List of Figures | 1.1 | Block diagram of a basic queueing model | 4 | |------|--|----------| | 1.2 | State transition diagram of a single server finite capacity queueing based service system | 15 | | 1.3 | State transition diagram of a multiple server finite capacity queueing based service system | 17 | | 1.4 | State transition diagram of a basic machine repair model | 18 | | 2.1 | Average balking rate of customers in the service system wrt λ for (i) R , (ii) μ , (iii) θ , and (iv) δ | 65 | | 2.2 | Average reneging rate of customers in the service system wrt λ for (i) R , (ii) μ , (iii) θ , and (iv) δ | 65 | | 2.3 | Throughput of the service system (τ_p) wrt λ for (i) K , (ii) R , (iii) θ , and (iv) δ | 66 | | 2.4 | Throughput of the service system (τ_p) wrt μ for (i) K , (ii) R , (iii) θ , and (iv) δ | 67 | | 2.5 | Expected total cost of the service system (TC) wrt system parameters (i) (K, λ) , (ii) (R, λ) , (iii) (θ, λ) , and (iv) (δ, λ) | 68 | | 2.6 | Expected total cost of the service system (TC) wrt system parameters (i) (K, μ) , (ii) (R, μ) , (iii) (θ, μ) , and (iv) (δ, μ) | 69 | | 2.7 | Convex expected total cost (TC) wrt decision parameters (i) μ , (ii) μ_1 , (iii) R , and (iv) θ | 70 | | 2.8 | Surface plot for TC wrt combination of (μ, μ_1) | 71 | | 2.9 | Surface plot for TC wrt combination of (μ, θ) | 72 | | 2.10 | Several generations of PSO algorithm on contour of $TC(R, \mu, \mu_1, \theta)$ | | | 2.11 | wrt μ and μ_1 | 72
73 | | | · | , . | | 3.1 | Expected number of customers in the service system (L_S) wrt (i) λ , (ii) μ , (iii) δ , and (iv) θ for different values of K | 87 | | 3.2 | Throughput of the service system (τ_P) wrt (i) λ , (ii) μ , (iii) δ , and (iv) θ for different values of K | 88 | XX LIST OF FIGURES | 3.3 | The total expected cost of the service system (TC) wrt system parameters (i) (K, λ) , (ii) (δ, μ) , (iii) (μ, θ) , and (iv) (δ, θ) | 88 | |------|--|-----| | 3.4 | Convex nature of the total expected cost function (TC) wrt the deci- | 00 | | 5.1 | sion parameters (i) μ , and (ii) θ | 89 | | 3.5 | Surface plot of expected cost function (TC) wrt μ , and θ | 89 | | 3.6 | Various generations of bat algorithm (BA) | 90 | | 4.1 | Transtion-state diagram | 102 | | 4.2 | Expected number of customer in the service system (L_S) wrt λ for (i) | 100 | | 4.2 | K , (ii) S , (iii) p , (iv) ζ , (v) θ , and (vi) μ_{ν} | 108 | | 4.3 | Expected number of customer in the service system (L_S) wrt μ_b for | 100 | | 4 4 | (i) K , (ii) S , (iii) p , (iv) ζ , (v) θ , and (vi) μ_{ν} | 109 | | 4.4 | Throughput of the service system (τ_p) wrt λ for (i) K , (ii) S , (iii) p , | 110 | | 4.5 | (iv) ζ , (v) θ , and (vi) μ_{ν} | 110 | | 4.5 | Throughput of the service system (τ_p) wrt μ_b for (i) K , (ii) S , (iii) p , | 110 | | 4.6 | (iv) ζ , (v) θ , and (vi) μ_{ν} | 110 | | 4.6 | Expected total cost (TC) wrt λ for (i) K , (ii) S , (iii) p , (iv) ζ , (v) θ , | 111 | | 4.7 | and (vi) μ_{ν} | 111 | | 4.7 | Expected total cost (TC) wrt μ_b for (i) K , (ii) S , (iii) p , (iv) ζ , (v) θ , | 111 | | 10 | and (vi) μ_{ν} | 111 | | 4.8 | Convex expected total cost function (TC) wrt parameter (i) S , (ii) | 111 | | 4.0 | μ_b , and (iii) μ_v | 114 | | 4.9 | Surface plot for TC wrt μ_{ν} , and μ_{b} | 116 | | | Three