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Chapter 3

Floquet analysis of a system with

fractal spectrum

3.1 Introduction

Even before the recent spurt of activities in the study of Floquet systems, the

periodically driven classical and quantum systems are studied extensively in the

field of classical and quantum chaos [34,79–81]. Chaos is a well defined property of

a classically nonintegrable system: classical systems, which show sensitivity to the

initial conditions, are called chaotic systems. Heisenberg’s uncertainty principle

does not allow to translate this classical definition in to the quantum domain. One

can only look for certain signatures in quantum systems whose underlying classical

dynamics are chaotic. For the periodically time dependent systems, the quasienergy

spectrum shows certain statistical signatures that are different from the spectral

property of any non-chaotic system. This is known as the Bohigas-Giannoni-Schmit

(BGS) conjecture [82]. Recently, few such nonintegrable systems have also been

studied from the Floquet theory perspective [38, 54]. However, there is a class

of periodically driven systems whose underlying classical dynamics is chaotic, but
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their spectrum does not follow the BGS conjecture. Periodically δ-kicked Harper

model [83–88] and its variants [87, 88] are examples of this class of dynamical

systems. The quasienergy spectrum of these systems shows a nice ‘butterfly’ like

fractal spectrum. This is an exceptional property that indicates the possibility of an

infinite number of quantum phase transitions [89]. This kind of butterfly spectrum

was also observed in the time independent version of the Harper model [64]. This

model describes a system of free electrons moving on two dimensions and subjected

to a square lattice potential with a perpendicular magnetic field [64,90]. It is found

that the spectrum of this system shows fractal behavior for any irrational value of

a system parameter (magnetic flux quanta) [91, 92].

Recently, a new driving scheme is developed under which some other class of

dynamical systems have also shown a fractal spectrum. This new driving scheme

is the combination of two δ-kicks, separated by a finite time interval, acting on

the system within a single time period T ; and the polarity of the two kicks are

opposite to each other. The single kicked rotor and the single kicked top are two

well known models that are classically chaotic, and their quasienergy spectrum

also follows the BGS conjecture. However, when one drives these systems under

the above mentioned double δ-kicked schemes, then in certain parameter regimes,

the quasienergy spectrum of these systems show fractal property [55–58].

The Floquet analysis of the single kicked top is done recently [54] following the

perturbation theory proposed in [26,27]. We now focus on the Floquet analysis of

the double-kicked top (DKT) system. Following our discussion in earlier chapters,

here we like to compute the effective time independent Hamiltonian or the Floquet

Hamiltonian of the system. Then we extensively study the fractal property of the

spectrum of this system from different perspectives.
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Section 3.2 introduces the DKT model and discusses its properties. In this sec-

tion, the effective Hamiltonian is also calculated by applying perturbation theory.

The next two sections 3.3 and 3.4 discuss the different aspects of the fractal prop-

erties in the quasienergy spectrum. The self-similar property of the quasienergy

spectrum is discussed in Sec. 3.5. Finally, a conclusion is drawn in Sec. 3.6.

3.2 Model

We focus here to study the Floquet Hamiltonian of the DKT model. The Hamil-

tonian of the DKT model is given as:

H =
2α

T
Jx +

η

2j
J2
z

∞∑
n=−∞

[
δ(t− nT + T/2)− δ(t− nT )

]
,

= H0 + V F (t),

(3.1)

where the undriven part H0 = 2α
T
Jx, the driven part V = η

2j
J2
z , and

F (t) =
∞∑

n=−∞

[
δ(t− nT + T/2)− δ(t− nT )

]
,

describes the driving scheme. A schematic diagram of the driving scheme is shown

in Fig. 3.1: Here the dimension of Hilbert space is d = 2j + 1, and Ji represents

the angular momentum operators. In the Hamiltonian, the time independent term

describes a rotation about the x-axis with angle α within a time period T . The

time dependent driven term appearing stroboscopically twice within a time period

T and each time gives a twist about the z-axis of strength η, but acts in opposite

directions as shown in Fig. 3.1. The corresponding time evolution operator over
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Figure 3.1: Driving scheme is shown for one time period T . The
two kicks are acting in opposite directions. This scheme repeat itself

in every time period between nT to (n+ 1)T

.

