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Chapter 2

Formalism: Floquet theory

Floquet theory is applied to study quantum systems with time-periodic Hamilto-

nian. The primary goal of this study is to derive an effective time independent

Hamiltonian corresponding to the time-periodic Hamiltonian. This simply means

that the dynamics of a quantum system described by the time-periodic Hamil-

tonian should also be equivalently described by its corresponding effective time

independent Hamiltonian. In Floquet theory literature, this effective Hamiltonian

is known as the Floquet Hamiltonian.

More than a half a century back, Shirley systematically investigated generic

time-periodic Hamiltonian systems or the Floquet systems [21, 74]. This work

mostly addressed how to calculate the transition probabilities among various states

of the system under a time dependent perturbation theory. In order to include the

assumption of the weak or strong field into the theory, this work suggested a generic

form of any time dependent Hamiltonian, which should have two parts: one is a

static part, and the another is the time dependent part. This work also demon-

strated the advantages of the effective time independent description to formulate

the periodically driven problem correctly. In order to derive this description, the

Floquet theory was found appropriate. One important advantage of this formalism
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is that it provides a possibility to include the effect of the time dependence for dif-

ferent frequency ranges. However, one has to pay the price for this by mapping the

finite dimensional time-periodic problem into an infinite dimensional time indepen-

dent problem [21,74]. Later, Sambe studied this by extending the standard system

Hilbert space into the so-called “Sambe space”, which also satisfies the properties of

a Hilbert space. Therefore, the Sambe space is also known as the Floquet-Hilbert

space. This extended space is defined as a tensor product of the system Hilbert

space H and a Hilbert space of time-periodic functions denoted by T. This method

is simpler than the other time dependent perturbation theory from both analytical

and computational point of view.

A general prescription of the Floquet theory of studying a time-periodic quan-

tum system is the following:

(1) the Floquet theory states that the time evolution operator corresponding to a

quantum system described by a time-periodic Hamiltonian can always be expressed

as a product of three unitary operators:

U(ti → tf ) = e−iG[tf ]e−iHeff(tf−ti)eiG[ti]. (2.1)

This expression was mentioned earlier in Eq. (1.1). Here, we are re-writing this

for the sake of completeness. Here, ti and tf are the initial and the final time,

respectively. The extreme right unitary operator eiG[ti] and the left unitary operator

e−iG[tf ] are determined by how one switches on and off the driving. The Hermitian

operator G[t] is also has the same time-periodicity as the driving period T , i.e.,

G[t+T ] = G[t]. Our main interest is the central unitary operator, which describes

the dynamics in terms of a time independent Hamiltonian or Floquet Hamiltonian

Heff [75], which is not dependent on the initial and the final time. If one probes

the dynamics of the system stroboscopically, that is at time intervals tf = ti + nT ,
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where n are positive integers, then the two operators G[tf ] and G[ti] become equal.

Here, nT is defined as the stroboscopic time, measured in the units of the driving

period T . For such cases, the full evolution operator is equivalent to the evolution

of the system generated by the static Hamiltonian Heff , i.e.,

U(ti → tf = ti + nT ) = e−iG[ti] e−iHeff nT eiG[ti] (2.2)

(2) This time evolution operator is exact. However, in most of the cases, it is not

possible to derive Heff exactly. One has to employ some perturbation techniques

to evaluate Heff . There are different perturbation theories at the high frequency

limit proposed [26,27,41–48,76,77]. In this thesis, we shall study two perturbation

schemes, one is based on the Van Vleck theory [27,41], and the other one is based on

the Brillouin-Wigner (BW) theory [76]. The later exploits Sambe’s idea and applies

the BW theory, which was originally defined for the time independent Hamiltonian

systems. Reference [43] has systematically established the connection between the

different perturbation schemes.

