
Chapter 3

Service System with Emergency Vacation

3.1 Introduction

In the past few years, the study of different types of vacation policies opts by the
service provider has put a very exclusive impact on the queueing and service sys-
tems. This correlation has also been due to its widespread applications in optimizing
expected total cost, manpower, etc. in many practical areas, especially in computer
systems, communications systems, flexible manufacturing systems, and supply chain
systems, etc. Doshi [63] first surveyed the queueing models with vacation and sum-
marized some general decomposition results with their respective methods. Jain and
Agrawal [112] analyzed an Erlangian service M/EK/1 queueing model with the con-
cept of working vacation and determined a steady-state distribution of the number of
customers in the system by implementing the generating function approach. Jain and
Upadhyay [114] studied the concept of modified Bernoulli vacation schedule with N-
policy and unreliable server and obtained queue-size distribution at random and de-
parture points. Using a matrix geometric approach, [107] computed the steady-state
queue-size distribution of the various queueing models incorporating several types
of disruptions with the service provider’s working vacation. In addition, [237] stud-
ied the steady-state behavior of the system by employing the supplementary variable
technique and developed various system quality indices for the bulk arrivals which
follow the Poisson process with varying arrival rates. Jain et al. [113] used the con-
cept of two heterogeneous service providers in machining systems in which the first
service provider provides the service according to N-policy whereas the other one
has an independence to go for a vacation of the random period. They obtained the
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transient-state-probabilities of the governing model by employing the Runge-Kutta
method of fourth-order. To examine customers’ equilibrium state and to study so-
cially optimal joining balking strategies in a Markovian environment with multiple
working vacations, [242] considered three precision levels of the system or delay
information, namely, observable queue, the partially observable queue, and the un-
observable queue, respectively. Liou [180] modeled a machine repair problem with
multiple vacations and the working breakdown and implemented particle swarm op-
timization (PSO) to find the maximum profit of the developed optimization problem.

Recently, [140] used the queueing-theoretic approach for optimal allocation of
manpower in the assembly line of manufacturing systems. Jain et al. [118] charac-
terized the concept of F-policy together with a working vacation for the machining
system and achieved the steady-state probabilities using the matrix method. Liu and
Wang [182] examined strategic joining behavior of customers for a single-server
Markovian queueing model with Bernoulli vacation and investigated Nash equilib-
rium strategies for fully observable and unobservable cases. Do et al. [62] extended
[182] result for equilibrium behavior of customers with working vacations and a
constant retrial rate and also explored social optimizing and Nash equilibrium strate-
gies for joining the system using the closed-form representation of stationary prob-
abilities. To ascertain the sensitivity of system performance indices, [108] demon-
strated the numerical simulation with different system parameters and determined
the optimum service rate and the threshold value (F) via conceptualizing the quasi-
Newton method and direct-search method. Lately, [137] envisaged a single-channel
finite-buffer queueing model with a general independent stream of customers, ex-
ponential processing time, and a working vacation policy and suggested the idea
of an embedded Markov-chain and Volterra-type integral equations for computing
the time-dependent queue-size-distribution. Recently, the vacation queueing models
with classical optimization technique “quasi-Newton method” have been studied by
many researchers (cf. [301], [131], [290], [126]).

Nowadays, the evolutionary algorithms, nature-inspired metaheuristic methods
are extensively used in different scientific, computational, and engineering problems
as they elucidate complex problems in an effective manner. The traditional linear
and nonlinear optimization techniques cannot be formalized in such problems. Most
of the heuristic and metaheuristic algorithms have been imitative from the behavior
of physical and biological systems in nature and used Darwins̀ theory of survival
of fittest. For example, based on the swarm behavior of bird and fish, the parti-
cle swarm optimization (PSO) was developed (cf. [67]), while bees algorithm was
developed by the inspiration from social behavior of bees (cf. [208]). New algo-
rithms are also developed recently, including cuckoo search (cf. [36]) and the firefly
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algorithm (cf. [307]) which were developed based on the brood reproductive strat-
egy of cuckoo birds and flashing behavior of fireflies, respectively. Over the last
decade, these algorithms have been successfully applied to solving different types of
decision-making problems such as queueing problems, inventory problems, schedul-
ing problems, combinatorial & numerical optimization, et cetera (cf. [322], [139],
[211], [270], [15], [147]).

