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Introduction

Our Universe is textured with a variety of gravitationally bound structures on different

scales: planets, stars, galaxies, clusters, and superclusters. Observations tell us that our

Universe is expanding since its origin around 14 Gyr ago from a very dense and hot state

(named as Big Bang), and recently its expansion has started taking place with acceler-

ation, probably due to domination of some unknown form of energy called dark energy

(DE). Cosmology is the study of the whole Universe with the aim to understand the origin,

evolution and possible future of the Universe. For this purpose, relying on the Einstein’s

theory of general relativity, cosmologists have developed a mathematically tractable and

observationally testable model of the Universe, the so-called ΛCDM (cosmological con-

stant Λ + cold dark matter) model, also known as the standard cosmological model. This

model is remarkably successful to explain the dynamics and observed features of the Uni-

verse such as the cosmic acceleration, large scale structure (LSS) formation and many

more, and it finds an excellent fit to various observational data from different sources.

On the other hand, it is plagued with a number of problems that need to be addressed.

In this chapter, we briefly present the standard model of the Universe, both at the back-

ground and perturbation levels. Finally, the motivation for the research work carried out

in this thesis is presented. Many comprehensive and excellent standard texts, describing
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the ΛCDM model, are there in the literature [1–5], which are followed in this background

chapter.

1.1 Background Cosmology

This section provides basic information about background cosmology which includes

major observational milestone, matter-energy ingredients of the Universe, background

equations, and cosmological parameters.

1.1.1 Homogeneity and isotropy (cosmological principle)

The structure of the Universe on large scales possesses two important properties, homo-

geneity and isotropy, known as the cosmological principle. Homogeneity means that the

Universe looks the same at each point, and isotropy means that the Universe looks the

same in each direction. In other words, there are no preferred locations or directions in

the Universe. So, there is no center of the Universe. Our Universe appears to become

smooth (isotropic and homogeneous) at distance scales 100 Mega-parsec (Mpc) or more,

the typical size of superclusters. Therefore, the structures larger than superclusters of

galaxies are not observed. For, the large scale surveys such as the Two-degree Field

(2dF) galaxy redshift survey and the Sloan Digital Sky Survey (SDSS) have not reported

any structures bigger than the superclusters. Therefore, the cosmological principle is very

well supported by the observations. It is the guiding principle for mathematical modeling

of the Universe.

1.1.2 Expanding Universe: Hubble’s law

The important observational evidence in modern cosmology is that almost all galaxies

(observed in deep extragalactic space, 10 Mpc or more) in the Universe appear to be

receding from us, and the farther away a galaxy is, the more rapid its departure appears to

be. So the Universe is expanding! If a galaxy is moving away from us, the characteristic

lines shift towards the red end of the spectrum and thus cause an effect called redshift

(see Figure 1.1, taken from [6]). On the other hand, the light waves coming from a galaxy
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moving towards us, get crowded together and raise the frequency. This, in turn, causes

blueshift since blue light corresponds to the high-frequency end of the spectrum. The

Figure 1.1: Redshift and blueshift.

redshift of a galaxy is denoted by dimensionless number z, defined as

z =
λob − λem

λem

,

where λem is the wavelength of the light at the time of emission from the remote galaxy

while λob is the wavelength of this light at the time of reception on Earth. In the case of

blueshift, we have z < 0. However, almost all the galaxies are observed with z > 0.

Vesto Slipher, at the Lowell Observatory in 1912, first measured the wavelength shift

of the light from M31 galaxy; which is one of the few galaxies exhibiting a blueshift.

Slipher, by 1925, measured shifts of the spectral lines of around 40 galaxies and found that

they were all nearly redshifted except some nearby galaxies within our Local Group. By

1929, there were enough galaxy redshifts measurements for the cosmologist Edwin Hub-

ble to study whether a galaxy’s redshift is related to its distance from Earth. A galaxy’s

redshift can be measured with high precision, but measuring its distance is not easy. For

instance, Hubble knew the redshift z for around 50 galaxies, but estimated distances only

for 20 galaxies. Nonetheless, he plotted redshift (z) versus distance (r) for the galaxies,

shown in Figure 1.2 (extracted from Hubble’s original paper [7]), and found the linear
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Figure 1.2: Hubble measurement of velocity and distance.

relationship between redshift and distance, now known as Hubble-Lemaı̂tre’s Law1

z =
H0

c
r,

where H0 is a constant known as the Hubble constant and c is the speed of light. The

Hubble’s law is very well confirmed by modern observations. Hubble interpreted that

the observed redshift of galaxies is due to their radial velocities away from the Earth

(Doppler shift). In Hubble’s analysis, the values of z were all small (z < 0.04), so he

used the classical and non-relativistic relation, z = v/c, for the Doppler shift. Note that

the relativistic relation is z =
√

(1 + v/c)/(1− v/c)−1, where v is the radial velocity of

a galaxy or a light source. Hubble’s law, interpreting the redshift as Doppler shift, takes

the form

v = H0r. (1.1)

The Hubble constant is measured in km s−1 Mpc−1. The numerical value estimated by

Hubble was H0 = 500 km s−1 Mpc−1. However, the best current estimate of the Hub-

ble constant with the modern observations, considering the results from different obser-

vations, is much lower. For instance, a recently measured value of H0 by the Baryon

1Two years before the publication of the Hubble’s article, the astronomer and Belgian priest Georges
Lemaı̂tre already published the research leading to the Hubble’s Law.
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Oscillation Spectroscopic Survey (BOSS) [8] reads as

H0 = 67.6+0.7
−0.6 km s−1 Mpc−1 . (1.2)

It may be noted that the expansion of the Universe is most significant over very large

distance scales. For nearby galaxies such as the Andromeda galaxy in our local group,

the gravity is strong enough to supersede the small effect caused by the expansion of

the Universe. However, Hubble’s law is consistent with all observations of the distant

galaxies in their respective local groups. A galaxy within a cluster may have a velocity

different from the Hubble flow due to the gravitational effects (local) within the cluster.

Such a velocity is called the peculiar velocity of the galaxy. Thus, the total or effective

velocity of a galaxy is given by

veff = vhubble + vpeculiar.

However, the peculiar velocities are negligible in comparison to the Hubble flow. Because

of the cosmological principle, no location in the Universe is special. So observer in any

galaxy will observe the other galaxies moving away from his/her own galaxy. It deserves

to mention that the galaxies are not receding from each other in a pre-existing space rather

the space between the galaxies evolves with the time that drags apart the galaxies from

each other. The Universe is expanding. So extrapolating backward in time, all the stuff of

the Universe can be imagined to crunch together. So it is believed that our Universe must

have had a beginning from a very dense and hot state, called the hot Big Bang, around 14

billion years ago, and since then it is expanding continuously and growing in size. The

structures in the Universe are formed during the course of the expansion of the Universe.

