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Chapter 5

Coupled Kicked Top

5.1 Introduction

We discussed in Chapter 3 that the single kicked top is a well studied system whose

classical dynamics displays chaos and its quantum spectrum follows the standard

threefold statistics of Wigner-Dyson. Two such single kicked tops coupled by an

interaction was studied in the context of establishing the relation between classical

chaos and quantum entanglement [69, 111, 112]. Here, from the Floquet perspec-

tive, the coupled kicked top (CKT) system is interesting because, it is classically

a higher-dimensional system (four dimension) and hence its effective Hamiltonian

is expected to be nonintegrable. Earlier studies, including the result discussed in

Chapter 3, of lower dimensional nonintegrable systems showed that the effective

Hamiltonian is integrable [54]. Here we derive the effective Hamiltonian of the CKT

perturbatively by both Van Vleck and Brillouin-Wigner schemes at very large fre-

quency limit. We study the effective Hamiltonian both classically and quantum

mechanically. The classical dynamics of this system shows chaos and its quantum

spectrum follows interesting nonstandard symmetry classes or nonstandard statis-

tics [72, 73]. This classes are based on Cartan’s tenfold classification of symmetry
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spaces [113].

In the following section, i.e., Sec. 5.2, we introduce the couple kicked top model.

Then in Sec. 5.3, we study this system from Floquet theory perspective and derived

the effective Hamiltonian from Van Vleck and Brillouin-Wigner expansion. In Sec.

5.4, we present the classical dynamics of the effective Hamiltonian. Section 5.5

discusses quantum mechanical properties of the system described by the effective

Hamiltonian. Finally, we conclude this chapter in Sec. 5.6

5.2 Model

We consider a coupled kicked top system whose Hamiltonian is given as:

H(t) = H1(t)⊗ 1 + 1⊗H2(t) + H12(t), (5.1)

where

Hi(t) =
pi
T
Jxi +

ki
2j
J2
zi

∑
n

δ(t− n), (5.2)

and

H12(t) =
ε

j
Jz1 ⊗ Jz2

∑
n

δ(t− n). (5.3)

The first two terms are representing the Hamiltonian of the individual top and

the third term is the coupling between the tops. This Hamiltonian is represented

by the angular momentum operators J = (Jxi, Jyi, Jzi) which follow usual angular

momentum algebra [Jαi, Jβi] = ı εαβγ,i Jγi and i = 1, 2 are denoting individual top.

Here, ı =
√
−1 and the standard Levi-Civita symbol ε is introduced to indicate the

cyclic permutation in the commutator relations. The angular momentum operators

of the different tops commute, i.e., [Jα1, Jβ2] = 0 for all α, β ∈ (x, y, z). The first

term in the Hamiltonian of individual top describes the free precession of the top
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around x-axis with angular velocity pi/T , and the second term describes torsion

about z-axis by an angle proportional to Jzi where the proportionality constant

ki is a dimensionless quantity. The second term is acting on the individual top in

δ-kicked fashion. These two tops are also interacting in δ-kicked fashion and ε is

the coupling strength between them. Therefore, the total Hamiltonian is:

H(t) =
1

T
(p1Jx1 ⊗ 1 + p21⊗ Jx2)

+
1

2j

(
k1J

2
z1 ⊗ 1 + k21⊗ J2

z2 + 2εJz1 ⊗ Jz2
)∑

n

δ(t− nT ).
(5.4)

Corresponding Floquet operator, or the time-evolution operator between two con-

secutive kicks, is:

U(T ) = e−ı
ε
jT
Jz1⊗Jz2

[
e−ı

k1
2jT

J2
z1⊗1 e−ıp1Jx1⊗1 ⊗ e−ı

k2
2jT

1⊗J2
z2 e−ıp21⊗Jx2

]
. (5.5)

5.3 The effective Hamiltonian of the CKT system

We now derive the effective Hamiltonian of the CKT system using both Van Vleck

and Brillouin-Wigner perturbation theories. The general expression of the effective

Hamiltonian up to O(ω−2) for the δ-kicked case has already been derived in Eqs.

