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Abstract 

When two manufacturing process are serially dependant or cascade in nature, 

regression based cause selecting control charts  pioneered by Zhang in 1984 are 

adopted for process monitoring. The objective is to identify the assignable causes of 

variation in the downstream process on account of an assignable cause variation in the 

upstream process. This unique characteristic of cause selecting control charts make it 

distinctly different from other multivariate process monitoring control charts. 

In literature, cause selecting control charts have been discussed for 3 sigma 

manufacturing processes. Shewhart type control charts are not adoptable to processes 

with metric above 3 sigma, due to rare occurrence of defects. The type of control 

charts that is adaptable for high sigma process is a time between event control charts 

known as cumulative count of conforming items between two nonconforming items 

control chart. 

In this work a high sigma cause selecting control chart has been designed for 

application of cascade process, thus upgrading the utility of cause selecting control 

charts from 3 sigma to high sigma. For brevity a two stage high sigma manufacturing 

process has been considered in this work. The defect counts in the high sigma 

processes above 3 sigma follow a geometric distribution. A new power transformation 

has been proposed to convert geometric data into normal form. A design flow 

detailing the stage wise procedure to draw the control chart has been established.  The 

design methodology has been demonstrated using data from a high sigma pin 

manufacturing process. This is the 
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first contribution of this work. The lower control limit is the action limit for high 

sigma control charts. In control charts for geometric distributions negative lower 

control limits have been encountered. It is established that the proposed power 

transform performs better than traditional transforms in this regard. This is the second 

contribution. 

As the cause selecting control chart methodology is based on regression 

models, the model issues and the presence of intercept term assumes importance. 

Unlike other designs of control charts the regression model not only affects the chart 

performance indices but also the chart statistic. This issue has been studied in detail 

and the impact of assuming an intercept model as no intercept model and a no 

intercept model as an intercept model have been studied. Its impact on type II error 

and chart performance is also studied in detail.  This is the third contribution of this 

work.  A modified design flow incorporating the intercept model issues has been 

designed. This is the fourth contribution of this work. The methodology has been 

demonstrated using data from precision pin manufacturing.  

As the transforms have been established in this work, the need arose as to 

measure the effectiveness of this transformation by studying the impact of third and 

fourth moments of normality, namely skewness and kurtosis and their impact on lower 

control limit and type II error have been researched and results documented. This is 

the fifth contribution of this work. As six sigma processes are scarce the data, 

methodology and results have been validated through a data set from literature.  
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It has been established that the proposed power transform in this work is 

superior to the power transform proposed by Nelson (1994) in its ability to achieve 

near zero lower control limit in high sigma process situations. As proposed by Box 

and Cox (1964), traditionally optimization of transform is done with sum of square of 

residuals. For the first time the optimization of the transform has been done with focus 

on the application requirement namely, the ability to achieve a positive lower control 

limit in the case of high sigma geometric data. The discussion done in this work on 

intercept model errors in case of cause selecting control charts is opening up a new 

avenue in research and practice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

ACKNOWLEDGEMENTS 
 

I express my gratitude to Prof. L.K.Maheswari, Vice-Chancellor, BITS, Pilani 
for giving me the opportunity to pursue PhD and Prof.Ravi Prakash, Dean, Research 
& Consultancy Division, BITS, Pilani for his continuous encouragement and support 
in carrying out my PhD work smoothly. I thank Prof. S.P.Regalla Assistant Dean and 
Dr. Hemant Jadhav, Ms. Monica Sharma, Mr. Dinesh Kumar, Mr. Gunjan Soni, Mr. 
Sharad Srivatsava and Mr. Amit Singh, nucleus members of Research & Consultancy 
Division, BITS, Pilani for their constant help and advice at all stages of my PhD work. 
I also thank the other office staff of Research & Consultancy Division, BITS, Pilani 
who rendered a lot of help in organizing various forms of paper work related to my 
PhD progress. 

I express my deep felt sense of gratitude and sincere thanks to my PhD 
supervisor Dr. S.M.Kannan, without whose constant guidance, help and tutelage this 
PhD work would not have been completed. He has been a constant source of 
inspiration and encouragement throughout my PhD work   

My thanks are due to the Top Management of TVS Sewing Needles Limited, 
Madurai for granting me permission to pursue research. 

I thank Dr. Kuldip Singh Sangwan and Dr. Bijoy Kumar Raut, my Doctoral 
Advisory Committee (DAC) members at BITS, Pilani for their constructive criticism 
and useful suggestions that helped in immensely improving the contents and quality of 
presentation of my PhD thesis. 

My special thanks are due to my wife Ms.Vanitha and my son Mr. Kaushik for 
their constant motivation and support. 

 
 

 

S.LAKSHMINARASIMHAN 

 

 

 

 



vii 
 

  
Table of Contents 

 

Chapter 
No. Details 

Page 
 No 

Abstract iii 

  
Acknowledgements vi 

  
Table of Contents vii 

  
List of Tables xi 

  
List of Figures xiv 
List of Symbols  xvii 
List of Abbreviations xix 

Chapter 1 Introduction 1 
1.1 Introduction 1 
1.2 Manufacturing Variations 1 
1.3 Limitations of Multivariate Process Monitoring 3 
1.4 Cause Selecting Control Charts 5 
1.5 High Sigma Control Charts 13 
1.6 High Sigma CCC Control Charts  15 
1.7 Background of the Research 17 
1.8 Objectives of the Research 18 
1.9 Methodology Adopted 19 

1.10 Scope and Limitations of the Study 21 
1.11 Organisation of Thesis 22 
1.12 Conclusion 24 

Chapter 2  Basic Concepts 25 
2.1 Introduction 25 
2.2 High Yield Manufacturing Process 25 
2.3 Motorola's Six Sigma Concept    26 

 
2.3.1 Inherent and Sustained Capability of Process 27 

 
2.3.2 Long Term Dynamic Process Variations 28 

2.4 Normal Distribution 29 
2.5 Binomial Distribution 31 
2.6 Geometric Distribution 32 
2.7 Poisson Distribution 33 
2.8 Control Charts  34 
2.9 Regression Analysis 37 

2.10 Conclusion 38 
 

  

 
 

 



viii 
 

Table of Contents (continued) 
Chapter 

No. Details 
Page  
No 

Chapter 3 Literature Review 39 
3.1 Introduction 39 
3.2 Regression Control Charts 39 
3.3 Cause Selecting Control Charts 40 
3.4 Model Issues  44 

3.4.1    Economic Design 45 
3.4.2.    Multicollinearity 45 

3.5 Control Charts for High Sigma Process 47 
3.6 Transformation 49 
3.7 Motivation 53 
3.8 Drivers 54 
3.9 Conclusion 55 

Chapter 4 Transforms for High Sigma Cascade Process 56 
4.1 Introduction 56 
4.2 Normality Assumptions 56 
4.3 Limitations of Traditional Control Charts  

for High Sigma Process 58 
4.3.1 ‘P’Charts 58 
4.3.2 ‘C’Charts 59 
4.3.3 ‘U’Charts 60 

4.4 Probability Limits  62 
4.5 Limitations of 'K'- Sigma Limits 63 
4.6 Limitations of Probability Limits 67 
4.7 Transforms Basics 69 

 
4.7.1 Box Cox Transformation 70 
4.7.2 Johnson’s  Curves 71 

4.8 Geometric Distribution of High Sigma Data 72 
4.9 Transforms for Residuals Control Charts 75 

4.10 Design Flow 76 
4.11 Proposed Transform 81 
4.12 Conclusion 89 

Chapter 5 
 

Intercept  Model  Errors 90 
5.1 Introduction 90 
5.2 Least Square Regression 90 
5.3 High Sigma Cause Selecting Control Charts 92 

  

 
 

 



ix 
 

Table of Contents (continued) 
Chapter 

No. Details 
Page  
No 

5.4 Intercept and No Intercept Models 93 
5.5 Modified Design Flow 97 
5.6 Intercept Model Case Study 99 
5.7 No Intercept Model Case Study 104 
5.8 Conclusion 108 

Chapter 6 
 

Normality and Chart Performance 109 
6.1 Introduction 109 
6.2 Maximum Likelihood Estimate 109 
6.3 Normality Issue 111 
6.4 Case Study -I Intercept Model High Sigma Process Data 113 

 

6.4.1 Scenario I- Intercept Model Assumed as 
 Intercept Model   115 

6.4.2 Scenario II- Intercept Model Assumed as  
No Intercept Model   119 

6.5 Case Study -II No Intercept Model High Sigma Process Data 123 

 

6.5.1 Scenario I- No Intercept Model Assumed  
as Intercept Model   125 

6.5.2 Scenario II-No Intercept Model Assumed as 
 No Intercept Model    128 

6.6 Discussions 131 
6.7 Conclusion 132 

Chapter 7 
 

Results and Discussions 134 
7.1 Introduction 134 
7.2 Typical Application 134 
7.3 Economic Design 135 
7.4 Lower Control Limit 136 
7.5 Intercept Model Issue 139 
7.6 Third and Fourth Moments of Normality 140 
7.7 Six Sigma Process Data 143 
7.8 Data Validation 144 
7.9 Data from Literature 145 

7.9.1 Xie et al.(2002) Data Set 146 
7.10 Stochastic Behavior 157 
7.11 Run Rules 160 
7.12 Conclusion 161 
 

  

 
 

 



x 
 

Table of Contents (continued) 
Chapter 

No. Details 
Page 
No 

Chapter  
8 

 
Conclusion 162 

8.1 Introduction 162 
8.2 Specific Contributions 162 

8.2.1 Power Transform 163 
8.2.2 Intercept Models 163 
8.2.3 Skewness and Kurtosis 164 

8.3 Scope for Further Work 165 
8.4 Conclusion 165 

References 167 

  
List of Publications 180 

  
Vitae A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



xi 
 

List of Tables 
Table 
No. Title Page 

No. 
1.1 Cause selecting control chart two chart decision matrix 6 
1.2 Demonstration data set for a bivariate cascade process  7 
1.3 Process decision for cause selecting control chart 12 
1.4 Second diagnoses table 13 
1.5 Defect occurrence time and process speed  14 
2.1 Defect counts for a centered normal distribution 26 
2.2 Defect counts for a 1.5 sigma shifted distribution 26 
2.3 Natural and assignable causes  35 
3.1 Zhang’s cause selecting diagnostic matrix 42 
3.2 Zhang’s modified cause selecting diagnostic matrix 43 
3.3 Wade and Woodall cause selecting diagnostic matrix 44 
3.4 Long term sigma metric   47 
3.5 Research gap matrix 53 
3.6 Basic issues and assumptions 54 
4.1 Control limits based on exact probability 66 
4.2 Control limits based on known probability 67 
4.3 Johnson’s system of transformation 71 
4.4 Count of conforming items data for pin manufacture  75 
4.5 Lower control limit data I with transforms 79 
4.6 Transformed process data for pin manufacture 80 
4.7 Lower control limit data II with transforms   81 
4.8 Transformed data of process with proposed transform 83 
4.9 Transformed data with proposed transform – process situation 1  84 

4.10 Transformed data with proposed transform - process situation 2 84 
5.1 Data set 1 – intercept model data 100 
5.2 Intercept model regression statistics for data set 1 100 
5.3 No intercept model regression statistics for data set 1 101 
5.4 β, ARL values for intercept model fitted as intercept 

 model( Data Set 1) 102 

5.5 β, ARL values for intercept model fitted  as  no intercept  
model (Data Set 1) 102 

5.6 Data set 2  – no intercept model data 105 
5.7 β, ARL values for no intercept model as intercept 

 model ( Data Set 2) 105 
 

 
 

 
 

 
 



xii 
 

 List of Tables(continued)  

Table 
No. Title Page 

No. 
5.8 β, ARL values for no intercept as no intercept model. (Data Set 2) 106 
5.9 No intercept model as intercept model regression 

 statistics for data set 2 106 
5.10 No intercept model as no intercept model  

regression statistics for  data set 2 106 
6.1 Data with an intercept term 114 
6.2 Transforms values 115 
6.3 Finer transform values and skewness, lower control limits 116 
6.4 Transform values, skewness and LCL 117 
6.5 Transforms values, kurtosis and beta error 

(Finer value of transforms) 118 
6.6 Transforms values, kurtosis and beta error  119 
6.7 Transforms (finer) and behavior of skewness on lower control limit 120 
6.8 Transforms and behavior of skewness on lower control limit 121 
6.9 Transforms values, kurtosis and beta error (finer value of transforms) 122 

6.10 Transforms values, kurtosis and beta error 123 
6.11 No intercept model high sigma process data 124 
6.12 Transforms (Finer) and influence of Skewness on lower control limit 125 
6.13 Transforms and influence of Skewness on lower control limit 126 
6.14 Transforms (finer) and influence of kurtosis on beta error 126 
6.15 Transforms and influence of kurtosis on beta error 127 
6.16 Transforms (finer) and influence of Skewness on lower control limit 128 
6.17 Transforms and influence of Skewness on lower control limit 129 
6.18 Transforms values (finer), kurtosis and beta error  129 
6.19 Transforms values, kurtosis and beta error  130 
6.20 Summary of results – influence of skewness on LCL  

and Kurtosis on type II error 132 
7.1 Transform value and their relative LCL values for scenario 1 137 
7.2 Transform value and their relative LCL values for scenario II 138 
7.3 CCC Geometric data – Xie et al (2002) 146 
7.4 Intercept model regression statistic 147 
7.5 No intercept model regression statistic 147 
7.6 Scenario I – Intercept model data fitted as intercept  

model Xie et al (2002) 148 
  

 
 

 



xiii 
 

List of Tables(continued) 
Table 

No. Title Page 
No. 

7.7 Scenario II – Intercept model data fitted as no intercept model  
Xie et al (2002) 148 

7.8 Skewness and LCL – Xie et al Data (2002) 
Scenario I -Intercept model data fitted as intercept model 151 

7.9 Kurtosis and Beta Error – Xie et al Data (2002) 
Scenario I – Intercept model data fitted as intercept model 152 

7.10 Skewness and LCL – Xie et al Data (2002)(with model error) 
Scenario II – Intercept model data fitted as no intercept model 153 

7.11 Kurtosis and Beta Error – Xie et al Data (2002)( with model error) 
Scenario II – Intercept model data fitted as no intercept model 154 

7.12 Summary of results Xie et al Data (2002) 155 
7.13 Transforms comparison – Xie et al (2002) Data 156 
7.14 ‘M’ Statistic 160 

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



xiv 
 

List of Figures 
Figure 

No. TITLE Page 
No. 

1.1 Process flow diagram 2 
1.2 Scatter plot of process variables X and Y 8 
1.3 Scatter plot of process variables X and ܇ 9 
1.4 Shewhart control chart for process X 10 
1.5 Residuals (Cause Selecting) control chart  11 
1.6 A charting procedure for CCC chart. 17 
1.7 Methodology adopted -  Schematic Flow 20 
2.1 1.5’ Sigma process shift 27 
2.2 Inherent and sustained process capability 28 
2.3 Long term and short term process variation 29 
2.4 Bell shaped normal curve(PDF) 30 
2.5 PDF of binomial distribution 31 
2.6 PDF of geometric distribution 32 
2.7 PDF of poisson distribution 33 
2.8 Control chart for averages  35 
2.9 Typical process variations 36 
3.1 Mandel’s regression control chart – A Model 40 
3.2 Probability density function of Z =X 0.2777 51 
3.3 Probability density function of Z = ln(X) 52 
4.1 High sigma bivariate production process. 76 
4.2 Design flow  77 
4.3 Cause selecting control chart –logarithmic transform 79 
4.4 ‘r’ value –LCL relationship 85 
4.5 Normal distribution of residual values 86 
4.6 Scatter plot of raw data 87 
4.7 Regression line of transformed process data  88 
4.8 Cause selecting control chart with proposed transform 89 
5.1 Evolution of regression model 93 
5.2 No intercept model forcibly fitted as intercept model 94 
5.3 An intercept model forcibly fitted as no intercept model 94 
5.4 Modified design flow 98 

 
 
 
 
  

  
 



xv 
 

 
List of Figures  (continued) 

Figure 
No. TITLE Page 

No. 
5.6 Operational characteristic curves for intercept model data 

  with model error(Shift Magnitude Percentage from Mean to LCL) 103 
5.7 ARL values for intercept model data with model errors 

 (Shift Magnitude Percentage from Mean to LCL) 104 
5.8 Operational characteristic curves for intercept no intercept data 

 with model error (Shift Magnitude Percentage from Mean to LCL)    107 
5.9 ARL curves for no intercept data with model error 

 (Shift Magnitude Percentage from Mean to LCL) 107 
6.3 Skewness and LCL for intercept model 

 assumed as intercept model (Finer Mesh of Transforms) 116 

6.4 Skewness and LCL for intercept model  
assumed as intercept model  117 

6.5 Transforms values, kurtosis and beta error 

 (Finer value of transforms) 118 
6.6 Transforms values, kurtosis and beta error 

 (Finer value of transforms) 119 

6.7 Transforms (finer) and behavior of skewness 
 on lower control limit 120 

6.8 Transforms and behavior of skewness  
on lower control limit 121 

6.9 Transforms values, kurtosis and beta error 

 (finer value of transforms) 122 
6.10 Transforms values, kurtosis and beta error 123 

6.11 Transforms (Finer) and influence of Skewness 
 on lower control limit 125 

6.12 Transforms and influence of Skewness on lower control limit 126 
6.13 Transforms (finer) and influence of kurtosis on beta error 127 
6.14 Transforms and influence of kurtosis on beta error 127 

6.15 Transforms (finer) and influence of Skewness 
 on lower control limit 128 

6.16 Transforms and influence of Skewness on lower control limit 129 
6.17 Transforms values (finer), kurtosis and beta error  130 
6.18 Transforms values, kurtosis and beta error  130 

   
   



xvi 
 

 List of Figures  (continued) 
Figure 

No. TITLE Page 
No. 

7.2 Transform value and relative performance 
 of transforms-Scenario II  138 

7.3 Shift Magnitude vs Beta Error Xie et al (2002) 149 
7.4 Shift Magnitude vs ARL Xie et al (2002) 150 
7.5 Skewness and LCL – Xie et al Data (2002 

 Scenario I – Intercept model data fitted as intercept model 151 
7.6 Kurtosis and Beta Error – Xie et al Data (2002) 

 Scenario I – Intercept model data fitted as  intercept model 152 
7.7 Skewness and LCL – Xie et al Data (2002)( with model error) 

 Scenario II – Intercept model data fitted as no intercept model 153 
7.8 Kurtosis and Beta Error – Xie et al Data (2002)( with model error) 

 Scenario II – Intercept model data fitted as no intercept model 154 
7.9 Xie et al Data – Comparison of transforms 156 

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



xvii 
 

List of Symbols 
Symbols Description 

 α Probability of type I error. 
α' Type I error probability of joint control charts 
N Quality characteristics 
p Probability function 
X Upstream process, Regressor process 
Y Downstream process, Response process 
p Probability of nonconforming items 
β Probability of type II error 
σ Standard deviation 
µ Process mean 
n number of observations 
q Probability of failure occurrence 

‘F’ Failure 
‘S’ Success 
β0  Regression coefficient for intercept 
β1    Regression coefficient for regressor 
ε Error term 
t Student statistic 
σ̂ Estimated value of standard deviation 

Sxx Corrected sum of squares of X 
R Coefficient of determination 

AR(1) Time series model 
Ŷ Estimated or fitted value of response variable 
Z Transformed value 
B Negative binomial distribution 
k Control limit constant or Shift magnitude 
p Fraction defective 
c Number of defects 
ℓ Quantity of products in each sample 
u Number of defects per quantity of products in a sample 
λ Defect rate 
λ Transformed value 

  

 



xviii 
 

List of Symbols 

Symbols Description 
Zn Cause selecting data 
‘r’ increase of transform 
Xi Regressor variable at the ‘i’ th position 
Yi Response variable at the ‘i’th position 
φ  Standard normal distribution function 
L Constant 
n sample size 
k Shift magnitude 
Se Standard error of estimate 
SB Bounded 
SL Long normal 
SU Unbounded 

SSRES Residual sum of squares 
µε Mean of residuals 
R2 Co-efficient of determination 
Yഥ Average of Y 

 

 

 

 

 

 

 

 

 

 

 

 

 



xix 
 

List of  Abbreviations 
Abbreviations Description 

CS Cause selecting control chart 
CCC Cumulative count of conforming items control charts 
HYP High yield processes 
SPC Statistical process control 
PCR Principal component analysis 
CL Central line 

UCL Upper control limit 
LCL Lower control limit 

DPMO Defects per million opportunities 
ppm Parts per million 
USL Upper specification limit 
LSL Lower specification limit 

mR res Moving range of residuals 
mR Moving range 

ARL Average run length 
SSP Six sigma process 

EWMA Exponentially weighted moving average 
ln Natural logarithm 

CUSUM Cumulative sum 
MSR Mean square of residuals 

MSRES Mean square of residuals 
 

 

 

 

 

 

 

 

 



1 
 

Chapter 1 
Introduction 

 

1.1 Introduction 

Manufacturing Engineers’ desire for reducing process variations finds expression 

in their continuous efforts in monitoring the process. This comprises of predicting the 

future behavior of the process by analyzing its past behavior. The past and current 

behavior of the process is known as ‘voice of the processes’. It was Walter Shewhart who 

first devised an effective and simple way to define the voice of the process and he called 

it as ‘control charts’. 

1.2      Manufacturing Variations 

Manufacturing variations constitute the biggest threat to the engineers. Variations 

in production processes are inevitable. They occur owing to wrong setting of machines, 

operator errors, faulty inputs and process capability limitations. The positive thing about 

process variation is that they follow a distribution and hence are understandable and 

controllable. The variations that occur due to men, machines, materials, method, 

measurement and environment are known as variations due to assignable causes as their 

root cause can fit into one of these reasons. Another type of variation, known as the 

common cause variations are the background noise arising out of inherent process 

capability limitations.  

Manufacturing processes generally comprise of many process steps. A typical 
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manufactured product will have its journey through many production processes and 

supporting activities like transport, storage, and inspection.  Such a manufacturing 

process scenario can be depicted as follows in figure 1.1 :  

      Symbol                          Process                                   Quality Characteristic                                            

        Metal Drawing              Drawn Diameter, Drawn Length 

 

 Transport                                  ---- 

 

            Metal Stamping                 Width, Depth 

 

  Transport                                  ---- 

 

  Storage                                     ---- 

 

  Transport                                   ---- 

 

Figure 1.1. Process Flow Diagram 

 A manufacturing process step can be defined as an activity which adds some the 

value to the product. The ‘process’ is capable of transforming physical, chemical or other 

categories of the product’s character. This desired value addition is measured in terms of 

‘critical to quality’ characteristics. As each process step may have one or more critical to 

quality characteristic, the quality of products in its totality is measured by many such 

critical to quality characteristics and not by a single quality characteristic.  
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The above process sequence has two production process steps and many 

supporting steps like storage, transport. Only the ‘process’ steps with value addition in 

terms of improvement in size, shape or character are considered for control of quality.  

The quality of the end product will be determined by  

Drawn Diameter  

Drawn Length 

Width 

Depth. 

Production processes are expected to deliver the desired value addition ‘with in 

specification’.  In engineering parlance, specification means satisfying the customer 

requirements. It will be in the form of numerals. As it is not possible to achieve all the 

time, 100 % exact specification, ‘tolerances’ have been built into the specification to 

accommodate the possible ‘variations’ in practice. These variations are departure from 

specifications which normally may not affect the functional requirement of the product. 