The Hubble constant H0 is usually parameterized by the dimensionless Hubble constant

h via the relation: H0 = 100h km s−1 Mpc−1. Furthermore, the Hubble constant H0

stands for the present value of a time-varying parameter, known as the Hubble parameter:
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H = H(t). It is defined as

ṙ(t) = H(t)r(t), (1.3)

where an overdot denotes the time derivative, and r(t) is the physical radial distance. The

physical distance, r(t) is connected with the comoving distance, χ via the relation:

r(t) = χa(t), (1.4)

where a(t) is known as the scale factor of the Universe. Then, the Hubble parameter

reads as:

H(t) =
ȧ(t)

a(t)
. (1.5)

1.1.3 The story of hot Big Bang

Here are some of the historical developments that led to the theory of hot Big Bang

regarding the origin and evolution of the Universe.

• The proposal (with a rigorous mathematical formulation) that the Universe may

have had a definite beginning as a point of infinite density which set out to expand,

was first made by the Belgian priest George Lemaı̂tre in 1927 (his mathematical

formulation described a Universe which could either be expanding from a point or

contracting into a point). But his original paper was published in a small Belgian

journal and went largely unnoticed.

• Alexander Friedmann, a Russian mathematician and meteorologist, had already

modeled such a Universe mathematically in 1922 using the general theory of rela-

tivity (of which Lemaı̂tre was unaware) and Einstein was well aware of his equa-

tions, but they both failed to give them any physical relevance, they just thought

about them as mathematically consistent solutions to general relativity. Einstein

was convinced that the Universe was static, and Friedmann died in 1925.

• Then in 1929, Hubble published his analysis on the redshift of distant galaxies
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and the proportionality between distance and redshift (Hubble-Lemaı̂tre’s Law).

But Hubble himself did not believe that expansion was the reason for the appar-

ent redshift, he thought it must be just some apparent effect. Lemaı̂tre realized

that Hubble’s data fitted his model of an expanding Universe, and communicated

with the already famous astronomer Arthur Eddington. Eddington did not believe

Lemaı̂tre’s proposal, he was also convinced that the Universe was static, but he

nevertheless realized the importance of Lemaı̂tre’s work and helped him to pub-

lish it in English in 1931, when the theory became widespread, already with a firm

statement that the Universe was expanding and it must have started as a tiny point

which he called “a primeval atom”.

• The theory though received little support for many years, with most scientists

favouring the steady-state Universe theory2 to explain the apparent expansion. The

name Big Bang was coined by Fred Hoyle in 1949 (who was a firm defender of the

steady-state theory).

• George Gamow was the one who realized that the steady-state theory had many

more conceptual problems than Lemaı̂tre’s proposal and concluded that the Big

Bang had to be the correct theory, and set out to develop it into a more rigorous and

complete theory, developing many important aspects such as the details on how did

the early Universe evolve, how did the mechanisms of primeval nucleosynthesis

work, etc. Eventually, it was predicted that the Big Bang should have left a cosmic

microwave background (CMB) radiation which should exist in the whole Universe

today at a temperature 2.7255± 0.0005 K [9].

• The existence of the CMB radiation was first predicted by Ralph Alpher and his

group in 1948 in connection with the research on Big Bang nucleosynthesis (BBN).

It was first observed, after a sequence of coincidences, in 1965 by Arno Penzias and

2In steady-state theory, the Universe is eternal (no origin or beginning) with constant density. The major
issue with the theory is that the continuous creation of matter out of nothing is proposed to maintain the
constant density in the expanding Universe, violating the principle of conservation of energy.
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Robert Wilson at the Bell Telephone Laboratories as a source of excess noise in a

radio receiver. For this remarkable discovery, they shared the 1978 Nobel prize in

physics. The experimental discovery of this CMB radiation finally put the hot Big

Bang theory as the prevailing theory for the origin and evolution of the Universe.

So far, it is the most accepted scientific theory regarding the origin and evolution

of the Universe.

1.1.4 Accelerated expansion of the Universe

The Universe has been expanding after the Big Bang. So it is natural to expect that the

gravitational attraction of the matter in the Universe would cause its expansion to be

decelerating. But instead, the expansion of the Universe appears to be taking place at

an increasing rate, so that the recession velocities of all distant galaxies are increasing

continuously with time. Two independent projects, the Supernova Cosmology Project

and the High-Z Supernova Search Team (see [10] and [11]) discovered the accelerated

expansion of the Universe in 1998, where both the groups used distant type Ia supernovae

(SNe Ia) to measure the accelerated expansion of the Universe. They considered these

SNe Ia as standard candles, all having almost the same intrinsic brightness, and used the

observed brightness of these SNe Ia to measure their distance from us. Comparing the

distance with the cosmological redshift of the supernovae, they measured how fast these

supernovae are moving away from us. They got the unexpected and surprising result that

the Universe appears to be expanding with an accelerating rate. Three members of the

two groups were subsequently awarded by the Nobel Prize of physics in 2011 for their

remarkable and important discovery. Many complementary probes have confirmed the

accelerated expansion of the Universe: CMB, baryon acoustic oscillations (BAO), and in

analyses of the clustering of galaxies, are to name a few. The expansion of the Universe

is believed to have been accelerating roughly 5 billion years ago. Further, it is believed

that our Universe is witnessing an accelerating expansion due to the dominance of some

exotic energy stuff, known as DE. The DE is mimicked by the cosmological constant Λ in

the standard model of cosmology, as we will see later. There is one more point to ponder.
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It is believed that Universe witnessed an accelerated expansion for a fraction of second

just at the beginning, and inflated itself enormously. This idea is called cosmological

inflation and was invented by Alen Guth in 1981. The original motivation of this ad-hoc

idea was to explain the initial flatness and homogeneity of the Universe and the lack of

certain relics that could have been produced in the very early Universe. The important

property of inflation, which was discovered later, is that it provides a mechanism for

generating the initial density fluctuations, the primordial perturbations, from which the

structure such as stars and galaxies have grown. The cosmological inflation is a separate

hot research topic nowadays in modern cosmology, and thus not a subject to discuss in

detail here. For more details on inflation, one may refer to [12]. Figure 1.3 shows the

schematic cosmic evolution (various epochs) of the Universe from the early Big Bang

epoch until the present epoch of cosmic acceleration. This figure is taken from [13].

