. PROOF OF CORRECTNESS 

By induction on the number of jobs per task Ti. 

Algorithm makes sure all jobs of higher frequency tasks already scheduled 

In each step of the algorithm, there are two cases to consider:  

Step 1 Two selected jobs are scheduled in the first and last feasible slots of the 

interval. Then the other jobs must be schedulable in the remaining part of the interval. 

(i) For the job executing in the first feasible slot, the algorithm follows task level 

fixed priority scheduling (RM) and will be feasible if it is RM feasible. 

(ii)  For the job executing in the last feasible slot, the algorithm guarantees a feasible 

execution if no job of lower frequency tasks has deadline between this job’s 

arrival time and deadline. 

Step 2 Two selected jobs are scheduled such that they split the interval into two 

intervals. The remaining jobs must still be schedulable, albeit requiring one extra 

preemption. 

By inductive hypothesis, if the schedulability of the smaller job list(s) is assumed to 

be true, then by an inductive step, the full job list is schedulable. 

End of Proof 

6.4.5. ANALYSIS OF INTFRAGMENT ALGORITHM 

6.4.5.1. Complexity of the Algorithm 

Claim: The worst case time complexity of Algorithm IntFragment is  

pmax * ΣT ∈ Tasks H/p(T)      (6.2) 
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where pmax is the maximum among the periods of all tasks, H is the hyper-period, and 

p(T) is the period of task T. 

Proof: The outer loop in Algorithm IntFragment executes n times where n is the number 

of tasks. The inner loop executes k (T) times where k(T) = H/p(T) is the number of jobs 

or instances of task T. So, the total number of iterations is ΣT ∈ Tasks H/p(T). And in each 

iteration, the amount of work done to find a feasible slot is less than p(T). Thus the total 

work done is pmax * ΣT ∈ Tasks H/p(T).  

End of Proof 

6.4.5.2. Quality of the Schedule 

Since the objective is to minimize the number of preemptions, the algorithm is evaluated 

using the metric described below and compared with other algorithms. 

Consider the example of Tables 6.1 and 6.2. Algorithm IntFragment produces a schedule 

with one preemption as shown in Figure 6.3. In comparison, for the same input, both the 

RM algorithm and the EDF algorithm produce a schedule with 3 preemptions as shown in 

Figure 6.9. 

 
Fig. 6.9: Schedule obtained by Rate Monotonic and Earliest Deadline First Algorithms 

Although Algorithm IntFragment typically fares better than other real-time priority-based 

dynamic scheduling algorithms in reducing preemptions, it does not necessarily produce 

a schedule with the least number of preemptions. This is explained with the help of the 

following example. 

Table 6.5: Task list for which IntFragment algorithm performs better than the other 

scheduling algorithms like Rate Monotonic and EDF 

 

 

 

Task Arrival Time Period Exec. Time 

A 0 2 1 

B 0 10 4 
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Table 6.6: Job list derived from table 6.5 

 

 

 

 

 

 

 

 

Consider the input from Table 6.5. Table 6.6 gives the arrival time, deadline and 

execution time of all the jobs corresponding to each of the tasks in Table 6.5. 

For this input, Algorithm IntFragment produces a schedule with 2 preemptions as shown 

in Figure 6.10, while there exists a feasible schedule with one preemption as shown in 

Figure 6.11. Thus, Algorithm IntFragment is an approximation algorithm. 

 
Fig. 6.10: Schedule obtained by the IntFragment algorithm 

 
Fig. 6.11: Schedule obtained by the Brute-Force Technique 

Worst-case Approximation Claim: 

Let I be an input of T tasks. If I admits a feasible schedule and satisfies the Schedulability 

Test 6.2.4, then Algorithm IntFragment will produce a feasible schedule, with at most 

O(T2) preemptions. 

Job Arrival Time Deadline Exec. Time 

A1 0 2 1 

A2 2 4 1 

A3 4 6 1 

A4 6 8 1 

A5 8 10 1 

B 0 10 4 
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Although this may imply that a schedule produced by Algorithm IntFragment is infinitely 

worse compared to Brute-Force minimal preemption schedule, in practice, it produces far 

fewer number of preemptions in most cases. 

6.5 REDUCED CONTEXT SWITCH (RCS) SCHEDULING ALGORITHMS                                

(EDFRCS AND RMRCS) 

6.5.1 ALGORITHMS 

This approach to preemption (context switch) reduction is similar to the one used in 

MLLF [Oh 1998] and MMUF [Vahid 2005]: defer the preemption of an active process 

when it can be guaranteed that any process that is delayed will not miss its deadline. But 

the heuristic in MLLF / MMUF is weak: preemption is deferred only when there is a tie 

in the priority (i.e. laxity in this case): the possibility of delaying a higher priority process 

without the delayed process missing the deadline is not considered. 

We adopt a more aggressive approach that considers deferrals in the preemption of an 

active process even in the presence of higher priority processes – without affecting the 

schedulability of the delayed processes. The adopted heuristic below maximizes the 

extension period of the active process by considering the deadlines of all processes in the 

ready queue whose priority is same as or higher than the active process. Based on this 

heuristic, a scheduling algorithm (RCSS) is developed, parameterized by a priority 

function. By choosing the appropriate priority function, variants of EDF (named 

EDFRCS) and of RM (named RMRCS) are obtained from this RCSS algorithm. The 

schedulability of tasks is preserved by these variants i.e. the variant (say RMRCS) is 

optimal if and when the original algorithm (say RM) is optimal.  

The following notation is used in the RCSS algorithms: 

readyQ(t)  : the ready queue at time t, ordered by priority. 

priority(J) : the priority of Job J. 

extension_time(J,t): maximum possible extension time for job J at time t. 

deadline(J) : deadline of a job J. 

period(J) : period of a job J (i.e period of task T, where J is an instance of T). 

execution_time(J) : execution time of a job J. 

remaining_time(J,t) : execution time of a job J, still remaining at time t. 
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slack(J,t) :  deadline(J) – t – remaining_time(J,t) 
 

Reduced Context Switches Scheduling (RCSS) Algorithm 

Input:  A list L of tasks T1, T2, … Tn, their periods and execution times and 

 A priority function priority that is job-level fixed. 

Output: A feasible schedule for L or failure. 
begin 

Let Cur be the job with the highest priority; schedule Cur; 

For every time unit t when there is at least one arrival or a departure or a deferred switch  

Let J be the job with the highest priority in readyQ(t) . 

if  (Cur is to depart) 

then  Cur = J ; schedule Cur; 

else if (priority(Cur) >=  priority(J))  

then continue with Cur; 

else ExtensionTime_Cur = extension_time(Cur, t);  

             if (ExtensionTime_Cur==0)  

                 then preempt Cur; Cur = J;  schedule Cur; 

              else if (ExtensionTime_Cur > 0)  

                 then  mark a deferred switch at  t + ExtensionTime_Cur;  

      continue with  Cur  upto t + ExtensionTime_Cur; 

else fail; 

end RCSS 

function int extension_time(current_job, t) 

begin  

Let j1, j2, …, jm be the jobs in readyQ(t) such that  

priority(j1) >= priority(j2) >= … >= priority(jm) >= priority(current_job)  

return mini[slack(ji, t) – Σk<i(remaining_time(jk,t)+ceil((deadline(ji)- 

deadline(jk))/period(jk)) * execution_time(jk))]; 

end extension_time 

Variants of Rate Monotonic (RM) scheduling algorithm and Earliest Deadline First 

(EDF) are easily obtained from the above algorithm (RCSS) by specifying the 

appropriate priority function as listed below. 
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Rate Monotonic with Reduced Context Switches (RMRCS) Algorithm 

Input: A list L of tasks T1, T2, … Tn, their periods and execution times. 

Output: A feasible schedule if L is RM-schedulable, failure otherwise. 
begin 

(1) Define the priority function as priority(J) = H / period(T) where, T is a task in L, J is a job  

(instance) of T and H is the hyper-period for L. 

(2) Execute RCSS. 

end RMRCS 

 
Earliest Deadline First with Reduced Context Switches (EDFRCS) Algorithm 

Input: A list L of tasks T1, T2, … Tn, their periods and execution times.                                               

Output: A feasible schedule if L is schedulable, failure otherwise. 
begin 

 (1) Define the priority function as priority (J) =   -1 * deadline(J)  for any job J.  

       (2) Execute RCSS. 

end EDFRCS. 

 

Note on EDFRCS:  

1. Observe that in this case, the fail statement in Algorithm RCSS will never be 

reached if the input L has a feasible schedule because the scheduling decisions align 

with EDF. 

2. The extension time for any job may be increased further by replacing the use of ceil 

with the use of floor in the function extension_time(), without affecting feasibility. 

End of Note 
 

The working of algorithms (EDFRCS) and (RMRCS) is explained with the help of an 

example. Consider the following list of tasks given in Table 6.7. Table 6.8 gives the 

arrival time, execution time and deadline of all the jobs corresponding to each of the tasks 

in Table 6.7. The jobs in Table 6.8 are arranged in the order of deadline and when the 

deadlines are the same, then in the order of arrival – as this is the likely arrangement of a 

queue.  
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Table 6.7: Task List (L) 

 
 
 
 
 
 

 

Table 6.8: Job list corresponding to L in Table 6.7 (Hyper-period = 20) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The working of EDFRCS is illustrated with the above list of jobs. The resultant schedules 

till time t=4 and till time t=7 is shown in Figure 6.12 and Figure 6.13 respectively. The 

final schedule for this example will be as in Figure 6.14. 

 
Fig. 6.12: Intermediate schedule up to t = 4 

Task Arrival Time Period Execution Time 

T1 0 4 1 

T2 0 5 2 

T3 0 20 7 

Job (Task) Arrival Time Execution 

Time 

Deadline 

J1 (T1) 0 1 4 

J2 (T2) 0 2 5 

J3 (T1) 4 1 8 

J4 (T2) 5 2 10 

J5 (T1) 8 1 12 

J6 (T2) 10 2 15 

J7  (T1) 12 1 16 

J8 (T3) 0 7 20 

J9 (T2) 15 2 20 

J10 (T1) 16 1 20 
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Fig. 6.13: Intermediate schedule up to t = 7 

 
Fig. 6.14: Schedule by EDFRCS for task list in Table 6.7 

Observe that EDFRCS outputs a schedule with just one preemption. As opposed to this, 

RM produces the schedule in Figure 6.15 (number of preemptions = 5), EDF produces 

the schedule in Figure 6.16 (number of preemptions = 3) and MLLF produces the 

schedule in Figure 6.17 (number of preemptions = 3). Furthermore, the minimum 

possible number of preemptions in a feasible schedule is 1 for this task set (this can be 

verified easily).  

For this particular example, RMRCS also outputs the same schedule i.e. the number of 

preemptions is 1. The extension points are shown in Figure 6.18 and the final schedule is 

as in Figure 6.19. 

 
Fig. 6.15: Schedule by RM for task list in Table 6.7 
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Fig. 6.16: Schedule by EDF for task list in Table 6.7 

 
Fig. 6.17: Schedule by MLLF for task list in Table 6.7 

.  

Fig. 6.18: Schedule with extension decision points for RMRCS for task list in Table 6.7 

 
Fig. 6.19: Schedule by RMRCS for task list in Table 6.7 
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This example demonstrates that RMRCS and EDFRCS are aggressive in eliminating 

preemptions whenever possible, while the other algorithms are not. Our experimental 

results in Section 6.5 confirm this argument. 

6.5.2 SCHEDULABILITY OF THE ALGORITHMS 

The adopted heuristic preserves schedulability of scheduling decisions i.e. RMRCS and 

EDFRCS are schedulable if and when RM and EDF (respectively) are schedulable. 

Some notations used in the proofs below: 

• A schedule S is a sequence of runs, where each run is a tuple of an identifier, a start 

time and an end time.  

• To identify some runs of a schedule but ignore others, the notation used is:   

((R1, t1, u1), S1, (R2,t2,u2), S2, …, Sn-1, (Rn,tn,un), Sn) 

where, each tuple (Ri, ti, ui) is a run starting at ti and ending at ti+ui and each Si is a 

sequence of runs – possibly empty – occurring between runs (Ri-1,ti-1, ui-1) and 

(Ri,ti,ui). 

• Given a schedule S, we use NCS(S) to denote the number of preemptions in S. 

The following lemma is used in proving the theorems stated below and it can be 

informally stated as: 

The extension step in RCSS – the step that continues the active process – does not affect 

schedulability. 

Lemma 1: 

Let S be a feasible schedule: ((R1,t1,u1), S1, (R2,t2,u2), S2, …, Sm-1, (Rm,tm,um), Sm) 

where, all Ri, 1 <= i <= m are runs of the same job B. Assume S was generated by a 

priority scheduling algorithm. 

Let U be the schedule (((R1,R2...Rk-1,Rk’), t1, u1+u2+…+uk-1+uk’), S1, S2, Sk-1,   

(Rk’’,tk+uk’, uk-uk’), Sk, … (Rm,tm,um), Sm), where, some runs of B at the beginning 

of S have been merged into a single run, and one run (Rk), has been partly merged. 

Assume extension_time(B, t1+u1) >= (u2+u3+…uk-1+uk’)           (6.3) 

Then U is feasible and NCS(U) <= NCS(S) 
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Proof: 

Let C be any job such that priority(C) >= priority(B).  

Define P(C,t) = { D | D is in readyQ(t) and  priority(D) >= priority(C) } 

Define I(C,t) = { TD | D is in P(C,t) and D is an instance of task TD } 

Let Rem(C,t) be the time required for all remaining runs - at time t - of all jobs of the 

tasks in I(C,t).  
Then by definition of the function extension_time,  

slack(C, t) – Rem(C,t)   >= extension_time(B, t)            (6.4) 

Let Sij be any run of a job F, such that  (Sij, tij, uij) ε  Si,  for some i s.t. 1 <= i <= k. 

 and priority(F) >= priority(B)  

Then by (6.4), 

tij + uij + extension_time(B, t1+u1) <= tij + uij + slack(F, t1+u1) – Rem(F, , t1+u1)                

i.e. tij + uij + extension_time(B, t1+u1) <= tij + uij + slack(F, t1+u1) – Rem(F, t1+u1) 

i.e. tij + uij + extension_time(B, t1+u1)<=tij + uij + slack(F, tij  + uij) – Rem(F, tij+uij)    

which, by definition of slack  results in  

tij + uij + extension_time(B, t1+u1)<= deadline(F)              (6.5) 

So, by assumption (6.3) and (6.5),    

tij+uij+(u2+u3+…+uk-1+uk’) <= deadline of F. 

Thus, any delayed run Sij in schedule S, will not cause any run of any higher priority job 

F to miss its deadline i.e. U is feasible. Furthermore, observe that the numbers of runs 

of jobs other than B remain unchanged from S to U; whereas the number of runs of B 

may be reduced, i.e. NCS(U) <= NCS(S) 

End of Proof 

Corollary 1 is a special case of Lemma 1, where all the runs of a particular job are 

merged into one. 

Corollary 1: 

Let S be a feasible schedule ((R1, t1, u1), S1, (R2,t2,u2), S2, …, Sm-1, (Rm,tm,um), Sm) 

where all Ri, 1 <= i <= m are runs of the same job B. Assume S was generated by a 

priority scheduling algorithm. 

Let U’ be the schedule (((R1,R2...,Rm), t1, u1+u2+…+um),  S1, S2, Sm) where all runs 

of B in S have been merged into a single run. 
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Assume that   extension_time(B, t1+u1)>= (u2+u3+…um). 