A typical specification may be read as ‘Drawn Diameter = 1.65 ± 0.01 mm’. If a product 

falls within the range of 1.64 mm to 1.66 mm, it is said to satisfy the specification and it 

is acceptable.  

1.3 Limitations of Multivariate Process Monitoring 

Manufactured products may have many quality characteristics. From customers’ 

view point the total quality encompassing all the characteristics are of importance.  When 
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there are several process steps in a production line, in order to monitor the critical to 

quality characteristics of these steps together, a suitable process monitoring tool is 

required. Control charts are the time tested process monitoring tools for this purpose. 

When there are more than one process step and many quality characteristics, it is possible 

to run one control chart for each characteristic. But the distortion increases with many 

quality variables running with individual control charts which are to be monitored. 

Montgomery (2001) explains this distortion. If there are N statistically independent 

quality characteristics for a product and if an Xഥ chart with P (type I error) = α is 

maintained for each quality characteristic, the true probability of type I error for the joint 

procedure is, 

            α’ = 1- (1- α) N                                                                                                (1.1) 

and the probability that all p means will simultaneously plot inside their control limits 

when the process is in control is 

      P {all p means plot in control} =   (1- α) N                                                              (1.2)   

Thus even for small values of N, the distortion in values will be severe. Thus monitoring 

two or more variables independently can be misleading. For a 3 sigma quality the 

probability that a point will fall outside control limit is 0.0027. If two independent charts 

are used to monitor quality, the joint probability that a data point will fall outside the 

control limits is (0.0027)*(0.0027) =  0.00000729. Likewise, the probability that a data 

point will fall within control limits for a control chart for one variable or attribute is, 

0.9973 and the joint probability if the two individual control charts are employed is 
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0.99460 and hence the type I error probability and the probability of a point falling within 

limits, will be far below the value envisaged. 

  Woodall and Montgomery (1999), and Woodall (2000) explain that the 

performance of multivariate control charts in detecting process disturbances tend to 

deteriorate as the number of monitored variances increase. In multivariate process 

monitoring one is encountered with large data sets, autocorrelation, missing data, 

nonalignment of sampling points and many other problems which render the application 

complicated. Further multivariate process monitoring techniques as applied to control 

charting have profusely used principal components , partial least squares and latent 

structure methods. These are the reduction techniques used to detect the vital few 

characteristics to be monitored among the trivial many. These rendered the control charts 

to operate in a limited subspace where it is difficult to understand to which sub process or 

characteristic is out of control. 

 From practical point of view the multivariate control chart fails to identify as to 

which quality parameter or attribute or which process step is going out of control. This is 

overcome in the case of cause selecting control charts. It identifies the process step due to 

which an out of control situation has arisen. 

1.4 Cause Selecting Control Charts 

Cause- selecting control charts dealt with by Constable et al. (1987), Zhang 

(1989), Wade and Woodall (1993), Shu and Tsung (2000,2003), Shu et al. (2004, 2005) 

are employed in the case of a cascading process. In the case of a bivariate process steps X 

and Y, the assignable cause variation in upstream process X termed as specific quality is 
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determined by a Shewhart type control chart for X. Likewise the assignable cause 

variation for downstream process Y can be determined from a Shewhart type control 

chart for Y. The total quality that is the quality variation in downstream process Y due to 

upstream processes X is determined by a joint reading of Shewhart type control chart for 

X and a residual control chart for Y. The residuals are the difference between the data Y 

and the fitted data Y.    

This chart was christened as cause selecting control chart. The cause selecting 

control charts were used to detect two kinds of quality, namely, total quality and specific 

quality. The specific quality refers to the assignable cause variations in the regressor 

process X (upstream process) and the response process Y (down stream process). These 

can be identified by two separate Shewhart type control chart for process X and Y. 

The total quality refers to the process variation in process Y on account of a 

variation in process X. This is identified by a residuals control chart for process Y, which 

is known as cause selecting control chart (CS). The evolving decision matrix for specific 

and total quality is detailed as follows in table 1.1 :   

Table 1.1   Cause Selecting Control Chart- Two Chart Decision Matrix 

Sl.No Shewhart Type Control 
Chart for Process X 

Cause Selecting Chart 
for Process Y Interpretation 

1 Signal Signal Both process out of control 
2 No signal Signal Process Y out of control 
3 Signal No Signal Process X out of control 
4 No Signal No Signal Both process in control 
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To demonstrate the methodology of CS a worked example is detailed hereunder. 

The data of machined dimensions of two cascade processes have been simulated. The 

data and workings have been shown below in table 1.2: 

Table 1.2 Demonstration Data Set for a Bivariate Cascade Process  

Sl.No X Y Y Y-Y 
1 1.56 1.76 1.89 –0.13 
2 2.08 1.76 1.78 –0.02 
3 2.21 1.51 1.76 –0.24 
4 1.82 1.64 1.84 –0.20 
5 1.69 2.14 1.87   0.28 
6 2.34 1.76 1.73   0.04 
7 2.16 2.02 1.77   0.25 
8 2.21 1.51 1.76 –0.24 
9 1.95 1.51 1.81 –0.30 

10 1.69 1.64 1.87 –0.23 
11 1.56 2.02 1.89   0.12 
12 2.21 1.64 1.76 –0.12 
13 2.34 1.64 1.73 –0.09 
14 2.34 2.02 1.73   0.29 
15 2.34 2.02 1.73   0.29 
16 2.08 1.89 1.78   0.11 
17 1.56 2.14 1.89   0.25 
18 2.21 1.89 1.76   0.13 
19 2.08 2.14 1.78   0.36 
20 1.95 1.51 1.81 –0.30 

 

Column 2 shows the machined data set X and column 3 shows machined data set 

Y.  The relationship between X and Y may be linear or non linear. Any non linear 

physical relationship can be approximated into linearity.  According to Montgomery, 

Peck and Vining (2006) in all applications of regression, the regression equation is an 

approximation to the functional relationship between the variables of interest. The said 
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functional relationship may be of physical, chemical or mechanical in nature. Such types 

of models are known as mechanistic models. These models are linear, non-linear or 

complex in nature. These may be empirically approximated as a linear regression model. 

If the underlying process has more complex relationship, this has to be transformed into 

an approximation linear regression model. With the advent of computer programs any 

non linear process data may be easily approximated into a linear model. Microsoft excel 

spreadsheet does this job and no special programs are needed. This work confines to 

linear models of which non-linear data is a special case.  The relationship between the 

upstream process X and down stream process Y can be explained by the scatter diagram 

shown below in figure 1.2. The plot is made of process variable X in column 1 and Y in 

column 3 of table 1.2.   

 

Figure 1.2 Scatter Plot of Process Variables X and Y 
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From the scatter plot the non linear relationship of the data sets X and Y are 

evident. If the data sets X and Y are fitted into a straight line Y = 2.2.-0.20 X’, the fitted 

points of the response variable Y can be calculated. It is summarized in column  

Y in table 1.2.   The relationship of ‘X’ the regressor variable adjusted against a covariate 

‘Y’ is depicted by the regression equation Y  =2.2– 0.20 X’. It can be seen that the 

relationship of X and Y  is linear as shown in scatter diagram figure 1.3. The plot is made 

of process variable X in column 1 and  Y in column 4 of table 1.2.   

 

Figure 1.3 Scatter Plot of Process Variables X and ܇ 
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requirements proposed by him are that the two processes are cascade or serially 

dependent in nature.  

Two charts have been proposed to find out a non conforming situation due to  

a) Upstream process.  
b) Down Stream Process. 
c) Down Stream Process due to Upstream Process. 

 The first chart is a Shewhart type control chart drawn for process ‘X’ of data set in 

table 1.1 is shown in figure 1.4. 

 

 

Figure 1.4 Shewhart Control Chart for Process X 
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Gitlow and Oppenheim (1991) in their work have dealt with residuals and 

Shewharts control chart. The regression residuals carry with them the process information 

and are a good candidate as control chart process statistic. The second chart in the CS 

concept is a regression residuals control chart. Referring to table 1.2, the residuals of the 

fitted and natural covariate Y and ܇  is shown as column Y – ܇. The control chart of this 

data shown in table 1.1, known as the cause selecting chart is shown in figure 1.5. 

 

Figure 1.5 Residuals (Cause Selecting) Control Chart  
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Table 1.3 Process Decision for Cause Selecting Control Chart 

Data 
Point 

Shewhart Type 
Control Chart for 

X 

Residuals Cause 
Selecting Control 

Chart for Y' Residuals 
Diagnosis 

1 In Control Out of Control Process Y Out of Control 
2 In Control In Control Processes X,Y In Control 
3 In Control Out of Control Process Y Out of Control 
4 In Control Out of Control Process Y Out of Control 
5 In Control Out of Control Process Y Out of Control 
6 In Control In Control Processes X,Y In Control 
7 In Control Out of Control Process Y Out of Control 
8 In Control Out of Control Process Y Out of Control 
9 In Control Out of Control Process Y Out of Control 

10 In Control Out of Control Process Y Out of Control 
11 In Control Out of Control Process Y Out of Control 
12 In Control Out of Control Process Y Out of Control 
13 In Control Out of Control Process Y Out of Control 
14 In Control Out of Control Process Y Out of Control 
15 In Control Out of Control Process Y Out of Control 
16 In Control Out of Control Process Y Out of Control 
17 In Control Out of Control Process Y Out of Control 
18 In Control Out of Control Process Y Out of Control 
19 In Control Out of Control Process Y Out of Control 
20 In Control Out of Control Process Y Out of Control 

 

 It can be seen from above chart that in data point 2 and 6, both the processes are in 

control and in all other data points the down stream process is out of control.  For analogy 

referring to figure 1.4 if chart statistic 7a and 18a are out of control for the upstream 

process,  the diagnosis will be for 7a  process X will be out of control and for 18a process 

X,Y are out of control. If there is a data point 7a for which process X is out of control the 

diagnosis interpretation will be that process ‘X’ is out of control. If there is a data point 
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18a for which both ‘X’ and ‘Y’ are out of control the interpretation is that both the 

process are out of control.  This scenario is detailed in table 1.4.  

Table 1.4 Second Diagnosis Table 

Data 
Point 

Shewhart Type 
Control Chart for 

X 

Residuals Cause 
Selecting Control 

Chart for ܇  Residuals 
Diagnosis 

7a Out of Control In Control 
Process X Out of 

Control 

18a Out of Control Out of Control 
Process X,Y Out 

of Control 
 

The concepts explained are confined to 3 sigma process variables. There has been 

very many discussions on ‘variables control chart’ and ‘attributes control chart’. The 

variables are direct measures and attributes are ‘transformed’ measures of variables. This 

is due to the fact that the attributes like counts are obtained by inspection of products. 

Hence the basic measurements are variables. As there are limitations in building control 

charts for variables, in certain industrial situations attributes charts have been advocated. 

The issue is not whether it is a variables control chart or attributes control chart but 

whether it is able to effectively depict an out of control situation or not.  

This work is a pioneering work which enhances the capability of cause selecting 

control charts to high sigma processes. 

1.5 High Sigma Control Charts  

              The cause selecting control charts are limited to the 3 sigma process monitoring. 

The conventional control charts are not adaptable to high sigma processes. By high sigma 
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process we refer to any production process above 3 sigma metric.  The defective are rare 

in processes operating above 3 sigma metric.  

The traditional control charts which worked for the 3 sigma status are built based 

on the assumption that the process data characteristics are normally distributed. With low 

count levels occurrence as detailed in table 1.5, for high sigma process, the normality 

assumption cannot be valid. Further impractical sample size and statistical axioms limit 

the use of 3 sigma compliant control charts for process sigma above 3. 

Table 1.5. Defect Occurrence Time and Process Speed  

Sl. 
No 

Process 
Speed(Units per 

minute) 

Time to get 3.4 (per 
million ) defects in Days 
at the rate of 8 hour Shift 

Per Day 

Time to get 66800 (per million ) 
defects in Days at the rate of 8 

hour Shift Per Day 

( 6 sigma process) ( 3 sigma process) 
1 10 61 14 
2 20 31 7 
3 40 15 3 
4 80 8 2 
5 100 6 1 

 

The effectiveness of a manufacturing engineer lies in detecting the assignable 

cause variation as quickly as possible and in taking counter measures to stop further 

occurrence of such defectives. This objective can never be achieved due to rare 

occurrence of defects in a high sigma process. In practice, the time taken for obtaining 

this sample size for various process speeds is given in table 1.5. Hence complacency may 
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set in the shop floor due to such rare occurrences due to advertent lack of attention. This 

may result in slide down of process sigma from six to three rapidly.  

Calvin (1983), Goh (1987), Kaminski et al. (1992), Xie and Goh (1992), 

Glushkovsky (1994) proposed a cumulative count of conforming items between two non 

conforming items (CCC) chart based on geometric distribution.  In their own words 

‘Geometric distribution is a common distribution in practice although control charts 

based on such a distribution have not been widely studied’. When the poisson distribution 

is not suitable for a particular process, geometric distribution can be a good alternative. It 

is important to be aware of potential problems with traditional control charts and use 

different alternatives when necessary. They determined that as many types of 

measurement data follow geometric distribution, it is the distribution for the monitoring 

of high-yield processes based on the cumulative count of conforming items. When the 

process is improved, it is easy to switch to the control chart for a cumulative count of 

conforming items and this measurement follows geometric distribution. The setting up of 

CCC charts is similar to and as simple as a Shewhart’s control chart.  

1.6 High Sigma CCC Control Charts  

The setting up of cumulative conforming count (CCC) charts is similar to and as 

simple as a Shewhart’s control chart. Let n be the no. of items observed before one 

nonconforming item occurs (nth item). If probability of a nonconforming item is ‘p’ then 

the central line of the control chart, 
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CL     =    ଵ
୮
                    (1.3)                        

Suppose the acceptable false alarm probability is ‘α’ the UCL and LCL are designed as  

 UCL =  
୪୬ (ഀమ)

୪୬ (ଵି)
                               (1.4) 

 LCL =    ୪୬ (భషഀమ )

୪୬ (ଵି)
                                                                                (1.5)    

            The CCC charts assume a fairly prior knowledge of ‘p’ and ‘α’. The points below 

lower control limits (LCL) are taken as process deterioration signals. The points above 

upper control limits (UCL) are taken as a sign of process improvement. The key issue 

discussed by them is that a process is presumed to be in control until a nonconforming 

item appears. As the process CCC is having the parameter of geometric distribution, there 

is a requirement to convert them to normal form. The transforms have been considered as 

a good option for this conversion process. The charting procedure is explained through a 

flow chart illustrated in figure 1.6. 
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Figure 1.6. A Charting Procedure for CCC Chart. 

1.7 Background of Research 

All manufacturing systems consist of more than one production stage. The quality 

of the product is determined by many quality variables and attributes assignable to the 

production stages. This requires monitoring of multiple quality variables and attributes. A 
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multivariate quality control chart in current literature are unable to pinpoint as to which 

stage of production process are the variable or attribute is out of control. Regression 

based cause selecting control chart owing to Zhang et al. (1989) is able to detect the 

quality nonconformance due to current process step and the previous process step. They 

are applicable to serially dependent or cascade process. The cause selecting control charts 

are limited to three sigma processes in current literature. 

 Globalization and economic boom have compelled continuous improvement of 

product quality. The manufacturing plants have to aim at ‘world class’ quality and work 

towards metrics like ‘six sigma’. According to Goh and Xie (2003), in six sigma practice 

in ‘control phase’ for want of appropriate control chart, only 3 sigma control charts are 

practiced in six sigma training and practice environ. There have been many contributions 

from research fraternity in the area of a control chart for six sigma processes. It is a 

powerful process monitoring tool for high quality, high sigma environ.  In this work 

design and analysis of a control chart for high sigma bivariate linear cascade process has 

been achieved. 

1.8  Objectives of Research 

Within limits of overall objective of enhancing the cause selecting control chart 

methodology to six sigma or high sigma production processes,  

i. To design a power transform for conversion of geometric form of high 

sigma count data to normal form to enable control chart construction. 
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ii. To ensure that the designed transform enables a near positive LCL. 

iii. To incorporate appropriate check mechanisms in the control chart design 

for accommodating the intercept model errors. 

iv. To study and record the influence of model errors on type II error 

performance. 

v. To study the extent of normality achieved with skewness and kurtosis as 

metrics and to study their influence on LCL and type II error. 

1.9     Methodology Adopted 

i. Power transform route is adopted for conversion of geometric form of 

process data to normal data. The superiority of this transform in comparison 

with logirathmic and double square root transforms are established. Its 

effectiveness is tested through a case study involving two process 

scenarios. The first scenario involves the regressor process having higher 

average run length. The second  scenario involves the response process 

having higher average run length. 

ii. As the intercept model error affects the chart statistic their influence on 

type II error and ARL are studied. The established results are demonstrated 

through two case studies having an intercept model data and a no intercept 

model data and validated through data from literature. 

iii. Skewness and kurtosis have been considered as measures of normality. 

Their influence on LCL and type II error has been studied and recorded.  
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The extent to which normality is achieved is measured with two case 

studies of process data having an intercept model data and a no intercept 

model data.  

iv. A schematic flow showing the objectives, the issues emanated and faced, 

tackled and work done are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7  Methodology Adopted -  Schematic Flow 
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1.10       Scope and Limitations of the Study 

              Cause selecting control charts have been proposed for 3 sigma cascade 

processes. Scope of this work is to enhance the capabiliy of cause selecting control charts 

to high sigma processes.  

              This involves first transforming the high sigma data in the form of cumulative 

counts of conforming products between two non conforming products following 

geometric distribution into normal form.  A high sigma cause selecting control chart 

design flow has to be proposed. 

              Secondly as the regression concept is involved, the intercept model issues have 

to be addressed.  Unlike conventional control charts this model error may affect chart 

statistic. Suitable design modifications are  proposed to accomodate intercept model 

errors.  The impact of chart performance on model errors have to be studied. 

            Thirdly the the extent of transformation to normality has to be measured.Its impac 

on chart performance indices have to be studied.  Conventionally the first and second 

moments of normality namely the mean and standard deviation are used to ‘describe’ a 

normal distributon. As they lack inferential properties, the third and forth moments 

namely the skewness and kurtosis have been adopted to measure the extent of normality 

and its impact on type II error. 

            Control chart performance is measured by type I,  α ( alpha) error or false alarm 

and type II, β ( beta) error or missed signals. We studied the extent of normality as seen 

from skewness and kurtosis with reference to beta error. A false alarm may be attended 

but a missed signal may go unattended . In high sigma processes due to scarcity of 
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defects the missed signals are more harmful compared to false alrms and hence the 

emphasis on beta error.  

        This work is confined to high sigma bivariate manufacturing processes with linearly 

dependent cascade properties. 

1.11      Organisation of Thesis    

            This thesis is organized into eight chapters. The first chapter is the introduction. 

This chapter details the basics of manufacturing variations, limitations of multivariate 

process monitoring,  basics of cause selecting control charts, high sigma control charts, 

background of the work, objectives of the study, methodology adopted, and scope and 

limitations of the study and organization of the thesis. 

The second chapter details the basic concepts relevant to this work. In this chapter 

the basics of high yield manufacturing processes, Motorola’s six sigma concept, inherent 

and sustained process capability have been detailed. Details of long term dynamic 

process variations, basics of normal distribution, binomial and geometric distributions 

have all been enunciated. The rudiments of control charts and regression analysis which 

are the key stones of this work have also been detailed. 

The third chapter details the review of literature on regression control charts, cause 

selecting control charts, control chart design methodology, control charts for high sigma 

process and transformations. It also details the culmination of literature review namely 

identification of research gap, motivation and drivers for research. 

In the fourth chapter a discussion on probability limits and its limitations for high 

sigma cause selecting control charts has been written. The limitations of ‘k’ times sigma 
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limits and limitations of traditional control charts for high sigma process have also been 

detailed. A discussion on transformations is given.  A new power transform has been 

proposed for high sigma process cause selecting control chart. A design flow of charting 

procedure has been given in detail. 

In the fifth chapter regression model error issues, and relative performance of the 

intercept model based cause- selecting control charts have been enunciated. The suitable 

design changes have also been established. A detailed design flow modification has been 

detailed. The model errors and respective changes in performance indices namely type II 

error and average run length have been studied and results detailed. 

In the sixth chapter discussions on optimization of transforms, extent of normality 

with skewness and kurtosis as indices has been given in detail. The extent of normality 

have been researched within the compass of intercept model errors and its influence on 

type II error and average run length have been studied and results recorded 

The seventh chapter discusses the issues of economic design, intercept models and 

lower control limit with particular reference to the results of this work. For the purpose of 

data and methodology validation, a data set from current literature has been demonstrated 

in detail. That the stochastic behavior and run rules are non-issues within limits of this 

work have been explained. 

The eighth chapter details the concluding remarks. It also lists the areas for future 

research. 

To sum up this work resulted in the enhancement of application of capability of 

cause selecting control charts from 3 sigma metric to high sigma for linearly and serially 
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dependant (cascade) bivariate manufacturing processes. To achieve this, a new power 

transform has been proposed. Intercept model errors have been discussed. The extent of 

normality has been studied with reference to control chart performance indices. 

List of publications and references have been given at the end of the chapters.   

1.12 Conclusion 

           That the cause selecting control chart methodology was limited to 3 sigma process 

and not adaptable to six sigma process is a research gap. Motivated by this a design for 

bivariate high sigma cause- selecting control chart is proposed in this work.  In doing so 

the issues like normality characteristic of control chart methodology and intercept model  

issues relating to regression models were addressed. In the next chapter the basic 

concepts relevant to this research have been explained. 
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Chapter 2 
 

Basic Concepts 
 

2.1  Introduction 

In this chapter the basic concepts relevant to this work have been enunciated. In a 

short compass, the basics of high yield manufacturing processes, six sigma concept, 

inherent and sustained process capability, normal distribution, binomial distribution, 

geometric distribution, control charts and regression analysis concepts have been 

explained. 

2.2  High yield Manufacturing Process 

The High Yield Processes (HYP) by definition, are those processes working above 

the metric of 3 sigma. A process working on 4.0 sigma metric will yield 6210 defects per 

million and for Six Sigma Process (SSP) it is 3.4 defects per million. A 3 sigma process 

will yield 66810 defects per million. The goal of Six Sigma Process (SSP) is to reduce 

the variability of any process as compared to the process limits to a point where there is 

room for 1.5 standard deviation move, accounting for the natural variability of the 

process. Such a case is referred to as a six sigma level of quality, wherein not more than 

3.4 defects per million opportunities will fall outside the limits. The defect count level for 

a normal process and six sigma process has been tabled in table 2.1and table 2.2. 
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Table  2.1.  Defect Counts for a Centered Normal Distribution 

Specification Limit ± 
Sigma 

Percentage of 
Conforming Product Defective ppm 

1 68.27 317300 
2 95.5 45500 
3 99.73 2700 
4 99.9937 63 
5 99.99994 0.5 
6 99.9999998 0.002 

 

Table  2.2.  Defect Counts for a 1.5 Sigma Shifted Distribution 

Specification 
Limit ± Sigma 

Percentage of Conforming 
Product Defective ppm 

1 30.23 697700 
2 69.1 308700 
3 93.32 66810 
4 99.379 6210 
5 99.9767 233 
6 99.99966 3.4 

 

2.3    Motorola’s Six Sigma Concept 

Motorola are the pioneers in theorizing the six sigma quality followed by the 

Allied Signal (Honeywell) and the General Electric. The six sigma concept itself can be 

defined in two ways. It is the six sigma for the whole organization (define, measure, 

analyze, improve, control) and six sigma at the machine output level. Confining ourselves 

to six sigma for the process or machine output, the process capability study assumes 

importance. Motorola defined that a six sigma process with an intuitive mean shift of 1.5 

sigma in the long range will produce 3.4 defects per million outputs. The implied 
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meaning is that the mean will be dynamic and not stable. A graphical depiction of a six 

sigma process with 1.5 sigma shift is shown in figure 2.1. 