Figure 1.3: Cosmic evolution of the Universe from the time of Big Bang.

1.1.5 Energy components of the Universe

Fundamental particles are the constituents of everything in the Universe, and properties of

these particles dictate the behaviour of the Universe as a whole. A non-relativistic particle

moves with a speed much less than that of the light, and its rest mass-energy dominates
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the kinetic energy. On the other hand, a relativistic particle is a particle that moves with

the speed of light or a substantial fraction of it. Its mass-energy does not dominate the

kinetic energy. Thus, any particle with zero rest mass is always relativistic and moves

with the speed of light. Thus, the total energy E of a particle is given by its mass-energy

plus kinetic energy via the relation:

E2
total = m2c4 + p2c2, (1.6)

where m is the rest mass of the particle and p being the magnitude of momentum. In the

relativistic limit, (i.e., for the particles having zero rest mass) we have

E = pc (1.7)

In the non-relativistic limit (i.e., for the particles which have v << c), we have

Etotal = mc2

(
1 +

p2

m2c2

)1/2

≈ mc2 +
p2

2m
, (1.8)

the first term in above equation is the rest mass-energy, and the second term is the clas-

sical kinetic energy of the particle. The momentum of the particle, p = mv in the non-

relativistic limit. The observable Universe comprises mainly five types of matter-energy

components/particles: baryons, photons, neutrinos, dark matter (DM) and DE. In the

following, we give a brief account of these components.

1. Baryons

A baryon is a particle that is defined to be made of three quarks. For instance, a proton

contains two “up” quarks and a “down” quark; a neutron contains two “down” quarks and

a “up” quark. So neutrons and protons both are examples of baryons. Indeed, the material

objects that we see all around are made of the fundamental particles: neutrons, protons,

and electrons. The simplest way to observe the baryons today is to see the galaxies. The

greatest contribution to the density, though, comes not from stars in galaxies, but rather

from gas in groups of galaxies. Various estimates place the limit on total baryonic matter
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roughly around 2-5% of the total density of the Universe. The estimation of total matter

density in the Universe is much higher than the estimated baryonic matter, so this directly

indicates the presence of a huge amount of non-baryonic matter in the Universe.

2. Photons

A photon (γ) is known to be a massless particle and travels with the speed of light. These

are the constituent particles of the electromagnetic radiation. If its frequency is f or its

wavelength is λ = c/f , then energy of the photon is, Eγ = hf , where h = 2π~ stands

for the Planck constant. Photons pervade the Universe with a wide range of energy, from

radio to gamma rays. For cosmology, the CMB photons are the most relevant because

they carry information of the very early Universe, and are present in a large abundance in

the Universe such that the contribution of all other photons is negligible in comparison to

the CMB photons.

3. Neutrinos

A neutrino (ν) is a lepton particle with three types, or “flavors”: tau neutrinos, electron

neutrinos, and muon neutrinos. Some or all may be massive or massless. It is not clear

yet whether they are massive or massless, and intense research is in progress in this di-

rection. Unlike photons and baryons, cosmic neutrinos have not been observed so far,

so arguments about their presence and contribution to the energy density of the Universe

are necessarily theoretical. However, these theoretical arguments are quite strong, based

on very well-understood physics. A basic understanding of the interaction rates of neu-

trinos enables us to argue that neutrinos were once in equilibrium with the rest of the

cosmic plasma, and decoupled from it at energy scale around 1 MeV before BBN. Neu-

trinos are extremely weakly interacting particles, and interact via the weak nuclear force

with other particles. Neutrino cosmology is another active field of research and various

experiments/surveys are currently in progress to detect them.

4. Dark Matter

BBN, the process of light elements production, provides a way to measure the baryon

density of the Universe. From BBN prediction, it is found that ordinary matter (baryons)

accounts for only a few percents (4-5%) to the total density of the Universe. But the
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direct estimates tell us that the total matter density is around 20-30% of the total density

of the Universe. Thus, BBN provides a piece of evidence that there is a large amount of

non-baryonic matter, which we call DM.

The history of DM is more than eighty years old. In 1933, Fritz Zwicky [14] pro-

vided the first evidence of DM on the basis of velocity dispersion of seven galaxies in

the Coma cluster. He concluded that there is a large amount of non-ordinary matter

within the Coma cluster of galaxies. Nowadays, there are several strong pieces of evi-

dence of cosmological nature for the existence of DM. The strongest one is the observed

anisotropies in the CMB. These present anisotropies are due to the presence of DM in

the very early Universe. Other pieces of evidence include the strong and weak lensing

effects, the brightness in X-rays of clusters of galaxies which depends on the potential

well of the cluster [3], and the structure formation of the Universe which requires about

at least 20% DM. In short, DM is a hypothetical type of matter which constitutes about

25% matter density of the Universe. DM has not been observed directly, its existence and

properties are inferred from anisotropies in the CMB, galaxy rotation curves, weak and

strong gravitational lensing, and formation of structures. The particle(s) which make this

new form of matter is unknown so far. The most popular and simplest idea is that DM is

made up of elementary particle(s) produced in the very early Universe.

There are three classes of DM particles based on their velocities, making up this

matter: hot dark matter (HDM), warm dark matter (WDM), and cold dark matter (CDM).

The HDM particles are those which decoupled when they were relativistic, i.e., they have

relativistic velocities for at least some fraction of lifetime of Universe. So they form

huge and rarer halos which are different in number from current observations. Thus,

HDM particles are ruled out by several types of observations because they do not favor to

form the observed structures in the Universe. A light neutrino, a very weakly interacting

particle decoupled in very early Universe, might be an example of an HDM particle.

CDM particles are those which have negligible velocity, hence they can cluster and form

much smaller and denser halos. CDM particles favor the formation of the structure due

to their mutual gravity and negligible pressure. Despite the ability of CDM particles in

12



Chapter 1

successfully explaining the observed structure of the Universe, there are some theoretical

issues with these, as discussed in section 1.3.2. In the standard model of particle physics,

a neutrino might be the most suitable candidate for DM particle if it has a small mass. The

WDM is an intermediate case between HDM and CDM. Sterile neutrinos and gravitinos

are the most common candidates for WDM particle. For more details about the pieces

of evidence, candidates and methods of detection of DM, we refer the review articles

[15–17]. For a recent status of direct and indirect searches of DM particles, see [18, 19].

5. Dark Energy

As mentioned above that the total matter density contributes only one third to the total

density of the Universe. The remaining two-thirds of the density in the Universe comes

from a hypothetical form of energy, known as DE. The important questions about DE

such as, what is DE and in which form it is present in the Universe, still need answers?

