List of Figures

1.1	Block diagram of a basic queueing model	4
1.2	State transition diagram of a single server finite capacity queueing based service system	15
1.3	State transition diagram of a multiple server finite capacity queueing based service system	17
1.4	State transition diagram of a basic machine repair model	18
2.1	Average balking rate of customers in the service system wrt λ for (i) R , (ii) μ , (iii) θ , and (iv) δ	65
2.2	Average reneging rate of customers in the service system wrt λ for (i) R , (ii) μ , (iii) θ , and (iv) δ	65
2.3	Throughput of the service system (τ_p) wrt λ for (i) K , (ii) R , (iii) θ , and (iv) δ	66
2.4	Throughput of the service system (τ_p) wrt μ for (i) K , (ii) R , (iii) θ , and (iv) δ	67
2.5	Expected total cost of the service system (TC) wrt system parameters (i) (K, λ) , (ii) (R, λ) , (iii) (θ, λ) , and (iv) (δ, λ)	68
2.6	Expected total cost of the service system (TC) wrt system parameters (i) (K, μ) , (ii) (R, μ) , (iii) (θ, μ) , and (iv) (δ, μ)	69
2.7	Convex expected total cost (TC) wrt decision parameters (i) μ , (ii) μ_1 , (iii) R , and (iv) θ	70
2.8	Surface plot for TC wrt combination of (μ, μ_1)	71
2.9	Surface plot for TC wrt combination of (μ, θ)	72
2.10	Several generations of PSO algorithm on contour of $TC(R, \mu, \mu_1, \theta)$	
2.11	wrt μ and μ_1	72 73
	·	, .
3.1	Expected number of customers in the service system (L_S) wrt (i) λ , (ii) μ , (iii) δ , and (iv) θ for different values of K	87
3.2	Throughput of the service system (τ_P) wrt (i) λ , (ii) μ , (iii) δ , and (iv) θ for different values of K	88

XX LIST OF FIGURES

3.3	The total expected cost of the service system (TC) wrt system parameters (i) (K, λ) , (ii) (δ, μ) , (iii) (μ, θ) , and (iv) (δ, θ)	88
3.4	Convex nature of the total expected cost function (TC) wrt the deci-	00
5.1	sion parameters (i) μ , and (ii) θ	89
3.5	Surface plot of expected cost function (TC) wrt μ , and θ	89
3.6	Various generations of bat algorithm (BA)	90
4.1	Transtion-state diagram	102
4.2	Expected number of customer in the service system (L_S) wrt λ for (i)	100
4.2	K , (ii) S , (iii) p , (iv) ζ , (v) θ , and (vi) μ_{ν}	108
4.3	Expected number of customer in the service system (L_S) wrt μ_b for	100
4 4	(i) K , (ii) S , (iii) p , (iv) ζ , (v) θ , and (vi) μ_{ν}	109
4.4	Throughput of the service system (τ_p) wrt λ for (i) K , (ii) S , (iii) p ,	110
4.5	(iv) ζ , (v) θ , and (vi) μ_{ν}	110
4.5	Throughput of the service system (τ_p) wrt μ_b for (i) K , (ii) S , (iii) p ,	110
4.6	(iv) ζ , (v) θ , and (vi) μ_{ν}	110
4.6	Expected total cost (TC) wrt λ for (i) K , (ii) S , (iii) p , (iv) ζ , (v) θ ,	111
4.7	and (vi) μ_{ν}	111
4.7	Expected total cost (TC) wrt μ_b for (i) K , (ii) S , (iii) p , (iv) ζ , (v) θ ,	111
10	and (vi) μ_{ν}	111
4.8	Convex expected total cost function (TC) wrt parameter (i) S , (ii)	111
4.0	μ_b , and (iii) μ_v	114
4.9	Surface plot for TC wrt μ_{ν} , and μ_{b}	116
	Three dimension plot for TC wrt μ_{ν} , and μ_{b}	116
4.11	Generations of the CS algorithm wrt the optimal pair (μ_{ν}, μ_b)	117
5.1	State transition diagram	130
5.2	Expected number of customer in the service system (L_S) wrt λ for (i)	
	K , (ii) F , (iii) ξ , (iv) η , (v) γ , and (vi) θ	140
5.3	Expected number of customer in the service system (L_S) wrt μ_b for	
	(i) K , (ii) F , (iii) ξ , (iv) η , (v) γ , and (vi) θ	140
5.4	Throughput of the service system (τ_p) wrt λ for (i) K , (ii) F , (iii) ξ ,	
	(iv) η , (v) γ , and (vi) θ	141
5.5	Throughput of the service system (τ_p) wrt μ_b for (i) K , (ii) F , (iii) ξ ,	
	(iv) η , (v) γ , and (vi) θ	141
5.6	Expected total cost of the service system (TC) wrt λ for (i) K , (ii) F ,	
	(iii) ξ , (iv) η , (v) γ , and (vi) θ	142
5.7	Expected total cost of the service system (TC) wrt μ_b for (i) K , (ii)	
	F , (iii) ξ , (iv) η , (v) γ , and (vi) θ	142