one period or the Floquet operator is:

F = exp(−iαJx) exp

(
−i η

2j
J2
z

)
exp(−iαJx) exp

(
i
η

2j
J2
z

)
. (3.2)

The Floquet operator is a product of four unitary operators. However, this operator

can also be written as a product of two unitary operators as:

F = exp(−iαJx) exp
[
−iαJ+{ei

η
2j

(2Jz+1)}+ h.c.
]
. (3.3)

The detail derivation of this is presented in Appendix B.1. Here, J± = (Jx± iJy)/2

are the ladder operators. The later form of the Floquet operator, can also be

obtained from an equivalent single kicked Hamiltonian of the form

H = H0 + V
∞∑

n=−∞

δ(t− nT ), (3.4)

where

V = αJx and H0 = α
J+

T
exp

[
i
η

2j
(2Jz + 1)

]
+ h.c. (3.5)
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Instead of the DKT model, we can now study its equivalent single kicked model.

This gives us freedom to apply directly the expression derived in Eq. (2.29) for

the effective Hamiltonian at the high-frequency limit for the generic single kicked

system up to an order of ω−2:

Heff = H0 +
V

T
+

1

24

[
[V,H0], V

]
+O

(
1

ω3

)
.

3.2.1 Symmetries in the DKT model

We are interested in investigating the spectral properties of this effective Hamilto-

nian Heff . The original time dependent Hamiltonian H has the following unitary

symmetry:

R†x

(
π

2

)
HRx

(
π

2

)
= H, (3.6)

where

Rx

(
π

2

)
= e−i

π
2
Jx . (3.7)

We find that the effective time independent Hamiltonian Heff also carries the same

unitary symmetry. However, the original time dependent Hamiltonian H had an

additional unitary symmetry for α
T

= π
4
, this additional symmetry will never appear

in the effective Hamiltonian because we consider here much smaller values of α
T
.

Since a unitary symmetry preserved in Heff , we consider the corresponding

symmetry reduced basis in which the effective Hamiltonian will be block-diagonal

Heff = Heven
eff ⊕Hodd

eff . We define these bases as the even and odd [93]:

Even :

{
|0〉, 1√

2

(
|2m〉+ | − 2m〉

)
,

1√
2

(
|2m− 1〉 − |1− 2m〉

)}
of dimension j + 1;

Odd :

{
1√
2

(
|2m〉 − | − 2m〉

)
,

1√
2

(
|2m− 1〉+ |1− 2m〉

)}
of dimension j,
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where m = 1, ...., j/2, and hence we restrict ourselves for j equals to any even

integer. The size of the even block is j + 1 and and the odd block is j. We denote

this symmetry reduced by {|m〉}. These two blocks are dynamically independent

because they represent two invariant subspaces of Heff . Therefore, we can study

the spectral properties of these two subspaces independently, and they are expected

to show qualitatively similar behavior. We have verified this fact by our numeric.

Here, we are now showing the results obtained in the even subspace.

3.3 Result

We now discuss details of the properties of energy eigenvalues and eigenstates of

the effective Hamiltonian corresponding to the DKT model.

3.3.1 Properties of Eigenvalues

Fig. 3.2 shows the energy spectrum of the effective Hamiltonian Heff as a function

of ξ = η/2πj for α = 1/j folded within the original range [−π, π]. Here, we

set j = 20, an even number. We find that the eigen spectrum of the effective

Hamiltonian also shows a differently looking butterfly like spectrum, which is in

a good agreement with the quasienergy spectrum of the original DKT model [55,

57]. This eigen spectrum of the effective Hamiltonian shows qualitative similarity

with the Hofstadter butterfly [64] owing to the presence of quasiperiodic term.

The DKT butterfly is different from the Harper-Hofstadter butterfly, because the

quasiperiodic term is present along the diagonal of the Harper-Hofstadter case;

whereas in the DKT case this term is present along the off-diagonal nearest neighbor

band.