There are mainly three interpretations of DE: the cosmological constant, quintessence

and phantom. The term cosmological constant, denoted by Λ, was first introduced by

Albert Einstein in 1917, to make the Universe static. After the discovery of the expansion

of the Universe by Edwin Hubble in 1929, Einstein dropped the cosmological constant

from his field equations which describe the evolution of our Universe. For decades, most

cosmologists assumed Λ = 0 in the cosmological models of the Universe and took it for

granted that the expansion of the Universe is gradually slowing down due to the gravita-

tional attraction of the matter content present in the Universe. After the discovery of the

accelerated expansion of the Universe, the cosmological constant has turned out to be the

most suitable candidate of DE explaining the observed acceleration of the Universe. The

cosmological constant Λ is interpreted as the vacuum energy or energy of empty space.

It was suggested by Einstein that empty space is not really empty. It is filled with pairs

of particles and their anti-particles (virtual particles), appearing out of nowhere, which

annihilates themselves and suddenly disappears, creating the vacuum. Quintessence is

an alternative form of DE to the cosmological constant. There are many models for

quintessence that arise from particle physics. The explanation for quintessence is that it

is considered as a scalar field, defined as the strength of a field at each point of the space
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independent of the direction in the field. Therefore, one can treat cosmological constant

as a particular case of a scalar field, in which field strength is the same at each point.

Phantom is a hypothetical form of DE which has negative kinetic energy. The phantom

form of DE may cause the expansion of the Universe to accelerate so quickly that it will

lead to a Big Rip, a possible end of the Universe. A detailed description of various forms

of DE can be seen in the review articles [20–22]. The precise nature of DE is still un-

known and various cosmological probes are in progress in this direction on theoretical as

well as observational grounds. Currently, the most popular candidate for DE is the cos-

mological constant and is a major part of the standard model since it is highly supported

with most of the recent observational data. The individual contribution of various matter-

energy components to the overall energy budget of the Universe are shown in Figure 1.4,

which is taken from [23].

Figure 1.4: The individual contribution of components to the total energy budget of the
Universe. It can be seen that the particles for around 95% energy stuff of the Universe
are yet to be discovered.

1.1.6 Background equations and cosmological parameters

Here, we shall derive the background equations and cosmological parameters, governing

the dynamics of the Universe. These equations and parameters allow us to describe the

past and future evolution of the Universe.
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1. Friedmann-Lemaı̂tre-Robertson-Walker metric

The metric that encapsulates the geometric properties of the homogeneous and isotropic

Universe (i.e., respecting the cosmological principle) was derived by Alexender Fried-

mann in 1922. A few years later in 1927, George Lemaı̂tre independently arrived at the

Friedmann metric. Finally, in 1935, Robertson and Walker rigorously proved that this

is the only one metric representing homogeneous and isotropic spacetime. This metric

is popularly known as Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric [24–27].

In spherical coordinates (r, θ, φ), the metric of an isotropic and homogeneous three-

dimensional space is given by

dl2 =

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
, (1.9)

where the constant k represents the spatial curvature. If k < 0, the 3D space is open or

negatively curved; if k = 0, the 3D space is flat or Euclidean, and if k > 0, space is

closed or positively curved. The most general metric of the four-dimensional spacetime

of an isotropic, homogeneous and expanding Universe reads as

ds2 = −c2dt2 + a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
, (1.10)

where the function a(t) is the scale factor of the Universe. It is the FLRW metric of the

4D spacetime.

2. Einstein’s equation

Einstein’s equation represents the relation between matter and geometry of the spacetime,

given by [28], adpoting speed of light, c = 1.

Gµν = Rµν −
1

2
gµνR = 8πGTµν . (1.11)

Here, Gµν is the Einstein tensor that describes the geometry of the Universe; Rµν is the

Ricci tensor, which depends on the metric tensor gµν and its derivatives; R is the Ricci

scalar, which is related to Ricci tensor via R ≡ gµνRµν ; G is the Newton’s gravitational
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constant and Tµν is the stress-energy momentum tensor (a symmetric tensor) that de-

scribes the various matter and energy sources in the Universe. The Einstein tensor Gµν

determines the curvature of spacetime at a point in spacetime and is equated with the

energy and momentum at the same point. It is diagonal (G0i = Gi 6=j = 0) and isotropic

(G11 = G22 = G33).

The Ricci tensor is expressed in terms of the Christoffel symbols,

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓ
β
µα. (1.12)

Here, the comma denotes derivative with respect to spatial coordinates. We notice that

Ricci tensor involves Christoffel symbols, which are further expressed in terms of com-

ponents of metric tensor gµν :

Γµαβ =
gµν

2

[
∂gαν
∂xβ

+
∂gβν
∂xα

− ∂gαβ
∂xν

]
(1.13)

In FLRW metric, Gµν is computed using Christoffel symbols. The energy momentum

tensor T µν , in case of a perfect isotropic fluid, is given by

T µν =


−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (1.14)

where ρ is the energy density, and p is the pressure of the isotropic cosmological fluid.

The time-time or 00 component of the Einstein tensor reads as

G00 = 3

[
k

a2
+
( ȧ
a

)2
]
. (1.15)
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In FLRW model, the 00 component, G00 = 8πGT00, of the Einstein’s equation gives

3

[
k

a2
+
( ȧ
a

)2
]

= 8πGρ (1.16)

or,

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
. (1.17)

This equation is called as the Friedmann equation. It gives the evolution of the Uni-

verse via the relation between, the energy density ρ, the scale factor a(t) and the spatial

curvature k.

3. Energy conservation

The Einstein’s equation satisfies the first Bianchi identity T νµ;ν = 0, i.e., the conservation

equation for the total energy-momentum tensor via the second Bianchi identity Gν
µ;ν = 0.