Then U’ is feasible and NCS(U’) <= NCS(S) 

Proof: 

By Lemma 1, with k=m and uk = uk’. 

End of Proof 

 

Theorem 1: 

If a task set is RM-schedulable, then it is RMRCS-schedulable and RMRCS outputs a 

schedule with no more preemptions than the schedule output by RM. 

Proof: 

Let S be the job set corresponding to the given task set. We need to prove that the 

schedule generated by RMRCS for S is feasible, if there is a feasible schedule generated 

by RM for S.  In each iteration of the loop in Step (2)of RCSS, the scheduling decision 

is  

• either the same as the decision RM would take  

• or a decision that does not affect feasibility, but may reduce preemptions.  

Assume in this case, RCSS is executed with the priority function set by RMRCS. 

There are five branches of the if-then-else statement in each iteration of the loop in 

Step(2) of RCSS.  

Branch 1: Cur terminates; RCSS schedules the highest priority job from readyQ. So 

would RM. 

Branch 2: priority(Cur) is at least as high as the priority of any job in readyQ. RCSS 

continues to run Cur. So would RM. 

Branch 3: extension_time(Cur,t)  returns 0. Cur cannot be continued without affecting 

the schedulability of other jobs. RCSS preempts Cur and schedules the highest priority 

job from readyQ. So would RM. 

Branch 4: Cur can be extended up to extension_time(Cur,t). RCSS extends the 

execution of Cur. This leads to two possibilities: 

(a) Some future runs of Cur are merged into the current run possibly including a partial 

run. This is equivalent to transforming S, (a feasible schedule output by RM) 

    ((R1, t1, u1), S1, (R2,t2,u2), S2, …, Sm-1, (Rm,tm,um), Sm) 
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where all Ri are runs of Cur and R1 is the current run into a schedule U 

(((R1,R2...Rk-1,Rk’),t1, u1+u2+…+uk-1+uk’),S1,…,Sk-1, (Rk’’,tk+uk’,uk-uk’), Sk, …   

(Rm,tm,um),Sm) 

where some subsequent runs of Cur in S have been merged into the current run R1. 

By Lemma 1, feasibility is invariant under this transformation and NCS(U) <= NCS(S). 

(b) All future runs of Cur are merged into the current run. This is equivalent to 

transforming S, a feasible schedule output by RM 

((R1, t1, u1), S1, (R2,t2,u2), S2, …, Sm-1, (Rm,tm,um), Sm) 

where all Ri, 1 <= i <= m are runs of Cur and R1 is the current run, into a schedule U’ 

(((R1,R2...,Rm), t1, u1+u2+…+um),  S1, S2, Sm) 

where all subsequent runs of Cur in S have been merged into the current run R1. 

By Corollary 1, feasibility is invariant under this transformation and NCS(U’) <= 

NCS(S). 

Branch 5: extension_time(Cur,t)<0 (i.e.) the current run has consumed a part of the 

runtime of a higher priority job. RCSS fails but in this case, the rest of the jobs would 

not be schedulable by RM either. 

Thus, we have shown that a single iteration of the loop in Step (2) of RCSS makes a 

decision that is as feasible as RM.  Hence, by induction on the number of iterations of 

the loop, we conclude that RMRCS outputs a schedule that is feasible, if RM outputs a 

feasible schedule for the same input.  

Furthermore, each iteration of the loop in Step (2) of RCSS will introduce no additional 

preemptions than RM would. In fact, as argued above, Branches 1, 2, 3 and 5 agree 

with a decision RM would make, and Branch 4 may reduce the number of preemptions 

in comparison with RM. 

End of Proof 

 

Theorem 2: If a task set is EDF-schedulable, then it is EDFRCS-schedulable and 

EDFRCS outputs a schedule with no more preemptions than the schedule output by EDF. 

Proof: 

Similar to the proof for Theorem 1 with the assumption priority(J) = -1 * deadline(J) 

for any job J. 
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The scheduling decisions in each iteration of the loop in Step(2) of  RCSS either agree 

with the scheduling decisions of EDF (because of the priority assumption) or perform a 

transformation on an EDF schedule (which preserves feasibility as per Lemma 1 or 

Corollary 1). 

End of Proof 

6.5.3 ALGORITHMIC COMPLEXITY 

Every scheduling decision of RCSS is either a priority decision or an extension decision. 

In the former case, the time taken for a scheduling decision is O(logN), where N is the 

number of tasks. The O(logN) factor arises because the ready queue is at any time t, 

sorted by priority. When a scheduling decision requires the computation of extension 

period, the time taken is O(logN + m*m), where m is the number of jobs of higher 

priority than the active job. The worst case value for m is O(N). Thus the worst case 

response time of our scheduling algorithm is O(N*N). But in practice, the value of m is 

more likely to be less than N. Particularly for high priority jobs, the value of m will be 

much less than N. 

6.6 PARAMETERS FOR COMPARISON 

We evaluated our algorithms IntFragment, RMRCS and EDFRCS and compared them 

with other priority scheduling algorithms like RM, EDF, LLF and MLLF. We use the 

approach in [Buttazzo 2005] in our evaluation. In this section, we briefly review the 

parameters used for evaluation and their significance.  

The task set listed in Table 6.7 is used to illustrate the metrics. The job set corresponding 

to the above task set along with the deadlines is given in Table 6.8. Also, assume that 

Figure 6.16 is the resultant schedule by which these jobs are to be executed. 

6.6.1   RESPONSE TIME 

For all real-time systems, the Response Time of a job is an important quality metric of a 

schedule. 

For a periodic task T, the Maximum Response Time is evaluated over all jobs: 

Maximum Response time of T = maxi (responseTime(Ti)) 

where responseTime(Ti) = finish-time(Ti) – arrival-time(Ti) 
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where T1, T2, … are the jobs corresponding to task T. 

For example, the Maximum Response Time of T2 is max (3, 2, 2, 4) = 4. 

For the purpose of evaluation, the Maximum Response Time values are normalized with 

respect to execution times of the corresponding tasks, so that a normalized value of 1 

corresponds to the least possible response time. 

6.6.2   RESPONSE TIME JITTER 

In real-time control systems, predictability of the output (or responses) is an important 

issue. Predictability is affected by variation in the response time among jobs of the same 

task. This is referred to as Response Time Jitter [Buttazzo 2005] [Marti 2002]. 

Two different jitters are usually defined - Absolute Response-Time Jitter (ARJ) and 

Relative Response-Time Jitter (RRJ). 

ARJ(T) = maxi(responseTime(Ti)) – mini(responseTime(Ti)) 

RRJ(T) = maxi(|(responseTime(Ti+1) – responseTime(Ti))|) 

where T1, T2, … are the jobs corresponding to task T. 

For example, from the above task set, for task T2 with 4 instances (J2, J4, J6 and J9), 

ARJ(T2) = max (3, 2, 2, 4) – min (3, 2, 2, 4) = 2. 

and RRJ(T2)   = max (1, 0, 2, 1)  = 2 

For the purpose of evaluation, the Jitter values are normalized with respect to the periods 

of the corresponding tasks, so that a normalized value of 1 corresponds to the worst 

possible jitter in an optimal schedule. 

6.6.3   LATENCY  

In real-time control systems, input-output latency of a job is another important metric of 

task schedules [Buttazzo 2005] [Cervin 2003].  

For a task T, the maximum input-output latency is defined as 

L(T) = maxi(finish-time(Ti) – start-time(Ti))  

where T1, T2, … are the jobs corresponding to task T. 

For example, for Task T2 above with 4 instances (J2, J4, J6, and J9),  

L(T2)  =  max{(3–1), (7–5), (12–10), (19–17)} = 2 
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For the purpose of evaluation, the Latency values are normalized with respect to 

execution times of the corresponding tasks, so that a normalized value of 1 corresponds 

to the least possible latency. 

6.6.4   SCHEDULING COMPLEXITY 

The algorithmic complexity of a priority scheduling algorithm is the product of the 

number of decision points (i.e. number of scheduling decisions) and the complexity per 

scheduling decision.  

Given a set of tasks S with hyper-period H, the algorithmic complexity for algorithm A is 

TA(H,S) = decisions(A,H, S) * Tdec(A,H, S) 

where decisions defines the number of decision points to be made by the scheduling 

algorithm and Tdec defines the time complexity of a single decision.  

For the purpose of evaluation, the number of decision points is normalized with respect to 

the number of jobs.  The complexity of a scheduling decision depends on implementation 

issues such as whether the algorithm can be realized using a fixed number of priority 

levels or that the number of priority levels changes dynamically. In the latter case, the 

time taken for activities such as insertion or deletion of jobs in the priority queue affects 

the complexity. The time taken for insertion or deletion is a function of the length of the 

priority queue [Gooch 1998]. The length of the queue is bounded by the number of tasks 

for any periodic task set. 

6.6.5   PREEMPTION COUNT  

Preemptive scheduling in real-time systems has merits and demerits: no online algorithm 

can be optimal without using preemptions [Liu 2000] [Mok 1983] but on the other hand, 

preemptions can add significant overhead to the schedule as such [Tan 2002]. 
Preemptions result in both time and energy overheads [Buttazzo 2005][Mok 1983] 

[Gopalakrishnan 1996] but the precise evaluation of such overheads - particularly the 

energy overhead - has been lacking.  In this work, preemptions initiated due to tasks 

blocking on their own - say for resource requirements – are ignored and only preemptions 

introduced by scheduling are considered exclusively, as focus here, is on the evaluation 

of scheduling algorithms. The impact of preemptions on utilization and energy 

consumption is not straightforward – particularly due to data movement within the 
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memory hierarchy. All preemptions may not cause data movement but whenever data 

movement results, this part of the overhead may be much more significant than that 

caused by just a switching of tasks. This implies that the time spent in switching contexts 

may be variable and in turn may increase response time and response time jitter for tasks. 

The measurement of the overhead due to data movement within the memory hierarchy is 

beyond the scope of this work. Thus it is restricted to counting the preemptions in the 

schedule output by an algorithm. This is similar to the approach in [Gopalakrishnan 

1996], but here, focus is on experimental evaluation. In the above example (Table 6.7), 

for the given schedule, the preemption count is 3 (each of which is marked as CS in 

Figure 6.16). 

Liu [Liu 2000] argues that 2*N, where N is the number of jobs, is the upper bound for the 

number of preemptions in a schedule, decided by job-level priorities. The reasoning is 

simple: each job may cause a switch once when it starts and once when it ends, observing 

that if a job is preempted in between, then this preemption gets attributed to the beginning 

or end of some other job. Of course, this does not apply for fully online algorithms like 

LLF: for instance, two jobs J1 and J2 arriving at time 0 with the same deadlines 2t and 

execution times t will be switched every two time units and rather unnecessarily at that. 

On the other hand, the theoretical upper bound may not be a close estimate of the actual 

number of preemptions for the other algorithms. For the purpose of evaluation, 

preemption counts are normalized with respect to the number of jobs i.e. preemptions are 

considered as a function of the total number of jobs in a schedule. This makes particular 

sense when the preemption overhead is compared with the overhead due to scheduling 

decisions, as the number of scheduling decisions usually depends on the number of jobs, 

among other factors.  

The impact of the number of preemptions on utilization (i.e. on time) is theoretically 

analyzed in [Gopalakrishnan 1996], based on various preemptive models. Here, this 

impact is evaluated using experimental measurements. 

6.6.6 ENERGY CONSUMPTION 

As real-time embedded systems often operate under limited battery power, the amount of 

energy consumed is a critical issue. So, task-scheduling algorithms for such systems need 
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to be energy-conscious. Scheduling algorithms impact energy consumption in two ways: 

by the time taken to schedule tasks and by the number of preemptions they induce 

[Buttazzo 2005][Mok 1983]. Four different components of energy consumption have 

been attributed to scheduling [Tan 2002]: Timer Interrupt Energy, Scheduling Energy, 

Context Switch Energy and Signal Handling Energy. The sample experimental values 

obtained on Linux are cited in [Tan 2002].  

Table 6.9: Sample experimental values for energy consumption of Linux OS on arm 

architecture from Tan et al.  [Tan 2002] 

Component Energy (in nJ) 

Context Switch Energy 12500 

Timer Interrupt 450 

Scheduling Energy 1200 

Signal Handling Energy 3200 

malloc call 123 

file open system call  2351 

Table 6.9 lists energy consumption for a few common operations for the purpose of 

comparison: even scheduling energy is significant in comparison with calls to malloc or 

open, although context switch energy may be an order of magnitude larger than that of 

scheduling energy. Signal Handling Energy and Timer Interrupt Energy are specific to 

the platform (i.e., the architecture and the operating system), but fairly independent of 

scheduling algorithms. It is important to observe that Scheduling Energy and Context 

Switch Energy are identified separately because each scheduler invocation may not result 

in a preemption (i.e., a context switch). The energy value cited above under the Context 

Switch Energy component includes energy consumed by data movement in the memory 

hierarchy. Isolated measurements of energy consumption are harder because data 

movements are dependent on many factors including nature of application, input profile, 

allocation policies etc.  

A simpler measure, with a compromise on accuracy, is used in this analysis: the number 

of preemptions in a schedule. Lesser preemptions always result in less energy 
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consumption, but may or may not result in significant energy reduction as data movement 

may still not be reduced.   

Another factor in measuring preemption overhead depends upon the task model on a 

platform: whether tasks are lightweight (ala threads) or heavy weight (ala processes). 

Thread switching usually causes less overhead than process switching. For instance, 

[Acquaviva 2003] reports an average of 860 nJ as the energy consumed per thread switch 

in an eCOS system running on a StrongArm 1100 processor at its peak frequency 

(221.2MHz). This is an order of magnitude smaller than the 12500 nJ listed above in 

Table 6.13. Again, using preemption count as the metric abstracts away from these details 

and allows for the comparison of scheduling algorithms. This comparative analysis of 

scheduling algorithms uses two metrics for energy consumption: the time spent by the 

algorithm on scheduling decisions and the number of preemptions in the resultant 

schedule.  

6.7   COMPARATIVE EVALUATION 

In this section, we present the results of our evaluation. Experimental measurements for 

each of the metrics – discussed in section 6.6 - are summarized; along with analysis and 

comparison. The experimental setup includes simulations of all the seven algorithms and 

various test suites randomly generated under certain conditions: each test suite is 

characterized by either a fixed number of tasks with utilization varying from low (50%) 

to high (100%) or by a fixed utilization with the number of tasks varying from 2 to 20.  