(2.29) and (2.42) of Chapter 2. We rewriting the same expression here for the sake

of completeness:

HVV = H0 +
V

T
+

1

24
[[V,H0] , V ] = H0 +

V

T
+

1

12
V H0V −

1

24

(
H0V

2 + V 2H0

)
and

HBW = H0 +
V

T
+

1

12
V H0V.

(5.6)
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The above two expressions are identical at the ω0 order; butHVV has two additional

terms at ω−2 order. We have already discussed in Chapter 2 that, at the infinite

order of accuracy, the effective Hamiltonian corresponding to different perturbation

theories are connected by some gauge transformation. However, when we truncate

the expansion at a certain finite order, then the gauge connection between different

Hamiltonians is lost. Here we are witnessing this situation. In the above effective

Hamiltonians, the third term has come from ω−2 order, and we substitute ωT = 2π

to get the ω independent term. The presence of the factor 1/12 (or 1/24) is reducing

the effect of this second order term on the classical dynamics and also on the

quantum spectrum very much. Our numerics also prove this fact. Therefore,

in order to simplify the analysis, we are ignoring the second order term. Now

the effective Hamiltonians obtained from two different perturbation theories are

identical, i.e.,

Heff = H0 +
V

T

=
1

T

[(
p1Jx1 ⊗ 1 + p21⊗ Jx2

)
+

1

2j

(
k1J

2
z1 ⊗ 1 + k21⊗ J2

z2 + 2εJz1 ⊗ Jz2
)]
(5.7)

According to the definition given in the original Hamiltonian, the parameters pis are

the total rotation angle, kis are the total torsional angle, and ε total coupling within

the time interval T . We now rescaling these parameters as Ωi = pi/T, κi = ki/T ,

and ε̃ = ε/T , where Ωis are the angular rotation rate or angular velocity, κis are

the torsional rate, and ε̄ rate of coupling. Therefore, in terms of the rescaled

parameters, the effective Hamiltonian becomes

Heff =
(
Ω1Jx1 + Ω2Jx2

)
+

1

2j

(
κ1J

2
z1 + κ2J

2
z2 + 2 ε̃Jz1Jz2

)
. (5.8)
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Here we have dropped all the tensor product notations ⊗. The suffices i = 1, 2

are denoting the individual Hilbert space of the two tops, and thus indicating the

underlying tensor product structure of the two Hilbert spaces.

5.4 Classical dynamics of the effective Hamiltonian

of the CKT

The classical dynamics of the angular momentum operators dependent quantum

Hamiltonian can be defined in various ways. One method is to consider the quan-

tum Hamiltonian as a classical Hamiltonian and replace all the commutator brack-

ets of the angular momentum operators by the generalized Poisson brackets intro-

duced by Martin [114]. Then derive the equation of motion for all the “components”

of angular momentum using the generalized Poisson brackets. However, there is an

equivalent method by which we can also derived the equation of motion. First, we

write down the Heisenberg’s equation of motion for all the components of the an-

gular momentum operators, i.e. dJαi
dt

= −ı [Jαi, Heff ], then divide the both sides by

the spin j, identify the rescaled angular momentum operators Jαi/j, and take the

classical limit j →∞. The rescaled angular momentum operators at j →∞ limit

become classical variables and commute with each other. For example: Jx/j → X

and Jy/j → Y , then [X, Y ] = ıZ/j where Jz/j → Z; then at j →∞ limit, the right

hand side of the commutator bracket relation will be zero. The rescaled angular

momentum variables satisfy the constraint X2
1 +Y 2

1 +Z2
1 = X2

2 +Y 2
2 +Z2

2 = 1. This

means that the classical dynamics of the coupled top takes place on the surface of

2-spheres. The straightforwardness of the later method, prompts us to apply it to

derive the classical equation of motion.

Following the above prescription, we are illustrating rigorous derivation of the
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equation of motion of only one component of the angular momentum, say Jx1.

Others are derived identically, and we just present the final form of them. Equation

of motion of angular momentum operator Jx1 can be obtained as:

dJx1

dt
= −ı[Jx1, Heff ]

= − ı

2j

(
κ1 [Jx1, J

2
z1] + 2ε̃ [Jx1, Jz1]Jz2

)
= − ı

2j

{
κ1

(
[Jx1, Jz1]Jz1 + Jz1[Jx1, Jz1]

)
+ 2ε̃ [Jx1, Jz1] Jz2

}
= − 1

2j

(
κ1

(
Jy1Jz1 + Jz1Jy1

)
+ 2ε̃ Jy1Jz2

)
.