LIST OF FIGURES xxi

5.8	Sensitivity analysis of expected cost function (TC) wrt to (i) λ , (ii)	
	μ_b , (iii) μ_v , (iv) θ , (v) γ , (vi) η , and (vii) ξ for different values of F .	145
5.9	Convexity of expected total cost function (TC) wrt parameters (i) F ,	
	(ii) μ_b , and (iii) μ_v	146
5.10	Surface plot of expected total cost function for joint values of μ_{ν} , and	
	μ_b	146
5.11	Various generations of PSO algorithm over contour plot of the objec-	
	tive function.	147
6.1	State Transition diagram	156
6.2	Queue size distribution $P_n(t)$ wrt t for different $n \dots \dots \dots$	160
6.3	Queue size distribution $P_n(t)$ wrt t for different n	161
6.4	Probability that there is no customer $P_0(t)$ wrt t for different parameters	162
6.5	Probability that there is no customer $P_0(t)$ wrt parameters for differ-	
	ent ξ	163
7.1	State transition diagram of the basic machine repair problem	168
7.2	Effect of failure rate λ on reliability and $MTTF$ of the system re-	
	spectively for MRP	170
7.3	Effect of repair rate μ on reliability and $MTTF$ of the system respec-	
	tively for MRP	170
7.4	State transition diagram of the machine repair model with N -policy.	171
7.5	Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i)	
	MRP, and (ii) <i>N</i> -policy	174
7.6	Effect of repair rate μ on reliability and $MTTF$ respectively wrt (i)	
	MRP, and (ii) <i>N</i> -policy	174
7.7	State transition diagram of the machine repair model with Bernoulli	
	vacation policy	175
7.8	Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i)	
	MRP, (ii) <i>N</i> -policy, and (iii) BV	177
7.9	Effect of repair rate μ on reliability and $MTTF$ respectively wrt (i)	
	MRP, (ii) <i>N</i> -policy, and (iii) BV	177
7.10	State transition diagram of the machine repair model with multiple	
	vacation policy	178
7.11	Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i)	
	MRP, (ii) N-policy, (iii) BV, and (iv) MV	180
7.12	Effect of repair rate μ on reliability and $MTTF$ respectively wrt (i)	
	MRP, (ii) N-policy, (iii) BV, and (iv) MV	181

xxii LIST OF FIGURES

1.13	State transition diagram of the machine repair model with single va-	
	cation policy	181
7.14	Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i)	
	MRP, (ii) N-policy, (iii) BV, (iv) MV, and (v) SV	184
7.15	Effect of repair rate μ on reliability and $MTTF$ respectively wrt (i)	
	MRP, (ii) N-policy, (iii) BV, (iv) MV, and (v) SV	184
7.16	State transition diagram of the machine repair model with multiple	
	working vacation policy	185
7.17	Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i)	
	MRP, (ii) N-policy, (iii) BV, (iv) MV, (v) SV, and (vi) MWV	187
7.18	Effect of repair rate μ_b on reliability and $MTTF$ respectively wrt (i)	
	MRP, (ii) N-policy, (iii) BV, (iv) MV, (v) SV, and (vi) MWV	188
7.19	State transition diagram of the machine repair model with single	
	working vacation policy	189
7.20	Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i)	
	MRP, (ii) N-policy, (iii) BV, (iv) MV, (v) SV, (vi) MWV, and (vii) SWV.	191
7.21	Effect of repair rate μ_b on reliability and $MTTF$ respectively wrt (i)	
	MRP, (ii) N-policy, (iii) BV, (iv) MV, (v) SV, (vi) MWV, and (vii) SWV.	192
7.22	State transition diagram of the machine repair model with vacation	
		192
7.23	Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i)	
	MRP, (ii) N-policy, (iii) BV, (iv) MV, (v) SV, (vi) MWV, (vii) SWV,	
		196
7.24	Effect of repair rate μ_b on reliability and $MTTF$ respectively wrt (i)	
	MRP, (ii) N-policy, (iii) BV, (iv) MV, (v) SV, (vi) MWV, (vii) SWV,	
		196
8.1		202
8.2	State-transition diagram of the machine repair model with working	
	•	205
8.3	State transition diagram of the machine repair model with working	
	vacation interruption and unreliable service	209
8.4	Variation of reliability of the machining system wrt failure rate of	
	operating units λ for (i) Model 1, (ii) Model 2, and (iii) Model 3	215
8.5	Variation of reliability of the machining system wrt failure rate of	
	standby units v for (i) Model 1, (ii) Model 2, and (iii) Model 3	216
8.6	Variation of reliability of the machining system wrt repair rate μ_b for	
	(i) Model 1, (ii) Model 2, and (iii) Model 3	216

