
 1

Design Language for Aspect Oriented Software
Development & Design Pattern Extensions

THESIS

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

DEEPAK DAHIYA

Under the Supervision of

Prof. R.K. Sachdeva

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA
2007

 2

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

CERTIFICATE

This is to certify that the thesis entitled Design Language for Aspect Oriented

Software Development and Design Pattern Extensions which is submitted for

award of Ph.D Degree of the Institute, embodies original work done by him under

my supervision.

 Signature in full of Supervisor: _____________________________

 Name in Capital block letters: _____________________________

 Designation: ___

Date:

 3

ACKNOWLEDGEMENTS

Although my name is the sole name on the front page, this thesis has only become a

reality due to the countless contributions of many people whom I want to thank here:

I would like to express my sincere thanks to my supervisor Professor R.K. Sachdeva for

his professional guidance and great support throughout all my studies and interactions

with him at Indian Institute of Public Administration (IIPA), Delhi. He has taught me much

about academia and beyond – for which I am very thankful.

I would like to thank the colleagues at BITS Pilani for their prompt reply to my series of

queries during this period regarding work deliverables. The whole system at conducting

this Ph.D programme for experienced professionals from academia and industry is just

the best.

I am also very grateful to my colleagues of Institute for Integrated Learning in

Management (IILM) at Delhi for all their inspiration and assistance.

Special thanks also go to Professor Radhakrishna Pillai at Indian Institute of

Management (IIM) kozhikhode where I lecture as visiting faculty during summer. During

surrounding discussions various comments flowed on the thesis topic and related work.

Finally, thanks be to God who has been a great source of strength and motivation

throughout my life.

I want to dedicate this thesis to my parents who have given me the chance of a good

education and so much love and support over the years.

My spouse Sudha and daughter Mahima were especially accommodating in the times of

separation that preceded this thesis work and at other times in our career after marriage.

I probably owe them much more than they think.

 4

ABSTRACT

Recently there has been growing interest in propagating the aspect paradigm to the

activities in the earlier phases of the software development lifecycle. There is a need to

study various approaches in the use of object-oriented design patterns and aspect

oriented design approach in enterprise systems for architecture and its implementation.

Aspect Oriented Software Development (AOSD) is a step towards further enhancing the

popular object oriented software development framework by embedding the underlying

design elements without disturbing the base design. The development of aspect

oriented requirements gathering approach, design notation and environment for

development of enterprise systems needs to be further refined in the context of software

applications and industry. As part of the general research trend, this thesis focuses on

the design and development of a general purpose design language and the path to

future work is highlighted for aspect oriented software development.

This thesis starts off with a general introduction into the research area and a description

of the basic concepts and rationale behind aspect oriented software development and

aspect oriented programming (AOP). A critical examination of existing AOP language

features and aspect oriented design languages is provided. These observations together

with previous experiences of developing enterprise wide software applications based on

object oriented methodologies lead to a set of fundamental design elements in aspect

oriented software development. The core of the thesis presents the prototype for the

design language for aspect oriented software development based on the so called

‘aspect oriented software development design language’(AOSDDL). This aspect

oriented design language with its graphical notation helps developers to design and

comprehend aspect-oriented programs and would facilitate the perception of aspect-

orientation. This design notation will help developers to assess the crosscutting effects

of aspects on their base classes. Its application carries over the advantages of aspect-

orientation to the design level and facilitates adaption and reuse of existing design

constructs.

Extensive computer laboratory work on software applications using existing AOP

languages and AOSD design notations was carried out. Next, work on the issues

related to the mapping of AOP languages to existing legacy code / OO code and

design patterns was carried. In the next stage, work related to mapping of AOSD design

notations to existing AOP languages was taken forward. Finally, the success of the

design language and its prototype graphical notation is evaluated by means of a few

 5

concrete software applications. This shows that AOSDDL offers sufficient flexibility and

extensibility to augment software development in ways that suits today’s environment of

providing a platform for developing enterprise wide distributed applications, and the

prototype implementation confirms that the research platform offers acceptable design

elements (constructs) to map aspect oriented programming to aspect oriented software

development design language.

 6

ACKNOWLEDGEMENTS ... 3
ABSTRACT.. 4
LIST OF FIGURES.. 9
LIST OF ABBREVIATIONS / SYMBOLS... 10
CHAPTER 1 .. 11
Introduction .. 11

1.1 Overview .. 11
1.2 Evolution of Software Programming Methodology... 11
1.3 Aspect Oriented Programming And Design ... 13
1.4 Need for Aspect Oriented Design in Software Development?...................................... 15
1.5 Aspect Oriented Software Development Design Language .. 16
1.6 Who are the beneficiaries? .. 16
1.7 Research Challenges... 16
1.8 Thesis Structure ... 18

CHAPTER 2 .. 21
Aspect Oriented Programming... 21

2.1 Overview .. 21
2.2 Background .. 21
2.3 Why do we need AOP?.. 22
2.4 Evolution of programming methodologies.. 23
2.5 Managing system concerns ... 24
2.6 Identifying system concerns... 25
2.7 A one-dimensional solution .. 26
2.8 Modularizing... 27

2.8.1 Implementing crosscutting concerns in non modularized systems............... 30
2.8.2 Symptoms of nonmodularization .. 31
2.8.3 Implications of non modularization... 33

2.9 Aspect Oriented Programming (AOP) appears on the Scene ... 34
2.10 Background of AOP ... 35
2.11 The AOP methodology... 36
2.12 Anatomy of an AOP language.. 37
2.13 Benefits of AOP.. 37
2.14 Summary .. 39

CHAPTER 3 .. 41
Related Work... 41

3.1 Overview .. 41
3.2 UMLAUT: Weaving UML Designs.. 43

3.2.1 General Architecture and Core Engine ... 43
3.2.2 The Extendible Transformation Framework ... 44

3.3 Theme/UML.. 45
3.3.1 Design Approaches .. 48
3.3.2 Implementation Approaches ... 48
3.3.3 Lifecycle Impact .. 49

3.4 Approach To Aspect Oriented Programming And Design .. 50
3.5 Impact Of Requirements Engineering On AOSD.. 51
3.6 Aspect Oriented Requirements Engineering (AORE).. 52
3.7 Software Architecture View Of Aspects .. 53
3.8 Aspect Oriented Software Development Design Language ... 54
3.9 Summary .. 55

 7

CHAPTER 4 ... 56
Design Language Requirements .. 56

4.1 Overview .. 56
4.2 Requirements... 56
4.3 Evolving of Concerns in Early Requirements Phase ... 58
4.4 Separation of Concerns ... 58
4.5 Multiple Perspectives to Concern Requirements ... 59
4.6 Architectural Design Enforcement.. 62

4.6.1 Enforcing Architectural Regularities... 62
4.7 Avoiding Design Incompatibility ... 63
4.8 Requirements Validation .. 65
4.9 AOSDDL Requirements ... 66
4.10 Summary .. 67

CHAPTER 5 ... 68
The AOSDDL.. 68

5.1 Overview .. 68
5.2 Tools Environment ... 68
5.3 AOSDDL Notations .. 69

5.3.1 Symbols for AOSDDL Notations .. 70
5.4 Other Design Notations.. 74
5.5 Mapping AOP to Aspect Oriented UML Extensions... 74

5.5.1 Problem Identification... 75
5.5.2 Basic Notations for AspectJ .. 75
5.5.3 Weaving Mechanism of AspectJ .. 82
5.5.4 Weaving Advice .. 82
5.5.5 Weaving Introductions ... 84
5.5.6 Weaving Relationship .. 85

5.6 Identifying Software Concerns ... 86
5.6.1 Concern Modeling Schema Framework.. 87
5.6.2 Applications ... 87

5.7 Design Language Issues for Component Based software Development 88
5.8 Mapping UML extensions through composition patterns to Aspects 90

5.8.1 Mapping To AspectJ.. 91
5.9 AspectJ Extensions for Distributed Computing.. 91

5.9.1 Implications on Network Processing.. 92
5.10 Summary .. 93

CHAPTER 6 ... 95
Implementation and Evaluation ... 95

6.1 Overview .. 95
6.2 Processing and Test Environments ... 95
6.3 Mapping Learning Resource Center (LRC) Design to Aspects 95

6.3.1 Functional Decomposition ... 96
6.3.2 Design Diagrams for Learning Resources Center (LRC) 96
6.3.3 Aspects Modularization and Dependency Effects of Aspects 97
6.3.4 Designing Aspects.. 99
6.3.5 Crosscutting Requirements: Aspects .. 100
6.3.6 Designing LRCObserver Aspect .. 102

6.4 Testing.. 105
6.5 Defining Validation Parameters for Aspects .. 106
6.6 Detecting Aspect Faults ... 109
6.7 Evaluation... 109
6.8 Qualitative Evaluation: Mapping To AspectJ ... 109

 8

6.8.1 Synchronize in AspectJ ... 110
6.9 AspectJ Extensions for Distributed Computing.. 112

6.9.1 Implications on Network Processing.. 113
6.10 Summary .. 117

CHAPTER 7 ... 119
Conclusion.. 119

7.1 Overview .. 119
7.2 Thesis Summary .. 119
7.3 Concluding Remarks.. 121

CONTRIBUTIONS... 123
Natural Extension to UML ... 123
CASE Tool Support ... 123
Extension of Architectural framework for design constructs ... 123
Enforcing Architectural Regularities .. 124
Implementation Support .. 124
Software Development.. 124

FUTURE SCOPE OF WORK.. 125
Code Generators for Aspect modeling.. 125
Tools Integration.. 125
Notation deployment ... 126
Support for Hyper/J ... 126
Testing of Aspect Oriented Requirements .. 126
Summary ... 126

REFERENCES .. 127
BIBLIOGRAPHY ... 132
LIST OF PUBLICATIONS AND PRESENTATIONS................................... 133
APPENDICES .. 135

A. Installation and Configuration of Eclipse Platform... 135
A.1 Running Eclipse.. 135
A.2 Importing an existing AspectJ project... 136
A.3 Running AspectJ project in Eclipse .. 136

BRIEF BIOGRAPHY OF THE CANDIDATE.. 137
BRIEF BIOGRAPHY OF THE SUPERVISOR.. 138

 9

LIST OF FIGURES

Figure 2.1… Viewing a system as a composition of multiple concerns … Page 24

Figure 2.2… Concern decomposition ………………………………………… Page 25

Figure 2.3… Mapping the N-dimensional concern space ………… Page 25

Figure 2.4… Implementation of a logging concern …… Page 28

Figure 2.5… Implementation of a logging concern using AOP techniques Page 28

Figure 2.6… Code tangling ……………………. …………………………… Page 29

Figure 2.7… Code scattering caused by identical code blocks …….. Page 30

Figure 2.8… Code scattering caused by complementary code blocks … Page 31

Figure 2.9… AOP development stages ……………………………… …….…Page 34

Figure 5.1… Using Package and Connector ………………………………… Page 68

Figure 5.2… Connector Syntax …… …………………………………………. Page 72

Figure 5.3… Representing Join Points in Sequence Diagrams ………… Page 73

Figure 5.4… Mapping of Pointcuts to Operations ……………… ……… …Page 74

Figure 5.5… Mapping of Advice to an Operation …………………………… Page 75

Figure 5.6… Design of Introductions ……………………………………… Page 76

Figure 5.7… Weaving Advice with UML Use Cases …………………… Page 79

Figure 5.8… Specifying Weaving Order …………………………………… Page 79

Figure 5.9… Weaving Introductions with UML Use Cases ……………… Page 81

Figure 6.1… Learning Resource Center (LRC) Design …………… ………Page 93

Figure 6.2… Hierarchy Diagram for LRC ……………………………… … Page 94

Figure 6.3…AOSDDL’s Authentication functionality ……………………… Page 94

Figure 6.4… Effect of aspects with pointcut-advise on dependencies …… Page 95

Figure 6.5… Effect of aspects with introduction on dependencies …………Page 95

Figure 6.6… Design rules for Aspect Oriented Modularization …………… Page 96

Figure 6.7… LRC Synchronization for Aspect Design ………… ………… Page 97

Figure 6.8… Synchronization of Learning Resource Center (LRC)……… Page 98

Figure 6.9… Aspect Design for LRCObserver ……………………………… Page100

Figure 6.10…Design Aspect for LRCObserver …………………………… Page101

Figure 6.11…Design Aspect for Authentication (LRCLogger)…………… Page101

Figure 6.12…The State Model of Class Journal ……………..…………… Page107

Figure 6.13…The Overdue Aspect ………………………………………… Page108

Figure 6.14…The Testing Code in AspectJ ………………………………… Page107

 10

LIST OF ABBREVIATIONS / SYMBOLS

AO Aspect Oriented

AODM Aspect Oriented Design Model

AOP Aspect-oriented Programming

AOSDDL Aspect-Oriented Software Development Design Language

API Application Programming Interface

ASOC Advanced Separation of Concerns

UML Unified Modeling Language

CASE Computer Aided Software Engineering

CBSD Component Based Software Development

EJB Enterprise Java Beans

OO Object Oriented

OOD Object Oriented Design

OOP Object Oriented Programming

OOSD Object Oriented Software Development

QoS Quality of Service

RMI Remote Method Invocation

SOC Separation of Concerns

SOCMS Separation of Concern Modeling Schema

XML Extensible Markup Language

 11

CHAPTER 1

Introduction

1.1 Overview

This introduction sets the stage for the research carried out for this thesis. It

introduces the concept of “aspect oriented programming” and outlines the general

path of research that has been taken.

An analysis of the evolution of object oriented design methodology shows that the

original object or class architecture was not designed for the requirements of

today’s enterprise wide distributed environment. This chapter outlines how the

novel paradigm proposed by aspect oriented design language could advance the

current design architecture and overcome its main design flaws. A discussion of

the applications of aspect oriented programming and its advantages highlights the

potential beneficiaries of this new design methodology, namely third party tool

developers, software developers, software vendors and most importantly the end

users.

This chapter concludes with an overview of the main research challenges that are

targeted by this research effort, followed by an outline of the thesis structure.

1.2 Evolution of Software Programming Methodology

In the early days of computer science, developers wrote programs by means of

direct machine-level coding[1]. Unfortunately, programmers spent more time

thinking about a particular machine's instruction set than the problem at hand.

Slowly, we migrated to higher-level languages that allowed some abstraction of the

underlying machine. Then came structured languages, we could now decompose

our problems in terms of the procedures necessary to perform our tasks. However,

as complexity grew, we needed better techniques. Object-oriented programming

(OOP) let us view a system as a set of collaborating objects. Classes allow us to

hide implementation details beneath interfaces. Polymorphism provided a common

behavior and interface for related concepts, and allowed more specialized

components to change a particular behavior without needing access to the

implementation of base concepts.

 12

Programming methodologies and languages define the way we communicate with

machines. Each new methodology presents new ways to decompose problems:

machine code, machine-independent code, procedures, classes, and so on. Each

new methodology allowed a more natural mapping of system requirements to

programming constructs. Evolution of these programming methodologies let us

create systems with ever increasing complexity. The converse of this fact may be

equally true: we allowed the existence of ever more complex systems because

these techniques permitted us to deal with that complexity.

There is a well documented problem in the software engineering field relating to a

structural mismatch between the specification of requirements for software

systems and the specification of object-oriented software systems. The structural

mismatch happens because the units of interest during the requirements phase (for

example, feature, service, capability, function etc.) are different to the units of

interest during object-oriented design and implementation (for example, object,

class, method, etc.)[2]. The structural mismatch results in support for a single

requirement being scattered across the design units and a single design unit

supporting multiple requirements - this in turn results in reduced comprehensibility,

traceability and reuse of design models. Currently, OOP serves as the

methodology of choice for most new software development projects. Indeed, OOP

has shown its strength when it comes to modeling common behavior. However,

OOP does not adequately address behaviors that span over many -- often

unrelated -- modules. Separation of concerns is a basic engineering principle that

is also at the core of object-oriented analysis and design methods in the context of

UML [3]. Separation of concerns can provide many benefits: additive, rather than

invasive, change; improved comprehension and reduction of complexity;

adaptability, customizability, and reuse.

In contrast, AOP [4] methodology fills this void. AOP quite possibly represents the

next big step in the evolution of programming methodologies. However, for aspect-

oriented software development (AOSD) [5] to live up to being a software

engineering paradigm, there must be support for the separation of crosscutting

concerns across the development lifecycle including traceability from one lifecycle

phase to another. Concerns that have a crosscutting impact on software (such as

distribution, persistence, etc.) present well-documented difficulties for software

 13

development. Since these difficulties are present throughout the development

lifecycle, they must be addressed across its entirety.

Although a lot has been done to study the aspect oriented design approach in

enterprise systems for architecture and its implementation, work on a general-

purpose design language for aspect-oriented software development is attracting a

lot of attention. The development of aspect oriented requirements gathering

approach, design notation and environment for development of enterprise systems

needs to be further refined in the context of software applications and industry.

This discussion has shown a range of design methodologies related to object

oriented and aspect oriented software development that augment the current

software industry scene and practices. Ongoing efforts in this area suggest that

this trend of incorporating aspect elements inside any object oriented software

design is far from over.

The majority of these designs are implemented as individual ad-hoc extensions –

all with the goal of improving the software design to account for today’s

requirements such as logging, caching, persistence and distribution. However, the

fundamental problem, namely that the programming methodology provides no

architectural support for flexible extensibility, remains.

This thesis therefore investigates traceability between developing a standard and

general purpose AOSD design language with existing UML features and

extensions to map AOSD design notations to AOP language. The aim is to provide

a uniform design interface to add new extensions (for example, logging, caching,

security etc) with a view towards eventually developing a standard design

language for a broad range of AOSD approaches – independent of the

programming language in hand.

1.3 Aspect Oriented Programming And Design

A gap exists between requirements and design on one hand, and between design

and code on the other hand. Aspect oriented programming (AOP) extended to the

modeling level where aspects could be explicitly specified during the design

process will make it possible to weave these aspects into a final implementation

model. Another step could be extension of AOP to the entire software development

cycle. Each aspect of design and implementation should be declared during the

design phase so that there is a clear traceability from requirements through source

 14

code thus using UML as the design language to provide an aspect-oriented design

environment.

The separation and encapsulation of crosscutting concerns has been promoted as

a means of addressing these difficulties; the standard object-oriented paradigm

does not suffice. In order to overcome the difficulties for crosscutting concerns

throughout the lifecycle, an approach is required that provides a means to separate

and encapsulate both the design and the code of crosscutting behaviour. It is

important to work towards a general purpose AOSD design language that meets

certain goals including the following:

• Implementation language independent: The final form of AOP

language may vary from that of any current one. Thus, any design

language that simply mimics the constructs of a particular AOP

language is liable to fail to achieve implementation language

independence.

• Design-level composability: Design level composability is a

desirable property for two reasons. First designers may check the

result of composition prior to implementation, for validation

purposes. Second, some projects will continue to require the use

of a non-aspect-oriented implementation language because of

pragmatic constraints, such as the presence of legacy code

written in languages without aspect-oriented extensions; these

projects could still benefit from separating the design of

crosscutting concerns.

• Compatibility with existing design approaches: An AOSD design-

level language should also build existing design languages such

as UML, to provide a bridge from old techniques to new, so that

software engineering realities such as incremental adoption and

legacy support are possible.

The construction of complex, evolving software systems requires a high-level

design model. This model should be made explicit, particularly the part of it that

specifies the principles and guidelines that are to govern the structure of the

system. In reality, however, implementators tend to overlook the documented

design models and guidelines, causing the implemented system to diverge from its

model. Reasoning about a system whose models and implementation diverge is

 15

error prone – the knowledge we gain from these models is not of the system itself,

but of some fictious system, the system we intended to build. The system’s

comprehensibility is impeded, and so using software engineering techniques goes

against our intended goals – quality, maintainability and cost minimization. The

essence of the problem of implementing higher-level principles and guidelines lies

in their globality. These principles cannot be localized in a single module, they

must be observed everywhere in the system, which means that they crosscut the

system’s architecture.

1.4 Need for Aspect Oriented Design in Software Development?

The identification of the mapping and influence of a requirement level aspect

promotes traceability of broadly scoped requirements and constraints throughout

system development, maintenance and evolution. The improved modularization

and traceability obtained through early separation of crosscutting concerns can

play a central role in building systems resilient to unanticipated changes hence

meeting the adaptability needs of volatile domains such as banking,

telecommunications and e-commerce. These crosscutting concerns are

responsible for producing tangled representations that are difficult to understand

and maintain. Examples of such concerns at the requirements level are

compatibility, availability and security requirements that cannot be encapsulated

by a use case and are typically spread across several of them.

With increasing support for aspects at the design and implementation level, the

inclusion of aspects as fundamental modeling primitives at the requirements level

and identification of their mappings also helps to ensure homogeneity in an aspect

oriented software development project.

The main drive behind aspect oriented design language research is the idea of

developing design constructs (elements) that exhibit a degree of flexibility and

customizability that is only known from programmable end systems. While new

design language constructs based on aspect oriented programming are being

designed they are still tied to a particular platform whereby the vendor provides

both the software tool and the design language tool as a complete package with

additional proprietary tools. Thus, new design language aspect constructs can only

be tested or utilized to individual specific requirements after the vendor has

released a software upgrade. The development of new functionality is typically

 16

preceded by a long and awkward standardization process. These different

paradigms have created an increasing gap between the functions and capabilities

of these constructs in an aspect oriented development environment.

Reconsidering the system architecture of object oriented software applications is

therefore a crucial step in aspect oriented software development.

1.5 Aspect Oriented Software Development Design Language

AspectJ [6, 7, 8] is a popular and well established AOP language that provides

support for specifying and composing crosscutting code into a core system. It

supports the AOP paradigm by providing a special unit, called “aspect”, which

encapsulates crosscutting code. Other compositional implementation languages

and mechanisms also exist [9, 10]. At the design level, an AOSD design

language with extensions to UML [1, 11, 12, and 13] in its capabilities relating to

decomposition and modularization is required that would map to a particular

AOSD implementation. Further, a standard AOSD design language must be

capable of supporting many of these aspect programming languages. A graphical

notation helps developers to design and comprehend aspect-oriented programs.

Further, it would facilitate the perception of aspect-orientation. A design notation

helps developers to assess the crosscutting effects of aspects on their base

classes. Its application carries over the advantages of aspect-orientation to the

design level and facilitates adaption and reuse of existing design constructs.

1.6 Who are the beneficiaries?

The advantages of a flexible and extensible aspect oriented design language are

expected to benefit the software community at various levels.

1.7 Research Challenges

The main aim of this work is to investigate flexible and extensible mechanisms that

enable dynamic introduction of new functionality into an existing operational

design. This endeavor is pursued from the endpoint of the programmer and the

design team as both has a great interest in implementation and / or processing of

individual elements.

The key challenge of this thesis therefore is to design a novel design language

architecture that provides the basis for flexible extensibility of design functionality.

 17

In order to verify the practicality of this architecture, prototyping an application

according to the new design elements will be a major part of this undertaking.

The challenges of the architectural design language are as follows:

• Generic platform (not tied to a specific application)

The design goal is to develop a generic programmable design language

platform to support the diversity of today’s and future design specifications.

The idea is to replace the numerous ad hoc approaches to provide specific

design elements inside the language that allows users (such as

programmers or systems analyst) to extend the design capabilities in a

uniform way.

Unlike most existing design language architectures, which are tied to a

specific application domain, the goal here is to start with a requirement

analysis of a wide range of software applications and design specifications

in order to consider the multitude of requirements in the architectural

design.

• Modular component-based architecture

Another key objective is to design a design language architecture that is

truly component-based taking advantage of component features such as

modularity, extensibility, and reusability. The design elements can hence

be programmed into aspects or classes called components. These

components will typically provide a new specification or simply extend an

existing specification.