 

Figure 2.1   ‘1.5’ Sigma Process Shift 

 Harry (2003) enunciated in detail about the statistical constructs and theoretical 

basics of six sigma process design and monitoring methodology.  

2.3.1 Inherent and Sustained Capability of Process 

There are two underlying principles regarding the data in a process capability. The 

capability indices are effective only if these two assumptions hold true. These are the 

statistical stability and normality. These variations can also be classified as the inherent 

process variation and total process variations. Inherent process variations are the 

variations caused only by common causes and is used to represent the true process 

capability and potential. It is often estimated from control charts after verifying statistical 

stability. The long term indices or the performance indices use the total process variance 

instead of the sample process variance. The process stability index is defined as the ratio 
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between the variance of the sample and the total process variance.  The characteristic of 

inherent and sustained process variation is shown in figure 2.2. 

 

 

Figure 2.2.Inherent and Sustained Process Capability (Honeywell Corporation) 

2.3.2 Long Term dynamic Process Variation 

Six sigma actually translates to about 2 defects per billion opportunities, and 3.4 

defects per million opportunities, which really corresponds to a sigma value of 4.5. 

Motorola has determined, through years of process and data collection, that processes 

vary and drift over time - what they call the Long-Term Dynamic Mean Variation. This 

variation typically falls between 1.4 and 1.6 and this is where from the difference of ‘1.5’ 

sigma come from. Figure 2.3 depicts the long term and short term process variation. 

 



29 
 

 
Figure 2.3. Long Term and Short Term Process Variation (Honeywell 

Corporation) 

2.4  Normal Distribution 

The normal distributions are very important class of statistical distributions. All 

normal distributions are symmetric and have bell-shaped density curves with a single 

peak as shown in figure 2.4. To speak specifically of any normal distribution, two 

quantities have to be specified. The mean ‘µ’ where the peak of the density occurs, and 

the standard deviation ‘σ’, which indicates the spread or girth of the bell curve. (The 

Greek symbol µ is pronounced as ‘Mu’ and the Greek symbol σ is pronounced sig-ma.)          
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Figure 2.4.  Bell Shaped Normal Curve (PDF) 

All normal density curves satisfy the following property which is often referred to 

as the normal density. This can be actually specified by means of an equation. The height 

of the density at any value X  has the following properties :                               

68% of the observations fall within 1 standard deviation of the mean, that is, between and 

µ-σ and µ + σ.  

 

 

 



31 
 
95% of the observations fall within 2 standard deviations of the mean, that is, between  

µ - 2 σ and µ + 2σ. 

99.7% of the observations fall within 3 standard deviations of the mean, that is, between 

µ - 3 σ and µ + 3σ 

Thus, for a normal distribution, almost all values lie within 3 standard deviations of the 

mean. 

 
2.5 Binomial Distribution 

 

Figure 2.5. PDF of Binomial Distribution (www.itl.nist.gov) 

The binomial distribution describes the possible number of times particular event 

will occur in a sequence of observations. The event is termed as binary; it may or may not 

occur. The binomial distribution is used when a researcher is interested in the occurrence 

of an event, not in its magnitude. For instance, in an attribute type inspection it is checked 
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whether the product ‘pass’ or ‘fail’ and not the measure of deviation. The binomial 

distribution is defined by the number of observations, ‘n’, and the probability of 

occurrence, which is denoted by ‘p’. 

2.6 Geometric Distribution 

 

Figure 2.6. PDF of Geometric Distribution  

 To obtain a binomial random variable, we observe a sequence of ‘n’ Bernoulli 

trials and counted the number of successes.  If the number of Bernoulli trials is not fixed 

in advance but continue to observe the sequence of Bernoulli trials until a certain number 

of ‘n’ successes occur, the random variable of interest is the number of trials needed to 

observe the ‘n’th success.  

Let us consider the first case of the instance when ‘n =1’. Consider a sequence of 

Bernoulli trials with probability ‘p’ of success and ‘q’ is the probability of failure. This 
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sequence is observed until the first success occurs. Let X denotes the trial number on 

which the first success occurs.  

For example, if F and S represent failure and success, respectively, and the 

sequence starts with F, F, F, S… then X =4. Moreover, because the trials are independent, 

the probability of such sequence is  

P(X=4) = (q) (q) (q) (p) =q3p=(1−p) 3p.                  (2.1) 

In general, the pdf f(x) =P(X=x), of X is given by f(x) =(1−p) x−1p, x=1,2,..., because 

there must be x -1 failures before the first success that occurs on trail x. We say that X 

has a geometric distribution. It is a case of binomial distribution, where the sample size is 

large relative to population size. 

2.7 Poisson Distribution 

 

Figure 2.7.  PDF of Poisson Distribution (www.itl.nist.gov) 
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The Poisson distribution is used to model the number of events occurring within a 

given time interval.  When many quality characteristics are to be measured in a product 

‘C’ charts and ‘U’ charts are deployed. They are modeled after a poisson distribution. 

2.8 Control Charts 

A systematic approach used to understand that the process is producing without 

much variability is known as the Statistical Process Control (SPC). The control charts are 

important tools of the SPC, which is the running record of the job. The primary function 

of the control chart is to detect causes of variation that are due to some assignable 

reasons. The random or common cause variability is inherent to the capability of the 

process. Random variation cannot be eliminated without modifying the process. The 

system itself must be changed to improve its capability.  Assignable cause variability 

represents a change in the process in a systematic way. This change can be attributed to 

some identifiable cause or causes that are not an inherent part of the process and can, 

therefore, be eliminated. The characteristics of causes are shown in table 2.3. Juran 

(1998), Wheeler (1992, 1993), and Montgomery (2001) detail the causes and the quality 

journey in detail. 
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Table 2.3. Natural and Assignable Causes  

Natural Causes Assignable causes 
Inherent to process Exogenous to process 
Random Not random 
Cannot be controlled Controllable 
Cannot be prevented Preventable 
Examples Examples 
         environment          tool wear 
         accuracy of measurements          poor setting 
         capability of machines          poor maintenance 

 

It is worth pointing out that SPC, as a technique is actually process evaluation, 

rather than control, since it does not directly control the process. It helps determine 

whether a process is in statistical control and flags out-of-control conditions when they 

occur. A typical control chart is shown in figure 2.8. 

 

 

Figure 2.8. Control Chart for Averages  
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 The target or process mean is known as central line (CL) of control charts. The 

upper control limit (UCL) and lower control limit (LCL) are action limits. Any point 

falling outside the limits indicates an out of control situation. 

Traditional control charts have two objectives. The factory production personnel 

use it as a monitoring and control mechanism for process and expect it to signal 

deterioration of process parameters. The management looks at it as a tool for flagging an 

opportunity for kaizen or continuous improvement. It is being used as an important means 

to develop and sustain improvement in process. 

Vermaat et al.(2003) Mast and Roes (2004), Trip and Wieringa (2006), gave a 

detailed account of robust individuals control chart. Shewhart’s (1986) first designed a 

control chart for averages. This type of control chart is a running record of the job. It 

records variations due to assignable causes like men, machines, materials, methods and 

measurement. A typical variation in process data is shown in figure2.9.  

 

Figure 2.9.  Typical Process Variations 
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2.9 Regression Analysis 

The regression control chart of Mandel (1969) was a pioneering work in this field 

of regression control charts. It combined the power of control chart technique and the 

least squares regression analysis. Mandel designed a regression control chart which has a 

trended control limits and central line. The mean shift was measured in terms of the 

standard error of estimate of the regression line, instead of the conventional standard 

deviation. In all its aspects it resembled the tool wear type control chart. The regression 

analysis and its link to analysis of variance were dealt with by Schilling (1974a, 1974b). 

Gitlow and Oppenheim (1991) detailed the residual analysis with Shewhart’s 

control chart. They showed that the error term or the residuals distinctly represent the 

unexplained variations when drawn as a control chart. The basic assumptions on which 

the concept of regression hinges are:  

i. The model errors have mean zero and constant variance, and are uncorrelated. 

ii. The model errors have a normal distribution- this assumption is made in order 

to conduct hypotheses tests and construct confidence intervals. Under this 

assumption, the errors are independent. 

iii. The form of the model, including the specification of the regressors, is correct. 

The general least square regression model owing to Montgomery et al. (2006) is, 

Y   =   β0  +  β 1X1  + - - - - - - - - - - - - - - -+  βn  Xn  +  ε          (2.2) 

and for a bivariate cascade process it can be simplified as a parsimonious model, 

Y   =   β0 + β 1 X +ε                 (2.3) 
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Where β0 is the intercept term and β1…………. βn  is the slope, 

 ε is the error term,  

X is the regressor process (upstream process) and  

Y is the response process (downstream process). 

2.10 Conclusion 

 This research work is on cause selecting control charts for high sigma process. The 

basic ideas embracing this work have been presented in this chapter. In the next chapter 

review of relevant literature undertaken is detailed.   
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Chapter 3 
 

Literature Review 
 

3.1   Introduction 

In current literature, cause selecting control charts have been discussed only for 

3 sigma process. Cause-selecting control chart for high sigma serially interdependent 

processes has been developed in this work.  In this chapter the research publications in 

current literature on cause selecting control charts and high sigma process control 

charts are reviewed.   

3.2 Regression Control Charts  

Cause selecting control charts originate from the regression control charts of 

Mandel (1969). He combined the theory of linear regression and control chart 

methodology to develop a process monitoring system for postal management 

application. The Mandel’s control chart differed from typical control chart in several 

respects.   

It was designed to control a varying (rather than constant) average. He tried to 

establish that in the postal delivery process the postman man hours (X) a dependant 

(regressor) variable serially dependant on an independent (response) variable, namely 

volume of post (Y). For his control chart the central line is the regression line by 

equation 3.1.   

Y=β0 + β 1X + ε.           (3.1.) 
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Further the control limits are parallel to the central line. His control chart 

involved cumbersome calculations as compared to the conventional control charts. For 

standard deviation ‘standard error of estimate’ (Se) is used. He placed the control 

limits at a distance of ± 2 Se. Mandel’s control chart is the first known simple form of 

a bivariate control chart using regression models. He was motivated by earlier works 

of DiPaola (1945), Jackson (1956), Wallis and Roberts (1956), Weis (1957). Mandel’s 

control chart is shown in figure 3.1. 

 

Figure 3.1. Mandel’s Regression Control Chart – A Model 

3.3 Cause Selecting Control Charts  

Zhang (1984), Constable et al. (1987) gave the descriptive details of the 

concept of cause-selecting control chart. In their work, the terms for ‘total quality’ and 

‘specific quality’ were defined. A two stage production process was considered. It was 

assumed that the process was having cascade effect. Cascade effect means that the 

independent quality characteristic of the first process will tell upon the quality of the 
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dependent characteristic of the second process. As the customer is concerned only 

with the overall quality or total quality, a multivariate process monitoring system 

christened as cause selecting control chart system was developed.  

They defined ‘specific quality’ as the assignable cause variation in the first and 

second processes. This was measured by two different Shewhart type control charts 

each for the processes X and Y. The cascade effects or serial dependence rendered 

such a process, a candidate for adopting regression analysis for what the authors called 

diagnosis. By using the word ‘diagnosis’ the authors explained the unique feature of 

this type of control chart system from traditional control charts. The traditional control 

chart only signals the occurrence of a nonconforming product. The cause selecting 

control chart systems goes a step further and diagnoses the root cause for the non-

conformance in the downstream process due to an upstream process. This is termed as 

‘total quality’ and is monitored by a residuals control chart for process ‘Y’.  

Zhang’s (1989) diagnostics inference encompasses three control charts. They 

are the two assignable Shewhart type control charts for the upstream process X and 

downstream process Y and a residuals’ type control chart for process Y. This residual 

type control chart is known as cause selecting control chart. All manufactured 

products pass through several process steps. There is an ‘overall quality’ due to prior 

operations and ’specific quality’ due to current operation.  

According to him the Shewhart’s control chart can be used to control specific 

quality of an independent operation but it seldom discriminates between the quality 

imparted by prior operation and that imparted by the current operation.  



42 
 

The cause selecting control charts discriminate between overall quality due to 

previous process steps and the current process steps put together. He defined overall 

quality as quality due to preceding sub process and specific quality due to current sub-

process. If X represents quality of the previous process step and Y represents the 

quality of the current process step and if X and Y are paired and further if Y depends 

on X then the cause selecting value = Y– Y and Y is calculated on the basis of the 

relationship between the independent variable X and dependant variable Y by the 

method of curve fitting. The chart for residual Y – Y is known as the cause selecting 

control chart. Zhang’s diagnostic matrix is detailed in table 3.1. 

Table 3.1. Zhang’s Cause Selecting Diagnostic Matrix 

Process X Process Y Process Y Cause 
Selecting Process Diagnosis 

Signal  Signal  Signal  Process X,Y out of control 
No Signal  Signal  Signal  Process Y out of control 

Signal  Signal  No Signal  Process X out of control 
No Signal  No Signal  Signal  Process Y out of control 

 

Likewise in the downstream process there can be two kinds of variations. They 

are the variations occurring in downstream process themselves and those resulting 

from variations in the upstream process. These are defined by Zhang as controllable 

assignable causes and controllable assignable Cause due to an uncontrollable 

assignable cause. One more theory proposed by Zhang in his work was the diagnosis 

of two kinds of process capability which is beyond the scope of our work and hence 

not detailed. 
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Zhang (1989) extended the above idea of diagnostics systems to 5 scenarios 

and the emerging diagnostic matrix is summarised in the table 3.2.  

Table 3. 2. Zhang’s Modified Cause Selecting Diagnostic Matrix 

Process X Process Y 

Process Y 
Cause 

Selecting 
Process 

Diagnosis 

Controllable 
Assignable 

Cause 

Un 
Controllable 
Assignable 

Cause 

Controllable 
Assignable 

Cause due to an 
un controllable 

assignable 
cause 

Signal Signal No signal Yes yes - 
Signal No Signal Signal yes - yes 
Signal Signal Signal yes yes yes 

No Signal Signal Signal - yes yes 
No Signal No Signal No Signal - - - 

 

Thus in this work Zhang (1989) enlarged the scope of success to diagnose an 

assignable cause variation in the downstream process both due to upstream process 

and such of those variations occurring solely in the downstream process. As the 

product passes through the downstream process, the variation it contains due to 

upstream process is uncontrollable at that stage and hence the terminology 

‘uncontrollable assignable causes’.  

 Wade and Woodall (1993) in their work reviewed the cause selecting chart 

methodology. They further modified the diagnostic decision rules and simplified it. 

Their objective was also multivariate process monitoring in nature. They aimed at 

determining the non-conformance in a succeeding process due to a preceding process. 

They explained about the redundancy of the assignable control chart of process Y and 
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showed that it has no role in the diagnostic process. Their modified diagnostic chart is 

shown in table 3. 3. 

Table 3. 3. Wade and Woodall Cause Selecting Diagnostic Matrix 

Process X Process Y Cause Selecting Process Diagnosis 
Signal Signal Process X,Y out of control 

No Signal Signal Process Y out of control 
Signal No Signal Process X out of control 
Signal Signal Process X, Y in  control 

     

They have also established that for this type of diagnosis, cause selecting control chart 

is superior compared to Hoteling’s T2 control chart.   

3.4  Model Issues 

Shu and Tsung (2000) in their work discussed about the phase 1 and phase 2 

stages of control chart design. They used the prediction limits of the variable 

Y defined as in equation 3.1 and equation 3.2 as the upper and lower control limits to 

overcome the parameter estimation errors in the regression model respectively. 

Upper prediction limit = UCL=t    
,     σ (1 + + (  )

      
)                                     (3.2) 

Lower prediction limit=LCL=–  t    
,  σ (1 + + (  )

      
)                   (3.3)

 Where t is the student statistic and, σ is the estimate of standard deviation, Sxx 

is the cumulative sum of squares of X.  



45 
 

 Shu and Tsung (2003) in their work also dealt with model estimation of 

parameters. They used the method of fault signatures which are time varying to 

estimate the model parameters. In this regard they proposed the cumulative score and 

triggered cumulative score control charts to improve the model estimation and in turn 

the chart performance. 

3.4.1 Economic Design  

         Ingman and Lipnik (2000), Chou et al. (2000, 2001), Kobayashi (2003),   in their 

research considered the economic model for the control chart design.  Yang and Chen 

(2003) considered two dependant process steps obeying. Weibull distribution and cost 

model and loss function. Quality loss is the loss due to quality variations. Taguchi’s 

(1979), Wu et al. (2004) loss function is the Quadratic loss function sufficiently 

representing the quality loss suffered by theory.  Using this, cost model had been 

developed and cost control chart has been constructed. By using economic theory they 

showed that type I error probability can be improved. The economic design is a 

separate theory and is a different statistical design. 

3.4.2   Multicollinearity 

  Shu et al. (2004a) compared the control chart using the prediction limits and 

using principal component regression (PCR). They established that the prediction 

limits show better results in type I error estimates compared to PCR. They considered 

the canonical form of PCR. This was necessitated due to their model being 

multivariate cause selecting control chart (and not bivariate). For such problems it is 
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necessary to combat multicollinearity or correlation between regressors. The PCR 

models effectively counter the multicollinearity. 

 Shu et al. (2005) compared the design of cause selecting control charts using 

model estimation error issues. They discussed in detail the effects of estimation of 

individual model parameters. The aim of their work was to quantify the effect of 

parameter estimation based on the fitness of the model which will improve the cause 

selecting control chart performance. They used the sample correlation coefficient as a 

performance measure to achieve their objective. According to Weisberg (1985) the 

sample correlation coefficient is the square root of coefficient of determination R, 

which is defined as  

 R2 =   ∑   (Yi - Y) 2  / ∑  ( Yi - Y) 2                  (3.4)

  Where,  Yi is the fitted values of Y, Y is the mean of  values of Y and Yi is the 

ith reading of Y,and for the no intercept model, it is  

R0
2   = 1- ∑ (   Yi

 –Yi   ) 
2  / ∑ ( Y −  Y )2                                      (3.5)  

 Yang and Yang (2006) discussed various types of control charts for 

determining the controllable assignable cause and uncontrollable assignable cause. 

They proposed residual type Shewhart’s control chart and least square regression 

residuals control chart. They considered these options based on the assumption that 

the data from the process are correlated and follow AR (1) time series model.  

 Yang et al. (2007) in their work considered the measurement error in control 

chart design. They used an exponentially weighed moving average control chart in the 
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place of regular Shewhart type control chart for the regressor process. They 

determined that the presence of measurement errors may seriously affect the ability of 

the proposed control charts. The increase in such errors was shown to decrease the 

probability of detecting assignable causes. They discussed a EWMA control chart for 

the first step and Shewhart type control chart for the second step. This work 

emphasized the requirement of calibration of the measurement systems employed in 

production processes. 

3.5 Control Chart for High Sigma Process 

 The ‘six sigma process’, ‘high yield process’, ‘high quality process’, ‘high 

sigma process’, ‘near zero defect process’ are all the terms which mean an industrial 

production process whose output quality is above three sigma. The short term 

variation in production processes and corresponding defects in parts per million (ppm) 

at various sigma levels are given below. Motorola Corporation introduced a shift 

factor of 1.5 sigma to the above values. When certain product deliverable is referred to 

as six sigma, it never means that the production process that made the product will 

render only 3.4 defects per million production units. 

Giving effect to 1.5 sigma long term process variation the high sigma processes 

will yield the defect ppm as shown in table 3.4: 

    Table 3.4. Long Term Sigma Metric   
 

Specification Limit Percentage Defective ppm 
3 sigma 93.32 66810 
4 sigma 99.3790 6210 
5 sigma 99.9767 233 
6 sigma 99.99966 3.4 
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             Goh and Xie (2003) explains that as the performance of a process is calibrated 

in defects per million opportunities (DPMO), statistical monitoring and control are 

usually effected via conventional sample attributes such as np or p where n is the 

sample size and p is the fraction nonconforming of the process. They further stated 

that the use of such control charts is an integral part of six sigma training for black 

belts and green belts and discussions are invariably confined to basic Shewhart’s 

principles. As scarcely any defective or nonconforming items can be found even with 

large sample size, for high sigma processes Shewhart’s type text book control charts 

are not adequate. Thus Shewhart’s control charts have been designed on the basis of 

‘economical means’ of controlling quality. This economic philosophy worked until 3 

sigma had been the industry norm. When Motorola’s initiative of six sigma process 

(SSP) came into existence, each defective count mattered.                   

Calvin (1983) and Goh (1987) proposed a cumulative count of conforming 

(CCC) chart based on geometric distribution.  Jones and Champ (2002) also worked 

about phase I control chart for time between events. In their own words ‘Geometric 

distribution is a common distribution in practice although control charts based on such 

a distribution have not been widely studied’. When the Poisson distribution is not 

suitable for a particular process, geometric distribution can be a good alternative. It is 

important to be aware of potential problems with traditional control charts and use 

different alternatives when necessary.  

They determined that as many types of measurement data follow geometric 

distribution, it is a distribution for the monitoring of high-yield processes based on the 

cumulative count of conforming items. When the process is improved, it is easy to 
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switch over to the control chart for a cumulative count of conforming items and this 

measurement follows geometric distribution. The setting up of CCC charts is similar 

to and as simple as a Shewhart’s control chart. Let n be the no. of items observed 

before one nonconforming item occurs (nth item). If probability of a nonconforming 

item is ‘p’ then the central line of the control chart, 

 CL     =                                                                                                (3.6) 

And suppose the acceptable false alarm probability is ‘α’ the UCL and LCL are 

designed as  

 UCL =  
 ( )

 ( )
               (3.7) 

 LCL =    
 ( )

 ( )
                                                                          (3.8) 

 The CCC charts assumes a fairly prior knowledge of ‘p’ and ‘α’. The points below 

LCL are taken as process deterioration signals. The points above UCL are taken as a 

sign of process improvement. The key issue discussed by them is that a process is 

presumed to be in control until a nonconforming item appears.  

           Xie et al. (2002) is a comprehensive compendium on high sigma process 

monitoring. 

3.6 Transformations 

Nelson (1994) advocated that a Weibull distribution with a shape parameter of 

3.6 skewness and kurtosis of 2.72 is comparable to a normal distribution. Further 

according to him, the required transformation is simply to raise the inter event count 
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to the power of 1/3.6. Nelson’s control chart gave this transform to convert data that 

fit into an individuals control chart design. According to him, when Yi is the data 

point Y at time interval i and Xi is the observed data and when, 

Yi      =            Xi           where ‘i’      =     1, 2, 3……… n               (3.9)                                                        

the design procedure for the control chart for actual data is as follows: 

Upper Control Limit (UCL)    = ∑   (yi / n) + 2.66 mR              (3.10)

          

Lower Control Limit (LCL)    = ∑   (yi / n) – 2.66 mR          (3.11) 

  and Central Line  (CL)             = ∑   yi / n            (3.12) 

 and mR  is the moving range of  Yi 

For interpretation of this control chart, he gave the rule that unlike the ‘p’ chart, 

the points above the UCL show improvement in quality and points below the LCL 

show the deterioration in quality. Thus, this chart gives a signal when any point Yi   is 

less than the lower control limit as depicted in the equation below,  

 Yi     <     Yi — 2.66 mR                                          (3.13) 

Any point above the upper control limit   Yi   < Yi + 2.66 mR is considered as 

a process improvement. According to McCool And Motley (1998) when the 

proportion of nonconforming product is extremely small, akin to a  high sigma process 

3 sigma control charts on the 0.2777th power of X which is the number of items 

sampled until a nonconforming item is found renders the transformed variable 
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approximately normal in distribution. They studied both this transformation and 

natural logarithmic transformation and established that both the procedures are 

identical. They further studied and hypothesized that when using probability limits 

this power transformation is more preferable when compared to log transformation. 

