
Efficient Bitmap Indexing Techniques for Data

Warehouses and Scientific Databases

THESIS

Submitted in partial fulfilment

 of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Yashvardhan Sharma

Under the Supervision of

Prof. Navneet Goyal

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

2008

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

C E R T I F I C A T E

This is to certify that the thesis entitled “Efficient Bitmap Indexing Techniques for

Data Warehouses and Scientific Databases” submitted by Yashvardhan Sharma,

ID. No. 2001PHXF417 for award of Ph.D. Degree of the Institute embodies original

work done by him under my supervision.

(Signature in full of the supervisor)

DR. NAVNEET GOYAL

Associate Professor

 Birla Institute of Technology and science

Pilani – 333 031 (Rajasthan) INDIA

Date:

Place: Pilani

 �

ABSTRACT

Data Warehouses and Scientific Databases pose a great challenge to the database

community to improve query performance as they contain huge volumes of dimensional

data. Moreover, the queries in such systems are, complex, multidimensional, and have

large foot prints, often requiring millions of records to be answered. Many different kinds

of techniques have been proposed to improve the query performance in such

environments to provide interactive response time to users.

Indexing techniques play a major role in improving query performance in Data

Warehouses and Scientific Databases. Conventional hash-based and tree-based one-

dimensional indexing techniques like linear hashing, extensible hashing, B+-tree are

found lacking because of the multi-dimensional nature of the queries. In most cases it is

found that doing a complete table scan is much cheaper than using an index.

Multi-dimensional index data structures are an important optimization technique for

querying high-dimensional search spaces in read-mostly environments and are supported

by major commercial database systems. Bitmap indexes are efficient multi-dimensional

index data structures for high-dimensional data arising in data warehousing, decision

support systems, and in some scientific databases. The main advantages of using bitmap

indexes is that they are highly amenable to compression and encoding and bitmap

manipulations using bit-wise operators AND, OR, XOR, NOT are very efficiently

supported by hardware.

One of the major issues with bitmap indexes is the associated space overheads especially

for high-dimensional and high-cardinality data. In recent past, a number of approaches

have been proposed to reduce the index size and improve the performance of the bitmap

indexes. These approaches include encoding, compression, and binning. In the thesis, an

attempt has been made to develop more efficient encoding, compression, and binning and

techniques for bitmap indexes.

Byte-aligned bitmap code (BBC) and word-aligned hybrid code (WAH) are two

especially designed compression schemes for bitmap indexes. Some data preprocessing

methods have been proposed to make both BBC and WAH more space and time efficient

in answering equality and range queries.

 ��

Data reorganization, mainly tuple reodering, is a technique to improve the compression

ratios achieved by BBC and WAH. Multi-component encoding has been used as a

preprocessing technique to improve the compression ratio achieved by Gray code

ordering algorithm used for tuple reordering.

Bitmap indexes are suitable for low cardinality attributes. A number of scientific data

analysis applications have attributes with cardinality in millions. High cardinality

attributes pose unique challenges in terms of keeping the space requirements within

manageable limits and at the same time maintaining acceptable response time for queries.

Binning is a common technique used to reduce the size of the bitmap index. Although,

binning leads to considerable space savings, it gives rise to the candidate check problem

which can require a lot of additional disk I/Os thereby affecting query performance

adversely. A new binning strategy is proposed for high cardinality attributes which

attempts to minimize the number of candidate checks, for a given set of queries, at the

expense of space. Some optimization techniques for performing candidate checks have

also been developed.

 ���

ACKNOWLEDGEMENTS

First of all I would like to thank my supervisor Prof. Navneet Goyal for his

valuable guidance, encouragement and moral support. It has been a great pleasure to be

associated with him on this work.

Next I want to thank Prof. R. K. Mittal, who introduced me to the field of

databases. He has been a role model and a great source of encouragement to me.

Special thanks are due to Prof. L. K. Maheshwari, Vice Chancellor, Prof. K. E.

Raman, Deputy Director (Administration), Prof. G. Raghurama Deputy Director

(Academic), Prof. Ravi Prakash, Dean, Research and Consultancy Division, for giving me

an opportunity and encouragement for completing this thesis. I would like to express my

sincere gratitude to Prof. S. C. Sivasubramanian, for his constant encouragement and

support. Thanks are also due to Dr. Sudeept Mohan for providing valuable comments

while going through initial drafts of the thesis. I sincerely acknowledge the help received

from Prof. J. P. Mishra, Unit Chief, Information Processing center Unit. He helped me

with suggestions on trying out various new binning strategies. I sincerely thank members

of the doctoral advisory committee, Prof. Rahul Banerjee and Dr. Mukesh Rohil, for their

critical remarks and help in improving the work.

I would also like to thank Prof. S. Balasubramanium, Group Leader, CS & IS for

his constant support and guidance.

I received encouragements and support from my colleagues, Dr. T S B Sudershan,

Dr. Chitranjan Hota, Mr. Pankaj Vyas and Mr. Biju Ravindran. I express my sincere

thanks to them. Lastly, I also thank my ex-colleagues and friends Mr. Dinesh Sharma,

Mr. Girish Pujari and Mr. S. Jagdish for their advice and motivation.

Last but not the least the completion of this thesis would not be possible without

the love and support from my family. I am grateful to them for the continuous

encouragement and support during the years of my research.