In this chapter, we employ the recently developed bat algorithm to achieve the
optimal expected total cost with optimal values of decision parameters, which was
first introduced by [308] and compare with results obtained through well-known
metaheuristic techniques particle swarm optimization (PSO) and heuristic techniques
quasi-Newton method. The bat algorithm is inspired by the echolocation behavior of
microbats. The ability of the echolocation of microbats is much captivating as these
bats can find their victim and differentiate between multiple types of insects even in
complete darkness. Experimentally and computationally, it is more effective and ef-
ficient as compared to existing methods (cf. [308], [314], [98]). Due to its efficiency,
bat algorithm is applicable in the diverse field of real-life optimization problems (cf.

[195], [101], [275], [4]).
From the literature survey, it is clear that extensive studies have been done on

the problem of service systems with several vacation policies due to their benefits in
the service system. But, a research gap has been observed from the literature survey
that no study has been done for the realistic feature, the emergency vacation of the
service provider, and its damnation and condemnation so far. Inspired by this fact,
we have presented this chapter in the general framework, including the concept of
a single server’s emergency vacation. Motivated by the results of the bat algorithm,
we employ this nature-inspired algorithm to optimize the studied model with respect
to the governing expected cost. To prove its excellence, a comparison with PSO and
the quasi-Newton method has also been made. The main contribution is to develop
the algorithm and MATLAB code for comparing the results of bat algorithm (BA),
particle swarm optimization (PSO), and quasi-Newton method in terms of computa-
tion time, optimal cost, etc. and to suggest optimal design parameters of the studied
service system. Also, numerical simulation has been presented to illustrate the effect
of various service system parameters on performance indices.

The rest of the chapter is organized in the following manner. In section 3.2, we
present assumptions and notations for the mathematical modeling of the studied ser-
vice model and provide governing steady-state Chapman-Kolmogorov differential-
difference equations. In section 3.3, we provide the matrix analytic solution tech-
nique to determine the steady-state probabilities vector. With obtained queue-size
distribution, various service system performance measures are furnished in section
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3.4. In section 3.5, the expected cost function is developed to achieve the optimal
values of different decision parameters along with the optimal cost. We use the bat
algorithm (BA) to achieve the optimal operating condition with the optimal expected
cost of the service system in subsection 3.6.1. The particle swarm optimization al-
gorithm and the quasi-Newton method are compared with the bat algorithm in es-
tablishing the excellence of the proposed technique in subsections 3.6.2 and 3.6.3,
respectively. Some numerical simulations are executed to validate our modeling in
the next section 3.7. Lastly, in section 3.8, conclusion and future perspectives are
provided for highlighting the importance of the present study.

3.2 Model Description

In this section, we develop a finite capacity service model based on the emergency
vacation policy of a single service provider. The service provider takes the vacation
in an emergent critical situation without completing the ongoing service of the wait-
ing customer during the working state in the service system. Apart from that, for
modeling purpose, we assume following notations and assumptions
• The customers arrive in the service system according to an independent Pois-

son process with a mean arrival rate λ . If the service provider is idle, the
arrived customer gets service immediately; otherwise, he joins the waiting line
in the finite capacity of size K. On the exhaust of waiting space of the service
system, the arrived customer is lost, customer.
• The service times of the single service provider are identically and indepen-

dently exponentially distributed with the mean rate µ . The service provider
follows First Come First Serve (FCFS) service discipline for choosing the cus-
tomer from the waiting line.
• In the working state, the service provider may take an emergency vacation

in any predicament situation without completing the ongoing service of the
waiting customer. The occurrence of the emergent situation follows a Poisson
process with a mean rate δ .
• The vacation times of the service provider are also identically and indepen-

dently distributed and follow an exponential distribution with the meantime
1/θ .
• All processes and events are repeated all over again and independent of each

other.
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For the modeling purpose, the states of governing service model at time instant t

are defined as

J(t) =

{
0, Server is on vacation at time instant t

1, Server is busy at time instant t

N(t) = Number of customers in the service system at time t

Then, {J(t),N(t); t ≥ 0} represents the continuous-time Markov chain (CTMC) in
the state space Θ≡{( j,n); j = 0,1 and n = 0,1, . . . ,K}. Hence, the state-probabilities
at time t is outlined as

P0,n(t) = Prob{J(t) = 0,N(t) = n;n = 0,1,2, ...,K}
P1,n(t) = Prob{J(t) = 1,N(t) = n;n = 0,1,2, ...,K}

For the steady-state analysis, in equilibrium condition (t → ∞), we have the steady-
state probabilities as follows

P0,n = lim
t→∞

P0,n(t); n = 0,1,2, . . . ,K and P1,n = lim
t→∞

P1,n(t); n = 0,1,2, . . . ,K

where

P0,n ≡ Probability that there are n customers in the service system and the server is on vacation.