dimension plot for TC wrt μ_{ν} , and μ_{b} | 116 | | 4.11 | Generations of the CS algorithm wrt the optimal pair (μ_{ν}, μ_b) | 117 | | 5.1 | State transition diagram | 130 | | 5.2 | Expected number of customer in the service system (L_S) wrt λ for (i) | | | | K , (ii) F , (iii) ξ , (iv) η , (v) γ , and (vi) θ | 140 | | 5.3 | Expected number of customer in the service system (L_S) wrt μ_b for | | | | (i) K , (ii) F , (iii) ξ , (iv) η , (v) γ , and (vi) θ | 140 | | 5.4 | Throughput of the service system (τ_p) wrt λ for (i) K , (ii) F , (iii) ξ , | | | | (iv) η , (v) γ , and (vi) θ | 141 | | 5.5 | Throughput of the service system (τ_p) wrt μ_b for (i) K , (ii) F , (iii) ξ , | | | | (iv) η , (v) γ , and (vi) θ | 141 | | 5.6 | Expected total cost of the service system (TC) wrt λ for (i) K , (ii) F , | | | | (iii) ξ , (iv) η , (v) γ , and (vi) θ | 142 | | 5.7 | Expected total cost of the service system (TC) wrt μ_b for (i) K , (ii) | | | | F , (iii) ξ , (iv) η , (v) γ , and (vi) θ | 142 | LIST OF FIGURES xxi | 5.8 | Sensitivity analysis of expected cost function (TC) wrt to (i) λ , (ii) | | |------|--|-----| | | μ_b , (iii) μ_v , (iv) θ , (v) γ , (vi) η , and (vii) ξ for different values of F . | 145 | | 5.9 | Convexity of expected total cost function (TC) wrt parameters (i) F , | | | | (ii) μ_b , and (iii) μ_v | 146 | | 5.10 | Surface plot of expected total cost function for joint values of μ_{ν} , and | | | | μ_b | 146 | | 5.11 | Various generations of PSO algorithm over contour plot of the objec- | | | | tive function. | 147 | | 6.1 | State Transition diagram | 156 | | 6.2 | Queue size distribution $P_n(t)$ wrt t for different $n \dots \dots \dots$ | 160 | | 6.3 | Queue size distribution $P_n(t)$ wrt t for different n | 161 | | 6.4 | Probability that there is no customer $P_0(t)$ wrt t for different parameters | 162 | | 6.5 | Probability that there is no customer $P_0(t)$ wrt parameters for differ- | | | | ent ξ | 163 | | 7.1 | State transition diagram of the basic machine repair problem | 168 | | 7.2 | Effect of failure rate λ on reliability and $MTTF$ of the system re- | | | | spectively for MRP | 170 | | 7.3 | Effect of repair rate μ on reliability and $MTTF$ of the system respec- | | | | tively for MRP | 170 | | 7.4 | State transition diagram of the machine repair model with N -policy. | 171 | | 7.5 | Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i) | | | | MRP, and (ii) <i>N</i> -policy | 174 | | 7.6 | Effect of repair rate μ on reliability and $MTTF$ respectively wrt (i) | | | | MRP, and (ii) <i>N</i> -policy | 174 | | 7.7 | State transition diagram of the machine repair model with Bernoulli | | | | vacation policy | 175 | | 7.8 | Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i) | | | | MRP, (ii) <i>N</i> -policy, and (iii) BV | 177 | | 7.9 | Effect of repair rate μ on reliability and $MTTF$ respectively wrt (i) | | | | MRP, (ii) <i>N</i> -policy, and (iii) BV | 177 | | 7.10 | State transition diagram of the machine repair model with multiple | | | | vacation policy | 178 | | 7.11 | Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i) | | | | MRP, (ii) N-policy, (iii) BV, and (iv) MV | 180 | | 7.12 | Effect of repair rate μ on reliability and $MTTF$ respectively wrt (i) | | | | MRP, (ii) N-policy, (iii) BV, and (iv) MV | 181 | xxii LIST OF FIGURES | 1.13 | State transition diagram of the machine repair model with single va- | | |------|---|-----| | | cation policy | 181 | | 7.14 | Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i) | | | | MRP, (ii) N-policy, (iii) BV, (iv) MV, and (v) SV | 184 | | 7.15 | Effect of repair rate μ on reliability and $MTTF$ respectively wrt (i) | | | | MRP, (ii) N-policy, (iii) BV, (iv) MV, and (v) SV | 184 | | 7.16 | State transition diagram of the machine repair model with multiple | | | | working vacation policy | 185 | | 7.17 | Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i) | | | | MRP, (ii) N-policy, (iii) BV, (iv) MV, (v) SV, and (vi) MWV | 187 | | 7.18 | Effect of repair rate μ_b on reliability and $MTTF$ respectively wrt (i) | | | | MRP, (ii) N-policy, (iii) BV, (iv) MV, (v) SV, and (vi) MWV | 188 | | 7.19 | State transition diagram of the machine repair model with single | | | | working vacation policy | 189 | | 7.20 | Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i) | | | | MRP, (ii) N-policy, (iii) BV, (iv) MV, (v) SV, (vi) MWV, and (vii) SWV. | 191 | | 7.21 | Effect of repair rate μ_b on reliability and $MTTF$ respectively wrt (i) | | | | MRP, (ii) N-policy, (iii) BV, (iv) MV, (v) SV, (vi) MWV, and (vii) SWV. | 192 | | 7.22 | State transition diagram of the machine repair model with vacation | | | | | 192 | | 7.23 | Effect of failure rate λ on reliability and $MTTF$ respectively wrt (i) | | | | MRP, (ii) N-policy, (iii) BV, (iv) MV, (v) SV, (vi) MWV, (vii) SWV, | | | | | 196 | | 7.24 | Effect of repair rate μ_b on reliability and $MTTF$ respectively wrt (i) | | | | MRP, (ii) N-policy, (iii) BV, (iv) MV, (v) SV, (vi) MWV, (vii) SWV, | | | | | 196 | | | | | | 8.1 | | 202 | | 8.2 | State-transition diagram of the machine repair model with working | | | | • | 205 | | 8.3 | State transition diagram of the machine repair model with working | | | | vacation interruption and unreliable service | 209 | | 8.4 | Variation of reliability of the machining system wrt failure rate of | | | | operating units λ for (i) Model 1, (ii) Model 2, and (iii) Model 3 | 215 | | 8.5 | Variation of reliability of the machining system wrt failure rate of | | | | standby units v for (i) Model 1, (ii) Model 2, and (iii) Model 3 | 216 | | 8.6 | Variation of reliability of the machining system wrt repair rate μ_b for | | | | (i) Model 1, (ii) Model 2, and (iii) Model 3 | 216 | LIST OF FIGURES xxiii | 8.7 | Variation of reliability of the machining system wrt repair rate μ_{ν} for | | |------|---|-----| | | (i) Model 2, (ii) Model 3 | 216 | | 8.8 | Variation of reliability of the machining system wrt vacation rate θ . | | | | for (i) Model 2, (ii) Model 3 | 217 | | 8.9 | Variation of reliability of the machining system wrt (i) rate of suc- | | | | cessful service β_1 , (ii) rate of unsuccessful service β_2 for Model 3 | 217 | | 8.10 | Effect of different system parameters on mean time-to-failure of the | | | | machining system in Model 1, 2, & 3 | 218 | | 8.11 | Effect of different system parameters on mean time-to-failure of the | | | | machining system in Model 2 & 3 | 218 | | 8.12 | Effect of different system parameters on mean time-to-failure of the | | | | machining system