They compared the average run length of both the transformations and held that they 

are identical and using moving range has an implicit dependence on normality and 

hence it is proposed to use control limits based on power transformation. Another 

transform that is used in high yield processes is   the logarithmic transform Z = ln (X). 

McCool and Motley (1998) compared both the transforms in their work and 

derived their ARL. They concluded that, both the schemes have identical ARLs and 

further Y has long out of control ARL and Z has short in control ARL. They 

established that Nelsons’ transform forms an approximate normal distribution and 

shown in figure 3.2.  Logarithmic transform is shown in figure 3.3. In figure 3.2 and 

figure 3.3, X is the observed value and f(Z) is the transformed value. 

 

Figure 3.2. Probability Density Function of Z =X 0.2777 
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Figure 3.3. Probability Density Function of Z = ln(X) 

 There is gamut of research publications, and some of them reviewed have been 

summarized. Lucas (1985) detailed a CUSUM type control chart for high sigma 

process. Lucas (1989) discussed about low count process control charts. Bourke 

(1991) designed a run length control chart for high sigma process. Kaminsky et al. 

(1992) worked on geometric distribution control charts. Goh (1994) discussed in detail 

the practical issues involving high sigma control charts for process monitoring. Chan 

and Goh (1997) discussed a high yield process monitoring technique.  

Chan et al. (2000) gave the design for a cumulative quality control chart. Sun 

and Zhang (2000) discussed about cumulative count of conforming control chart 

(CCC). Xie et al. (2000a) discussed about an optimal setting for control limits for 

geometric distribution for a high yield process.  Xie et al. (2000) discussed about data 

transformation for high yield geometrically distributed quality characteristics.  

Chang and Gan (2001), Chan et al. (2002) discussed about a CUSUM chart for 

high yield process monitoring. Kuralmani et al. (2002) discussed about a conditional 

decision procedure for a CCC chart for high yield process. Xie and Goh (1997) 

discussed about the probability limits for high yield process. 
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3.7  Motivation   

 The research issues and publications have been studied and summarised in 

table 3.5. It can be seen that the CS has been studied and developed for 3 sigma 

processes only. The basic charts and the important issues like model estimation have 

not been addressed for 6 sigma processes. Here it is meant that 6 sigma processes are 

‘High Sigma Processes’ above 3 sigma metric.  

Table 3.5 Research Gap Matrix 

Sl.No Research Issue 
Sigma 
Level Authors 

1 Chart Basics 
3 Constable et al.(1987), Zhang(1989), Wade and 

Woodall(1993) 
6   

2 Process 
Capability 

3 Zhang(1989) 
6   

3 Model 
Estimation 

3 Shu and Tsung(2000), Shu et al.(2004) 
6   

4 Stochastic 
Process 

3  Shu and Tsung(2000), Fen Yang and Ming Yang(2006) 
6   

5 Economic 
Design 

3 Yang and Chen(2003) 
6   

6 Parameter 
Estimation 

3 Shu et al.(2005) 
6   

7 Measurement 
Errors 

3 Yang et al .(2007) 
6   

 

           The research gap in the cause selecting control chart theory for high sigma 

application is the motivation behind this work. A cause selecting control chart for high 

sigma bivariate cascade process monitoring with CCC data is proposed. For brevity 

only a bivariate case was considered.  With the advent of computer and software, a 

bivariate case methodology can be easily applied to a multivariate case. For 
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accomplishing this task the concept of transformation and the CCC chart methodology 

were applied. 

3.8  Drivers 

 In order to accomplish the objectives stated it was necessary to address the 

issues involving cause selecting control charts and high sigma control charts. This 

involves the issues concerning the regression models and control charts theory for 

high sigma process. The CCC chart is characterized by geometric form of data set.  

The typical issues arising in these high sigma control chart are enunciated here under: 

i. The data sets are not in the form of normal distribution. 

ii. Negative lower control limits have been frequently encountered.  

iii. In contrast to the Shewhart’s control chart the data point above upper control 

limit depicts process improvement. Any data point below the lower control 

limit is termed as process deterioration. They are listed in table 3.6. 

Table 3.6 Basic Issues and Assumptions 

Sl.No Character 
Assumptions 

Control  Chart Regression 
Models 

High  Sigma Process 
Control Charts 

1 Parameter Normality 
Assumption 

Normality 
Assumption Geometric Distribution 

2 Data Independent Independent Independent 

3 Model Normal 
distribution 

Regression 
Models Geometric Distribution 

 

In this research work the high sigma cause selecting control chart has been designed. 

The intercept model issues and chart performance issues have been dealt with. 
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3.9 Conclusion 

From the literature review we conclude that the cause-selecting control chart is 

a special kind of multivariate control chart. It has superior inferential properties over 

multivariate control charts. Cause selecting control charts are applied to 

manufacturing processes with cascade or serially dependant properties. So far these 

control charts have been proposed for 3 sigma process monitoring. In this work this 

has been upgraded to high sigma process monitoring.  The next chapter details the 

proposal of a new power transform for enhancing the cause selecting control chart 

application to high sigma process.  
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 Chapter 4 
 

Transforms for High Sigma  
Cascade Process  

 

4.1     Introduction 

 An important assumption with which the control charts are built is that the 

data are normally distributed. Likewise the basis on which the linear regression 

models are formed is the assumption that the residuals or error terms are 

normally distributed. In this work for high sigma environ, a cause selecting 

control charts which work on the basis of regression models and Shewhart type 

control charts is proposed. Hence it is obligatory to satisfy both these 

assumptions for high sigma applications in which the count data are 

geometrically distributed. A new transform to convert geometric data into normal 

data is proposed.  

4.2      Normality Assumptions 

The statistical process control techniques in general and control charts in 

particular works on the basis of the assumption that the process data is normally 

distributed. Yourstone and Zimmer (1992) showed that significant departure 

from normality of data will adversely affect the inferences. It may be recalled 

that the design and performance criteria for control chart is the run length. This is 

a function of the parameter of the data set. Hence the importance of assuming 
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normality need not be over emphasized. In the case of a process data set, if a 

function of the quality characteristic data follows a normal distribution, then it is 

feasible to work with the function of the data instead of basic data and resolve 

the normality issue. However such functions must be easy to find out and ready 

to apply. If cumbersome iterations and calculations are involved, the simplicity 

and elegance of the control chart procedure will be lost. This will make the 

control chart inaccessible for the production engineer.  

The assumption that the data is normally distributed was first introduced 

when control charts constants were derived. These values were computed using 

normal probability distribution. Irving Burr (1967) examined 26 types of 

distributions which are non normal. Such studies concluded that while the 

distribution of measurements does affect the percentage of points falling within 

and outside the control limits; the variation is not appreciable compared to a 

normal distribution. From this argument while it may sound practical to use any 

distribution for control charts, using the normal distribution will have some 

distinct advantages. The normal distribution will facilitate equal control limits 

thus lending it to hypothesis testing. Further using predominantly skewed 

distributions like geometric data one will be handicapped with unequal control 

limits. Such distributions also lead profusely to negative lower control limits. 

This issue is very much reduced in the case of normal distribution. Thirdly all the 
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model analysis exercises are justified by using normality assumption. Our study 

of linear regression model has the underlying assumption of normally distributed 

error terms or residuals. Hence the justification of the need to transform 

geometrically distributed high sigma count data to normal distribution. 

4.3   Limitations of Traditional Control Charts for High Sigma Process 

         Traditionally for monitoring count type attribute data Shewharts’ type 

‘p’chart, ‘c’ chart, and ‘u’ chart were used. As it is well known, the object of 

using such charts is the desire to monitor the process at low cost as it is very easy 

to obtain count data. In the case of near zero defect high sigma environment 

special problems are encountered as the defect counts are in terms of parts per 

million. These are discussed in the following paragraphs. 

4.3.1 ‘P’ Charts 

It is known from Xie et al. (2000) and Kaminsky et al. (1992) that the 

defect counts follow a geometric distribution (a special case of binomial 

distribution).  The normal approximation of such data qualifies them as a 

candidate for drawing a control chart. In case of ‘p’ charts when the process 

approaches near zero defect level, the ‘p’ or ‘np’ charts may not satisfy the 

normal distribution approximation unless the sample size is very large. For its 

normal approximation to be valid and the above requirement of large sample size 

to be valid as otherwise, false alarm rate,  
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  P (False Alarm) = 1 – P (LCL   ≤   X ≤ UCL)      (4.1) 
                                                   

 Where p, n are the parameters of the binomial distribution, and 

Upper Control Limit  =   p + 3 ( )       (4.2)  

Central Line              =    p        (4.3) 

  Lower Control Limit =    p –  3 ( )       (4.4) 

          As there is scarcity of defects in such high quality process this poses a 

serious practical problem. For Shewhart’s control chart to be valid ‘np’ should 

normally be above 5. When p is equal to 3.4 X 10 -6, the sample size ‘n’ will be 

fairly very large equivalent to 2, 94,000 samples which is impractical and very 

difficult to obtain.   

4.3.2 ‘C’ Charts 

           A product is said to be defective if there is a non conformance in any of 

the critical to quality characteristics. The characteristic in which the non 

conformance is noted is a defect. For analogy variation in diameter is a defect 

that renders the product defective. The ‘p’ chart (for fraction defectives) is used 

whenever the sample size is variable. When the sample size is constant, the np 

charts are deployed. The ‘c’ chart is used for number of ‘defects’. For 

constructing a c chart, samples of fixed size ‘ℓ’ (Quantity of products in each 
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sample) is collected and the number of defects ‘c’ in each sample is recorded. 

The control limits are designed as follows:  

        Central Line C =        
   

           (4.5) 

        Lower Control Limit    =    c    –    3√c          (4.6) 

        Upper Control Limit    =    c    +    3√c       (4.7) 

4.3.3 ‘U’ Charts 

           For manufacturing processes where products are produced continuously in 

which it is impractical to fix the sample size ℓ at each time a control chart for ‘u’ 

= c/ℓ  can be used. The mean of ‘u’ = λ and its variance λ/ℓ where λ >0 is the 

defect rate.  The control limits of u carts are: 

          Central Line            =  u           (4.8) 

          Lower control limit   =  u  − 3
ℓ
        (4.9) 

          Upper control limit   =   u  + 3
ℓ
               (4.10) 

          According to Chan et al. (2000), the ‘c’ charts and ‘u’ charts are unstable 

as the smaller values of ‘ℓ’ will result in frequent false alarms and very large 

values of ‘ℓ’ will result in few signals which may be missed. Process mean = 

λ× ℓ is large enough, so that Poisson random variable can be approximated as a 

normal random variable. For high sigma processes defect rates are low and is of 

the order of parts per million. For analogy, 
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When λ < 0.01 and when ℓ ≤ 500 which is a case of high sigma process, 

          c   < 3√c                                         (4.11) 

          u   < 3
ℓ
                              (4.12) 

In such cases, both lower control limits, 

         c −3 √c                     (4.13) 

          u  −3 
ℓ
                                         (4.14) 

will be negative. It is customary to keep the lower control limits as zero in such 

cases. In practice, the negative control limits have no relevance as the number of 

products can never be negative, it also cannot be zero. The performance indices 

of a Shewhart type ‘c’ chart and ‘u’ chart can never be accomplished. Further the 

object of continuous improvement of the process cannot be accomplished using a 

negative value or zero as control limits. 

According to Chan et al. (2000) when c <  0.09, which easily occurs for a 

process with low 휆,  we have 

 =   c  +  3√c     < 1                         (4.15)  

             =   u +  3
ℓ
                      (4.16) 

   = (       √ 
ℓ

   )     <
ℓ
                    (4.17) 
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  and the upper control limits of the c chart and the u chart are less than 1 

and 
ℓ
 ,  respectively. In this case, every occurrence of a single defect in any 

sample will give c = 1 and  u = 
ℓ
 , and these values exceed the upper control limit 

of the ‘c’ chart and ‘u’ chart respectively,which indicates that the process is out 

of control. This is obviosly an overaction to the occurrence of defects in a stable  

process with low λ,because in such a process,defects will occur occassionally no 

matter how small the λ is  and  as far as λ ≠ 0.   

 In view of the foregoing shortcomings, the poisson distribution based 

control charts rendered themselves unsuitable for high sigma process monitoring 

 4.4  Probability Limits  

The Shewhart’s control charts are characterized by ‘k’ times, mean or 

moving range. Such ‘k’ times type control charts pose problems in the case of 

high sigma processes where the defect counts are of the order of parts per million 

(ppm). These types of charts may require very large and impractical number of 

samples to signal an opportunity for process improvement.  One alternative, 

proposed in current literature is to use probability limits instead of ‘k’ times 

limits. In this chapter issues involved in using probability limits for high sigma 

control charts in general and high sigma cause selecting control charts in 

particular have been discussed. 
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It is important to be aware of potential problems with traditional control 

charts and use different alternatives when necessary. Geometric distribution is a 

common distribution in practice although control charts based on such a 

distribution have not been widely studied. When the Poisson distribution is not 

suitable for a particular process, geometric distribution can be a good alternative.  

As many types of measurement data follow geometric distribution, it is a 

distribution for the monitoring of high-yield processes, based on the cumulative 

count of conforming items. When the process is improved, it is easy to switch to 

the control chart for a cumulative count of conforming items and this 

measurement follows geometric distribution. The setting up of cumulative count 

of conforming chart (CCC) chart is similar to and as simple as a Shewhart’s 

control chart.  

The CCC chart assumes a fairly prior knowledge of ‘p’ and ‘α’. The 

points below LCL are taken as process deterioration signals. The points above 

UCL are taken as a sign of process improvement. The key issue is that a process 

is presumed to be in control until a nonconforming item appears. 

4.5  Limitations of ‘k’ - Sigma Limits 

If the observation X is geometrically distributed, then we have 

P(X=x) = p (1-p)x-1 , x= 1,2,……..,i                                         (4.18)
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If we have a subgroup of size n, then the total number of counts in the 

subgroup,  

 X = X1 + X2 + ………+ Xn, has a negative binomial distribution. 

Assuming that p is known and n is fixed, control limits can easily be obtained. 

Let B = X – n, the negative binomial distribution can be written in this form, 

P [B =B]    =    pn (1-p)z    , z = 0,1,2,……..    (4.19 )    

The expected value and variance of Z are given by 

      E [B] = ( )   ,                        (4.20) 

and   

      Var (B) = ( )                                         (4.21) 

respectively.  In general, based on the conventional idea of k-sigma, that is 

control limits for B computed as the k times the standard deviation, the following 

control limits are obtained: 

UCLk    =        ( )
  +k 

( )              and                 (4.22) 

          LCLk     =
     n(1−p)

p   −k ( )
              (4.23)   

Because the k-sigma idea is based on normal approximation, the sample size has 

to be large in order that the probability of false alarm to be equal to the case in 

the conventional Shewhart charts. Stated alternatively, it is well known that for a 
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negative binomial distribution to be approximated by a normal distribution, np 

has to be large. When p is small, the sample size n has to be very large. 

 The problem with LCL is a more serious one. In fact, LCL can almost 

never be greater than 0. In order for LCL to be positive, we have to have 

               
     ( )

  >   k 
( )

                                                          (4.24)   

The above inequality can be simplified to be 

n (1-p)>  k2                                (4.25) 

 p < 1 −                    (4.26) 

Suppose that k = 3, and n = 5, which are the standard values commonly 

used, the value of ‘p’ should be, p < −0.8, and this can never happen. Also, 

when the inspection is continuous, n =1, so that even with k=1, value of ‘p’ 

should be p < 0 which can never be valid.  

 To sum up using ‘k’ times control limits the traditional control charts will 

be impractical for high sigma processes. They can only be adaptable to three 

sigma processes. The second issue is that the LCL can never be greater than zero. 

This is another issue encountered. Kaminsky et al. (1992), Chan and Goh (1997), 

Xie and Goh (1997), Chou et al. (1998), Xie et al. (1999),Xie et al. (2000), 

Kuralmani et al. (2002) , Liu et al. (2005) dealt with the use of probability limits 

for high sigma control charts. 
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Further the issue of negative LCL has been resolved by using exact 

probability limits. When there is prior knowledge of probability indices, exact 

probability limits have been proposed. If probability of a nonconforming item is 

‘p’ then the central line of the control chart 

 CL = 1/p,                (4.27) 

and suppose the acceptable false alarm probability is ‘α’ the UCL and LCL are 

designed as, 

            UCL =  (– )

 ( – )
                  (4.28)  

    

 LCL =  ( – )

 ( – )
                (4.29) 

These limits when used for the known indices, fraction non conforming ‘p’, false 

alarm probability ‘α’, and the control limits are summarized as per table 4.1. 

Table 4.1.  Control Limits Based on Exact Probability 

 
        

 

 

    

It can be seen from the table 4.1 that the control limits are unequal. The unequal 

control limits restricts the basic character of control chart theory, namely, 

i. Hypothesis testing 

ii. Application of run rules  

Fraction non 
Conforming 'p' α CL UCL LCL 

0.002 0.01 500 2647 3 
0.0015 0.02 667 3068 7 
0.001 0.05 1000 3687 25 
0.0005 0.0027 2000 13212 3 
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McCool and Motley (1998) studied the power transform of Nelson (1994) and 

logarithmic transform and probability based control limits. For known 

probability they suggested the following equalities for arriving at the control 

limits 

LCL     =   ( )  .                           (4.30)  

 UCL   =   ( )  .                     (4.31) 
 

Using the above relationships, the control limits for known probability is shown 

in table 4.2. As LCL is the action limit for high sigma count data only LCL is 

determined 

Table 4.2.  Control Limits Based on Known Probability 

p α LCL 
0.0020 0.0100 0.223 
0.0015 0.0200 0.271 
0.0010 0.0500 0.354 
0.0005 0.0027 0.154 

 

4.6  Limitations of Probability Limits 
The cause selecting control charts work on the basis of Shewharts type 

control charts and a cause selecting chart based on residuals. As they work on the 

basis of regression equations, the probability limits independent of process 

statistic cannot be used. It may be recalled that the regression model is, 
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Y =    β0 + β1 X + ε                                                         (4.32)                                          

the estimation of model in any control charting method decides the control limit    

and chart performance.  In case of the regression based cause selecting control 

charts the model depicted in equation 4.32 decides not only the control limits, but 

also the charting statistic. The bivariate regression model shown above has, 

 X     the regressor variable 

 Y     the response variable 

 β0      the intercept  

 β1      co-efficient of regressor X. 

 ε    residual or error term 

In the cause selecting control chart methodology a Shewhart type control chart 

for variables X and Y and residuals control charts are drawn. The residuals chart 

is known as the cause selecting control chart which decides the quality variation 

in process Y on account of process X. The probability based control limits being 

common to all types of charts will not be viable for phase II operation, where the 

control limits are freezed.  In the case of high sigma control charts the probability 

based limits render the advantage of a positive lower control limit which is the 

action limit.   In the case of residuals control chart the probability based limits 

may not be realistic as the process data controls not only the chart performance 
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but also the chart statistic. This disadvantage renders the probability limits 

inappropriate for any regression model based control chart. 

With prior knowledge of false alarm probability and fraction 

nonconforming percentage, probability limits have been shown to be useful for 

overcoming negative LCL. In the case of high sigma process, as the process 

statistic is of geometric distribution, which is negatively skewed, the use of 

probability limits was advocated. However the unequal control limits restricts the 

use of high sigma control charts for application of run rules and hypothesis 

testing. As the probability limits are independent of the process statistic, 

probability limits cannot be readily applied to regression based cascade process 

monitoring.  Another important impediment in using the probability limits for 

high sigma cause selecting control charts is the intercept model issue. As the 

model alters the chart statistic, probability control limits cannot be used. In this 

work a solution is suggested for overcoming this issue through data 

transformation.  

4.7     Transforms Basics 

  The production process data recorded at intervals form the ingredients of 

any control chart. The general requirement for such a control chart is that the 

data is normally distributed.  In real process situation there may be instances 

where it is not practical to satisfy this requirement. When control chart theory is 
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applied to cause selecting control chart this condition is all the more necessary 

for the least square regression analysis to be valid. This traditional condition is 

insisted in the case of control chart theory for hypothesis testing. In the case of 

residual analysis the normality assumption facilitates the testing of hypothesis for 

arriving at the maximum likelihood estimate.  

  From the point of view of control charts the need for normal data is 

important, as it facilitates equal control limits and application of run rules for 

sensitizing the chart performance. Focusing the attention on the problem of 

designing a cause selecting control chart for high sigma process the data 

transformation should follow a normal distribution and it should remedy certain 

inherent difficulties encountered with the original parameter. It is needless to 

mention that it should facilitate the implied advantages of a normal distribution. 

When trying to choose an appropriate transformation only already tried 

transformations are laded upon.  

4.7.1 Box Cox Transformation 

Box and Cox (1964) contributed a detailed work on transformations. They 

discussed about the transformation for a dependant variable and the method of its 

optimization. Their method of optimization was to consider the following test of 

hypothesis to find out the maximum likelihood estimate.  

            Y =            λ≠ 0                         (4.33) 
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             Y =  Y  ln (y)        λ= 0                                                                   (4.34) 

4.7.2 Johnson’s Curves 

Johnson (1949) developed three families of distribution of a variable X which are 

easily transformed to a standard normal distribution. These distributions are 

labeled SB , SL  and SU. The subscripts B, L, U refer to X being bounded, bounded 

from below or long normal and unbounded.  Farnum (1996) also studied this 

issue. The type of transformation and underlying conditions are listed in table 

4.3. 

Table 4.3.  Johnson’s System of Transformation 

Johnson 
Family Transformation Parameter 

Conditions X conditions 

SB Z=γ+ηℓn є
є

 η, λ >0, −∞ < γ < ∞, 
−∞ < є < ∞ 

 
є < X < є + λ 

SL Z=γ+ηℓn(X − є) η>0,   − ∞ <  γ < ∞, 
−∞  < є <  ∞ X > є 

SU Z=γ+ηsinh є  Same as SB −∞ < X < ∞ 
 

Detailed discussions of Johnson (1949) can be found in Slifker and Shapiro 

(1980), Bowman and Shenton (1983), and Stuart and Ord (1987), Hahn and 

Shapiro (1994), Johnson, Kotz and Balakrishnan (1994),  

The objective of transform is to achieve normality and linearity. In the 

context of regression models the transform can be used to perform variance 

stabilization of the regressor, and to make the correlated variables of the 
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regressor into independent data. Further the colinearity between two regressor 

variables can be overcome with transforms. Transforms can also be deployed for 

response variables. In a bivariate high sigma process count of conforming items 

between two nonconforming items is the data set collected. It is in the form of a 

geometric distribution. For converting the geometric distribution into normal 

form a transform is required. For cause selecting control charts for such 

applications a transform is proposed in this work 

4.8    Geometric Distribution of High Sigma Data 

Manufactured products are subjected to two types of inspection. The 

variable inspection is carried out on dimensional data and attribute inspection is 

carried out on binary ‘pass or fail’ basis. Dimensional characteristic inspection 

can be summarized as ‘within specification or out of specification’ style of 

attribute information. When critical pats are inspected and binary if a ‘pass or 

fail’ criterion is applied, the data modeled is Binomial distribution.  