The component architecture allows complex technical and design

specifications to be split into simply and easy-to-develop functional

components. This ‘divide and conquer’ approach eases the design and

development of specifications. Moreover, it improves the granularity of

design specification extensibility and reusability of components among

specifications.

• Compatibility and transparency

The introduction of aspect oriented programming in current design

methodologies, such as object-oriented, depends largely on how easily it

can be integrated with existing technologies. It is therefore a major

objective to design the design language architecture in a way that enables

 18

seamless transitioning towards the aspect based programming paradigm.

Most early design proposals, for example, did not consider the crosscutting

concerns, a vital requirement, and hence, ended up with solutions that rely

on a design consisting only of objects and classes. Such software systems

are obviously very hard to introduce in a distributed environment where

security, caching and logging are major concerns. Consequently, an

important goal here is to design an aspect based architecture that allows

transparent, and hence seamless, application of design elements to the

software components. No change to the domain specific functional

components, systems and applications, or the intermediate modules that

are not directly involved should be required. Such transparent solutions

have the advantage that a partial transitioning from object oriented design

to aspect oriented design – where the common but the more important

concerns reside are most effective – is possible.

• Commercial feasibility

Another important factor for the success of aspect oriented design

language is its commercial viability. Many great technologies have failed in

the past simply due to a weak business model. As a result, this work

focuses on a solution that has evident beneficiaries and a likely commercial

perspective.

The challenge is to develop an active design language that enables third

party development of aspect based software applications. Breaking the tight

coupling between the design language and the software development

environments decouples the role of the systems analyst from the software

vendor and thus opens up a new competitive market for third party aspect

oriented design software. This is particularly promising as unhindered

competition typically maximizes the cost-performance ratio of products

and specifications.

1.8 Thesis Structure

This first chapter of the thesis has introduced the concepts of aspect oriented

programming and software development. It outlines how the new methodology has

emerged from traditional object oriented methodologies as a result of the growing

demands of today’s software practitioners and applications. Furthermore, it

 19

provides the motivation for this line of research along with the main research

challenges of this study. The remainder of this thesis is structured as follows.

Chapter two continues with an introduction of the general background and issues

of aspect oriented software development. It defines the basic methodology and

introduces the main concepts. These include different design language approaches

towards aspect oriented programming, various programming models and other

important issues such as crosscutting concerns and system security and integrity.

Chapter three provides a comprehensive overview of the current state-of-the art in

the field by introducing related work that is or has been under investigation at other

research institutions and universities. A special focus is placed on research into

aspect oriented software design methodologies and enabling technologies.

Chapter three concludes with an overview of current work on aspect oriented

applications and design language specifications.

Chapter four continues with a requirements analysis for aspect oriented systems.

The requirements are derived from past experiences in object oriented and aspect

oriented programming paradigms of working in the software industry and

academics in my previous work places and a thorough study of related work as

well as other influencing factors, for example commercial aspects such as the

deployment of new technologies. From these general requirements a subset of

requirements that form the basis for the design of the AOSDDL design language

architecture and implementation is drawn.

Chapter five presents the AOSDDL design language. This central part of the

thesis describes in detail how AOSDDL operates and how the component based

design architecture enables handling of crosscutting concerns through flexible

integration and extensibility of design functionality. In addition to the basic

language design, special focus is placed on the following key aspects:

components, distribution and weaving.

Chapter six then describes the ongoing implementation efforts of developing

prototype design constructs of the AOSDDL design language architecture. Due to

the considerable extent of the AOSDDL architecture, this chapter focuses primarily

on validating the key aspects of the design through a ‘proof-of-concept’

implementation.

It continues with a qualitative and quantitative evaluation of AOSDDL and its

prototype implementation. It evaluates how the AOSDDL architecture satisfies the

 20

objectives and requirements identified in chapter four based on a case study and

several example applications.

Finally, chapter seven concludes the thesis by drawing together the main

arguments of this work and summarizing the contributions that have been made. It

also describes future work that could be carried out based on this line of research.

 21

CHAPTER 2

Aspect Oriented Programming

2.1 Overview

This chapter provides a general background on the field of aspect oriented

programming. It looks back to the initial developments of this trend in the 1990’s

and shows how the field has evolved since.

The main focus however is to introduce the core concepts [14] and issues of

aspect oriented programming as a basis for further discussions throughout the

thesis. As such, this chapter defines the basic methodology for aspect oriented

programming and describes various approaches towards aspect oriented software

development. Although the idea of adopting the appropriate design methodology to

software development is not revolutionary (for example, object oriented approach

is also a design methodology), identifying common concerns in a software design

and separating this functionality requires architectural changes to the design and

implementation of current aspects. This chapter introduces several architectural

approaches to the design of aspect oriented systems and defines various

programming models for aspect oriented software development.

Furthermore, the fact that aspects allow software practitioners to program the

software places more responsibility and functionality concerns on such

architectures. This chapter examines solutions within the context of aspect oriented

software development.

2.2 Background

While object-oriented programming (OOP) is the most common methodology

employed today to manage core concerns, it is not sufficient for many crosscutting

concerns, especially in complex applications. A typical OOP implementation [15]

creates a coupling between the core and crosscutting concerns that is undesirable,

since the addition of new crosscutting features and even certain modifications to

the existing crosscutting functionality require modifying the relevant core modules.

AOP is a new methodology that provides separation of crosscutting concerns by

 22

introducing a new unit of modularization—an aspect—that crosscuts other

modules. AOP implements crosscutting concerns in aspects instead of fusing

them in the core modules. An aspect weaver, which is a compiler-like entity,

composes the final system by combining the core and crosscutting modules

through a process called weaving. The result is that AOP modularizes the

crosscutting concerns in a clear-cut fashion, yielding a system architecture that is

easier to design, implement, and maintain.

In this chapter, we examine the fundamentals of AOP, the problems it addresses.

Perhaps the most commonly asked question in today’s software engineering is,

how much design is too much? Good system architecture considers present and

potential future requirements. Failing to take into account the potential future

requirements of a crosscutting nature may eventually require changing many parts

of the system or perhaps even re-implementing them. On the other hand, including

low-probability requirements may lead to an over designed, hard-to-understand,

bloated system. There is a demand to create well-designed systems that can meet

future needs without compromising quality. Then again, inability to predict the

future and time-to-market pressure simply suggests going with what you need

today. Further, since requirements are going to change anyway, why bother

considering them? The question that pops up is: Is it under design / over design?

2.3 Why do we need AOP?

The usual approach is to build the system, profile it, and retrofit it with optimizations

to improve performance. This approach calls for potentially changing many parts of

the system using profiling. Further, over time, new bottlenecks may need to be

addressed due to changes in usage patterns. The architects of reusable libraries

have an even more difficult task because it is a lot harder to imagine all the usage

scenarios of a library. Today’s fast-changing technology makes it even more

difficult since technological changes may make certain design decisions useless.

Table 2.1 enumerates the forces on an architect that are at the root of the

architect’s dilemma.

When software projects turn out to be insufficient for future business requirements,

it is common to blame the problem on the design decisions. However, what is often

believed to be insufficient design effort or design shortcomings may be simply a

limitation of the design methodologies used and the language implementation. With

 23

current design and implementation techniques, there is a limit to what we can do to

produce a system that satisfies the current and potential future requirements in a

balanced way, and even that limit may not be acceptable when considering the

ever-increasing pressure on time-to-market and quality requirements of feature-rich

products.

The architect’s dilemma, then, is the perennial problem of achieving balance

throughout the software process; you are always aiming for that balance, though

you know you can never achieve it. One point needs to be made explicitly clear:

AOP is not an antidote for bad or insufficient design. In fact, it is very tough to

implement crosscutting concerns in a poorly designed core system. There will still

be a need to create a solid core architecture using traditional design

methodologies, such as OOP. What AOP offers is not a completely new design

process, but an additional means that allows the architect to address future

potential requirements without breaking the core system architecture, and to spend

less time on crosscutting concerns during the initial design phase, since they can

be woven into the system as they are required without compromising the original

design.

2.4 Evolution of programming methodologies

From machine-level languages to procedural programming to OOP, software

engineering has come a long way; we now deal with the problems at a much

higher level than we did a few decades back. We no longer worry about the

machine instructions but rather view a system as a symbiosis of the collaborating

objects. However, even with the current methodologies there is a significant gap

between knowing the system goals and implementing them. The current

methodologies make initial design and implementation complex and evolution hard

to manage.

Table 2.1 Forces behind the architect’s dilemma
 Benefits of Under design Benefits of Over design

Reduced short-term development cost Better long-term system manageability
Reduced design bloat Easy to accommodate new

requirements
Reduced time-to-market Improved long-term product quality

 24

This is ironic given the world we live in, which demands a faster implementation

cycle and where the only constant is change.

In the evolutionary view of programming methodology, procedural programming

introduced functional abstraction, OOP introduced object abstraction, and now

AOP introduces concern abstraction [16]. Currently, OOP is the methodology of

choice for most new software development projects. OOP’s strength lies in

modeling common behavior [17]. However, it does not do as good a job in

addressing behaviors that span many, often unrelated, modules. AOP fills this void.

2.5 Managing system concerns

A concern[18, 19] is a specific requirement or consideration that must be

addressed in order to satisfy the overall system goal. A software system is the

realization of a set of concerns [20]. In addition to system concerns, a software

project needs to address process concerns, such as comprehensibility,

maintainability, traceability, and ease of evolution.

A concern can be classified into one of two categories: core concerns capture the

central functionality of a module, and crosscutting concerns capture system-level,

peripheral requirements that cross multiple modules. A typical enterprise

application may need to address crosscutting concerns, such as authentication,

logging, resource pooling, administration, performance, storage management, data

persistence, security, multithread safety, transaction integrity, error checking, and

policy enforcement, to name just a few. All of these concerns crosscut several

subsystems. For example, the logging concern affects every significant module in

the system, the authorization concern affects every module with access control

requirements, and the storage-management concern affects every stateful

business object. Figure 2.1 shows how these concerns often interact in a typical

application. This figure shows how the implementation modules in a system each

address both system-level and business concerns. This view portrays a system as

a composition of multiple concerns that become tangled together by the current

implementation techniques; therefore the independence of concerns cannot be

maintained.

 25

Figure 2.1 Viewing a system as a composition of multiple concerns. Each implementation module
addresses some element from each of the concerns the system
(Source: http://www.javaworld.com)

2.6 Identifying system concerns

Identifying the core and crosscutting concerns of a system focuses on each

individual concern separately and reduce the overall complexity of design and

implementation. In order to do this, the first step is to decompose the set of

requirements by separating them into concerns. Figure 2.2 illustrates the process

of decomposing the requirements into a set of concerns. While each requirement

initially appears to be a single unit, by applying the concern identification process,

we can separate out the individual core and crosscutting concerns that are needed

to fulfill the requirement. The significance of this kind of system view is it shows us

that each concern in a multidimensional space is mutually independent and

therefore can evolve without affecting the rest.

For example, changing the persistence requirement [21] from a relational database

to an object database [22] should not affect the business logic or security

requirements. Separating and identifying the concerns in a system is an important

exercise in the development of a software system, regardless of the methodology

used. Once we have done so, we can address each concern independently,

System

Persistence Logging

Business
Logic

Concerns

Implementation
Modules

 26

making the design task more manageable. The problem arises when we implement

the concerns into modules. Ideally, the implementation will preserve the

independence of the concerns, but this doesn’t always happen.

 Business Persistence
 Logic

Requirements Security Logging

Aspectual
Decomposition

Figure 2.2 Concern decomposition. While the requirement initially appears as a single requirement,
after passing it through the concern identification mechanism, you can see the constituent concerns
separated out.
(Source: http://www.javaworld.com)

2.7 A one-dimensional solution
Crosscutting concerns, by their nature, span many modules, and current

implementation techniques tend to mix them into the individual core modules. To

illustrate this, figure 2.3 shows a three-dimensional concern space, whereas the

code that implements the concerns is a continuous flow of calls, and in that sense

is one-dimensional. Such a mismatch results in an awkward mapping of the

concerns to the implementation.

Since the implementation space is one-dimensional, its main focus is usually the

implementation of the core concern, and the implementation of the crosscutting

concerns is mixed in with it. While we may naturally separate the individual

requirements into mutually independent concerns during the design phase, current

 27

programming methodologies do not allow us to retain the separation in the

implementation phase.

 Concern Space Implementation Space

Figure 2.3 Mapping the N-dimensional concern space using a one-dimensional language. The
orthogonality of concerns in the concern space is lost when it is mapped to one-dimensional
implementation space.
(Source: http://www.javaworld.com)

2.8 Modularizing
In software design, the best way of simplifying a complex system is to identify the

concerns and then to modularize them. In fact, the OOP methodology was

developed as a response to the need to modularize the concerns of a software

system. The reality is, though, that although OOP is good at modularizing core

concerns, it falls short when it comes to modularizing the crosscutting concerns.

The AOP methodology was developed to address that shortfall. In AOP, the

crosscutting concerns are modularized by identifying a clear role for each one in

the system, implementing each role in its own module, and loosely coupling each

module to only a limited number of other modules.

In OOP, the core modules can be loosely coupled through interfaces, but there is

no easy way of doing the same for crosscutting concerns. This is because a

concern is implemented in two parts: the server-side piece and the client-side

piece. (The terms server and client are used here in the classic OOP sense to

mean the objects that are providing a certain set of services and the objects using

those services.

 Persistence

 Business Logic

Logging

 Logging

Persistence

 Business Logic

Implementation
Mapping

 28

OOP modularizes the server part quite well in classes and interfaces [23].

However, when the concern is of a crosscutting nature, the client part, consisting of

the requests to the server, is spread over all of the clients.

As an example, let’s look at a typical implementation of a crosscutting concern in

OOP: an authorization module that provides its services through an abstract

interface. The use of an interface loosens the coupling between the clients and the

implementations of the interface. Clients who use the authorization services

through the interface are for the most part oblivious to the exact implementation

they are using. Any changes to the implementation they are using will not require

any changes to the clients themselves. Likewise, replacing one authorization

implementation with another is just a matter of instantiating the right kind of

implementation. The result is that one authorization implementation can be

switched with another with little or no change to the individual client modules. This

configuration, however, still requires that each client have the embedded code to

call the API. Such calls will need to be in all the modules requiring authorization

and will be mixed in with their core logic.

Figure 2.4 shows how a banking system would implement logging using

conventional techniques. Even when using a well-designed logging module that

offers an abstract API and hides the details of formatting and streaming the log

messages, each client—the accounting module, the ATM module, and the

database module—still needs the code to invoke the logging API. The overall effect

is an undesired tangling between all the modules needing logging and the logging

module itself. Each coupling is represented in the figure by a gray arrow.

This is where AOP comes into the picture. Using AOP, none of the core modules

will contain calls to logging services—they don’t even need to be aware of the

presence of logging in the system. Figure 2.5 shows the AOP implementation of

the same logging functionality shown in figure 2.4. The logging logic now resides

inside the logging module and logging aspect; clients no longer contain any code

for logging. The crosscutting logging requirements are now mapped directly to just

one module—the logging aspect. With such modularization, any changes to the

crosscutting logging requirements affect only the logging aspect, isolating the

clients completely.

Modularizing crosscutting concerns is so important that there are several

techniques to achieve it. For example, the Enterprise JavaBeans (EJB)

 29

architecture [24, 25,26] simplifies creating distributed, server-side applications,

and handles the crosscutting concerns, such as security, administration,

performance, and container-managed persistence. To implement the crosscutting

concern of persistence in EJB the bean developers focus on the business logic,

while the deployment developers focus on the deployment issues, such as

mapping the bean data to the database. The bean developers, for the most part,

are oblivious to the storage issues. The EJB framework achieves the separation of

the persistence concern from the business logic through use of a deployment

descriptor—a file in XML format—that specifies how the bean’s fields map to

database columns.

Similarly, the framework separates other crosscutting concerns such as

authentication and transaction management by managing their specifications in the

deployment descriptor.

Figure 2.4 Implementation of a logging concern using conventional techniques: The logging module
provides the API for logging. However, the client modules—Accounting, ATM, and Database—each
still need to embed the code to invoke the logging API.
(Source: http://www.javaworld.com)
Another technique for handling crosscutting concerns is to use dynamic proxies,

which provide language support for modularizing the proxy design pattern.

 Logging
 Module

Accounting Module

ATM Module

Database Module

API Invocations

 30

However, this feature offers a reasonable solution to modularize crosscutting

Figure 2.5 Implementation of a logging concern using AOP techniques: The logging aspect defines
the interception points needing logging and invokes the logging API upon the execution of those
points. The client modules no longer contain any logging-related code.
(Source: http://www.javaworld.com)

concerns, as long as they are simple. The very existence of frameworks like EJB

and language features like dynamic proxies confirms the need for AOP. The

advantage of AOP is that it is not limited to a single domain in the way that EJB is

limited to distributed server-side computing [27], and that AOP code is simpler than

that of dynamic proxies when they are used alone.

2.8.1 Implementing crosscutting concerns in non modularized systems

The implementation of crosscutting concerns often becomes complicated by

tangling it with the implementation of core concerns. A real world system would

consist of many classes. Many would address the peripheral concerns such as

authorization, authentication, multithread safety, contract validation, cache

management and logging. Therefore, while we may have had a good

understanding of different crosscutting concerns and their separation during the

design phase, the implementation [28] paid almost no attention to preserving the

 Logging
 Aspect

Accounting Module

ATM Module

Database Module

Automatically Woven
 Invocations

 Logging
 Module

API
Invocations

 31

separation.

2.8.2 Symptoms of nonmodularization

The symptoms of non modularization can be modularized into into two categories:

code tangling and code scattering.

Code tangling

Code tangling is caused when a module is implemented that handles multiple

concerns simultaneously. A developer often considers concerns such as business

logic, performance, synchronization, logging, security, and so forth while

implementing a module. This leads to the simultaneous presence of elements from

each concern’s implementation and results in code tangling. Figure 2.6 illustrates

code tangling in a module.

Figure 2.6 Code tangling caused by multiple simultaneous implementations of various concerns. The
figure shows how one module manages a part of multiple concerns.
(Source: http://www.javaworld.com)

Code scattering

Code scattering is caused when a single issue is implemented in multiple modules.

Since crosscutting concerns, by definition, are spread over many modules, related

implementations are also scattered over all those modules. For example, in a

system using a database, performance concerns may affect all the modules

accessing the database.

Logging
Security

Business Logic

Persistence

 32

Code scattering can be classified into two distinct categories: duplicated code

blocks and complementary code blocks. The first kind is characterized by repeated

code of a nearly identical nature. For example, resource pooling will typically

involve adding nearly identical code to multiple modules to fetch a resource from a

pool and return the resource back to the pool. Figure 2.7 illustrates the scattered

duplicated code blocks.

Figure 2.7 Code scattering caused by the need to place nearly identical code blocks in multiple
modules to implement a functionality. In this banking system, many modules in the system must
embed the code to ensure that only authorized users access the services.
(Source: http://www.javaworld.com)

The second kind of code scattering happens when several modules implement

complementary parts of the concern. All these pieces must be carved to fit

together perfectly to implement the functionality, as shown in figure 2.8 In figure

2.8, multiple modules include code for authentication logic and access checking;

they must work together to correctly implement the authorization. For example,

before you can check the credentials of a user (access control), you must have

verified that user’s authenticity (authentication).

Check or Authorized
scopes

Accountin
g

Internal
Banking

Customer
Care

Teller
Operation
s

 33

Figure 2.8 Code scattering caused by the need to place complementary code blocks in multiple
modules to implement a functionality
(Source: http://www.javaworld.com)

2.8.3 Implications of non modularization

Code tangling and code scattering together impact software design and

development in many ways: poor traceability, lower productivity, lower code reuse,

poor quality, and harder evolution.

Poor traceability—Simultaneous implementation of several concerns obscures the

mapping of the concern to its implementation. This causes difficulty in tracing

requirements to their implementation, and vice versa. This is evident when doing

the tracing of implementation of an authentication concern, examination of all

modules is required.

Lower productivity—Simultaneous implementation of multiple concerns also shifts

the focus from the main concern to the peripheral concerns. The lack of focus then

leads to lower productivity as developers are sidetracked from their primary

objective in order to handle the crosscutting concerns.

Authenticate
User

Acces
s
Contro

Permission
Management

Session
Management

Authorization
Control

 34

Further, since different concern implementations may need different skill sets,

either several people will have to collaborate on the implementation of a module or

the developer implementing the module will need knowledge of each domain. The

more concerns you implement together, the lower your probability of focusing on

any one thing.

Lower code reuse—If a module is implementing multiple concerns, other systems

requiring similar functionality may not be able to readily use the module due to a

different set of concerns they might need to implement.

Consider a database access module. One project may need one form of

authentication to access the database, another project may need a different form,

and still another may need no authentication at all. The variation of crosscutting

requirements may render an otherwise useful module unusable.

Poor quality—Code tangling makes it more difficult to examine code and spot

potential problems, and performing code reviews of such implementations is

harder. For example, reviewing the code of a module that implements multiple

concerns will require the participation of an expert in each of the concerns. Often

not all of them are available at the same time, and the ones who are may not pay

sufficient attention to the concerns that are outside their area of expertise.

Difficult evolution—An incomplete perspective and limited resources often result in

a design that addresses only current concerns. When future requirements arise,

they often require reworking the implementation. Because implementation is not

modularized, this may mean modifying many modules. Modifying each subsystem

for such changes can lead to inconsistencies. It also requires spending

considerable testing effort to ensure that this implementation change does not

introduce regression bugs.

All of these problems lead to a search for better approaches to architecture,

design, and implementation. Aspect-oriented programming offers one viable

solution.

2.9 Aspect Oriented Programming (AOP) appears on the Scene

AOP builds on top of existing methodologies such as OOP and procedural

programming, augmenting them with concepts and constructs in order to

modularize crosscutting concerns. With AOP, the core concerns are implemented

using the chosen base methodology. If OOP is the base methodology, classes are

implemented as core concerns. The aspects in the system encapsulate the

 35

crosscutting concerns; they stipulate how the different modules in the system need

to be woven together to form the final system.

The most fundamental way that AOP differs from OOP in managing crosscutting

concerns is that in AOP, the implementation of each concern is oblivious to the

crosscutting behavior being introduced into it. For example, a business logic

module is unaware that its operations are being logged or authorized. As a result,

the implementation of each individual concern evolves independently.

2.10 Background of AOP

For years now, many theorists have agreed that the best way to create

manageable systems is to identify and separate the system concerns. This general

topic is referred to as “separation of concerns” (SOC). In a 1972 paper, David

Parnas proposed that the best way to achieve SOC is through modularization—a

process of creating modules that hide their decisions from each other. In the

ensuing years, researchers have been studying various ways to manage concerns.

OOP provided a powerful way to separate core concerns. However, it left

something to be desired when it came to crosscutting concerns. Several

methodologies—generative programming, meta-programming, reflective

programming, compositional filtering, adaptive programming, subject-oriented

programming, aspect-oriented programming, and intentional programming—have

emerged as possible approaches to modularizing crosscutting concerns. AOP is

the most popular among these.

Much of the early work that led to AOP today was done in universities all over the

world. Cristina Lopes and Gregor Kiczales of the Palo Alto Research Center

(PARC), a subsidiary of Xerox Corporation, were among the early contributors to

AOP. Gregor coined the term “AOP” in 1996. He led the team at Xerox that created

AspectJ, one of the first practical implementations of AOP, in the late 1990s.

Xerox recently transferred the AspectJ project to the open source community at

eclipse.org, which will continue to improve and support the project. AspectJ is an

implementation of AOP, just as Java and SmallTalk are implementations of OOP.

AspectJ is based on Java, but there are implementations of AOP for other

languages, ranging from AspectC for C to Pythius for Python, that apply the same

concepts that are in AspectJ to other languages. Further, there are a few Java

implementations of AOP other than AspectJ, such as Java Aspect Component

 36

(JAC) from AOPSYS. These implementations differ in the ways they express the

crosscutting concerns and translate those concerns to form the final system.