Each test suite includes 100 different task sets of varying hyperperiods – from 100 to 

32000. The results obtained are then averaged over these 100 test suites as appropriate.   

Schedulability is not included as a metric here in this evaluation as schedulability 

analyses of RM, EDF and LLF have been dealt with extensively in the literature, whereas 

RMRCS, EDFRCS, and MLLF are optimality-preserving variants of RM, EDF, and LLF 

respectively. The schedulability of IntFragment algorithm is discussed in Section 6.4 

extensively. In the cases of RM and RMRCS, only those task sets that are RM-

schedulable are considered for the following analyses. This does introduce a bias - albeit 

a predictable one - in favor of these two algorithms. Wherever this is an issue, this fact is 

addressed explicitly in the analysis. 
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6.7.1 RESPONSE TIME 

For the purpose of evaluation, here, the response times are normalized over execution 

times of the corresponding tasks and the tasks are ordered by decreasing frequency. The 

following plots in Figures 6.20, 6.21 and 6.22 shows the variation of response times of 

tasks for the various algorithms for task set of a particular size and at a fixed utilization.  
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Fig. 6.20: Response Time per Task (# Tasks = 15, Utilization = 55%) 

Response Time Vs Tasks (# Tasks = 15, Utilization = 65%)
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Fig. 6.21: Response Time per Task (# Tasks = 15, Utilization = 65%) 
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Response Time Vs Tasks (# Tasks = 15, Utilization = 80%)
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Fig. 6.22: Response Time per Task (# Tasks = 15, Utilization = 80%) 

It is observed that RM’s response time for the highest frequency task is always 1, 

irrespective of the number of tasks and the utilization. This behavior is attributed to the 

fact that RM is a task-level fixed priority scheduling algorithm where the period of a task 

decides its priority. The traditional algorithms (RM, EDF, and LLF) do not show any real 

difference – among themselves – in response time behavior and the response time 

increases exponentially with decreasing frequency of the tasks. Among the preemption 

reduction algorithms, MLLF results in schedules with same response times as those 

produced by LLF. But the RCS algorithms (RMRCS and EDFRCS) result in schedules 

where the response times of higher frequency tasks are much larger than in schedules 

produced by RM and EDF respectively. This increase in response times can be attributed 

to the fact that a lower priority task may continue execution in preference to a higher 

priority task due to the preemption reduction heuristic used by RMRCS and EDFRCS, 

thus resulting in a higher response time for the higher frequency tasks (than their 

traditional counterparts) and a lower response time for the lower frequency tasks. This 

heuristic thus explains the trend exhibited by the RCS algorithms (i.e.) decreasing 

response time of tasks with decreasing frequency. IntFragment gives the highest response 

time for all tasks, except for the lowest frequency task at very high utilizations. This 

highest response time for tasks is owing to the fact that IntFragment schedules the 

execution of tasks in a way that minimizes the fragmentation of schedulable intervals. It 

means that it schedules a task's instances in the currently available first and last feasible 

slots (i.e.) as far as possible within the period, and thus this task scheduled for the last 
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feasible slot gives rise to the highest response time of tasks. But for the case of the lowest 

frequency task, scheduling the higher frequency tasks as far as possible within the period 

creates the maximum fragment for the lower frequency tasks to execute with the least 

possible number of preemptions. This results in the lowest frequency task executing well 

in advance of its deadline, which considerably reduces the finish time, resulting in the 

least response time of the lowest frequency task at high utilizations. This behavior can be 

noted at 100% utilization in Figure 6.23. 
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Fig. 6.23: Response Time per Task (# Tasks = 12, Utilization = 100%) 

From Figures 6.20, 6.21, and 6.22, the difference in the response time behavior of 

algorithms with respect to utilization can also be studied. With increase in utilization, in 

the case of the traditional algorithms and MLLF, the response time of tasks increases. For 

these algorithms, at low utilizations, all tasks are scheduled at the earliest feasible slots 

and hence the response time is lower. As the utilization increases, the increased execution 

time of tasks contributes to a greater finish time limit and hence the increase in response 

time at high utilizations. But for IntFragment, the response time decreases with increase 

in utilization. In IntFragment, the heuristic applied causes the response time of the 

highest frequency task to be a fixed value (determined by its period). It schedules the 

adjacent two instances of the immediate lower frequency task in the currently available 

first and last feasible slots, as mentioned in 6.4. Thus, the response time of that instance 

which is scheduled for the last feasible slot is affected by the execution time of the 

highest frequency task. Continuing this trend, it is inferred that as the frequency 

decreases, the response time of tasks is influenced by the execution times of tasks having 
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a higher frequency. So, therefore, this explains the decreasing response time of tasks 

(except the highest frequency task) for IntFragment with increase in utilization, as the 

execution time of a task increases with increased utilization.  

The RCS algorithms show a decrease in the response times of higher frequency tasks 

with increased utilization and an increase in response times, in the case of lower 

frequency tasks. This is because the increased execution time causes the extension time 

of lower frequency tasks to be reduced, resulting in the earlier preemption of the lower 

frequency tasks and eventually in their increased response time. This earlier preemption 

of lower frequency tasks also causes the higher frequency tasks to execute sooner than 

would be possible at a lower utilization and hence the reduced response time of higher 

frequency tasks with increasing utilization.  

Studying the response time behavior of tasks against a combination of a particular range 

of utilizations and frequencies, the trends observed are ploted as below. 

• For high and intermediate frequency tasks, 

  RM < EDF ≤ MLLF <LLF < EDFRCS ≤ RMRCS < IntFragment  

The response times of higher and intermediate frequency tasks exhibited by RCS 

algorithms can be attributed to the fact that a lower priority task may continue execution 

in preference to a higher priority task due to the preemption reduction heuristic used by 

RMRCS and EDFRCS. But these response times are lesser than those exhibited by 

IntFragment, as IntFragment schedules the execution of tasks in a way that minimizes the 

fragmentation of schedulable intervals. It schedules the higher and intermediate 

frequency tasks as far as possible within their period, thus creating the maximum 

fragment for the lower frequency tasks to execute. This results in the higher and 

intermediate frequency tasks having a greater response time. This is shown in Figure 

6.24. It is also observed that this behavior does not change much with change in 

utilization from 55% to 70%. 
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Response Time Vs Tasks (# Tasks = 7, Utilization = 70%)

0

5

10

15

20

25

30

35

40

45

T1 T2 T3 T4 T5 T6 T7

Tasks

R
es

po
ns

e 
Ti

m
e

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

 
Fig. 6.24: Response Time per Task (# Tasks = 7, Utilization = 70%) 

It is also noted that for tasks with intermediate frequency, at high utilizations (>75%) in 

the case of large task set sizes (>8), LLF sometimes gives greater response time than the 

RCS algorithms, but less than IntFragment. This trend can be noted in Figure 6.23, 

presented earlier. This increase in the response times of tasks in the case of LLF may 

again be attributed to the nature of LLF as a job-level varying priority algorithm, i.e., it is 

possible that at times, an instance of an intermediate frequency task may have a lesser 

priority (greater slack time) when compared to a lower frequency task and hence, the 

increase in response time of intermediate frequency tasks when compared to that for the 

RCS algorithms. 

For lower frequency tasks 

• At low utilizations - The trend is the same as for higher and intermediate frequency 

tasks. 

• At high utilizations 

• For some of the lower frequency tasks, 

 RM ≤ RMRCS < EDFRCS < EDF ≤ MLLF <LLF < IntFragment 

This trend can be noted in Figures 6.23 and 6.25. 
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Response Time Vs Tasks (# Tasks = 12, Utilization = 90%)
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Fig. 6.25: Response Time per Task (# Tasks = 12, Utilization = 90%) 

Here, EDFRCS algorithm shows a lesser response time than LLF, MLLF and even EDF 

owing to its preemption heuristic which favors the delayed preemption of lower 

frequency tasks, resulting in their lesser response times. At higher utilizations, many task 

sets fail to be RM-schedulable and in turn, RMRCS-schedulable also and as only 

schedulable tasks are considered in this analysis, the results turn out to be biased toward 

RM and RMRCS. 

• For the lowest frequency task 

• In case of smaller task sets (excluding 100% utilization) 

  RMRCS ≤ EDFRCS <RM < EDF ≤ MLLF < LLF < IntFragment.  

• IntFragment gives the least response time for the lowest frequency task at 100% 

utilization, irrespective of the task set size. For task set sizes greater than 12, 

this fact holds true even for high utilizations like 90% onwards (Figures 6.23 

and 6.25). It is also noted that as the number of tasks increases, this fact is true 

even for a utilization of 80%. 

Figure 6.26 is used to study the average response time of tasks against utilization for all 

the algorithms. The average response time at a particular utilization described here is 

evaluated as the mean of the response times of all the tasks in the task set at that fixed 

utilization and hence, as mentioned in the response time evaluation of tasks, the average 

response time of tasks also increases slowly or remains constant with increased utilization 
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for all the algorithms, except IntFragment, where the average response time decreases 

linearly with utilization. For all the algorithms except IntFragment, at low utilizations 

(implying lesser execution time), all tasks are scheduled at the earliest feasible slots 

(priority-based algorithms) and hence the response time is lower. As the utilization 

increases, the increased execution time of tasks contributes to a greater finish time limit 

and hence the increase in response time at high utilizations. In IntFragment, the decrease 

in average response time of tasks with increase in utilization is closely associated with the 

fact that the response time of tasks decreases with utilization. At low utilizations, the 

response time is high while the execution time is low resulting in a high normalized 

response time, while at higher utilizations, the response time reduces and execution time 

increases, thus contributing to a lower normalized response time. Hence the average 

response time of tasks also reduces with increased utilization. The RCS algorithms and 

IntFragment show consistently higher average response times than the traditional 

algorithms due to their preemption reduction heuristics. The average response time 

behavior of tasks is not showing any significant change with increase in number of tasks. 
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Fig. 6.26: Average Response Time per Utilization (# Tasks = 15) 

Comparing the average response time of tasks against the number of tasks for a fixed 

utilization (Figure 6.27 and 6.28), it is seen that an increase in the number of tasks results 

in a linear increase (for #tasks ≤15) in the average response time for IntFragment, while 

all of the other algorithms grow slowly with the number of tasks. The traditional 

algorithms (RM, EDF and LLF), MLLF and RCS algorithms schedule tasks in the 
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earliest feasible slots (i.e., they are priority-based algorithms), thus causing the average 

response time to be a function of the sum of the execution times (lesser than their 

periods) of the tasks involved. This also explains the fact that the average response time 

of tasks in the case of these algorithms is very low at low utilizations and considerably 

high at higher utilizations. For IntFragment, in an aim to minimize the number of 

preemptions, tasks are scheduled as distant as possible within their periods, thus 

rendering the average response time of tasks for IntFragment to be a function of the 

periods of tasks (usually greater than the execution times) resulting in the average 

response time of IntFragment to be significantly greater than that for the other algorithms. 

Moreover, with increase in the number of tasks while keeping the utilization fixed, the 

execution time of tasks is reduced. Hence, this explains that with increase in the number 

of tasks, there is an exponential increase in the average response time for IntFragment, 

while all of the other algorithms grow slowly with the number of tasks. 

The following trend is thus generally noted in the performance of the algorithms with 

respect to average response time of tasks, as seen in all the Figures above. 

IntFragment > EDFRCS ≥ RMRCS > LLF > MLLF ≥ EDF > RM 
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Fig. 6.27: Average Response Time per Number of Tasks (Utilization = 70%) 
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Avg. Response Time Vs # Tasks (Utilization = 100%)
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Fig. 6.28: Average Response Time per Number of Tasks (Utilization = 100%) 

6.7.2 RESPONSE TIME JITTER 

The jitter values are normalized over periods of the corresponding tasks and the tasks are 

ordered by decreasing frequency. The Absolute Response Time Jitter (ARJ) and Relative 

Response Time Jitter (RRJ) for different tasks for fixed utilization values are measured 

and the Figures 6.29 and 6.30 show the ARJ values per task for a fixed number of tasks in 

a task set and at a fixed utilization. 

It can be observed that the RM algorithm gives the least jitter for almost all tasks. RM’s 

jitter for the highest frequency task is always 0, irrespective of the number of tasks and 

the utilization as RM’s priority function is based on the period of the task. Among the 

traditional algorithms (RM, EDF and LLF) and MLLF, the EDF, LLF, and MLLF 

algorithms exhibit large jitter for the higher frequency tasks than RM at high utilizations.  

Still, it is observed that the jitter of these algorithms (RM, EDF, LLF and MLLF) for 

higher frequency tasks is negligible, when compared with that of the RCS algorithms and 

IntFragment.  

It is noted that the absolute jitter remains low (as a proportion of the period) for the lower 

frequency tasks for all the scheduling algorithms. On the other hand, for the higher 

frequency jobs, the RCS algorithms and IntFragment exhibit very high jitter (close to one 

full period in some cases). This above mentioned behavior of RCS algorithms can be 

explained by the fact that an instance of a higher frequency task may be scheduled early 

due to its high priority (frequency or deadline) or may be scheduled late due to continued 
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execution of lower frequency job(s) to avoid preemption, thereby resulting in the 

variation (i.e. jitter) in response times. The reason attributed to the above mentioned 

behavior of IntFragment can be that for IntFragment, in an aim to minimize the number 

of preemptions, the higher frequency tasks are scheduled as distant as possible within 

their periods, thus causing the response time of higher frequency tasks to vary from just 

their execution time up to their one full period. This variation accounts for the high 

response time jitter values of higher frequency tasks for IntFragment. From these 

observations, it is obvious that the jitter exhibited by the RCS algorithms and 

IntFragment reduces greatly with decrease in frequency. 

The following trend is generally noted for these algorithms with respect to response time 

jitter of tasks: 

RM < EDF ≤ MLLF ≤ LLF < EDFRCS ≤ RMRCS < IntFragment 

This trend is observed in Figure 6.29. However, at a higher utilization (Figure 6.30), 

some of the algorithms show marked deviation from the above behavior for lower and 

intermediate frequency tasks (i.e.) the trend changes to 

  RM < EDF ≤ MLLF < RMRCS ≤ EDFRCS < LLF < IntFragment  

Figure 6.30 shows the normalized ARJ values per task at 100% utilization. It is observed 

that in this case of a fully loaded system, all the other algorithms exhibit higher jitter 

compared to RM and RMRCS for lower frequency tasks and LLF shows a pronounced 

increase in jitter for these tasks compared to all the other algorithms. It must be observed 

that these results appear to be different from those in [Buttazzo 2005] because we 

consider only RM-schedulable task sets for RM and RMRCS. If all the task sets are 

included in this analysis, then at high utilizations, RM and RMRCS would exhibit higher 

response times for low frequency tasks as compared to EDF and EDFRCS respectively. 

This behavior is in agreement with the results reported in [Buttazzo 2005], but such 

performance analysis may not be relevant for tasks that are missing the deadline anyway. 
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Absolute Jitter Vs Tasks (# Tasks = 12, Utilization = 60%)
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Fig. 6.29: Absolute Jitter per Task (# Tasks = 12, Utilization = 60%) 

Absolute Jitter Vs Tasks (# Tasks = 12, Utilization = 100%)
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Fig. 6.30: Absolute Jitter per Task (# Tasks = 12, Utilization = 100%) 

In the plots shown in Figures 6.29 and 6.30, the lowest frequency task is an anomalous 

case, because often there is exactly one instance of such a task within a hyperperiod and 

hence jitter (i.e. variation in response times) is non-existent.  

Also, our experiments showed no difference in comparative behavior among these 

algorithms with respect to absolute jitter versus relative jitter as shown in Figures 6.31 

and 6.32. 
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Relative Jitter Vs Tasks (# Tasks = 12, Utilization = 60%)
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Fig. 6.31: Relative Jitter per Task (# Tasks = 12, Utilization = 60%) 

Relative Jitter Vs Tasks (# Tasks = 12, Utilization = 100%)
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Fig. 6.32: Relative Jitter per Task (# Tasks = 12, Utilization = 100%) 

Attempting to note the variation (jitter) shown in response times of tasks by various 

algorithms against utilization, it is found that the absolute response time jitter per task 

increases or remains constant with utilization for all the scheduling algorithms except 

IntFragment, where the absolute response time jitter of tasks decreases linearly with 

increased load. All the algorithms except IntFragment are priority-based algorithms 

which spare no idle time for the processor as long as a job is ready for execution and 

hence the response time of jobs of the same task do not tend to vary too much except at 

very high utilizations, where the response time jitter increases exponentially. Among the 

traditional algorithms, LLF shows a greater increase as it a job-level varying priority 

algorithm which causes the response time of jobs of a task to fluctuate and hence the 

increased jitter. The above noted trend of decrease in response time jitter with increased 
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utilization can be explained as: IntFragment schedules tasks such that the response time 

of the highest frequency task is a fixed value (determined by its period) at a particular 

utilization. It schedules the instances of the immediate lower frequency task in the 

currently available earliest and last feasible slots (which none of the other algorithms do). 