In order to investigate the multifractality in the energy spectrum, we set η/j at

the golden mean ratio Gr =
√

5−1
2

, the most irrational number. Since here we are
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Figure 3.2: (a) The energy spectrum of the effective Hamiltonian
of the DKT folded in the first Floquet Brillouin zone is presented.
The spectrum is showing the butterfly pattern. (b)-(c) Self-similarity
in the DOS of the energy spectrum is shown by zooming on different
scales, Here we set ξ = Gr/2π, where Gr =

√
5−1
2 is the golden mean

ratio, the “most irrational number."

interested in the property of the spectrum for a fixed parameter value, we consider

j equals to a large even number j = 2500. The multifractality is a generalization

of the fractal property, where a continuous spectrum of exponents is required to

describe the data. The multifractal patterns are scale-dependent, whereas the

fractal patterns are independent of any scale. In Fig. 3.2(b) and 3.2(c), we have

investigated the density of states ρ(E) at two different scales. This figure exhibits

self-similarity in the density of states (DOS) at two different scales. The self-similar

property of the whole spectrum will be discussed more elaborately later.

3.3.2 Properties of the eigenstates

We now study the eigenstates of the effective Hamiltonian Heff . At the top panel of

Fig. 3.3, we have presented the participation ratio (PR) of all the eigenstates as a

function of their eigenvalues E. The PR measures the localization or delocalization

of any quantum state in a given basis. The PR gives a measure of how many basis

states are participating to construct the given quantum state. Therefore, if the
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Figure 3.3: The top panel shows the PR values of all the eigen-
states. Remaining lower panels show the selected six eigenstates

with their energy values and the PR values.

PR is large (small), the state is delocalized (localized) in the given basis. Here,

the PR is calculated in the symmetry reduced basis {|m〉}. Mathematically, if an

eigenstate is expanded in the {|m〉} basis as |ψ〉 =
∑
m

Cm |m〉, then the PR of this

state will be 1/
∑
m

|Cm|4. We have selected six eigenstates based on their PR values,

marked by colored square boxes in the top panel of Fig. 3.3, and presented them in

the lower panels. Among the six selected states, one of the eigenstates with energy

E = −0.89 shown in black color has very sharp support over a narrow band of basis

states around |m〉 = 1. This indicates that the eigenstate is highly localized. The

PR for this eigenstate is 2.06, which suggests that approximately only two or three

basis states have major participation or contribution to this state. Remaining

five selected eigenstates have E = −0.036 with PR = 8.31, E = −0.016 with

PR = 41.17, E = −0.0017 with PR = 98.62, E = −0.00018 with PR = 109.26

and E = −0.00017 with PR = 120.80. The eigenstate with PR = 120.80 is shown

by green color, which is the most delocalized state among all the eigenstates. We

are working in the even subspace of dimension j + 1 = 1001. In comparison to the

dimension of this subspace, the largest value of the PR (∼ 121) is much smaller.
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The maximum possible value of the PR is equal to the subspace dimension 1001.

This value of PR is possible when all the components of the eigenstate will be equal

to 1/
√
j + 1 = 1/

√
1001. Thus we observe that, in comparison to the maximally

delocalized state, all the eigenstates of the effective Hamiltonian Heff are very much

localized.

We are now interested in exploring the multifractal property of these selected

eigenstates. This property is studied by computing the generalized fractal dimen-

sion Dq using the standard box-counting method [94]. We divide the total dimen-

sion d = j + 1 of the even subspace into Ml pieces or boxes of linear size l ∼ d/Ml

and denote the components of the n-th eigenstate as {C(n)
m }. The box probability

of the eigenstate in the i-th box is defined as:

p̃i(l) =
∑

m∈ i-th box

|C(n)
m |2, (3.8)

where the summation extends over the components Cm in the i-th box. Now we

calculate the q-th moment of this measure, over all the boxes and determine

χq(l) =
∑
i

p̃i(l)
q. (3.9)

An eigenstate to be multifractal, its χq(l) is proportional to some power of τq for

the box of size l, where τq is called the scaling exponent. We can calculate the

general fractal dimension Dq from the following relation:

− τq = (q − 1)Dq = lim
l→0

lnχq(l)

ln l
, (3.10)

where the parameter q can be any real value according to the definition of Dq. We

are restricting us in the region where q ≥ 0. This is because, for the positive values
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Figure 3.4: Generalized fractal dimension Dq as a function of q
is shown for the selected eigenstates. The top four eigenstates are
showing strong sensitivity with the scaling parameter q. This in-
dicates multifractal property of the eigenstates. The following two
states show almost no dependence on the scaling parameter q. These
two states are localized states with very small values of the PR.

of q, the larger components of eigenstates determines Dq. On the other hand,

the negative values of q determine the smaller components of the eigenstates that

play a significant role in determining Dq. Though the smaller components of the

eigenstates are susceptible to the numerical errors, and as a result, the calculated

values of Dq for the negative values of q will be erroneous.

In Fig. 3.4, we have presented the multifractal property of eigenstates by pre-

senting the generalized fractal dimension Dq as a function of the scaling parameter

q. The top four eigenstates, presented in green, maroon, blue, and purple colors

with PR values 120.80, 109.26, 98.62, and 41.17, respectively, show stronger sensi-

tivity to the scaling parameter q. This also suggests a stronger multifractal nature

of these eigenstates. The next two selected eigenstates drawn in red and black

colors show almost no dependence on the scaling parameter q. These two states

are more localized than the previous four states, as their PR values are 8.31 and

2.06, respectively. Following our expectation, the generalized fractal dimension Dq

of the most localized state (drawn in black color) is equal to zero, and thus it is

completely independent for all the values of the scaling parameter q. The mod-

erately localized state shows a very weak dependence on the scaling parameter q.



Chapter 3. Floquet analysis of a system with fractal spectrum 34

Figure 3.5: Disappearance of the DKT butterfly is shown for dif-
ferent values of α = n/j, where n = 1, 3, 5 and 10 from top to bottom
and j = 20. The left and right columns show the quasienergy spec-
trum of the Floquet time-evolution operator and the energy spec-
trum of the Floquet Hamiltonian folded in the first Floquet-Brillouin
zone, respectively. We see here how the butterfly is disappearing as
we increase the parameter α. The central column shows the un-
folded energy spectrum of the Floquet Hamiltonian, where we do
not observe any disappearance of the butterfly. However, the size of

the butterfly increases with the increment of the parameter α.

Fig. 3.4, shows a general feature that the eigenstates with larger PR values show

stronger sensitivity to the scaling parameter q, which also indicates their stronger

multifractality.

3.4 Disappearance of the butterfly

From the earlier studies, it is known that the quasienergy butterfly spectrum of the

Floquet operator of DKT gradually disappears by increasing parameter α [55]. In

Fig. 3.5, we have shown the quasienergy spectrum of the Floquet time evolution

operator at the left column, the unfolded energy spectrum of the effective Hamilto-

nian at the central column, and the energy spectrum of effective Hamiltonian Heff

folded in the first Floquet-Brillouin zone at the right column.

In the left and right column, we observe the disappearance of the butterfly

with the increment of α, where α = n/j and n = 1, 3, 5 and 10 with j = 20. As
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we increase the parameter α, we notice the deformation in the butterfly of the

quasienergy spectrum. Eventually, for a larger value of α we see the complete

disappearance of the butterfly. The same was also reported in Ref. [55].

At the center column of Fig. 3.5, we have presented the unfolded energy spec-

trum of the effective Hamiltonian Heff . Here again, we consider the same values of

α, which we have selected for the quasienergy spectrum of the Floquet operator.

Here, we do not see any disappearance of the butterfly, but the butterfly’s enlarge-

ment is noticed with the increment of parameter α. This is because the effective

Hamiltonian Heff mainly has two parts, where one part has the form H0 +V which

is directly proportional to α and another part has the form 1
24

[[V,H0], V ], which

is quadratically dependent on α. Here we have considered very small values of α

of the order of 1/j; as a consequence, the effective Hamiltonian Heff becomes di-

rectly proportional to the parameter α. As a consequence, the size of the butterfly

increases linearly with an increasing value of α. We can project any two spectra

with different values of α on the top of each other just by dividing or multiplying

the spectrum with the proper scaling factor. This suggests that if we divide the

spectrum corresponding to α = n/j by the factor n, where n > 1, then the entire

spectrum can be projected exactly on the spectrum corresponding to α = 1/j.