P1,n ≡ Probability that there are n customers in the service system and the server is busy.

Now, by using the appropriate axioms of the birth and death process, the governing
Chapman-Kolmogorov differential-difference equations are formulated to evaluate
the steady-state probabilities associated with various conditions of the service sys-
tem.

− (λ +θ)P0,0 +δP1,0 = 0 (3.1)

− (λ +θ)P0,n +λP0,n−1 +δP1,n = 0; 1≤ n≤ K−1 (3.2)

−θP0,K +λP0,K−1 +δP1,K = 0 (3.3)

− (λ +δ )P1,0 +θP0,0 +µP1,1 = 0 (3.4)

− (λ +δ +µ)P1,n +λP1,n−1 +θP0,n +µP1,n+1 = 0; 1≤ n≤ K−1 (3.5)

− (δ +µ)P1,K +λP1,K−1 +θP0,K = 0 (3.6)
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3.3 Matrix Analytic Solutions

It is extremely difficult to determine the closed-form expressions for the steady-state
probabilities P0,n and P1,n, n = 0,1,2, . . . ,K from the system of equations (3.1)-(3.6)
due to multi-variable, multi-equation and multi-parameter stochastic problem. The
matrix-analytic technique was introduced by [200] is widely used to deal with such
type of queueing problems numerically. We execute the matrix-analytic technique to
obtain the probability vectors Π j =

[
P0, j,P1, j

]
; j = 0,1,2, . . . ,K and to improve the

computation efficiency.
Now, to solve the flow balance Chapman-Kolmogorov equations for the station-

ary distribution, we build up the block tri-diagonal transition rate matrix Q in the
following form

Q =



A0 B 0 · · · 0 0 0
C A1 B · · · 0 0 0
0 C A1 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · A1 B 0
0 0 0 · · · C A1 B
0 0 0 · · · 0 C A2


where A0, A1, A2, B, and C are the square matrices of order 2. Matrices A0, A1,
and A2 are the generator matrices of the environmental process whereas B, C are the
diagonal matrices having elements λ and µ , respectively due to the characteristic of
Markov process. Each block element of the rate matrix Q is listed as follows

A0 =

[
−(λ +θ) θ

δ −(λ +δ )

]
, A1 =

[
−(λ +θ) θ

δ −(λ +δ +µ)

]

A2 =

[
−θ θ

δ −(λ +δ )

]
, B =

[
λ 0
0 λ

]

and

C =

[
0 0
0 µ

]

Let Π represents the steady-state probability vector associated with the rate matrix
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Q which is partitioned as Π = [Π0,Π1,Π2, . . . ,ΠK], where each sub-vector Π j =[
P0, j,P1, j

]
is of dimension (1×2). Now, by solving the matrix form of the homoge-

neous system of linear equations ΠQ = 0 and normalization condition Πe = 1 where
e is the column vector having all its elements 1, we find the steady-state probability
equations in vector form as

Π0A0 +Π1C = 0 (3.7)

Π j−1B+Π jA1 +Π j+1C = 0; j = 1,2, . . . ,K−1 (3.8)

ΠK−1B+ΠKA2 = 0 (3.9)

Now, after recursively substitution, we get

Π0 = Π1C
(
−A−1

0
)
= Π1X0 (3.10)

Π j = Π j+1

{
−C

(
X j−1B+A1

)−1
}
= Π j+1X j; j =,1,2, . . . ,K−1 (3.11)

Again, we can express the steady-state probability vector Π j in the product form of
X j; j = 0,1,2, . . . ,K−1 as

Π j = ΠK
[
XK−1XK−2XK−3 · · ·X j+2X j+1X j

]
; j = 0,1,2, . . . ,K−1

Π j = ΠK

j

∏
n=K−1

X j = ΠKΦ j; j = 0,1,2, . . . ,K−1 (3.12)

Let u = [1, 1]T be a column vector of order 2 having all entries 1. The normalization
condition is re-expressed as

K

∑
j=0

Π ju = 1

Hence,

[Π0 +Π1 +Π2 + · · ·+ΠK−1 +ΠK]u = 1

[ΠKΦ0 +ΠKΦ1 +ΠKΦ2 + · · ·+ΠKΦK−1 +ΠK]u = 1

ΠK [Φ0 +Φ1 +Φ2 + · · ·+ΦK−1 + I]u = 1

So, finally we get the closed form expression of the normalization condition as

ΠK

[
K−1

∑
j=0

Φ j + I

]
u = 1 (3.13)

Therefore, from eqn(3.9), the numerical value of ΠK can be easily determined. Hence,
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the numerical value of all other steady-state probabilities is also obtained by substi-
tuting ΠK in eqn(3.12). From these steady-state probabilities, we develop some stan-
dard performance measures and cost function to validate our modeling and method-
ology.