 ��

TABLE OF CONTENTS

ABSTRACT i

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF ABBREVIATIONS x

LIST OF MATHEMATICAL NOTATIONS xi

1. Introduction 1

 1.1 Query Performance Enhancing Techniques 5

 1.1.1 Indexing Techniques 5

 1.1.2 View Materialization 7

 1.1.3 Parallel Processing 9

 1.1.4. Data Partitioning 9

 1.2 Indexing Techniques for Multi-Dimensional Queries 9

 1.3 Bitmap Indexes 12

 1.3.1 Advantages and Challenges of Using Bitmap Indexes 16

 1.3.1 Space Complexity 17

 1.3.2 Time Complexity 18

 1.4 Summary and outline 19

2. Bitmap Indexing - Literature Review 22

 2.1 Introduction 22

 2.1.1 Bitmap Indexes in Commercial Systems 29

 2.2 Encoding Techniques 29

 2.2.1 Huffman Encoding 30

 2.2.2 Multi-Component Encoding 31

 2.2.3 Equality and Range Encoding 32

 2.2.4 Comparison of Bitmap Encoding Schemes 39

 2.2.5 Bit-Sliced Encoding 40

 2.3 Compression Techniques 42

 �

 2.3.1 Byte aligned Bitmap Code (BBC) 43

 2.3.2 Word Aligned Hybrid Code (WAH) 47

 2.4 Binning Techniques 54

 2.4.1 Binning Strategies 57

 2.4.2 Binning Cost Model 61

 2.4.3 Factors affecting Binning Strategies 63

 2.5 Complexity Issues and Research Gaps 63

 2.6 Summary 64

3. Compression Strategies and Encoding Techniques 66

 3.1 Introduction 66

 3.2 Encoding of Bitmap Indexes 66

 3.2.1 Simple Bitmap Indexing 67

 3.2.2 Encoded Bitmap Indexing 67

 3.2.3 Maintenance of Encoded Bitmap Indexes 67

 3.2.4 Solving Queries using Indexing Techniques 69

 3.2.4.1 Database Generation 69

 3.2.4.2 Construction of Mapping Tables 70

 3.2.4.3 Solving Queries 70

 3.2.4.4 Performance Evaluation 70

 3.2.5 New Encoding Scheme 74

 3.2.5.1 Implementation Issues and Performance Analysis 75

 3.3 Compression of Bitmap Indexes 77

 3.4 New Strategy to improve performance 80

 3.4.1 New Approach Adopted 81

 3.5 Experimental Work and Results 82

 3.5.1 Space Efficiency 82

 3.5.2 Performance Efficiency 83

 3.6 Contributions and Summary 87

4. Multi-Component Encoding and Data Reorganization 88

 4.1 Introduction 88

 4.2 Tuple Reordering Problem 89

 ��

 4.3 Gray Code Encoding 90

 4.4 Multi-Component Encoding 93

 4.5 Experimental Work and Results 97

 4.6 Contributions and Summary 101

5. Binning Strategies and Algorithms 103

 5.1 Introduction 103

 5.2 Candidate Check Problem 104

 5.3 Strategies for Efficient Binning 109

 5.4 Algorithms for Query Processing 112

 5.4.1 Algorithm for Equi-width Binning 112

 5.4.2 Algorithm for Exact match Binning 114

 5.4.3 Algorithm for Range Binning 117

 5.5 Experimental work and Results 119

 5.6 Contributions and Summary 126

6. Conclusions and Recommendations 127

 6.1 Conclusions 127

 6.2 Recommendations for future work 128

LIST OF PUBLICATIONS 130

REFERENCES 131

APPENDIX - C CODES FOR SOME SAMPLE PROGRAMS 149

 A.1 Code for WAH and BBC Compression Algorithms 149

 A.2 Code for Gray Code Ordering Algorithm 159

 A.3 Code for Multi-Component Encoding 163

 A.4 Code for Synthesizing Student records 165

 A.5 Code for Binning Algorithms 168

Brief Biography of the Supervisor 171

Brief Biography of the Candidate 171

 ���

LIST OF FIGURES

Figure No. Caption Section/Page No.

1.1 Example of Simple Bitmap Index 1.3/13

2.1 Huffman Encoded Bitmap Index 2.2.1/30

2.2 Example of a Value-List Index 2.2.1/31

2.3 An illustration of a 2-component bitmap index. 2.2.2/31

2.4(a) Examples of Range-Encoded Bitmap Indexes: Projection

of indexed attribute values with duplicates preserved.

2.2.3/33

2.4(b) Single Component, Base-9 Range-Encoded Bitmap Index. 2.2.3/33

2.4(c) Base< 3,3 > Range-Encoded Bitmap Index. 2.2.3/33

2.5 Space-Time Tradeoff 2.2.4/39

2.6 Different Encoding Techniques 2.2.4/40

2.7 A WAH bit vector 2.3.2/48

2.8 A bitwise logical AND operation on WAH compressed

bitmaps

2.3.2/48

2.9 Range query “37 <= A < 63” on a bitmap index with

binning

2.4/56

3.1(a) Encoded Bitmap Index and mapping table without

expansion

3.2.3/68

3.2(b) Encoded Bitmap Index and mapping table with expansion 3.2.3/69

3.2 Space required for Simple Bitmap Indexing 3.2.4.4/71

3.3 Space required for Encoded Bitmap Indexing 3.2.4.4/72

3.4 Space Comparison for Simple and Encoded Bitmap

Indexing

3.2.4.4/72

3.5 Simple and Encoded Bitmap Indexing Analysis of Break-

even Point

3.2.4.4/73

3.6 Sample Student Database Example 3.2.5/74

3.7 Query Processing Time Comparisons for Simple and

Encoded Bitmap Indexes

3.2.5.1/77

3.8 Index File Size for C=5 3.5.2/84

3.9 Index File Size for C=10 3.5.2/85

3.10 Performance of BBC-sorted for Equality Queries 3.5.2/85

 ����

3.11 Performance of WAH-sorted for Equality Queries 3.5.2/86

3.12 Performance of WAH-sorted for Range Queries 3.5.2/86

4.1 Tuple Reordering 4.2/90

4.2 Gray code ordering algorithm 4.3/92

4.3 Example of a 2-Component index with base < 3, 3 > 4.4/94

4.4 Double Multi-Component on all three schemes 4.5/99

4.5 Effect of Preprocessing Schemes without WAH

compression

4.5/100

4.6 Effect of Preprocessing Schemes with WAH compression 4.5/101

5.1 Two- sided range query 8 < A < 37 on a bitmap index with

binning

5.2/105

5.2 Two Sided Range Query 5.2/106

5.3 Candidate check in multi-dimensional space. 5.2/108

5.4 Query endpoints and bin boundaries. 5.3/111

5.5 Exact match binning. 5.3/112

5.6 Average Time for Different Binning Algorithms 5.5/123

5.7 Number of Candidates at different frequencies for binning

algorithms

5.5/124

5.8 Improvement percentage at different frequencies for

binning algorithms

5.5/124

5.9 Query Processing Time at different frequencies for binning

algorithms

5.5/125

5.10 Space Comparison of exact binning with equi-width

binning

5.5/125

 ��

LIST OF TABLES

Table No. Caption Section/Page No.

2.1 An example of a Bit-sliced Index 2.2.5/41

3.1 Table showing the space required using Simple Bitmap

Indexing and Encoded Bitmap Indexing

3.2.4.4/71

4.1 Binning Example 4.4/96

4.2 WAH bit vector 4.4/97

4.3 Improvement in compression of real data sets 4.5/99

5.1 Sample Queries 5.5/120

5.2 Frequency of Exact and Non Exact Queries 5.5/120

5.3 Query Processing Time for number of records = 50000 5.5/121

5.4 Query Processing Time for number of records = 10000 5.5/122

5.5 Query Processing Time for number of records = 5000 5.5/122

5.6 Query Processing Time for number of records = 1000 5.5/123

 �

LIST OF ABBREVIATIONS

Abbreviation Details or Expanded Form

BBC Byte-Aligned Bitmap Compression

BMI Bit Map Index

BSI Bit Sliced Index

DBEC Dynamic Bucket Expansion and Contraction

DBMS Data Base Management System

DML Data Manipulation Language

DW Data Warehouse

EBI Encoded Bitmap Indexes

ETL Extraction Transformation and Loading

EVI Encoded Vector Indexes

HEP High Energy Physics

LSB Least Significant Bit

MSB Most Significant Bit

OLAP On-Line Analytical Processing

OLTP On-Line Transactions Processing

RID Row Identifier

SBI Simple Bitmap Indexes

SNAP Super Nova Acceleration Probe

TPC Transaction Processing Performance Council

VLDB Very Large Data Bases

WAH Word-Aligned Hybrid Compression

 ��

LIST OF MATHEMATICAL NOTATIONS

Notation Details

D number of dimensions, i.e. number of indexed attributes

nd number of bit slices in dimension d

wd width of the bit slices in dimension d

B d, s sth bit slice of the bitmap index for the dth dimension

Opd
predicate operator for dimension d where Opd belongs to (<, <=,

>, >=)

qd query range of dimension d

s (qd)
lower limit((qd-ld)/wd) where ld is the absolute lower bound of the

search space

P Total number of pages on disk for values of an attribute

Pb
The expected number of disk pages that contain data values that

fall into bin b

[)qq ulq ,= A range query q with endpoints ql and qu , open on the right

Q A set of range queries

xi A bin boundary point

bi = [xi−1, xi) A bin defines a sub-range open on the right

B=< b1, b2,... ,bk > A partitioning into k bins

E(b) The set of queries having bin b as an edge bin

Cost(Q,B) Candidate check cost associated with binning B and query set Q

ej The jth smallest query endpoint

r Number of distinct query endpoints

EP (Q) = (e1... er) Ordered set of distinct query endpoints

�(k, n) All possible binnings of the range 1 to n into k bins

wi = �q�E(bi) pq Weight of bin bi, the sum of probabilities of all queries in E(b)