Thus, the response time of that instance which is scheduled for the last feasible slot is 

affected by the execution time of the highest frequency task and its response time reduces 

with increase in the execution time of the highest frequency task. On the other hand, the 

response time of that instance which is scheduled for the earliest feasible slot increases 

with increase in the execution time of the highest frequency task resulting in the absolute 

jitter of this second highest frequency task reducing with increase in the execution time 

(caused by increase in load) of the highest frequency task. This fact remains true as the 

frequency decreases and hence the decrease. 

With focus on the average variation (jitter) in the response time behavior of tasks for the 

different scheduling algorithms, the following plots (Figures 6.33, 6.34 and 6.35) show 

the variation of average response time jitter of tasks for the various scheduling algorithms 

against the number of tasks in a task set for a fixed utilization. 
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Fig. 6.33: Average Absolute Jitter per Number of Tasks (Utilization = 65%) 

It is seen that the average response time jitter for IntFragment increases linearly with 

increase in the number of tasks, while for the other algorithms, the average jitter remains 

almost constant. Among the traditional algorithms, the trend observed is RM < EDF ≤ 

MLLF ≤ LLF. The RCS algorithms exhibit considerably greater average response time 

jitter than these traditional algorithms, with EDFRCS giving a slightly greater average 
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response time jitter than RMRCS at high utilizations. With increase in the number of 

tasks for a fixed utilization, IntFragment gives a greater average response time jitter than 

the RCS algorithms. For IntFragment, the average response time jitter of tasks increases 

exponentially with increasing number of tasks up to a task set size of 6. From Figures 

6.33, 6.34 and 6.35, it can also be seen that with increase in utilization, the average 

response time jitter for all the algorithms increases except IntFragment, where the effect 

is reverse, that is, the average response time jitter decreases with increase in utilization. 

The slightly anomalous trend observable between 90% and 100% utilization is due to the 

fact that the trend lines for RM and RMRCS include only task sets that are RM-

schedulable. 
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Fig. 6.34: Average Absolute Jitter per Number of Tasks (Utilization = 80%) 
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Fig. 6.35: Average Absolute Jitter per Number of Tasks (Utilization = 95%) 
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The above mentioned facts about average absolute jitter of tasks holds true for average 

relative jitter of tasks also, for each scheduling algorithm under consideration. 

6.7.3 LATENCY 

The following plots (Figures 6.36 and 6.37) show the latency of tasks in task set 

schedules generated by the various algorithms for a fixed task set size and at a fixed 

utilization. The latency values are normalized over execution times of the corresponding 

tasks and the tasks are ordered by decreasing frequency. 

It is noted that at low utilizations (≤70), with decrease in frequency, all algorithms except 

the RCS algorithms increase the latency of tasks linearly or remain constant for higher 

frequency tasks and reduces latency slightly for lower frequency tasks, irrespective of the 

number of tasks.  This slight reduction for lower frequency tasks observed predominantly 

in the case of IntFragment, may be due to the fact that IntFragment aims at providing the 

maximum for the lower frequency tasks to execute in order to reduce preemptions. This 

trend at low utilizations can be observed in Figure 6.36. The RCS algorithms show a 

linear increase throughout with decreasing frequency due to the preemption reduction 

logic. It is also observed that at high utilizations, there is an exponential increase in the 

latency of tasks with decreasing frequency of tasks. This fact holds true for each 

algorithm under consideration, irrespective of the task set size and utilization. 

Irrespective of the scheduling algorithm, more often, at high utilizations, the execution of 

higher frequency tasks is carried out at a cost of preemptions of the lower frequency tasks 

thus resulting in an increase in the finish time of the lower frequency tasks and hence the 

increase in latency with decrease in frequency. This exponential increase in latency with 

decrease in frequency can be noted in Figure 6.37. In addition, it is noted that with 

increase in utilization (Figure 6.37), this exponential growth in the latency of lower 

priority tasks becomes more pronounced. 

Here, it is also noticed that almost all the algorithms are providing a normalized latency 

value that is close to 1 (the least possible latency value) for the highest frequency task, 

irrespective of the number of tasks and utilization. The RCS algorithms (EDFRCS and 

RMRCS) consistently exhibit the least latencies at all utilizations for all tasks (except for 

the lowest frequency task at high utilizations) because of its preemption reduction logic. 
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For the lowest frequency task, at high utilizations (excluding 100% utilization), 

IntFragment provides the least latency due to its heuristic of minimizing the 

fragmentation of schedulable intervals. At 100% utilization, the 0% idle time of the 

processor results in multiple internal fragments which cause preemption of the lower 

frequency tasks more frequently and hence, IntFragment comes second to EDFRCS in 

providing the least latency for the lowest frequency task. This characteristic is noted in 

Figure 6.37. The traditional algorithms (RM, EDF and LLF) and MLLF do not fair too 

well at this metric owing to the increased number of preemptions in their schedules. LLF 

gives the worst latencies in almost all the frequencies irrespective of the task set size and 

utilization owing to its laxity metric and hence, increased number of preemptions as can 

be observed in Figure 6.37. 
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Fig. 6.36: Latency per Task (# Tasks = 6, Utilization = 65%) 
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Fig. 6.37: Latency per Task (# Tasks = 14, Utilization = 100%) 
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Comparing the latency of tasks against utilization, it is observed that the latency of tasks 

increases with utilization levels for all algorithms, irrespective of the task set size. With 

increase in utilization, the execution time increases and hence, the possibility of increased 

number of preemptions arises, thus contributing to increased latency. 

Figure 6.38 shows the average latencies of tasks against utilization levels for the various 

algorithms. As noted above, the average latency also increases with utilization (≤ 85) for 

all algorithms. The RCS algorithms consistently provide the least average latencies. The 

preemption reduction algorithms perform slightly better than their counterparts in all 

cases: EDFRCS vs. EDF, RMRCS vs. RM, and MLLF vs. LLF. Among the traditional 

algorithms, LLF has the worst latencies particularly at high utilizations. Both of these 

observations can be explained by the fact that reduced preemptions increase the chances 

of continued execution of any job, thereby reducing its latency. This difference between 

the traditional and the preemption-reducing algorithms is more pronounced at higher 

utilizations because the traditional algorithms (RM, EDF and LLF) induce more 

preemptions at higher utilizations. The trend followed by the algorithms with respect to 

average latencies of tasks for low utilizations (< 80), irrespective of the task set size is: 

 IntFragment > LLF >MLLF >RM > EDF > RMRCS ≥ EDFRCS 

At higher utilizations (≥80), LLF induces more preemptions and hence gives the worst 

average latencies at high utilizations.  
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Fig. 6.38: Average Latency per Utilization (# Tasks = 12) 

The plots in Figures 6.39 and 6.40 show the average latency of tasks against the number 

of tasks at a fixed load. It is observed that an increase in the number of tasks results in an 
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increase in the average latency for all scheduling algorithms at all loads due to an 

increase in the number of preemptions. The increase for LLF is more pronounced at high 

utilizations as it is a job-level varying priority algorithm which causes an increased 

number of preemptions. 
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Fig. 6.39: Average Latency per Number of Tasks (Utilization = 75%) 

IntFragment is designed with the aim of minimizing the fragmentation of schedulable 

intervals, which causes the average latency of tasks to be very low (next to RCS 

algorithms) for smaller task sets (Figure 6.40). With increase in the task set size, the 

internal fragmentation caused induces increased number of preemptions, thus increasing 

the finish time and hence, the increase in average latency. 
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Fig. 6.40: Average Latency per Number of Tasks (Utilization = 100%) 
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6.7.4 SCHEDULING COMPLEXITY 

The worst case time complexity of Algorithm IntFragment is  

pmax * Σt Є Tasks (H / p(t)) 

where, pmax is the maximum among the periods of all tasks, H is the hyper-period, and 

p(t) is the period of task t. 

As mentioned in Section 6.4.4, the time complexity of an online scheduling algorithm A 

can be expressed as:  

TA(H,S) = decisions(A,H, S) * Tdec(A,H, S) 

For RM and EDF, the number of decision points is 2*N, where N is the number of jobs 

for the task set S, because RM and EDF consider every job arrival and departure. For 

LLF and MLLF, the number of decision points is H, the hyper-period, because these are 

totally on-line algorithms, by definition [Mok 1983]. The RCS algorithms also behave 

like RM and EDF, except when they defer a preemption. Each deferred switch adds 

another decision point. It is not easy to theoretically estimate the number of deferred 

switches, as this depends on various parameters of the task set, but the upper bound on 

the number of deferred switches is a small fraction of N, the number of jobs, and it grows 

with |S|, the number of tasks in the input task set. Thus the number of decision points for 

the RCS algorithms is (2+d)*N in the worst case, where d is a slowly growing function of 

|S|. These complexity measures are summarized in Table 6.10. 

The time taken per scheduling decision is dependent on the way in which priority-based 

selection is implemented. For RM, it is possible to implement this selection in O(1) time 

by assigning a fixed priority to each task (as the inverse of its period). For EDF, a fixed 

priority implementation is not possible and the time for selection is dependent on whether 

or not the data structure used for the ready queue is ordered. If an ordered queue is 

maintained (i.e., a priority queue), then the time taken per EDF scheduling decision 

would be O(log m). Else, it would be O(m), where m is the queue length [Gooch 1998]. 

Although the value of m is not easily predictable, it has an upper bound of |S|. 

The complexity of a single scheduling decision in LLF or MLLF varies on whether or not 

the priority (i.e. the slack time) of the current job changes – w. r. t. the highest priority 

job in the queue – in between two decisions. If there is a relative priority change, then 
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this new priority value has to be compared with the updated priorities of all the other 

processes in the queue. In this case, the time complexity of a single scheduling decision is 

O(m), where m is the queue length. If the priority does not change, the time taken for the 

scheduling decision is just the comparison between the current job and the highest 

priority job in the queue. In the latter case, the complexity of the scheduling decision is 

O(1). 

For the RCS algorithms, the time taken for a single scheduling decision is dominated by 

the extension function [Raveendran 2006] with complexity O(p*p), where p is the 

number of jobs of priority higher than the current job. The upper bound for p is |S|. These 

complexity measures are summarized in Table 6.10. The last column of Table 6.10 lists 

the scheduling complexity of each algorithm. 

Table 6.10: (Worst Case) Time Complexity of Scheduling Algorithms 

Algorithms Decision Points 
Per Decision
Complexity 

Scheduling 
Complexity 

RM 2*N O(1) O(2*N) 
EDF 2*N O(log m) O(2*N*log|S|) 
LLF H O(m) O(H*log|S|) 
MLLF H O(m) O(H*log|S|) 

RMRCS 
(2+d)*N where d grows very 

slowly w.r.t |S| 
O(p*p) O((2+d)*N*|S|*|S|)

EDFRCS 
(2+d)*N where d grows very 

slowly w.r.t |S| 
O(p*p) O((2+d)*N*|S|*|S|)

where H is Hyper-period, N is number of jobs, |S| is number of tasks, m is queue length, 

p is number of higher priority jobs and d is number of deferred switches. 

The average case complexities are harder to estimate theoretically. For instance, the 

average value of m (i.e. queue length) is not easily predicted. The queue length over a 

large number of test cases has been experimentally measured. The average queue length 

for all the algorithms is approximately 1.25*log|S|. Thus, the average case time 

complexity of EDF is O(2*N*log(1.25*log|S|)).  

For LLF and MLLF, although the number of decision points is H, the number of points at 

which the priorities have to be updated is significantly less. As already discussed, 

priorities are to be updated only when the priority of the current job changes with respect 
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to the highest priority job in the queue. These values have been estimated experimentally 

to be approximately 2.37*N and 2.35*N for LLF and MLLF respectively. Again, as 

already discussed, updating priorities takes time proportional to m, the length of the 

queue, and the average value for m as mentioned above is 1.25*log|S|. Thus, the average 

case time complexities for LLF and MLLF would be O(H+2.96*N*log|S|) and 

O(H+2.94*N*log|S|) respectively. 

For the RCS algorithms, the experimentally estimated average number of decision points 

are 2.06*N. The experimentally estimated average value of p, the number of higher 

priority jobs, is approximately 0.6*log|S|. Thus, the average case time complexity of both 

RMRCS and EDFRCS is O(0.74*N*log|S|*log|S|). These average case complexity 

measures are summarized in Table 6.11. 

Table 6.11: Estimated(Average Case) Time Complexity of Online Scheduling Algorithms 

Algorithms Decision Points
Per Decision 
Complexity 

Scheduling Complexity

RM 2*N O(1) O(2*N) 
EDF 2*N O(log(1.25*log|S|)) O(2*N*log(1.25*log|S|))

LLF 
H decisions and 
2.37*N updates 

O(1.25*log|S|) O(H+2.96*N*log|S|) 

MLLF 
H decisions and 
2.35*N updates 

O(1.25*log|S|) O(H+2.94*N*log|S|) 

RMRCS 2.06*N O(0.36*log|S|*log|S|) O(0.74*N*log|S|*log|S|) 
ECFRCS 2.06*N O(0.36*log|S|*log|S|) O(0.74*N*log|S|*log|S|) 

6.7.5 PREEMPTION COUNT 

The preemption count values obtained are normalized over the number of jobs and the 

tasks are ordered by decreasing frequency. The trend observed among the algorithms 

with respect to the number of preemptions introduced in the resulting schedules is as 

follows: 

EDFRCS ≤ RMRCS < IntFragment < EDF < RM < MLLF < LLF 

The plots in Figures 6.41 and 6.42 represent preemption count against utilization for task 

sets with a fixed number of tasks. It is observed that the number of preemptions increases 

with increase in utilization, irrespective of the number of tasks due to increase in 

execution time and schedulability constraints.  
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It is seen that the RCS algorithms show significant reduction in preemptions compared to 

their traditional counterparts, irrespective of the utilizations. For instance, at 50% 

utilization, EDF results in an average of 0.27 preemptions per job, whereas EDFRCS 

results in an average of 0.0725 preemptions per job, which is about a 73% reduction. For 

a fully loaded system (100% utilization), EDF results in an average of 0.662 preemptions 

per job, whereas EDFRCS results in 0.22 preemptions per job, which is about a 66% 

reduction. The reductions are similar for RMRCS versus RM. IntFragment also 

establishes its objective of minimizing the number of preemptions, though second to the 

RCS algorithms. In the same test case listed above, (i.e.) at 50% utilization, IntFragment 

results in an average of 0.126 preemptions per job, which is about a 53% reduction over 

EDF. Also, for a fully loaded system, IntFragment results in an average of 0.353 

preemptions per job, which is about a 47% reduction over EDF. In the case of 

IntFragment, reduced number of preemptions occurs when the periods of tasks are in 

multiples. If not so, then the multiple internal fragments caused results in an increased 

number of preemptions. No such behavior would be noted in the case of RCS algorithms 

even if the periods of the lower frequency tasks are not multiples of those of the higher 

frequency tasks. MLLF on the other hand, reduces preemptions significantly with respect 

to LLF at high utilizations. But it is important to note that MLLF still results in more 

preemptions than EDF or RM.  
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Fig. 6.41: Preemptions per Utilization (# Tasks = 6) 