2.11 The AOP methodology

In many ways, developing a system using AOP is similar to developing a system

using other methodologies: identify the concerns, implement them, and form the

final system by combining them. The AOP research community typically defines

these three steps in the following way:

1 Aspectual decomposition—In this step, the requirements are decomposed to

identify crosscutting and core concerns. This step separates core-level concerns

from crosscutting, system-level concerns.

2 Concern implementation—In this step, each concern is implemented

independently.

3 Aspectual recomposition—In this step, you specify the recomposition rules by

creating modularization units, or aspects. The actual process of recomposition,

also known as weaving or integrating, uses this information to compose the final

system.

The fundamental change that AOP brings is the preservation of the mutual

independence of the individual concerns when they are implemented. The

implementation can then be easily mapped back to the corresponding concerns,

resulting in a system that is simpler to understand, easier to implement, and more

adaptable to change. In the AOP development stages as shown in Figure 2.9, in

the first stage, decompose the system requirements into individual concerns and

implement them independently. The weaver takes these implementations and

combines them together to form the final system.

 37

Figure 2.9 AOP development stages. In the first stage, you decompose the system requirements into
individual concerns and implement them independently. The weaver takes these implementations
and combines them together to form the final system.
(Source: http://www.javaworld.com)

2.12 Anatomy of an AOP language

The AOP methodology is just that—a methodology. In order to be of any use in the

real world, it must be implemented, or realized. As with any methodology, it can be

implemented in various ways. For example, one realization of the OOP

methodology specification consists of the Java language and tools such as the

compiler. In a similar manner, each realization of AOP involves specifying a

language and offering tools to work with that language. Like any other

programming methodology, an AOP implementation consists of two parts:

The language specification describes the language constructs and syntax that will

be used to realize both the logic of the core concerns and the weaving of the

crosscutting concerns.

The language implementation verifies the code’s adherence to the language

specification and translates the code into an executable form. This is commonly

accomplished by a compiler or an interpreter.

2.13 Benefits of AOP

The benefits of AOP are:

 38

Cleaner responsibilities of the individual module—AOP allows a module to take

responsibility only for its core concern; a module is no longer liable for other

crosscutting concerns. For example, a module accessing a database is no longer

responsible for pooling database connections as well. This results in cleaner

assignments of responsibilities, leading to improved traceability.

Higher modularization—AOP provides a mechanism to address each concern

separately with minimal coupling. This results in modularized implementation even

in the presence of crosscutting concerns. Such implementation results in a system

with much less duplicated code. Because the implementation of each concern is

separate, it also helps avoid code clutter. Modularized implementation results in an

easier-to-understand and easier-to-maintain system.

Easier system evolution—AOP modularizes the individual aspects and makes core

modules oblivious to the aspects. Adding a new functionality is now a matter of

including a new aspect and requires no change to the core modules. Further, when

we add a new core module to the system, the existing aspects crosscut it, helping

to create a coherent evolution. The overall effect is a faster response to new

requirements.

Late binding of design decisions—Architects in general are faced with underdesign

/ overdesign issues. With AOP, the architect can delay making design decisions for

future requirements because it is possible to implement those as separate aspects.

Architects can now focus on the current core requirements of the system. New

requirements of a crosscutting nature can be handled by creating new aspects.

 More code reuse—The key to greater code reuse is a more loosely coupled

implementation. Because AOP implements each aspect as a separate module,

each module is more loosely coupled than equivalent conventional

implementations. In particular, core modules aren’t aware of each other—only the

weaving rule specification modules are aware of any coupling. By simply changing

the weaving specification instead of multiple core modules, you can change the

system configuration. For example, a database module can be used with a

different logging implementation without change to either of the modules.

Improved time-to-market—Late binding of design decisions allows a much faster

design cycle. Cleaner separation of responsibilities allows better matching of the

module to the developer’s skills, leading to improved productivity. More code reuse

leads to reduced development time. Easier evolution allows a quicker response to

 39

new requirements. All of these lead to systems that are faster to develop and

deploy.

Reduced costs of feature implementation—By avoiding the cost of modifying many

modules to implement a crosscutting concern, AOP makes it cheaper to implement

the crosscutting feature. By allowing each implementer to focus more on the

concern of the module and make the most of his or her expertise, the cost of the

core requirement’s implementation is also reduced. The end effect is a cheaper

overall feature implementation.

2.14 Summary

The most fundamental principle in software engineering is that the separation of

concerns leads to a system that is simpler to understand and easier to maintain.

Various methodologies and frameworks exist to support this principle in some form.

However, for crosscutting concerns, OOP forces the core modules to embed the

crosscutting concern’s logic. While the crosscutting concerns themselves are

independent of each other, the use of OOP leads to an implementation that no

longer preserves the independence in implementation.

The current most common response to the difficulties of crosscutting concerns is to

develop new domain-specific solutions, such as the EJB specification for enterprise

server-side development. While these solutions do modularize certain crosscutting

concerns within the specific domain, their usefulness is restricted to that domain.

The cost of using these pre-wired solutions is reflected in the time and effort that is

required to learn each new technology that, in the end, is useful only within its own

limited scope.

Aspect-oriented programming will change this by modularizing crosscutting

concerns in a generic and methodical fashion. With AOP, crosscutting concerns

are modularized by encapsulating them in a new unit called an aspect. Core

concerns no longer embed the crosscutting concern’s logic, and all the associated

complexity of the crosscutting concerns is isolated into the aspects. AOP marks the

beginning of new ways of dealing with a software system by viewing it as a

composition of mutually independent concerns. By building on the top of existing

programming methodologies, it preserves the investment in knowledge gained over

the last few decades. In the short-term future, it is highly likely that we will see

AOP-based solutions providing powerful alternatives to domain-specific solutions.

 40

AOP, being a brand-new methodology, is not the easiest to understand. The

learning curve involved is similar to transitioning from procedural to OOP. The

payoff, however, is tremendous. Most developers who are exposed to AOP are

amazed by its power once they get over the initial learning curve.

 41

CHAPTER 3

Related Work

3.1 Overview

This chapter outlines important contributions already made in the area of aspect

oriented software development and shows the multitude of research areas that

have been followed. Since the focus of the work presented in this thesis concerns

the development of an aspect oriented design language, this chapter focuses

primarily on completed and ongoing work in aspect oriented design language and

enabling programming technologies. A number of research projects that design

and develop aspect oriented design languages and specifications are studied. This

chapter concludes with an overview of current work on aspect oriented applications

and design language specifications.

Since the beginning of research into aspect oriented design, many research groups

have tried to develop aspect oriented design languages. The diversity of research

groups has led to a large variety of different approaches[29, 30, 31].

Recently there has been growing interest in propagating the aspect paradigm to

the activities in the earlier phases of the software development lifecycle. A number

of approaches to aspect-oriented design have been proposed e.g. [5,32]. One

approach proposes an extension to UML to support aspects. Composition

Patterns is another approach to handle crosscutting concerns at the design level

[5, 32].

The Unified Modeling Language (UML) [2, 3] is an object-oriented design notation

that provides basic building blocks to model software-intensive systems, such as

abstractions that represent structure and behavior of a system, relationships that

state how the abstractions relate to each other, and diagrams that show interesting

excerpts of a set of abstractions and relationships. The most important

characteristic of UML in respect to the issue tackled in this work is its extension

mechanisms [33]. UML’s extension mechanisms provide standardized means to

 42

extend existing UML building blocks with new properties, called tagged values, or

with new semantic, called constraints. Besides the alteration of existing building

blocks, the UML may be extended with completely new building blocks that are

derived from existing ones. The new building blocks, called stereotypes, have the

same structure (attributes, associations, operations) as the base building block

they are derived from. One such approach is referred to as the “aspect-oriented

design model”, or AODM for short [33] that extends the Unified Modeling Language

with the aspect-oriented design concepts as specified in AspectJ [34, 35, 36].

Design Patterns became popular after the “Gang of Four” book of the same name

(Gamma et al, 1995) [15, 16, 17, 20, 25, 25, 26, 37] showed how design patterns

could be used in object-oriented software development. Design patterns are a

method of encapsulating the knowledge of experienced software designers in a

human readable and understandable form. They provide an effective means for

describing key aspects of a successful solution to a design problem and the

benefits and tradeoffs related to using that solution. Using design patterns help

produce good design, which helps produce good software. The ability to work with

design patterns in conjunction with Unified Modeling Language (UML) is a major

benefit. UML is now a standard for OO modeling and is an industry standard now.

Compatibility with UML makes design patterns more palatable for many

programmers and designers as they are already familiar with UML. For the

implementation of design patterns, the design policy to consider the patterns as

concerns is important. At the same time, it is to be desired that we have effective

languages and tools supporting the advanced separation of concerns [20, 38]. The

new implementation technologies that support the advanced separation of

concerns such as Hyper/J [9, 10, 39] and AspectJ [34, 35, 36] help with coding

this kind of design.

Separation of concerns[18, 40] is a basic engineering principle that is also at the

core of object-oriented analysis and design methods in the context of UML.

Separation of concerns can provide many benefits: additive, rather than invasive,

change; improved comprehension and reduction of complexity; adaptability,

customizability, and reuse. With its nine views that can be thought of as

projections of a whole multi-dimensional system onto separate plans, UML [3]

 43

provides the designer with an interesting separation of concerns called the 4+1

view model (Design view, Component view, Process view, Deployment view, plus

Use Case view). In turn, each of these views has two dimensions, one static and

one dynamic. Furthermore the designer can add non-functional information (e.g.

persistency requirements) to a model by “stamping” model elements, for instance

with design pattern occurrences [33], stereotypes or tag values. It is appealing to

think of many concerns as being independent or “orthogonal”, but this is rarely a

case in practice. It is essential to be able to support interacting concerns, while still

achieving useful separation. An aspect-oriented approach to design can help to

express these concerns explicitly. Frameworks that provide methodological

support for building and manipulating UML models with aspects have been

proposed. One such framework is the UMLAUT [11] (UML All pUrpose

Transformer) framework which allows the engineer to program the “weaving” of the

aspects at the level of the UML meta-model.

3.2 UMLAUT: Weaving UML Designs

UMLAUT [41] is a framework dedicated to the manipulation of UML models where

the weaving process can be adapted and extended: new weavers can be

constructed simply by changing the weaving rules. The framework takes care of

the weaver implementation. In UMLAUT toolbox, a weaving process is

implemented as a model transformation process: each weaving step is a

transformation step applied to a UML model. Hence the final output is a UML

model too (endomorphic transformation). The model transformation engine is itself

designed as a configurable and extendible framework.

3.2.1 General Architecture and Core Engine

UMLAUTs architecture [42] is a three-layered one. The input front end consists of a

graphical user interface for interactive editing; another interface deals with

importing UML models described in various formats (XMI, Rational Rose TM MDL,

Eiffel source, Java source). The middle core engine is made up of the UML meta-

model repository and the extendible transformation engine. Finally, the output back

end contains various generators (including code generators and an XMI

generator). The design concept of UMLAUT is a basic core (the middle layer) that

communicates with its surroundings via hot spots (i.e. interfaces). Functional

 44

modules can be plugged in order to specialize the tool's behavior and to meet

specific requirements.

3.2.2 The Extendible Transformation Framework

The transformation engine of UMLAUT is responsible for the weaving process. A

weave operation is described as a transformation of an initial model to a final one.

A designer specifies the required transformation by explicitly composing a set of

operators from the UMLAUT transformation library. Since the transformation

engine is an open framework, users may add new operators and extend the

existing library to support new weaving operations. The framework is designed to

cater for three different kinds of user:

Model designers are interested in performing a set of weaving operations. Their

main concern is what transformation operators are available and useful to the

model, and how they should be used.

Transformation architects are responsible for defining how to implement a given

transformation for a given implementation requirement. They extend the

transformation library by adding new transformation operators.

Framework implementor’s aim at enhancing the weaver framework to support

specific needs of the previous two groups of users.

The transformation framework uses a mix of object-oriented and functional

programming paradigms. The object-oriented paradigm allows us to encapsulate

our operators as discrete entities, and the functional paradigm provides us with a

composition mechanism for these operators. The main architecture consists of

three major components:

1. A core structure that provides the logic for operator composition and implicit

control flow when a transformation is initiated.

2. A library of iterators for traversing a UML model. An iterator builds a path

through a UML model graph so that lazy list operations can be applied.

3. A library of primitive operators for querying, modifying and creating UML

model elements.

Each of these components can be augmented and enhanced. In particular, the

operator library is likely to be extended by a transformation architect whereas the

iterator library will more likely be extended by a framework implementer

knowledgeable about the UML meta-model.

 45

For aspect-oriented software development (AOSD) to live up to being a software

engineering paradigm, there must be support for the separation of crosscutting

concerns across the development lifecycle including traceability from one lifecycle

phase to another. Concerns that have a crosscutting impact on software (such as

distribution, persistence, etc.) present well-documented difficulties for software

development [40]. Since these difficulties are present throughout the development

lifecycle, they must be addressed across its entirety. One such work done is the

investigation of traceability between one particular AOSD design-level language,

Theme/UML [5, 42] and one particular AOSD implementation-level language,

AspectJ. This provides for a means to assess these languages and their

incompabilities, with a view towards eventually developing a standard design

language for a broad range of AOSD approaches.

3.3 Theme/UML

Theme/UML [43, 44, 45] presents an approach to designing systems based on the

object-oriented model, but extending this model by adding new decomposition

capabilities. The new decomposition capabilities support a way of directly aligning

design models with individual requirements. Each model contains its own theme,

or design of an individual requirement, with concepts from the domain (which may

appear in multiple requirements) designed from the perspective of that

requirement. Standard UML is used to design the models decomposed in this way.

Extensions to the UML are required for the composition of the thematic design

models. This is achieved with a composition relationship. A composition

relationship specifies how models are to be composed by identifying overlapping

concepts in different models and specifying how models should be integrated.

It is the nature of crosscutting behaviour that it has an impact on multiple, different

elements within software. In order to design such behaviour in standard UML, it is

necessary to explicitly specify crosscutting behaviour for each of the particular

elements it affects; the designs of crosscutting behaviour cannot be separated and

encapsulated with existing UML constructs. These limitations result in design

models with scattering and tangling properties comparable to those in code.

Theme/UML mitigates these problems by supporting the design of crosscutting

concerns as separated, encapsulated design models. Composition of these

separate design models is specified with a composition relationship, detailing

 46

which elements are to be combined, and how to integrate them. Merge is one

strategy for integration that includes all the elements from the input design models

in the composed design, reconciling conflicts where appropriate.

The composition pattern (CP) construct of Theme/UML, based on an extension to

UML templates, permits a crosscutting design model to be independent of any

base design model, allowing it to be reused. The composition of concrete design

models with CPs is based on the semantics of the merge integration strategy.

Template parameters on a composition pattern may represent operations. A key

feature of CPs is that they may define supplementary behaviour on such template

operations. When a template operation with supplementary behaviour is bound to a

concrete operation, the supplementary behaviour is merged with the original

behaviour of that concrete operation. Any calls to the original operation result in

delegation to some ordered combination of the supplementary behaviour and

original behaviour, as prescribed within the specification of that CP.

Thematic design with Theme/UML has two important implications:

• Overlapping specifications supported: Different requirements may exist

that have an impact on the same core concepts (for example, objects) of

the system. It is this level of overlapping of requirements that is one of the

causes of the problems with comprehensibility, extensibility and reuse

discussed previously. The Theme/UML model recognises and explicitly

caters for overlap in the different design models for each requirement. This

is achieved by allowing a separate design model to include the specification

of any core concepts only as suits the requirement under design by that

design model. Composition capabilities supported by this new approach

cater for identifying overlapping concepts, integrating them, and handling

any conflicts.

• Crosscutting specifications supported: There are also many kinds of

requirements that will have an impact across the full design of a software

system. For example, a requirement for distributed objects has an impact

on a potentially large proportion of the objects of a computer system. Such

requirements are referred to as crosscutting, since support for such

requirements must be included across many different objects in a system.

With the approach to decomposition described here, crosscutting

 47

requirements may also be designed separately, with composition

capabilities handling their integration with other system objects as

appropriate.

Decomposition in this manner also requires corresponding composition support, as

object-oriented designs still must be understood together as a complete design.

The Theme/UML model supports a new kind of design construct, called a

composition relationship that supports the specification of how design models

should be composed. With composition relationships, a designer can:

• Identify and specify overlaps: Where decomposition allows overlaps in

different design models, corresponding composition capabilities must

support the identification of where those overlaps are. In order to integrate

separate design models, overlapping design elements (or elements which

correspond and therefore should be integrated into a single unit) are

specified with composition relationships.

• Specify how models should be integrated: Design models may be

integrated in different ways, depending on why they were modularised in a

particular way. For example, if different design models were designed

separately to support different requirements, a composed design where all

requirements are to be included might be integrated with a merge strategy -

that is, all design elements are relevant to the composed design.

Alternatively, if a design model contains the design of a requirement that is

a change to a requirement previously designed (for example, a business

process has changed), then that design model might replace the previous

design. In this case, integration with an override strategy is appropriate,

where existing design elements are replaced by new design elements.

• Specify how conflicts in corresponding elements are reconciled: For

some integration strategies, where some corresponding elements are

integrated into a single design element, (merge integration is an example of

such a strategy) conflicts between the specifications of those corresponding

elements must be reconciled. Composition relationships support the

specification of different kinds of reconciliation possibilities - for example,

one design model may take precedence over another, or default values

should be used.

 48

In addition, for design models that support crosscutting requirements, (i.e., those

requirements that have an impact on potentially multiple classes in the design),

composition of those models with other models is likely to follow a pattern. In other

words, a crosscutting requirement has behaviour that will affect multiple classes in

different design models in a uniform way. For these kinds of requirements, the

Theme/UML model defines a mechanism whereby this common way of composing

the crosscutting requirement may be defined as a composition pattern.

Other possible dimensions to Theme/UML that the authors highlight include:

3.3.1 Design Approaches

One of the primary contributions of Theme/UML is its capabilities relating to

decomposition and modularization of UML models. The UML itself provides

modularization mechanisms such as packages and subsystems, upon which

Theme/UML builds its additional composition capabilities. These are largely related

to modularization and generic composition of crosscutting design elements.

Theme/UML, provides a more generic approach, including support for both

functional separation (like roles) and separation of patterns of crosscutting

behaviour.

Collaboration-based design or role modeling is a compositional design approach

that concentrates on decomposing designs on the basis of the roles that objects

play in particular collaborations. Other approaches to providing design support for

crosscutting concerns appear more tied to the AspectJ model of AOSD exclusively.

Theme/UML has taken the more independent route in extending the UML to

provide just those constructs required to support the decomposition (and

subsequent composition specification) of design models based on requirements

specifications. These requirements may be functional or crosscutting, and new

design constructs are focused on how to compose the separate models, not on

providing constructs to map to any particular implementation paradigm. This

approach makes the model more concern centric, not implementation-paradigm

centric.

3.3.2 Implementation Approaches

 49

Other compositional implementation languages and mechanisms exist.

Multidimensional separation of concerns [46, 47] with its associated Hyper/J

language arose from the subject-oriented programming paradigm as has

Theme/UML. Composition filters are a means of intercepting and rerouting

messages as they arrive at objects; they can be used as separate crosscutting

concerns such as synchronization, and have been described as an aspect-oriented

technique. Adaptive programming [48, 49] has also been described as a (special

case) aspect-oriented technique [50]. It provides a means to separate the

algorithms on data from the structure of that data, allowing the structure of the data

to change without requiring related changes to the algorithms. Implicit context is a

structuring mechanism and design philosophy concentrating on removing

knowledge of the large scale from smaller-scale components: it is related to AOSD.

Others have looked to mixins [51] and mixin layers as a means of realizing

compositional implementations of collaboration-based designs. Mixin layers are

useful for product-line architectures, where features are understood from

conception to be optional between different configurations of a product.

3.3.3 Lifecycle Impact

There has been some recognition of the need for separating crosscutting concerns

throughout the lifecycle. For example, Griss [5, 52] has proposed a development

process for component based product-lines that draws together high-level analysis

and design composition techniques with supporting implementation composition

techniques. But this process does not advise how to map the differing constructs

within the combination of approaches that may be used.

The difficulties reported in re-engineering implementations to take advantage of

compositional implementation techniques highlights the importance of separating

crosscutting concerns across the lifecycle. Being forced to manually untangle and

un-scatter the concerns that were identified was a difficult and error-prone process;

if the systems discussed in that work had been designed with their crosscutting

concerns separated in the first place, porting the implementations between the

different compositional techniques studied could have been more tractable.

 50

3.4 Approach To Aspect Oriented Programming And Design

A gap exists between requirements and designs on one hand, and between design

and code on the other hand. Aspect oriented programming (AOP) extended to the

modeling level where aspects could be explicitly specified during the design

process will make it possible to weave these aspects into a final implementation

model. Another step could be extension of AOP to the entire software development

cycle. Each aspect of design and implementation should be declared during the

design phase so that there is a clear traceability from requirements through source

code thus using UML as the design language to provide an aspect-oriented design

environment.

The separation and encapsulation of crosscutting concerns has been promoted as

a means of addressing these difficulties; the standard object-oriented paradigm

does not suffice. In order to overcome the difficulties for crosscutting concerns

throughout the lifecycle, an approach is required that provides a means to separate

and encapsulate both the design and the code of crosscutting behaviour. It is

important to work towards a general purpose AOSD design language that meets

certain goals [33], including the following:

• Implementation language independent: The final form of AOP language

may vary from that of any current one. Thus, any design language that

simply mimics the constructs of a particular AOP language is liable to

fail to achieve implementation language independence.

• Design-level composability: Design level composability is a desirable

property for two reasons. First designers may check the result of

composition prior to implementation, for validation purposes. Second,

some projects will continue to require the use of a non-aspect-oriented

implementation language because of pragmatic constraints, such as the

presence of legacy code written in languages without aspect-oriented

extensions; these projects could still benefit from separating the design

of crosscutting concerns.

 51

• Compatibility with existing design approaches: An AOSD design-level

language should also build existing design languages such as UML, to

provide a bridge from old techniques to new, so that software

engineering realities such as incremental adoption and legacy support

are possible.

The construction of complex, evolving software systems requires a high-level

design model [53]. This model should be made explicit, particularly the part of it

that specifies the principles and guidelines that are to govern the structure of the

system. In reality, however, implementators tend to overlook the documented

design models and guidelines, causing the implemented system to diverge from its

model. Reasoning about a system whose models and implementation diverge is

error prone – the knowledge we gain from these models is not of the system itself,

but of some fictious system, the system we intended to build. The system’s

comprehensibility is impeded, and so using software engineering techniques goes

against our intended goals – quality, maintainability and cost minimization. The

essence of the problem of implementing higher-level principles and guidelines lies

in their globality. These principles cannot be localized in a single module, they

must be observed everywhere in the system, which means that they crosscut the

system’s architecture.

3.5 Impact Of Requirements Engineering On AOSD

The identification of the mapping and influence of a requirement level aspect

promotes traceability of broadly scoped requirements and constraints throughout

system development, maintenance and evolution [54]. The improved

modularization and traceability obtained through early separation of crosscutting

concerns can play a central role in building systems resilient to unanticipated

changes hence meeting the adaptability needs of volatile domains such as

banking, telecommunications and e-commerce. One such generic model is the

AORE (Aspect Oriented Requirements Engineering) [55, 57] model and its

concrete realization with viewpoints [56] and XML. The focus of this model is on

modularization and composition of requirements level concerns that cut across

other requirements. These crosscutting concerns are responsible for producing

 52

tangled representations that are difficult to understand and maintain. Examples of

such concerns [58, 59] at the requirements level are compatibility, availability and

security requirements that cannot be encapsulated by a use case and are

typically spread across several of them [54].