The right column of Fig. 3.5, shows the result for the energy spectrum of the

effective Hamiltonian folded into the first Floquet-Brillouin zone. Here we observe

the disappearance of the butterfly with increment in α. The behavior of the folded

energy spectrum of Heff as a function of α is expected to behave similarly to the

quasienergy spectrum of the Floquet operator. Here we observe a slight difference

between the quasienergy spectrum and the folded energy spectrum for larger values

of α = n/j with n = 3, 5, 7, and 10. This is due to the truncation effect at 1/ω2.

We now investigate the DOS ρ(E) of the folded eigenvalues of the effective
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Figure 3.6: The DOS of the folded energy eigenvalue of the effec-
tive Hamiltonian is shown for α = n/j. Here n = 1, 3, 5, 7, 10 and

100 for a very large value of j = 2500 is considered.

Hamiltonian Heff as a function of α for a fixed value of η/j. Here we set η/j equals

π times the Golden mean ratio. We also set a large value of spin j = 2500 to

obtain a good statistic of the density of state (DOS). In Fig. 3.6, we have shown

DOS ρ(E) for α = n/j with n = 1, 3, 5, 7, 10 and 100. We have already shown the

result for n = 1 and α = 1/j in Fig. 3.2(b). Here we are interested in showing

how ρ(E) changes with α. For n = 3, the energy spectrum spread up to the end

of the first Floquet-Brillouin zone |E| = π. For the same value, the central band

of the spectrum for the range |E| ≤ 0.4 still shows the property of self-similarity.

In Fig. 3.6, we observe that for further increment in α by varying n from 3 to 5, 7,

and 10, the self-similar part of the energy spectrum, located around the central

part, gradually disappears. For n = 100, α = 100/j, which is sufficiently large

in magnitude, we observe a complete disappearance of the self-similar part in the

energy spectrum. At this large value of α, ρ(E) is approximately flat, and we

conclude a uniform distribution of the energy spectrum.
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3.5 Fractal and self-similarity of the DKT spec-

trum

Hofstadter butterfly is a well known quantum spectrum which shows a self-similar

fractal property. This spectrum was obtained for a system of noninteracting free

electrons moving in a two-dimensional surface under the presence of a magnetic

field perpendicular to the surface [64]. The butterfly pattern is observed when

the energy spectrum is plotted as a function of the magnetic flux strength. The

fractal property and also the self-similar property of the Hofstadter butterfly are

generally studied for some specific values of the magnetic flux strength. Recently,

these properties are studied considering the whole butterfly as a single object.

In the case of the DKT model, the parameter ξ plays the role of the magnetic

flux. All the previous studies of the DKT also focused mostly on some specific

values of ξ [55–57]. In the previous section, we have discussed the DKT spectrum’s

self-similarity for a specific value of parameter η/j = Gr or ξ = Gr/2π, where Gr

is the golden mean ratio. Now, we study the fractal property and the self-similar

property of the whole DKT butterfly spectrum.

3.5.1 Fractal properties

In the previous section, the DKT butterfly’s disappearance is observed with the

increment of the parameter α. We now explore how the fractal property of the

whole butterfly, observed in the quasienergy spectrum and as well as in the energy

spectrum of the effective Hamiltonian Heff , change with the parameter α. Here we

assume that the butterfly is lying on a two-dimensional surface, which is formed by

the parameter ξ = η/2πj and the quasienergy/energy spectrum. We calculate the

fractal dimension D2 of the whole DKT butterfly by the box-counting method [95].
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We divide the whole butterfly, which is lying on a two-dimensional surface into

many square boxes or partitions, and then counts the number of points of the

butterfly in each of the boxes. We can choose the total number of points required

to construct the butterfly by setting the spin j and the number of divisions along

the ξ direction within the range of 0 ≤ ξ ≤ 1. We set the spin j = 20 at an even

value and vary the parameter ξ from 0 to 1 in 1000 steps. Therefore the total

number of points are used to construct the butterfly in the even parity subspace is

(j+1)×1000 = 21000. Using this number, we can assign the box probability of the

individual boxes and then calculate the fractal dimension D2 by the box-counting

method.