R(Q, j) The set of queries in Q with a right endpoint on the right of ej

Bopt(ej , l) Optimal binning of the sub-region from ej to n using l bins

bi,j
A bin defined over the range between query endpoints ei and ej

,i.e., bi,j = [ei, ej)

 ���

Bopt Optimal binning

bN Number of Bins

ux Upper limit of bin

lx lower limit of bin

f query frequency

b Bin containing the result

fb Bitmap equal to size of one bin

iR Number of records in thi bin

lb Lower Bin

hb Higher Bin

R Number of records in bin

mR Minimum number of records

x Value to be searched for equality queries

 �

Chapter 1: Introduction

Widespread adoption of database systems in many areas of human activity

witnessed in recent years led to rapid increase in the volume of data gathered by

computers. Common employment of bar code readers, automated call centers, Web

application interfaces, and other facilities induces an unfaltering stream of raw data

loaded continuously into databases. The ever increasing volume of the gathered data

makes manual processing of the data impossible, necessitating the development of

efficient techniques and technologies for extraction of information/knowledge from vast

data repositories.

Data is one of the most valuable assets of an organization, and when used

properly, can assist in decision making that can in turn significantly improve the

functioning and profitability of an organization. Data Warehousing is a technology that

allows information to be easily and efficiently accessed for decision making activities by

collecting data from many operational, legacy, and heterogeneous source systems. Data

in data warehouses are accessed/analyzed through On-Line Analytical Processing

(OLAP) tools which well-suited for complex data analysis, such as multi-dimensional

data analysis, and assist in decision support activities. Many organizations have either

invested heavily or are planning to invest in the data warehousing technology for

fulfilling their decision support needs.

A data warehouses is a huge repository of data that is available for downstream

data analytics applications. OLAP tools provide data analysis functionality which in turn,

helps in the decision making process. Data warehouses and OLAP applications differ

significantly from the traditional database applications. Online Transactional Processing

(OLTP) or operational systems carry out the day to day operations of a business and are

highly optimized for answering repetitive and narrow queries. Data warehouses and

OLAP provide a different context in which huge amounts of data must be processed

efficiently and queries are often complex and ad-hoc, but still require interactive response

times. In data warehouse environments, the data is used for decision support and large

sets of data are read and analyzed in an ad-hoc manner. Data warehouses tend to be

extremely large, for example, the data warehouse of General Motors, exceeds 1.5

 �

terabytes in size, and contains a fact table with more than 2 billion rows in which queries

can take hours to complete.

Data warehousing refers to “a collection of decision support technologies aimed at

enabling the knowledge worker (executives, managers, and analysts) to make better and

faster decisions” [Choudhari and Dayal, 1997]. In simple terms, a data warehouse is a

“very large” repository of historical data pertaining to an organization. The data

warehouse can also be defined as “a repository of data that has been extracted and

integrated from heterogeneous and autonomous distributed sources” [Kimball, 1996].

The significance of data warehousing is evidenced by the recent growth in the

number of related products and services offered in the market for data warehousing,

including hardware, database software, and specialized tools. These technologies are

gaining widespread acceptance in a multiple fields including retail sales,

telecommunications and financial services.

OLAP refers to the technique of performing complex analysis over the data stored

in a data warehouse. Data warehouses are large, special-purpose databases containing

data from a number of independent sources, supporting trend and anomaly analysis. The

information stored in a data warehouse is clean, static, integrated, and time varying

[Inmon, 1993]. The process of analysis is usually performed with queries that aggregate,

filter, and group the data in a variety of ways. As the queries are often complex and the

warehouse database is often very large, processing the queries efficiently is a critical

issue in the data warehousing environment.

Data warehouses are typically updated periodically, in a batch fashion. The batch

update process sometimes reorganizes data and indexes to a new optimal clustered form.

As during this process the warehouse is unavailable for querying, it is possible to create

specialized indexes and materialized aggregate views (called summary tables in data

warehousing literature) which in turn help in evaluating queries efficiently. Relational

DBMS (RDBMS) technology is the best understood technique to deal with large data

sets. However they were not primarily designed keeping in mind the data warehousing

and OLAP requirements. A host of techniques used in the relational environment for

improving query performance in data warehouses are discussed in section 1.1.

 �

Data warehouses tend to grow rapidly. To handle data explosion and provide

interactive response time, highly scalable architecture is vital in a data warehouse

environment. Data Marts play a vital role in both top-down and bottom-up approaches for

building data warehouses to address scalability and query response time issues. Most of

today’s OLAP tools require data warehouses with a centralized structure where a single

database contains all the data. However, the centralized data warehouse is expensive to

setup and lacks structural flexibility. More importantly, “the world is distributed”, world-

wide enterprises operate in a global manner and do not fit in a centralized structure. Thus,

a new paradigm is necessary. The first step in a new direction was the recent introduction

of data marts, “small data warehouses” containing only data on specific subjects, business

processes or departments [Informatica, 1997, HP, 1997]. But this approach doesn’t solve

the problems of space and performance. Data marts provide more flexibility in the

distribution of data but they still consist of static, self-contained units with fixed

locations. By distributing small static portions of data to fixed locations, the system

becomes more flexible, but on the other hand new problems arise, related to intra data

mart communication, especially in what concerns the processing of queries. Many of

today’s data marts are basically standalone, because of the unsophisticated and

rudimentary integration in the global data warehouse context. In spite of the potential

advantages of data marts, especially when the organization has a clear distributed nature,

these systems are always very complex and pose difficult global management challenges

[Albrecht et. al, 1998].

There are three major differences between transaction-oriented operational

systems and data warehouse systems:

• Size of the data: Fast access to GB (109 bytes) or TB (1012 bytes) of data is

crucial in providing interactive decision support.

• Dynamics of data: In a typical data warehouse, data is inserted, but

exceptionally updated or deleted. Furthermore, insertion only takes place at

certain time windows when the system is not accessible to the analysts. Outside

these time windows, analysts use the system only for reading data. This strategy

is typical for read-mostly environments.

 �

• Type of queries: Typical queries in an operational system access data on a very

detailed level, such as the balance of a specific bank account. Typical queries in

data warehouse environments calculate aggregated data over large sets of data,

such as sum of sales on product groups for some time period. Therefore, the

access to aggregated data over large sets of data has to be supported efficiently.