in Model 3 | 218 | | 8.13 | Surface plot of the expected total cost of the machining system wrt | | | | pair of system design parametrs | 219 | | 8.14 | Several generations of the PSO algorithm in order to find the optimal | | | | pair (μ_{ν}, μ_b) | 220 | ## **List of Tables** | 69 | Numerical simulation of various system characteristics wrt K , λ , μ , and θ | 2.1 | |-----|---|-----| | 70 | | 2.2 | | 75 | Optimal expected total cost for R^* , μ^* , and μ_1^* | 2.3 | | 76 | Optimal expected total cost for μ^* , μ_1^* , and θ^* | 2.4 | | 91 | Optimal values of (μ^*, θ^*) with minimal expected cost TC^* using bat algorithm | 3.1 | | | Optimal values of (μ^*, θ^*) with minimal expected cost TC^* using | 3.2 | | 93 | PSO algorithm. | | | 94 | Optimal values of (μ^*, θ^*) with minimal expected cost TC^* using quasi-Newton method | 3.3 | | 112 | Numerical simulation of various system performance measures on varying K , λ , μ_b , and θ | 4.1 | | | • 1 | 4.2 | | 113 | varying S , μ_{ν} , ζ , and p | 4.0 | | 115 | | 4.3 | | 115 | cost using CS algorithm | 4.4 | | 119 | cost using PSO algorithm | | | | | 4.5 | | 120 | for different S | | | | • | 4.6 | | 100 | $K = 15, \ \lambda = 3.8, \ \theta = 2.5, \ \zeta = 1.0, \ \& \ p = 0.5$ and initial value | | | 120 | $(S, \mu_{\nu}, \mu_{b}) = (4, 4.0, 8.0)$ | 4.7 | | | | 4.7 | | 101 | cost TC^* for several combinations of $(\lambda, \theta, \zeta, p)$ via Quasi-Newton | | | 121 | method | | xxvi LIST OF TABLES | 4.8 | Optimal values of $(S^*, \mu_{\nu}^*, \mu_b^*)$ with corresponding minimum expected cost TC^* for several combinations of $(\lambda, \theta, \zeta, p)$ via Quasi-Newton | | |-----|--|-----| | | method | 121 | | 5.1 | Service system characteristics wrt K , λ , μ_b , and ξ | 143 | | 5.2 | Service system characteristics wrt F , η , γ , μ_{ν} , and θ | 144 | | 5.3 | Optimal expected total cost for F^* , K^* , μ_v^* , and μ_b^* | 148 | | 6.1 | Expected number of customers in the service system wrt λ | 163 | | 6.2 | Expected number of customers in the service system wrt μ | 163 | | 6.3 | Expected number of customers in the service system wrt ξ | 163 | | 8.1 | Optimal values of (μ_v^*, μ_b^*) along with minimum cost of the machin- | | | | ing system TC^* using PSO algorithm for system thresholds | 223 | | 8.2 | Optimal values of (μ_{ν}^*, μ_b^*) along with minimum cost of the machin- | | | | ing system TC^* using PSO algorithm for system rates | 224 | | 8.3 | Optimal values of (μ_{ν}^*, μ_b^*) along with minimum cost of the machin- | | | | ing system TC^* using PSO algorithm for system incurred costs | 225 | ## **Abbreviations** PDF: Probability density function JIT: Just-in-time GoS: Grade-of-service OR: Operations research IT: Information technology PSO: Particle swarm optimization CS: Cuckoo search BA: Bat algorithm QN: Quasi-Newton DS: Direct search GA: Genetic algorithm DE: Differential evolution FA: Firefly algorithm CTMC: Continuous-time Markov chain FCFS: First come first served QBD: Quasi-birth and death MTTF: Mean-time-to-failure SOR: Successive over relaxation MRP: Machine repair problem BV: Bernoulli vacation SV: Single vacation MV: Multiple vacation WV: Working vacation MWV: Multiple working vacation SWV: Single working vacation VI: Vacation interruption