3.4 System Performance Measures

To determine the characteristics of the service system and examine the performance,
we delineate various service system performance measures in terms of the steady-
state probabilities of various states of the service system obtained in the previous
section. Let u1 and u2 be column vectors of order 2 having element [1, 0]T and
[0, 1]T respectively. The closed-form expressions are as follows
• Expected number of customers in the service system

LS =
K

∑
j=0

jΠ ju (3.14)

• Expected number of customers in the queue

LQ =
K

∑
j=1

( j−1)Π ju (3.15)

• Probability that the service provider is on emergency vacation

PV =
K

∑
j=0

Π ju1 (3.16)

• Probability that the service provider is in busy state

PB =
K

∑
j=0

Π ju2 (3.17)

• Throughput of the service system

τP =
K

∑
j=1

µΠ ju2 (3.18)

• Expected waiting time of the customers in the service system

WS =
LS

λ
(3.19)
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3.5 Cost Function

The system designers and decision-makers are, in general, interested in determining
the optimal values of the decision parameters to reduce the expected total cost of the
service system. Therefore, we develop a cost function by considering various cost
elements incurred in various situations and two decision parameters (µ,θ), which are
continuous. Following cost elements associated with various activities are considered
and defined as follows

Ch ≡ Holding cost incurred for each customer present in the service system

Cb ≡ Cost incurred for the working server in a busy state

Cm ≡ Cost incurred to provide the service to each customer with rate µ

Ct ≡ Cost incurred by the service system when the service provider is on vacation

Cd ≡ Cost incurred when the server opts the emergency vacation

Using the above-defined cost elements, we develop the cost function as follows

TC(µ,θ) =ChLS +CbPB +Cmµ +Ctθ +Cdδ (3.20)

Cost minimization problem of the conceived model can be mathematically described
as an unconstrained problem as follows

TC(µ∗, θ
∗) = min

(µ,θ)
TC(µ, θ) (3.21)

3.6 Optimal Analysis

The most real-world service system’s optimization problem is highly nonlinear un-
der various complex constraints. Different cost elements are often conflicting, and
even for a single objective, sometimes, the optimal solution may not exist at all. The
existing classical optimization techniques are not suitable for such problems. We
need some efficient alternative algorithms for finding the near-optimal solution to
such a problem. The alternative algorithm must be gradient-free, or gradient can be
computed numerically to overcome the difficulty of computation of the gradient of
such a complex issue. Algorithms with stochastic mechanisms were often denoted
as heuristic techniques in the past. However, recent literature tends to refer to them
as metaheuristics. Likewise, all metaheuristic algorithms utilize a specific tradeoff
of randomization and neighborhood search. Quality solutions to severe optimization
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problems can be found in a reasonable amount of time; however, there is no assur-
ance that optimal solutions can be reached. In this chapter, we employ the latest
metaheuristic method bat algorithm for the optimal analysis, and results are com-
pared with the finding of the well-known metaheuristic method, particle swarm op-
timization (PSO), and semi-classical optimization technique quasi-Newton method
under the same governing design parameters of service system. For the economic
analysis purpose, the system design parameters µ , θ & the cost function TC are used
in place of x1, x2 and f respectively in the following subsections.

3.6.1 Bat Algorithm

For implementing the bat algorithm for the governing cost optimization problem,
refer the section 1.10.5.

3.6.2 Particle Swarm Optimization

For the brief study and assumptions of the PSO algorithm, refer the section 1.10.3.

3.6.3 Quasi-Newton Method

For implementing the semi-classical optimization technique, the quasi-Newton method,
and viewing its iterative steps, refer the section 1.10.1.