In the case of mass produced products, the economical way of inspection 

is the sampling process. As 100 % inspection is not feasible, a representative 

sample ‘n’ from a population is taken. This sample is inspected and the number 

of parts which fail to meet the specification known as the fraction of non 

conforming product, ‘p’ is calculated. When ‘n’ is very large compared to the 
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population, say of the order of 10 % or more, such binomial distribution is 

known as Geometric distribution. 

As the process sigma level increased in tandem with manufacturing 

technology and automation, the inspection systems have also improved. Manual 

inspection has given way to ‘online’ and automated inspection. This has opened 

the flood gates of product and process information, online in ‘real time’. Hence 

the logic and principles of ‘sampling’ and ‘piece to piece’ inspection has also 

changed. In high sigma manufacturing like the six sigma process, count of 

conforming items between two non conforming items is the characteristic that 

forms the building blocks of the control chart. This is nothing but the average run 

length. In such a case, 100 % of the population is sampled and the resulting 

parameter is a geometric distribution.  

The geometric distribution for count of conforming items between two 

non conforming items has been dealt with by Kaminsky et. al. (1992), Xie et.al. 

(2000), Sun and Zhang (2000), Ranjan et al. (2003) and others. The geometric 

distributions being negatively skewed have the characteristic of negative lower 

control limits when organized into a control chart. Xie et al. (2000) proposed 

double square root transforms and logarithmic transforms for overcoming this 

difficulty. The logarithmic transform is characterized by the equation,  

X (transformed)     = ln (X)               (4.35)  
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The double square root transformation is akin to power transformation except 

that the value of power is  i.e. .25.  

           X (transformed)     = X 0.25                       (4.36) 

 According to Nelson (1994) when the fraction nonconforming is small to the 

order of parts per million (ppm), the data can be transformed to 
.

 power 

(0.277) for converting it into a normal distribution. It is of the form, 

X (transformed)     =  X0.277                        (4.37) 

The upper control limits (UCL) and lower control limits (LCL) were calculated 

by him   as follows:   

UCL         =         Process Mean   + 2.66 mR           (4.38) 

CL           =          Process                         (4.39) 

LCL         =         Process Mean - 2.66 mR                     (4.40) 

Any point above UCL is considered a process improvement and any point below 

LCL is deemed as process deterioration. While building a chart for a univariate 

process, using transforms will render the LCL positive as per condition: 

 Process mean >   3 SIGMA                   (4.41) 

While using 3 sigma limits,  

 LCL   = Process Mean – 3 SIGMA             (4.42) 

and for LCL to be positive,  

Process mean > 3 Sigma                                (4.43) 



75 
 

 

4.9 Transforms for Residuals Control Chart  

As the cause selecting control chart is a residuals chart, the difficulty arose 

in using the conventional transforms like power, logarithmic and double square 

root transforms.  The fitted regression line process data for the dependent process 

chart is normally higher than the native dependant process data. Hence the 

resultant residuals have smaller mean and it is difficult to overcome the problem 

of negative LCL and the equation 5.26 and equation 5.28 are difficult to satisfy.  

For analogy we have studied a precision pin manufacture cycle, shown in 

figure 4.1 comprising of metal drawing and metal forming processes. Two 

situations have been studied. Motivated by Xie et al. (2000) data two types of 

process situations are considered. At 50ppm the high sigma process count of 

conforming chart gives the highest run length of 500 for a percentage defective 

of 60. For a percentage defective of 200 the run length is 180. The process data is 

listed in table 4.4. 

Table 4.4.  Count of Conforming Items Data for Pin Manufacture  

 

Data 
No. 1 2 3 4 5 6 7 8 9 10 

Cold 
Drawing 
process 

401 456 743 543 358 407 831 409 642 515 

Cold 
Forming 
Process 

332 31 113 306 257 58 53 259 211 301 
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Table 4.4.  Count of Conforming Items Data for Pin Manufacture (continued) 

 

 

 

 

 

 

 

Figure 4.1. High Sigma Bivariate Production Process. 

 

4.10  Design Flow      A schema of flow diagram depicting the above process 

steps is shown in figure 4.2. 

Data No. 11 12 13 14 15 16 17 18 19 20 
Cold 

Drawing 
process 

662 354 433 364 793 620 751 352 323 323 

Cold 
Forming 
Process 

129 321 58 303 127 172 269 149 44 130 
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Figure  4.2. Design Flow  
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The brief procedure for building a cause selecting control chart for a bivariate 

high sigma process is enunciated hereunder: 

i. Collect data on count of conforming items between two non conforming 

items for the two processes. 

ii. Using power transforms convert process data for getting a positive LCL. 

iii. Using the above transformed values, construct a Shewhart type control 

chart X with moving range. 

iv. As a next step the cause selecting control chart is designed. The data X, Y 

are transformed and linear regression line has been fitted in the form 

Y=a + b X                       (4.44)                    

v. Using the transformed value Y it is possible to get the value Ŷ applying 

the fitted regression line equation.  

vi. Now the residue Y-Ŷ is used to construct a residual control chart known 

as cause selecting control chart using, Cause selecting data   

              Zn  =  Yn – Yn       where ‘n’  is  1,2,3 ………n            (4.45)  
 
Two types of transforms namely double square root transform and logarithmic 

transforms are considered following equations 4.35 and 4.36. The process data 

which is geometrically distributed has been transformed .The resulting scenario 

are discussed. In scenario 1, the metal drawing process having an average run 
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length of 500 and metal forming having average run length of 180 and the 

resulting LCL is shown in table 4.5. 

 

Table 4.5.  Lower Control Limit Data I with Transforms 

Transform Regression equation LCL 
Logarithmic Y = 5.64 - 0.10 X –0.744 

Double Square Root Y = 4.12 - 0.13 X –0.561 
 

The cause selecting control chart for this scenario using logarithmic transform is 

shown in figure 4.3. The transformed data is shown in table 4.6 

 

Figure 4.3.  Cause Selecting Control Chart –Logarithmic Transform 
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Table 4.6 Transformed Process Data for Pin Manufacture 

 

Data 
No. 

Cold 
Drawing 

Cold 
Forming 

Logarithmic 
Transform 
for Cold 
Drawing 

DSR for 
Cold 

Drawing 

Logarithmic 
Transform 
for Cold 
Forming 

DSR for 
Cold 

Forming 

1 332 401 5.805 4.269 5.994 4.475 
2 31 456 3.434 2.36 6.122 4.621 
3 113 743 4.727 3.26 6.611 5.221 
4 306 543 5.724 4.182 6.297 4.827 
5 257 358 5.549 4.004 5.881 4.35 
6 58 407 4.06 2.76 6.009 4.492 
7 53 831 3.97 2.698 6.723 5.369 
8 259 409 5.557 4.012 6.014 4.497 
9 211 642 5.352 3.811 6.465 5.034 

10 301 515 5.707 4.165 6.244 4.764 
11 129 662 4.86 3.37 6.495 5.072 
12 321 354 5.771 4.233 5.869 4.338 
13 58 433 4.06 2.76 6.071 4.562 
14 303 364 5.714 4.172 5.897 4.368 
15 127 793 4.844 3.357 6.676 5.307 
16 172 620 5.147 3.621 6.43 4.99 
17 269 751 5.595 4.05 6.621 5.235 
18 149 352 5.004 3.494 5.864 4.331 
19 44 323 3.784 2.576 5.778 4.239 
20 130 323 4.868 3.377 5.778 4.239 

 

In scenario 2, the metal drawing process having an average run length of 

180 and metal forming process having an average run length of 500, is studied 

and the resulting scenario is shown in table 4.7. 
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Table 4.7. Lower Control Limit Data II with Transforms   

 
Transform Regression equation LCL 

Logarithmic Y = 6.29-0.02 X –0.219 
Double Square Root Y =3.25+0.39 X –0.509 

 
 

We can infer from table 4.5 and table 4.7 that the cause selecting control 

chart for residuals is not letting itself to satisfy the relationship described in 

equation 4.36 and equation 4.37, the issue of negative LCL requires further 

investigation.   

4.11  Proposed Transform 

The count of conforming items between two non conforming items forms 

a skewed geometric distribution. This has the disadvantage of negative lower 

control limit. In decision making process for these charts, any point above the 

UCL is considered a process improvement and any point below LCL is 

considered process deterioration.  There cannot be a negative number of products 

and the negative control limits are impractical. To overcome this many 

researchers have proposed probability based control limits. But they are not equal 

with reference to the Center line of the control chart. Hence from practical view 

point, design and application of run rules and interpretation are difficult. Further 

direct depiction of meaning of data is also lost. Consideration of using transforms 

was thought of as an alternate to overcome the negative LCL. 
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In the foregoing discussion it is shown that the logarithmic and double 

square root transformation are having limitations for residual control chart type 

design of cause selecting control charts. Hence various transforms have been 

tried out and the resulting LCL for proposed transform is listed in table 4.8. The 

transform is of the general form:  

 X (transformed)     =    X 1/r where r > 2                       (4.46) 

A study is conducted as to the applicability of the appropriate value for ‘r’ 

which will render the positive value for LCL. Various values of ‘r’ are 

considered. Simulation was done for 2 cases of the process situation. Situation 1 

comprises of the cold drawing process having better run length compared to cold 

forming process. It is seen that the transform, 

     X (transformed)      =    X 1/100   leads to a positive LCL                   (4.47)   

The transformed data is shown in table 4.8 below. 
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Table 4.8.  Transformed Data of Process With Proposed Transform 
 

Data 
No. 

Cold 
Drawing 

Cold 
Forming 

Proposed 
Transform 
for Cold 
Drawing 

Proposed 
Transform 

Cold 
forming 

1 332 401 1.06 1.062 
2 31 456 1.035 1.063 
3 113 743 1.048 1.068 
4 306 543 1.059 1.065 
5 257 358 1.057 1.061 
6 58 407 1.041 1.062 
7 53 831 1.041 1.07 
8 259 409 1.057 1.062 
9 211 642 1.055 1.067 
10 301 515 1.059 1.064 
11 129 662 1.05 1.067 
12 321 354 1.059 1.06 
13 58 433 1.041 1.063 
14 303 364 1.059 1.061 
15 127 793 1.05 1.069 
16 172 620 1.053 1.066 
17 269 751 1.058 1.068 
18 149 352 1.051 1.06 
19 44 323 1.039 1.059 
20 130 323 1.05 1.059 

 

The LCL value with various transforms and its sensitivity is shown in 

table 4.9 and table 4.10 respectively for the two process scenarios.  The first 

scenario is the situation in which the upstream process having higher ARL and 

the second scenario is the situation in which the downstream process is having 

higher ARL.  



84 
 

 

 

Table 4.9. Transformed Data with Proposed Transform – Process Situation 1  

r  Transform 

Cold 
Drawin

g 
Cold 

Forming 

LCL 
Process 

Situation I 

Sensitivity 

∆r/r 
∆LCL/         
LCL 

4 0.25 200 60 -1.4 0 0 
6 0.167 200 60 -0.6 50 57 
8 0.125 200 60 -0.36 100 74 

10 0.1 200 60 -0.25 150 82 
50 0.02 200 60 -0.02 1150 99 
60 0.017 200 60 -0.004 1400 100 
70 0.014 200 60 -0.003 1650 100 
80 0.013 200 60 -0.003 1900 100 
90 0.011 200 60 -0.003 2150 100 
100 0.01 200 60 -0.002 2400 100 

 
Table  4.10  Transformed Data with Proposed Transform - Process Situation 2 

 

r  Transform 
Cold 

Drawin
g 

Cold 
Forming 

LCL 
Process 

Situation II 

Sensitivity 

∆r/r ∆LCL/   
LCL 

4 0.25 60 200 -0.561 0 0 
6 0.167 60 200 -0.256 50 54 
8 0.125 60 200 -0.161 100 71 

10 0.1 60 200 -0.115 150 80 
50 0.02 60 200 -0.016 1150 97 
60 0.017 60 200 -0.013 1400 98 
70 0.014 60 200 -0.011 1650 98 
80 0.013 60 200 -0.01 1900 98 
90 0.011 60 200 -0.009 2150 98 
100 0.01 60 200 -0.008 2400 99 
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Situation 2 comprises of the succeeding process, namely the cold forming 

process having better ARL. Less healthy preceding process and healthier 

succeeding process showed that the transform given in equation (4.47) gives best 

results.  

The resulting characteristic is shown in figure 4.4. It can be seen that as 

the ‘r’ value increases the probability of getting a positive LCL increases.  

As the value of ‘r’ increases or the value of transform decreases the LCL 

approaches zero. In both the cases optimum results are seen to be obtained when 

transform is of the form 
  
  power of the characteristic as seen in figure 4.4. 

 

Figure 4.4. ‘r’ value –LCL Relationship 

 

Figure 4.5 shows a normal distribution of data converted from geometrically 

distributed process data. 
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Figure 4.5.  Normal Distribution of Residual Values 

 

Thus the transform proposed and shown in equation 5.32 has enabled 

conversion of geometric data to normal data and rendered a positive LCL. 

This is the first and second contribution of this work. 

The scatter plot of raw data of cold drawing and forming processes is 

shown in figure 4.6. The scatter chart of transformed data for cold drawing and 

residual data are shown in figure 4.7. It can be seen that while the raw data fails 

to form a regression line, the transformed data set of the two processes form a 

regression line. This vindicates the effectiveness of the new transform designed 

in terms of its ability to form a linear regression model. 
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Figure 4.6.  Scatter Plot of Raw Data 
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Figure 4.7 Regression Line of Transformed Process Data  

The cause selecting control chart with positive grid lines is shown in figure 4.8. 

using the proposed transform.   
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 Figure 4.8.  Cause Selecting Control Chart With Proposed Transform 

 

4.12 Conclusion 

 For upgrading cause-selecting control charts from 3 sigma to six sigma 

compliant the issue of converting geometric data into normal data has to be 

sorted out. A power transform has been proposed to meet this requirement. A 

detailed design flow has been drawn with explanatory numerical examples. A 

positive LCL is also achieved.  The next chapter details the intercept model error 

issues. 
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Chapter 5 
 

Intercept Model Errors  
 

5.1     Introduction 

In traditional control chart methodology the parameter that is followed by the 

data set is important from the point of view of the control limits and chart efficiency. 

In least square regression based control chart methodology, the model not only affects 

the chart efficiency but also the statistic being charted. In this chapter the regression 

model with or without intercept term and their bearing on the chart efficiency is 

discussed. The design of a two stage cause selecting (CS) for high sigma cascade 

process to overcome the model uncertainties due to intercept term is also discussed. 

The influence of these scenarios on type II error (missed signals). Average run length 

(ARL) of residuals type CS has been studied and inferences made. 

5.2 Least Square Regression 

It may be recalled that the general least square regression model is, 

Y   =   β0  +  β 1X1  + - - - - - - - - - - - - - - -+  βn  Xn  +  ε                             (5.1) 

And for a bivariate cascade process it can be simplified as,  

Y   =   β0 + β 1 X + ε                                                                                     (5.2) 

Where β0 is the intercept term and β1…………. βn .  is the slope, ε is the error term. 

There are many industrial applications in which, the intercept term ‘β0’ is zero. 

That is when the regressor ‘X’ = 0, response ‘Y’ is also zero. This implies that when 

process ‘X’ is not taking place process ‘Y’ cannot happen. For analogy, in case of a  
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cold drawing process (upstream process) and press forming process (down stream 

process), unless cold drawing to ‘size’ takes pace, cold forming cannot be carried out. 

Instances that resemble no intercept in a regression model can be defined as,  

Y   =   β1 X + ε                                                                                           (5.3)      

Least square regression analysis forms the basis of cause selecting control 

charts. It involves fitting of regression model and establishing a straight line 

relationship between regressor X and response Y. The estimates for coefficients 

namely intercept β0, slope β1, and error term ε is calculated. Further confidence 

intervals for these constants and the prediction intervals can be deduced.  

The traditional control chart method involves determination of the parameters 

of the process data and estimation of the parameter metrics. For the generally assumed 

normal distribution the metrics are the mean and standard deviation. In traditional and 

current research the issue of the effects of parameter estimation has been discussed for 

almost all variants of control chart. 

 In the case of traditional control charts the effects of parameter estimation will 

affect the control limits and run length performance and associated indices. This will 

not in any way influence or alter the process statistic being charted .In case of CS 

which is a residuals’ control chart working  on the basis of regression models, the 

estimation of standard deviation or moving range affects the control limits. The 

estimation of coefficients β0 and β1   affects the chart statistic unlike the traditional 

control charts.  

 Shu and Tsung (2000) and Shu et al. (2004, 2005) dealt with the estimate of 

coefficients β0  and β1 and  the resultant effect on 3 sigma control chart performance 
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indices. This may not be applicable to high sigma process where the count of 

conforming items (CCC) between two non conforming items is being used as chart 

statistic. Further before estimating the coefficients the intercept model has to be 

estimated. This has not been addressed. Hawkins (1993) addressed these issues of 

regression adjustment for variables.  

In this work the idea of CCC has been extended to CS for a bi-variate high 

sigma process. Adopting an intercept model (equation 5.2) in the place of a no 

intercept model (equation 5.3) and adopting model (equation 5.3) in the place of 

model (equation 5.2) will have detrimental effects on the process statistic and the 

performance indices.  

5.3  High Sigma Cause Selecting Control Charts 

In current literature the CS has been discussed for 3 sigma process which is the 

normal industry norm. It may be recalled that a 3 sigma process will have process 

rejects up to 67000 per million opportunities. For a manufacturing operation to be 

world class, it has to aim at 6 sigma metric, which yields only 3.4 defects per million 

opportunities. As the defects are of the order of parts per million the monitoring tools 

used for 3 sigma are not adaptable to 6 sigma process. The ‘count of conforming 

items’ control chart (CCC) which uses the terminal nonconformity sequence as the 

statistic, is the appropriate one for high sigma process. This statistic follows the 

geometric distribution. The CCC chart or the count of conforming control chart was 

discussed by Calvin (1983), Goh(1987), Kaminski et al. (1992), Nelson(1994), Xie 

(2000). Lakshminarasimhan and Kannan (2007) dealt with the design of CS for a bi-

variate high sigma process.  They used a power transform, 
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 X = X1/100                 (5.4) 

to convert the geometric data into a normal form. This also addressed the issue of the 

negative lower control limits, as defined by the requirement that, 

µе   >   mRе ,                 (5.5)  

where   µe   is the mean of residuals and mRe  is the moving range of the residuals ‘ε’.   

5.4 Intercept and No Intercept Models 

Regression models serve the purpose of arriving at the linear relationship 

between the characteristic of upstream process and downstream process. Every care 

must be taken in estimating the coefficients. The intercept β0 is influenced by near 

origin values. The slope β1 is influenced by remote values of the regressor. The remote 

values or the outliers distort the relationship. The evaluation of the coefficients of the 

regression model and the error term are shown in figure 5.1. 

 

 
Figure 5.1. Evolution of Regression Model 

 

In regression analysis the relationship between the regressor X and the 

response Y will not be the same with model uncertainties. Assume a data cluster 

which is far away from the origin. In such a case, assuming that it is a no intercept 

model and if it is forcibly fitted through the origin, the emerging fit will be a complex 

model. In such a situation the absence of intercept which is in reality present in the 

model may distort both the model and the regression analysis. Such a model is 

depicted in figure 5.2. 
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Figure 5.2. No Intercept Model Forcibly Fitted as Intercept Model 

 

For such a fitted curve, the model near the origin will be more complex and may 

require many more polynomials to truthfully depict the model. Similarly a situation 

may arise in which a no intercept model may be forcibly fit as an intercept model. 

This is shown in figure 5.3. 

 

Figure 5.3.  An Intercept Model Forcibly Fitted as No Intercept Model 

 

The inclusion of intercept term which does not exist will distort the regression 

analysis. Montgomery et al. (2003), Draper and Smith (2005) details about regression 

model theory and applications. 
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Shu and Tsung (2000), Shu et al. (2004, 2005), discuss the model uncertainties 

and estimation errors for the coefficients β0, β1.  It was suggested to use the prediction 

intervals for the coefficients as control limits to overcome model errors and 

uncertainties.   

It may be recalled that the errors are normally and independently distributed as 

N (0, σ2). Under such statistical assumption it is possible to construct 100(1-α) percent 

confidence interval for β1 for a no intercept model. The lower confidence interval is,   

β1 -tα/2 , n-1  √ MSR  / √ ∑x i
 2

                                                                                                              (5.6 )                                                                                    

Where i is 1, 2, 3………… n. β1 is the fitted  regressor coefficient,  tα/2 , n-1  is the 

student statistic  MSR is the mean square of residuals and x i
 2

     is the i th term of X.                                                                                                               

The 100 (1- α) percent lower confidence intervals for an intercept model is    

β1 -tα/2 , n-2 Se(β1)                                                                                                            (5.7)  

where Se(β1) is   the estimated standard error,  and it is, 

Se(β1)=√MSR/Sxx                                                                                          (5.8)                                                                          

 A regression model with a no intercept term will end up with a negative lower 

confidence interval, as it has to be less than the origin 0. That is the origin will find a 

place between the lower and upper confidence intervals. For a regression model with 

an intercept term, the lower and upper confidence interval will have positive value as 

it will not contain the origin. This fortifies the need for exact identification of the 

presence of the intercept β0 in the first place, before proceeding with the estimation of 

intercept β0 and slope β1 .Unless  the existence or otherwise of intercept β0 is 

determined the estimation of  β0 and β1 will yield erroneous regression models.  
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There have been many prescriptions for metric for determining the identity of 

intercept or no intercept model. Eisenhauer (2003), Hahn (1997) dealt with 

extensively this issue in their research work.  Mullet (1976) dealt with wrong signs of 

regression coefficients.    The co-efficient of determination R2 is one of the metrics 

advocated. R2 indicates the proportion of initial variation for Y for a no intercept 

model.  The existence of intercept is recognized by the comparison of coefficient of 

determination for intercept and no intercept models. For the intercept model,  

R2 =   ∑   (Yi   - Y) 2  / ∑  ( 풊  Yi - Y) 2                       (5.9) 
   

Where, Yi is the fitted values of Y, Y is the mean of values of Y and Yi is the i th 

reading of Y, and for the no intercept model, it is  

 R0
2   = 1- ∑ (   Yi

 – Yi ) 2  / ∑ (Y − Y)2                    (5.10) 

As these measures are based on identities, it is argued that they cannot be 

specific about the presence of intercept term. In instances, where there is a poor fit, 

variation will be more about Yi   than around Y  Then R2 may be negative due to the 

fact that the variation around fitted regression may exceed the variation around the 

mean. Hence  

∑  풊 ퟏ  (Yi   - Y) 2  >     ∑  
  

(Yi - Y) 2             (5.11) 

 This will result in a negative coefficient of determination. Likewise the F 

statistic which is as a metric will also be negative. Hence it is argued that the R2 value 

for intercept and no intercept models are not comparable. Further for the no intercept 

model the numerator of F ratio is calculated from sum of square of predicted values 

around the origin. This is calculated around the mean for the intercept model and 

hence not comparable. 



97 
 

The Mean Square of residuals (MSRes) is considered the best metric for the 

determination of the presence of intercept. The model with lower MS.res will be the 

best fit for the model. As stated the other criteria is the negative lower confidence 

interval in residual analysis to confirm the ‘no intercept’ model as the best fit. 

5.5  Modified Design flow 

A detailed discussion on CS design flow can be referred to Lakshminarasimhan 

and Kannan (2007). Design modifications have been made to this design to 

incorporate the issue of origin in the regression model. 