In FLRW model, it gives the relation between the scale factor a(t) and the energy density

ρ:

ρ̇ = −3
ȧ

a
(ρ+ p). (1.18)

This is known as the conservation law of energy in an expanding Universe. The depen-

dency of energy density on the pressure p for different components of the Universe leads

to the equation of state (EoS): p ≡ p(ρ). For non-relativistic matter, such as baryons and

DM, p = 0 due to the negligible kinetic energy. Therefore, (1.18) reduces to

ρ̇ = −3
ȧ

a
ρ =⇒ ρ ∝ a−3 (1.19)

For relativistic matter such as the photons and massless neutrinos, p = ρ/3 because the

particle velocity generates pressure. Therefore, (1.18) gives

ρ̇ = −3
ȧ

a

(
1 +

1

3

)
ρ = −4

ȧ

a
ρ =⇒ ρ ∝ a−4 (1.20)

Thus, it is clear that in an expanding Universe, a relativistic fluid dilutes faster than the

non-relativistic fluid.
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4. Cosmological constant

In 1917, Einstein introduced the cosmological constant (Λ) to prove that the Universe is

static. But after the Hubble’s discovery of cosmic expansion in 1929, the cosmological

constant was dropped. Later, it again came into the picture after the discovery of the

accelerated expansion of the Universe in 1998. Thereafter, the cosmological constant is

treated as the form of DE and was added to the left-hand side of the Einstein equation

without violating the cosmological principle:

Gµν + Λgµν = 8πGTµν , (1.21)

or

Gµ
ν = 8πGT µν − Λgµν . (1.22)

Here, gµν = gµαgαν = δµν , and the stress-energy-momentum tensor of the homogeneous

fluid in terms of cosmological constant is given by

T̃ µν = − Λ

8πG
δµν =


− Λ

8πG
0 0 0

0 − Λ
8πG

0 0

0 0 − Λ
8πG

0

0 0 0 − Λ
8πG

 . (1.23)

Comparing (1.14) and (1.23), we see that the EoS of cosmological constant is p = −ρ =

Λ/8πG. This shows that the cosmological constant does not vary with time (ρ̇ = 0).

5. Possible scenarios of the evolution history of the Universe

The total energy density of the Universe in terms of its contribution from different com-

ponents of the Universe is written as

ρ = ρr + ρm + ρk + ρΛ, (1.24)

where ρr, ρm, ρk and ρΛ are respectively, the energy densities of radiation (photons + neu-

trinos), matter (baryons + dark mater), spatial curvature, and the cosmological constant.
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Therefore, we can rewrite the Friedmann equation (1.17) containing all components, as

H2 =

(
ȧ

a

)2

=
8πG

3
ρr +

8πG

3
ρm −

k

a2
+

Λ

3
. (1.25)

The energy densities of different components evolve with respect to the scale factor in

the following manner: ρr ∝ a−4, ρm ∝ a−3, ρk ∝ a−2, and ρΛ ∝ a0. Therefore, with the

expansion of the Universe they all dominate one after the other in the following order:

radiation domination, matter domination, curvature domination, and cosmological con-

stant domination. Let us understand the behaviour of scale factor, Hubble parameter and

Hubble radius (RH = cH−1) during different dominating phases of the Universe.

I. Radiation domination:

ȧ2

a2
∝ a−4, a(t) ∝ t1/2, H(t) =

1

2t
, RH(t) = 2t. (1.26)

II. Matter domination:

ȧ2

a2
∝ a−3, a(t) ∝ t2/3, H(t) =

2

3t
, RH(t) =

3

2
t. (1.27)

III. Negative curvature domination:

ȧ2

a2
∝ a−2, a(t) ∝ t, H(t) =

1

t
, RH(t) = t. (1.28)

IV. Positive curvature domination: In the case of k > 0 and no cosmological constant,

the RHS of Friedmann equation (1.25) becomes zero and the expansion of the Universe

stops. When the scale factor decreases, H becomes negative but the RHS of (1.25) re-

mains positive and hence the Universe recollapses.
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V. Cosmological constant domination:

ȧ2

a2
∝ constant, a(t) ∝ exp(Λt/3), H(t) = 1/RH =

√
Λ/3. (1.29)

Thus, in the cosmolgical dominated phase, the Universe expands exponentially.

6. Cosmological parameters

The density required to make the Universe flat (i.e., curvature k = 0) is known as the

critical density of the Universe. It is defined as

ρc(t) =
3H2(t)

8πG
. (1.30)

We now define the density parameter Ωx as the ratio of the density of each species evalu-

ated at present to the critical density of the Universe at present,

Ωx =
ρx0

ρc0

; x ∈ {r,m,Λ}. (1.31)

Also, the density parameter of the spatial curvature is given by

Ωk = − k

a2
0H

2
0

, (1.32)

Therefore, Friedmann equation reduces to

Ωr + Ωm + Ωk + ΩΛ = 1. (1.33)

This is usually called energy-budget equation of the Universe. The present physical den-

sity (ρx0) of a component x can be decomposed into standard units:

ρx0 = Ωx
3H2

0

8πG

= Ωx
3(100h km s−1Mpc−1)2

8πG

= Ωxh
2 × 1.8788× 10−29g cm−3,

(1.34)
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where Ωxh
2 is the dimensionless number. This leads us to a new parameter called the

physical density parameter, ωx ≡ Ωxh
2. In the measurement of CMB temperature, ωγ is

considered as the fixed-parameter:

ωγ ≡ Ωγh
2

=
ργ0

ρc0
h2

=

(
π2

15
T 4

0

)(
8πG

3H2
0

)
h2

=
8π3T 4

0

45(H0/h)2M2
P

.

(1.35)

At present CMB temperature, T0 = 2.7255±0.0005 K at 68% confidence limit (CL) [29],

we get ωγ ≡ (2.472± 0.002)× 10−5. Moreover, neutrino abundance is relatively fixed to

that of photons. Therefore, the total physical radiation density is given by:

ωr ≡ ωγ + ων

=

[
π2

15
T 4

0 +Neff ×
7

8
× π2

15
T 4
ν0

](
8πG

3H2
0

)
h2

=

[
1 +Neff ×

7

8
×
(

4

11

)4/3]
ωγ

(1.36)

In the above equation, Neff stands for the effective number of neutrino species and can be

viewed as a convenient parametrization of the relativistic energy density of the Universe

beyond the energy density of the photons which is highly constrained by the measurement

of the CMB temperature. By taking into account certain effects such as neutrino oscilla-

tions, non-instantaneous decoupling around electron-positron annihilation, etc., numeri-

cal calculations yield, Neff = 3.046 [30]. The factor 7/8 apears due the fact that neutri-

nos are fermions, i.e., they follow Fermi- Dirac distribution with zero chemical potential.

