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ABSTRACT 

 
Nanostructured α-Fe2O3 and series of Ni-Zn ferrite powders have gained immense importance in 

recent years due to their myriad potential applications in diverse fields. In this research work, 

three simple chemical methodologies have been successfully developed in order to synthesize 

single phase, nanostructured α-Fe2O3 and series of Ni-Zn ferrite powders. The average particle 

size of the synthesized nanoparticles lies in the range of ~ 15-50 nm. Nanoparticles of iron oxide 

are elongated while nanoparticles of Ni-Zn ferrite are round in shape. The synthesized 

nanopowders have high room temperature resistivity (105 -109 Ω cm) although the variation of 

resistivity with respect to temperature is affected by the presence of humidity in the atmosphere. 

However, the ferrite nanopowders sintered at 12000C, synthesized by all three chemical 

methodologies, exhibit the typical NTCR (negative temperature coefficient of resistance) 

behavior of ferrites. Room temperature magnetic measurements reveal that the synthesized Ni-

Zn ferrite nanopowders possess saturation magnetization that varies between 30-60 emu/g 

depending on the method of preparation and the composition of the samples.  

 

Advantages offered by these developed aqueous solution based chemical methods that make 

them attractive are: 

 (i) metal alkoxides or complex metal compounds, which are expensive, difficult to handle, 

synthesize, and sometimes toxic have not been used in the developed methods. 

(ii) strong acid, base or organic solvents have not been used in any of the methods. 

(iii) use of simple and cheap metal nitrates as starting materials and water as solvent helps in 

reducing the processing cost as compared to other reported wet chemical methods. Moreover, 

any elaborate experimental setup is not required for the synthesis of nanopowders by these 

methods.  

(iv) Unlike other reported methods, Zn loss is not observed during high temperature sintering of 

pellets, prepared by the synthesized nanopowders. This ensures the maintenance of stoichiometry 

of the final product. 
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