3.6 Aspect Oriented Requirements Engineering (AORE)

Modern systems have to run in highly volatile environments where the business

rules change rapidly. Therefore, systems must be easy to adapt and evolve. If not

handled properly, crosscutting concerns inhibit adaptability. The influence of an

aspectual requirement and the constraints it imposes on specific requirements

within the viewpoints affected by the aspect cannot be determined.

It involves identifying and specifying both concerns and stakeholders'

requirements. The order in which the specification of concerns and stakeholders'

requirements is accomplished is dependant on the dynamics of the interaction

between requirements engineers and the stakeholders.

Once the coarse-grained relationships between concerns and stakeholders'

requirements have been established and the candidate aspects identified, the next

step is to define detailed composition rules. These rules operate at the granularity

of individual requirements and not just the modules encapsulating them.

Consequently, it is possible to specify how an aspectual requirement influences or

constrains the behaviour of a set of non-aspectual requirements in various

modules [60]. At the same time, if desired, aspectual trade-offs can be observed at

a finer granularity. This alleviates the need for unnecessary negotiations among

stakeholders for cases where there might be an apparent trade-off between two (or

more) aspects but in fact different, isolated requirements are being influenced by

them. It also facilitates identification of individual, conflicting aspectual

requirements with respect to which negotiations must be carried out and trade-offs

established.

After composing the candidate aspects and stakeholders' requirements using the

composition rules, identification and resolution of conflicts among the candidate

aspects is carried out.

Conflict resolution might lead to a revision of the requirements specification

(stakeholders' requirements, aspectual requirements or composition rules). If this

happens, then the requirements are recomposed and any further conflicts arising

 53

are resolved. The cycle is repeated until all conflicts have been resolved through

effective negotiations. The last activity in the model is identification of the

dimensions of an aspect. Aspects at this early stage that can have an impact can

be described in terms of two dimensions:

• Mapping: an aspect might map onto a system feature / function (e.g. a simple

method, object or component), decision (e.g. a decision for architecture choice)

and design (and hence implementation) aspect (e.g. response time). Accordingly,

the aspects at this stage are called the RE stage candidate aspects as, despite

their crosscutting nature at this stage, they might not directly map onto an aspect at

later stages.

• Influence: an aspect might influence different points in a development cycle, e.g.

availability influences the system architecture while response time influences both

architecture and detailed design.

The generic AORE model and its concrete realization with viewpoints and XML

aims as a stepping-stone towards two goals:

1. Providing improved support for separation of crosscutting functional and non-

functional properties during requirements engineering hence offering a better

means to identify and manage conflicts arising due to tangled representations;

2. Identifying the mapping and influence of requirements level aspects on artifacts

at later development stages hence establishing critical trade-offs before the

architecture is derived.

With increasing support for aspects at the design and implementation level, the

inclusion of aspects as fundamental modeling primitives at the requirements level

and identification of their mappings also helps to ensure homogeneity in an aspect

oriented software development project.

3.7 Software Architecture View Of Aspects

As in software architectures, which emphasize relationships between components

constituting the software, the relationships among aspects of the system need to

be made explicit. This is generally difficult because it cannot be assumed that

aspects are always orthogonal [61]. For example, an aspect for treating overflow of

data values, and another for encoding values to increase security can both involve

the same methods or fields of an underlying system, and may even have overlap in

the modifications applied. Such overlap between different aspects introduces a

 54

new type of problem, not seen in conventional languages, where it is clear to which

module each language segment belongs. It is also a major source of complexity

when composing and maintaining the aspects.

To alleviate the above problems, a conceptual model called the aspect architecture

[61] was proposed to provide an aspect-oriented perspective on software

architecture. Being a conceptual model, it also outlines an instantiation for UML,

corresponding roughly to Theme/UML. However, Theme/UML, like other UML-

based aspect-oriented design approaches, does not provide architectural support,

other than that of standard UML, for aspects and their interactions.

Another, main aspect-oriented development approach with explicitly defined

aspects relationships is Aspect-Oriented Component Engineering (AOCE) [62, 63]

which supports aspect-orientation throughout the life-cycle of specification, design,

implementation and deployment in the software component domain.

3.8 Aspect Oriented Software Development Design Language

AspectJ [6, 7, 8] is a popular and well established AOP language that provides

support for specifying and composing crosscutting code into a core system. It

supports the AOP paradigm by providing a special unit, called “aspect”, which

encapsulates crosscutting code. Other compositional implementation languages

and mechanisms also exist [9, 10]. At the design level, an AOSD design

language with extensions to UML [5, 11, 54 and 61] in its capabilities relating to

decomposition and modularization is required that would map to a particular

AOSD implementation. Further, a standard AOSD design language must be

capable of supporting many of these aspect programming languages. A graphical

notation helps developers to design and comprehend aspect-oriented programs.

Further, it would facilitate the perception of aspect-orientation. A design notation

helps developers to assess the crosscutting effects of aspects on their base

classes. Its application carries over the advantages of aspect-orientation to the

design level and facilitates adaption and reuse of existing design constructs.

 55

Although a lot has been done to study the aspect oriented design approach in

enterprise systems for architecture and its implementation, work on a general-

purpose design language for aspect-oriented software development is attracting a

lot of attention. The development of aspect oriented requirements gathering

approach, design notation and environment for development of enterprise systems

needs to be further refined in the context of software applications and industry.

The thesis work encompasses developing a standard and general purpose AOSD

design language with existing UML features and extensions to map AOSD design

notations to AOP languages and AOP to legacy code / OO code and design

patterns.

3.9 Summary

This chapter has introduced selected work and developments across the broad

spectrum of aspect oriented software development research. It provides a

comprehensive overview of the state-of-the-art in the field and exhibits a number of

open problems that drive continuous research into aspect design. The various

projects described throughout this chapter introduce the relevant features of

aspect oriented design languages.

At the core of the chapter is the division of design language architecture into

implementation dependent and implementation independent approaches. Although

their fundamental goals are identical and the timescale when they have emerged is

related, the underlying architectures are inherently different. While the former is

tied to a particular implementation of AOP language, the latter with its graphical

notation initially tries to maintain a general interface to implement as many aspect

oriented programming languages.

A graphical notation helps developers to design and comprehend aspect-oriented

programs. Further, it would facilitate the perception of aspect-orientation. A design

notation helps developers to assess the crosscutting effects of aspects on their

base classes. Its application carries over the advantages of aspect-orientation to

the design level and facilitates adaption and reuse of existing design constructs.

The following chapter discusses the whole gamut of the design requirements

indicated in this chapter and attempts to classify the variety of design constructs

into individual and common functionalities.

 56

CHAPTER 4

Design Language Requirements

4.1 Overview

This chapter discusses the requirements for aspect oriented design language in

general and derives the specific requirements for the AOSDDL (Aspect Oriented

Software Development Design Language) design language architecture that is

proposed within this work.

Most common requirements of a design language have already been mentioned in

the last chapter. It has become apparent that design language research deals

largely with trade-offs. For example, many of the aspect oriented design systems

introduced in chapter 3 trade-off implementation dependency for wide tool support

or limited support with general purpose flexibility.

Research into aspect oriented design languages so far has shown that no single

solution will meet all possible requirements of aspect oriented software

development, and thus, multiple systems for domains with different demands must

be able to co-exist and interoperate. The challenge in designing aspect oriented

solutions therefore is to draw the optimal line between trade-offs depending on the

requirements at hand. For this, it is crucial to understand fully the requirements of a

given domain.

4.2 Requirements

As with systems in any programming paradigm, aspect-oriented systems need to

be designed with good software engineering practices in mind.

The analysis and design of a system are at least as important as the

implementation itself, with many considering these phases to be more significant in

their contribution to the success of a project as a whole.

In any development effort, it is helpful for a developer to be able to consider the

structure of the final implementation at all stages of the software lifecycle, rather

than having to make a mental leap to get from a particular way of encoding design,

 57

to another way of coding the software. In other words, developers need to be able

to easily map their designs to the code in order for the design to continue to make

sense during the development lifecycle.

In addition to seamless traceability between the design and code, another

consideration is the benefits of separating aspects in the design for the design’s

own sake. Aspect-oriented design has similar benefits for design artifacts as

aspect-oriented code has for code artifacts. In the infancy of aspect-orientation,

developers simply used object-oriented methods and languages (such as UML) for

designing their aspects. This proved difficult, as UML was not designed to provide

constructs to describe aspects: trying to design aspects using object-oriented

modeling techniques proved as problematic as trying to implement aspects using

objects.

Without the design constructs to separate crosscutting functionality, similar

difficulties in modularizing the designs occur, with similar maintenance and

evolution headaches. What is required is special support for designing aspects, as

we will then be able to improve the design process, and provide better traceability

to aspect-oriented code.

A similar set of problems arises when analyzing requirements documentation to try

to arrive at how to design a system. Approaches for decomposing requirements

from an object-oriented perspective simply don’t go far enough when trying to plan

for aspect-orientation. Heuristics and tools to support such an examination will be

helpful to the developer.

The thesis work aims to support for how to both identify aspects in a set of

requirements, and how to model them in UML style designs. The methodology we

use is an aspect based approach to analysis and design.

Aspects may be related to each other, in the same way as requirements or

features are related to other parts of the system. Such relationships may cause

overlaps in the aspects. We see two kinds of overlap. The first category of overlap

is concept sharing, where different aspects have design elements that represent

the same core concepts in the domain. Each aspect will contain specifications for

those same concepts designed from the perspective of the aspect. The second

category of overlap is the classic aspect-oriented crosscutting, where dynamic

behaviour in one aspect will be triggered in tandem with behaviour in other

aspects.

 58

4.3 Evolving of Concerns in Early Requirements Phase

The notion of a concern is fundamental to problem solving and separation of

concerns is a fundamental principle for organising software development. The

sheer size and complexity of many modern software-based systems, however,

indicates that the criteria for separation are rarely fixed, and that concerns

themselves are often overlapping and interact in ways that may not be easy to pre-

determine. The aspect-oriented software development community has emerged in

response to the need to address such issues. The focus of this community has

been largely on software itself - its structuring and restructuring. Aspects provide a

structuring construct that allows program code to be written, or re-written, to

facilitate the representation of multiple concerns and to alleviate tangling of

overlapping, aka crosscutting concerns.

In the problem world, inhabited by customers and users, is fertile ground for

identifying concerns and for exploring their interaction. Indeed, it is a fact that the

problem world is often the most appropriate source for early identification of

concerns, but not necessarily of aspects. An understanding of the problem is a

prerequisite to constructing a suitable solution, we also recognize that the

processes of understanding problems and constructing solutions are inevitably

intertwined. Producing a robust statement of requirements often needs an

exploration of the solution space - the question is: does that solution space need to

be populated with aspects while the requirements are still being formulated? Often,

during the requirements and specification process, some architectural position will

be taken, probably implicitly, and this position may drive what is an aspect and

what is not. This may be advantageous, as identifying aspects early may lead to

more robust designs and implementations. But how early'? During the exploration

of a problem space, and associated requirements, is not normally the right time to

examine aspect-oriented solutions. However, when we start generating

specifications - that map the problem and solution spaces – then identifying

aspects becomes useful.

4.4 Separation of Concerns

Separation of concerns (SOC) is a long-established principle in software

engineering [19]. It has received widespread attention in modem programming

languages, with constructs such as modules, packages, classes, and interfaces,

 59

which support properties such as abstraction, encapsulation, and information

hiding. SOC has also received attention in software architecture and design, with

techniques such as composition filters [64] and design patterns [65].

While advances in all of these areas have had significant benefits, problems

related to inadequate separation of concerns remain. This has led to recent work

on "advanced separation of concerns" (ASOC), including subject-oriented

programming and design, aspect-oriented programming, and multidimensional

separation of concerns. These bring a number of innovative ideas to programming

in particular and to software development in general, which are now beginning to

mature and coalesce under the heading of aspect-oriented software development

(AOSD).

Although ASOC has been emphasized in recent work, concerns themselves have

remained something of second-class citizens. Current ASOC tools provide only

limited support for explicit concern modeling, representations of concerns tend to

be tied to particular tools or artifacts, and concern modeling usually occurs just in

the context of a particular type of development activity such as coding or design. A

global perspective on concerns, that spans the life cycle and is independent of

particular development tools or artifacts, has been lacking.

Of course, concerns do not play a second-class role in software development.

They arise at every stage of the life cycle, spanning activities, artifacts, methods,

and tools. If aspect-oriented software development is to be fully realized, concerns

must be treated as first-class entities throughout the life cycle.

4.5 Multiple Perspectives to Concern Requirements

Crosscutting requirements serve a dual purpose. On the one hand, they provide a

description of the overlap between requirements - the first step to managing any

inconsistency that arises at such overlap. On the other hand, they can provide

useful input into aspect-oriented design and implementation, as they provide the

potential join points upon which an aspect-oriented implementation might be

based.

Identifying aspects too early is counter-productive, but than an early understanding

of requirements and the concerns they address is crucial. At the stage when

requirements need to be mapped onto elements of a software solution, identifying

aspects may become much more worthwhile.

 60

Although the notion of concern is well understood intuitively, good definitions of it

are surprisingly hard to come by [18]. Aspects are one category of concern: an

aspect is a (program) property that cannot be cleanly encapsulated in a

"generalized procedure" (such as an object, method, procedure, or API) [53]. This

definition identifies a critical property of some concerns that makes SOC

problematic in conventional programming languages. However, it is too relative to

program structure (and to code) to make a good general definition of concern. Tart

and others [25] define a concern as a predicate over software units. This definition

is not particular to code and appropriately spans the whole software life cycle, but it

is still based on software units.

To promote concerns to first-class entities ("concerns") in software development,

they must he defined independently of any specific type of software artifact and

even of software artifacts in general. One dictionary definition of concern is "a

matter for consideration" [10]. More specifically to software, the IEEE defines the

concerns for a system as "... those interests which pertain to the system's

development, its operation or any other aspects that are critical or otherwise

important to one or more stakeholders" [18]. We will take concern generally to be

any matter of interest in a software system.

We define a concern space as an organized representation of concerns and their

relationships. This is a generalization of the notion of a concern hyperspace in

which the concerns are organized according to multiple, overlapping dimensions,

where each dimension is partitioned by concerns of the same general type (such

as functions, classes, features). Our definition contrasts with the alternative

characterization of a concern space as a body of software, as we are concerned

first of all with the matters of interest pertaining to a body of software rather than

with the software itself (although the relationship of concerns to software is

fundamentally important and is indeed reflected in our approach). Based on

previous studies, we believe that concern spaces are multidimensional, that is,

multiple concerns of multiple types may apply to a particular software unit at any

one time. Additionally, we believe that a concern space is highly structured; that is,

that concerns can be organized by multiple relationships of multiple types, that

these relationships may be independent or dependent, and that they commonly

have a hierarchical or lattice like organization.

 61

During software development, concerns arise at all stages of the life cycle, from

requirements specification through design, coding and testing to maintenance and

evolution. Concerns also span multiple phases of the life cycle, relate to multiple

instances and types of artifacts, and crosscut phases and artifacts in different

ways. Finally, concerns are dynamic and relative, that is, that the concerns relevant

to a particular software unit will change over time and that they also depend on the

perspective or purpose of the user or stakeholder who considers the software [11,

53, 54].

Given the above, we believe that a general-purpose concern-space modeling

schema should [18]:

1) Support the representation of arbitrary concerns

2) Support the representation of composite concerns (such as emergent concerns

based on interactions of base concerns)

3) Support the representation of arbitrary relationships among concerns

4) Support the association of concerns to arbitrary software units, work products, or

 system elements

5) Be language independent; that is,

a) Not depend on any particular programming language or other development

formalism

b) Accommodate different development formalisms appropriate to different

stages of the life cycle

c) Be able to capture information that is not necessarily reflected in particular

development formalisms

6) Be methodology independent

7) Be applicable across the software life cycle

8) Support a variety of types of software engineering tasks (as appropriate to the

development methods in which it is used)

The first four of these requirements address needs in the modeling of concerns

and their interrelationships, the last five address needs in the use of the schema

and particular models.

One determinant of when to move from exploring concerns to identifying aspects is

evolution. In particular, changing requirements may add further crosscutting

concerns that, in turn, necessitate restructuring the problem or solution space.

 62

4.6 Architectural Design Enforcement

The construction of complex, evolving software systems requires a high-level

design model. This model should be made explicit[33], particularly the part of it that

specifies the principles and guidelines that are to govern the structure of the

system. In reality, however, implementors tend to overlook the documental design

models and guidelines, causing the implemented system to diverge from its model.

Reasoning about a system whose models and implementation diverge is error

prone - the knowledge we gain from these models is not of the system itself, but of

some fictitious system, the system we intended to build. The system's

comprehensibility is impeded, and so using software engineering techniques goes

against our intended goals - quality, maintainability and cost minimization.

Two major approaches have been suggested to bridge the gap between high-level

design models and the system itself: user invoked i.e. the use of codified design

principles must be supplemented by checks to ensure that the actual

implementation adheres to its design constraints and guidelines versus the

environment invoked i.e. the gap between the architectural model and the

implemented system can be bridged effectively if the model is not just stated, but is

enforced.

These principles cannot be localized in a single module, they must he observed

everywhere in the system, which means that they crosscut the system's

architecture.

Aspect Oriented Programming (AOP) is a programming technique for modularizing

concerns that crosscut the basic functionality of systems. Aspects provide a means

to clearly capture design decisions.

4.6.1 Enforcing Architectural Regularities

 Aspects can be used for:

• Design by Contract : AOP can be used as a mean for the implementation of

the design by Contract design methodology. For example, pre / post

conditions are checked using before and after (respectively) on a method

execution join point.

• Exception Handling: The design regularity of "all exceptions of a certain

type should be handled the same way".

 63

• Observer Design Pattern : The enforcement of the Observer design pattern

[8] is illustrated in the example supplied by the AspectJ team. The

example of this behavioral pattern uses the introduction mechanism as well

as method call receptions.

What all of these examples have in common is the fact that the regularities they

define are of a dynamic nature and are enforced upon a monolithic system. These

examples can be used for enforcing architectural principles, but when attempting to

implement design restrictions with AspectJ, one quickly reaches realms which are

not covered by the literature.

In other words, we are addressing the possibility of using AOP in general, and

AspectJ in particular, in order to solve the problem of design enforcement.

4.7 Avoiding Design Incompatibility

Early Aspects refer to crosscutting properties at the requirements and architecture

level. The term denotes aspect-orientation within the early development stages of

requirements engineering and architecture design. The focus is on the separation

of crosscutting concerns at the high level architecture and the low level design

while offering an approach for aspect-oriented modeling and automated code

generation. Typically, design artifacts that crosscut an architecture cannot be

encapsulated by single components or packages and are typically spread across

several of them and therefore also make design hard to understand and maintain.

This work addresses the specification of crosscutting concerns at the architecture

level in order to maintain the separation of concerns at an early stage in the

software development lifecycle. Crosscutting design artifacts can clearly be

encapsulated avoiding tangling and scattering.

The architecture design is an important step within the software development

lifecycle. OO design has proved its strength when it comes to modeling common

behavior. However, OO design does not adequately address design artifacts that

crosscut an architecture. They cannot be encapsulated by single components or

packages and are typically spread across several of them and therefore also make

design hard to understand and maintain. Crosscutting concerns are present during

all phases of a software development lifecycle, leading to code tangling or code

scattering during the implementation phase and graphical tangling during the

design phase. AOSD is still lacking standardized concepts at the design phase that

 64

would foster the specification of crosscutting concerns at the high-level architecture

and low-level design. Development of large software systems follows processes

that all include activities like requirements engineering, analysis, design and

implementations. Following a design methodology like OOD, and focusing on AOP

at coding level causes a shift of paradigms between OO design and AO code. This

leads to inconsistencies between design and implementation, as the AO paradigm

is not seamlessly supported during the early stages of the development lifecycle.

To avoid the divergence of design models and code, crosscutting concerns must

be identified at the requirements and architecture level and carried forward in the

implementation phase. Concepts are needed for a seamless integration of AO

design and implementation and will be a first step towards an integrated AO

development process. To make AOSD more widely accepted, the different phases

of an AOSD lifecycle have to be integrated more smoothly by supporting the AO

paradigm in every phase. This work includes a design notation for validation of AO

models. Supporting design models and their transition to concrete implementations

makes AOSD more usable, more efficient and more accepted among software

engineers.

When analyzing OO design, one can see that OO modeling tries to adopt many of

the OO programming features for design and analysis. Classes, their structures,

and their relationships are identified and generalization and aggregation

hierarchies are built. OO design techniques are not sufficient when focusing on the

AO paradigm as crosscutting concerns also make design tangled and therefore

hard to understand and maintain. When developing an AO modeling approach, the

following requirements are obvious:

- A sufficient notation should be simple to understand and

straightforward to use for developers who are familiar with common

design notations (such as UML).

- Design modeling should be supported by powerful CASE tools to

improve developer productivity and to ensure syntactical

correctness of the AO model.

- Design notations should support modeling according to the

paradigms behind the most common AO approaches and

languages.

 65

- Models should be easy to read and offer a clear separation of

concerns to avoid crosscutting concerns spanning over many

design elements.

- A direct mapping between the notation and supported

implementation languages should allow automatic code generation

based on the design model.

- The notation should be applicable in real-world development

projects and should be part of an integrated AO development

process.

This work can be seen as a step towards a standardized way to capture aspects at

the design phase of an AO development process. Existing approaches and

prototypes are well aware of the fact that aspect-oriented modeling is a critical part

of AOSD. Obviously, to obtain an AO development lifecycle, the gap between AO

requirements engineering and AOP has to be filled. This work makes a contribution

to the problem of bridging this gap.

4.8 Requirements Validation

In general, modeling is a broad notion that can be involved in various perspectives

of software development, such as design specification, code generation, testing,

and reverse engineering. Models from different perspectives require different level

of details although their structures may appear to be similar. For example, a

traditional state model for design specification does not carry sufficient information

for test generation. The aspect-oriented extensions to state models and UML

are primarily for the purposes of design specification. Under testing, we explore

aspect-oriented state models for testable specification and test generation of

aspect oriented programs.

While AOP provides a flexible mechanism for modularizing crosscutting concerns,

it raises new challenges for testing aspect oriented programs. A fault model has

been proposed for aspect-oriented programming, which includes six types of faults:

incorrect strength in pointcut patterns, incorrect aspect precedence, failure to

establish post-conditions, failure to preserve state invariants, incorrect focus of

control flow, and incorrect changes in control dependencies [67]. This fault model

has not yet constituted a fully-developed testing approach. Control flow graphs

 66

were constructed at system and module levels, and then test suites were derived

from control flow graphs.

While aspects in aspect-oriented programming (AOP) offer an effective way for

modularizing separate concerns, the new programming constructs of AOP

languages introduce numerous opportunities for programmers to bring various

potential faults with respect to aspects . Generally, an aspect-oriented program

consists of aspects and their base classes (or components) that can be woven into

an executable whole. The base classes in an aspect-oriented program can also be

executed independently. From the system architecture perspective, aspects often

crosscut multiple base classes. From the base class perspective, however, aspects

are essentially incremental modifications to base classes with additional operations

and constraints for separate concerns. The incremental modifications of aspects to

base classes can impose a significant impact on the object states of base classes.

Although aspects in AOP add more code to their base classes, they can not only

introduce new object states and transitions, but also remove and update state

transitions. As such, aspects may lead to subtle differences in the sequence of

messages that can be accepted by the base class objects. In particular, aspect-

specific faults likely result in unexpected object states and transitions.

To reveal aspect-specific faults, we need to investigate model-based testing, i.e.

testing whether or not aspect-oriented programs and their base classes conform to

their respective behavior models. Model-based testing is appealing because of

several benefits: (1) the modeling activity helps clarify requirements and enhance

communication between developers and testers; (2) design models, if available,

can be reused for testing purposes; (3) model-based testing process can also be

(partially) automated; and (4) more importantly, model-based testing can improve

error detection capability and reduce testing cost by automatically generating and

executing many test cases.