2.1 Floquet Analysis and Floquet Operator

The Hamiltonian H(t) of a periodically driven systems satisfies the property

H(t+ T ) = H(t), (2.3)

where T = 2π/ω is the time period of the periodic driving and ω is the correspond-

ing frequency. The generic form of any time-periodic Hamiltonian is

H(t) = H0 + V (t), (2.4)
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where H0 is the Hamiltonian of the undriven or static part, and V (t) is the time-

periodic driving part, i.e., V (t + T ) = V (t). The time-periodic potential makes

the total Hamiltonian time-periodic. The time dependent Schrödinger equation

(TDSE) of this system [
H(t)− i~ d

dt

]
|ψ(t)〉 = 0. (2.5)

The solutions of the above equation |ψ(t)〉 can always be represented by a unitary

time evolution operator U(ti → t), i.e., |ψ(t)〉 = U(ti → t)|ψ(ti)〉, where |ψ(ti)〉 is

the initial state or the given state at the initial time ti. One can now consider a

unitary transformation

|φ(t)〉 = U(t)|ψ(t)〉 = eiG[t]|ψ(t)〉, (2.6)

whereG[t] is an explicitly time dependent Hermitian operator and satisfies the same

time-periodic property as that of the system Hamiltonian, i.e., G[t+T ] = G[t]. This

is also known as the kick operator. The new state |φ(t)〉 satisfies the Schrödinger

equation

i~
d

dt
|φ(t)〉 = Heff |φ(t)〉, (2.7)

where Heff = eiG[t] H(t) e−iG[t] − i~ eiG[t]

(
d

dt
e−iG[t]

)
. (2.8)

Here, a time independent Hamiltonian Heff is introduced. In literature, this Hamil-

tonian is known as the Floquet Hamiltonian. We shall refer this as the effective

time independent Hamiltonian, because this generates the same time evolution as

the time-periodic Hamiltonian. In recent times, from the so-called Floquet en-

gineering point of view, it has become an important theoretical task to derive

the effective Hamiltonian corresponding to a particular driving protocol, at least
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within a suitable approximation. This helps experimentalists to design driving pro-

tocols depending on the initial static and the final desired Hamiltonians. Following

Ref. [26], one can always construct a time independent Heff , by transferring all

time dependent terms into the operator G[t]. In terms of these operators, the time

evolution operator is written for the situation when one switches on the driving at

time ti and switches off at time tf as [21]:

U(ti → tf ) = e−iG[tf ]e−iHeff(tf−ti)eiG[ti] = UM(tf )e
−iHeff(tf−ti)UM(ti)

†. (2.9)

The above equation has already been given in Eq. (2.1), here we rewrite that

to give it a proper context. This expression illustrates that the time evolution

of periodically driven systems or the Floquet systems have two components: one

is the so-called micromotion operator described by the evolution UM(t) = e−iG[t],

where the kick operator G[ti] describes how the driving is switching on, and G[tf ]

describes the process by which the driving is switching off. The other one is the

time independent effective Hamiltonian Heff , which describes the time evolution

similar to any autonomous system.

Let us assume that the effective Hamiltonian satisfies the eigen relation

Heff |ũα〉 = εα|ũα〉, (2.10)

where {εα}s are called quasienergies. From this, one can construct the generalized

stationary states or the Floquet states |ψα(t)〉 of the TDSE. First, we define the

Floquet modes:

|uα(t)〉 = UM(t)|ũα〉 = e−iG[t]|ũα〉, where |uα(t+ T )〉 = |uα(t)〉. (2.11)
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The second relation is obtained trivially from the first relation by exploiting the

time-periodic property of G[t]. The Floquet modes |uα(t)〉 describes the micromo-

tion and the quasienergies εα describes the linear phase evolution. The Floquet

states are then obtained as

|ψα(t)〉 = e−iεαt/~|uα(t)〉. (2.12)

These states are the eigenstates of the time evolution operator over one period, i.e.,

|ψα(t+ T )〉 = U(t→ t+ T )|ψα(t)〉 = e−iεαT/~|ψα(t)〉. (2.13)

These states form a complete orthonormal basis at arbitrary any time t. Therefore,

any initial state can be expanded on this basis, and then the time evolution will

be determined by the quasienergies.