LIST OF FIGURES xxiii

8.7	Variation of reliability of the machining system wrt repair rate μ_{ν} for	
	(i) Model 2, (ii) Model 3	216
8.8	Variation of reliability of the machining system wrt vacation rate θ .	
	for (i) Model 2, (ii) Model 3	217
8.9	Variation of reliability of the machining system wrt (i) rate of suc-	
	cessful service β_1 , (ii) rate of unsuccessful service β_2 for Model 3	217
8.10	Effect of different system parameters on mean time-to-failure of the	
	machining system in Model 1, 2, & 3	218
8.11	Effect of different system parameters on mean time-to-failure of the	
	machining system in Model 2 & 3	218
8.12	Effect of different system parameters on mean time-to-failure of the	
	machining system in Model 3	218
8.13	Surface plot of the expected total cost of the machining system wrt	
	pair of system design parametrs	219
8.14	Several generations of the PSO algorithm in order to find the optimal	
	pair (μ_{ν}, μ_b)	220

List of Tables

69	Numerical simulation of various system characteristics wrt K , λ , μ , and θ	2.1
70		2.2
75	Optimal expected total cost for R^* , μ^* , and μ_1^*	2.3
76	Optimal expected total cost for μ^* , μ_1^* , and θ^*	2.4
91	Optimal values of (μ^*, θ^*) with minimal expected cost TC^* using bat algorithm	3.1
	Optimal values of (μ^*, θ^*) with minimal expected cost TC^* using	3.2
93	PSO algorithm.	
94	Optimal values of (μ^*, θ^*) with minimal expected cost TC^* using quasi-Newton method	3.3
112	Numerical simulation of various system performance measures on varying K , λ , μ_b , and θ	4.1
	• 1	4.2
113	varying S , μ_{ν} , ζ , and p	4.0
115		4.3
115	cost using CS algorithm	4.4
119	cost using PSO algorithm	
		4.5
120	for different S	
	•	4.6
100	$K = 15, \ \lambda = 3.8, \ \theta = 2.5, \ \zeta = 1.0, \ \& \ p = 0.5$ and initial value	
120	$(S, \mu_{\nu}, \mu_{b}) = (4, 4.0, 8.0)$	4.7
		4.7
101	cost TC^* for several combinations of $(\lambda, \theta, \zeta, p)$ via Quasi-Newton	
121	method	

xxvi LIST OF TABLES

4.8	Optimal values of $(S^*, \mu_{\nu}^*, \mu_b^*)$ with corresponding minimum expected cost TC^* for several combinations of $(\lambda, \theta, \zeta, p)$ via Quasi-Newton	
	method	121
5.1	Service system characteristics wrt K , λ , μ_b , and ξ	143
5.2	Service system characteristics wrt F , η , γ , μ_{ν} , and θ	144
5.3	Optimal expected total cost for F^* , K^* , μ_v^* , and μ_b^*	148
6.1	Expected number of customers in the service system wrt λ	163
6.2	Expected number of customers in the service system wrt μ	163
6.3	Expected number of customers in the service system wrt ξ	163
8.1	Optimal values of (μ_v^*, μ_b^*) along with minimum cost of the machin-	
	ing system TC^* using PSO algorithm for system thresholds	223
8.2	Optimal values of (μ_{ν}^*, μ_b^*) along with minimum cost of the machin-	
	ing system TC^* using PSO algorithm for system rates	224
8.3	Optimal values of (μ_{ν}^*, μ_b^*) along with minimum cost of the machin-	
	ing system TC^* using PSO algorithm for system incurred costs	225

Abbreviations

PDF: Probability density function

JIT: Just-in-time

GoS: Grade-of-service

OR: Operations research

IT: Information technology

PSO: Particle swarm optimization

CS: Cuckoo search

BA: Bat algorithm

QN: Quasi-Newton

DS: Direct search

GA: Genetic algorithm

DE: Differential evolution

FA: Firefly algorithm

CTMC: Continuous-time Markov chain

FCFS: First come first served

QBD: Quasi-birth and death

MTTF: Mean-time-to-failure

SOR: Successive over relaxation

MRP: Machine repair problem

BV: Bernoulli vacation

SV: Single vacation

MV: Multiple vacation

WV: Working vacation

MWV: Multiple working vacation

SWV: Single working vacation

VI: Vacation interruption