Data warehousing/OLAP systems are best understood by comparing them to OLTP

systems. OLTP systems are designed to automate data processing tasks (e.g., order

entry), which are structured and repetitive, tasks that operate on detailed data. The

emphasis in such systems is placed on maximizing transaction throughput. In contrast to

OLTP, data warehouses are designed for decision support purposes and contain historical

data of many years. For this reason, data warehouses tend to be extremely large

containing hundreds of gigabytes to terabytes of data. OLAP applications are

characterized by the rendering of enterprise data into multidimensional perspectives,

which is achieved through complex, ad-hoc queries that frequently aggregate and

consolidate data. Thus, OLAP environments are query-intensive, where aggregated and

summarized data are much more important than detailed individual records. Typical

OLAP queries require computationally expensive operations such as joins and

aggregation. All such queries are performed on tables having millions of records but still

interactive response time is expected. Given these characteristics, it is clear that the

emphasis in OLAP environments is on efficient query processing. This area has caught

the fancy of database researchers. A number of “conventional” relational query

processing approaches have been applied to or extended for answering OLAP queries

with acceptable response times.

Many scientific applications such as high-energy physics, climate modeling,

bioinformatics , astrophysics etc., coupled with advances in technology have resulted into

generation of massive volumes of data through observations or computer simulations,

bringing up the need for effective techniques for efficient storage and retrieval of

scientific data. Unlike conventional databases, scientific databases are mostly read-only

and its volume can reach to the order of petabytes, thus making a compact index structure

a vital necessity. In computational high-energy physics, simulations are continuously run,

and events that are notable for physicists are stored with all the details. The number of

 �

events that need to be stored in one year are of the order of several millions [SciDAC,

2002]. In astrophysics, technological advances enabled devoting several telescopes for

observations, results of which need to be stored for later query processing [SNAP, 2004].

Genomic and proteomic technologies are now capable of generating terabytes of data in a

single day's experimentation [Zaki and Wang, 2003]. These new data sets and the

associated queries are significantly different from those of the traditional database

systems, mainly due to their enormous size and high-dimensionality (more than 500

attributes in high-energy physics experiments). This poses a new challenge for efficient

storage and retrieval of data.

Most of the scientific databases of practical interest are read-only, just like the data

warehouses. Various types of queries, such as partial match and range queries are

executed on these large data sets to retrieve useful information for scientific discovery.

As an example, a user can pose a range query to retrieve all events with energy less than

15 GeV, and the number of particles less than 13. When the data is large and read-only,

as in the case of scientific databases, conventional techniques are not effective for

improving the performance of querying and data analysis. Thus developing new query

performance enhancing techniques tailored for scientific databases is crucial to

effectively exploring such data.

1.1. Query Performance Enhancing Techniques

There are several strategies to improve query response time in the data warehouse

context: indexing techniques, materialized views, parallelism, and partitioning of data.

These techniques are briefly discussed below:

1.1.1. Indexing Techniques
A commonly used technique to improve the performance of queries is the use of

index structures. Index structures avoid full table scans for answering narrow queries

(queries which require only a small fraction of the total tuples), thereby considerably

reducing the response time. Different indexing techniques have been investigated in

much detail for operational databases during the last few decades, but very little work has

been done for finding suitable indexing structures for data warehouse systems as they

 	

pose different kind of challenges than operational systems. Most of the queries on a data

warehouse involve joining of large tables. Aggregate functions are also very commonly

used in these queries. Such complex queries could take several hours or days to process

large amount of data. A majority of requests for information from a data warehouse

involve dynamic ad-hoc queries [TPC, 1998, APB, 1998]; users can pose any business

query at any time for any reason on the data warehouse data. If the right index structures

are created, the performance of queries, especially ad-hoc queries are greatly enhanced.

The indexing requirements of OLAP systems are:

• Symmetric partial match queries: Most of the OLAP queries can be expressed

as a partial range query or continuous range query, i.e., a query like “list total

sales from January 2005 to December 2007”. As queries can ask for ranges for

any dimension, all the dimensions of the data cube should be symmetrically

indexed, such that they can be searched simultaneously.

• Indexing at multiple levels of aggregation: It is typical that OLAP systems pre-

compute data at different levels of aggregation, in order to speed up queries.

These are called materialized views. These views must be indexed in the same

way that the non-aggregated data.

• Efficient batch update: We have already said that updates are not so critical in

OLAP systems, allowing more columns to be indexed. However, sometimes, the

update window is not enough for data updating, which must be taken into account

while designing the indexing schema.

• Sparse data: About 20% of the data in an OLAP system are non-zero. Indexing

must be able to deal efficiently with sparse and non-sparse data. Modern indexing

techniques and query processing strategies attempt to fulfill these requirements.

Due to the scale and high dimensionality of data warehouses and scientific

databases, simple extensions of traditional indexing strategies are inadequate: R-trees and

its variants are well-known to lose effectiveness for high dimensions; hashing-based

indexes lack storage efficiency; and transformation based approaches are not effective for

partial match and range queries. Furthermore, most of the indexing approaches do not

focus on the size of the index structure itself. However, due to the huge data volume in a

data warehouses and scientific databases, the size of the indexing structure becomes as

important as other parameters and must be taken into account. Focusing on the major

characteristics of business and scientific data, such as being read-only, having special

access patterns and numerical attributes, researchers have managed to develop indexing

techniques that are feasible for high dimensional databases. Many indexing techniques

have been created to reach this goal in read-mostly environments.

Indexing techniques are among the first areas on which a database administrator

will focus when good query performance in a read intensive environment is critical.

Specialized indexing structures offer the optimizer alternatives access strategies for the

time consuming full table scans. One of the most popular index structures is the B-tree

and its derivatives [Comer, 1979]. B+ tree indexes are the most commonly supported

structures in RDBMS, but it is a well-known fact that tree structures have limitations

when the cardinality of the attribute is small.

Another class of index structures, the bitmap indexes, attempts to overcome the

problem by using a bit structure to indicate the rows containing specific values of the

indexed attribute [O’Neil, 1997]. Although essential for the right tuning of the database

engine, the performance of index structures depends on many different parameters such

as the number of stored rows, the cardinality of the data space, block size of the system,

bandwidth of disks and latency time, only to mention some [Jurgens, 1999].

1.1.2. View Materialization

View materialization is a technique in which pre-computed results are stored in

the database. Most commercial database systems support materialized views. In

materialized views, we generally store aggregated data (summary tables or summary

indexes) or joins or both. The use of materialized views is probably the most effective

way to speed up a specific set of queries in a data warehouse environment. Materialized

views pre-compute and store (materialize) aggregates and joins, the two most commonly

used operations in OLAP queries [Chaudhuri, 1997]. The data is grouped using

categories from the dimensions tables, which corresponds to the subjects of interest

(dimensions) of the organization. Storing all possible aggregates poses space problems

and increases the maintenance cost, since all stored aggregates need to be refreshed as

and when the data warehouse is refreshed. Many algorithms have been proposed for

selecting a representative subset of the possible views for materialization [Harinarayan,

 �

1996, Meredith, 1996, Ezeife, 1997], corresponding to the most usual query patterns. But

the main problems associated with materialized views are the difficulty to know in

advance the expected set of queries, the problems of updating materialized views to

reflect changes made to base relations and the large amount of space required to store the

materialized views. There are limitations to the concept of materializing views at the data

warehouse. Pre-computation of queries in materialized views can give answers quickly

but the number of views that should be materialized at the warehouse needs to be

controlled, otherwise this can result in data explosion. Selection of views to be

materialized at the data warehouse is one of the important issues related to view

materialization. Another challenge in data warehousing is how to maintain the

materialized views. When there is a change in the data at any source, the materialized

views at the data warehouse need to be updated accordingly. The process of keeping the

views up-to-date in response to the changes in the source data is referred to as view

maintenance. For efficiency reasons, incremental techniques are preferred over re-

computing the view from scratch, for view maintenance. In data warehousing, the view

maintenance has branched into a number of sub-problems such as self maintenance,

consistency maintenance, update filtering, and online view maintenance.