The time-periodic micromotion operator UM(t) is not unique for a given time

evolution operator and consequently does not give a unique Heff . One can construct

a new micromotion operator U ′M(t) starting from UM(t) by applying certain unitary

operations. Since the Floquet states are the eigenstates of the time evolution

operator, they will remain the same if one uses a different form of the micromotion

operator. The simplest possibility which one can think of constructing a new

micromotion operator of the form U ′M(t) = UM(t)U0 where U0 is a time independent

unitary operator. Then the effective Hamiltonian will become H ′eff = U †0HeffU0.

One can assume U0 = U †M(ti) ≡ UM(t, ti), where UM(ti) is defined at a fixed time ti

which is here just the initial time and therefore it is a time independent operator.

The new micromotion operator satisfies the condition U ′M(ti) = UM(ti, ti) = 1.
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This allows one to write the time evolution operator

U(ti → tf ) = UM(tf , ti) exp

(
− i
~
H

[ti]
eff

)
, (2.14)

with the effective Hamiltonian

H
[ti]
eff = UM(ti)Heff U

†
M(ti) (2.15)

and the two point (or at two different time) micromotion operator

UM(tf , ti) = UM(tf )U
†
M(ti). (2.16)

Particularly for the situation when one probes the system stroboscopically at time

intervals tf = ti+nT , where n are positive integers, then Eq. (2.14) becomes much

simpler:

U(ti → tf ) ≡ U(nT ) = exp

(
− i
~
nTH

[ti]
eff

)
= U(T )n, (2.17)

where U(T ) is the time evolution operator defined over one time period T . Here,

the Hamiltonian H [ti]
eff depends parametrically on the initial time ti; but according

to Eq. (2.15), it is related to Heff by a unitary transformation. Therefore, the

spectrum of effective or Floquet Hamiltonian is independent of ti.

Another way to construct a new micromotion operator is

U ′M(t) = UM(t)eimωt|ũα〉〈ũα|, (2.18)

where m is integer. This choice of the micromotion operator will modify the effec-

tive Hamiltonian as

H ′eff = Heff +m~ω|ũα〉〈ũα|. (2.19)
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The above operation changes the quasienergies as well as the Floquet modes as

εmα = εα +m~ω, |uαm(t)〉 = eimωt|uα(t)〉. (2.20)

One can easily show that the above new solutions labeled by m ensure that the

Floquet states will remain the same, i.e.,

|ψα(t)〉 = e−iεαt/~|uα(t)〉 = e−iεmαt/~|uαm(t)〉. (2.21)

Equation (2.20) is showing that the quasienergies are not unique and defined up

to an integer multiples of ~ω. This is in agreement that the effective or Floquet

Hamiltonian is not unique for a given time-periodic Hamiltonian. This is an im-

portant result. Because this gives the freedom to choose m independently for each

Floquet state |ψα〉 so that all quasienergies can lie within the same interval of width

~ω, this interval is called Floquet-Brillouin zone (FBZ). The concept of Brillouin

zone is well known in solid state physics where, instead of time, the system has

periodicity in space.

2.2 Perturbation theory to generate the effective

Hamiltonian: High frequency case

A major requirement of the Floquet engineering is to compute the effective Hamil-

tonian. However, in general, it is not possible to compute exactly by any analytical

means. Therefore, one has to develop perturbation schemes at some suitable ap-

proximation. One such approximation is the high frequency driving limit. Here,

the high frequency suggests that the corresponding energy ~ω is larger than all

the energy scales of the undriven system. Mathematically, this means ~ω is much
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larger compared to all the matrix elements of the undriven Hamiltonian. The low

frequency limit can be another extreme approximation, but this thesis is only con-

sidering the high frequency case. We now discuss two perturbation techniques:

based on the Van Vleck expansion [24, 26, 27] and on the Brillouin-Wigner (BW)

perturbative expansion [76].