3.7 Numerical Results

In this section, we present the quantitative evaluation for the queue-based service
system depending on the service provider’s emergency vacation policy by examining
various system performance indices in the context of several decision parameters,
especially the vacation time, service rate, etc. By depicting numerical simulation re-
sults through multiple graphs and table, we validate our formulation and methodol-
ogy which is helpful for the decision-makers in the designing of the real-time service
system as an electrical grid system, evaluation, and operation of the system and in
improving the system performance, etc.

For the queueing analysis purpose, we fix the default values of several system
parameters as follows: K = 15, λ = 1.5, µ = 2.5, δ = 0.05, and θ = 2. Using the
MATLAB programming language and applying the matrix method, we obtain the
steady-state probabilities of various states of the service system.
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Figure 3.1: Expected number of customers in the service system (LS) wrt (i) λ , (ii) µ ,

(iii) δ , and (iv) θ for different values of K.

For the parametric analysis of the expected number of the customers in the service
system (LS), in Fig. 3.1, we vary the values of governing parameters namely the
arrival rate of customers in the service system (λ ), service provider’s service rate
(µ), the rate of occurrence of the emergent situation (δ ) and vacation meantime (1/θ )
respectively for different values of system capacity (K). For the incremental change
in the values of λ and δ , the value of the expected number of customers in the service
system (LS) is clearly increased. Similarly, as we increase the value of µ and θ , the
value of LS decreases, as intuitively expected.

Fig. 3.2 shows the effect of parameters λ , µ , δ , and θ along with the different values
of the capacity of the service system (K) on the throughput of the service system
(τP). In Fig. 3.2(ii) and 3.2(iv), we observe that as the value of parameters µ and
θ increases with the increased values of K, the value of the expected number of
served customers i.e. throughput of the service system (τP) increases. Similarly, the
throughput (τP) decreases on increasing the value of δ . It shows the impact of the
emergency vacation on the service system. From the present study, we suggest the
provision of a standby service facility in the service system for uninterrupted service
facility. In addition, for a fixed value of δ , the throughput of the service system
increases for an increasing value of K, which is quite obvious.

The variability in the expected total cost (TC) defined in the eqn(3.20) wrt vari-
ous system parameters (K, λ ), (µ, θ ), (δ , µ) and (δ , θ ) is demonstrated in Fig. 3.3.
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Figure 3.2: Throughput of the service system (τP) wrt (i) λ , (ii) µ , (iii) δ , and (iv) θ for
different values of K.

 

Figure 3.3: The total expected cost of the service system (TC) wrt system parameters (i)
(K,λ ), (ii) (δ ,µ), (iii) (µ,θ ), and (iv) (δ ,θ ).
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Figure 3.4: Convex nature of the total expected cost function (TC) wrt the decision pa-
rameters (i) µ , and (ii) θ .

 

Figure 3.5: Surface plot of expected cost function (TC) wrt µ , and θ .

For the Fig. 3.3, we take the default values of several system parameters similar to
Figs. 3.1–3.2 along with several unit cost elements associated with their respective
performance indices as Ch = 50, Cm = 40, Ct = 20, Cb = 80, and Cd = 10. It is easily
depicted that the expected total cost (TC) varies subsequently with the incremental
change in the parameters. It is noticed from Fig. 3.3(i) that the increasing values of
the expected total cost are obtained with the incremental changes in K and λ that is
quite obvious. The value of expected total cost (TC) decreases with the increasing
values of θ and µ as observed in Fig. 3.3(iii). It prompts that just increasing the
service facility always not renders the better service. For the optimal service as per
cost and throughput, optimal design parameter(s) have to be determined. It also de-
picts the convex curvature of TC which inspire us to determine the optimal value of
service system design parameter(s).

Fig. 3.4 prompts the convex nature of the expected total cost function (3.21) with
respect to decision parameter(s). In Fig. 3.4, the optimal values of µ∗ and θ ∗ for
the default value of system parameters and unit cost elements similar to Fig. 3.3 are
almost nearby 3.2 and 1.1 respectively. For employing the bat algorithm, in Fig. 3.5,
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                                       Generation 1                                     Generation 10 

 
                                      Generation 25                                                           Generation 50 

 
 

Figure 3.6: Various generations of bat algorithm (BA).

we portray the three-dimensional surface plot generated through the joint variation
of µ and θ for the following default values of service system parameters K = 15,
λ = 1.5, & δ = 0.3 and associated cost elements as in Fig. 3.3. It also prompts the
convex nature of TC wrt µ and θ . As per the restriction of service system resources,
the analyst can fix design parameters for the optimal service cost.