In [Buttazzo 2005], it is shown that EDF results in lesser preemptions than RM. The 

obtained results confirm this: EDF results in about 1% to 6% lesser preemptions than RM 
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on an average. Similarly, EDFRCS also results in lesser preemptions than RMRCS, but 

the difference is often small with a maximum of 2% in the chosen test cases. It is also 

noted that the increase in the number of preemptions in EDFRCS and RMRCS with the 

increase in utilization is very less due to the regress preemption reduction heuristic. In 

case of IntFragment, it is seen that with the increase in utilization, the number of 

preemptions increases more steeply than EDFRCS and RMRCS, but less compared to the 

other traditional algorithms. Among the traditional algorithms, LLF's preemption count 

increases very steeply with increase in utilization and performs very poorly at high 

utilizations (≥ 80%) due to frequent priority changes of jobs owing to the laxity metric. 
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Fig. 6.42: Preemptions per Utilization (# Tasks = 14) 

The plots below (Figures 6.43 to 6.48) represent preemption count against the number of 

tasks in a task set with a fixed utilization. It is observed that for each scheduling 

algorithm under consideration, the number of preemptions decreases with increase in the 

number of tasks at a fixed utilization, irrespective of the utilization. This behavior is 

attributed to the fact that an increase in the number of tasks at a fixed utilization causes 

the execution time per task to reduce, resulting in reduced preemptions between 

completions of jobs. As the number of tasks in the task set increases, preemption 

reduction is more pronounced for the RCS algorithms and IntFragment: EDFRCS and 

IntFragment reduce the preemption count by at least 82% and 48% respectively with 

respect to EDF at all utilization levels, when the task set size is 20. MLLF shows 

significant reductions over LLF in preemption count when the number of tasks is smaller, 
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but this is partly explained by the fact that the preemption count for LLF itself is higher 

when the task set is smaller. 
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Fig. 6.43: Preemptions per Number of Tasks (Utilization = 50%) 

It is also observed that for smaller sets, the number of preemptions introduced by MLLF 

is very large in comparison to RM and EDF, but as the number of tasks increases, MLLF 

produces preemptions close to EDF and RM. Evidently, LLF and MLLF are not suitable 

for generating power-aware schedules of smaller task sets. The preemption reduction 

brought about by MLLF over LLF (almost 50%) is presented more clearly in Figures 

6.46 and 6.48. 

Context Switches Vs # of Tasks (Utilization = 70%)

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

# of Tasks

C
on

te
xt

 S
w

itc
he

s

INTFRAGMENT EDF RM LLF MLLF EDFRCS RMRCS

 
Fig. 6.44: Preemptions per Number of Tasks (Utilization = 70%) 
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Context Switches Vs # of Tasks (Utilization = 80%)
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Fig. 6.45: Preemptions per Number of Tasks (Utilization = 80%) 
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Fig. 6.46: Preemptions per Number of Tasks (Utilization = 80%) 

Context Switches Vs # of Tasks (Utilization = 100%)
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Fig. 6.47: Preemptions per Number of Tasks (Utilization = 100%) 
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Context Switches Vs # of Tasks (Utilization = 100%)
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Fig. 6.48: Preemptions per Number of Tasks (Utilization = 100%) 

It is observed that the average number of preemptions per job grows monotonically with 

increasing utilization for a fixed number of tasks for each algorithm under consideration. 

Except in the case of LLF, this growth is often linear. Furthermore, the average 

preemption count decreases with increasing number of tasks in the task set. More 

precisely, it is estimated here, that the normalized average preemption count is a linear 

function of 1/|S|, where S is the task set. Based on these observations, the estimated 

average pre-emption counts for all the online algorithms except LLF are summarized in 

Table 6.12. 

Table 6.12 Estimated Average Preemption Count 

Algorithm Preemption Count 

RM O((0.42+2.7/|S|)*N*U

EDF O((0.45+2.1/|S|)*N*U

MLLF O((10.9/|S|)*N*U 

RMRCS O((1.9/|S|)*N*U 

EDFRCS O((1.9/|S|)*N*U 

N – number of jobs       |S| - number of tasks U – utilization (between 0 and 1) 

6.7.6 ENERGY CONSUMPTION 

As observed in Section 6.6.6, energy consumption overhead due to scheduling depends 

on two factors: scheduling decisions and preemptions. Among online scheduling 

algorithms, based on the time spent on scheduling decisions, RM appears to be the least 
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energy-consuming algorithm closely followed by EDF. Based on the number of 

preemptions, the RCS algorithms turn out to be the least energy consuming algorithms 

followed by IntFragment. Although the number of preemptions in a schedule depends on 

various characteristics, the RCS algorithms invariably offer a significant reduction in the 

number of preemptions.  For the purpose of a head-to-head comparison of the energy 

consumption impact among the online scheduling algorithms, the time spent on 

scheduling decisions and the time delay introduced due to preemptions, both amortized 

over N (the number of jobs) are compared. Since the scheduling complexity may depend 

on |S|, the size of the task set, whereas the preemption count may depend on |S| as well as 

U, the utilization as a fraction between 0 and 1, the comparison for specific values of |S| 

and U is performed. For instance, the average time complexity amortized per job for EDF 

is 2*log(1.25*log|S|) and the average number of preemptions produced by EDF 

amortized per job is (0.45+2.1/|S|)*U. Assuming that Es is the energy consumed per unit 

time of scheduling and Ec is the average energy consumed per preemption, the above two 

formulae are evaluated for specific values of |S| and U, say for 10 and 0.5 respectively as 

follows:  

Energy Spent on Per Job Scheduling Decision for EDF 

        = 2*log (1.25*log (10))*Es = 4.33Es and 

Energy Spent on Per Job Preemption for EDF 

 = (0.45+2.1/10)*0.5*Ec = 0.33Ec 

So, in the case of EDF, the total energy impact of scheduling can be formulated as 

4.33Es+0.33Ec per job for task sets of size 10 and for a utilization level of 50%. Table 

6.13 below summarizes these values for different combinations of |S| and U values. 

Table 6.13 can be used a ready reckoner for energy consumption tradeoffs: for instance, 

for a Ec/Es ratio of 50, one can observe that preemption energy is likely to dominate and 

hence the RCS algorithms are likely to offer energy savings of the order of 50% or more 

compared to RM or EDF; whereas if the Ec/Es ratio is around 10, then one can observe 

that the RCS algorithms may still offer energy savings for small task set but for large task 

sets they spend more energy on scheduling decisions than they save on preemptions. 

 



CHAPTER 6 – ENERGY EFFICIENT TASK SCHEDULING 

 198

Table 6.13: Estimated Energy Consumption due to Scheduling Decisions and 

Preemptions (normalized per job) 

|S| U RM EDF MLLF *RCS 

5 0.5 2Es+0.48Ec 3.04Es+0.44Ec H`+6.83Es+1.09Ec 3.99Es+0.19Ec 

5 0.7 2Es+0.67Ec 3.04Es+0.61Ec H`+6.83Es+1.53Ec 3.99Es+0.27Ec 

5 0.9 2Es+0.86Ec 3.04Es+0.78Ec H`+6.83Es+1.96Ec 3.99Es+0.34Ec 

10 0.5 2Es+0.35Ec 4.33Es+0.33Ec H`+9.77Es+0.55Ec 8.13Es+0.10Ec 

10 0.7 2Es+0.48Ec 4.33Es+0.46Ec H`+9.77Es+0.76Ec 8.13Es+0.13Ec 

10 0.9 2Es+0.62Ec 4.33Es+0.59Ec H`+9.77Es+0.98Ec 8.13Es+0.17Ec 

20 0.5 2Es+0.28Ec 5.28Es+0.28Ec H`+12.71Es+0.27Ec 13.82Es+0.05Ec

20 0.7 2Es+0.39Ec 5.28Es+0.39Ec H`+12.71Es+0.38Ec 13.82Es+0.07Ec

20 0.9 2Es+0.50Ec 5.28Es+0.50Ec H`+12.71Es+0.49Ec 13.82Es+0.09Ec

*RCS denotes RMRCS or EDFRCS. 

where H` is a constant multiple of hyperperiod H, Es is energy consumption per unit time 

spent in scheduling decisions and Ec is energy consumption per preemption. 

Given the earlier reports on energy measurements [Acquaviva 2003][Tan 2002], context-

switching energy Ec is an order of magnitude larger than scheduling energy and as each 

scheduling decision is likely to require several instructions, an Ec/Es value close to 100 is 

expected. However, this value also depends on several factors including architectural 

constraints, operating system implementation issues, whether thread switching or process 

switching is involved, and how much data movement is involved in a preemption. Thus, 

this table is useful in practice only in conjunction with specific experimental 

measurements of energy consumption on the target platform. But the table does give a 

good indication of when preemption reduction is worth considering and when it is not.  

Also, it can be observed that the MLLF algorithm performs very badly with respect to 

energy consumption as it always spends more time on scheduling decisions than the RCS 

algorithms and the number of preemptions produced by MLLF is no better than that 

produced by EDF. 

IntFragment is a static scheduling algorithm with O(1) online decision making time 

complexity. The number of preemptions saved in a schedule contributes to energy saving 
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directly. The saving of energy per unit time (one second) for IntFragment with respect to 

EDF and LLF algorithms when measured with 10 different task sets (utilization varying 

from 50% to 70%) is presented in Table 6.14. 

Table 6.14: Energy saved by IntFragment algorithm compared to EDF and LLF 

Exp. 

No 

Energy Saved w.r.t. EDF Energy Saved w.r.t. LLF 

Min (uJ) Max (mJ) Min (uJ) Max (mJ) 

1 482.22 3.584 502.74 3.736 

2 376.2 2.796 376.2 2.796 

3 461.7 3.431 502.74 3.736 

4 372.78 2.77 372.78 2.77 

5 307.8 2.287 307.8 2.287 

6 485.64 3.609 485.64 3.609 

7 485.64 3.609 506.16 3.762 

8 478.8 3.558 478.8 3.558 

9 543.78 4.041 543.78 4.041 

10 478.8 3.558 478.8 3.558 

6.8. CONCLUSION 

We have described the IntFragment, EDFRCS and RMRCS algorithms along with 

analysis and experimental evaluation of the same. We have also compared these 

algorithms with EDF, RM and LLF on various metrics. A comprehensive summary of 

this evaluation is presented (Table 6.15) in the form of desired performance 

characteristics and the corresponding choice of scheduling algorithms. The dynamic 

priority scheduling algorithms like EDF and RM along with their energy efficient 

variants EDFRCS and RMRCS were implemented in RTLinux. Four implemented 

scheduling algorithms were verified with many test cases and varying attributes of tasks. 

The implementation results support the simulation results discussed in section 6.7. 
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Table 6.15: Ready Reckoner for choice of Scheduling Algorithm 

Desired Performance 

Characteristic 
Choice of Scheduling Algorithm 

Low Response Time RM under low load and EDF under high load 

Low Response Time Jitter 
RM, if jitter is critical only for high frequency tasks 

RM, under low load and EDF under high load 

Low Latency EDFRCS 

Ease of Implementation RM under low load and EDF under high load 

Low Energy Consumption 

EDFRCS for small task sets 

Ec/Es ≥50 

    EDFRCS ( Irrespective of task set size) 

Ec/Es around 10 

    RM under low load and EDF under high load 
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CHAPTER 7 

CACHE CONSCIOUS SCHEDULING 

7.1 INTRODUCTION 

This chapter discusses a cache conscious dynamic priority-based real-time scheduling 

algorithm which reduces the cache impact caused by a real-time schedule. The main 

objective behind reducing the cache impact caused by a real-time schedule is to optimize 

the energy consumption due to data movements across the memory hierarchies. This 

work aims at providing a platform-independent scheduling algorithm which yields a 

reduced cache impact and increased power savings. This chapter explains a branch and 

bound approach to determine the schedule that causes the least cache impacts. This 

chapter also proposes a dynamic priority – based Reduced Cache Impact (RCI) 

modification to the Earliest Deadline First (EDF) real-time scheduling algorithm. 

The assumptions made in section 6.2 are applicable here as well. In this work, the cache 

impact is measured as the total number of switching between jobs of different tasks. This 

is because the jobs of the same task will share the entire code area and a part of the data 

area, which makes the cache impact very minimal. This work also assumes that all the 

jobs require as much memory space as to cause the entire previous job’s content to be 

flushed out of the cache completely. 

7.2  A BRUTE – FORCE ALGORITHM FOR MINIMIZING CACHE IMPACT 

We describe an offline algorithm that inspects all valid schedules to find one with 

minimum cache impact. This takes O(H!) (where H is the hyper-period) time and we use 

it as a standard to measure the effectiveness of other algorithms.  

7.2.1 BRUTE-FORCE ALGORITHM FOR MINIMUM CACHE IMPACT 

Inputs: hyper-period H, a list of job records Jobs 

Output: A feasible schedule, if one exists, with minimum possible cache impact. 

Steps: 
1. Generate all schedules P of Jobs i.e. divide each job into sub-jobs of unit execution time and 

compute all permutations of the list of sub-jobs. 



CHAPTER 7 – CACHE CONSCIOUS SCHEDULING 

202 
 

2. m=H; feasible =FALSE; cur = the first schedule in P. 

3. for each permutation Pi in P, 

a. check if Pi is feasible 

b. if yes, then feasible = TRUE,  

           Compute the cache impact count m’;  

           if (m’ < m), then m = m’; cur=Pi. 

4. if (feasible = FALSE) then output ‘infeasible’ 

5. else output cur and m. 

Finding all permutations, though offline, for a given task set (S) is impractical, if H is 

large.  Thus, this stresses the need for an online scheduling algorithm which can compute 

a feasible schedule, if one exists in polynomial time with minimum cache impact. 

7.3  REDUCED CACHE IMPACT (RCI) REAL-TIME SCHEDULING ALGORITHM 

The objective of this work is to design an online dynamic, priority-based scheduling 

algorithm for hard real-time systems such that the generated schedule has the minimum 

possible cache impact. This work considers only periodic tasks.  

7.3.1 INTRODUCTION 

A preemption results in storing the context of the currently running process and loading 

the context of the next job to be executed. Most of the newly selected process’ contents 

may not be available in the cache, which results in initiating data movement across the 

memory hierarchy. As the size of the cache is very small, almost all the preemption 

points are also cache impact points. The cache impact caused at preemption point is a 

subset of the total cache impact caused by the resultant schedule. The preemption points 

are the points where majority of the cache impacts take place. This premise puts forth an 

efficient solution that to reduce the cache impact, it is required to reduce the number of 

preemptions.  The factors affecting the number of preemptions caused in a schedule 

include the number of tasks and the system utilization. Another solution would be to 

combine similar jobs together. This can be achieved by combining consecutive instances 

of the same task together as they share the code area and a portion of their data areas. 

However, combining consecutive instances of many tasks may result in an increase in the 

number of preemptions due to the fragmentation of the time frame, and thus leads to a 
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greater cache impact. The experimental results given in Table 7.1 justify this argument. 

Though the preemption count of the schedule increases while trying to combine more 

number of tasks, yet the schedule gives a better cache impact than that caused by the EDF 

schedule as shown in Table 7.2.  The preemption count and the cache impact obtained 

from the schedule while combining instances of the ‘N’ higher frequency tasks is 

compared with those obtained from the schedule generated by EDF. In this experiment, N 

is varied from 1 to 10 for test cases with 20 tasks. From Tables 7.1 and 7.2, it is observed 

that for all the test cases, combining instances of the highest frequency task alone results 

in a significant preemption reduction and hence, greater cache impact saving. This 

motivates the design of an energy efficient scheduling algorithm called the Reduced 

Cache Impact (RCI) scheduling algorithm, which reduces both the number of 

preemptions and the cache impact as compared to the EDF. This is achieved by 

combining the maximum possible instances of the highest frequency task. 