Now, substituting Neff = 3.046 and T0 = 2.7255 ± 0.0005 K in (1.36), we get the total

physical radiation density as ωr = 4.183 × 10−5. Thus, it is clear that the total radiation

contribution can be ignored in the Friedmann equation, except in the early Universe.
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1.2 Linear perturbation theory

It is well known that the present Universe is homogeneous and isotropic at sufficiently

large scales about 100 Mpc or larger than that. Despite this, it has generated small in-

homogeneities in the early stages of evolution, which have grown with time and formed

the observed structures of the Universe such as a galaxy, galaxy clusters, superclusters,

and voids. The observations of CMB tell us that the Universe was homogeneous and

isotropic at the time of recombination, with very small inhomogeneities. The main phys-

ical mechanism responsible for the growth of these small initial inhomogeneities to be

the large structures we observe today is the gravitational instability in the matter distribu-

tion. In order to understand how these small inhomogeneities have evolved from a very

early stage of the Universe to the present CMB anisotropies and large-scale structure, it

is necessary to study the evolution of the cosmological perturbations. For more details

and related discussions, we refer to the classical paper [31]. In the following subsection,

we provide a brief description of the linear perturbation theory, used in the thesis work

assuming that the Universe is spatially flat.

1.2.1 Classification of perturbations

The metric and stress-energy tensors of the Universe are decomposed into spatial averages

and linear perturbations as follows:

gµν(t, ~x) = ḡµν(t) + δgµν(t, ~x), (1.37)

Tµν(t, ~x) = T̄µν(t) + δTµν(t, ~x). (1.38)

Here ḡµν is the metric of the homogeneous and isotropic FLRW Universe. There are ten

degrees of freedom in each of the two perturbed tensors, describing different aspects of

gravity. It was shown by Bardeen in 1980 that these can be decomposed into scalars, vec-

tors, and tensors via spatial rotations. These three sectors get decoupled at the first order

in perturbation theory. Scalar and vector perturbations vanish in the vacuum, but tensor
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perturbations can propagate if these have been excited. The tensor perturbations account

for gravitational waves. In the presence of matter, scalars provide the response of the met-

ric to an irrotational distribution of matter, generalizing Newton’s theory of gravitation.

Vectors, on the other hand, represent the response of the metric to vorticity, and represent

the phenomena with no equivalent in Newton’s theory, called “gravitomagnetism”. In the

minimal cosmological models, the vorticity of the different matter components decays

with time, and therefore vectors can be neglected. Tensors may have a a small role in

CMB anisotropies, and these can be studied separately since they have decoupled from

the scalar sector at first order in perturbations. In this thesis work, we consider only the

scalar perturbations. The four scalar components of the metric as well as the stress-energy

perturbed tensors are given as follows:

(i) The (00) time-time term:

In the perturbed metric δgµν : it corresponds to the generalized gravitational potential ψ.

In δTµν : it represents the energy density perturbation δρ (we will use the relative energy

density perturbation δ = δρ
ρ̄

).

(ii) The trace (ii) space-space terms:

In δgµν : the local distortion, given by φ, of the average scale factor a(t) (the “local scale

factor” is (1− φ)a).

In δTµν : the pressure perturbation δp.

(iii) The irrotational part of the (0i) time-space vector:

In δgµν : the potential b such that δg0i = ∂ib.

In δTµν : the potential v of the irrotational component of the energy flux, δT 0
i = ∂iv.

(iv) the traceless longitudinal part of the (ij) space-space tensor:

In δgµν : the potential µ of the metric shear: δgij = (∂i∂j − 1
3
δij∆)µ

In δTµν : the potential s of the shear stress or anisotropic stress: T ji = (∂i∂j − 1
3
δij∆)s.

In place of the velocity potential v, we use a variable θ (called the “velocity divergence”)

defined via

∂iδT
0
i = (ρ̄+ p̄)θ = ∆v. (1.39)
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Similarly, one can use the function σ instead of s, with the definition

(∂i∂j −
1

3
δij∆)δT ij = (ρ̄+ p̄)σ = ∆(∆s). (1.40)

The function σ is usually referred to as the anisotropic stress. To summarize, it is easy to

see that one can manipulate four degrees of freedom representing the scalar perturbations

of the matter fields: the density fluctuation, pressure perturbation, velocity divergence

and anisotropic stress, that is, {δ, δp, θ, σ}.

1.2.2 Gauges

A gauge refers to the choice of time slicing. For the idealised FLRW Universe, there

exists only one time slicing, which is compatible with the assumption of homogeneity.

But, in a perturbed Univrese, there are infinitely many time slicings compatible with the

perturbation theory, keeping the quantities close to their average values. The perturbation

of any quantity at a given point is given by the difference between the true and the average

values of the quantity at this point. For example, the perturbation of energy density ρ

reads,

δρ(t, ~x) = ρ(t, ~x)− ρ̄(t). (1.41)

Here ρ(t, ~x) is a locally and unambiguously defined quantity, but ρ(t) depends on the

choice of equal-time hypersurface going through the point (t, ~x). So with different choices,

ρ(t, ~x) would be compared to the averages performed on different sheets, leading to dif-

ferent values. Thus, δρ(t, ~x) depends on the choice of time slicing or gauge. In this thesis

work, we use the Newtonian and synchronous gauges as described below.

1. Newtonian gauge

In Newtonian gauge (also called longitudinal gauge), it is imposed that the non-diagonal

scalar perturbations of the metric vanish: b = µ = 0. This prescription fixes a unique

time slicing. In this gauge, the line element is given by

ds2 = −(1 + 2ψ)dt2 + (1− 2φ)a2(t)(dx2 + dy2 + dz2). (1.42)
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In terms of the conformal time η, defined by dη = dt/a, the line element (1.42) becomes

ds2 = a2(η)[−(1 + 2ψ)dη2 + (1− 2φ)(dx2 + dy2 + dz2)]. (1.43)

The Newtonian gauge is with the advantage that the gauge-invariant Bardeen potentials

{ΦA,ΦH} reduce to the metric perturbations {φ, ψ}. Note that for a homogeneous and

spatially flat FLRW Universe with the metric

ds2 = a2(η)[−dη2 + (dx2 + dy2 + dz2)], (1.44)

and with energy density ρ̄(η) and pressure p̄(η), the Einstein’s equations δGν
µ = 8πGδT νµ

give the following evolution equations for the expansion factor a(η):

3

(
a′

a

)2

= 8πGa2ρ̄, (1.45)

3
d

dη

(
a′

a

)
= −4πGa2(1 + 3w)ρ̄. (1.46)

where the primes denote derivatives with respect to conformal time η, and w = p̄/ρ̄

describes the EoS parameter of the cosmological fluid. The conservation of energy-

momentum is a consequence of the Einstein’s equations. Then the energy-momentum

conservation equation

T µν; ν = ∂µT
µν + ΓναβT

αβ + ΓααβT
νβ = 0 (1.47)

implies

ρ̄′ + 3
a′

a
(1 + w)ρ̄ = 0. (1.48)

For a given species with known w, one can solve (1.45) and (1.48) to find ρ̄ and a in terms

of η.