We have observed butterfly in the exact quasienergy spectrum and also in the

energy spectrum of the effective Hamiltonian Heff at α = 1/j with j = 20. These

two butterflies look very much identical, at least to the naked eyes. However, they

are not exactly identical, which we see from the fractal dimension D2. We observe

that the fractal dimension of theses two butterflies is not equal. For the quasienergy

spectrum, the fractal dimension D2 ' 1.35, whereas for the energy spectrum of

effective Hamiltonian D2 ' 1.76. This indicates that these two butterflies have

some minute differences.

In Fig. 3.7, we have shown the variation of fractal dimension D2 with the

parameter α for both the butterflies. The results for the quasienergy spectrum

have shown by the blue color line with solid circles. As we increase the value of α

from 0 to π, we observe that D2 reaches maximum at α = π/2. Further increment

in α, the fractal dimension D2 starts decreasing and reaches its minimum value

at α = π. After that we see the repetitions of the same behavior. The fractal

dimension D2 reaches its maximum value at α = (2m+ 1)π/2 and minimum value

D2 = 1.0 at α = mπ, where m = 0, 1, 2, 3, .... Here, we have not shown the trivial
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Figure 3.7: The variation of fractal dimension D2 with parameter
α for the butterfly formed by the quasienergy spectrum shown by
blue color circles and by the folded energy eigenvalue E of the effec-
tive Hamiltonian shown by orange color circles. The solid black line
shows that D2 of the butterfly formed by the folded energy spectrum
increases continuously in a linear fashion with the slope of the order
of 10−3. It reaches asymptotically at D2 = 2.0 (Euclidean dimension

of the parameter space "ξ-E") as a function of α.

case of α = 0, which we get for m = 0.

The periodic behavior in the fractal dimension D2, as a function of α, can

be understood by replacing α → α + mπ in the expression of the Floquet time

evolution operator. For any integer value of m, the Floquet operator F remains

the same. Therefore, the whole quasienergy spectrum between 0 ≤ ξ ≤ 1 repeat

itself for every interval of mπ ≤ α ≤ (m + 1)π. As a result, we can see an

identical butterfly for all values of α + mπ = 1
j

+ mπ. At α = mπ, the Floquet

time evolution operator becomes an identity operator, and we observe the minima

in fractal dimension D2. Consequently, all the quasienergies in the first Floquet-

Brillouin zone become degenerate at ε = 0 for all values of ξ and form a straight

line on the ξ−E plane. The fractal dimension D2 becomes equal to the dimension

of the straight line, i.e., D2 = 1.0.

This property of quantum resonance at α = mπ for the Floquet operator is not

observed in the effective Hamiltonian energy spectrum. In Fig. 3.7, the variation of

fractal dimension D2 as a function of α for the energy spectrum of Heff is shown by

orange solid circles. For this curve, we obtain a straight-line fitting for the region
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Figure 3.8: Skeleton of the DKT butterfly is shown for a set of
rational values for the parameter ξ in the range [0,1]. We use these

rational numbers from Farey sequence of order 8.

α ≥ π. This straight line has a small but positive slope of the order of 10−3. As

a result, we observe a steady increment in fractal dimension D2 as a function of α

and is asymptotically approaching towards the value 2.0, which is nothing but the

Euclidean dimension of the "ξ − E" plane where the whole spectrum is lying.

3.5.2 Self Similarity: "Butterfly at every scale"

A pattern is called self-similar if it is exactly similar to some part of itself or

if it repeats itself at every scale. Following Ref. [96, 97], we now analyze the self-

similar property of the DKT butterfly from the geometrical and number theoretical

aspects. This analysis is originally performed to investigate the fractal properties

of the Hofstadter butterfly. Here we are interested in performing the same analysis

on the DKT butterfly. These two butterflies are clearly not identical. The wings of

the Hofstadter butterfly are empty, representing gaps in the spectrum, whereas the

wings of the DKT butterfly are not empty and form a gapless spectrum, as shown

in Fig. 3.2(a). Figures 3.2(b) and 3.2(c) also confirm the gapless spectrum, where

the DOS is continuous without any gap.
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We start the investigation of the self-similar property of the DKT butterfly,

considering only rational values of the parameter ξ. We construct these rational

values between [0, 1] from the Farey sequence [98]. The sequence of rational num-

bers F8, the Farey sequence of order 8 (which is given in Sec. B.2) construct the

skeleton or the basic structure of the DKT butterfly as shown in Fig. 3.8.