2.2.1 Van Vleck expansion

Since we assume that the frequency ω = 2π/T is large, the effective Hamiltonian

Heff and the kick operator G[t] can be expanded in perturbation series of (1/ω) up

to a desired accuracy O(ω−n) as [26]

Heff =
∑

0≤n<∞

1

ωn
H(n)

G[t] =
∑

1≤n<∞

1

ωn
G(n)[t].

(2.22)

One has to use the following identities

eiGHe−iG = H + i[G,H]− 1

2

[
G, [G,H]

]
− i

6

[
G,
[
G, [G,H]

]]
+ ........, (2.23)

(
∂

∂t
eiG
)
e−iG = i

[
∂G

∂t

]
− 1

2

[
G,

∂G

∂t

]
− i

6

[
G,

[
G,

∂G

∂t

]]
, (2.24)

where G = G[t], and the Fourier series expansion of the time-periodic Hamiltonian

H(t) = H0 + V (t) = H0 + V0 +
∞∑
n=1

(
Vne

inωt + V−ne
−inωt) (2.25)
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to derive the operators Heff and G[t]. Following the above expansions, one can

obtain the general expressions up to O(ω−2) for the effective Hamiltonian

Heff = H0 + V0 +
1

ω

∞∑
n=1

1

n
[Vn, V−n] +

1

2ω2

∞∑
n=1

([[
Vn, H0

]
, V−n

]
+ h.c

)
+

1

3ω2

∞∑
n,m=1

1

nm

([
Vn,
[
Vm, V−(n+m)

]]
− 2

[
Vn,
[
V−n, V(n−m)

]]
+ h.c.

)
....

(2.26)

and for the kick operator at time t as

G[t] =
1

iω

∞∑
n=1

1

n

(
Vne

inωt − V−ne−inωt
)

+
1

iω2

∞∑
n=1

1

n2

(
[Vn, H0 + V0]einωt − h.c

)
+

1

2iω2

∞∑
n,m=1

1

n(n+m)

(
[Vn, Vm]ei(n+m)ωt − h.c.

)

+
1

2iω2

∞∑
n 6=m=1

1

n(n−m)

(
[Vn, V−m]ei(n−m)ωt − h.c.

)
.....

(2.27)

A more detailed derivation of the above equations is given in Appendix A.1.

At the high frequency limit, the convergence is expected to be fast; then the

above series expansion may be treated as a regular perturbation series with finite

order of corrections. In this thesis, we particularly consider periodic δ-kick driving

V (t) = V
∑
n

δ(t− nT ). (2.28)

From Eq. (2.26), we obtain the effective time independent Hamiltonian as:

Heff = H0 +
V

T
+

1

24

[
[V,H0], V

]
+O

(
1

ω3

)
. (2.29)

A complete derivation is provided in appendix A.1.1.
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2.2.2 Brillouin-Wigner (BW) perturbation theory

Van Vleck perturbation theory provides a systematic and consistent high frequency

expansion that correctly reproduces the expansion for effective Hamiltonian Heff .

However, sometimes it is cumbersome to compute higher-order terms in (1/ω) with

this method. An alternative approach based on the Brillouin-Wigner perturbation

theory is proposed [76, 78]. This perturbation theory is developed on the idea of

expanded Hilbert space or Sambe space [22], and thus this space can be called

Floquet-Hilbert (FH) space.