In the conformal Newtonian gauge and in Fourier space k, the first-order perturbed Ein-
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stein’s equations δGν
µ = 8πGδT νµ give:

k2φ+ 3
a′

a

(
φ′ +

a′

a
ψ

)
= −4πGa2 δρ , (1.49)

k2

(
φ′ +

a′

a
ψ

)
= 4πGa2 (1 + w)ρ̄θ , (1.50)

3φ′′ + 3
a′

a
(ψ′ + 2φ′) + 3

(
2
a′′

a
− a′2

a2

)
ψ + k2(φ− ψ) = 4πGa2 δp , (1.51)

k2(φ− ψ) = 12πGa2 (1 + w)ρ̄σ . (1.52)

These equations are also valid for a single uncoupled fluid. They need to be modified for

individual components if the components interact with each other. The conservation of

energy-momentum is a consequence of the Einstein’s equations. Then the perturbed part

of energy-momentum conservation equation (1.47), in k-space, leads to the following

scalar perturbation equations, namely the continuity equation

δ′ + 3
a′

a

(
δp

δρ
− w

)
δ + (1 + w)(θ − 3φ′) = 0 , (1.53)

and the Euler equation

θ′ +

[
a′

a
(1− 3w) +

w′

1 + w

]
θ − 1

1 + w

δp

δρ
k2δ + k2σ − k2ψ = 0 . (1.54)

We have ρ̄ and a in terms of η from the background equations for a species with given w.

So, for a given mode k, the above perturbation equations involve 6 variables: {δ, δp, θ, σ, φ, ψ},
each to be determined in terms of η. But we have only four independent equations among

the above six perturbation equations since the continuity and Euler equations are the con-

sequences of the four Einstein’s equations. In practice, we use the continuity and Euler

equations along with two of the four Einstein’s equations. Further, we need two more

equations to close the system. For a perfect fluid, microscopic interactions impose local

thermodynamical equilibrium, and the pressure is then isotropic with σ = 0. In addition,
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pressure perturbations obey δp = c2
sδρ, where cs is the sound speed of the fluid. In case

of adiabatic perturbations, the adiabatic sound speed ca is inferred from the EoS of the

fluid via

c2
a =

dp̄

dρ̄
=

d

dρ̄
(wρ̄) = w + ρ̄

dw

dρ̄
. (1.55)

The pressure perturbation for CDM can be neglected with respect to the density pertur-

bation in the CDM case. Hence, CDM is equivalent to a perfect fluid, with no anisotropic

stress and no pressure perturbation. So CDM has zero sound speed.

2. Synchronous gauge

In synchronous gauge, the line element reads

ds2 = −a2dτ 2 + a2[(1− 2η)δij + 2∂i∂jE]dxidxj, (1.56)

where k2E = −2/h−3η, h and η being the metric perturbation variables. The first-order

perturbed Einstein’s equations give

k2η − 1

2

a′

a
h′ = 4πGa2δρ , (1.57)

k2η′ = 4πGa2(1 + w)ρ̄θ , (1.58)

h′′ + 2
a′

a
h′ − 2k2η = −8πGa2δp , (1.59)

h′′ + 6η′′ + 2
a′

a
(h′ + 6η′)− 2k2η = −24πGa2(1 + w)ρ̄σ) . (1.60)

The continuity and Euler equations are, respectively, given by

δ′ = −(1 + w)

(
θ +

h′

2

)
− 3

a′

a

(
δp

δρ
− w

)
δ ,

θ′ = −a
′

a
(1− 3w)θ − w′

1 + w
θ +

δp/δρ

1 + w
k2δ − k2σ . (1.61)
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1.3 Research work in the thesis

1.3.1 Origin of the research work

As mentioned earlier, from a sequence of remarkable and surprising discoveries in the

20th century, it is now known that our Universe is undergoing an accelerated expansion.

The main goal of modern cosmology is to understand the origin, evolution, and future

of our Universe. For this purpose, relying on Einstein’s general theory of relativity, cos-

mologists have developed a mathematically tractable and observationally testable model

of the Universe, the so-called the ΛCDM model, also known as the standard cosmolog-

ical model. This model is remarkably successful to explain the dynamics and observed

features of the Universe such as the cosmic acceleration, LSS formation and many more,

and it finds an excellent fit for various observational data from different sources such as

the CMB, LSS, BAO, SNe Ia, etc. Interestingly, the remarkably successful ΛCDM model

is founded on two unknown and major energy ingredients, accounting for around 95%

to the total energy budget of the Universe: (i) cosmological constant Λ, mimicking the

simplest form of DE, responsible for cosmic acceleration (ii) CDM, the pressureless DM,

responsible for structure formation. Unfortunately, scientists are yet to discover DE and

DM particles in the laboratory or elsewhere, though the hunt for unfolding the myster-

ies of DM and DE is on via various ongoing and future experiments. Consequently, a

large number of precise observational data related to CMB, BAO, SNe Ia, LSS and many

other sources are pouring in. In near future, it is expected that these data would be able

to pinpoint the precise nature/role of DM and DE in the dynamics and evolution of the

Universe. Hence, the DM and DE model building and observational constraints acquire

a special importance in cosmology. For instance, the Planck collaboration studies obser-

vational constraints using various data sets on the ΛCDM model by using some publicly

available cosmology codes such as cosmic linear anisotropy solving system (CLASS) and

MontePython in a high-performance computing (HPC) cluster. It deserves to mention that

the ΛCDM model is plagued with a number of problems (such as fine-tuning, small scale,
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etc.), despite its great success in describing the Universe. So it is important and worth-

while to investigate the observational constraints on generalized dark sector models, and

hence explore the possible physics beyond the standard ΛCDM model.