4.9 AOSDDL Requirements

The primary goal of the work presented here is to develop a generic aspect

oriented design language that can be used to design and build aspect oriented

applications. However, since the prototyping of such a system is impeded by

financial resources and time constraints in the context of a PhD project, the

objective is rather to use open source tools as a base platform and to focus on the

 67

development of a minimal, but extensible design language that may serve as a

flexible platform for future aspect oriented research.

4.10 Summary

This chapter has examined the requirements for aspect oriented software

development and design language in particular.

It discussed the general requirements for aspect oriented systems. These

requirements have been derived from related work and acknowledged publications

in the field. They summarize the general requirements of today’s aspect oriented

systems.

The following chapters present the design (chapter 5) and implementation (chapter

6) of the aspect oriented design language. Both chapters show how AOSDDL fulfils

the requirements defined in this chapter by design and implementation. Finally,

chapter 6 also evaluates to what extent AOSDDL has succeeded in meeting these

requirements.

 68

CHAPTER 5

The AOSDDL
(Aspect Oriented Software Development Design Language)

5.1 Overview
The actual realization of a design language form has been revealed to be non-

trivial. Chapter 3 has described a large variety of design language forms. However,

most of them are very much tailored towards a specific application or application

domain. Moreover, with the exception of very few hardly any of these language

notations have been used outside their own research environment. The

development of a more generic aspect oriented design language requires a wider

and more thorough look at the requirements. Chapter 4 has discussed the

multitude of requirements and has defined the specific requirements for the

development of the Aspect Oriented Software Development Design Language

(AOSDDL).

This central chapter of the work introduces the notations and discusses how it

fulfils the requirements that have been defined above in principle and design and

consequently would be a general purpose AOSD design language (AOSDDL) that

will map AOSD design notations to the existing AOP languages.

5.2 Tools Environment

The Eclipse Platform for Java was used to carry out the implementation and testing

of the abstract notations in AspectJ. To implement graphical notations and

diagrams the Together CASE tool was used. The CASE tool Together from

Borland is an enterprise development platform enabling application design,

development, and deployment. It is extensible through an open Java API offering

the possibility to develop custom software that plugs into the Together platform in

the form of modules. The open API is composed of a three-tier interface that

enables varying degrees of access to the infrastructure of Together.

 69

5.3 AOSDDL Notations

This work specifies an approach for AO modeling to address the specification of

crosscutting concerns at the architecture level in order to maintain the separation

of concerns at an early stage in the software development lifecycle. A key intention

is to offer standard development tool support and interchangeability among various

CASE tools, thus an extension to UML was developed without changing its

metamodel specification to achieve standard UML conformity. Using UML as a

modeling language improves developer productivity and offers high acceptance, as

it is the industry-standard modeling language for the software engineering

community. When using standard UML for aspect-oriented modeling, developers

do modeling by using familiar tools and environments to gain all the benefits they

are used to in OO design. UML is an extensible modeling language that enables

domain-specific modeling which raises its suitability as a modeling language for

supporting aspect-oriented modeling.

Another important goal was to gain the benefits both of code and design reuse of

AO software, including the ability to reuse aspect and base elements separately.

Thus, aspects and base elements should be completely kept apart and

independent of the implementation technology in order to simplify the replacement

of the AO language. A clear separation of the language dependent crosscutting

parts eases the support of many different AO languages and concepts. This work

focuses on adopting AspectJ concepts for the implementation language

dependent parts of AOSDDL. For the support of other AO concepts (such as

Hyper/J) is considered and part of some future work. AOSDDL considers the fact

that crosscutting concerns tend to affect multiple classes in a system. Since a

concern itself can consist of several classes and since all of these classes may be

associated with the class the concern crosscuts, the module construct for a

concern should be higher-level than a class. Otherwise associations modeled on

class-level would supersede the logical grouping of the classes belonging to one

concern. This would make the design models hard to read and lead to graphical

tangling of crosscutting concerns instead of a clear separation.

 70

5.3.1 Symbols for AOSDDL Notations

 Package

The Package notation is either base package containing business logic or

aspect package containing cross cutting concern or a connector that links

aspects and base elements.

 Class

The class is either

• Introduction class that defines the rules for Aspect J’s introduction

mechanism or

• Pointcut class that defines execution points in the control flow of the

program.

• Advice class that defines the code to be executed at the pointcuts defines

in the pointcut class.

 Joint Point

Joint points represent points in the dynamic execution of the program.

 Connector

 71

 (generalization)

 (association) Relationships

 (dependency)

 (aggregation)

The relationships is defined to indicate either dependency or generalization

or association or aggregation.

 Note

Attaching comments to an element or a collection of elements.

 Stereotype aspect

Stereotype aspects extends aspects to define new modeling elements like

boundary, control or entity aspects during software development.

 72

 Constraints

Defining constraints in aspects.

 Weaving advice

To Implement weaving mechanism for advice in Aspect Oriented Programming.

 <<use>> <<use>>

 Figure 5.1 Using Package and Connector

Figure 5.1 provides an overview of the notation and its focus on using package and

a connector. AOSDDL includes a base package (having the business logic), an

aspect package (having the crosscutting concern) and a connector to link aspects

and base elements. Being one of the most popular Aspect Oriented language,

AspectJ has been used to describe and present the AOSDDL notation model. Both

the aspect package and the base package are used to express any crosscutting

concern that can occur and might affect the system. Further, they can contain

any valid UML design construct that might be describing either the complete

Aspect Package Base Package

Connector

 73

system or a part of the system based on Aspect Oriented Design. The aspect can

be modeled as an individual entity or independently of any design it may potentially

affect or be a part of. The connection between base design and aspect design is

specified separately. Support of different AO technologies is therefore rather

simple and straightforward, as it is only the connector’s syntax that has to be

changed. This connector will hide the details of the interaction between

components. To model any design construct, the connector can be considered in

terms of a client connector that communicates with the aspect packages via the

<uses> relationship. The type of connector used to interconnect aspect

components also influences the performance of component based systems. This

kind of separation enables high degree of reusability of both the aspect and base

elements since the connector notation (element) is the only crosscutting element.

This way of focusing on UML notations and standard notation of packages as a

single unit leads to design models that are easy to read, as they avoid graphical

tangling. Additionally, the connector encapsulates the underlying implementation

technology using AspectJ.

As described above, the AOSDDL notation can contain the following classes that

conform to the concepts AspectJ offers for the specification of weaving rules:

1. The Introduction class, which defines the rules for AspectJ’s introduction

mechanism.

2. The Pointcut class, which defines execution points in the control flow of the

program.

3. The Advice class, which defines the code to be executed at the pointcuts

defined in the Pointcut class.

All classes contain operations with special semantics to specify how aspect and

base elements have to be recomposed. The complete syntax of the AspectJ

specific connector will not be presented here, however a few examples described

here, provide a macroscopic view of how the notation can be used and shows

some of the most important constructs.

AOSDDL is a simple and powerful notation for aspect-oriented modeling. In order

to reduce errors when mapping models to code and offer low-level architecture

design support, the development of code generator is part of a future work.

 74

5.4 Other Design Notations

The following issues were considered for modeling a general purpose AOSD

design language (AOSDDL) with regard to a programming language namely,

AspectJ and a standard Object Oriented design language namely, UML quite

widely in use in the software industry:

• Mapping AOP to Aspect Oriented UML Extensions

• Identifying Software Concerns

• Design Language Issues for Component Based software

Development

• Mapping UML extensions through composition patterns to Aspects

• AspectJ Extensions for Distributed Computing

The issues basically provide a broad outline that sums up the parameters for

various concerns and scenarios prevalent in the software industry and how

AOSDDL will address them under various forms.

5.5 Mapping AOP to Aspect Oriented UML Extensions

Aspect-oriented programming (AOP) is a new software development paradigm that

aims to increase comprehensibility, adaptability, and reusability by introducing a

new modular unit called "aspect", for the specification of crosscutting concerns.

AspectJ is a programming language that supports the aspect-oriented

programming paradigm by providing new language constructs to implement

crosscutting code. At present, no design notation is available that appears to be

appropriate for the design of aspect-oriented programs in AspectJ. The need of

such a design notation is obvious. First, it would ease the development of AspectJ

programs. A graphical notation helps developers to design and comprehend

Aspect/programs. Further, it would facilitate the perception of aspect-orientation. A

design notation helps developers to assess the crosscutting effects of aspects on

their base classes. Its application carries over the advantages of aspect orientation

to the design level and facilitates adaptation and reuse of existing design

constructs.

 75

The approach presented here extends the Unified Modeling Language (UML) with

the aspect-oriented design concepts as they are specified in AspectJ (in the

following, the approach called the "aspect-oriented software development design

language", or AOSDDL for short). The approach reproduces these concepts by

extending existing UML concepts using UML's standard extension mechanisms.

Doing so assures an immediate understanding of aspect-oriented design models

and enables rapid support by a wide variety of CASE tools.

5.5.1 Problem Identification

The work is organized in the following way. An UML implementation of AspectJ's

weaving mechanism is described. A new relationship is introduced to represent this

weaving mechanism. Next, existing approaches to extend the UML with aspect-

oriented design concepts are regarded with respect to their compliance with

AspectJ's semantic.

Concise and independent examples were created and the same were

implemented in both UML and AspectJ.

5.5.2 Basic Notations for AspectJ

UML representations are presented for AspectJ’s basic abstractions, such as

connector, join points, pointcuts, pieces of advice, introductions, and aspects.

Connector

Deploying an aspect within an application is done by making use of connectors. A

connector contains three types of condtructs: one or more initializations, zero or

more behaviour method executions, and finally any number of aspectJ language

constructs.

The advantage of permitting the calling of behavior methods in the connector is

that it enables advanced users of an aspect to tightly control the execution of the

aspect-behavior. The default-method on the other hand, provides an easy way for

deploying an aspect within an application, without needing any knowledge about

how the aspect-behavior is executed.

 76

 connector PrinterController {
 AccessManager.AccessControl control =
 new AccessManager.AccessControl(* Printer.*(*));
 contro.replace();
 }
 Figure 5. 2: Connector Syntax

Join Points

Looking for an appropriate UML representation for join points, links can be

identified as the one model element which represents them best.

In the UML, links serve as communication collection for stimuli. A stimulus defines

a communication between two instances that is dispatched by an action, such as

an invocation of an operation, a request to create or to destroy an instance, or a

raise of a (asynchronous) signal. This means that control is passed from one

instance to another via communication links. Hence, links in the UML represent

"principled points in the dynamic execution of a program" just like join points do in

AspectJ. And just like join points in AspectJ, control passes each communication

link in the UML two times, once the control is passed down to the called instance,

and once control flows back up again.

However, whether a link actually represents a join point depends on the exact

communication that is dispatched over the link. A link used to communicate the

destruction of an instance, for example, does not represent a join point in the

sense of AspectJ. AspectJ's join point model defines precisely which kind of

communications promotes an ordinary link to a representation of a join point. In the

UML some communications such as field references or field assignments do not

dispatch stimuli. This means that control flow passes no link at all, and no link can

be assigned to represent the respective join points. To solve this problem, in the

AOSDDL, these communications are stereotyped as "pseudo" invocations of

"pseudo" operations that have no other purpose than to read or write (respectively)

a specific field. Similar, no link can be identified to represent execution and

initialization join points. Considering that the execution of an operation or a

constructor or the initialization of an object never occurs without a (preceding)

operation or constructor call, it is legitimate to use one link (i.e., the one associated

with the call or create action) to represent all two or three join points. To represent

 77

the order in which control passes these join points, corresponding call, execute,

and initialize actions are organized to an UML action sequence.

Join points may be visualized in UML interaction diagrams by highlighting

messages. Considering that messages are associated with communications and

require the existence of links, it is proper to highlight messages in collaborations to

indicate join points.

 issue()
 <create>

 constructor call
 <issue> constructor execution

 <initialize> object initialization

 attribute assignment <set> set (att,val)

 attribute reference <get> get(att)

 val

 operation notify <notify> dooperation()

 <execute> <execute> operationexecution

 <dispose>

Figure 5.3: Representing Join Points in Sequence Diagrams

Pointcuts

A pointcut is a set of join points, which are well defined instants in the execution of

the program. Abstract pointcuts can be labeled via template parameters. In the

AOSDDL, pointcuts are represented as operations of a special stereotype, named

<pointcut>. This is legitimate due to the strong structural resemblance of pointcuts

to standard UML operations. Just like standard UML operations, pointcuts are

Journal: j1

Observer: o1

 78

features of a particular classifier (i.e.. an aspect), they may have an arbitrary

number of (output-only) parameters, and their declaration comprises a signature

and an "implementation" (see Figure 5.4).

 (output-only) parameters

pointcut stateChanges (Subject s) :

 signature target (s) && call (void Journal.issue());

 pointcut declaration(“implementation”)

 Figure 5.4: Mapping of Pointcuts to Operations

The <pointcut> stereotype captures a new semantic and specifies several

additional constraints. One of those constraints declares that operations of

stereotype <pointcut> must be implemented by methods of a special stereotype

that equips the standard UML Method meta-class with an additional property

named "base" to hold the "implementation" of the pointcut (i.e., its declaration).

Advice

Advice in AspectJ is code similar to an operation that is, code executed when a

joinpoint is reached. Standard UML has very high degree of support for depicting

interactions. This support is used to depict the behaviour of an advice. The

before, after and around constructs of AspectJ are easily mapped using the

interaction diagrams. Similar to a pointcut, an advice is represented as an

operation of a special stereotype, named, <advice>. A piece of advice is a feature

of a particular classifier (i.e., an aspect), it may have an arbitrary number of

parameters, and its declaration comprises a signature and an implementation (see

Figure 5.5). In contrast to a pointcut, an advice is also semantically comparable to

a standard UML operation because it defines some dynamic feature that effects

behavior. However, there is a semantic difference between an advice and an

operation. One important difference is, for example, that an advice does not have a

unique identifier. This circumstance may cause conflicts with existing well-

formedness rules of the UML, stating that two operations (i.e., two pieces of

advice) in the same classifier (i.e., aspect) must not have the same signature. To

avoid such conflicts, the AOSDDL supplies an advice with a "pseudo" identifier.

Another difference pertains to inheritance. Since in AspectJ a piece of advice has

 79

no unique identifier in the super-aspect, it cannot be overridden in the sub-aspect.

The <advice> stereotype captures this semantic difference by constraining that an

advice in the AOSDDL (although having a "pseudo" identifier) cannot be

overridden. Then, advice declarations in AspectJ contain pointcut declarations that

specify the set of join points at which the advice is to be executed. Therefore,

operations of stereotype <advice>, must be implemented by methods of a special

stereotype that equips the standard UML Method meta-class with an additional

property named "base" to hold the pointcut declaration. Note how this proceeding

coincides with the way that pointcuts are implemented in the AOSDDL. In fact, the

same method stereotype is used for the implementation of both pieces of advice

and pointcuts.

 “pseudo “ identifier parameters implementation

 advice_id01 after (Subject s) : stateChanges(s) {…}

 signature pointcut declaration

 Figure 5.5: Mapping of Advice to an Operation

Pointcut designators

A symbolic name to identify an pointcut. Name based pointcut designators

correspond to binding named operations. Further, the standardized UML

semantics are used to depict pointcuts designations.

Introductions

In AspectJ, introductions are used to insert members (such as constructors,

methods, and fields) and relationships (such as generalization/specialization and

realization relationships) to the base class structure.

Since introductions in AspectJ may insert both members and relationships, the

parameterized model element destined to represent introductions in the UML must

be able to describe members and relationships, too. After reviewing the UML

specification, parameterized collaborations can be identified to meet these

requirements best. In the UML, collaborations are used to specify a set of

 80

instances together with their members and relationships (i.e., a structural context)

and a set of interactions that describes some communication between these

instances (i.e., some behavior performed within the structural context). So,

collaboration templates prove to be suitable to specify structural and behavioral

characteristics of introductions. The AOSDDL specifies an extra stereotype of

collaboration templates, named <<introductions>>, to capture the particular

semantic of introductions.

The AOSDDL specifies a special binding mechanism for collaboration templates of

stereotype, <<introduction>>(see Figure 5.6). Note that introductions in AspectJ

are conceptually always bound to (a fixed set of) actual base classes, which are

specified as type pattern in the introduction declaration.

 <Introduction>
 Journal

 getData()

 this

 <Introduction>
 IssueLabel

 update() BaseType
 IssueCycle()

 this

 Figure 5.6: Design of Introductions

 Subject

 BaseType
Attributes
Operations
 +Object getData()

 BaseType

<ContainsWeavingInstructions>
BaseType {base=Journal}

 Observer

 BaseType
Attributes
Operations
+void update()

 BaseType

<ContainsWeavingInstructions>
BaseType {base=issueLabel}

 81

Accordingly, in the AOSDDL, template parameters of a collaboration template

stereotyped with <<introduction>> are required to be of a special stereotype,

named <containsWeavinglnstructions>. That stereotype equips the standard UML

TemplateParameter metaclass with a supplementary meta-attribute, named

"base", to hold the type pattern that specifies the set of actual base classes to be

crosscut. A collaboration template of stereotype <<introduction>> is generally

considered to be implicitly bound to the actual arguments specified in that "base"

expression. Thus, it is proper to use introduction templates in design models

directly.

Aspects

In the AOSDDL, aspects are represented as classes of a special stereotype,

named <<aspect>>. This is legitimate due to the strong structural similarity

between aspects and standard UML classes. Just like standard UML classes,

aspects serve as containers and namespaces for various features, such as

attributes, operations, pointcuts, pieces of advice, and introductions. And just like

them, they may participate in associations and generalization relationships.

However, there are differences between aspects and classes concerning their

instantiation and inheritance mechanisms. For instance, aspect declarations in

AspectJ contain instantiation clauses that specify the precise way in which an

aspect is to be instantiated (e.g., per object, per control flow, or once for the global

environment). Further, sub-aspects in AspectJ inherit all features from their super-

aspects, yet only ordinary Java operations and abstract pointcuts may be

overridden. The new <aspect> stereotype captures these semantic differences.

Besides that, the stereotype equips the standard UML Class meta-class with a

couple of additional meta-attributes to hold the instantiation clause, the pointcut

declaration contained in that instantiation clause, and a boolean expression

specifying whether the aspect (not just its introductions) may access the members

of the base classes as a privileged "friend".

In the AOSDDL, the crosscutting effects of aspects and its components are

indicated by <<crosscut>> relationships.

 82

5.5.3 Weaving Mechanism of AspectJ

A relationship is introduced denoting the crosscutting effects of aspects on their

base classes. Both the weaving mechanism and the relationship are derived from

weaving instructions specified in the aspects.

5.5.4 Weaving Advice

The AOSDDL implements AspectJ's weaving mechanism for advice with help of

collaborations. For weaving purposes, the collaboration describing the behavior of

the base classes' operations is split at first. Splitting always takes place at a

particular join point. Depending on the kind of advice to be inserted, the

collaboration is split before, after, or (in the case of around advice) before and after

the particular join point Then, the split fragments are composed with the

collaboration describing the advice to form a new collaboration. In the composition

of collaborations can be accomplished by identifying and matching instances that

participate in each of the collaborations to be composed.

To explicitly state the order of weaving, the AOSDDL utilizes UML use cases. In

the UML use cases are used to define a piece of behavior of a semantic entity,

e.g., the operation of a class or the advice of an aspect. (Super-ordinate) use

cases can be split into a set of smaller (sub-ordinate) use cases using refinement

relationships. Further, use cases may (unconditionally) include the behavior

defined in other use cases by means of include relationships. At last, a use case

may augment the behavior of another use case by means of extend relationships.

Extend relationships provide a condition that must be fulfilled for the extension to

take place. To represent the weaving order in the UML, the AOSDDL refines the

use case describing the base classes' operations (for example, the "select" use

case in Figure 5.7) into three sub-ordinate use cases; one describing the behavior

at the join point (“select...part 2"), the others describing the behavior before

("select..part 1") and after that join point “select_part 3"). Then, the AOSDDL

composes a new use case ("wovenSelect") that includes the behavior (i.e., the use

cases) of both the base classes' operations and the advice. In the UML,

collaborations may be specified to explicitly describe how the included use cases

 83

cooperate to perform the behavior of the including use case. Figure 5.8 shows

three collaborations specifying

 <refine> <refine> <refine> <include>
 [attr]

 <include> <include> <include> <extend>
 if called by
 [attr] <extend> this(…)
 on “proceed” or in flow(…)

 or …

Fig 5.7: Weaving Advice with UML Use Cases

 <realize>

 <realize> <realize>

 Fig 5.8. Specifying Weaving Order

 Fig 5.8: Specifying Weaving Order

select
 <advice>
advice_id01after

sel_part3

 wovenselect

sel_part2 sel_part1

 wovenselect

 3

1 2

part1 part2 part3

<advice>
before

 1

 2 3

Part1 part2 part3

<advice>
after1 2

 <
 <extend>
 on proceed

part1

part2

part3
<advice>
 around

 84

how the included use cases cooperate in case of a before, after, or around advice

to perform the behavior of the including use case (i.e., of the crosscut operation of

the base classes). Special regards must be given to pieces of around advice and of

advice that are attached to context-based pointcuts. In these cases, the woven use

case is generated by means of extend relationships that precisely specify under

which circumstances the behavior of the extending use case is to be performed. If

an advice is attached to a context-based pointcut, for example, the extend

relationship's condition reflects on the dynamic context in which extension has to

take place. For an around advice, the condition generally states that extension

shall be performed only if 'proceed' is called. Figure 5.7 illustrates how these

conditions are expressed in UML use case diagrams.

The weaving process may lead to multiple collaborations. This is particularly likely

in the case of dynamic crosscutting based on a join point's current execution

context (i.e., when a piece of advice is attached to a context-based pointcut).

Multiple collaborations may be needed also to describe all possible flows of control

through an around advice. This means no conflict with the UML specification,

though, as it explicitly allows the existence of multiple collaborations for a single

use case.

5.5.5 Weaving Introductions

Just like weaving of advice, the AOSDDL implements weaving of introductions with

help of collaborations. Recall that introductions are represented in the AOSDDL as

collaboration templates of stereotype <<introduction>>. Thus, weaving of

introductions is realized by instantiating of the collaboration template in the base

classes namespace. Before the instantiating the base classes (specified in

template parameter's "base" tag) are supplemented with the features and

relationships specified in the collaboration template so that the design model will

not be ill-formed after the weaving process.

 85

 <refine> <refine>

 <include> <include>

 <refine> <refine>

 <include> <include> <include> <include>

 Fig 5.9: Weaving Introductions with UML Use Cases

 Just like the weaving mechanism of advice, the weaving mechanism of

introductions is represented in the AOSDDL in a more abstract manner using UML

use cases. In Figure 5.9 for example, the use cases describing the aspects are

refined into sets of (subordinate) use cases each specifying the behavior of one

individual introduction contained in the aspects. These subordinate use cases

(together with the use cases describing the base classes) are then included into

new (woven) use cases describing the behavior of the woven (i.e., crosscut) base

classes.