Table 7.1: Preemption variation (% saving caused by combining instances of ‘N’ higher 

frequency tasks) as compared to the EDF schedule 

Utilization N=1 N=3 N=5 N=8 N=10 

50 +7.49 –7.55 –14.04 –16.79 –17.11 
55 +6.92 –8.24 –15.10 –18.37 –18.74 
60 +7.22 –7.91 –15.23 –18.52 –19.05 
65 +6.81 –9.21 –16.54 –20.18 –20.82 
70 +7.05 –9.42 –17.23 –21.35 –22.23 
75 +6.57 –10.54 –18.65 –23.22 –24.09 
80 +7.27 –10.36 –18.39 –23.20 –24.25 
85 +7.06 –11.00 –20.27 –25.24 –26.47 
90 +7.23 –10.96 –20.16 –25.66 –26.73 
95 +7.34 –11.49 –21.00 –27.03 –28.05 
100 +6.85 –12.00 –21.69 –27.58 –28.76 
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Table 7.2: Cache Impact variation (% saving caused by combining instances of ‘N’ 

higher frequency tasks) as compared to EDF schedule 

Utilization N=1 N=3 N=5 N=8 N=10 

50 +7.04 +5.10 +3.99 +3.42 +3.34 
55 +7.58 +5.29 +4.00 +3.25 +3.16 
60 +8.42 +5.80 +4.20 +3.36 +3.22 
65 +9.02 +5.74 +3.98 +2.93 +2.76 
70 +9.72 +5.98 +3.91 +2.65 +2.40 
75 +10.29 +5.95 +3.63 +2.20 +1.94 
80 +11.17 +6.22 +3.70 +2.06 +1.73 
85 +11.72 +6.22 +3.13 +1.32 +0.93 
90 +11.52 +6.14 +3.19 +1.29 +0.94 
95 +12.20 +6.17 +2.94 +0.72 +0.37 
100 +12.39 +6.11 +2.69 +0.52 +0.12 

RCI is an online dynamic priority-based real-time scheduling algorithm designed to 

minimize the cache impact of a given schedule. The proposed scheduling algorithm aims 

at reducing the amount of data transferred across the memory hierarchy with the least 

number of cache block replacements. This work adopts the heuristic of executing 

instances of the highest frequency task together, if possible, to minimize the cache 

impact. The execution of all the other task instances follows EDF scheduling policy. The 

jobs (instances) of the highest frequency task can be numbered as odd or even. This 

heuristic defers the execution of all the even jobs of the highest frequency task to the 

maximum possible extent and schedules all the odd jobs of the highest frequency task for 

execution as early as possible. The scheduling algorithm guarantees the successful 

execution of all the other jobs (if utilization is less than or equal to 100%) while deciding 

upon deferral and immediate execution of the instances of the highest frequency task. 

Basically, the system follows EDF with 100% schedulability, i.e., instances of all the 

tasks except those of the highest frequency task follow the EDF strategy for scheduling 

decisions. The proposed algorithm is described below. 
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7.3.2 REDUCED CACHE IMPACT (RCI) ALGORITHM 

The following notation is used in the RCI algorithm: 

readyQ(t)  : the ready queue at time t, ordered by deadline. 

deadline(J) : deadline of a job J. 

execution_time(J) : execution time of a job J. 

Algorithm Reduced Cache Impact Scheduling (RCIS) 

Input: A list L of tasks T1, T2, … Tn, their periods and execution times and 

A priority function priority, that is job-level fixed (-1 *deadline(J)). 

Output: A feasible schedule for L or failure. 
 

begin 

Let the deferred switch be initialized as the Hyper period 

Let Cur be the job selected by findNextJobToExecute(readyQ(t), t) function at time 0 and 

deferred switch be the value set by findNextJobToExecute(readyQ(t), t)function at time 0. 

For every time unit t when there is at least one arrival or a departure or a deferred switch 

if  (Cur is to depart OR new Job Arrived OR t = deferred switch time) then 

Cur1 = findNextJobToExecute(readyQ(t), t) ;  

if (Cur1 = = Cur) then schedule Cur; 

else 
preempt Cur; Cur = Cur1; schedule Cur; 

end RCIS 

 

function Job findNextJobToExecute(readyQ(t), t) 

begin 

Let Cur be the job with the highest priority in readyQ(t) 

if (Cur is the even instance of the highest frequency task) then 

deferredSwitchTime_Cur = maxDeferredTime(Cur,t); 

if (deferredSwitchTime_Cur > 0) then 

find the next highest priority Job J in readyQ(t),  

       if no other jobs exist then J=Cur; 

if (J <> Cur) then 

deferred switch = t + deferredSwitchTime_Cur; return J; 

return Cur; 

end findNextJobToExecute 
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function int maxDeferredTime(job, t) 

begin  

 return deadline(job) – t – execution time(job); 

end maxDeferredTime 

7.3.3 RCI ALGORITHM EXPLANATION 

The working of the proposed algorithm is explained with the following task set in Table 

7.3. 

Table 7.3: Task list for the schedule 

Task Arrival Time Period Execution Time Deadline

T0 0 5 1 5 

T1 0 15 6 15 

T2 0 30 12 30 

Table 7.4: Job list Jobs, derived from Table 7.3 (Hyperperiod = 30) 

Job Arrival Time Deadline Execution Time 

J0 (T0) 0 5 1 

J1 (T0) 5 10 1 

J2 (T0) 10 15 1 

J3 (T0) 15 20 1 

J4 (T0) 20 25 1 

J5(T0) 25 30 1 

J6(T1) 0 15 6 

J7(T1) 15 30 6 

J8(T2) 0 30 12 

The RCI scheduling algorithm schedules the task set i.e., the corresponding job set given 

in Table 7.3 and Table 7.4. The ready queue is maintained in a sorted fashion according 

to the priority of jobs, where priority of a job J is defined as (-1*deadline (J)). 
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Figure 7.1 shows the resultant schedule generated by the RCI scheduler. The number of 

cache impact points in this schedule is 8 and the number of preemption points in the 

schedule is 3. Figures 7.2 and 7.3 show the resultant EDF and RM schedules respectively 

for the same task set. The number of cache impact points and the number of preemption 

points in the EDF schedule is 12 and 4 respectively.  

  

 

 

 

 

 

Fig. 7.1: Resultant RCI schedule for the task set given in Table 7.3 

 

 

 

 

 

 

 

Fig. 7.2: Resultant EDF schedule for the task set given in Table 7.3 

 

 

 

 

 

 

Fig. 7.3: Resultant RM schedule for the task set given in Table 7.3 
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both in terms of the cache impact and preemption count. The brute-force result for the 

same task set is given in Figure 7.4. The brute-force approach gives the number of cache 

impact points as 8 and the number of preemptions as 1. From this, one can observe that 

RCI scheduling algorithm provides near optimal solution for cache impact points in 

almost all the cases.   

 

 

 

 

Fig. 7.4: Resultant Brute-Force schedule for the task set given in Table 7.3 

7.3.4 SCHEDULABILITY OF THE RCI ALGORITHM 
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instance of the tasks in the task set. Assume S was generated by a priority scheduling 

algorithm. 

Let U be the schedule (B1, C1,  ….. S1, A1, A2, …… Sm), where, the instance A1 of the 

highest frequency task is delayed to the maximum possible extent while ensuring that 

each of these jobs does not miss its deadline, thus schedulability is maintained and U is 

feasible with NCI(U) <= NCI(S) 

Proof: 

Let A1 be the highest priority job in the ready queue, i.e.,  priority(A1) >= priority(Ji) for 

all i. Let t1 be the time when A1 is the highest priority job in the ready queue and t2 the 

deadline(A1). The maximum time one can postpone the execution of this job in a 

schedule is deferred time, given by 

deferred time = (deadline(A1) – execution_time(A1) – current time)  

During this time period for which the execution of A1 is deferred, jobs whose priority 

less than A1 are scheduled for execution. Each of the jobs executing between time t1 and 

time t2 thus advances its execution time by execution_time(A1). Then A1 executes from 

(t2 – execution_time(A1)) to t2. 

This provides a valid schedule without any deadline miss. The resultant schedule also has 

lesser or atmost an equal number of cache impact points as compared to the previous 

schedule as similar jobs A1 and A2 are combined together at t2.  

Thus, any delayed run of the highest priority job in schedule S, will not cause any run of 

any other lower priority job F to miss its deadline. So U is feasible. Furthermore, observe 

that the number of cache impact points differs by 1 between S and U; i.e. NCI(U) <= 

NCI(S) 

End of Proof 

Theorem 1: 

Given a set of N independent, preemptable and periodic tasks on a uniprocessor such that 

their relative deadlines are equal to their respective periods. Algorithm RCI generates a 

feasible schedule, if one exists and if the task set is EDF-schedulable. The RCI outputs a 

schedule with no more cache impact points than that in the EDF schedule. 
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Proof: 

Let S be the job set corresponding to the given task set. The objective is to prove that the 

schedule generated by RCI for S is feasible, if there is a feasible schedule generated by 

EDF for S. In each iteration of the loop, RCI algorithm calls findNextJobToExecute 

function to determine the next job to execute in the CPU. The findNextJobToExecute 

function calls maxDeferredTime function only if the highest priority job in the ready 

queue is an even instance of the highest frequency task. So the scheduling decision is  

• Either the same as the decision EDF would take, i.e., the highest priority job (in 

other words, the shortest deadline job) will be the next job to execute in the CPU.  

• Or if the highest priority job is an even instance of the highest frequency task, 

then execute the next available highest priority job for ‘k’ units of time, where k is 

the maximum deferrable duration of the highest priority job without affecting any 

job’s deadline. This decision does not affect the feasibility and optimality of the 

schedule, moreover, it may reduce the number of cache impact points.  

There are five possible cases in RCI scheduling. They are:  

Case 1: The highest priority job in the ready queue is not an instance of the highest 

frequency task; RCI schedules the highest priority job from the ready queue. So would 

EDF. 

Case 2: The highest priority job in the ready queue is an instance of the highest frequency 

task but is an odd instance of the highest frequency task; RCI schedules the highest 

priority job from the ready queue. So would EDF. 

Case 3: The highest priority job in the ready queue is an instance of the highest frequency 

task and is an even instance of the highest frequency task. But the maxDeferredTime of 

the job is zero; RCI schedules the highest priority job from the ready queue. So would 

EDF. 

Case 4: The highest priority job in the ready queue is an instance of the highest frequency 

task and is an even instance of the highest frequency task. The maxDeferredTime of the 

job is greater than zero but there is no other job available in the ready queue; RCI 

schedules the highest priority job from ready queue. So would EDF. 

Case 5: The highest priority job in the ready queue is an instance of the highest frequency 

task and is an even instance of the highest frequency task. The maxDeferredTime of the 
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job is greater than zero and there is more than one job available in the ready queue; RCI 

schedules the second highest priority job from the ready queue for a duration of 

maxDeferredTime duration or until a new arrival or departure occurs. This leads to 

combine adjacent instances of the highest frequency task, if possible, which results in 

reducing the cache impact points by one, or in the worst-case, the number of cache 

impact points is the same as that by EDF without affecting the schedulability of the task 

set. By Lemma 1, feasibility is invariant under this transformation and NCI(U) <= NCI(S). 

Thus, it is shown that a single iteration of the loop in RCI results in a decision that is as 

feasible as one by the EDF.  Hence, by induction on the number of iterations of the loop, 

one can conclude that the RCI outputs a schedule that is feasible, if EDF outputs a 

feasible schedule for the same input.  

Furthermore, each iteration of the loop in RCI introduces no additional cache impact 

points than the EDF would. In fact, as argued above, possibilities 1, 2, 3 and 4 agree with 

a decision EDF would make, and possibility 5 may reduce the number of cache impact 

points in comparison with EDF. 

End of Proof 

7.3.5 ANALYSIS OF THE RCI ALGORITHM 

7.3.5.1 Quality of the RCI schedule 

The quality of the RCI scheduling algorithm is analyzed with the following example. The 

task set is given in Table 7.5 and the job list derived from the given task set is given in 

Table 7.6. The resultant schedule produced by EDF, RM, EDFRCS, RCI and Brute-force 

approach is shown in Figure 7.5, 7.6, 7.7, 7.8, and 7.9 respectively. 

Table 7.5: Task list for the schedule 

Task Arrival Time Period Execution Time Deadline

T0 0 5 1 5 

T1 0 7 3 7 

T2 0 35 13 35 

From the resultant schedule it is evident that the RCI scheduling algorithm performs far 

better than the EDF and RM scheduling algorithms. The EDF scheduling algorithm 

produces a schedule with 6 preemptions and 18 cache impact points. The RM scheduling 
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algorithm, which always produces greater or an equal number of preemptions and cache 

impact points as compared to the EDF schedule, produces 8 preemptions and 20 cache 

impact points.  

Table 7.6: Job list Jobs, derived from Table 7.5 (Hyperperiod = 35) 

Job Arrival Time Deadline Execution Time 

J0 (T0) 0 5 1 

J1 (T0) 5 10 1 

J2 (T0) 10 15 1 

J3 (T0) 15 20 1 

J4 (T0) 20 25 1 

J5(T0) 25 30 1 

J6(T0) 30 35 1 

J7(T1) 0 7 3 

J8(T1) 7 14 3 

J9(T1) 14 21 3 

J10(T1) 21 28 3 

J11(T1) 28 35 3 

J12(T2) 0 35 13 

 

 

 

 

 

 

 

Fig. 7.5: Resultant EDF schedule for the task set given in Table 7.5 
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Fig. 7.6: Resultant RM schedule for the task set given in Table 7.5 

 

 

 

 

 

 

Fig. 7.7: Resultant EDFRCS schedule for the task set given in Table 7.5 

 

 

 

 

 

 

Fig. 7.8: Resultant RCI schedule for the task set given in Table 7.5 
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Though the RCI scheduling algorithm produces a schedule with lesser number of cache 

impact points when compared to other dynamic scheduling algorithms like EDF, RM, 

LLF, MLLF, and EDFRCS, it is not the optimal schedule. Figure 7.9 shows the Brute-

force schedule with an optimal number of cache impact points. The number of cache 

impact points in Brute-force algorithm is 12. This proves that the RCI is a near-optimal 

heuristic for reducing the number of cache impact points in a schedule.  

 

 

 

 

 

 

Fig. 7.9: Resultant Brute-force schedule for the task set given in Table 7.5 

7.3.5.2 Complexity of the RCI Algorithm 

The RCI scheduling algorithm calls the findNextJobToExecute function to identify the 

next job to execute in the CPU. For all cases in the ready queue except for an even 

instance of the highest frequency task, the RCI algorithm (findNextJobToExecute 

function) performs similar to the EDF and the complexity of the scheduling algorithm is 

O(N). This is because the selection of the next job to run in the CPU takes O(1) time, if 

the ready queue is a priority queue. In this case, maintaining the ready queue such that it 

remains sorted always takes O(N) complexity. If the ready queue is not a priority queue 

then searching the highest priority ready-to-run job in the unsorted list takes O(N) time. 