The technique of view materialization is hampered by the fact that one needs to

anticipate the queries to materialize at the warehouse. The queries issued at the data

warehouse are mostly ad-hoc and cannot be effectively anticipated at all times. The

performance when using summary tables for predetermined queries is good. However

when an unpredicted query arises, the system must scan, fetch, and sort the actual data,

resulting in performance degradation. Whenever the base table changes, the summary

tables have to be recomputed. Also building summary tables often supports only known

frequent queries, and requires more time and more space than the original data. Because

we cannot build all possible summary tables, choosing which ones to be built is a difficult

job. Moreover, summarized data hide valuable information. For example, we cannot

know the effectiveness of the promotion on Monday by querying weekly summary.

Indexing is the key to achieve this objective without adding additional hardware. It is

worth noting that the techniques mentioned above (indexes and materialized views) are

general techniques that can (and should) be used in the data warehouse approach.

 �

1.1.3. Parallel Processing
A large body of work exists in applying parallel processing techniques to

relational database systems with the purpose of accelerating query processing [Lu et al.,

1994, DeWitt and Gray, 1992]. The basic idea behind parallel databases is to carry out

evaluation steps in parallel whenever possible, in order to improve performance. The

parallelism is used to improve performance through parallel implementation of various

operations such as loading data, building indexes and evaluating queries. One of the first

works to propose a parallel physical design for the data warehouse was [Datta et. al,

1998]. In their work they suggest a vertical partitioning of the star schema including

algorithms but without quantifying potential gains.

1.1.4. Data Partitioning
Partitioning a large data set across several disks is another way to exploit the I/O

bandwidth of the disks by reading and writing them in a parallel fashion. User queries

have long been adopted for fragmenting a database in the relational, object-oriented and

deductive database models [Ezeife, 1995, Lim and Ng, 1996]. The set of user queries of a

database is indicative of how often the database is accessed and of the portion of the

accessed database to answer the queries. There are several ways to horizontally partition

a relation, namely, round-robin partitioning, hash partitioning, and range partitioning.

Partitioning helps in retrieving data faster from the partitions which are much smaller in

size than the partitioned table. Horizontal partitioning with respect to time has several

additional benefits like ease of maintenance, data purging, and incremental backups. One

of the major advantages of data partitioning is that it allows the use of parallel

architectures for performing different data warehousing tasks like loading and querying.

1.2. Indexing Techniques for Multi-Dimensional Queries

The indexing methods which can handle the requirements described in section 1.1 are

classified in the following categories:

• Multidimensional array-based methods

• Bitmap indexes and their variations

• Hierarchical indexing methods

 �

• Multidimensional Indexes

• Join Indexes

Multidimensional Array-based Methods [Bayer, 1997] are used in OLAP systems which

do not adopt the relational approach, storing data in proprietary array structures. Thus,

indexing here is closely related with matrix arithmetic. The problem is that, as the

multidimensional arrays to be stored are usually sparse, some techniques must be used in

order to save space without losing the array model advantages.

Bitmapped Indexes are a good way to handle sparsity, and present some other good

features. The bitmap representation gives an alternate method of the row ids (RIDs)

representation. The bitmap is simpler and CPU efficient than row ids when the number of

distinct values of the indexed column is low. Most relational OLAP vendors use some of

its variations. Hierarchical Indexing Methods attempt to index aggregate data in a

different way than data which is stored at the finest granularity level [Markl and Bayer,

2000]. The other methods index everything in the same way. Suppose we want to index

data aggregated by <product> and by <product, store>. These methods would first build

an index on the product dimension, and store summaries at the product level. Each

product value contains a separate index at the store level, and stores summaries at the

product-store level, and so on. Summaries at the store level are kept in a separate index

on store. Their main drawback is the space overhead.

Multidimensional Indexes apply indexing methods originally devised for spatial data

structures, mainly Grid Files and R-trees [Guttmann, 1984].

Join Indexes are methods specifically suited for to perform large table joins, and can be

viewed as some kind of pre-computed Join, being references to those rows in two or more

tables, which satisfy the join condition [O’Neil and Graefe, 1995].

Traditional Value List Indexes, B-tree indexes are used most commonly in the database

systems where we are required to get rows of a table with given values having one or

more columns. The leaf level of the B-tree index consists of a sequence of entries for

index key values. Each key value reflects the value of the indexed column or columns in

one or more rows in the table and each key value entry references the set of rows with

that value. Traditionally, Value-List (B-tree) indexes have referenced each row

individually as a RID, a Row IDentifier, specifying the disk position of the row. A

 ��

sequence of RIDs, known as a RID-list, is held in each distinct key value entry in the B-

tree [O’Neil and Quass, 1997].

Assume that C is a column of a table T; then the Projection index on C consists of a

stored sequence of column values from C, in order by the row number in T from which

the values are extracted. If the column C is 4 bytes in length, then we can fit 1000 values

from C on each 4 K Byte disk page (assuming no holes), and continue to do this for

successive column values, until we have constructed the Projection index. Now for a

given row number n = m(r) in the table, we can access the proper disk page, p, and slot, s,

to retrieve the appropriate C value with a simple calculation: p=n/1000 and s = n%1000.

Furthermore, given a C value in a given position of the Projection index, we can calculate

the row number easily n = 1000*p + s. The columns which are frequently used are held in

the projection index which helps in the faster access for such type of columns. They are

like cache which stores the more frequently used items.

There are lots of indexing techniques that are in use today; however the right

choice of a proper index depends on many parameters such as the cardinality data,

distribution, and value range. The read-mostly environment of data warehousing makes it

possible to use more complex indexes to speed up queries than in situations where

concurrent updates are present.

We need to determine which indexing technique should be built on a Column. A column

has its own characteristics which we can use to choose a proper index. These

characteristics are given below:

• Cardinality data: The cardinality data of a column is the number of distinct

values in the column. The efficiency of indexing technique is dependent on

degree of cardinality of a column.

• Distribution: The distribution of a column is the occurrence frequency of each

distinct value of the column. The column distribution helps in determining type of

indexing technique to use.

• Value range: The range of values of and indexed column guides us to select an

appropriate index type. For example, if the range of a high cardinality column is

small, an indexing technique based on bitmap should be used. Without knowing

 ��

this information, we might use a B-Tree resulting into system performance

degradation.

The following are the characteristics that we have to be concerned with when developing

a new indexing technique:

a) The index should be small and utilize space efficiently.

b) The index should be able to operate with other indexes to filter out the records

before accessing raw data.

c) The index should support ad hoc and complex queries and speed up join

operations.

d) The index should be easy to build (easily dynamically generate), implement

and maintain.