The procedure involves following steps: 

i. Fit intercept model 

ii. Examine whether equation (5.7) above is less than zero.  If it is less than zero 

then the best fit is no intercept model.  

iii. Further the mean square of residuals will be the minimum for the model to be 

determined. These two bases are the determinants for the model building. 

iv. Design the CS chart with intercept or no intercept model. 

v. The modified design flow is shown in figure 5.4. The modifications have been 

identified in dotted line. 

To explicitly demonstrate the design methodology, two numerical examples have been 

explained. The data have been collected from a bivariate cold drawing X and metal 

forming Y processes. The process details are shown in diagram 5.5. 
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Figure 5.4.  Modified Design Flow  
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5.6   Intercept Model Case Study 

 

 
Figure 5.5.  High Sigma Process 

 

Data has been collected from a high sigma pin manufacturing process, and it was 

attempted to construct a cause selecting control chart. Following the design flow 

enunciated in the previous section, the intercept and no intercept models have been 

analyzed and appropriate model has been chosen. Then the Shewhart type control 

chart for process X and the residual control chart for process Y can be constructed. 

The data set 1 contains the basic counts of conforming items between two 

nonconforming items. This data is in geometric form. The data has been transformed 

to normal form by adopting a transform in equation 5.4. Table 5.1 details the data set 

showing count of conforming items (CCC) and its transformed values for cold 

drawing and cold forming process. 
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 Table 5.1.  Data set 1 – Intercept Model Data 

Basic Data Transformed Data 
Data 
No 

Cold Drawing 
CCC 

Metal 
Forming CCC Cold Drawing Metal 

forming 
1 47 46 1.0393 1.0390 
2 17 29 1.0287 1.0342 
3 36 46 1.0365 1.0390 
4 49 41 1.0397 1.0378 
5 58 48 1.0414 1.0395 
6 39 40 1.0373 1.0376 
7 59 45 1.0416 1.0388 
8 55 38 1.0409 1.0370 
9 24 50 1.0323 1.0399 
10 46 43 1.0390 1.0383 
11 24 22 1.0323 1.0314 
12 36 26 1.0365 1.0331 
13 36 27 1.0365 1.0335 
14 17 31 1.0287 1.0349 
15 19 50 1.0299 1.0399 
16 40 44 1.0376 1.0386 
17 50 38 1.0399 1.0370 
18 25 39 1.0327 1.0373 
19 12 33 1.0252 1.0356 
20 32 43 1.0353 1.0383 

 

The intercept model statistic was first evolved for this data set and is summarized in 

table 5.2. 

Table 5.2. Intercept Model Regression Statistics for Data Set 1 

Coefficients Coefficient 
Values 

Lower 
confidence 
interval @ 

95% 

Upper 
confidence 
interval @ 

95% 

Mean 
Square for 
Residuals 

Intercept 0.8476063 0.602097617 1.09311501 
 

0.000014500 
 

X variable 0.1829355 -0.05413995 0.420010934 0.000005525 
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It can be inferred that the lower confidence interval for intercept term is 0.6 

which is above zero and hence the intercept model is the best fit for this data set.  For 

the purpose of study the no intercept model regression statistic has also been worked 

out and tabled as under in table 5.3 

Table 5.3.  No Intercept Model Regression Statistics for Data Set 1 

Coefficients Coefficient 
Values 

Lower 
confidence 
interval @ 

95% 

Upper 
confidence 
interval @ 

95% 

Mean 
Square for 
Residuals 

Intercept Not 
Applicable 

Not 
Applicable 

Not 
Applicable 

Not 
Applicable 

X Variable  1.001418138 0.999370213 1.003466063 0.0000205 
 

Comparing the mean square of residuals, we can confirm that the intercept 

model having lower MSres and is the best fit for the data set. Two types of errors have 

been envisaged in interpreting the control charts. The first type of error is, 

understanding a noise as signal and the second type is, understanding a signal as noise.  

By filtering out the noise the control chart minimizes the number of times one 

interprets a noise as if it were a signal  (‘α’ risk) and the number of times one misses a 

signal (‘β’ risk ). The average run length (ARL) is the common performance indices 

for a control chart. According to Montgomery (2001) 

β = φ (L - k√n)–φ (–L-k√n) ,               (5.12) 

where   φ denotes the standard normal distribution function 

             L = a constant to determine control limit 

   n = sample size 

   k = shift magnitude 

   α = 1– β    and 
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        ARL = 1/α    or     1/ (1–β)   

The ‘β’ risk and ARL for the data set is calculated and the operation 

characteristic curves and ARL graph for the intercept and no intercept models are 

constructed. Table 5.4 and table 5.5 give the numerical values. The sensitivity has also 

been calculated. 

Table 5.4.   β, ARL Values for Intercept Model Fitted as Intercept Model 
( Data Set 1) 

 

Position Shift 
Magnitude 

% of Shift 
Magnitude β Sensitivity   

Δ β / β ARL 
Sensitivity  

Δ ARL/ 
ARL 

Mean 0.51 20 0.9835 0 61 0 
  1.03 40 0.9483 4 19 68 
  1.54 60 0.8686 12 8 87 
  2.05 80 0.7291 26 4 94 

LCL 2.57 100 0.5359 46 2 96 
 

Table 5.5.  β, ARL Values for Intercept Model Fitted  as  No Intercept Model 
(Data Set 1) 

 

Position Shift 
Magnitude 

% of Shift 
Magnitude β Sensitivity 

Δ β / β ARL Sensitivity  Δ 
ARL/ ARL 

Mean 0.55 20 0.9819 0 55 0 

 
1.1 40 0.9405 4 17 70 

 
1.65 60 0.8438 14 6 88 

 
2.2 80 0.6772 31 3 94 

LCL 2.75 100 0.4641 53 2 97 
 

The operational characteristic curves for based on the two models are shown in the 

figure 5.6. 
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Figure 5.6   Operational Characteristic Curves for Intercept  

                   Model Data with Model Error 

(Shift Magnitude Percentage from Mean to LCL) 

The data set 1 above enunciated is an intercept model. As can be seen from the 

OC curve, when fitted as a no intercept model, the β risk near the lower control limit 

will appear to be less than the actual. The β risk has not changed appreciably at the 

process mean. From 40 % of shift from process mean, it starts showing a lower value 

than the actual. The magnitude increases as it approaches LCL. The ARL values for 

the two charts have been compared and depicted in the figure 5.7.  
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Figure 5.7.   ARL Values for Intercept Model Data with Model Error 

(Shift Magnitude Percentage from Mean to LCL) 

This being an intercept model, if when depicted as a no intercept model may 

show a lower ARL value near process means. At the decision point which is the LCL   

there is no significant change in ARL value.  

5.7 No Intercept Model Case Study  

Another data set has been chosen to show the behavior of no intercept model 

forced fitted as intercept model. Its ‘β’ risk and ARL values have been calculated and 

analysis evolved. Table 5.6 shows the basic and transformed data set. Tables 5.7 and 

5.8 show ‘β’ and ARL values for Intercept and No intercept model calculations.  
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Table 5.6    Data set 2  –  No Intercept Model Data 

                    Basic Data Transformed Data 

Data No Cold Drawing 
CCC 

Metal Forming 
CCC Cold Drawing Metal 

forming 
1 47 78 1.039 1.045 
2 21 35 1.031 1.036 
3 22 36 1.031 1.036 
4 65 107 1.043 1.048 
6 44 56 1.039 1.041 
7 38 49 1.037 1.040 
8 16 21 1.028 1.031 
9 31 40 1.035 1.038 
10 32 41 1.035 1.038 
11 58 75 1.041 1.044 
12 42 50 1.038 1.040 
13 59 71 1.042 1.044 
14 45 54 1.039 1.041 
15 42 60 1.038 1.042 
16 65 87 1.043 1.046 
17 26 35 1.033 1.036 
18 53 81 1.041 1.045 
19 63 96 1.042 1.047 
20 16 19 1.028 1.030 

 

 

Table 5.7. β, ARL Values for No Intercept Model as Intercept Model ( Data Set 2)  

 

Position Shift 
Magnitude 

% of Shift 
Magnitude β Sensitivity 

Δ β / β ARL 
Sensitivity  

Δ ARL/ 
ARL 

Mean 0.26 20 0.9911 0 112 0 

 
0.51 40 0.9840 1 63 44 

 
0.77 60 0.9713 2 35 69 

 
1.02 80 0.9494 4 20 82 

LCL 1.28 100 0.9192 7 12 89 
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Table 5.8.  β, ARL Values for No Intercept as No Intercept Model. (Data Set 2) 

 

Position Shift 
Magnitude 

% of Shift 
Magnitude β Sensitivity 

Δ β / β ARL 
Sensitivity  

Δ ARL/ 
ARL 

Mean 0.56 20 0.990 0 97 0 

 1.13 40 0.982 1 54 44 

 1.69 60 0.965 3 28 71 

 2.25 80 0.937 5 16 84 
LCL 2.82 100 0.894 10 9 90 

 

Table 5.9. No Intercept Model as Intercept Model Regression Statistics for Data Set 2 

 

Coefficients Coefficient 
values 

Lower 
confidence 
interval@ 

95 % 

Upper 
confidence 
interval @ 

95% 

Mean 
Square for 
residuals 

Intercept -0.01 -0.143 0.1234 
  
0.000442000 
 

X variable  1.0127 0.8842 1.1412 0.000001609 
 

Table 5.10 No Intercept Model as No Intercept Model Regression Statistics for Data set 
2 
 
 

Coefficients Coefficient 
Values 

Lower 
confidence 
interval @ 

95% 

Upper 
confidence 
interval @ 

95% 

Mean 
Square for 
Residuals 

Intercept Not 
Applicable 

Not 
Applicable 

Not 
Applicable 

Not 
Applicable 

X Variable  1.00314886 1.002591366 1.003706355 0.000001527 
 
 

From the tables 5.9 and 5.10 it is seen that the MSres is lower for the no 

intercept model. Further the intercept model statistic contains the lower confidence 

interval less than zero. (-0.1431) indicating that y intercept (0) lies between the lower 
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and upper confidence intervals. Hence the no intercept model is the best fit for this 

data set. The Operational Characteristic curves and the ARL graph for the no intercept 

model and its wrong fit as intercept model are shown in figures 5.8and 5.9.    

 

Figure 5.8.  Operational Characteristic Curves for No Intercept  

            Data with Model Error 

(Shift Magnitude Percentage from Mean to LCL)    

 

 

 
Figure 5.9.  ARL Curves for No Intercept Data with Model Error 

(Shift Magnitude Percentage from Mean to LCL) 
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From the above curves it can be inferred that, when a no intercept model is 

force fitted as intercept model, ‘β’ risk estimate will be higher than normal at the LCL 

which is the decision point. The difference is not appreciable near the mean but tends 

to increase as it approaches LCL. The ARL estimate will be higher than normal at 

Mean and LCL. The difference is wider at process mean and tends to decrease as it 

approached the LCL. 

Figures 5.6, 5.7, 5.8 and 5.9 show the intercept model issues and their 

influence on type II error and average run length. Suitable design modifications 

have been shown in design flow figure 5.4. These are the third and fourth 

contribution by this work 

5.8 Conclusion 

 Regression based process monitoring requires the determination of intercept 

term in the first place, so that the process data is arrived at with accuracy and without 

model errors. For 3 sigma cause-selecting control charts Shu and Tsung (2004) and 

Shu et al. (2004, 2005) proposed a method of using prediction interval, and principal 

component regression to obviate the model errors. In this chapter a design 

methodology is proposed for high sigma bi-variate cause-selecting control charts. As 

the regression model will alter the chart statistic the influence of model errors on chart 

performance have been studied and suitable design criteria incorporated in the design 

flow. The next chapter details the normality issue and its influence on chart 

performance. 
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Chapter 6 

Normality and Chart Performance 

6.1  Introduction 

Optimizations of such transforms are normally done by determining the maximum 

likely hood estimate (MLE). In this work instead of MLE the skewness and kurtosis of 

the normally transformed data set and its influence on Lower Control Limit (LCL) and 

type II error have been studied. In case of a high sigma cause selecting control chart, the 

lower control limit is the action limit. For high sigma processes, as the defect counts 

seldom occur, the missed signals or the Type II error is important compared to Type I 

error or false signals. A false signal will draw frequent attention to process and is only 

important for avoidance from the perspective of economics of quality monitoring. A 

missed signal when neglected may degrade the high sigma level of the process and hence 

its importance over the Type I error. In this chapter, the influence of skewness on LCL 

and the influence of kurtosis on the Type II error have been studied for various values of 

power transformations and inferences have been made. 

 
6.2 Maximum Likelihood Estimate  

Box and Cox (1964), discussed about the transformation for a dependant variable 

and the method of its optimization. Their method of optimization was to consider the 

following test of hypothesis to find out the maximum likelihood estimate.  
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  Y =                    λ≠ 0       (6.1) 
        
  Y =  Y   ln y                 λ= 0       (6.2) 
                  
where λ is the transform. The maximum likelihood estimate (MLE) of λ corresponds to 

the value of λ for which the residual sum of square (SSRES) is minimum. The value of λ is 

determined by fitting the regression model for various values of λ and plotting the 

residual sum of squares SSRES versus λ. The value of λ that minimizes the SSRES is the 

MLE of λ. It can be further optimized by using a finer mesh of λ values. This is 

demonstrated in figure 6.1. 

 

     Figure 6.1    Transform Values and Sum of Square of Residuals 
 

From the above chart, it is seen that the optimum power transformation value 

which has the lowest sum of squares of residuals is ‘0.004’. The theoretical optimization 

by MLE above stated may fulfill a mathematical axiom. But in practical context, the 

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

0.000012

0.000014

0.000016

0.000018

0.000020

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

SU
M

O
F

SQ
U

A
R

E
O

F
R

E
SI

D
U

A
L

S

TRANSFORM VALUES

X

Y



111 
 

 

desired objectives are to be satisfied. That is the conversion of geometric data into normal 

data and its influence on the performance indices of cause selecting control charts. It is 

inferred that for the finer mesh of transformations have no qualitative or quantitative 

influences on skewness, kurtosis and performance of cause selecting control charts. 

6.3  Normality Issue 

The issue of normality of observations and testing of normality has been dealt with 

by Burr (1967),   Shapiro and Francia (1972),   Hopkins and Weeks (1990), Ramsey and 

Ramsey (1990), Yourstone and Zimmer (1992) Chou et al. (1998), and many other 

authors. Some researchers have a strong view that normality assumptions are not 

practical. While the research fraternity is keen to test the extent of normality many 

control charts in practice, work without testing as to their meeting the normality 

assumptions.  

The important characteristics of normality are related in general to the first four 

moments. John Tukey (1977) supported the proposition that the first two moments 

namely the mean and standard deviation may not effectively describe the nature of the 

distribution. He also emphasized that normality will have consequential effect on 

accuracy of inferences like type I and type II errors. All these authors highlight one 

important point. That is, the normality assumption is important to the extent of its 

influence on type I and type II errors. 

Brown (1997) discussed about skewness statistic of normal distribution as nearly 

equivalent to zero. He clarified that a skewness statistic of -0.01819 would be an 

acceptable value of a normally accepted data set. It can be said to be a negatively skewed 
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data. Likewise a skewness value with a positive sign just above zero may demonstrate a 

positively skewed distribution. According to him normal distributions produce a kurtosis 

statistic of about zero. A kurtosis statistic of .09581 for a mesokurtic (normally high 

distribution) would be an acceptable value. If the kurtosis statistic departs further from 

zero a positive value indicates a leptokurtic (too tall) normal distribution.  A negative 

value indicates possibility of a platykurtic (too flat or even concave) distribution. 

Glass and Hopkins (1984), explained that with a small sample for leptokurtic 

distribution, the type I error will be smaller than the theoretical value. For platykurtic 

distribution it will be slightly greater. Further the issue is, testing the extent to which 

normality assumption is met. It is not for concluding whether the assumption of normality 

is met at all. The consequential issue is the extent of the influence of normality 

assumption on the metrics of performance of the control chart. 

To sum up the skewness and kurtosis are the indices in addition to the mean and 

standard deviation to help one to identify whether the desired level of normality has been 

met. The extent by which the metrics of normality departs due to chance and sporadic 

causes in the real world process data and their bearing on the indices of performance of 

the high sigma cause selecting control chart is the matter of concern and study within the 

compass of this work. There have been many metrics of normality described in research 

literature. Many of the tests of statistics are descriptive in nature, that is, they are honed 

for best describing the normal distribution. Few of them are supportive for making 

inferences. Not influenced by the inertia of precedence, in this work skewness and 
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kurtosis and their influence on the LCL and type II error have been studied and 

documented. This is explained by two case studies described below. 

 
6.4     Case Study I – Intercept Model High Sigma Process Data 

 The study of a pin manufacturing process data is considered. It is a cascade 

process with two steps namely cold drawing and cold forming. The cold drawing process 

is a regressor process and the forming process is the response process. The regressor 

variable is adjusted for the response covariate and the evolving regression line is used for 

the cause selecting control chart set.  

A set of intercept model data has been collected. The count of conforming items 

between two non conforming items has been taken as data set. It is in the geometric form. 

As enunciated in Lakshminarasimhan and Kannan (2007), it has been converted into 

normal data form using a power transformation (0.01). The data collected has an intercept 

term in it as depicted the equation 6.3. 

Y   =   β0 + β 1 X + ε                                                                                          (6.3) 

Table 6.1 details the ‘intercept model’ data set. The raw data set in geometric form 

and transformed data set in normal form have been listed.  
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Table 6.1.    Data With an Intercept Term 

Data 
No 

Geometric Data Normal Data 

Regressor 
Process 

Response 
Process 

Transformed 
Regressor 
Process 

Transformed 
Response 
process 

X Y X' Y' 
1 47 46 1.039 1.039 
2 17 29 1.029 1.034 
3 36 46 1.036 1.039 
4 49 41 1.04 1.038 
5 58 48 1.041 1.039 
6 39 40 1.037 1.038 
7 59 45 1.042 1.039 
8 55 38 1.041 1.037 
9 24 50 1.032 1.04 

10 46 43 1.039 1.038 
11 24 22 1.032 1.031 
12 36 26 1.036 1.033 
13 36 27 1.036 1.034 
14 17 31 1.029 1.035 
15 19 50 1.03 1.04 
16 40 44 1.038 1.039 
17 50 38 1.04 1.037 
18 25 39 1.033 1.037 
19 12 33 1.025 1.036 
20 32 43 1.035 1.038 

 

 
Referring equation 6.3, ‘β0’ is the intercept term and ‘β1’ is the regressor 

coefficient. The normal distribution formed by the residual of the response variable Y– Y.   

is given in figure 6.2 when the intercept model data has been fitted as intercept model. In 

normal industrial practice it is always assumed that the regression model has an intercept 

term.  
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Figure 6.2.    Normal Probability Distribution for Intercept Model 

        Assumed as Intercept Model 
 

As per customary practice, while arriving at the most likely estimate of the transform, the 

values shown in table 6.2 have been considered. 

Table .6.2. Transform Values 

Finer Mesh 
Transforms 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 

Higher Value 
Transforms 0.2 0.4 0.6 0.8 

The table shows a finer value set and a higher value set of transformations. 

6.4.1 Scenario I- Intercept Model Assumed as Intercept Model  

 In instances where an intercept model data is rightly assumed as intercept model 

data the influence of skewness on the lower control limit and the influence of kurtosis on 

type II error have been studied and explained in this section. 

For the finer value of transforms, the skewness and kurtosis are almost constant in 

all the scenarios in this work. The skewness of the normal probability distribution for the 
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finer value of transforms and its influence on lower control limit of residuals control chart 

has been shown in table 6.3 and the graph shown in figure 6.3. 

Table 6.3 Finer Transforms Values and Skewness, Lower Control Limits 
 

Transform Skewness(S) LCL 
Sensitivity  % 

Δs/s ΔLCL/LCL 
0.002 -0.69 -0.001 0 0 
0.004 -0.69 -0.002 0 102 
0.006 -0.68 -0.003 0 205 
0.008 -0.68 -0.005 1 309 
0.01 -0.68 -0.006 1 415 

0.012 -0.68 -0.010 1 778 
0.014 -0.68 -0.008 1 632 
0.016 -0.68 -0.010 1 742 
0.018 -0.68 -0.011 1 854 

 
 

Figure 6.3.   Skewness and LCL for Intercept Model 
      Assumed as Intercept Model (Finer Mesh of Transforms) 

 
For the finer mesh of transforms, the skewness of the transformed normal data is 

almost constant and will have no effect on the lower control limit. For the transformation 

values 0.200, 0.400, 0.600, 0.800 the behavior of skewness and its influence on lower 

control limit is shown in table 6.4 and in the illustration is shown in figure 6.4. 
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Table 6.4. Transform Values, Skewness and LCL 
 

Transform Skewness(S) LCL Sensitivity  % 
Δs/s ΔLCL/LCL 

0.2 -0.56 -0.23 0 0 
0.4 -0.45 -0.98 21 316 
0.6 -0.33 -3.04 41 1196 
0.8 -0.22 -8.45 60 3497 

 

 

Figure 6.4.   Skewness and LCL for Intercept Model Assumed as Intercept Model  
 
It can be seen from the above illustration that as the power transform value 

increases the skewness of normal probability distribution increases and the lower control 

limit value decreases.  

Likewise the kurtosis and its influence on beta error have also been studied and 

results recorded. It may be recalled that as type II error or the missed signals are more 

important in high sigma manufacturing environ kurtosis and its influence on missed 

signals have been studied and results recorded. The data for finer value of transforms is 

shown in table 6.5 and the illustration is shown in figure 6.5. 
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Table 6.5. Transforms Values, Kurtosis and Beta Error 
 (Finer Value of Transforms) 

 

Transform Kurtosis(k) BETA  β 
Sensitivity  % 
Δk/k Δβ/β 

0.002 0.49 0.54   0.004 0.49 0.54 0 0 
0.006 0.48 0.54 1 0 
0.008 0.48 0.54 1 0 
0.01 0.48 0.54 1 0 

0.012 0.48 0.54 2 0 
0.014 0.48 0.54 2 0 
0.016 0.48 0.54 2 0 
0.018 0.47 0.54 3 0 

 

It can be seen that for finer value of transforms the influence of kurtosis on the 

type II or beta error are as shown is not appreciable as shown in figure 6.5 below. 