The special case encountered by the RCI scheduler is when the highest priority job in the 

ready queue is an even instance of the highest frequency task. In this case, the 

findNextJobToExecute function in the RCI scheduler calls the maxDeferredTime 

function to calculate the maximum possible deferred time. Based on the maximum 

deferred time, the findNextJobToExecute module selects the highest priority or the 

second highest priority job for execution. If the second highest priority job is selected, 

then the deferred time is set as an additional scheduler invocation point. The worst 

possible scenario occurs when it is required to execute both the findNextJobToExecute 
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and maxDefferedTime functions for finding the next job to run in the CPU. In this case 

the complexity of the selection is the summation of the time complexity of 

findNextJobToExecute and maxDeferredTime functions. The complexity of the 

findNextJobToExecute function is O(1), as it checks only the head of the queue to find 

whether the highest priority task is an even instance of the highest frequency task. The 

maxDeferredTime function also has a time complexity of O(1) as the maximum deferred 

time of the highest priority task is based on only the deadline, execution time and the 

current time of the task. As the worst case time complexity for finding the next job to 

execute in the CPU is O(1), and the worst case time complexity for inserting a job into 

the ready queue (priority queue) is O(N), the resultant time complexity of the RCI 

scheduling algorithm is O(N) which is same as that of the EDF scheduling algorithm.       

7.4   COMPARATIVE EVALUATION 

In this section, the evaluation and comparison of the RCI scheduling algorithm against 

various dynamic priority-based scheduling algorithms like EDF, RM and LLF for 

periodic real-time tasks is carried out. This section compares the quality of schedules of 

all these algorithms in terms of the number of cache impact points and the number of 

preemption points. The experimental measurements for each of the metrics are shown; 

the results for the different algorithms are analyzed and compared. The experimental 

setup includes a simulation of all the algorithms and different test suites generated under 

certain conditions: each test suite is characterized by either a fixed number of tasks with 

utilization varying from low (50%) to high (100%) or by a fixed utilization with the 

number of tasks varying from 2 to 20.  Each test suite includes 100 different task sets of 

varying hyperperiods – from 100 to 32000. The results obtained are then averaged over 

these 100 test suites as appropriate. Schedulability is not included as a metric in this 

evaluation as RCI is schedulable if EDF schedulable.  

7.4.1 NUMBER OF CACHE IMPACT POINTS 

The cache impact count values obtained during the experimentation are normalized over 

the number of jobs and the tasks are ordered by non-increasing frequency. The trend 

observed among the algorithms with respect to the number of cache impact points 

introduced in the resulting schedules is RCI <=EDF <=RM <= LLF. 
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The charts below (Figure 7.10 to 7.13) represent the cache impact count against 

utilization for task sets with a fixed number of tasks. It is observed that the number of 

cache impact points increases with increase in utilization, irrespective of the number of 

tasks due to the increase in execution time and schedulability constraints.  
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Fig. 7.10: Cache Impact points per Utilization (# Tasks = 3) 

It is seen that the RCI algorithm exhibits a significant reduction in the number of cache 

impact points when compared to their traditional counterparts, irrespective of the 

utilization level, thus fulfilling the purpose of their design. For instance, at 50% 

utilization, EDF results in an average of 1.143 cache impact points per job, whereas RCI 

results in an average of 1.01 cache impact points per job, which is a 13% reduction. For a 

fully loaded system, EDF results in an average of 1.6 cache impacts per job, whereas RCI 

results in 1.28 cache impact points per job, which is about a 25% reduction.  
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Fig. 7.11: Cache Impact points per Utilization (# Tasks = 8) 
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Cache Impact Vs Utilization (# Tasks=14)
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Fig. 7.12: Cache Impact points per Utilization (# Tasks = 14) 
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Fig. 7.13: Cache Impact points per Utilization (# Tasks = 20) 

The result also confirms that the EDF produces lesser number of cache impact points than 

RM and LLF. EDF outputs schedules that have about 1% lesser cache impact points than 

RM on an average. Similarly, LLF introduces greater cache impact points compared to 

the RCI, EDF and RM. The RCI scheduling algorithm eliminates around 15% and 35% 

of the cache impact points in an LLF schedule when the utilization is 50% and 100% 

respectively. Among the traditional algorithms, LLF's cache impact count increases 

drastically with increase in utilization and it performs poorly at high utilizations            

(>= 80%), due to the frequent changes in the priority of jobs. 



CHAPTER 7 – CACHE CONSCIOUS SCHEDULING 

218 
 

Cache Impact Vs #Tasks (Utilization=50%)
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Fig. 7.14: Cache Impact points per Number of Tasks (Utilization = 50%) 
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Fig. 7.15: Cache Impact points per Number of Tasks (Utilization = 70%) 

The charts below (Figure 7.14 to 7.17) represent the cache impact count against the 

number of tasks in a task set with a fixed utilization. It is observed that for each 

scheduling algorithm under consideration, the number of cache impact points initially 

increases with increase in number of tasks (till number of tasks <=8) and then stabilizes 

in and around that value.  
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Cache Impact Vs #Tasks (Utilization=85%)
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Fig. 7.16: Cache Impact points per Number of Tasks (Utilization = 85%) 
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Fig. 7.17: Cache Impact points per Number of Tasks (Utilization = 100%) 

7.4.2 NUMBER OF PREEMPTIONS 

The preemption count values obtained are normalized over the number of jobs and the 

tasks are ordered by decreasing frequency. The trend observed among the algorithms 

with respect to the number of preemptions introduced in the resulting schedules is as 

follows: RCI <=EDF <=RM <= LLF 

The charts below (Figure 7.18 to 7.21) represent the preemption count against utilization 

for task sets with a fixed number of tasks. It is observed that the number of preemptions 

increases with increase in utilization, irrespective of the task set size, due to the increase 

in execution time and schedulability constraints.  
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Preemptions Vs Utilization (#Tasks=3)
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Fig. 7.18: Preemptions per Utilization (# Tasks = 3) 
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Fig. 7.19: Preemptions per Utilization (# Tasks = 8) 

It is seen that the RCI algorithms show a significant reduction in the preemption count 

when compared to their traditional counterparts, irrespective of the utilizations. For 

instance, at 50% utilization, EDF results in an average of 0.25 preemptions per job, 

whereas RCI results in an average of 0.20 preemptions per job, which is about a 25% 

reduction. For a fully loaded system (100% utilization), EDF results in an average of 

0.602 preemptions per job, whereas RCI results in 0.49 preemptions per job, which is 

about a 22% reduction. The preemption reduction by RCI when compared to that by the 

RM and LLF at 50% utilization is 23% and 33% respectively. The preemption reduction 

by the RCI when compared to that of the RM and LLF at 100% utilization is 26% and 

229% respectively. LLF's preemption count increases drastically with an increase in 

utilization and it performs poorly at high utilizations (>= 80%) due to the frequent 
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changes in the priority of jobs owing to the laxity metric. A detailed analysis of the EDF, 

RM, and LLF is presented in Chapter 6. The charts below (Figure 7.22 to 7.25) represent 

the preemption count against the number of tasks in a task set with a fixed utilization. It is 

observed that for each scheduling algorithm under consideration, the number of context 

switches decreases with an increase in the number of tasks at a fixed utilization, 

irrespective of the utilization. This behavior is attributed to the fact that an increase in the 

number of tasks at a fixed utilization causes the execution time per task to reduce, 

resulting in reduced preemptions before the completion of jobs. 
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Fig. 7.20: Preemptions per Utilization (# Tasks =14) 
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Fig. 7.21: Preemptions per Utilization (# Tasks = 20) 
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Fig. 7.22: Preemptions per Number of Tasks (Utilization = 50%) 

Preemptions Vs #Tasks (Utilization=70%)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#Tasks

Pr
ee

m
pt

io
ns

RCI EDF RM LLF

 
Fig. 7.23: Preemptions per Number of Tasks (Utilization = 70%) 
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Fig. 7.24: Preemptions per Number of Tasks (Utilization = 85%) 
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Preemptions Vs #Tasks (Utilization=100%)
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Fig. 7.25: Preemptions per Number of Tasks (Utilization = 100%) 

As the number of tasks in the task set increases, preemption reduction is less pronounced 

for the RCI algorithm. This is because all the algorithms, except the RCI reduce the 

preemption count with increase in the number of tasks in the task set, but RCI performs 

consistently, irrespective of number of jobs. Thus preemption reduction is less 

pronounced for the RCI algorithm with a larger number of tasks. A detailed analysis of 

the EDF, RM, and LLF with regard to preemption reduction is presented in Chapter 6. 

7.5  CONCLUSION 

In this chapter, initially, a discussion on the general Brute-Force algorithm that 

determines the schedule with the minimum possible cache impact points has been 

presented, following which the newly designed cache impact point reduction-specific 

scheduling algorithm (i.e.) RCI algorithm has been discussed theoretically and then 

evaluated experimentally too using various task sets and by varying the different 

parameters of the number of preemptions and number of cache impact points. The results 

thus obtained have been analyzed and compared against the traditional algorithms for 

different performance metrics. The RCI scheduling algorithm reduces the number of 

cache impact points up to 25%, 26% and 35% of those generated by the EDF, RM and 

LLF respectively. The RCI scheduling algorithm also reduces the number of preemptions 

up to 22%, 26% and 229% of those generated by the EDF, RM and LLF respectively, 

thus establishing its objective. 
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CHAPTER 8 

CONCLUSION 

This thesis addresses the energy consumption issues in multi-tasking real-time embedded 

systems at the architecture level and the operating system level. This is achieved by 

proposing various techniques to reduce cache and scheduling-related energy 

consumption. This chapter summarizes the major contributions made and points out some 

of the possible extensions of the work. 

In this thesis, architecture level energy efficiency is achieved by improving the cache hit 

rate by modifying the LRU replacement strategy, reducing the internal activity, hardware 

complexity, prediction miss rate and the effective cache access time of a way prediction 

cache, which is an energy efficient cache architecture and by designing process aware 

cache architectures that achieve reduced energy consumption while running multi-tasking 

real-time applications. The operating system level energy efficiency is achieved by 

designing static and dynamic real-time scheduling algorithms resulting in reduced 

preemptions and by designing a dynamic real-time scheduling algorithm causing reduced 

cache impacts. Chapter 2 summarized the major work done in the area of energy efficient 

cache architecture and real-time task scheduling. Chapters 3, 4 and 5 addressed different 

cache memory-related techniques to reduce energy consumption. Chapter 6 dealt with 

reduction of scheduling-related energy consumption due to preemptions and Chapter 7 

elaborated on the technique based on cache-conscious scheduling to reduce the cache-

related energy consumption caused by the scheduler.    

Chapter 3 of this thesis focused on the design, implementation and analysis of a new 

variant of LRU replacement strategy called the LLRU, which helps in increasing the life 

span of shared cache lines with the help of compiler information. The cache hit rate for 

various cache configurations employing the LRU and LLRU replacement strategies was 

measured using a software simulator with Simplescalar benchmark address traces. The 

hardware implementations of the LRU and LLRU based on the square matrix and counter 

designs were carried out using the tools ModelSim and Leonardo Spectrum. The layouts 

of these hardware architectures were also obtained from the tool IC station. The results 
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thus obtained, were analyzed, evaluated and compared on the basis of parameters like 

area, clock frequency, critical path delay, number of transistors and the cache hit rate. 

The LLRU hardware implementation offers a higher clock frequency and lesser critical 

path delay, but it demands more number of transistors and area. The experimental 

analysis reveals that with minimal extra hardware, the LLRU improves cache 

performance significantly.  

Chapter 4 dealt with designing energy efficient cache architecture. The work explains and 

evaluates a modification of the way prediction scheme – way predictive placement 

scheme – to improve the cache performance in terms of power, access time, prediction hit 

rate and cache hit rate with lesser hardware complexity. This is achieved by replacing the 

MRU table in way prediction scheme with a register i.e., local prediction in way 

prediction scheme is modified with global prediction in way predictive placement 

scheme. To improve the prediction hit rate and cache hit rate in way predictive placement 

scheme, a modified placement / replacement strategy called the ALRU replacement 

strategy was proposed. The conventional cache, way prediction cache and the way 

predictive placement cache were evaluated using the Simplescalar 2.0 cache simulator 

with SPEC95 benchmark suite. Based on evaluation results given in Table 4.2, one can 

comprehend that the way predictive placement cache performs better than the way 

prediction cache. Way predictive placement cache reduces the hardware complexity from 

k * log2 N bits to log2 N bits where k is the number of sets and N is the associativity. 

The concept of process aware energy efficient cache design for Embedded Systems is 

oriented towards achieving energy efficiency in Embedded Systems. Chapter 5 presents 

two new process aware energy efficient caching schemes for an N-way set-associative 

cache: (i) a process aware selective placement scheme (PASP) with a victim set and (ii) a 

shared memory process aware selective placement (SMPASP) scheme with small shared 

and victim sets. These schemes work based on the cache – operating system – compiler 

interaction. These two schemes aim at bringing down the power consumption while 

improving the cache hit rate of the process aware cache. Here, the proposed schemes 

were assessed and compared with the conventional set-associative and way – prediction 

cache with respect to the first cycle hit rate, cache hit rate, number of tag comparisons, 
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effective cache access time, dynamic power consumption and leakage power 

consumption for various cache configurations. This performance evaluation was carried 

out with independent processes and with processes which exhibit a considerable amount 

of data sharing among them. A cache simulator CACHEMEM 1.0 with configurable 

cache size, cache line size and context switching duration was implemented. The 

simulator used SPEC95 benchmark address traces for evaluation. The dynamic and 

leakage power consumption for the various caching schemes were obtained using the 

eCACTI cycle-based power estimation model. A comprehensive summary of this 

evaluation is presented in Table 5.2, in the form of desired performance characteristics 

and the corresponding choice of the appropriate cache architectures. 

Chapter 6 discussed the techniques adopted to reduce power consumption at the operating 

system level. Here, various scheduling algorithms which reduce the number of 

preemptions in a real-time schedule were discussed. This work proposed and 

implemented a platform independent static scheduling algorithm called IntFragment and 

two platform independent dynamic scheduling algorithms called EDFRCS and RMRCS. 

These algorithms reduce the power consumption by aggressively reducing preemptions 

without extensive computations. All these scheduling algorithms were discussed 

theoretically and evaluated experimentally using various task sets by varying different 

parameters like task set size, utilization and hyper-period. The results obtained were 

analyzed and compared with EDF, RM, LLF and MLLF against the different 

performance metrics of response time, response time jitter, latency, scheduling 

complexity, preemption count and energy consumption. A summary of this evaluation is 

presented in Table 6.16, in the form of desired performance characteristics and the 

corresponding choice of scheduling algorithms has been put forth. The EDF, RM, 

EDFRCS and RMRCS scheduling algorithms were implemented and tested in the 

RTLinux real-time operating system. 

Chapter 7 of this thesis talked about cache-conscious dynamic priority-based real-time 

scheduling algorithm called the RCI which reduces the cache impact of a real-time 

schedule. This work decreases the energy consumed by reducing the cache impact, i.e., 

reduction in data movements across memory hierarchies demanded by preemptions. The 
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RCI, a modification of EDF, was discussed theoretically and evaluated experimentally 

too, using various task sets by varying different parameters like task set size, utilization 

and hyper-period. The results obtained were analyzed and compared with the EDF, RM 

and LLF against the number of preemptions and number of cache impact points. The RCI 

scheduling algorithm reduces the number of cache impact points by up to 25%, 26% and 

35% of those caused by EDF, RM and LLF respectively. The RCI scheduling algorithm 

also reduces the number of preemptions by up to 22%, 26% and 229% of those caused by 

the EDF, RM and LLF algorithms respectively. 