In the literature on multi-dimensional index data structures, one will often encounter

the words “curse of dimensionality”. In the fields of multi-dimensional access methods

these words refer to the degeneration of conventional access methods in

multidimensional search spaces. In short, it is argued that in many cases the sequential

scan over the base data is more efficient than an indexed query.

1.3. Bitmap Indexes

Bitmap Indexes were first introduced by O’Neil and implemented in the Model 204

DBMS [O’Neil, 1987]. This indexing technique is mostly used for typical data warehouse

applications, which are mainly characterized by complex query types and read-mostly

environments that are more or less static. In data warehouse environments insert, delete

or update operations are not very common and, therefore, it is better to build an index

which optimizes the query performance rather than the dynamic features.

Bitmap indexing technology is used by many database vendors to improve

performance in query-heavy environments. Bitmap indexing is based on using a single bit

(instead of multiple bytes of data) to indicate that a specific column value can be found in

a particular row of the database table. The basic bitmap index scheme builds one bitmap

for each distinct value of the attribute indexed, and each bitmap has as many bits as the

number of tuples. The relative position of the bit within an array of bits (bit map) is used

to identify the row of the database table that contains the value in question. Each distinct

 ��

value for the column being queried requires its own bitmap array. This technology

normally provides a smaller, compact structure requiring less system resources to search

and process in comparison to a full index. In addition, multiple bitmap indexes can be

combined into a single bitmap index utilizing AND/OR logic as dictated by the query

search criteria. Being able to leverage and combine existing indexes is crucial in ad hoc

query environments where the optimal index is not already available. The query

optimizer dynamically builds bitmap indexes as needed to include or eliminate records

for selection in the most economical way. Bitmap indexing technology works well with a

small number of distinct key values (e.g. state codes), but these indexes can become very

large when there are many distinct values for the selected column and many rows in the

table.

The simple bitmap index is a collection of number of bitmap vectors for each of the

number of distinct value of the indexed column. The basic idea is to use a bit (0 or 1) in a

bitmap vector (sequence of bits) to indicate whether an attribute in a table is equal to a

specific value or not. The ith bit in a bitmap vector (Bv) is set (1) for a specific value v if

and only if the value of indexed column of the record i is v otherwise (0). The number of

bitmap vectors in a bitmap index of an attribute is equal to the number of distinct values

that the attribute can take. The number of bits in each of the bitmap vectors is equal to the

number of records in the table.

RID A Ba Bb Bc
 Bd

Figure 1.1: Example of simple bitmap index

Figure 1.1 shows a simple bitmap index on a table with ten rows, where the column A to

be indexed has character values ranging from ‘a’ to‘d’. The bitmap index for A column

a
b
a
d
a
c
b
d
a
b

1 0 0 0
0 1 0 0
1 0 0 0
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
0 1 0 0

0
1
2
3
4
5
6
7
8
9

 ��

consists of four bitmaps, shown as Ba, Bb, Bc, Bd, with subscripts corresponding to the

value represented. In Figure 1.1, the second bit of Bb is 1 because the second row of A

has the value ‘b’, while corresponding bits of Ba, Bc
 and Bd are all 0.

To answer a query such as “select * from table where A = ‘b’”, we access Bb and

identify the bits equal to 1, corresponding RID represent the result set of the query.

Similarly for another query with A=’a’ or A=’b’, we perform bitwise OR (|) operations

between bitmap vectors Ba and Bb, resulting in a new bitmap from which we identify the

sets bits and their corresponding RID’s represents the result set of the query. Since

bitwise logical operations such as OR (|), AND (&) and NOT (~) are very well-supported

by computer hardware, a bitmap index enabled DBMS could evaluate query predicates in

extremely fast manner.

Consider following Relation R(age, salary)

Age salary

25 60

22 55

30 70

22 55

23 55

25 100

23 45

30 45

We have following bitmap index:

For Field AGE

22 0 1 0 1 0 0 0 0

23 0 0 0 0 1 0 1 0

25 1 0 0 0 0 1 0 0

30 0 0 1 0 0 0 0 1

 ��

For Field SALARY

45 0 0 0 0 0 0 1 1

60 1 0 0 0 0 0 0 0

55 0 1 0 1 1 0 0 0

70 0 0 1 0 0 0 0 0

100 0 0 0 0 0 1 0 0

Consider the following Query:

SELECT *

FROM R

WHERE 23 <= age <= 25

 and 50 <= salary <= 70

First, find bitmap index of field “AGE” satisfying the requirement and perform OR

Operation:

23 0 0 0 0 1 0 1 0
25 OR 1 0 0 0 0 1 0 0
 1 0 0 0 1 1 1 0

Second, find bitmap index of field “Salary” satisfying the requirement and perform OR

operation

60 1 0 0 0 0 0 0 0
55 0 1 0 1 1 0 0 0
70 OR 0 0 1 0 0 0 0 0
 1 1 1 1 1 0 0 0

Then, perform AND operation.

 1 0 0 0 1 1 1 0
 AND 1 1 1 1 1 0 0 0
 1 0 0 0 1 0 0 0

So, the answer to this query is tuple #1 and tuple #5

 �	

Bitmaps indexes efficiently support complex, multi-dimensional queries. These

data structures are also implemented in commercial database management systems such

as Oracle, Sybase or Informics. All these implementations are optimized for typical

business applications which are characterized by discrete attribute values. However,

scientific data which is mostly characterized by non-discrete attribute values, cannot be

handled efficiently by these kind of data structures.

Definition (Simple Bitmap Index)

 Given a table },...,{ 1 nttT = , where jt is a tuple of),...,1(njT = , let A be an attribute of

T, denoted by T.A, and the domain of A be },...,{ ma aa .Then, a simple bitmap index on

T.A, AB , is a set of bitmap vectors },...,{ 1 mBB , such that

∀ 1][),,...,1(),,...,1(=∋== jBnjtmiB iji , if ij aAt =. , else 0][=jBi , where

][jBi denotes the j-th bit of iB

Bitmap indexes are widely used in data warehousing environments. The

environments typically have large amounts of data and ad hoc queries, but a low level of

concurrent DML transactions. For such applications, bitmap indexing provides:

• Reduced response time for large classes of ad hoc queries

• Reduced storage requirements compared to other indexing techniques

• Dramatic performance gains even on hardware with a relatively small number of

CPUs or a small amount of memory

• Efficient maintenance during parallel DML and loads

Good properties of Bitmap indexes are cooperativity of different bitmap vectors, low

cost of construction, maintenance and processing. Bitmap indexing has been successfully

applied to scientific databases by exploiting the fact that scientific data are enumerated or

numerical.

1.3.1. Advantages and Challenges of Using Bitmap Indexes

The main advantage of bitmap indexes is that logical operations are very well

supported by hardware and, thus, the operations are executed quite fast. The cost for

constructing bitmap indexes as well as the processing costs is also very low. Another

 �

advantage of bitmap indexes is that they are highly amenable to compression. However,

simple bitmap indexes are only efficient for attributes with a low number of distinct

values. In other words, if the cardinality of the indexed attribute is low, less number of bit

vectors are required and, thus, the space complexity for such an index structure is low.

For high cardinality attributes, the space complexity of the simple bitmap index is

considerably higher than for conventional index data structures. According to the

conventional wisdom, bitmap indexes are only efficient for low-cardinality attributes.