(5.9)

Now, dividing the above equation with j and obtain the form:

1

j

dJx1

dt
= −κ1

2

(
Jy1

j

Jz1
j

+
Jz1
j

Jy1

j

)
− ε̃ Jy1

j

Jz2
j
. (5.10)

We now set j →∞ limit, and get the classical equation of motion as:

dX1

dt
= −Y1

(
κ1 Z1 + ε̃ Z2

)
. (5.11)

Following the above steps, we obtain the full equation of motion as:

Ẋ1 = −Y1

(
κ1 Z1 + ε̃ Z2

)
,

Ẏ1 = −Ω1 Z1 +X1

(
κ1 Z1 + ε̃ Z2

)
,

Ż1 = Ω1 Y1,

Ẋ2 = −Y2

(
κ2 Z2 + ε̃ Z1

)
,

Ẏ2 = −Ω2 Z2 +X2

(
κ2 Z2 + ε̃ Z1

)
,

Ż2 = Ω2 Y2.

(5.12)

We mentioned earlier that the above equation of motion can also be obtained by
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Martin’s generalized Poisson bracket. For this, we also have to identify the classical

effective Hamiltonian in terms of the rescaled angular momenta as:

Hcl = lim
j→∞

Heff

j
=

(
Ω1X1 +

1

2
κ1 Z

2
1

)
+

(
Ω2X2 +

1

2
κ2 Z

2
2

)
+ ε̃ Z1Z2. (5.13)

We can exploit the constraints X2
1 + Y 2

1 + Z2
1 = X2

2 + Y 2
2 + Z2

2 = 1 to reduce the

degrees of freedom six to four. For that, we parameterize the angular momentum

variables as Xi = sin θi cosφi, Yi = sin θi sinφi, and Zi = cos θi, where Zi and

φi become canonically conjugate variables for the i-th top. In terms of this new

parameterization, the classical Hamiltonian becomes

Hcl = Ω1

√
1− Z2

1 cosφ1 + Ω2

√
1− Z2

2 cosφ2 +
1

2

(
κ1Z

2
1 +κ2Z

2
2

)
+ ε̃ Z1Z2. (5.14)

and the corresponding Hamiltonian’s equations of motion are derived as:

Ż1 = −∂H
cl

∂φ1

= Ω1

√
1− Z2

1 sinφ1

φ̇1 =
∂Hcl

∂Z1

= κ1 Z1 −
Ω1Z1√
1− Z2

1

cosφ1 + ε̃ Z2,

Ż2 = −∂H
cl

∂φ2

= Ω2

√
1− Z2

2 sinφ2

φ̇2 =
∂Hcl

∂Z2

= κ2 Z2 −
Ω2Z2√
1− Z2

2

cosφ2 + ε̃ Z1.

(5.15)

Here, exploiting the two constraints, we have reduced the number of equations of

motion from six to four.
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Figure 5.1: The dynamics of the coupled top is projected on the
phase space of the first top at the FP limit. The FP limit is obtained
by setting κ1 = κ2 = 0. We set Ω1 = Ω2 = 1.0. Left panel: Coupling

ε̃ = 0.8; and Right panel: ε̃ = 1.3.

5.4.1 Feingold-Peres (FP) limit

The Feingold-Peres (FP) Hamiltonian is an autonomous model of coupled top

system. The presence of nonlinear angular momentum terms in our Heff of the

coupled kicked top makes it different from the FP Hamiltonian. Therefore, by

setting κ1 = κ2 = 0, we can get the FP Hamiltonian from Heff . In Fig. 5.1, we

present the phase space dynamics of the coupled top at the FP limit. Here, we fix

Ω1 = Ω2 = 1.0 and consider two different coupling strengths ε̃ = 0.8 (Left panel)

and ε̃ = 1.3 (Right panel). We have chosen these two coupling strengths, because

at ε̃ = 1.0, the phase space dynamics of the FP system makes a transition, which

is clear from the appearance of substructures at the center.

5.4.2 Nonzero torsions case

We study the dynamics due to the effective Hamiltonian Heff of the couple kicked

top in presence of the nonlinear torsions κ1 and κ2. Here, again we set the param-

eters Ω1 = Ω2 = 1.0 and consider the same two coupling cases, ε̃ = 0.8 and 1.3, to

show the effect of the torsional terms on the dynamics of FP model. In Fig. 5.2,
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Figure 5.2: The dynamics of the coupled top is projected on the
phase space of the first top. We again set Ω1 = Ω2 = 1.0 and
consider the same coupling strengths. Here, we have considered
nonzero values of the torsion parameters κ1 and κ2. Top-Left panel:
ε̃ = 0.8 and κ1 = κ2 = 1.0; Top-Right panel: ε̃ = 1.3 and κ1 = κ2 =
1.0; Bottom-Left panel: ε̃ = 0.8 and κ1 = −κ2 = 1.0; Bottom-Right
panel: ε̃ = 1.3 and κ1 = −κ2 = 1.0. We observe completely different
behavior of the phase space dynamics, when we consider κ1 and κ2

of the same magnitude but of opposite signs.