1.3.2 Issues with the standard model

The spatially-flat standard ΛCDM model is consistent with most of the observational data

from different sources of different physical origin, and successfully explains the present

accelerated expansion of the Universe [32]. This standard model of the Universe is filled

with baryons, photons, neutrinos (sub-dominant at present epoch), and with the present

major dominant components: DM as a cold specie and DE as a cosmological constant

(Λ). The fundamental problem in the present-day cosmology is to understand the precise

nature/behavior of both the dominant components: DM and DE [15, 16]. On the one

hand, with the consideration of DM as a cold specie and DE as cosmological constant,

the ΛCDM model has great successes on theoretical and observational grounds, providing

us a substantial understanding of the dynamics and evolution of the Universe, and the

formation of LSS. On the other hand, this model suffers from some serious theoretical

issues:

• Fine-tuning problem

• The cosmic coincidence problem

• Small scale problem

• Tension in the measurements of some parameters

The fine-tuning problem is related to the cosmological constant, hence sometimes it is

also called the cosmological constant problem. The fine-tuning problem can be stated as:

the theoretically estimated value of vacuum energy is ' 1076 GeV4 [33] whereas the ob-

served one is ' 10−46 GeV4 [32]. Thus, there is a huge discrepancy (about of order 123)

between the theoretical and observed estimation of the cosmological constant. Another
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important issue with the cosmological constant is the cosmic coincidence [34]. This prob-

lem can be stated as why the DM and DE densities are approximately equal at present,

although their cosmic evolution is completely different? The density of DM falls as a−3

with the expansion of the Universe whereas the density of the cosmological constant does

not evolve, it stays constant all the time. Some issues are also with the CDM paradigm

from observations on sub-galactic scales. These are called CDM small-scales anomalies

and originated from the numerical simulations of the formation of structures. See [35]

for a recent account. These anomalies include: core/cusp problem [36], missing satellite

problem [37], and too big to fail problem [38]. There exist discrepancies (tensions) in the

measurements of some parameters of the standard model. The well-known tensions are

in the measurement of the present Hubble parameter H0 and amplitude of present matter

density fluctuations, characterized by σ8. In the next two subsections, we discuss both the

tensions in detail and some possible mechanisms to alleviate these tensions.

1.3.3 Tension on the Hubble constant

The Hubble constant, H0 describes the present expansion rate of the Universe, and there-

fore an accurate measurement of this constant is important to understand the dynam-

ics of the Universe. There are three methods, independent from each other, to measure

the present value of Hubble parameter. The first method is based on CMB temperature

anisotropy measurements in the framework of ΛCDM cosmology. Thus, it is a model-

dependent measurement by using the Planck CMB data together with other complemen-

tary astrophysical probes. A second way of measuring H0 is model independent and

based on the cosmic distance ladder of astrophysical objects. It is called local measure-

ment of H0. The most recent and third method is also a model-independent: it uses re-

cently detected gravitational waves (GWs) as standard sirens. The main advantage of H0

measurement via standard siren is that it is not based on the cosmic distance ladder, but

due to only a single data point, errors in the measurement are large. These large errors

will be reduced by the more upcoming standard-siren measurements from future GWs

sources like the Kamioka Gravitational Wave Detector (KAGRA) and Laser Interferom-
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Figure 1.5: Measurements of H0 from nearby Universe with cosmic distance ladder are
shown in light blue color, and from Planck CMB within ΛCDM model are shown in light
red color. Labels are showing different data sets and experiments in the determination of
H0. The shaded regions in blue and red color show the evolution of the uncertainties in
these values. It can be seen that currently, these two methods are in big tension with each
other.

eter Gravitational-Wave Observatory (LIGO)-India. Both the independent measurements

of H0 currently show a serious tension with the Planck CMB measurement. The latest

Planck CMB (2018) measurement gives H0 = 67.36± 0.54 km s −1 Mpc−1 [32] whereas

from the local measurement it is H0 = 73.24 ± 1.74 Km s−1 Mpc−1 [39]. Using re-

cently detected GWs as standard sirens, H0 is constrained to be H0 = 70.0+12.0
−8.0 Km

s−1 Mpc−1 [40]. The tension in the measurement of H0 via distance ladder and from

the Planck CMB can be seen in Figure 1.5, extracted from [41]. At present, there is no

concrete evidence to believe which measurement gives the correct value of H0.

1.3.4 Tension on matter density perturbation

The second important tension in cosmology arises in the measurement of root mean

square fluctuation of present matter density perturbation in the sphere of radius 8 h−1Mpc,

characterized by σ8. The value of σ8 from the Planck CMB measurements and some LSS

probes such as galaxy cluster counts [42, 43], weak lensing [44, 45] is in a serious dis-
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agreement within the framework of the ΛCDM model. The Planck CMB measurement

gives a large value of σ8 than the one predicted from the LSS measurements [46, 47].

The results from Planck CMB (2015) yields, σ8 = 0.831± 0.013 [32], which is about 2σ

higher than σ8 = 0.75±0.03 as given by the Sunyaev-Zel’dovich cluster abundances mea-

surements [43]. This tension exists for a range of LSS indicators such as clusters, lensing,

and redshift space distortions [48]. For instance, see Figure 1.6 extracted from [44].
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Figure 1.6: Confidence contours (68% and 95% CL) in S8 − Ωm plane from kilo degree
survey-450 (KiDS-450) with Quadratic Estimator, in 3 redshift bin, (denoted here by
‘KiDS-450, QE, 3 z-bins’), the fiducial ‘ξ+ large scales’ correlation-function analysis
from KiDS-450, and Planck-2015 (TT + LowP).

These tensions in the parameters show that either there is systematics in data measure-

ments or an indication of some new physics beyond the standard ΛCDM model. Under

the pre-assumption that there is no systematics in the data measurements, several ex-

tended models of the minimal ΛCDM model have been constructed to reconcile these

tensions. The possible extensions in this regard include the following: decaying DM,

interaction in dark sector components, generalized DM than simple CDM, time-varying

DE, other relativistic species (dark radiation), the inclusion of massive neutrinos of the
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standard model and beyond. Other possibilities also include modification in the law of

gravity and/or consideration of curvature etc. For more detail in this regard, one may see

the recent articles [49–52]. It may be noted that both the tensions have not been resolved

simultaneously at a significant statistical level yet in the literature. Rather, by assuming

neutrino properties, the parameters are correlated in such a way that lower values of σ8

require higher values of total matter density and smaller values of H0, which aggravates

the tensions (e.g. [53]). In [54], it is argued that the presence of sterile neutrinos does not

bring a new concordance, but possibly indicating systematic biases in the measurements.

However, recently in [55], it has been argued that incorporation of the dissipative effects

in the energy-momentum tensor can ameliorate both the tensions simultaneously. Like-

wise in [56], it is claimed that the presence of viscosity, shear or bulk or combination of

both, can alleviate both the tensions simultaneously.

In this thesis, the main focus is to study observational constraints on the dark sector

of the Universe to explore nature/features of DM and DE beyond the standard model

by constructing physically relevant generalized dark sector models. We also look for

the possible alleviation of well-known and widely discussed H0 and σ8 tensions while

analyzing our models. We study observational constraints on the dark sector with the

recent observational data sets that we describe in the next chapter.
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