However, bitmap indexes with proper encoding, compression, and binning techniques

can be made efficient even for high-cardinality attributes.

Bitmap indexes offer several advantages over conventional indexing structures in

the read-mostly data warehouse and scientific database environments. Despite of these

advantages, bitmap indexes pose several challenges as described below:

1.3.1.1. Space Complexity

Let T be a (database) table and let |T| be the cardinality of T, i.e. the number of

distinct tuples in T. Thus, the space complexity in terms of bytes for building a simple

bitmap index on an attribute A of the table T is given as:

size of bitmap =
8

|||| AT ×

where |A| corresponds to the cardinality of attribute A, i.e. number of distinct values of

attribute A.

The space complexity in bytes for a B+-tree is given by:

size of B+-tree = p
M

T ×× ||44.1

where p is the page size and M the degree of the B+-tree, i.e. the maximum number of

elements in one data bucket. When we assume a page size p of 4 KB and a bucket size M

of 512, then a bitmap on A is more space efficient than B+-tree if if |A| < 93. In general,

for low cardinality attributes the bitmap index is more space efficient than the B+-tree.

 ��

1.3.1.2. Time Complexity

The time complexity for building a bitmap index in big O notation is given by

(worst case):

|)||(| AT ×Ο

In contrast, the worst case for building a B+-tree is given by:

))
4

(log|(||))(|log|(| 2
2

p
TAT M ×Ο+×Ο

where p is the page size and 4 bytes is the size of RID. Term 1 refers to the cost of

traversing the tree from root to leaf nodes and term 2 refers to the cost of inserting tuple-

IDs into the corresponding leaf nodes. Let us make following simple considerations. If |T|

is very large and |A| is very small, then the time complexity of building B+ trees is larger

than for building a bitmap index.

1.4. Summary and Outline

Indexes are used to speed up the evaluation of selection conditions followed by the

retrieval of desired data. If no pipelining or parallelism is applied, the query response

time can be expressed by the sum of the time of index processing plus the time of data

retrieval. If the selectivity of a query, which is defined as the ratio of the cardinality of

the final result to that of the base table, is high, the time of data retrieval may close in on

the time of a costly table scan. For example, for selectivity about 35%, over 99.8% data

pages of the underlying table will be hit. For such cases, using indexes has negative

effects on query performance. Even for low selectivities, if the time of index processing

is high, the total time spent on index processing and data retrieval may be longer than that

of a table scan. Query optimization techniques reduce the index processing time,

contribute to a better query performance at low selectivities, and also extend the

feasibility of bitmap indexes at medium selectivities.

The bitmap representation is an alternate method of the row ids representation.

Bitmap index offers better space and time complexity as compared to row id

implementation for low cardinality attributes. The indexes improve complex query

performance by applying low-cost Boolean operations such as OR, AND, and NOT in the

 ��

selection predicate on multiple indexes at one time to reduce search space before going to

the primary source data. Many techniques have been applied on bitmap indexes, aiming

to reduce space requirement as well as improve query performance. Bitmap indexes are

primarily intended for data warehousing applications where users query the data rather

than update it. Bitmap indexes are most effective for queries that contain multiple

conditions in the WHERE clause. In ad hoc queries and similar situations, bitmap indexes

can dramatically improve query performance. AND and OR conditions in the WHERE

clause of a query can be resolved quickly by performing the corresponding Boolean

operations directly on the bitmaps before converting the resulting bitmap to row ids. If

the resulting number of rows is small, the query can be answered quickly without

resorting to a full table scan. Rows that satisfy some, but not all, conditions are filtered

out before the table itself is accessed. This improves response time, often dramatically.

The advantages of using bitmap indexes are greatest for columns in which the ratio of the

number of distinct values to the number of rows in the table is under 1%. We refer to this

ratio as the degree of cardinality. A gender column which has only two distinct values

(male and female) is ideal for a bitmap index.

The space requirement of a simple bitmap index is a linear function of the cardinality

of the indexed attribute and of the indexed table, and the index processing time for a

single value selection is a linear function of the length of bitmaps. The sparsity of the bit

vectors increases with the cardinality resulting in poor space utilization and high

processing cost. Many variations of bitmap indexing have been proposed to solve the

sparsity problems. Two common objectives of the proposed methods are (1) reducing the

space complexity of the index and (2) improving the performance of index processing.

Solutions include compressing bitmaps, e.g., through run-length encoding, and

transforming bitmap representation to tuple-id lists. Although these two methods are

quite efficient in reducing the space requirements of bitmap indexes, they sacrifice the

advantages of bitmap indexing in query processing namely, the low-cost bitwise

operations in index processing and the capability of multiple index scans. The size of

bitmap index can be very large for a high cardinality attribute where there are thousands

or even millions of distinct values. Many strategies have been devised to reduce the index

sizes, such as, more compact encoding strategies, binning and compression. Binary and

 �

other index types used for high cardinality data: The use of value-based bitmaps to

improve performance is not new, early database systems, such as Model 204, employed

similar techniques. The problem with early bitmap indexing approaches, however, was

that as the number of records in the database grew, so usually did the number of unique

data values in a column (the cardinality). Once the cardinality grew beyond a certain

point, the benefits of bitmap indexing were diminished because of the amount of disk

space required to maintain the bitmap. Bitmaps are also not well suited for joining tables

or aggregating data. In addition to above mentioned issues , some of the unresolved

issues in traditional database products are index compression (which raises the threshold

at which high cardinality becomes an issue); support for the low-cardinality value-based

bitmaps found in earlier systems, and support for high-cardinality indexes that can

represent both numeric and textual information in binary form . High-cardinality binary

indexes can be used in conjunction with low-cardinality, value-based bitmap indexes.

Records can be filtered by performing logical AND/OR operations on the arrays of bits.

There are various indexing techniques to achieve our objective of which we mainly

concentrate on bitmap indexing techniques. Detailed study and implementation of the

various existing and proposed bitmap indexing techniques and different optimization

algorithms have been carried out. The work presented in this thesis is based on file

implementation rather than a commercial database or data ware house. The code for file

based implementations is given for reference in Appendix A. We also discuss techniques

which can specifically help in improving query response related to scientific data.

Various parameters that are to be considered for building and efficient indexing technique

and also the desirable characteristics of such indexes are also given in detail.

The rest of this thesis is organized as follows. Chapter 2 highlights complete related

work and necessary background, and gives a summary of current techniques to improve

the performance of bitmap indexes. Chapter 3 presents our solution as a new strategy to

improve the performance of compression algorithms. We also discuss a new encoding

technique which reduces the space requirements for bitmap indexes to a very large extent.

Chapter 3 also gives an experimental evaluation of our new compression strategy and

encoding technique. In Chapter 4, we present our solution to Tuple Reordering Problem

with Multi-Component Indexes and Data Reorganization. Our experimental results with

 ��

real scientific databases have shown improvement in the compression ratio. Chapter 5

describes our new binning strategies and provides algorithms to solve different types of

queries. Overlapping Binning Strategy proposed by us out performs all existing strategies

and improves query performance to a large extent. We conclude in Chapter 6 by

summary and some recommendations for future work.