we consider two cases of torsions: at the top panels, two torsional terms are equal

in magnitude and sign; and at the bottom panels, we consider torsional terms with

opposite sign, but of the same magnitude. For the first case, presented in the top

panels, for both the coupling strengths the dynamics is qualitatively similar. This

behavior is completely different than the FP case, as discussed above. However,

for the later case, when the torsions are of the opposite sign, the dynamics is very

much different from the case having torsions with same sign. Here, we see at the

center part of the phase space of the first top, the trajectories are going from one

stable island to another. The point is to note that we have not plotted the Poincare

section; instead, we have just projected the phase space trajectories of the CKT
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residing on the four-dimensional phase space to the phase space of the first top

having dimension two. Therefore, these flow of trajectories from one island to an-

other is actually happening through higher dimensional phase space. We can also

see such flow of trajectories from one region to another at the other parts of the

phase space.

5.5 Symmetry properties of the effective Hamilto-

nian of the CKT

5.5.1 Feingold-Peres (FP) limit

At the FP limit, the effective Hamiltonian of the CKT becomes

Heff = HFP = Ω1Jx1 + Ω2Jx2 +
ε̃

j
Jz1Jz2. (5.16)

If Ω1 = Ω2, the above Hamiltonian has permutation symmetry, i.e., if we exchange

the two tops 1 ↔ 2, then the FP Hamiltonian remains invariant. Besides, the

above Hamiltonian has a unitary symmetry

U0 = e−ıπJx1 ⊗ e−ıπJx2 , (5.17)

such that U0HFP U
†
0 = HFP or [U0, HFP] = 0, where U2

0 = 1. The FP Hamiltonian

has an additional unitary symmetry

C = eıαe−ıπJz1 ⊗ e−ıπJy2 , (5.18)
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which gives C HFPC
† = −HFP or (C HFP +HFP C) = 0. This also implies that

Tr (HFP) = 0. The phase factor eiα is not playing any role here to show this sym-

metry of HFP under C, because its complex conjugate factor from C† part will

trivially cancel it. However, this innocent looking phase factor will become impor-

tant while classifying the system under different symmetry classes. The operator

C is called chirality operator. In case of the integer spin C2 = 1. This property of

HFP implies the presence of nonstandard symmetries, which are different from the

standard Wigner-Dyson threefold symmetry classes. In addition, the FP Hamilto-

nian has a nonunitary symmetry like the time-reversal symmetry. We denote the

time-reversal operator T , which is in standard basis, flips the sign of Jy operator

but keep the other two angular momenta invariant. Therefore, HFP also satisfies

T HFPT −1 = HFP. Depending on whether the chirality operator C commutes with

T , we get different classes of symmetries for HFP. If the spin j is integer, then we

set α = 0 and find that

T C T −1 = T
[
e−ıπJz1 ⊗ e−ıπJy2

]
T −1

= eıπJz1 ⊗ e−ıπJy2

= e2ıπJz1 e−ıπJz1 ⊗ e−ıπJy2

= C,

(5.19)

where we use T ı T −1 = −ı; and for integer j, the term e2ıπJz1 becomes identity

matrix. Thus we find T C T −1 = C. However, for the half-integer spin e2ıπJz1 6= 1

and hence T C T −1 6= C. For this case, the phase α can be tuned to get a C which
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commutes with T . For any arbitrary phase α, we have,

T C T −1 = T
[
eıαe−ıπJz1 ⊗ e−ıπJy2

]
T −1

= e−ıαeıπJz1 ⊗ e−ıπJy2

= e−ı2α eı2πJz1
[
eıα e−ıπJz1 ⊗ e−ıπJy2

]
= eı2(πJz1−α) C.

(5.20)

If we set α = π j, then for both integer and half-integer spin j, the first term of

the last equality in the above equation will be an identity operator. Hence, we find

that, the chirality operator

C = eıπje−ıπJz1 ⊗ e−ıπJy2 (5.21)

is time reversal symmetric, i.e., T C T −1 = C and also transforms the FP Hamil-

tonian as C HFPC
−1 = −HFP. We note that for the integer spin j, the chirality

operator satisfies C2 = 1; and for the half-integer spin, C2 = −1. Due to the

presence of a time-reversal symmetric chirality operator, the FP limit of the CKT

model is classified as: (i) the BDI (BD One) class or the chiral orthogonal symme-

try class for C2 = 1 (integer spin); and (ii) the CI (C One) class or the anti-chiral

class for C2 = −1 (half-integer spin). These are two classes of the so-called non-

standard symmetries [73]. This analysis of the FP Hamiltonian is performed on

the basis of a recent publication [72].