5.5.6 Weaving Relationship

 <expect>
SubjectObserverProtocol

<introduction>
 Subject

<introduction>
 Observer

 <aspect>
SubjectObserverProtocol[imp]

Journal
<introduction>
 Journal

<introduction>
 issueLabel

issueLabel

 wovenJournal wovenissueLabel

 86

The AOSDDL introduces a new relationship (named "<<crosscut>>") to the UML to

signify the crosscutting effects of aspects on their base classes. This relationship is

specified in imitation of the extend relationship that is already specified by the UML

specification. It is no special stereotype of the extend relationship, though, since

extend relationships may only exist between two use cases. Crosscut

relationships, however, must connect other kinds of classifiers, as well (such as

classes, interfaces, and aspects). Similar to extend relationships, the crosscut

relationship is a directed relationship from one classifier (i.e., an aspect) to another

classifier (i.e.. a base class) stating that the former classifier affects the latter

classifier (in the way that the former classifier is woven into the latter classifier). At

the same time, though, the latter classifier remains independent from the former

classifier (in the way that its implementation or functioning does not require the

presence of the former classifier). Instead, the opposite is true. The crosscut

relationship signifies that the former classifier (i.e., the aspect) requires the

presence of the latter (i.e., the base class). These characteristics make (the extend

relationship as well as) the crosscut relationship distinct from other relationships in

the UML, such as the various kinds of dependency relationships. The crosscut

relationship states further that the former classifier (i.e., the aspect) is woven into

the latter classifier (i.e., the base class) according to the weaving mechanism

described above. Note that crosscut relationships and weaving instructions are

related to each other by a one-to-one mapping. So (provided with appropriate tool

support), designers may specify the crosscutting effects o£ aspects either by

drawing crosscut relationships or by specifying weaving instructions.

5.6 Identifying Software Concerns

Separation of concerns (SOC) is a long-established principle in software

engineering. It has received widespread attention in modem programming

languages, with constructs such as modules, packages, classes, and interfaces,

which support properties such as abstraction, encapsulation, and information

hiding. SOC has also received attention in software architecture and design, with

techniques such as composition filters and design patterns. While advances in all

of these areas have had significant benefits, problems related to inadequate

separation of concerns remain. This has led to work on "advanced separation of

concerns", (ASOC), aspect-oriented programming, and multidimensional

 87

separation of concerns. These bring a number of innovative ideas to programming

in particular and to software development in genera, which are now beginning to

mature and coalesce under the heading of aspect-oriented software development

(AOSD).

Although ASOC has been emphasized in recent work, concerns themselves have

remained something of ignored. Current ASOC tools provide only limited support

for explicit concern modeling, representations of concerns tend to be tied to

particular tools or artifacts, and concern modeling usually occurs just in the context

of a particular type of development activity. such as coding or design. A global

perspective on concerns, that spans the life cycle and is independent of particular

development tools or artifacts, has been lacking.

5.6.1 Concern Modeling Schema Framework

During software development [18], concerns arise at all stages of the life cycle,

from requirements specification, through design, coding, and testing, to

maintenance and evolution. Concerns also span multiple phases of the life cycle,

relate to multiple instances and types of artifacts, and crosscut phases and artifacts

in different ways. Finally, concerns are dynamic and relative, that is, that the

concerns relevant to a particular software unit will change over time and that they

also depend on the perspective or purpose of the user or stakeholder who

considers the software.

This implies that a general-purpose concern modeling framework that may be a

part of the design language should support the representation of arbitrary

concerns, the representation of composite concerns, support the association of

concerns to arbitrary software units, work products, or system elements, language

independent, methodology compatible,applicability across the software

development life cycle, support the representation of arbitrary relationships among

concerns and widely supported by various software engineering phases.

5.6.2 Applications

Concern modeling framework has many potential applications in software

development. It provides a form of documentation for basic information about

 88

concerns and their relationships. This kind of model can afford a global

perspective that draws on, combines, and relates concerns from multiple work

products and life cycle stages.

This kind of concern modeling framework that contains physical concerns

(representing work products) and mapping relationships (that relate logical

concerns to physical concerns) can serve as a semantic hyperindex that allows

concerns to be traced into work products and development tasks. This supports

traceability of concerns into and across work products and stages, and it makes it

possible to see how concerns arise, are propagated, and possibly dropped across

stages and iterations of the life cycle.

Mapping relationships further allow us to assess the impact on the physical level of

changes on the logical level. For example, if we no Ionger care about robustness

and lose that motivation for a concern such as Iogging, then we may be able to

safely drop the software units that implement that concern. However, we may also

find that a unit considered for deletion also contributes to other purposes (as

logging may also support auditing) and so should be retained.

Another application is in organizing code (or other units) for purposes of concern-

driven program composition.

5.7 Design Language Issues for Component Based software

Development

Component based software development (CBSD) and more recently, aspect-

oriented software development (AOSD) have been proposed to tackle problems

experienced during the software engineering process. When applying CBSD, a full-

fledged software-system is developed by assembling a set of premanufactured

components. Each component is a black-box entity, which can be deployed

independently and is able to deliver specific services. The deployment of this

paradigm drastically improves the speed of development and the quality of the

produced software. AOSD on the other hand, tries to improve the separation of

concerns in current software engineering methodologies, by providing an extra

separation dimension along which the properties of a software-system can be

described.

 89

Currently available AOSD-research mainly focuses on object oriented software

development (OOSD). CBSD however, also suffers from the problems that arise

with the tyranny of the dominant decomposition. Similar to OOSD, aspects such as

synchronization and logging are encountered, which crosscut several components

from which the system is composed. Consequently, the ideas behind AOSD should

also be integrated into CBSD. The other way around, namely the integration of

CBSD within AOSD, is a valuable concept as well. CBSD puts a lot of stress on the

plug-and-play characteristic of components; for example, it should be possible to

extract a component from a particular composition and replace it with another one.

Introducing a similar plug-and-play concept in AOSD, would make aspects

reusable and their deployment easy and flexible.

Combining the AOSD and CBSD principles is a valuable contribution to both

paradigms. However, currently available AOSD and CBSD research cannot be

straightforwardly integrated, this because of several restrictions which are imposed

by the existing approaches:

• The deployment of an aspect within a software-system is at this moment

rather static. In AspectJ for example, an aspect looses its identity when it is

integrated within the base-implementation of a software system. This

makes it very difficult to extract an aspect from a particular composition and

to replace it afterwards with a totally different aspect. This plug-and-play

property is vital in some environments where the dynamic characteristic of

components is considered an essential requirement.

• Most AOSD approaches describe their aspects with a specific context in

mind. Therefore, it is impossible to reuse aspects. This is not acceptable

within CBSD, since every component of a software-system should be

independently deployable.

• The communication between the various components from which an

application is composed, is in most cases specific to the employed

component model. Java Beans for instance, makes use of an event-model.

 90

Currently available AOSD-technologies however, are not suited to deal with

these specific kinds of interactions.

To integrate the ideas of AOSD into CBSD, we need a new aspect-oriented

implementation language, designed especially for CBSD. This language should

enable the development of software along another separation dimension, on top of

the Java class hierarchy. It stays as close as possible to the regular Java syntax

and introduces two concepts: aspect beans and connectors. An aspect bean is a

regular Java bean that is able to declare one or more logically related hooks, as a

special kind of inner classes. Hooks are genetic and reusable entities and can be

considered as a combination of the AspectJ's pointcut and advice. Since aspect

beans are described independent from a specific context, they can be reused and

applied upon a variety of components. The initialization of a hook with a specific

context is done by making use of connectors.

To make such a language operational, we need a new component model that

already incorporates the necessary traps to enable dynamic aspect application and

removal. Another advantage of this new component model will be that component

developers are still able to guarantee QOS for their components. However, the

dynamicity and flexibility gained by using this new component model comes with a

price in the form of large performance overhead compared to static languages, like

for example AspectJ. As a consequence, this approach can be limited in use

where limited resources is an issue.

5.8 Mapping UML extensions through composition patterns to
Aspects

Requirements such as distribution or tracing have an impact on multiple classes in

a system and are described, in general, as cross-cutting requirements, or aspects.

Scattering and tangling make object-oriented software difficult to understand,

extend and reuse. Though software design is an important activity within the

software lifecycle with well-documented benefits, those benefits are reduced when

cross-cutting requirements are present. One approach to mitigate these problems

is by separating the design of cross-cutting requirements into composition

patterns.

 91

Composition patterns require extensions to the UML, and are based on a

combination of the subject oriented model for composing separate, overlapping

designs, and UML templates. We also show how composition patterns map to one

programming model that provides a solution for separation of cross-cutting

requirements in code—aspect-oriented programming. This mapping serves to

illustrate that separation of aspects may be maintained throughout the software

lifecycle.

A composition pattern is a design model that specifies the design of a cross-cutting

requirement independently from any design it may potentially cross-cut, and how

that design may be re-used wherever it may be required. Composition patterns are

based on a combination of the subject-oriented model for decomposing and

composing separate, potentially overlapping designs, and UML templates.

5.8.1 Mapping To AspectJ

At the conceptual level, composition pattern design and aspect-oriented

programming also have the same goals. Composition patterns provide a means for

separating and designing reusable cross-cutting behaviour, and aspectoriented

programming provides a means for separating and programming reusable cross-

cutting behaviour. The advantages of this are two-fold. First, from a design

perspective, mapping the composition pattern constructs to constructs from a

programming environment ensure that the clear separation of cross-cutting

behaviour is maintained in the programming phase, making design changes easier

to incorporate into code. Secondly, from the programming perspective, the

existence of a design approach that supports separation of cross-cutting behaviour

makes the design phase more relevant to this kind of programming, lending the

standard benefits of software design to the approach.

5.9 AspectJ Extensions for Distributed Computing

Current programming systems do not provide mechanisms for modularizing

crosscutting concerns in distributed systems and thus they are major sources of

low readability and maintainability of the software [66]. Issues like transactions,

 92

security, and fault tolerance are typical crosscutting concerns in distributed

systems.

Many crosscutting concerns also arise during unit testing of distributed systems.

The code for unit testing includes typical crosscutting concerns that AspectJ can

deal with. AspectJ is a widely used language for aspect-oriented programming

(AOP) in Java. Unfortunately, if we use AspectJ to modularize testing code for

distributed software, the code ("aspect") can be somewhat modular but it often

consists of several sub-components distributed on different hosts. They must be

manually deployed on each host and the code of these sub-components must

include explicit network processing among the sub-components for exchanging

data since they cannot have shared variables or fields. These facts complicate the

code of the aspect and degrade the benefits of using aspect oriented

programming.

5.9.1 Implications on Network Processing

AspectJ is a useful programming language for developing distributed software. It

enables modular implementation even if some crosscutting concerns are included

in the implementation. However, the developers of distributed software must

consider the deployment of the executable code. Even if some concerns can be

implemented as a single component ("aspect") at the code level, it might need to

be deployed on different hosts and it would therefore consist of several sub

components or sub-processes running on each host. Since Java (or Aspect J)

does not provide variables or fields that can be shared among multiple hosts, the

implementation of such a concern would include complicated network processing

for exchanging data among the sub components.

Programming frameworks such as Java RMI do not solve this problem of

complication. Although they make details of network processing implicit and

transparent from the programmers' viewpoint, the programmers still must consider

distribution and they are forced to implement the concern as a collection of several

distributed sub-components exchanging data through remote method calls. The

programmers cannot implement such a concern as a simple, non distributed

monolithic component without concerns about network processing. This is never

 93

desirable with respect to aspect orientation since it means that the programmers

must be concerned about distribution when implementing a different concern.

5.10 Summary

AOSDDL attempts to reproduce the semantic of AspectJ in the UML. It provides

suitable representations for all components of an aspect (such as join points,

pointcuts, pieces of advice, and introductions) as well as for the aspect itself.

These representations are extended from existing UML concepts using the

standard UML extension mechanisms. This way, aspects may be fully specified in

concise units in an UML design model, thus carrying over the advantages of

aspect-oriented modularity (such as higher comprehensibility, adaptability, and

reusability) to the design level.

Concerns represent the "matters of interest" in a software system, and they arise

and pertain throughout the software life cycle. The concern space models have

many applications. Generally they embody knowledge about a software system

and its components and in effect provide a semantic hyper-index into work

products and other resources. This information can support of many software

development tasks, such as rationale capture, impact analysis, change

propagation, and software composition and decomposition. These tasks are useful

in initial system development but are especially important for "downstream"

software processes such as maintenance, extension, adoption, customization,

integration, and reuse. Concern-space modeling is already being applied within

individual tools; sooner it will eventually provide a framework for integrated

software development environments.

To integrate the ideas of AOSD into CBSD, we need a new aspect-oriented

implementation language, designed especially for CBSD. To make such a

language operational, we need a new component model that already incorporates

the necessary traps to enable dynamic aspect application and removal. However,

the dynamicity and flexibility gained by using this new component model comes

with a price in the form of large performance overhead compared to static

languages, like for example AspectJ. As a consequence, this approach can be

limited in use where limited resources is an issue.

 94

Software design is an important activity in the development lifecycle but its benefits

are often not realized. Scattering and tangling of cross-cutting behaviour with other

elements causes problems of comprehensibility, traceability, evolvability, and

reusability. Attempts have been made to address this problem in the programming

domain but the problem has not been addressed effectively at earlier stages in the

lifecycle. Composition patterns presents an approach to addressing this problem at

the design stage.

AspectJ extensions for identifying join points in the execution of a program running

on a remote host can simplify the description of aspects with respect to network

processing if the aspects implement a crosscutting concern spanning over multiple

hosts.

Further, this chapter has presented the design of AOSDDL, an aspect oriented

design language. The primary focus of this design language is to provide a highly

flexible and extensible set of notations suitable for aspect oriented software

development in all real world scenarios, suitable as a research platform for aspects

that can form the basis for further research into aspect oriented systems and

software engineering in general.

The following chapter continues this thesis with an overview of the AOSDDL

prototype implementation and its evaluation. Due to the broad scope, the prototype

implementations serve mainly as proof of concept for key mechanisms and design

decisions of AOSDDL form.

 95

CHAPTER 6

Implementation and Evaluation

6.1 Overview
This chapter describes the ongoing efforts to engineer a prototypical realization of

the AOSSDL design language. The previous chapter has presented the design and

notations of this language. Due to the extent of the AOSDDL structure, the

prototyping implementations focus primarily on validating the key aspects of the

language by implementation.

Also present in this chapter is the evaluation of the AOSSDL structure and the

prototype implementation as described in the previous chapter and this chapter.

Since the main objective of this work was to design an aspect oriented software

development design language from the ground up, it has not been feasible to fully

realize such a language. As a consequence, the evaluation of the AOSDDL

structure is to a large extent a theoretical analysis.

6.2 Processing and Test Environments

The operating systems used is Windows XP edition. The Eclipse Platform for Java

[68, 69, 70, 71, 72, 73, 74, 75] was used to carry out the implementation and

testing of the abstract notations in AspectJ. To implement graphical notations and

diagrams the Together CASE tool [76] was used. Moreover, the implementation

tests can also be conducted under Linux environment by the very nature of it

being open source.

6.3 Mapping Learning Resource Center (LRC) Design to Aspects

We now look at an example application problem that demonstrates

implementation of aspects for a learning resource center that provides services to

its customers in the form of periodicals, books, newsletters and magazines. It

shows how cross-cutting requirements may be designed independently of any

base design, making aspect design truly reusable.

 96

This learning resource center library has various resources (books) of which all

copies are located in the same room and shelf. An Information officer handles the

maintenance of the association between these resources and their locations. The

Information officer also maintains an up-to-date view of the lending status of copies

of books, periodicals and journals.

6.3.1 Functional Decomposition

Based on the problem definition above the following types of services will be

required:

Finding resources on a topic An search operation that takes partial or incomplete

description of the resources and lists accurate matches in the form of books or

journals.

Getting list of Journals An search service that lists all the journal issues for a

particular publishing month (quarterly / bi-monthly etc). The user will be able to

filter the selections based on the criteria specified regarding the journal details.

Upcoming Issues This will list the future issues for publication and the issue

month.

Authentication Before providing any kind of services the application needs to

verify the credentials (username and password) to it.

Logging A logging function requirement to keep track of the calls made to the the

webservices. These kind of features are useful to track the preferences of

cardholders and resources in demand type of statistics from within the application.

6.3.2 Design Diagrams for Learning Resources Center (LRC)

Figure 6.1 shows the LRC design and figure 6.2 shows the design hierarchy

diagram for the learning resource center(LRC). To avoid line cluttering on the

hierarchy diagram, we have omitted a few dependencies.

 97

 OnO

 Figure 6.1: Learning Resource Center (LRC) Design

6.3.3 Aspects Modularization and Dependency Effects of Aspects

We perform two forms of modularization namely, logging and authentication using

aspects to remove dependencies between the modules. Using pointcut-advise

mechanism we remove the dependencies between the various modules. A logging

aspect that captures the calls to the webservices directly from the design rules for

JournalFind. The logging aspect module hooks these calls with the module

WebServicesLogger. Secondly, for authentication we use introductions to inject the

Learning Resource
Center (LRC)

 one

 many

Journal

+ title
+ author
+ barCode

+ getTitle()
+ getAuthor ()
+ getBarCode ()

Position

+ cellNumber
+ shelfNumber

+ addJournal ()
+ removeJournal ()
+ modifyJournal ()

JournalFile

+ borrow ()
+ renew ()
+ return ()

JournalMaster

+ modify(Journal)
+ remove(Journal)
+ add(Journal)
+ addView(JournalFile)
+ removeView(JournalFile)
+ updateStatus(JournalFile)

 98

 Figure 6.2: Hierarchy Diagram for LRC

 Figure 6.3: AOSDDL’s Authentication functionality

 <medium> Java <Architecture>
 SOAP

<medium>
 XML

 <API>
Servlet/JS
P

<Architecture>
 J2EE

WSDL
<API> Apache AXIS

<portingtool>
WSQL2Java

<service>
 Journal
Selection

HttpSession
BindingListener

 <DD>
 webxml

Journal Selection Design

 LRC

HttpSessionLRC

<JSP>
locate

 <JSP>
 display

<JSP>
issues

<<LRC>>
Logger

 Log(..) logRecord()

 _log(..)

Collab_LoggerPattern
 :Logged

 Logged

#record: DB

- logRecord()
- log(..)
#_log(..)

<Logged, _log(..)>

 99

authentication specific functionality into the application modules. This will result in

another aspect Authentication, in the final design shown in figure 6.3.

The hierarchy diagrams in figure 6.4 and figure 6.5 show the effects that aspects

have on module dependencies. Figure 6.4 models the design change that was

made to perform aspect oriented modularization to logging and Figure 6.5 models

the same for authentication. Aspect oriented mechanisms eliminate the

dependencies clients have on providers by introducing aspects as new modular

structures. Aspects depend on these clients and providers, and are responsible to

provide connections between them. Aspect oriented modularization with

introductions is similar to the module with injected dependency.

 F

 Figure 6.4: Effect of aspects with pointcut-advise on dependencies

 Figure 6.5: Effect of aspects with introduction on dependencies

6.3.4 Designing Aspects

Figures 6.4 and 6.5 are just one of several variations of pointcut-advise and

introduction mechanisms. Particularly, in these figures we do not see what the

visible design rules for aspects are. In both cases aspects depend on clients or/and

Provider Client3 Client3 Client3 Provider

 C
Client1

 C
Client2

 C
Client3

 Aspect
 C (pointcutadvice)

Provider1 Extension
Interface

Provider2 Provider2Provider1 Extension
Interface

Extended
Provider1

Extended
Provider2

Clients ExtensionAspect
 (introduction)

Clients

 100

providers. In Figure 6.4, a small box labeled as C denotes the common points in

clients accessing the providers. C is moved into the aspect after aspect oriented

modularization and it represents two things: (i) interfaces that a provider provides,

and (ii) points in clients that access such interfaces. A typical way to design

aspects following this process (as in AspectJ) is to capture these points as

joinpoints, (for example the method names a provider provides and the method

names of clients that access the provider), that need to be advised. Such joinpoints

constitute C, and, in a way, become design rules for the aspect. Defining design

rules for aspects implies making such joinpoints explicit. Just as architectural

modules emerge after sustaining a considerable design evolution, an aspect

oriented design would also result in well defined design rules for aspect oriented

modularization, as in the structure shown in Figure 6.6.

 Figure 6.6: Design rules for Aspect Oriented Modularization

6.3.5 Crosscutting Requirements: Aspects

Synchronizing the aspect is the first cross-cutting requirement that requires that

the journal master should handle several requests to manage journals and their

locations concurrently. This aspect example, first supports the journal masterr

handling several “read” requests concurrently, while temporarily blocking “write”

requests. Individual “write” requests should block all other services.

Synchronization of concurrent processes is a common requirement, and therefore

it is useful to design this behaviour without any reference to our LRC example. Fig.

6.7 illustrates how this can be achieved. The Synchronize composition pattern has

one pattern class, LRCSynchronizedClass, representing any class requiring

synchronization behaviour.

Design Rules for
AO modularization

Client (s) Provider (s)

Aspect

 101

 Figure 6.7: LRC Synchronization for Aspect Design

Specifying how to compose the LRC base design subject with the Synchronize

composition pattern is a simple matter of defining a composition relationship

between the two, denoting which class(es) are to be supplemented with

synchronization behaviour, and which read and write operations are to be

synchronized.

In this case, the LRC’s JournalMaster class replaces the pattern class in the

output, modify(), add() and remove() operations are defined as write operations,

and the search() operation defined as read (see Figure 6.8).

LRCSynchronizedAspect

LRCSynchronizedClass

+ activeReaders: float
+ activeWriter : float

+ waitWriterReaders{}
+ waitWriter{}
+ wait
- incrementReaders
- decrementReaders
- incrementWriter
- decrementWriter
write (..)
- _write(..)
read (..)
- _read (..)

 102

 _ _ _ _ _ _ _ _ _ _ _ _ _

 Bind[JournalMaster{add(), remove(), modify(), search()]

Figure 6.8: Synchronization of Learning Resource Center (LRC)

Pattern specification and binding, is all the designer has to do to define truly

reusable aspects patterns, and specify how they are to be composed with base

designs.

AOSDDL approach reflects on the various aspects of the analysis in terms of

effectiveness at support for aspect identification, requirements coverage,

traceability and scalability. Effective support exists for determining the binding

order for multiple crosscutting aspects. This may be otherwise difficult to locate.

The supplementary requirements studied to determine whether any of their minor

actions should be enhanced to major, or whether to group those requirements.

Further, all actions could be turned into design aspects and hence scalability was

efficient. Traceability also followed from and to aspect design.

6.3.6 Designing LRCObserver Aspect

In the Observer composition pattern, two pattern classes are defined. LRCSubject

is defined as a pattern class representing the class of objects whose changes in

state are of interest to other objects, and LRCObserver is defined as a pattern

class representing the class of objects interested in a Subject’s change in state

(see Fig. 6.9).

LRCSynchronizedAspect

Learning Resource
Center (LRC)

 LRCSynchronizedClass_write (..)

 103

The interaction in Fig. 6.9 illustrates specifying behaviour that cross-cuts

templates, with Subject’s template parameter _aStateChange(..) supplemented

with behaviour relating to notifying observers of changes in state. Again, this

achieved by referring to the actual replacing operation with a prepended “_”, i.e.,

_aStateChange(..).Here also is an example of an operation template parameter

that does not require any delegating semantics. The update() operation in

observers is simply called within the pattern, and is not, itself, supplemented

otherwise. It is defined as a template so that replacing observer classes may

specify the operation that performs this task. This pattern also supports the

addition and removal of observers to a subject’s list using _start(.., Subject, ..) and

_stop(.., Subject, ..) template parameters, where each is replaced by operations

denoting the start and end, respectively, of an observer’s interest in a subject. For

space reasons, the interactions are not illustrated here, as they do not illustrate any

additional interesting properties of the composition pattern model.

 104

 _ _ _ _ _ _ _ _ _ _ _ _ _

 LRC
 LRCSubject many

 one LRCObserver

 Figure 6.9: Aspect Design for LRCObserver

As with the Synchronize pattern, specifying the composition of Library with the

LRCObserver pattern is done by specifying a composition relationship between the

two, defining the class(es) acting as LRCsubject, and the class(es) acting as

LRCobserver. In this example, there is only one of each (see Fig. 6.10), JournalFile

and JournalMaster, respectively.