We set the lower and upper bounds of both decision parameters µ and θ as [2 6]
and [0 4] and the default parameters of bat algorithm as ρ = 0.01, ε ∈ [−1, 1], and
ϑ ∈ [0,∈ 1], respectively. In Fig. 3.6, we delineate some selected generations of
bat algorithm in the search space for illustrative purpose and determine the optimal
values of decision parameters besides optimal expected total cost. Because the bat al-
gorithm is an agent-based optimization technique, we easily observe that in an initial
generation (generation 1) all the search agents randomly scattered in the whole space
and come closer and closer by exploring the untouched region as in generations 10,
25 and 50. This implies the robustness of bat algorithm for all such experiments and
shows the capability of bat algorithm to converge to the optimum within a reasonable
time. With the aid of bat algorithm, we obtain the coordinates of the best position of
the best agent as [µ∗,θ ∗] = [3.531007,1.815887] along with the corresponding opti-
mal value of the fitness function i.e. minimal expected total cost TC∗ = 275.026994.

For the depth analysis, we experiment for varied values and results are tabulated
in Table 3.1. We describe all numerical experiments for bat algorithm by taking
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50 search agents, 50 generations and 20 runs for each experiment independent to the
others. For confirming the bat algorithm’ robust nature, we also present the statistical
parameters namely mean and maximum of the ratio of optimal TC in all runs and
optimal TC in each. From Table 3.1, we observe that the mean and maximum values
of
[ TC

TC∗
]

varies from 1.0000000002 to 1.0000756804. This shows that the searching
quality of bat algorithm is very well for all test instances.

Next, a comparative analysis between the bat algorithm, PSO algorithm, and the
quasi-Newton method is performed with the varied values of system parameters in
Tables 3.1–3.3 for the validity of the proposed algorithm with respect to well-known
algorithms. The default parameters of PSO algorithm are taken as κ1 = 2, κ2 = 2,
and ω2 = 0.5, respectively. Computation time and optimal result are key factors for
comparision of the effieciency and utility of the algorithm. It is clearly observed that
the approximate optimal solutions for decision parameters and the corresponding
minimal expected cost obtained by the bat algorithm, PSO algorithm, and quasi-
Newton method are very close to each other. The CPU time (in seconds) for BA
algorithm is lesser than the PSO algorithm and corresponding minimal expected cost
obtained by bat algorithm converges significantly in more effective manner for all test
instances as well. This shows that the efficiency of bat algorithm is higher than the
PSO algorithm because the PSO algorithm has numerous calculations/computations
in updating the candidate solution. The results of bat algorithm is also better than
semi-classical quasi-Newton method for each experiment. Newton method requires
the computation of gradient or direction of optimality which we obtain numerically
due to complex nature of the problem. It involves the high grade of approximation
which lowers its efficiency.

From the above experiments and discussions, we ascertain that our proposed bat
algorithm is superior to PSO and quasi-Newton, which we, in general, employ a lot
for optimization problems having high-grade of non-linearity. It is also observed
that the optimal design parameter setup is vital to minimize the expected total cost
incurred in providing the service to the customers.

3.8 Conclusion and Future Prospective

The novelty of the present study is to introduce the new vacation policy, emergency
vacation, and to observe its effects on performance through the queue-theoretic ap-
proach. In this chapter, we examine the impact of the emergency vacation of the
service provider in a finite capacity service system. To obtain steady-state prob-
abilities, we delineate the Chapman-Kolmogorov differential-difference system of
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equations and employ the matrix-analytic method. We deduce various system per-
formance indices and also develop the expected total cost function of the service
system. The numerical simulation of several system performance measures has also
been done to study the effects of different system parameters. In the end, various
numerical illustrations have provided to illustrate and achieve optimal solutions. We
create the unconstrained cost optimization problem and find the optimal values of
decision parameters (µ, θ ) using a bat algorithm, which is metaheuristic in nature.
The comparison between bat algorithm, PSO algorithm, and quasi-Newton method
has also been undertaken to achieve the optimal operating condition with minimal
expected cost. We ascertain that the proposed bat algorithm is more efficient for the
optimal analysis of optimization problem involved in such a real-time problem as
compared to some well-known algorithms.

Moreover, the analysis of the expected total cost of the service system exhibits the
validity and profitability of the developed model very effectively, which will be help-
ful in reducing the cost of maintenance by system designers and decision-makers,
which is the highly desirable feature of any organization. This work can be further
extended by incorporating some hypotheses like the bulk arrival and machining sys-
tem etc.