5.5.2 Nonzero torsions case

In case of the nonzero torsions, consider the case κ1 = κ2 = κ and also Ω1 = Ω2 = Ω.

Then the effective Hamiltonian for the CKT, denoted by HCT (CT stands for
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coupled top), will be

HCT = Ω
(
Jx1 + Jx2

)
+
ε̃

j
Jz1Jz2 +

κ

2j

(
J2
z1 + J2

z2

)
= HFP +

κ

2j

(
J2
z1 + J2

z2

)
≡ HFP +HNL,

(5.22)

where HNL is the nonlinear torsion part. This Hamiltonian is clearly symmetric

under permutation and it also remains invariant under the unitary transformation

U0 defined earlier. However, this Hamiltonian does not show chiral symmetry under

the transformation C, i.e., CHCTC
† 6= −HCT. This is simply because HNL does

not have chiral symmetry, i.e., C HNLC
−1 6= −HNL. This is also the consequence

of nonzero trace of HNL.

We now find the condition for which the trace can be zero. Starting with a

different torsion strengths κ1 6= κ2, we calculate the trace in the standard basis as:

Tr (HNL) =
1

2j

(
κ1

j∑
m1=−j

m2
1 + κ2

j∑
m2=−j

m2
2

)

=
2

j

j∑
m=1

m2 (κ1 + κ2)

=
1

3
(j + 1)(2j + 1) (κ1 + κ2) .

(5.23)

The above relation clearly shows that, when κ1 = −κ2 = κ, then the trace will be

zero. Therefore, the CT Hamiltonian with trace zero is of the form

HCT = Ω
(
Jx1 + Jx2

)
+
ε̃

j
Jz1Jz2 +

κ

2j

(
J2
z1 − J2

z2

)
. (5.24)

Note that, for this particular case of the torsion with opposite signs, we have seen a

very different kind of classical dynamics. However, still the Hamiltonian HCT does

not have the chiral symmetry under the transformation of C. This implies that
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there exists a different chirality operator, say C ′, under which C ′HCTC
′† = −HCT.

One point is to be noted that now the Hamiltonian HCT is not symmetric under

permutation. We exploit this fact and obtain C ′ = PC, where P is the permutation

operator. One can now easily check that C ′HCTC
′† = P C HCTC

† = −HCT or

(C ′HCT +HCTC
′) = 0. Since the chirality operator C is time-reversal symmetric,

then trivially one can show that the chirality operator C ′ for the couple top Hamil-

tonian is also time-reversal symmetric. Moreover, for C2 = ±1, the other chirality

operator also satisfies exactly the same property, i.e., C ′2 = ±1. Therefore, the

CT Hamiltonian can also be classified into two same chiral symmetry classes BDI

and CI. Besides, for the nonzero trace case, one can not find a chirality operator

under which the CT Hamiltonian will show the symmetry property, therefore this

Hamiltonian belongs to the standard symmetry class.

5.6 Conclusion

In this chapter, we have analyzed a coupled kicked top system from the Floquet

theory perspective. The effective Hamiltonian obtained from this time dependent

system at the zeroth order of the perturbation theory (here the first order term

is zero) shows nonintegrability. We have shown that, at one particular limit, the

effective Hamiltonian becomes the well known Feingold-Peres model. We study the

classical dynamics of the effective Hamiltonian at the Feingold-Peres limit as well

as for the general case. We have observed that the classical dynamics are qual-

itatively different for the two cases. At the quantum mechanical level, we study

the symmetry properties of the effective Hamiltonian. We find that, for both the

cases, the Hamiltonian follows the recently proposed nonstandard symmetry classes

BDI or chiral orthogonal symmetry and CI or anti-chiral orthogonal symmetry.

Moreover, at the FP limit, the Hamiltonian also has the permutation symmetry.
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However, the permutation symmetric coupled top Hamiltonian does not have the

chiral symmetry. In order to make it chiral symmetric, we have to break the per-

mutation symmetry. Rather, the breaking of the permutation symmetry actually

facilitates to construct a chirality operator for the coupled top Hamiltonian.