For the Hofstadter butterfly, at a fixed rational value of the magnetic flux, i.e.,

φ = p
q
, the spectrum has q bands and (q − 1) gaps [96]. It is also shown that, for

the even values of q, the two central bands touch each other, and that results in

the observed (q − 2) bands. However, we do not observe such distinct band gaps

in the DKT spectrum for different rational values of ξ. In Ref. [96], the Hofstadter

butterfly is represented by p/q rational value of magnetic flux. For this fixed value

of magnetic flux strength φ, there are q bands and (q−1) gaps. It is also mentioned

that, for an even value of q, the two central band touch each other. As a result, the

number of observed bands is (q − 2). Here in the case of DKT, we do not see such

distinct band gaps for different rational values of ξ. Fig. 3.8 shows a continuous

spectrum both at ξ = 1/4 (q is even) and ξ = 1/3 (q is odd). For both, these values

of q, two gaps were found in Hofstadter butterfly.

We now investigate the behavior of the butterfly at the vicinity of ξ = 1/4 and

ξ = 1/3. This part of the DKT butterfly is presented in Fig. 3.9. The rational value

of ξ with even denominator always forms the center of a butterfly. For example,

ξ = 1
2
forms the center of the biggest butterfly having range between ξ = 0 to ξ = 1.

Similarly, ξ = 1
4
forms the center of a smaller butterfly. The region around the odd

denominator case, the behavior of spectrum, is completely different. Around ξ = 1
3
,

we see a boundary that separates a proliferation of nested butterflies. In the case

of the Hofstadter butterfly, left and right symmetry around φ = 1/3 was observed

for this same value of the magnetic flux. However, in the case of the DKT, such
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Figure 3.9: Some part of DKT butterfly is shown in the area of
ξ = 1/4 (black colored region) and ξ = 1/3 (green colored region).

left and right symmetry is absent.

Following Ref. [96], we now explore the self-similar property of the DKT but-

terfly spectrum at different scales. As we zoom in the main butterfly, we observe

another butterfly, and this process goes on at every scale. All these butterflies

at different scales share minute details of the original butterfly. The butterflies

observed at different scales are called the generations of butterflies.

Each of such butterfly is represented by a triplet (ξL = pL
qL
, ξC = pC

qC
, ξR = pR

qR
)

of rational numbers. Here ξL = pL
qL

and ξR = pR
qR

are left and right edges of the

butterflies and ξC = pC
qC

is the center. These triplets are connected to each other

by the following relation:

pC
qC

=
pL + pR
qL + qR

≡ pL
qL
⊕ pR
qR
. (3.11)

The above relation is known as the Farey sum [98]. According to the definition of

generations, the first generation of the butterfly or the parent butterfly is the full

butterfly stretching from ξ = 0 to 1. Here we consider the case where the larger

and the smaller butterflies share neither their left edge nor their right edge. These

different generation butterflies are obtained as usual by zooming the butterfly of

the previous generation. The recursive scheme which connects the two successive
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Figure 3.10: Successive generations of butterflies are shown. These
butterflies show self-similarity in the folded energy spectrum of the
effective Hamiltonian of DKT. The range of figures are (a) ξ = 1

3 to
ξ = 2

5 , (b) ξ = 4
11 to ξ = 7

19 and (c) ξ = 15
41 to ξ = 26

71 .

generations of the butterfly is given in [96]:

ξL(l + 1) = ξL(l)⊕ ξC(l),

ξR(l + 1) = ξL(l + 1)⊕ ξC(l),

ξC(l + 1) = ξL(l + 1)⊕ ξR(l + 1),

(3.12)

where l and l + 1 represent the successive generations. We have shown the main

butterfly or the first generation butterfly in Fig. 3.2(a). For this butterfly ξL = 0
1
,

ξR = 1
1
and ξC = 1

2
. Now in Fig. 3.10, we represent the three successive generations

of butterflies.