 LRCObserver

LRCSubject

+ addLRCObserver(Object)
+ removeLRCObserver(Object)
+ notify()

LRCObserver

+ start(..)
+ stop(..)
+ update(

Vector

 Collab_Observer_Pattern

 LRCSubject LRCObserver

 _aStateChange()

 notify()

 update()

 action : LRCSubject :: notify
 post : LRCSubject.LRCObserver Sent to Update()

<LRCSubject()>
<LRCObserverUpdate(), start(..), stop(..)>

 105

 _ _ _ _ _ _ _ _ _ _ _ _

LRCObserverUpdates()

 bind[<JournalFile(query = false)>,
 <JournalMaster(updateStatus(), addView(), removeView(), modifyView()>]

 Figure 6.10: Design Aspect for LRCObserver

The output of composing LRCObserver with Learning Resource Center, will show

JournalFile demonstrating subject behaviour, with the operations borrow() and

return() initiating the notification of observers, as they are the only state-changing

operations. JournalMaster ,as an observer, has defined updateStatus() as the

operation to be called for notification purposes. Operations addView(..),

modifyView(..) and removeView(..) initiate a JournalFile adding and removing a

JournalMaster from its list of observers.

Similiarly, the design Aspect for Authentication (LRCLogger) is shown in figure

6.11.

Bind[<{Person,Student,Professor},
 {Student.register(), Person.unregister(), Professor.issue()}]

 Figure 6.11: Design Aspect for Authentication (LRCLogger)

6.4 Testing

In our work, we present a state-based approach to the incremental testing of

aspect-oriented programs, which addresses the following research issues:

 LRCObserver

Learning Resource
Center (LRC)

LRCObserverUpdates()

 <<LRC>>

 logger

<Logged, _ log(..)>
 <<theme>>
 CMS

 106

• How to specify the expected impact of aspects on object states for test generation

purposes?

• To what extent can base class tests be reused for testing aspects? Base class

tests are not necessarily valid for testing aspect-oriented programs as aspects

are likely to change transitions of object states.

• How to determine that a programming fault actually has to do with aspects rather

than base classes?

To capture the expected impact of aspects on the states of base class objects, we

exploit aspect-oriented state models, an aspect oriented extension to state models

with testability, for specifying base classes as well as aspects. We compose state

models of aspects and base classes by an explicit weaving mechanism and

generate abstract test cases from state models for an aspect oriented program and

the corresponding base program. Taking aspects as incremental modifications to

their base classes, we identify how to reuse the concrete base class tests for

testing aspect-oriented programs according to aspect–oriented state models. Such

an incremental approach to testing aspect-oriented programs can significantly

reduce testing cost for two reasons: (1) it reuses test cases, the development of

which is often an expensive investment; and (2) it helps localize programming

problems by identifying aspect-specific faults. For instance, if the base classes of

an aspect-oriented program pass all of the state based tests but the aspect-

oriented program as a whole fail some of the tests, the failure would have to do

with aspects.

6.5 Defining Validation Parameters for Aspects

We first formally define extended state models as a basis for class and aspect

specification to describe aspect oriented state models for generating test cases.

Objects are encapsulated entities of data and operations that can receive

messages from and send messages to other objects. Constraints often exist on the

sequence of messages that can be accepted by objects. As these constraints are

typically related to object states, state models are a common approach for

capturing object behaviors, especially intra-class behaviors. In the following, we

extend traditional finite state models as a basis for aspect-oriented state models.

 107

For example, fig. 6.12 and the listing shows the state model and public interface of

the Journal class, respectively. For clarity, we use d to denote the instance field

duedate and assume that returndate <= duedate is a precondition for methods

return(returndate) and payfine (amt). Transition (Issue, payfine, duedate-returndate

>=0,Issue) means that method call payfine(amt) with condition duedate-returndate

>=0 under state Issue does not change the state.

Figure 6.12: The state model of class Journal

public class Journal {
// constructor, or the new operator
public Journal();
// indicating instance field duedate – d for short
public double getDuedate();
public void renew(date);
public void issue(date);
public void freeze();
public unfreeze();
public void close();
}
Listing for the interface of class Journal

We incorporate aspect-orientation into state models by following the fundamental

concepts of AOP, such as aspects, join points, pointcuts, and advices. In our

approach, join points can be states, events, or variables in a state model; a

pointcut picks out a group of join points; advices are specified as a state model;

and an aspect is an encapsulated entity of pointcuts and advice model.

 108

We build a model for each aspect. Fig. 6.13 shows the aspect model. Overdue that

enforces a new resource center policy for the base class Journal in fig.6.12.

Although it can crosscut other account (e.g. credit card) classes, for simplicity, we

specify it only with respect to Journal. The Overdue aspect allows one overdue

periodical as long as the due date is less than three months. In the aspect, the

states are Issue (a different name can be used, though) and Overdue, where Issue

is corresponding to the Issue state in the base model and Overdue is a new state.

The events are return, due and get, which are corresponding to return, renew and

getBalance in the base model, respectively. The variables used to represent guard

conditions are x and b, which are corresponding to amt and d in the base model,

respectively. Note that the aspect is an addition to the base model as all the

transitions from Issue to Issue in the base model remain unchanged.

aspect Overdue
state pointcut Issue: Journal.Issue
event pointcut get: Journal. getBalance
event pointcut due(x): Journal. renew(date)
event pointcut return(x): Journal.return(date)
variable pointcut d: Journal.d

Fig 6.13: The Overdue Aspect

The general process of our approach to incremental testing of an aspect-oriented

program is as follows: (1) build the state models of the base classes; (2) generate

 109

abstract test cases from the base models; (3) instantiate the abstract test cases to

form concrete test suites for the base classes; (4) test the base classes; (5) build

aspect models and weave them into the base models; (6) generate abstract test

cases from the woven state models; (7) generate test suites for the aspect-oriented

program as a whole by reusing, modifying, and extending concrete base class test

cases and instantiate new abstract test cases; and (8) test the aspect-oriented

program. Of course, we can combine step (5) into step (1), that is, build complete

aspect-oriented models before testing base classes.

6.6 Detecting Aspect Faults
A great variety of aspect-specific faults may exist in aspect oriented programs.

Examples include pointcut expressions picking out extra join points, pointcut

expressions missing certain join points, incorrect advice types, and incorrect advice

implementation. In this section, we discuss how these faults would affect object

states and how they can be revealed by the state-based testing approach. The

incremental testing approach is similar to traditional regression testing. The

essential difference is that, aspects as a structured way to specify modifications

make it feasible to investigate systematic reuse and modification of the existing

tests. Our approach can be adapted to the UML class diagrams and start charts by

using class interfaces, flattening start chart diagrams, and following the convention

of guard conditions.

6.7 Evaluation

In general there are two methods used for the evaluation of research contributions

namely, qualitative and quantitative evaluation. However, since the contributions

here are mostly concerned with the use of the notation and its implementation, a

qualitative evaluation of the concepts and design of the design language will be

more meaningful.

Since it has been feasible to implement only a subset of the overall design

language architecture, a quantitative evaluation of the entire system cannot be

provided at this stage.

6.8 Qualitative Evaluation: Mapping To AspectJ

 110

This section presents a qualitative evaluation of the AOSDDL design language.

Firstly, a case study used to evaluate the features and usability of the design

language is examined.

At the conceptual level, composition pattern design and aspect-oriented

programming also have the same goals. Composition patterns provide a means for

separating and designing reusable cross-cutting behaviour, and aspect oriented

programming provides a means for separating and programming reusable cross-

cutting behaviour. This section introduces possibilities for mapping composition

pattern constructs to current aspect-oriented programming constructs. Research

into, and development of, technology support for the aspect-oriented programming

paradigm is currently centered around AspectJ, and so, using the synchronization

example, we assess how composition patterns map to AspectJ programming

constructs.

6.8.1 Synchronize in AspectJ

The Synchronize composition pattern (Fig. 6.7) with its composition specification to

the learning resource center subject (Fig. 6.8) provides the information required for

the structure of an aspect program. The composition pattern has one class defined,

which is a pattern class, and therefore is replaced with a concrete design class.

The composition relationship’s binding specification indicates that JournalMaster

replaces the LRCSynchronizedClass pattern, and therefore, all non-pattern

elements defined within LRCSynchronizedClass are introduced to JournalMaster.

 111

First, the composition pattern’s name may be used for the aspect declaration. Also,

the operation template parameter defined in Synchronize, write(..),may be seen as

a pointcut in replacing classes. The composition relationship between Synchronize

and Learning Resource Center (LRC) indicates that the JournalMaster operations

add(Journal) and remove(Journal) replace write(..).As regards the advice code, the

interaction (sequence) diagrams specified within the Synchronize composition

pattern indicate when “advice” operations should be called relative to the template

operations. These directly translate to the before and after constructs of the

AspectJ advice element. This information maps to the following programming

elements of aspects:

 112

This illustrates the possibilities for mapping composition pattern constructs to

AspectJ programming elements. The advantages of this are two-fold. First, from a

design perspective, mapping the composition pattern constructs to constructs from

a programming environment ensure that the clear separation of cross-cutting

behaviour is maintained in the programming phase, making design changes easier

to incorporate into code. Secondly, from the programming perspective, the

existence of a design approach that supports separation of cross-cutting behaviour

makes the design phase more relevant to this kind of programming, lending the

standard benefits of software design to the approach.

6.9 AspectJ Extensions for Distributed Computing

Current programming systems do not provide mechanisms for modularizing

crosscutting concerns in distributed systems and thus they are major sources of

low readability and maintainability of the software. Issues like transactions,

security, and fault tolerance are typical crosscutting concerns in distributed

systems.

 113

Many crosscutting concerns also arise during unit testing of distributed systems.

The code for unit testing includes typical crosscutting concerns that AspectJ can

deal with. AspectJ is a widely used language for aspect-oriented programming

(AOP) in Java. Unfortunately, if we use AspectJ to modularize testing code for

distributed software, the code ("aspect") can be somewhat modular but it often

consists of several sub-components distributed on different hosts. They must be

manually deployed on each host and the code of these sub-components must

include explicit network processing among the sub-components for exchanging

data since they cannot have shared variables or fields. These facts complicate the

code of the aspect and degrade the benefits of using aspect oriented

programming.

6.9.1 Implications on Network Processing

AspectJ is a useful programming language for developing distributed software. It

enables modular implementation even if some crosscutting concerns are included

in the implementation. However, the developers of distributed software must

consider the deployment of the executable code. Even if some concerns can be

implemented as a single component ("aspect") at the code level, it might need to

be deployed on different hosts and it would therefore consist of several sub

components or sub-processes running on each host. Since Java (or Aspect J)

does not provide variables or fields that can be shared among multiple hosts, the

implementation of such a concern would include complicated network processing

for exchanging data among the sub components.

Programming frameworks such as Java RMI do not solve this problem of

complication. Although they make details of network processing implicit and

transparent from the programmers' viewpoint, the programmers still must consider

distribution and they are forced to implement the concern as a collection of several

distributed sub-components exchanging data through remote method calls. The

programmers cannot implement such a concern as a simple, non distributed

monolithic component without concerns about network processing. This is never

desirable with respect to aspect orientation since it means that the programmers

must be concerned about distribution when implementing a different concern.

 114

Consider the case of developing unit tests for distributed software, in our case, a

distributed authenticated service. The distributed test code includes crosscutting

concerns but, if they are modularized in AspectJ, the code develops the

complexities mentioned above.

The implementation of this service consists of two components: a front-end server

AuthenticationServer on a host W and a database server DbServer on another

host D. This is a typical architecture for enterprise Web application systems. If a

client application needs to register a new user, it remotely calls registerUser0 on

the front-end server using Java RMI. Then the confirmUser() method remotely calls

addUser() on the database server, which will actually access the database system

to update the user list. To unit-test the confirmUser() method, the test code would

first remotely call the confirmUser() method and then confirm that the addUser()

method is actually executed by the database server. Note that since the test code

must confirm that remote method invocation is correctly executed, it must confirm

not only that confirmUser() on the host W calls addUser() but also that addUser()

starts running on the host D after the call. The test code would be simple and

straightforward if the examined program is not distributed. It calls the confirmUser()

method and then confirms the tempUser field is true. This field is set to true by the

before advice (lines 10 to 14) when the addUser() method is executed.

We below show the test code written in Aspect J on the Eclipse Platform:

 115

The above test code becomes more complicated if the examined program is

distributed.

 Figure 6.14: The testing code in AspectJ

The test code now consists of three sub-components: AuthenticationServer,

Receiverlmpl, and Notification (Figure 6.14). Although the overall structure is the

same, the AuthenticationServer and Receiverlmpl objects run on a testing host T

but the Notification aspect runs on the host D, where the DbServer is running. The

host T is different from W or D.

The testRegisterUser() method (lines 4 to 12) on T remotely calls confirmUser() on

W and then confirms that the tempUser field is true. This field is set to true by the

 116

confirmCall() method in Receiverlmpl, which is remotely called by the before advice

(lines 28 to 35) of Notification running on D. The confirmCall() method cannot be

defined in AuthenticationServer since AuthenticationServer must extend the

TestBed class whereas Java RMI requires that remotely accessible classes

extends the UnicastRemote0bject class.

The test code shown below is a distributed version:

Even this simple testing concern is implemented by distributed sub-components

and hence we had to write complicated network processing code using Java RMI

despite that it is not related to the testing concern. In particular, the Notification

aspect is used only for notifying confirmCall() on the host T beyond the network

that the thread of control on the host D reaches addUser(). The Notification aspect

is a sub-component that are necessary only because confirmCall() and addUser()

are deployed on different hosts.

This means that the component design of the unit testing is influenced by concerns

about distributed. Furthermore, this notification code is similar to what the AspectJ

compiler produces for implementing the pointcut-advice framework. It should not

 117

be hand-coded, but implicit within the language constructs provided by an AOP

language.

6.10 Summary

Improvement from using AspectJ in pattern implementations is directly correlated

to the presence of crosscutting structure in the patterns. This crosscutting structure

arises in patterns that superimpose behavior on their participants. In such patterns

the roles can crosscut participant classes, and conceptual operations can crosscut

methods (and constructors). Multiple such patterns can also crosscut each other

with respect to shared participants.

Software design is an important activity in the development lifecycle but its benefits

are often not realized. Scattering and tangling of cross-cutting behaviour with other

elements causes problems of comprehensibility, traceability, evolvability, and

reusability. Attempts have been made to address this problem in the programming

domain but the problem has not been addressed effectively at earlier stages in the

lifecycle. Composition patterns presents an approach to addressing this problem at

the design stage.

AspectJ extensions for identifying join points in the execution of a program running

on a remote host can simplify the description of aspects with respect to network

processing if the aspects implement a crosscutting concern spanning over multiple

hosts.

Further, the realisation of the prototype implementations provided in this chapter

does not attempt to provide a complete implementation of the AOSDDL structure

previously described in chapter 5. For example, significant parts of the component

and distributed framework, which are both key to the aspect design language, have

not been implemented due to the overall complexity of the system and the time

constraints. The objective was rather to demonstrate the feasibility of the design

language notations through a ‘proof-of-concept’ implementation of the AOSDDL

specific mechanisms such as concern, join point, introduction etc (the major

representations).

 118

The implementation of the various mechanisms is described according to the

overall structure of the AOSDDL structure, the processing and test environments.

This chapter also discussed the evaluation of the design language structure. A

qualitative evaluation has been considered best suitable for the design evaluation

of AOSDDL. The qualitative evaluation is demonstrated based on a real case

study.

 119

CHAPTER 7

Conclusion

7.1 Overview

This chapter recapitulates the work that has been carried out as part of this

research effort. It summarizes the conclusions that could be gained from the

design and development of the AOSDDL architecture.

It provides an overview of the thesis structure and a summary of each chapter. A

series of conclusion summarizes what has been learnt from this work, and how

these experiences contribute to the wider field of research.

7.2 Thesis Summary

Chapter one of this thesis sets the scene by unfolding the evolution of software

programming from the early days of computer science until today. It continued

introducing the concepts of aspect oriented software development and describing

the problem of today’s programming methodologies that have led to the

establishment of this new research area. It provided a discussion of the research

motivation for the field, highlighting the need for aspect oriented design capabilities

and the potential beneficiaries of such a technology. Finally, it presented a

summary of the research goals and challenges that are taken on by this work.
Chapter two provides a general background on the field of aspect oriented

programming. It looks back to the initial developments of this trend in the 1990’s

and shows how the field has evolved since. It defined the basic methodology for

aspect oriented programming and introduced various approaches towards aspect

oriented software development. The chapter then continued with a discussion of

several architectural approaches and other key aspects for aspect oriented

software development.

Chapter three provided a comprehensive overview of the current state-of-the-art in

the field of aspect oriented software development. A large number of different

projects were presented, describing their specifications and the distinction of their

design. The variety of projects based on the design language architecture were

 120

divided into implementation dependent and implementation independent

approaches. Although their fundamental goals are identical and the timescale

when they have emerged is related, the underlying architectures are inherently

different.

Chapter four discussed the requirements for aspect oriented design language in

general and derived the requirements for the AOSDDL (Aspect Oriented Software

Development Design Language) architecture. These requirements have been

derived from related work and acknowledged publications in the field. General

factors, for example the commercial aspects such as the deployment of aspect

oriented technologies are also taken into consideration. A differentiation between

the absolutely vital requirements and the more long-term requirements for an

aspect oriented software system was made. From this multitude of general

requirements a subset of requirements, which were considered important for the

design of a flexibly extensible aspect design language, was drawn. These

specialized requirements form the basis for the subsequent AOSDDL model and

implementation.

Chapter five and six presented the bulk of the contributions made in this thesis,

namely the AOSDDL design notation and the prototype implementations of this

design language. This chapter has introduced the design of AOSDDL, an aspect

oriented design language with he motivation to provide a highly flexible and

extensible set of notations suitable for aspect oriented software development in all

real world scenarios, can form the basis for further research into aspect oriented

systems and software engineering in general.

Chapter six presented the ongoing efforts to engineer a prototypical realization of

the AOSSDL design language. Described in this section is the development of the

core design constructs and notations of the AOSDDL model. Due to the

considerable extent of this model, the development work has focused on validating

the core design decisions and key mechanisms (i.e. separation of concerns, design

incompatibility, synchronization, etc.) through a ‘proof-of-concept’ implementation.

This chapter continued with the evaluation of the AOSSDL structure and the

prototype implementation. A qualitative evaluation was considered best suitable

for the design evaluation of AOSDDL.

 121

Chapter seven finally concludes the thesis by bringing together the thread of

arguments throughout this work.

7.3 Concluding Remarks

Several conclusions can be drawn from the development of AOSDDL:

Enforcing Architectural Regularities

The problems encountered were not as a result of an incorrect AOP design

concept or idea in general but a consequence of its particular implementation.

AspectJ being the only implementation available that is widely in use and is still

undergoing changes. The language was not designed for the purpose of regulating

architectural decisions and thus lacks sufficient tools to accommodate this task.

The various design considerations regarding distributed architecture are possible

with design constructs of AOP but it is their realization that caused difficulties.

AOSDDL Features

- An approach for high level architecture design, called AOSDDL, has

been developed to enable separation of concerns at the design level

of an AO development process. Within this approach it is assumed

that the requirements have already been defined and specified during

previous development stages.

- Since AOSDDL is UML conform, any CASE tool that supports UML

modeling can be used.

- Aspects and base elements are completely kept apart; they are connected

via a special language-specific connector element that encapsulates the

underlying implementation technology. Any desired AO technology can be

supported; it is just the connector’s syntax and semantics that have to be

specified.

 122

- Both, aspects and base elements, can be reused separately as the

connector is the only crosscutting, language-dependent part. This sort of

encapsulation offers a logical grouping of all classes belonging to one

concern and eases the readability of design models as avoiding graphical

tangling.

- To offer low-level architecture design support, a code generator needs to

be developed to improve productivity and reduce errors when mapping

model to code.

AOP Testing

The incremental testing approach is similar to traditional regression testing. The

essential difference is that, aspects as a structured way to specify modifications

make it feasible to investigate systematic reuse and modification of the existing

tests. Our approach can be adapted to the UML class diagrams and start charts by

using class interfaces, flattening start chart diagrams, and following the convention

of guard conditions.

The work can be seen as a first step towards a simple and powerful modeling

approach that fosters support from existing CASE tools since it is based on

standard UML. AOSDDL in combination with the code generator should make

AOSD more usable and more efficient for software development. The assumptions

about the usefulness of the notation and the AO code generation have to be

proven in the near future when using it in business development projects.

 123

CONTRIBUTIONS

Here we summarize the main contributions and achievements of the research

carried out as part of this thesis.

The overall goal of this work, namely to design a aspect oriented design language

that enables flexible extensibility of requirements and design functionality, has

been successfully fulfilled in the form of AOSDDL structure. The validation of the

architectural design with respect to its feasibility and practicality has been

accomplished through prototype implementations of the AOSDDL architecture.

Natural Extension to UML

A sufficient notation that is simple to understand and straightforward to use for

developers who are familiar with common design notations (such as UML).

CASE Tool Support

Design modeling is supported by powerful CASE tools like Together to improve

developer productivity and to ensure syntactical correctness of the AO model.

Extension of Architectural framework for design constructs

An extension to UML is presented, without changing its metamodel specification, to

achieve standard UML conformity. This helps developers to become acquainted

with AO modeling when they are already familiar with OO modeling and UML. A

key intention was to offer standard development tool support and interchangeability

between various tools. UML is customized by using standard extension

mechanisms only. To gain the benefits of code and design reuse of AO software,

the ability to reuse aspect and business logic separately is needed. A notation is

presented where aspect and business logic are completely kept apart. Thus, both

are reusable and at the same time independent of the implementation technology.

Within this approach it is assumed that the requirements have already been

 124

defined and specified during previous development stages.

Enforcing Architectural Regularities

A natural outcome of the research work undertaken during design and prototype

implementation was the realization that the problems encountered were not as a

result of an incorrect AOP design concept or idea in general but a consequence of

its particular implementation. AspectJ being the only implementation available that

is widely in use and is still undergoing changes. The language was not designed

for the purpose of regulating architectural decisions and thus lacks sufficient tools

to accommodate this task. The various design considerations regarding distributed

architecture are possible with design constructs of AOP but it is their realization

that caused difficulties

Implementation Support

A direct mapping between the notation and supported implementation languages to

allow automatic code generation based on the design model is a natural outcome

for the next stage of work.

Software Development

The notation fulfils its applicability in real-world development projects because of

smooth integration with existing and widely used tools and methodologies.

 125

FUTURE SCOPE OF WORK

Besides the ongoing development efforts to complete the AOSDDL prototype

implementation, further work in this area focuses on using and extending the

AOSDDL notation architecture and prototype platform in order to build and

experiment with design language specifications.

The code generators, tool integration and notation deployment and are few

examples of ongoing research that take advantage of the AOSDDL architecture

and platform.

Code Generators for Aspect modeling

To ease the transition from design to implementation and to offer low-level

architecture design support, a code generator has to be developed to support

automatic generation of AO code skeletons from design models. This will help

developers to focus on models having the code skeletons generated automatically

to gain the benefits they are used to in OOSD. Code generation improves

developer productivity, ensures syntactical correctness and reduces errors when

mapping a model to code. The presented UML notation in combination with the

code generator will make AOSD more usable and more efficient for software

development by avoiding inconsistencies among design and implementation.

Developers can then concentrate on AO design having the code skeletons

generated automatically.

Tools Integration

After evaluating the prototype’s features in real world development projects, some

concepts may have to be added (e.g. complex relationships between aspects).

Another important feature will be a complete CASE tool support including roundtrip

engineering for aspect mining. As Together supports the development of modules

offering roundtrip engineering features, this will be included in the near future in

the code generator. The connector package encapsulates the underlying

implementation technology. Currently, the syntax and semantics of an AspectJ

specific connector type are defined. This sort of encapsulation eases the

 126

replacement of the AO language, the support of different technologies and

language concepts (such as Hyper/J [18] [19] [23]) will be part of some future work.