A Sambe space or a FH space HFH is a tensor product of the ‘standrad’ system

Hilbert space H and the Hilbert space of time-periodic functions T defined by the

period T , i.e., HFH = H ⊗ T. The Hilbert space of time-periodic functions T is a

direct sum space of the subspaces Tm, i.e., T =
⊕
m

Tm, and the subspaces spanned

by Tm = {e−imωt}, (wherem ∈ Z). In the FH space, the TDSE can be transformed

in to the following eigenvalue problem

∑
n∈Z

(Hmn −mωδmn)|uαm〉 = εα|uαm〉, (2.30)

where the general solution of the original TDSE will be

|φα(t)〉 =
∑
m∈Z

cme
−i(εα+mω)t|uαm〉, (2.31)

and

Hm,n =
1

T

∫ T

0

H(t)ei(m−n)ωtdt. (2.32)

The above time independent eigen representation of the TDSE in the FH space

can be written in a matrix form as

(H−M) |uα〉 = εα|uα〉, (2.33)
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where [M]mn = mδmn is a diagonal matrix. Here, (H−M) plays the role of a

time independent Hamiltonian defined in the FH space.

In the BW theory, a key concept is the model space, which is a smaller Hilbert

space and can be chosen arbitrarily. In general, the model space M is constructed

by spanning some eigenstates, but not all, of the Hamiltonian, i.e., M = {|uα〉}.

Let us denote Q as the space formed by the orthogonal components of M. If P is

a projection operator to the model space, then the orthogonal projection operator

Q ∈ Q will satisfy Q = 1− P . If P|uα〉 is the projection of the eigenstate |uα〉 to

the model space, then there exists another projection operator Ω which projection

back the eigenstate from the model space to the full Hilbert space, which is here

the FH space. The operator Ω is called the wave operator. Therefore,

|uα〉 = ΩP|uα〉. (2.34)

Since the rank Ω < dimP , the above relation is not valid for all α. After defin-

ing the model space and all the projection operators, the BW theory gives the

corresponding effective Hamiltonian as

Heff = P (H−M) ΩP . (2.35)

The eigenstates and the eigenenergies of this Hamiltonian are P|uα〉 and εα, re-

spectively. In the context of Floquet formalism, when one is interested to compute

a time independent effective Hamiltonian, a natural choice for the model space

will be the so called zero photon subspace T0, and therefore the projection oper-

ator becomes [P ]mn = δmnδm0. The orthogonal projection operator then becomes

[Q]mn = δmn(1 − δm0). This choice of P averages out the micromotion or the

periodic oscillations of the quasienergy eigenstates.
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Since the operator Q commutes withM, then from Eq. (2.33), we get

Q|uα〉 =
Q

εα +Mω
H|uα〉, (2.36)

and this implies

|uα〉 = P|uα〉+
Q

εα +Mω
H|uα〉

=

(
1− Q

εα +Mω
H
)−1

P|uα〉.
(2.37)

Comparing the above relation with the relation given in Eq. (2.34), we get

Ω(ε) =

(
1− Q

ε+Mω
H
)−1

. (2.38)

From Eq. (2.35) and noting that PM = 0, we get the expression of the effective

Hamiltonian as

Heff(ε) = PH
(
1− Q

εα +Mω
H
)−1

P . (2.39)

Since in the above expression, the quasienergy ε is at the both sides, one has to

solve it self-consistently and thus one get the effective Hamiltonian as a perturbative

expansion as:

HBW =
∞∑
n=0

H
(n)
BW (2.40)

where

H
(0)
BW = H0,0

H
(1)
BW =

∑
ni 6=0

H0,n1 Hn1,0

n1 ω

H
(2)
BW =

∑
ni 6=0

(
H0,n1 Hn1,n2 Hn2,0

n1 n2 ω2
− H0,n1 Hn1,0H0,0

n2
1 ω

2

) (2.41)
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and Hmn are the Fourier components of the time-periodic Hamiltonian as defined

in Eq. (2.32). For further details, see A.2.

In case of the single δ-kicked driving, we get the effective Hamiltonian from the

BW perturbation theory up to order of ω−2 as

HBW = H0 +
V

T
+

1

12
V H0V, (2.42)

whereH0 is the static part of the Hamiltonian and V is the δ-kicked driven potential

part.