In Fig. 3.10(a), the second generation of the DKT butterfly is shown. This

butterfly has the left edge at ξL(l+1) = 0
1
⊕ 1

2
= 1

3
and the right edge at ξR(l+1) =

1
3
⊕ 1

2
= 2

5
. The center of the butterfly is at ξC = 1

3
⊕ 2

5
= 3

8
. Therefore, the second

generation of butterfly is represented by a triplet (1
3
, 2

5
, 3

8
).

In a similar way, another triplet is required to represent the next generation

butterfly. This we obtain from the previous generation by the following way: the
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left edge is at ξL(l + 2) = ξL(l + 1) ⊕ ξC(l + 1) = 1
3
⊕ 3

8
= 4

11
, the right edge

is at ξR(l + 2) = ξL(l + 2) ⊕ ξC(l + 1) = 4
11
⊕ 3

8
= 7

19
, and the center part is at

ξC(l+ 2) = ξL(l+ 2)⊕ ξR(l+ 2) = 4
11
⊕ 7

19
= 11

30
. The butterfly of this generation is

represented by the triplet ( 4
11
, 7

19
, 11

30
) and this is shown in Fig. 3.10(b). Following

identical procedure, we get the next generation butterfly and represent that by the

triplet (15
41
, 26

71
, 41

112
). This butterfly is presented in Fig. 3.10(c). In Fig. 3.10, the

three successive generations of butterflies, clearly shows that the DKT butterfly

exhibits self-similarity. We have also observed that the DKT butterfly shares the

same number theoretical property as that of the Hofstadter butterfly, even though

the two models have no physical similarity.

3.6 Conclusion

We have investigated the double kicked top (DKT) system. Mainly we have com-

pared the properties of the quasienergy spectrum and energy spectrum of the effec-

tive Hamiltonian at the high frequency limit. We observe a butterfly like self-similar

fractal in the quasienergy spectrum of the DKT system when plotted as a function

of one of the system parameters. The butterfly spectrum repeats itself periodically

with the increment in that parameter. Since the effective Hamiltonian is obtained

perturbatively, we have investigated whether the effective Hamiltonian energy spec-

trum shares the identical self-similar property. We have observed that this is indeed

the case when the energy spectrum is folded to the first Floquet-Brillouin zone and

within a certain parameter regime.

We have focused mostly on the parameter regime where the quasienergy spec-

trum and energy spectrum are Heff folded into the first Floquet-Brillouin zone are

very much identical. Therefore, we have studied mostly the energy spectrum of the

effective Hamiltonian. Firstly, we have observed the self-similar property in the
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DOS of the energy spectrum for a particular irrational value of the system param-

eter. We have also observed the multifractal properties of the eigenstates of the

Floquet Hamiltonian. Besides, we have also observed many localized eigenstates.

The most delocalized eigenstate is also a multifractal state.

Then, we have studied the changes in the butterfly spectrum due to the varia-

tion of a system parameter. We have observed the disappearance of the butterfly

spectrum due to this parameter variation. The disappearance of the butterfly spec-

trum is systematically studied by comparing the quasienergy spectrum, unfolded

energy spectrum of the effective Hamiltonian, and the energy spectrum of the same

folded in the first Floquet-Brillouin zone. We have found that the butterfly spec-

trum formed by the quasienergies and the folded energy spectrum of the effective

Hamiltonian show this property of disappearance. On the other hand, we have

not observed any disappearance in the butterfly spectrum formed by the unfolded

energy spectrum of the effective Hamiltonian. However, we have observed an en-

hancement in the size of the butterfly without changing its structure.

Finally, we have studied extensively the self-similar property of the butterfly

formed by the energy spectrum of the effective Hamiltonian. Unlike previous stud-

ies, we have studied the self-similarity of the whole DKT butterfly considering it as

a single object. Following the same number theoretical studies performed on the

Hofstadter butterfly, we have observed identical looking DKT butterflies in differ-

ent scales. We have also observed that the DKT butterfly shares many properties

with the well known Hofstadter butterfly.