An automated code generation for different languages is rather straightforward,

too. It is only the code generator’s mapping rules that have to be changed.

Notation deployment

The assumptions about the usefulness of the notation and the AO code generation

have to be proven in the near future when using it in business development

projects.

Support for Hyper/J

Support of other AO concepts (such as Hyper/J) that are implementation

dependent parts of AOSDDL can also be considered as part of future work.

Testing of Aspect Oriented Requirements

Addressing issues like the kind of base class tests that are less likely to be helpful

for revealing aspect faults, how to prioritize the test cases to be reused and on how

to model and test interference of multiple interacting aspects.

Summary

There are still many issues to be solved until efficient AO development support

comparable to current OO support is established. When offering an integrated

development process, the gaps between the early phases and AO programming

have to be filled as so far the paradigm focuses mainly at the implementation level.

There is still a lot of challenging research to be done in the future until the

paradigm is widely accepted and developers are aware of the benefits AOSD

offers.

 127

REFERENCES
.
[1] Aspect Oriented Programming
 http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-aspect.html , 2007

[2] Object Management Group (OMG). Unified Modeling Language Specification.

http://www.omg.org/technology/documents/modeling_spec_catalog.htm, Feb. 2007

[3] Rambaugh, Jacobson Booch. UML Reference Manual. Addison-Wesley International,

Boston, Massachusetts, 1998

[4] Aspect-oriented programming: http://aosd.net, 2007

[5] Siobhan Clarke and Robert J. Walker. “ Towards a Standard Design Language for

AOSD,” ACM Proceedings of the 1st International Conference on Aspect Oriented
Software Development, Enschede, Netherlands, (April 2002), pp. 113- 119.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M.Kersten, J. Palm and W. Griswold. “ An

overview of AspectJ,” Proceedings of the 15th European Conference on Object
Oriented Programming, Budapest, Hungary (June 2001), pp. 327-353.

[7] Palo Alto Research Center. http://www.parc.com/, 2007

[8] The AspectJ Team. The AspectJ programming Guide. http://www.eclipse.org/, 2007

[9] IBM Research. http://www.research.ibm.com/, 2006

[10] IBM alphaWorks. http://www.alphaworks.ibm.com/tech/hyperj, 2007.

[11] Wai-Ming Ho, Jean-Marc Jezequel, Francois Pennaneac’h and Noel Plouzeau. “A

Toolkit for Weaving Aspect Oriented UML Designs, “ACM Proceedings of the 1st
International Conference on Aspect Oriented Software Development, Enschede,
Netherlands, (April 2002), pp. 99-105.

[12] Awais Rashid, Ana Moreira and Joao Araujo. “Modularisation and Composition of

Aspectual Requirements,” ACM Proceedings of the 2nd International Conference on
Aspect Oriented Software Development, Boston, Massachusetts, (March 2003), pp. 11-
20.

[13] Mika Katara, Shmuel Katz. “ Architectural Views of Aspects, “ACM Proceedings of the

2nd International Conference on Aspect Oriented Software Development, Boston,
Massachusetts, (March 2003), pp. 1- 10.

[14] Ramnivas Laddad. AspectJ in Action. PDF ebook, Manning Publications, Greenwich,

Connecticut, 2003

[15] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns– Elements of Reusable Object-Oriented Software. Addison-Wesley
International, Boston, Massachusetts, 1995

[16] Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-Wesley

International, Boston, Massachusetts,1999.

 128

[17] Hannemann, Jan, and Gregor Kiczales. “Design Pattern Implementation in Java and
AspectJ,” Proceedings of the 17th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Seattle, Washington, (Nov
2002), pp. 161–173.

[18] Stanley M. Sutton and Isabelle Rouvellou. “Modeling of Software Concerns in

Cosmos,” ACM Proceedings of the 1st International Conference on Aspect Oriented
Software Development, Enschede, Netherlands, (April 2002), pp. 127 - 133.

[19] Ossher, H., and P. Tarr. “Multi-Dimensional Separation of Concerns Using

Hyperspaces.”IBM Research Report 21452, April, 1999. Available online at
http://www.research.ibm.com/hyperspace/Papers/tr21452.ps

[20] Natsuko Noda and Tomoji Kishi. “ Design Pattern Concerns for Software Evolution, “

ACM Proceedings of the 4th International Workshop on Principles of Software
Evolution, Vienna, Austria (October 2001), pp. 158-161.

[21] Tate, Bruce, Mike Clark, Bob Lee, and Patrick Linskey. Bitter EJB. Manning

Publications, Greenwich, Connecticut, 2003.

[22] Objectdb. http://www.objectdb.com/, 2006

[23] Tate, Bruce. Bitter Java. Manning Publications, Greenwich, Connecticut, 2002.

[24] The ServerSide.com J2EE Community. http://www.theserverside.com/, 2006

[25] Deepak Alur, John Crupi and Dan Malks. Core J2EE Patterns: Best Practices and

Design Strategies, 2nd Edition. Prentice Hall, Indianapolis, Indiana, 2003.

[26] Floyd Marinescu. EJB Design Patterns: Advanced Patterns, Processes, and Idioms.

John Wiley & Sons, New Jersey 2002

[27] Schmidt, Douglas C., Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-

Oriented Software Architecture: Patterns for Concurrent and Networked Objects. New
York, John Wiley & Sons, 2000

[28] Aksit, M., B. Tekinerdogan, and L. Bergmans. “Achieving Adaptability through

Separation and Composition of Concerns.” In Special Issues in Object-Oriented
Programming, M. Muhlhauser (ed.), dpunkt verlag, pp. 12–23, 1996. Also available
online at http://trese.ewi.utwente.nl/oldhtml/publications/paperinfo/sioop96.pi.ref.htm

[29] Ossher, Harold, William Harrison, Frank Budinsky, and Ian Simmonds. “Subject-

Oriented Programming: Supporting Decentralized Development of Objects,”
Proceedings of the 7th IBM Conference on Object-Oriented Technology, US. July 1994.

[30] Walker, Robert J., Elisa L.A. Baniassad, and Gail C. Murphy. “An Initial Assessment of

Aspect-oriented Programming,” IEEE Proceedings of the 21st International Conference
on Software Engineering, Los Angeles, California, (May 1999), pp. 120 – 130.

[31] Janzen, D., and K. De Volder. “Navigating and Querying Code without Getting Lost,”

ACM Proceedings of the 2nd International Conference on Aspect Oriented Software
Development, Boston, Massachusetts, (March 2003), pp. 178–87.

[32] Siobhan Clarke and Robert J. Walker. “Composition Patterns: An Approach to

Designing Reusable Aspects,“ IEEE Proceedings of the 23rd International Conference
on Software Engineering, Toronto, Ontario, (Oct 2001), pp. 5-14.

 129

[33] Dominik Stein, Stefan hanenberg, and Rainer Unland. “ A UML-based Aspect
Orientation Design Notation for AspectJ.” ACM Proceedings of the 1st International
Conference on Aspect Oriented Software Development, Enschede, Netherlands, (April
2002), pp. 106-112.

[34] G. Kiczales, E. Hilsdale, J. Hugunin, M.Kersten, J. Palm and W. Griswold. “ An

overview of AspectJ,” Proceedings of the 15th European Conference on Object
Oriented Programming, Budapest, Hungary (June 2001), pp. 327-353.

[35] Palo Alto Research Center. http://www.parc.com/, 2007

[36] The AspectJ Team. The AspectJ programming Guide. http://www.eclipse.org/, 2007

[37] David Mapelsden, John Hosking and John Grundy. “Design Pattern Modeling and

Instantiation using DPML,” Proceedings of the 40th International Conference on Tools
Pacific: Objects for internet, mobile and embedded applications, Sydney, Australia,
Australian Computer Society, (Feb 2002), pp.3-11.

[38] Elisa L.A. Baniassad, Gail Murphy, Christa Schwanninger and Michael Kircher.

“Managing Crosscutting Concerns During Software Evolution Tasks: An Inquisitive
Study,” ACM Proceedings of the 1st International Conference on Aspect Oriented
Software Development, Enschede, Netherlands, (April 2002), pp. 120- 126.

[39] Hyper/J: http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm, 2006

[40] P. Tarr, H. Ossher, W. Harrison and S. Sutton. “N degrees of separation: Multi-

dimensional separation of concerns,” IEEE Proceedings of the 21st International
Conference on Software Engineering, Los Angeles, California, (May 1999), pp. 107-
119.

[41] UMLAUT. http://www.irisa.fr/UMLAUT/ , 2006

[42] UMLAUT model transformation. http://modelware.inria.fr/, 2006

[43] Theme/UML. http://www.dsg.cs.tcd.ie/~sclarke/ThemeUML/, 2003

[44] Elisa Banniassad and Siobhàn Clarke. Aspect Oriented Analysis and Design: The

Theme Approach. Addison-Wesley, Boston, Massachusetts, 2005.

[45] Elisa Banniassad and Sio’bhan Clarke. “Theme: An Approach for Aspect Oriented

Analysis and Design,” IEEE Proceedings of the 26th International Conference on
Software Engineering, Scotland, UK, (May 2004), pp. 158 – 167.

[46] Davy Suvee, Wim Vanderperren and Viviane Jonckers. “ JAsCo: an Aspect- Oriented

approach tailored for Component Based Software Development,” ACM Proceedings of
the 2nd International Conference on Aspect Oriented Software Development, Boston,
Massachusetts, (March 2003), pp. 21- 29.

[47] Ossher, H., and P. Tarr. “Multi-Dimensional Separation of Concerns Using

Hyperspaces.” IBM Research Report 21452, April, 1999. Available online at
http://www.research.ibm.com/hyperspace/Papers/tr21452.ps.

[48] Adaptive Programming. http://www.ccs.neu.edu/home/lieber/demeter.html, 2004

 130

[49] Lieberherr, Karl J. Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Co., Boston, Massachusetts, 1996. Also
available online at http://www.ccs.neu.edu/research/demeter/book/book-download.html.

[50] Wim Vanderperren, Davy Suvée, Bart Verheecke, María Agustina Cibrán, Viviane

Jonckers. “Adaptive Programming in JasCo,” ACM Proceedings of the 4th International
Conference on Aspect Oriented Software Development, Chicago, Illinois, (March
2005), pp. 75-86.

[51] Richard C.ardone, Adam Brown, Sean McDirmid t and Calvin Lin. “Using Mixins to

Build Flexible Widgets,” ACM Proceedings of the 1st International Conference on
Aspect Oriented Software Development, Enschede, Netherlands, (April 2002), pp. 76-
85.

[52] M. Griss. “Implementing Product Line Features by Composing Component Aspects, ”

Proceedings of First Software Product Line Conference, Denver, Colorado, Kluwer
(Aug 2000), pp. 271–288.

[53] Mati Shomrat and Amiram Yehudai. “ Obvious or Not? Regulating Architectural

Decisions Using Aspect-Oriented Programming,” ACM Proceedings of the 1st
International Conference on Aspect Oriented Software Development, Enschede,
Netherlands, (April 2002), pp. 3-9.

[54] Awais Rashid, Ana Moreira and Joao Araujo. “Modularisation and Composition of

Aspectual Requirements,” ACM Proceedings of the 2nd International Conference on
Aspect Oriented Software Development, Boston, Massachusetts, (March 2003), pp. 11-
20.

[55] Rashid, A., P. Sawyer, A. Moreira and J. Araujo. “Early Aspects: A Model for Aspect-

Oriented Requirements Engineering,” IEEE Joint International Conference on
Requirements Engineering, Essen, Germany, (Sep 2002), pp. 199-202.

[56] Araujo, J., A. Moreira, I. Brito and A. Rashid. “Aspect-Oriented Requirements with

UML,” UML 2002 – The Unified Modeling Language: 5th International Conference,
Dresden, Germany, (Sep 2002), Lecture Notes in Computer Science, Springer Berlin,
pp. 442 – 447.

[57] A. Rashid, A. Moreira, B. Tekinerdogan. “Early Aspects: Aspect-oriented Requirements

Engineering and Architecture Design, “ Object Oriented Programming, Systems,
Languages and Applications Workshop 2004, Vancouver, British Columbia, IEE –
Proceedings Software. IEE,(Oct 2004), Volume 151(4), pp. 153-156.

[58] R.Chitchyan, A.Rashid, P.Sawyer. “Comparing Requirements Engineering Approaches

for Handling Crosscutting Concerns,” WER Proceedings of the VIIIth Workshop on
Requirements Engineering (held with CaiSE 2005), Porto, Portugal, (June 2005), pp. 1
– 12.

[59] A. Moreira, J. Araujo, A. Rashid. “ A Concern-Oriented Requirements Engineering

Model,” 17th International Conference on Advanced Information Systems Engineering,
Porto, Portugal, (June 2005), Lecture Notes in Computer Science, Springer-Verlag, pp.
293-308.

[60] Frdddric Duclos, Jacky Estublier, Philippe Morat. “Describing and Using Non Functional

Aspects in Component Based Applications, “ ACM Proceedings of the 1st International
Conference on Aspect Oriented Software Development, Enschede, Netherlands, (April
2002), pp. 65 – 75.

 131

[61] Mika Katara, Shmuel Katz. “ Architectural Views of Aspects, “ ACM Proceedings of the
2nd International Conference on Aspect Oriented Software Development, Boston,
Massachusetts, (March 2003), pp. 1- 10.

[62] AOCE. http://www.cs.auckland.ac.nz/~john-g/aspects.html, 2000

[63] AOCE. http://citeseer.ist.psu.edu/grundy99supporting.html, 2005

[64] Composition filters: http://trese.cs.utwente.nl/composition_filters, 2005

[65] Aspect-oriented design pattern implementations. http://www.cs.ubc.ca/~jan/AODPs,

2004

[66] M. Nishizawa, S.Chiba and Michiaki Tatsubori. “ Remote Pointcut: A Language

Construct for Distributed AOP,” ACM Proceedings of the 3rd International
Conference on Aspect Oriented Software Development, Lancaster, UK (March
2004), pp. 7 - 15.

[67] Dianxiang Xu and Weifeng Xu. “ State Based Incremental Testing of Aspect Oriented

Programs, “ ACM Proceedings of the 5th International Conference on Aspect
Oriented Software Development, Bonn, Germany, (March 2006), pp. 180 - 189.

 132

BIBLIOGRAPHY

 [68] JDK 1.4 tool. http://java.sun.com/j2se, 2005

 [69] AspectJ 1.1tool. http://www.eclipse.org/aspectj, 2006

 [70] log4j 1.2 library. http://jakarta.apache.org/log4j, 2006

 [71] J2EE SDK 1.3 tool. http://java.sun.com/j2ee, 2005

 [72] Ant tool. http://ant.apache.org, 2006

 [73] Eclipse IDE integration with AspectJ. http://www.eclipse.org/ajdt, 2005

 [74] AspectJ user mailing list. https://dev.eclipse.org/mailman/listinfo/aspectj-users

 [75] AOSD user mailing list. http://aosd.net/mailman/listinfo/discuss

 [76] Together CASE tool. http://www.borland.com/, 2005

 133

LIST OF PUBLICATIONS AND PRESENTATIONS

 AOSD Design Language Requirements

• Deepak Dahiya, Rajinder K. Sachdeva. “Role of Requirements in Aspect

Oriented Design Language Architecture,” Paper published in Proceedings

of the 5th RoEduNet IEEE International Conference in Networking and

Computer Technology, Sibiu, Romania (RoEduNet IEEE 2006), ISBN:

973-739-277-9, pp. 204 – 207.

• Deepak Dahiya, Rajinder K. Sachdeva. “Understanding Requirements:

Aspect Oriented Software Development,” Paper published in the IEEE

Proceedings of the 30th IEEE Computer Software and Applications

Conference, Chicago, US (IEEE COMPSAC 2006), pp. 303-308.

• “Role of Requirements in Aspect Oriented Design Language Architecture”.

Paper accepted for publication in the “Acta Universitatis Cibiniensis”,

Technical Series in Computer Science and Automatic Control (2006)

Journal, University of Sibiu, Romania (to be published).

 Related and Current Work on Design Language

• Deepak Dahiya, Rajinder K. Sachdeva. “Design Language for Aspect

Oriented Software Development and Design Pattern Extensions”. Paper

published in Proceedings of the 4th International Conference on Computer

Science and its Applications, San Diego, California, USA(ICCSA 2006),

ISBN: 9742448-5-6, pp. 127 - 131.

• Deepak Dahiya, Rajinder K. Sachdeva. “Moving Towards Aspect Oriented

Design,” Paper published in Proceedings of the 1st International Conference

on Web Engineering and Applications, Bhubaneswar, Orissa, India (ICWA

2006), pp. 156 – 161.

 The AOSDDL Design Language

• “Design Issues in Aspect Oriented Programming”. Paper accepted for

publication in the Information Technology Journal, (ISSN 1812–5638), ANSI

Journals, April 2007 (to be published).

 134

• Deepak Dahiya, R.K. Sachdeva and Sudha. “Dealing with Software

Concerns in Aspects,” Paper published in the IEEE proceedings of the 1st

International Conference on Digital Information Management, Bangalore,

India (IEEE ICDIM 2006), pp. 29 – 36.

• “Dealing with Software Concerns in Aspects”. Paper accepted for

publication in the Journal of Digital Information Management, (ISSN 0972–

7272), a peer reviewed Journal, Digital Information Research Foundation,

Chennai, India (to be published).

 Implementation and Evaluation

• Deepak Dahiya, R.K. Sachdeva and Sudha,” A prototype implementation

using Aspect Oriented Software Development,” Paper published in the

IEEE proceedings of the 1st International Conference on Digital Information

Management, Bangalore, India (IEEE ICDIM 2006), pp. 6– 12.

• Deepak Dahiya, Rajinder K. Sachdeva. “Moving from AOP to AOSD Design

Language”. Paper published in the IJCSNS International Journal of

Computer Science and Network Security, Vol. 6, No. 10 (ISSN 1738–

7906), October 2006, pp. 36 - 41.

 135

APPENDICES

A. Installation and Configuration of Eclipse Platform

A.1 Running Eclipse

In case, eclipse.exe does not start eclipse, then do the following:

It's generally a good idea to explicitly specify which Java VM to use when running

Eclipse. This is achieved with the "-vm" command line argument as illustrated

below:

c:\eclipse>eclipse -vm c:\j2sdk1.4.2\jre\bin\javaw -vmargs -Xmx256M

 OR

Step 1:

create a batch file "autoexec.bat" as follows:

/**************** autoexec.bat ***********************/

eclipse -vm c:\j2sdk1.4.2\jre\bin\javaw -vmargs -Xmx256M
exit

/*** */

Step 2:

Double click on the file to start eclipse. (you can also create shortcut on desktop

and

renaming it as "Eclipse")

If you don't use "-vm", Eclipse will look on the O/S path. When you install other

Java-based products, they may change your path and could result in a different

Java VM being used when you next launch Eclipse.

 136

A.2 Importing an existing AspectJ project

 1. Physically copy all the Eclipse projects (i.e. Example1, Example1-1, etc) from

the specified location (i.e. from the old workspace directory etc.) into the

destination (i.e. new workspace directory).

2. Start Eclipse.

3. Go to File --> Import...

4.From the "select an import source" options choose "Existing project into
workspace"

5. select "Next".

6. Browse to the newly copied (workspace directory) "project location" and choose
 the project (i.e. Example1, Example1-1 etc).

7. click "Finish".

8. Repeat this procedure for as many projects to be imported.

Note:

 If the eclipse projects are not physically copied to the new location (workspace),

then the projects are created using the old workspaces. However, This can be

damaging in case, you forget that the project files are actually existing in the old

location and not in the new workspace directory.

A.3 Running AspectJ project in Eclipse

1. Start Eclipse Platform.

2. Go to windows --> Preferences --> Java --> Installed JREs

3. See that the JRE home directory is checked and the path is:

 c:\Program Files\Java\j2re1.4.2_05

4. Now compile and run your AspectJ project.

 137

BRIEF BIOGRAPHY OF THE CANDIDATE

DEEPAK DAHIYA

(Area of Interest: Software Engineering & IT Management)

Deepak Dahiya has over 13 years of Experience in Academics and IT Industry in India and
Abroad. His work experience includes working for Computech (New Jersey, US), PIPAL
(Delhi, India), CASE and ITIL (Delhi, India), PHILCORP (Goa, India), NIC Pune (Ministry of
Communications and Information Technology, India). His work involved designing and
implementing Client- Server, N-tier J2EE Applications and Software Project Management.

In Academics, Deepak’s assignmens include working as Associate Professor in Information
Technology at IILM (Delhi, India). He has conducted courses for both both postgraduate
(MCA / MBA) and undergraduate (BCA / BBA / BSc / BEngg) programmes.

Presented and Published around 15 research papers in International Journals and
Conferences including IEEE and ACM.

Reviewed papers for various International Journals.

Deepak has been University Examiner and Paper Setter for various IT courses of Goa
University, India and Ch. Charan Singh University, India.

In the IT Industry, Deepak has consulted for Clients like Verilytics (Massachusetts, US),
State Department of Treasury (Michigan, US) FIT (London, UK), i-flex solutions limited
(mumbai, India and a subsidiary of Citibank).

Deepak has conducted senior executive training programmes for organizations like
National Academy for Training & Research in Social Security (EPFO, Ministry of Labour,
Govt. of India, New Delhi), Goa Shipyard Limited (a Public Sector Undertaking, Goa, India)
and the Indian Navy.

Deepak is also Guest Faculty to the prestigious Indian Institute of Management (IIM)
Kozhikode, India for delivering elective courses to PGP students.

Deepak is a member of IEEE Computer Society, ACM Society and is Life Member of
Computer Society of India.

 138

BRIEF BIOGRAPHY OF THE SUPERVISOR

Dr. Rajinder Kumar Sachdeva, Professor of Management, IIPA Delhi

Education:

Doctor of Philosophy (Ph.D.) from Indian Institute of Technology, Delhi in 1989.
Topic - Distributed Information Systems.

Master of Technology (M.Tech.) from Indian Institute of Technology, Delhi in 1969.

Bachelor of Engineering with Honours (B.E.Hons.) from University of Roorkee
(Now I.I.T., Roorkee) in 1966.

International Assignments:

National Representative, Committee on Information Systems (TC-8), International
Federation for Information Processing (IFIP), 1986-91, nominated by Computer Society of
India.

Massachusetts Institute of Technology (MIT), USA as UNDP Fellow on Advanced Study
Program, Fall Semester, Sept.-Dec., 1989.

National Computing Centre (NCC), U.K. on one year sabbatical, 1988-89.

Carl Duisberg Gessellschaft (CDG) Fellow on Senior Management Program, West
Germany, Oct.-Dec. 1977.

Expert Advisor on Computers to Govt. of Iraq on deputation from Govt. of India, May-Oct., 1978.

Publications: (Books / Articles)

1. Management Handbook of Computer Usage, NCC Blackwell, Oxford, U.K.
2. Management Information Systems : A New Framework, Vikas Publishing House,

New Delhi (Co-author with Dr. U.K. Banerjee)
3. Indian Standard USE OF NETWORK ANALYSIS FOR PROJECT MANAGEMENT

as Chairman, Expert Panel, Bureau of Indian Standards, New Delhi

Over two dozen articles in leading professional journals and economic dailies.

Teaching and Training:

Conducted MDPs and taught courses at IIPA, Faculty of Management Studies (FMS),
University of Delhi, Department of Computer Science, University of Delhi, University of
Roorkee (Now I.I.T) and School of Planning and Architecture (S.P.A.), New Delhi.

Consultancy and Industrial Experience:

Consultant to Govt. of Gujarat, Transformers and Electricals Kerala Ltd., and Madras
Refineries Ltd. for design and implementation of Computer based Information Systems.

Worked with Philips India Ltd. and Warner Hindustan Ltd. as Systems Analyst ; with
Sarabai’s ORG as Operations Research Analyst ; and Hindustan Motors Ltd. as Planner.