 

Figure 6.5.  Transforms Values, Kurtosis and Beta Error 
(Finer Value of Transforms) 

 
For regular value of transforms the influence of kurtosis on beta error has been worked 

out detailed in table 6.6 and illustration 6.6. 
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Table 6.6. Transforms Values, Kurtosis and Beta Error  
 

Transform Kurtosis(k) BETA  β Sensitivity  % 
Δk/k Δβ/β 

0.2 0.34 0.52 0 0 
0.4 0.22 0.49 37 5 
0.6 0.11 0.47 68 8 
0.8 0.02 0.42 95 18 

 

 

          

Figure 6.6.  Transforms Values, Kurtosis and Beta Error 

(Finer Value of Transforms) 

6.4.2 Scenario II- Intercept Model Assumed as No Intercept Model:   

In instances where an intercept model data is wrongly assumed as no intercept 

model data the influence of skewness on the lower control limit and the influence of 

kurtosis on type II error have also been studied and detailed in the forthcoming tables and 

illustrations. The data have been summarized in tables 6.7, 6.8, 6.9, 6.10. The illustrations 

detailing the behavior of data have been shown in figures 6.7, 6.8, 6.9, 6.10. 
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Table 6.7. Transforms (Finer) and Behavior of Skewness on Lower Control Limit 

Transform Skewness(S) LCL Sensitivity  % 
Δs/s ΔLCL/LCL 

0.002 0.725 -0.002 0 0 
0.004 0.724 -0.005 0 -101 
0.006 0.723 -0.007 0 -204 
0.008 0.722 -0.010 0 -308 
0.01 0.719 -0.023 1 -850 

0.012 0.722 -0.012 0 -414 
0.014 0.721 -0.015 1 -521 
0.016 0.720 -0.018 1 -629 
0.018 0.719 -0.020 1 -739 

 

 

 

Figure 6.7. Transforms (Finer) and Behavior of Skewness on Lower Control Limit 
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Table 6.8. Transforms and Behavior of Skewness on Lower Control Limit 

Transform Skewness(S) LCL Sensitivity  % 
Δs/s ΔLCL/LCL 

0.2 0.65 -0.47 0 0 
0.4 0.59 -1.83 10 289 
0.6 0.54 -5.29 17 1025 
0.8 0.50 -13.54 23 2776 

 

 

Figure 6.8. Transforms and Behavior of Skewness on Lower Control Limit 

When an intercept model data is assumed as no intercept model data the influence 

of kurtosis on type II error are listed in the forthcoming tables. 
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Table 6.9. Transforms Values, Kurtosis and Beta Error (Finer Value of Transforms) 
 

Transform Kurtosis(k) BETA β 
Sensitivity  % 
Δk/k Δβ/β 

0.002 -0.654 0.464 0 0 
0.004 -0.656 0.464 0 0 
0.006 -0.658 0.464 0 0 
0.008 -0.659 0.464 1 0 
0.01 -0.667 0.464 2 0 

0.012 -0.661 0.464 1 0 
0.014 -0.662 0.464 1 0 
0.016 -0.664 0.464 1 0 
0.018 -0.666 0.464 2 0 

 
 

The illustrations showing the behavior of skewness on the lower control limit and 

kurtosis on the beta error are shown in the following illustrations. 

 

 
 

Figure 6.9. Transforms Values, Kurtosis and Beta Error (Finer Value of Transforms) 
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Table 6.10. Transforms Values, Kurtosis and Beta Error 

 

Transform Kurtosis(k) BETA β Sensitivity  % 
Δk/k Δβ/β 

0.2 -0.780 0.460 0 0 
0.4 -0.842 0.456 8 1 
0.6 -0.845 0.456 8 1 
0.8 -0.798 0.468 2 2 

 
 
 

 
 

Figure 6.10.   Transforms Values, Kurtosis and Beta Error 

                 
6.5     Case Study II – No Intercept Model High Sigma Process Data 

 In practical situations it is likely that the data from a cascade linearly 
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cascade property. It is identified that the nature of the process is no intercept model data 
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by virtue of the fact that the lower confidance interval of the intercept term is negative.  

The data collected and transformed values are shown in table 6.11 

Table 6.11.  No Intercept Model High Sigma Process Data 
 

Data No 

Geometric Data Normal Data 

Regressor 
 Process ‘X’ 

Response 
 Process 'Y' 

Transformed 
 Regressor 
 Process 'X' 

Transformed  
Response  

Process 'Y' 
1 47 78 1.039 1.045 
2 21 35 1.031 1.036 
3 22 36 1.031 1.036 
4 65 107 1.043 1.048 
5 61 78 1.042 1.045 
6 44 56 1.039 1.041 
7 38 49 1.037 1.04 
8 16 21 1.028 1.031 
9 31 40 1.035 1.038 
10 32 41 1.035 1.038 
11 58 75 1.041 1.044 
12 42 50 1.038 1.04 
13 59 71 1.042 1.044 
14 45 54 1.039 1.041 
15 42 60 1.038 1.042 
16 65 87 1.043 1.046 
17 26 35 1.033 1.036 
18 53 81 1.041 1.045 
19 63 96 1.042 1.047 
20 16 19 1.028 1.03 

 

The influence of skewness on the lower control limit and kurtosis on type II error has 

been studied in the context of two scenarios. The first scenario is the case where a no 

intercept model data is assumed wrongly as intercept model data and the second scenario 

is the case where a no intercept model data is rightly assumed as no intercept model data. 

The results of the work have been documented in the following tables and figures. 
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6.5.1 Scenario I- No Intercept Model Assumed as Intercept Model   

Tables 6.12, 6.13, 6.14, 6.15 depict the data for the scenario where a no intercept model 

data is wrongly assumed as intercept model data. The figures 6.11, 6.12, 6.13, 6.14 show 

the respective graphs. 

Table 6.12. Transforms (Finer) and Influence of Skewness on Lower Control Limit 
 

Transform Skewness(S) LCL 
Sensitivity  % 

Δs/s ΔLCL/LCL 
0.002 0.622 -0.0003 0 0 
0.004 0.622 -0.0006 0.0 102 
0.006 0.622 -0.0009 0.1  206 
0.008 0.622 -0.0012 0.1 311 
0.01 0.621 -0.0029 0.2 862 

0.012 0.621 -0.0016 0.2 419 
0.014 0.621 -0.0019 0.2 529 
0.016 0.621 -0.0022 0.2 637 
0.018 0.621 -0.0025 0.2 750 

 
 
 

                
 

 
Figure 6.11. Transforms (Finer) and Influence of Skewness on Lower Control Limit 
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Table 6.13. Transforms and Influence of Skewness on Lower Control Limit 

 

Transform Skewness(S) LCL 
Sensitivity  % 

Δs/s ΔLCL/LCL 
0.2 0.609 -0.071 0 0 
0.4 0.609 -0.357 0 401 
0.6 0.619 -1.340 2 1781 
0.8 0.637 -4.449 5 6149 

 

 
               

Figure 6.12. Transforms and Influence of Skewness on Lower Control Limit 

Table 6.14. Transforms (finer) and Influence of Kurtosis on Beta Error 

 

Transform Kurtosis (k) BETA β Sensitivity  % 
Δk/k Δβ/β 

0.002 -1.042 0.919 0 0 
0.004 -1.043 0.919 0.11 0.001 
0.006 -1.045 0.919 0.23 0.000 
0.008 -1.046 0.919 0.34 0.000 
0.01 -1.051 0.919 0.86 0.000 

0.012 -1.047 0.919 0.45 0.000 
0.014 -1.048 0.919 0.55 0.000 
0.016 -1.049 0.919 0.66 0.000 
0.018 -1.050 0.919 0.76 0.000 
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Figure 6.13.Transforms (finer) and Influence of Kurtosis on Beta Error 
 

Table   6.15. Transforms and Influence of Kurtosis on Beta Error 
 

Transform Kurtosis (k) BETA β Sensitivity  % 
Δk/k Δβ/β 

0.2 -1.075 0.908 0 0 
0.4 -0.971 0.885 10 3 
0.6 -0.780 0.848 27 7 
0.8 -0.545 0.824 49 9 

        

 
Figure    6.14. Transforms and Influence of Kurtosis on Beta Error 
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6.5.2 Scenario II - No Intercept Model Assumed as No Intercept Model    

In this scenario the instances where a no intercept model data rightly assumed as no 

intercept model data has been considered. The data so researched have been detailed 

hereunder as tables 6.16, 6.17, 6.18, 6.19 along with graphs 6.15, 6.16, 6.17, 6.18. 

Table 6.16. Transforms (finer) and Influence of Skewness on Lower Control Limit 
 

Transform Skewness(S) LCL 
Sensitivity  % 

Δs/s ΔLCL/LCL 
0.002 0.609 0.000 0 0 
0.004 0.609 -0.001 0.00 101 
0.006 0.609 -0.001 0.01 205 
0.008 0.609 -0.001 0.02 310 
0.01 0.609 -0.003 0.05 860 

0.012 0.609 -0.002 0.02 561 
0.014 0.609 -0.002 0.03 524 
0.016 0.609 -0.002 0.03 634 
0.018 0.609 -0.003 0.04 746 

 
 

 
 

Figure  6.15. Transforms (finer) and Iinfluence of Skewness on Lower Control Limit 
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Table 6.17. Transforms and Influence of Skewness on Lower Control Limit 
 

Transform Skewness(S) LCL 
Sensitivity  % 

Δs/s ΔLCL/LCL 
0.2 0.62 -0.07 0 0 
0.4 0.65 -0.36 5 401 
0.6 0.70 -1.35 13 1786 
0.8 0.76 -4.49 22 6184 

  
 

 
 

Figure 6.16. Transforms and Influence of Skewness on Lower Control Limit 
 

Table 6.18.  Transforms Values (Finer), Kurtosis and Beta Error  
 

Transform Kurtosis(k) BETAβ 
Sensitivity  % 
Δk/k Δβ/β 

0.002 -1.077 0.910 0 0 
0.004 -1.078 0.910 0.085 0.0000 
0.006 -1.079 0.910 0.167 0.0011 
0.008 -1.080 0.910 0.248 0.0000 
0.01 -1.084 0.910 0.624 0.0000 

0.012 -1.081 0.910 0.327 0.0044 
0.014 -1.081 0.910 0.404 0.0000 
0.016 -1.082 0.911 0.479 0.1770 
0.018 -1.083 0.908 0.553 0.1803 
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Figure  6.17.  Transforms Values (finer), Kurtosis and Beta Error  
 

Table   6.19.  Transforms Values, Kurtosis and Beta Error  
 

Transform Kurtosis(k) BETAβ 
Sensitivity  % 
Δk/k Δβ/β 

0.2 -1.077 0.901 0 0 
0.4 -0.925 0.877 14 3 
0.6 -0.670 0.839 38 7 
0.8 -0.360 0.816 67 9 

 

 
 

Figure  6.18.  Transforms Values, Kurtosis and Beta Error  
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It can be seen that as the kurtosis decreases the beta error also decreases. It can be 

seen from above that for the finer mesh transform values, skewness has no effect on LCL 

and kurtosis has also had no effect on beta error. While the skewness has remained stable 

for transforms 0.2 to0.8, the LCL tends to decrease. Kurtosis, for transforms from 0.2 to 

0.8 decrease and also type II error as transform value increases.   

6.6. Discussions  
 

The cause selecting control charts comprised of a Shewhart type control chart for 

the upstream process and a residual type control chart termed in current literature as 

cause selecting control chart. The action signals from both the charts enables the 

production engineer to find out whether there is a defect in the downstream process on 

account of a defect earlier occurred in the upstream process. A power transform is 

proposed in this work. . The power transform converted the geometric form of high sigma 

data into normal form. In research literature usually the metric for assessing the extent to 

which normality is achieved is measured by descriptive statistical indices. In this work 

two deterministic indices of normality, namely the third and fourth moments of the 

normal distribution known as skewness and kurtosis have been studied in relation to their 

response on LCL and type II error. The results are listed below in table 6.20. 
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Table 6.20 Summary of Results – Influence of Skewness on LCL  
and Kurtosis on Type II Error 

Sl. 
No Scenario Skewness LCL Kurtosis Type II Error 

1 
Intercept model data 
assumed as Intercept 

Model data. 

Increases 
from -0.564 

to0.225 

Decreases  
from -0.235 
to -0.8446 

Decreases 
from 0.340 

to .018 

Decreases 
from 0.516 to 

0.456 

2 
Intercept model data 

assumed as no 
Intercept Model data. 

Decreases 
from 0.653 

to 0.502 

Decreases 
from - 0.471  
to  -13.538 

Marginally 
decreases from  
-0.780 to -798 

Marginally 
increases from 
0.460 to 0.468 

3 
No intercept model 

data assumed as 
Intercept Model data 

Increases 
from 0.609 

to 0.637 

Decreases   
from - 0.071 

to -4.449 

Increases 
from   -1.075 

to -0.545 

Decreases 
from 0.908 to 

0.824 

4 
No intercept model 
data assumed as No 
Intercept Model data 

Increases 
from 0.620 

to 0.756 

Decreases 
from -0.071 
to  -4.491 

Increases 
from  -1.077  

to -0.360 

Decreases 
from  0.901 to 

0.816 
 

The influence of skewness on LCL and kurtosis on type II has been studied with 

reference to the following four scenarios. 

i. An intercept model data treated as intercept model data 

ii. An intercept model data mistreated as no intercept model data 

iii. A no intercept model data mistreated as intercept model data 

iv. A no intercept model data treated as no intercept model data 

The study of the influence of skewness and kurtosis on LCL and type II error in the 

backdrop of model errors for the transform proposed and inferences made is the 

fifth contribution of this work. 

 
6.7   Conclusion 
  
 Normality is a key requirement in both control chart methodology and in 

regression analysis. The issue is not the complete transformation to normality but to the 

extent to which the normality is achieved. In many real life shop floor problems, the data 
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may far deviate from the expectations of theoretical parameters. Hence in this work the 

extent of normality is measured by third and fourth moments of the normal distribution, 

namely, skewness and kurtosis. The influence of skewness on LCL and kurtosis on type 

II error has been studied and results recorded. In the next chapter results and related 

issues have been discussed. The methodology and results have been proved using data 

from literature. 
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Chapter   7 
 

Results and Discussions 
 

7.1     Introduction 

 Cause selecting control chart of residual type for high sigma process has the lower 

control limit (LCL) as the action limit. This is akin to the regular high sigma control 

charts which use the count of conforming products between two non conforming products 

as the process data. In this work a new power transform is proposed. The effectiveness of 

power transform with respect to LCL has been addressed. Secondly the intercept model 

issue which has a bearing on the chart statistic and the resulting performance of the chart 

has been studied. Thirdly the skewness and kurtosis which are the third and fourth 

moments of the normal distribution (transform) has been studied with reference to their 

influence on the LCL and type II error. 

7.2  Typical application 

 The application of this control chart proposed in this work is many and can be 

directly applied to critical process situations.Manufacturing apart this control chart may 

be readily applied to environmental pollution control applications, wherein near zero 

defects results are expected. 

 For analogy, consider the case of chrome plating effluent proposed treatment 

plant. In this process the chromium effluent is hexavalent. The treatment process involves 
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reducing the hexavalent chromium to trivalent chromium as the first stage and alkali 

reduction and chromium precipitation of trivalent chromium as the second stage. Even 

though by theory of chemistry, the effluent treatment is an irreversible process, human 

errors of dosage, wrong estimation of incoming effluent, insufficient treatment time and 

many other factors contribute to bad treatment. In order to control such a process it is 

imperative to have a cause selecting control chart for process X, being the reduction of 

hexavalent chromium process as regressor and process Y ,the alkali reduction process as 

response, the covariant renders itself a fit candidate for the high sigma cause selecting 

control chart application. 

7.3  Economic Design 

Ever since Shewhart designed the first control chart on the basis of ‘statistical 

stability’ of the process some more design criteria have been advocated by researchers. 

The control charts were designed on the criteria 

i. Statistical design. 

ii. Economic designs. 

iii. Heuristic designs. 

All the three design criteria are water tight compartments having their own drivers. In this 

work statistical regression model based design is taken up. 

 According to Woodall and Montgomery (1999) as the economically designed 

charts have too poor statistical property and are in general incapable of detecting process 
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improvement, the use of statistical constraints is recommended as proposed by Sanega 

(1989)  

7.4    Lower Control Limit  

 The traditional control charts have two action limits namely the upper control limit 

(UCL) and lower control limits (LCL). Any point falling out side the UCL and LCL are 

diagnosed as an action signal showing an out of control situation.  In case of high sigma 

control charts with count data any data point falling below the LCL is diagnosed as a 

signal. All points above the UCL are considered as a process improvement. Thus the LCL 

is the only action limit for the high sigma control chart.    

 In the case of count of conforming items control chart the process data is in the 

geometric form. As it is a negatively skewed distribution, more often negative LCL has 

been encountered. The first issue addressed in this work is the design of a power 

transformation for converting the geometric form of data into normal form of data. 

 In this work two process situations comprising of cold drawing and cold forming 

process have been considered. Two process scenarios have been analyzed for a pin 

manufacturing process and the relationship between the LCL and the transforms are 

shown in figures 7.1 and 7.2 and the data are shown in table 7.1 and table 7.2. 

i. Cold forming (upstream process) having higher average run length. 

ii. Cold drawing (downstream process) having higher average run length. 
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Table 7.1. Transform Value and Their Relative LCL Values for Scenario 1 

                                      TRANSFORMATIONS 

Transform 
values 'r' 1/r Proposed 

transform 

Double 
Square Root 
Transform 

Logarithmic 
Transform 

4 0.25 -1.395 -0.561 -0.744 
6 0.16 -0.6 -0.561 -0.744 
8 0.12 -0.362 -0.561 -0.744 

10 0.10 -0.251 -0.561 -0.744 
50 0.02 -0.019 -0.561 -0.744 
100 0.01 0 -0.561 -0.744 

 

 
 

 

Figure 7.1. Transform Value and Relative Performance of Transforms 

Scenario 1 
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Table 7.2. Transform Value and Their Relative LCL Values for Scenario II 

 

                                        Transformations 

Transform values 'r' 1/r Proposed 
transform 

Double 
Square Root 
Transform 

Logarithmic 
Transform 

4 0.25 -0.561 -0.509 -0.219 
6 0.16 -0.256 -0.509 -0.219 
8 0.12 -0.161 -0.509 -0.219 

10 0.10 -0.115 -0.509 -0.219 
50 0.02 -0.016 -0.509 -0.219 
100 0.01 -0.008 -0.509 -0.219 

 

 

 

Figure 7.2 Transform Value and Relative Performance of Transforms  

 Scenario II 
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It can be inferred from above two scenarios that irrespective of process status the 

transform proposed in this work has out performed the conventional logarithmic and 

double square root transforms. For the proposed ‘0.01’ power transform value the best 

near zero value of LCL has been obtained. In scenario 1 the double square root transform 

out performs the logarithmic transform and in scenario 2, the logarithmic transform out 

performs the double square root transform. In both the scenarios, the proposed power 

transform outweigh the conventional transforms. 

7.5  Intercept Model Issue  

Regression Models form the basis of cause selecting control charts for high sigma 

process. In the traditional control charts such parameter issues affect only the chart 

performance indices and not the chart statistic. The CS being a residual type chart based 

on the regression model, the coefficients of the model are affected by the model errors 

pertaining to the intercept term. In turn this affects the CS chart statistic .In earlier works 

the estimation errors pertaining to the slope and intercept coefficients have been 

addressed for 3 sigma control charts. They assume the presence of an intercept term. 

The presence or otherwise of the intercept term has to be established first, before 

the estimation of coefficients. Model estimate of the intercept term for high sigma 

process is discussed in this work. The design flow for a cause selecting control chart for a 

high sigma cascade process has been established. The design concept is explained 

through numerical examples. It is shown that when a regression model with intercept 

term has been force fitted as a model with no intercept term, Type II error is deflated. The 
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extent of deflation is more at lower control limit and less at process mean. The average 

run length is more deflated at the process mean and is having no significant effect near 

lower control limit. This is evident from figures 5.6 and 5.7. 

It has also been established that when a data set with a no intercept model is force 

fitted as intercept model, the Type II error is inflated at the lower control limit and is not 

having any significance near the process mean. In such a scenario, the average run length 

is also inflated near the mean and lower control limit. The inflation is more in magnitude 

at the process mean compared to that at the lower control limit. This is shown in figures 

5.8 and 5.9. 

7.6  Third and Fourth Moments of Normality 

Traditionally the transformations are optimized by maximum likelihood estimate.  

It is evident from the figure 6.1 that transform 0.004 is the optimum power transform. 

The object of power transform in this work is to convert the geometric data of high sigma 

process to normal data.  The extent of normality is gauged by skewness and kurtosis. 

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A 

distribution, or data set, is symmetric if it looks the same to the left and right of the center 

point. The formula for skewness is, 

        (7.1)

 Kurtosis is a measure of whether the data are peaked or flat relative to a normal 
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distribution. That is, data sets with high kurtosis tend to have a distinct peak near the 

mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to 

have a flat top near the mean rather than a sharp peak. A uniform distribution would be 

the extreme case.  

        (7.2) 

In this work skewness and kurtosis is calculated using excel spread sheet. 

It is thus demonstrated that the finer value of transformations have no change in 

skewness or kurtosis. In turn they also have no influence on LCL and type II error 

respectively. This is demonstrated in figures 6.3 and 6.5. For values of transform from 

0.2 to 0.8 it is shown that the LCL has a bearing on skewness and type II error varies 

according to kurtosis. A summary of results obtained in this work is given in table 6.20.  

It can be observed that skewness shift to the negative or positive side creates a 

negative shift in LCL. Kurtosis shifting to positive or negative side creates a decrease in 

type II error.  

When there is a model error, for intercept model data, skewness is inflated and 

LCL is deflated and for no intercept model data skewness is deflated LCL is inflated. 

When there is a model error, for no intercept model data, kurtosis is marginally 

deflated and type II error is deflated and for no intercept model data kurtosis is 

marginally inflated and type II error is marginally deflated. 
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It can be observed from above information that shift of skewness to the negative or 

positive side creates a negative shift in LCL. Kurtosis shifting to positive or negative side 

creates a decrease in type II error.  

When there is a model error, for intercept model data, skewness is inflated and  

LCL is deflated and for no intercept model data skewness is deflated LCL is inflated. 

When there is a model error, for no intercept model data, kurtosis is marginally 

deflated and type II error is deflated and for no intercept model data kurtosis is 

marginally inflated and type II error is marginally deflated. 

When an intercept model data is construed as intercept model data the increase in 

the value of the transform decreases the negative skewness towards zero. This causes the 

decrease in value of negative lower control limit. This also leads to the distribution 

becoming from leptokurtic to mesokurtic. This decreases type II error probability.  

When the intercept model is assumed as no intercept model there is a decrease in 

positive skewness and decrease in negative LCL. There is no appreciable change in 

kurtosis or type II error probability. 

When a no intercept model data is assumed as intercept model data the positive 

skewness increases creating a decrease in negative LCL.  

When a no intercept model data is assumed rightly as a no intercept model data, 

the negative LCL further moves to negative side. In both the cases the distribution 

transforms itself from platykurtic to mesokurtic. This decreases the type II error 
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probability. In this work the influence of skewness and kurtosis on the high sigma cause 

selecting control chart performance indices has been studied. It has been established that 

for finer mesh of transformed values there is no significant change in both parameter 

indices and chart performance indices.  

The traditional method of optimizing the transform is to identify the transform 

value for which the residual sum of squares of the error terms is the minimum. In other 

words it is called the maximum likelihood estimate (MLE).This paper establishes a new 

type of transform optimization for high sigma cause selecting control charts by studying 

the influence of skewness and kurtosis which are the third and fourth moments of the 

normal distribution. The study encompasses the intercept model error of the regression 

models which are the key stones of the cause selecting control charts. 

7.7  Six Sigma Process Data 

Six sigma concept was pioneered by Motorola corporation, Allied Signal 

(Honeywell), General Electric, Microsoft are the other companies which have qualified 

themselves in the concept of six sigma at the organization level. The control charts are 

deployed in the control phase. According to Goh and Xie (2003) even today only 3 sigma 

control charts are preached in the pedagogy for green belts and black belts. Hence there is 

a due need for a control chart that can work above 3 sigma. As the above mentioned 

companies are having electronic and software background and as there are no published 

information by them on the control chart data, in the high quality environ it is not 

possible to obtain process data. 
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 One more source for the required data is to use data from research publications. As 

this work is a pioneer in its nature of designing a control chart for high sigma cause 

selecting control chart, it was not possible to obtain information for a bivariate cascade 

process. Further an overview of high sigma process show that there are no published data 

available for a high sigma cascade process. 

7.8  Data Validation 

In this work same two sets of data have been used to demonstrate the effectiveness 

of the proposed design, performance indices of the chart and the transform. As 

enunciated in the forgone sections from literature or from field it is impossible to get six 

sigma data as few handful organizations have been certified for six sigma concept. 