Further analysis and experimentation in the area of energy efficient embedded systems 

includes an extension of the EDFRCS and RMRCS, i.e., applying preemption reduction 

heuristics to platform-dependent algorithms like DVS and DFS for better power saving. 

Nowadays, the requirements of an embedded system are varied at different points of 

time. Sometimes, the embedded system demands high response time and at some other 

times, it should work with minimum energy consumption or minimum latency. 

Achieving all of these with a single scheduling algorithm is a cumbersome task. This 

requires a new combo design with multiple scheduling algorithms as a part of the 

scheduler. Future work in this area is oriented towards designing such a scheduler which 

can select a suitable scheduling algorithm on-the-fly according to the requirements, thus 

achieving the required performance. The design of an optimal energy efficient dynamic 

scheduling algorithm with optimal cache impact and preemptions supporting DVS / DFS 

is a potential future research area. The entire research is based on the assumption that the 

Embedded System is a uniprocessor machine. In the future, some of the system side 

assumptions like a uniprocessor model to a multicore one and distributed systems and 

other real-time task set assumptions like the task period is equal to its deadline, which 

implies only one instance of a task is available in the ready queue at any point of time, 

etc. can be relaxed. In the area of cache architecture, further work includes the 

modification of PASP and SMPASP cache architectures to allocate variable number of 

ways to a process based on some parameters like priority, cache usage and the cache hit 

rate of a process. This will improve the utilization of the cache when less number of 

processes are executing.  Later, one can also explore the possibility of adopting these 

techniques in multi-threaded multi-core architectures. 
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ANNEXURE A – COMPARISON CHART OF CACHE REPLACEMENT ALGORITHMS 
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per set 

Modified Load 
instructions to set 
temporal bit and 

non-temporal 
instructions to 

reset temporal bit 

L2 

ORL Up by 
20% 

20% 
faster 

Update LRU 
counters, 

temporal bits 
and locality 

table 

Update LRU 
counters, 

temporal bits and 
locality table 

N log2 N + N bits per 
set, locality table and 
associated circuitry 

 

N log2 N + N bits 
per set + locality 

table 
NIL L2 

NTS Up by 
53% 

5KB NTS 
cache is 
12.6% 

faster than 
8KB DM 

cache 

Update non 
temporal data 
detection Unit 

and  LRU 
counters in FA / 

NT bit DM. 

Update LRU 
counters and 
temporal bits 

N bits for NT in DM + 
non temporal data 

detection unit + N log2 
N bits for FA and 

associated circuitry for 
all these. 

N bits for NT in 
DM + non 

temporal data 
detection unit + N 
log2 N bits for FA 

NIL L1 DC 

SOFTW
ARE 

ASSIST
ED 

LRU 

Up by 
36% 

36% 
faster 

(Improve
ment in 
cycles is 
14.37%) 

Update LRU 
counters,  kill bit 

and keep bit 

Update LRU 
counters,  kill bit 

and keep bit 

N log2 N + 2N bits per 
set and associated 
circuitry for Kill, 
Conditional Kill, 

flexible Keep and fixed  
Keep 

N log2 N + 2N bits 
per set  

Kill, Conditional 
Kill, flexible 

Keep and fixed 
Keep instructions 

L1 DC & 
IC 

EMLR
U 

Up by 
21% 

16% 
faster 

Update LRU 
counters and 
temporal bits 

Update LRU 
counters and 
temporal bits 

N log2 N + N bits per 
set and its associated 

circuitry 

N log2 N + N bits 
per set 

Additional cache 
hint instructions 
to transfer nt hint 

L1 DC & 
IC / L2 
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LLRU Up by 
30% 

Best case 
30% 
faster 

Update LRU 
counters  

Update LRU 
counters and 

shared bit 

N log2 N + N bits per 
set and associated 

circuitry 

N log2 N + N bits 
per set 

Additional 
instruction to set 
and clear shared 

bit 

L1 DC 

SCLRU Up by 
24% 

Best case 
24% 
faster 

Update LRU 
counters, AI tags 
and some state 

bits 

Update LRU 
counters, AI 
tags, HLE, 

HMRU, SD, 
LRUV and MHT 

bits 

[N*(16 bit AI + 1 bit 
HLE+ 1 bit HMRU)] + 
[28 bit SD + 16 bit AI + 

1 bit LRUV] and 
associated circuitry 

[N*(16 bit AI + 1 
bit HLE+ 1 bit 

HMRU)] + [28 bit 
SD + 16 bit AI + 1 

bit LRUV] 

NIL L2 

LRU-
SEQ 

Varies 
from      

-0.4% to 
+0.05% 

0.36% 
Update LRU 
counters and 

Pway 

Update LRU 
counters, Pway 

and Pline 

Reduction of energy by 
23% w.r.t. LRU 

N log2 N + 2 log2 
N bits per set NIL L1 DC & 

IC 

SFLRU 

Up to 
6.3% 
(DC) 
Up to 
9.3% 
(IC) 

6.3% 
(DC) and 
9.3% (IC) 

faster  

Update LRU & 
LFU registers 

Update LRU & 
LFU registers 

N log2 N + N log2 X 
bits per set and 
associated logic 

N log2 N + N log2 
X bits per set  NIL L1 DC & 

IC 

IGDR 

Up to 
46.1% 
(19.8% 
avg), 16 
cycles 
cache 
miss 
time 

48.9% 
(12.9% 

avg) faster 

Stores IRG of 
the cache block 
and updates the 

block 
information  

Replacement 
occurs in main 

directory (and in 
ghost directory if 

block does not 
exist), and 

update all the 
counters (CL, 

LA, RC and SC) 

Main directory, ghost 
directory, all the 
counters and the 

associated circuitry 

42.5KB for 512KB 
cache  NIL L2 

DTTM  Data Transfer Time from Main Memory, N  Number of Ways, X  Maximum count value,  

K  Number of blocks in Main Memory / Number of sets in Cache, CL  Current Memory Block Class 

LA  Virtual Time of the Last Reference, RC  Reference Count, SC  Number of Consecutive References  

DC  Data Cache, IC  Instruction Cache, DC&IC  Applicable to Data and Instruction Cache 
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Annexure B – IMPLEMENTATION OF SCHEDULING ALGORITHMS IN 

RTLINUX 

This section explains in detail about the modifications done in RTLinux in order to 

modularize the scheduler and implement various priority based real-time scheduling 

algorithms like EDF, RM, EDFRCS and RMRCS. 

B.1. MODULARIZING THE SCHEDULER 

The RTLinux scheduler implements both the dispatching and scheduling algorithms in 

the same function which makes the modifications hard. In order to implement and test 

various scheduling algorithms effectively under the same framework, the scheduler needs 

to be modularized. In this work, modularization of the scheduler is done by abstracting 

away the scheduling algorithm from the dispatching function written in rtl_schedule(). 

The default rtl_schedule() function consists of following steps: 

1. Cycle through all tasks and add pending signal bits to the tasks. 

2. Find the new task to be scheduled. 

3. Find a preemptor for the new task. 

4. If scheduler is running in one-shot mode, set the timer. 

5. Dispatch the new task (and handle its signals as well). 

We implemented the scheduler as two functions - find_new_task() and find_preemptor() 

in a file named rtlinux/schedulers/rtl_sched_fixp.c. This abstraction provides the 

flexibility of implementing any new scheduling algorithms without affecting dispatcher.  

For the EDF implementation, an additional field named deadline representing deadline of 

the task is added in rtl_thread_struct data structure. For the RCS algorithms, the fields 

remaining_time and execution_time are added in rtl_thread_struct data structure. With 

the addition of remaining_time, the scheduler has the additional responsibility of 

updating it. This is done by adding a field came_to_cpu_time in rtl_thread_struct data 

structure. When the rtl_schedule( )function is about to return, it updates the 

came_to_cpu_time of the thread going to be scheduled. 
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B.2. IMPLEMENTATION OF PRIORITY-BASED ALGORITHMS IN RTLINUX 

Two priority based schedulers namely EDF and RM were implemented during the course 

of this work. The default RTLinux scheduler is a fixed priority scheduler, in which the 

scheduling decision is based on sched_param.sched_priority. 

In priority based schedulers, deadline field of the rtl_thread_struct is modified by 

rtl_schedule() function. Whenever a new job arrives in the system (detected by now >= 

t resume_time), the rtl_schedule() function sets the deadline to resume_time + period. 

This function also checks whether the current time (now) is greater than the deadline. For 

all the tasks whose current time is greater than deadline, the function checks for existence 

of any task with non-zero remaining_time. A Non-zero remaining_time when the current 

time is greater than deadline concludes that the task missed its deadline and requires 

debugging of scheduling logic. 

B.2.1. Implementation of EDF in RTLinux 

EDF scheduler selects the tasks based on deadlines i.e. lower the deadline higher the 

priority. The file rtl_sched_edf.c implements functions find_preemptor() (Figure B.1) and 

find_new_task() (Figure B.2). In the case of EDF, the find_new_task() function takes 

decisions based on deadlines. If no real time thread is found in the system, then it 

schedules the Linux thread or any other aperiodic task (based on priority). The source 

files rtl_sched_edf.c and rtl_sched.c are compiled to create rtl_sched_edf.o. 

B.2.2. Implementation of RM in RTLinux 

Rate monotonic scheduler schedules the tasks based on periods i.e. lower the period 

higher the priority. Figures B.1 and B.2 show the functions find_preemptor() and 

find_new_task() which are used for finding the smallest period real-time task if there 

exist any. If no such task is found, it schedules the Linux thread or any other aperiodic 

task (based on priority). The source files rtl_sched_rm.c and rtl_sched.c are compiled to 

create rtl_sched_rm.o. 
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Fig. B.1: find_preemptor() function for EDF and RM Schedulers 
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Fig. B.2: find_new_task() function for EDF and RM Schedulers 
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B.3. IMPLEMENTATION OF ENERGY EFFICIENCY PRIORITY-BASED REAL-TIME 
SCHEDULERS 

As discussed in section 6.5, the RCSS algorithm is used to reduce the number of 

preemptions in a schedule. For the RCSS implementation, we added remaining_time and 

execution_time fields to the rtl_thread_struct data structure. 

The RCS algorithm discussed in section 6.5 is coded as a separate function in rtl_sched.c 

file, and is called by rtl_schedule() function. This function finds the maximum possible 

extension time up to which currently running task can continue its execution without any 

deadline miss. If the possible extension time is greater than zero then set the future 

preempt_time of the currently running task accordingly and allow it to continue. The 

rtl_sched.c is renamed to rtl_sched_rcs.c. 

B.3.1. Implementation of EDFRCS in RTLinux 

The implementation of EDFRCS is almost similar to EDF. The only difference is the 

addition of find_permissible_extension_time( ) function (Figure B.3) in rtl_sched.c. The 

source file of the new scheduler is named as rtl_sched_rcs.c. All the common 

implementations (with EDF) are accessed from rtl_sched_edf.c. The source files 

rtl_sched_edf.c and rtl_sched_rcs.c are compiled to create rtl_sched_edf_rcs.o. 

B.3.2. Implementation of RMRCS in RTLinux 

The implementation of RMRCS is almost similar to RM. Like in EDFRCS, the only 

difference is the addition of find_permissible_extension_time( ) function (Figure B.3) in 

rtl_sched.c. The source file of the new scheduler is named as rtl_sched_rcs.c. All the 

common implementations (with RM) are accessed from rtl_sched_rm.c. The source files 

rtl_sched_rm.c and rtl_sched_rcs.c are compiled to create rtl_sched_rm_rcs.o. 

Figure B.4 shows the skeleton of modified rtl_schedule() with call to 

find_permissible_time(), i.e., reduced context switch algorithm included.  In addition to 

all these, a new function call pthread_set_worst_exec_time( ) is added to the system. 

Through this function call a module can set worst case execution times. 
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Fig. B.3: find_possible_extension_time() 
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Fig. B.4: rtl_schedule() 
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B.4. DYNAMIC LOADING OF SCHEDULER 

We implemented four dynamic priority scheduling algorithms, namely EDF, EDFRCS, 

RM, and RMRCS as modules in RTLinux. One of the major issues in testing these 

algorithms is the overhead of compiling the kernel again and again in order to insert the 

appropriate scheduling algorithm. The required scheduling module has to be inserted into 

the kernel while loading RTLinux. The simplest way to resolve this issue is to compile all 

the scheduler implementations in advance and choose the required scheduler at the time 

of RTLinux startup. The selection of a scheduler can be achieved with the help of a 

configuration file. 

RTLinux boots up when user executes rtlinux start in the command prompt, which fires a 

shell script named rtlinux. This shell script scans the /usr/rtlinux-3.2/modules directory 

and acquires the module list and loads them. User modules can be loaded later 

(manually). At startup, the shell script reads the configuration file provided by the user to 

insert the appropriate scheduler module into the kernel.   

B.5. VERIFICATION OF SCHEDULING ALGORITHM IMPLEMENTATION 

The kernel module creates a periodic thread which executes an infinite loop i.e., it keeps 

on iterating until the kernel module is unloaded. The C code of the task in RTLinux is 

given below. The kernel module serves as the task and one iteration of the while loop 

simulates one job of the periodic task. 

while (1) { 

            for(i=0;i<1000000;i++) 

clock_gethrtime(CLOCK_REALTIME); 

        jobno++; 

        pthread_wait_np (); 

} 

If the period of the real-time task is very small, then the real-time task will occupy the 

CPU for almost all the time which results in starvation of general-Linux task. The priority 

scheduling algorithms like EDF and RM can be verified with the help of the above 

mentioned C program along with the addition of deadline field in rtl_thread_struct data 
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structure. The verification of EDFRCS and RMRCS can be carried out with the help of C 

program along with the addition of deadline, remaining_time, execution_time and 

came_to_CPU fields in rtl_thread_struct data structure. The remaining execution time of 

the thread is managed with the help of came_to_CPU field. The worst case execution 

time of the thread has to be pre-declared with pthread_set_worst_case_exec_time( ) 

function before making the thread into a periodic thread. 

B.5.1. Verification of Implementation 
Table B.1 shows the task set used for experimentally evaluating the RTLinux scheduler 

with EDF, EDFRCS, RM and RMRCS as scheduling algorithms. The task set in Table 

B.1 has 3 periodic tasks. This experimentation uses three modules (one per task) T1, T2 

and T3. These tasks were designed with the assumption that deadline of the task is 

equivalent to its period. The utilization of the tasks is 12.5%, 3.33% and 60% for T1, T2 

and T3 respectively. In literature and in previous discussions we assumed that all tasks in 

the task set are inphase and running the experimentation till hyper-period will guarantee a 

valid schedule. For the RTLinux scheduler evaluation these assumptions does not hold 

true as all tasks cannot be released at the same time because of the uniprocessor 

constraint. Thus in this experimentation, we took the schedule of the first 40 seconds 

(hyper-period = 30 seconds) for analysis.  

Table B.1: Test case with three tasks 

 

For the given task set (Table B.1) with 75.83% utilization, EDF and RM produced valid 

schedules with 10 preemptions where as EDFRCS and RMRCS produced valid schedules 

with 3 preemptions. This shows the efficiency of RCS algorithms in reducing 

preemptions. 

Task Arrival 
time (sec) Period (sec) Worst case       

Execution time (sec) Deadline (sec) 

T1 0 2 0.25 2 

T2 0 3 0.1 3 

T2 0 5 3 5 
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