Further many of the pioneers of six sigma concepts are basically electronics based units. 

No data could be obtained from them for a cascade process.  

Data validation is the art of ensuring that the body of data confirms to the 

assumptions made.  It is also to ensure that the proposed concept is also validated.  As 

this work is a first work on high sigma cause selecting control chart, in order to prove the 

concepts proposed and results derived data from published research in the area of high 

sigma cumulative counts of conforming data is used. The validation of the results of this 

research is further demonstrated using two sets of data from published research in the 

following sections. 
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7.9  Data from Literature  

Mandel (1969) used post office mail delivery data to establish his ‘regression’ 

control chart.  He used the data on mail processing hours and mail volume.  Constable et 

al. (1987) used a bivariate process data from tetramicin pharmaceutical works to prove 

his ‘cause electing control chart’.  Zhang (1989) used data from an antibiotic factory to 

substantiate his work on cause electing control carts. Wade and Woodall (1993) used 

process data for a automotive component earlier used in another research work. Shu and 

Tsung (2000) gave the theoretical frame work for using the prediction limits as the 

control limits. No numerical data was used. Yang and Chen (2003) in their work on cause 

selecting control chart for two failure mechanisms used data from a cotton yarn factory to 

substantiate their work. Shu and Tsung (2003) enunciated theoretical frame work on 

behavior of cause selecting control charts. Shu et al. (2004) used simulated samples of 50 

to prove their discussion on model uncertainties for cause selecting control charts. Shu et 

al. (2004, 2005) again used simulated data in their publication on regular and EWMA 

control chart for residuals. Yang and Yang (2006) used golden thin film process bivariate 

data. 

All these research publications used one time data from isolated processes to 

substantiate the theory proposed.  These data sets belong to three sigma process 

situations. No data validation is demonstrated. This work enhances the cause selecting 

control chart theory to high sigma production processes. As there are no six sigma 

productions system data available in public domain which contains linear cascade 
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property, two data sets of CCC data available from literature are used to validate the 

design methodology and also the data. 

7.9.1  Xie et al (2002) Data Set  
 

A set of geometrically distributed data was adopted from Xie et al. (2002) shown 

in  table 7.3. The data set contained 100 observations of count of conforming items 

between two non conforming items.   

Table 7.3 CCC Geometric Data – Xie et al. (2002) 

Sl.No Process  
X 

Process  
Y Sl.No. Process  

X 
Process  

Y 
1 227 409 26 678 2196 
2 2269 4845 27 2088 1494 
3 1193 4809 28 1720 1906 
4 4106 504 29 1656 548 
5 154 257 30 201 987 
6 12198 702 31 3705 6216 
7 201 4298 32 4042 704 
8 9612 1320 33 716 6477 
9 4045 1845 34 2010 233 

10 678 4641 35 402 855 
11 2088 2815 36 539 188 
12 1720 903 37 2665 4133 
13 5562 755 38 1711 780 
14 4042 565 39 1602 315 
15 716 973 40 71 1425 
16 2010 2555 41 546 580 
17 402 1822 42 655 957 
18 539 4324 43 2065 1443 
19 8465 1140 44 286 3880 
20 2269 109 45 1385 1357 
21 1193 1981 46 354 234 
22 4106 387 47 934 1836 
23 154 3268 48 3539 7984 
24 2011 2666 49 1671 110 
25 4045 5498 50 3955 128 
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This has been assumed as data from two different processes having 50 data each. 

The assumption is that process performance at two different intervals can be assumed as 

two different processes.  The data is summarized  in table 7.4.  As the linear or non linear 

relationship between the processes can be approximated into a linear relationship, it is 

assumed that the two processes are linearly dependent cascade processes. Owing to the 

design criteria proposed by Lakshminarasimhan and Kannan (2008) the regression 

statistic of the data set have been determined and shown in table 7.4. 

Table 7.4 Intercept Model Regression Statistic 

Coefficients  Value 
Lower 

confidence 
interval @ 95% 

Upper 
confidence 

interval @ 95% 

Mean Square for 
Residuals 

Intercept 1.11895289 0.81675489 1.421150889 0.000014000  
X Variable 1 -0.04241789 -0.323691741 0.23885596 0.000151343 

 

Table 7.5 shows the regression statistic for no intercept model data set. 

Table 7.5 No Intercept Model Regression Statistic 

Coefficients Value 
Lower 

confidence 
interval @ 95% 

Upper 
confidence 

interval @ 95% 

Mean Square for 
Residuals 

Intercept 0 Not Applicable Not Applicable Not Applicable  
X Variable 1 0.998989075 0.994261344 1.003716805 0.000319441 

 

As the mean square of residuals is lower in for the intercept model data set we can 

infer that the data set is of an intercept model. Further for the intercept model statistic  

shown in table 7.5 the lower confidence intervals of the intercept is positive. This implies 

that the regression model has an intercept term.  
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The control charts are judged by the false alarm of type I error and missed signals 

or type II error. In the case of high sigma processes as the defects are scarce missed 

signals deserve attention compared to false alarms.  This is because lack of attention to 

the missed signals will result in rapid slide down of the process sigma from six or more.  

The β or type II risks computed for the data set for the following scenarios: 

Scenario I    :  This intercept model data set assumed as intercept model. 

Scenario II   :  This intercept model data set assumed a no intercept model. 

Table 7.6 details the scenario I calculations and table 7.7 shows the scenario II.   The 

sensitivity of the change in β from mean to LCL and the incremental changes in ARL 

have all been computed and detailed. 

Table 7.6 Scenario I – Intercept Model Data Fitted as Intercept Model Xie et al. (2002) 

Position Shift 
magnitude 

% Shift 
Magnitude β Sensitivity 

Δβ / β ARL Sensitivity 
ΔARL/ARL 

Mean 0.60 20 0.980 0 49 0 
  1.20 40 0.927 5 14 72 
  1.80 60 0.805 18 5 90 
   2.40 80 0.603 38 3 95 

LCL 3.00 100 0.367 63 2 97 
 

Table 7.7  Scenario II – Intercept Model Data Fitted as No Intercept Model Xie et al. 
(2002) 

Position Shift 
magnitude 

% Shift 
Magnitude β Sensitivity 

Δβ/β ARL Sensitivity 
ΔARL/ARL 

Mean 0.65 20 0.977 0 44 0 

 1.30 40 0.913 7 11 74 

 1.95 60 0.761 22 4 90 

 2.60 80 0.524 46 2 95 
LCL 3.25 100 0.278 72 1 97 
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 The respective characteristic diagrams are shown in the figures 7.3 and 7.4. From 

the two curves the following is inferred.  When the intercept model data mistakenly 

assumed as no intercept model data the type II or beta error is deflated. The deflation is 

more at the LCL compare to that at the process s mean. For this model error the ARL is 

deflated significantly at the process mean. There is no noticeable change at the LCL.  

 

Figure 7.3 Shift Magnitude vs Beta Error Xie et al. (2002) 
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Figure 7.4 Shift Magnitude vs ARL Xie et al. (2002) 

For the data set of Xie et al. (2002) extent of normality achieved have been 

checked for various transform values. The data set is an intercept model data set. When 

there is no model error, for various transform values the skewness and the respective 

LCL values have been calculated and listed in table 7.8.  Figure 7.5 shows the graph of 

this data. As the transform value increases the skewness increases with corresponding 

decrease in LCL. 
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Table 7.8 Skewness and LCL – Xie et al. Data (2002) 

   Scenario I -Intercept model data fitted as intercept model 

Transform Skewness (S) LCL 
Sensitivity % 

ΔS/S ΔLCL/LCL 
0.2 0.0587 -2.8277 0 0 
0.4 0.4209 -24.2431 617 757 
0.6 0.7447 -160.5086 1168 5576 
0.8 1.0355 -971.1766 1664 34246 

 

 

  Figure 7.5 Skewness and LCL – Xie et al. Data (2002) 

Scenario I – Intercept model data fitted as intercept model 

As already established in this work, for finer mesh of transforms, the skewness has no 

appreciable impact on LCL.  

For this data set the effect of kurtosis on type II error has also been studied. The 

data for various transform values have been summarized in table 7.9.  For increase in 

transform value, increase in kurtosis results in marginal increase in beta error as can be 

seen from figure 7.6.  
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Table 7.9 Kurtosis and Beta Error – Xie et al. Data (2002) 

 Scenario I – Intercept Model Data Fitted as Intercept Model 

Transform Kurtosis(K) Beta β 
Sensitivity % 

ΔK/K Δβ/β 
0.2 -0.8180 0.3446 0 0 
0.4 -0.6757 0.3409 -17 -1 
0.6 -0.2720 0.3520 -67 2 
0.8 0.3306 0.3707 -140 8 

 

 

Figure 7.6 Kurtosis and Beta Error – Xie et al. Data (2002) 

Scenario I – Intercept Model Data Fitted as Intercept Model 

Assuming that there is model error and that Xie et al. Data (2002) which is an 

intercept model data is erroneously assumed as no intercept model, the skewness and 

kurtosis values for various transform values have been calculated and its influence on the 

LCL and Beta error have been studied. These data have been listed in tables 7.10, 7.11 

and graphs are shown in figures 7.7 and 7.8. 
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Table  7.10 Skewness and LCL – Xie et al. Data (2002)(with model error) 

Scenario II – Intercept Model Data Fitted as No Intercept Model 

Transform Skewness (S) LCL 
Sensitivity % 

ΔS/S ΔLCL/LCL 
0.2 -0.12847 -4.10702 0 0 
0.4 -0.16030 -31.86507 -25 -676 
0.6 -0.07450 -193.70039 42 -4616 
0.8 0.14820 -1084.92653 215 -26316 

 

 

Figure   7.7 Skewness and LCL – Xie et al. Data (2002)( with model error) 

Scenario II – Intercept Model Data Fitted as No Intercept Model 
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Table  7.11 Kurtosis and Beta Error – Xie et al. Data (2002)( with model error) 

Scenario II – Intercept Model Data Fitted as No Intercept Model 

  
Transform 

  
Kurtosis(K) 

  
Beta β 

Sensitivity % 

ΔK/K Δβ/β 
0.2 -0.776 0.278 0 0 
0.4 -0.711 0.274 -8 -1 
0.6 -0.554 0.271 -29 -2 
0.8 -0.330 0.281 -58 1 

 

 

 

Figure 7.8 Kurtosis and Beta Error – Xie et al. Data (2002)( with model error) 

Scenario II – Intercept Model Data Fitted as No Intercept Model 

As the transform value increases the skewness increases with corresponding 

decrease in LCL. For increase in transform value, increase in kurtosis results in marginal 

increase in beta error. 
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The data and workings above described vindicate the results of our work 

established. They are summarized as follows in table 7.12.  

Table 7.12.Summary of results - Xie et al. Data (2002) 

Sl. 
No Scenario Skewness LCL Kurtosis Type II Error 

1 
Intercept model data 
assumed as Intercept 

Model data. 

Increases 
From0.0564

to 1.0355 

Decreases  
from -0.282 
to -971.18 

Increases 
from -0.82 

to 0.331 

Increases from 
0.345 to 0..372 

2 
Intercept model data 

assumed as no 
Intercept Model data. 

Increases 
from -0.128 

to 0.15 

Decreases 
from – 4.11  
to  -1084.93 

Decreases 
from  -0.776 to 

-.330 

Marginally 
increases from 
0.278 to 0.281 

The extent of normality as measured by third and fourth moments of the normal 

distribution namely skewness and kurtosis yields the following observations: 

When this data (an intercept model data) is construed as intercept model (when 

there is no model error) the increase in the value of the transform increases the skewness. 

This causes the decrease in value of negative lower control limit. For this data set as the 

kurtosis increases marginally and beta error also increases. This unidirectional change is 

already established in this work. 

When this data (an intercept model data) is construed as no intercept model (when 

there is model error) the increase in the value of the transform increases the skewness. 

This causes the decrease in value of negative lower control limit. For this data set as the 

kurtosis increases marginally and beta error also increases. This unidirectional change is 

already established in this work. All these points establish the fact that the increase in 

transform value will render it impossible to achieve transformation.  
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For the Xie et al. (2000) data from literature, the performance of various 

transforms have been studied and listed in table 7.13.    

Table 7.13 Transforms Comparison – Xie et al. (2002) Data 

Transform 
Type of Transform 

Power Double Square Root Logarithmic 

0.01 0.745 -5.071 -3.403 
0.2 -2.828 -5.071 -3.403 
0.4 -24.243 -5.071 -3.403 
0.6 -160.509 -5.071 -3.403 
0.8 -971.177 -5.071 -3.403 

 

The pictorial representation of this data is shown in figure 7.9. 

 

Figure 7.9 Xie et al. Data – Comparison of transforms 

We can infer from above graph that the power transform proposed in this work namely 

‘0.01’ out performs Double Square Root and Logarithmic transforms. 
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7.10 Stochastic Behavior 

The assumption that the process data are independent is common with the control 

chart theory and the regression analysis. The cause selecting control chart method 

encompasses both these ideologies.  The run rules are riders for a control chart to enhance 

its performance. The relevance or otherwise of these issues to this research work is 

discussed in this section. 

The CS is mainly discussed based on a simple linear regression model. However, 

the linear regression model may sometimes restrict the applications of the CS because it 

is insufficient to capture the stochastic nature of the output. First, the process may exhibit 

process dynamics or inertia. The linear regression model cannot characterize the 

dynamics between the input measure X and output measure Y. Furthermore, when data 

are collected at high frequency the disturbance to the current process step is more likely 

to be auto correlated instead of being independent. Hence it is imperative to account for 

autocorrelation if any in the design of high sigma cause selecting control chart for 

cascade manufacturing processes. This issue is discussed in this chapter. 

In practice, the correlation of data is due to a tool failure, tool wear, machine 

setting issues and breakdowns. Machines and production systems also exhibit inertia. The 

feed back corrections affected many time fails to produce desired results due to such 

inertial forces. Unless this is accounted for, the control charts produce false alarms. 
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 Yang and Yang (2006) studied an approach for controlling two cascade process 

steps with auto correlated observations. They modeled the observations of  X as an AR 

(1) model data and observation Y as a co-variate transfer function of X. They concluded 

that the cause-selecting chart performs even with correlated data, as compared to the 

traditional control charts. 

Crowder (1989) established the use of exponentially weighed moving average 

(EWMA) control chart performs well for forecasting purpose of future data. Crowder 

(1987) detailed a computer program and formulae for EWMA control chart. 

Montgomery and Masterangelo (1991) discussed the forecasting features of 

EWMA chart with the presence of autocorrelation in data. 

Chang (1991) used the principal component method for process quality that is 

characterized by two or three correlated variables. 

Stimson and Masterangelo (1996) discussed about the effect of correlation for 

serially dependant process data. One important observation of their work is that the defect 

counts are in general following a binomial distribution. When induced by correlation the 

parameter switches to geometric distribution. 

Rungner’s (2002) works discussed about the inertial elements that govern the 

independent and auto correlated data and the residual control chart method.  To 

summarize the issue of correlation the questions that arise are as follows. When the 

whole data set is depicting a binomial distribution with patches of geometric data the 
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adaptation of a remedy will lead to over correction of independent attribute process. The 

work on correlated variables or attributes, detailed in the foregoing discussion is 

applicable to 3 sigma process metric as default.  

For 3 sigma process, charting data are the actual variables which may display 

correlation due to assignable causes. In case of high sigma process the count data is of 

attribute type and may not have correlation. In fact the underlying principle of CCC chart 

is that when ARL or CCC tends to decrease, the process is assumed to be shifted from 

target. Likewise it is impractical to assume that increase in CCC depicts a process shift. 

This is due to the underlying assumption that any point falling above the LCL which is an 

action limit is a process improvement according to Nelson (1994) 

In other words the issue of the process sigma metric has not been accounted for. In 

the case of a high sigma process above 3 sigma with its scarcity of defect counts, the 

issue of correlation does not arise in the attribute of count of conforming items between 

two nonconforming items.  This work is confined to the regression based high sigma 

cause-selecting control chart for a bivariate process. Montgomery et al. (2003) Draper 

and Smith (2005) details the correlation in regression analysis as the concept of ‘co 

linearity’. By definition co linearity is correlation between two regressor variables. As 

this work is confined to a bi-variate case with one regressor and one response variable, 

the issue of correlation in one variation stream and a resultant effect on the other 

variation stream does not arise. 
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Nelson (1980, 1998) defined the mean square successive difference test as a 

measure of independence of observations. It is average of square of moving ranges M and 

statistic M is,  

             M =  ∑ (퐱퐢 ퟏ    퐱퐢  )ퟐ퐧 ퟏ
퐢 ퟏ
∑ (퐱퐢    퐱)ퟐ퐧
퐢 ퟏ

                                                                           (7.3) 

It is used to detect non randomness in a series of observations. The ‘M’ statistic for data 

set is shown in table 7.14. 

Table 7.14 ‘M’ Statistic 

Model of Data Variable  'M' 
Intercept Regressor X 0.243 
Intercept Response Y 0.072 

No intercept Regressor X 0.273 
No intercept Response Y 0.335 

 

7.11  Run Rules  

Weindling et al. (1970), Wheeler (1983, 1992, 1993), Nelson (1984), Davis and 

Woodall (1988), Palm (1990) Walker et al. (1991), Adke and Hong (1997) Clement 

(1991) dealt in details the signal rates of Shewhart’s control chart and the associated run 

rules. The control charts work on the basis of control limits. The control limits filter the 

noise factors and keep the performance indices of type I and type II errors at the designed 

level. In order to make the control charts sensitive to small shift patterns run rules are 

advocated. The other options are to increase the sample size and to tinker with control 

limits with resultant patch work in type I and type II errors. It may be recalled that the 
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control limits are action limits. In the case of cause-selecting control charts with CCC 

data the lower control limit is the only action limit.  Hence with only one action limit and 

for high sigma process data with its scarcity of points below lower control limits , the 

question of sensitizing run rules does not arise. 

7.12 Conclusion  

The normal probability distribution curves for finer mesh of transforms and 

regular value of transforms are shown in appendix 1. The influence of skewness and 

kurtosis on LCL and type II error is detailed in figures shown in appendix 2. That the 

stochastic behavior and run rules are beyond the requirements and scope of this work has 

been detailed in this chapter. The contributions of this work are listed in conclusion 

chapter. 
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Chapter   8 
 

Conclusion 
8.1     Introduction 

    All manufactured products are outcome of  many stages of production processes. 

The customer is interested in the quality of all the characteristics of many stages of 

production processes together. This requires multistage process monitoring. In practical 

applications due to complicated statistics, multivariate control charts find little use in the 

shop floor. Cause selecting control charts work on the principle of least square regression 

for shop floor type control charts for multivariate process monitoring. In this work cause 

selecting control charts have been upgraded for high sigma applications. The specific 

contributions of this research are summarized in this chapter. 

8.2 Specific Contributions 

 Cause selecting control charts are process monitoring tools for serially dependant 

or cascade manufacturing process. These control charts were first published by Zhang 

(1984). In current literature these charts are limited to application of 3 sigma process 

monitoring. In this work the capability of cause selecting control charts have been 

enhanced for application for bivariate high sigma environments. The specific outcomes 

are the following: 
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8.2.1 Power Transform 

 The high sigma process data is the count of conforming items between two 

nonconforming items. It is in the form of geometric distribution. For adaptation to high 

sigma process a transformation is required for conversion to normality. It has been shown 

that the traditional transformations like double square root transformation and logarithmic 

transformation are inadequate for the required adaptation. A new power transform has 

been proposed in this work. 

 The adequacy or otherwise of the proposed transform is judged by achieving a 

near zero or positive lower control limit. In high sigma control chart the LCL is the action 

limit. The geometric distribution being skewed negatively will always yield a negative 

LCL. But in practical shop floor work there cannot be any fractional or negative number 

of products and hence the desire for positive LCL. It is shown that the proposed power 

transform is superior to traditional transforms in this regard. 

8.2.2   Intercept models 

 The cause selecting control charts work on the basis of least square regression 

principle. The distinct difference of this model is that it can exist with or without an 

intercept term. The shop floor process data may be depicted at times with or without an 

intercept term in a regression model. There can be practical instances in which a thread 

cutting process in a lathe is preceded by ‘turning to size’ process. The data from this 

process will be an intercept model data. In certain instances the first process may not 
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have an impact on the second process. The data from this kind of production line may 

depict a no intercept model. In general the regression models have always assumed to 

contain an intercept term. This assumption will affect chart statistic unlike the traditional 

control charts. This model error issue has been studied with reference to type II error and 

suitable design changes have been incorporated in the design flow diagram as shown in 

figure 6.4. This will further enhance the capability of cause selecting control charts and 

make it fool proof in shop floor applications. Even though this contribution is a corollary 

of this work on high sigma environ, this also enhances the 3 sigma cause selecting control 

charts. The regression model being common to all applications of control charts this 

added advantage has resulted from this work. 

8.2.3  Skewness and Kurtosis  

        The control chart methodology and regression analysis, both have an underlying 

assumption that the data from process follow a normal distribution.  Traditionally the first 

two moments of normal distribution namely mean and standard deviation are considered 

for analyzing the distribution. As these are only descriptive indices, in this work, the third 

and fourth moments namely skewness and kurtosis which are having inferential qualities 

have been studied to further analyze the effectiveness of the transform. The influence of 

skewness and kurtosis with reference to LCL and type II error has been studied and 

recorded. This will render use as a guide and reference for the shop floor in designing and 

analyzing and interpreting the high sigma cause selecting control charts. This is a new 
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treatment and revelation that will be used as resource that will percolate the use of cause 

selecting control chart for high sigma applications. 

8.3 Scope for Further Work 

In this research work a special type of multivariate control chart known as cause 

selecting control charts hither to applied to 3 sigma processes has been enhanced to high 

sigma processes. Though the results are focused on high sigma process environment, they 

are adaptable to 3 sigma environment also.  

Specifically further works can be carried out in, 

i. Adaptability of the proposed transform to high sigma Shewhart type control chart. 

ii. Study of cause selecting control chart applications for 3 sigma and high sigma 

process in practical situations of production processes in parallel or combination 

of serial and parallel configurations. 

iii. Study of multicollinearity issues in multiple regression in cascade high sigma 

process with multiple production stages. 

iv. Measurement errors and behavior of cause selecting control charts for high sigma 

cascade processes of bivariate and multivariate nature. 

8.4     Conclusion 

 This work has enhanced the use of cause selecting control chart for high sigma 

applications.  For brevity a bivariate process has been considered. With the advent of 
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computer software all the results recorded can be directly applied to multivariate cause 

selecting control charts.  

A new power transform which enhanced capability over traditional logarithmic 

and double square root transform has been established. This will be an antidote to avoid 

negative LCL.  The issues of intercept model errors and its influence on type II error ans 

ARL have been studied and design modifications incorporated. The influences of 

skewness and kurtosis on LCL and type II error have been studied and results recorded. 

This will aid the choice and selection of transforms for different shop floor high sigma 

environment applications. 

It has been established that the proposed transform is superior over logarithmic 

transform, double square root transform and Nelson (1994) transform in terms of 

obtaining a positive lower control limit. For the first time the intercept model issues and 

its impact on control chart design has been discussed for cause selecting control charts. A 

new method of optimization of transform based on high sigma application requirement 

has been proposed. After Box and Cox (1964), this is a new method proposed for 

optimization. 

Though advocated for high sigma application all these contributions are also 

adaptable to and will enhance the three sigma cause selecting control chart performance 

and high sigma Shewhart type control chart performance.  
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