 Parts of this thesis have been published in conferences and journals. Improved

Compression Strategy has been published in International Conference on Information

Technology by IEEE Computer Society. New Approach to address complexity issues

with bitmap indexes has been published in International Conference proceeding

published by Springer. Multi-Component Encoding with Data Reorganization work has

published in Information Technology Journal by Asian Network of Scientific

Information.

 ��

Chapter 2: Bitmap Indexing - Literature Review

2.1. Introduction

Querying large data sets to locate some selected records is a common task in data

warehousing applications. However, answering these queries efficiently is often difficult

due to the complex nature of both the data and the queries. The most straightforward

way of evaluating a query is to sequentially scan all data records to determine whether

each record satisfies the specified conditions. A typical query condition is as follows:

“Count the number of cars sold by producer P in the time interval T”. This search

procedure could usually be accelerated by indexes, such as variations of B-Trees or kd-

Trees [Comer, 1979, Gaede & Guenther, 1998]. Generally, as the number of attributes in

a data set increases, the number of possible indexes combinations increases as well. To

answer multi-dimensional queries efficiently, one faces a difficult choice. One possibility

is to construct a separate index for each combination of attributes, which requires an

impractical amount of space. Another possibility is to choose one of the multi-

dimensional indexes, which is only efficient for some of the queries. In the literature, this

dilemma is often referred to as the curse of dimensionality [Berchtold et al., 1998, Keim

et al., 1999].

By far the most commonly used indexing method is the B-Tree [Comer, 1979].

Almost every database product has a version thereof since it is very effective for on-line

transaction processing. This type of tree-based indexing method has nearly the same

operational complexities for searching and updating the indexes. This parity is important

for OLTP because searching and updating are performed with nearly the same

frequencies. However, for most data warehousing applications such as on-line analytical

processing, the searching operations are typically performed with a much higher

frequency than that of updating operations [Chaudhuri, 1997, 2001]. This suggests that

the indexing methods for OLAP must put more emphasis on searching than on updating.

Among the indexing methods known in the literature, the bitmap index has the best

balance between searching and updating for OLAP operations. Frequently, in OLAP

operations each query involves a number of attributes. Furthermore, each new query

 ��

often involves a different set of attributes than the previous one. Using a typical multi-

dimensional indexing method, a separate index is required for nearly every combination

of attributes [Gaede and Guenther, 1998]. It is easy to see that the number of indexes

grows exponentially with the number of attributes in a data set. For data sets with a

moderate number of dimensions, a common way to cure this problem is to use one of the

multi-dimensional indexing methods, such as R-Trees or kd-trees. These approaches

have two notable shortcomings. Firstly, they are effective only for data sets with modest

number of dimensions, say, < 15. Secondly, they are only efficient for queries involving

all indexed attributes.

Bitmap indexing scheme of one kind or another have appeared in all major

commercial database systems. This is a strong indication that the bitmap index

technology is indeed efficient and practical. The basic bitmap index scheme builds one

bitmap for each distinct value of the attribute indexed, and each bitmap has as many bits

as the number of tuples. The size of this index can be very large for a high cardinality

attribute where there are thousands or even millions of distinct values. The earlier forms

of bitmap indexes were commonly used to implement inverted files [Knuth 1998, Wong

et al., 1985]. They were first implemented in a commercial DBMS called Model 204

[O’Neil, 1987]. Improvements on this approach were discussed in [O’Neil and Quass,

1997]. The basic bitmap index uses each distinct value of the indexed attribute as a key,

and generates one bitmap containing as many bits as the number of records in the data set

for each key. The attribute cardinality is defined as the number of distinct values present

in a data set. The size of a basic bitmap index is relatively small for low-cardinality

attributes, such as “gender,” “types of cars sold per month,” or “airplane models

produced by Airbus and Boeing.” However, for high-cardinality attributes such as

“temperature values in a supernova explosion,” the index sizes may be too large to be of

any practical use. In the literature, there are three basic strategies to reduce the sizes of

bitmap indexes: (1) using more complex bitmap encoding methods to reduce the number

of bitmaps or improve query efficiency [Chan and Ioannidis, 1998, 1999, O’Neil and

Quass, 1997, Wong et al. 1985], (2) compressing each individual bitmap compression

[Antoshenkov, 1994, Antoshenkov and Ziauddin, 1996, Wu et al., 2001, 2002], and (3)

using binning or other mapping strategies to reduce the number of keys [Shoshani et al.,

 ��

1999,Stockinger et al., 2002, Wu and Yu, 1996,Wu and Buchmann ,1998]. In the

remaining discussions, we refer to these three strategies as encoding, compression and

binning, for short. Bitmap indexes are used for speeding up complex, multidimensional

queries for On-Line Analytical Processing and data warehouse [Chaudhuri and Dayal,

1997] as well as for scientific applications [Stockinger et al., 2004].However, in many

applications only some of the attributes are used in the queries.

 In many data warehouse applications, bitmap indexes perform better than tree-

based schemes, such as the variants of B-tree or R-tree [Jurgens and Lenz, 1999, Chan

and Ioannidis, 1998, O’Neil, 1987, Wu and Buchmann, 1998]. According to the

performance model proposed by Jurgens and Lenz [1999], bitmap indexes are likely to be

even more competitive in the future as disk technology improves. In addition to

supporting queries on a single table as shown in this article, researchers have also

demonstrated that bitmap indexes can accelerate complex queries involving multiple

tables [O’Neil and Graefe, 1995]. In these cases, the conventional indexing methods are

often not efficient. For ad hoc range queries, most of the known indexing methods do not

perform better than the projection index [O’Neil & Quass, 1997], which can be viewed as

one way to organize the base. The bitmap index, on the other hand, has excellent

performance characteristics on these queries. As shown with both theoretical analyses

and timing measurements, a compressed bitmap index can be very efficient in answering

one-dimensional range queries [Stockinger et al., 2002, Wu et al., 2004, Wu et al., 2006].

Since answers to one-dimensional range queries can be efficiently combined to answer

arbitrary multi-dimensional range queries, compressed bitmap indexes are efficient for

any range query. In terms of computational complexity, one type of compressed bitmap

index was shown to be theoretically optimal for one-dimensional range queries. The

reason for the theoretically proven optimality is that the query response time is a linear

function of the number of hits, i.e. the size of the result set. There are a number of

indexing methods, including B*-tree and B
+
-tree [Comer, 1979], that are theoretically

optimal for one-dimensional range queries, but most of them cannot be used to efficiently

answer arbitrary multi-dimensional range queries. The bitmap index in its various forms

was used a long time before relational database systems or data warehousing systems

were developed. Earlier on, the bitmap index was regarded as a special form of inverted

 ��

files [Knuth, 1998]. The bit-transposed file [Wong et al., 1985] is very close to the

bitmap index currently in use. The name bitmap index was popularized by O'Neil and

colleagues [O’Neil, 1987, O’Neil & Quass, 1997]. Following the example set in the

description of Model 204, many researchers describe bitmap indexes as a variation of the

B-tree index. To respect its earlier incarnation as inverted files, a bitmap index may be

regarded as a data structure consisting of keys and bitmaps. Moreover, B-tree can be

looked as a way to layout the keys and bitmaps in files. Since most commercial

implementations of bitmap indexes come after the product already contains an

implementation of a B-tree, it is only natural for those products to take advantage of the

existing B-tree software. For new developments and experimental or research codes,

there is no need to couple a bitmap index with a B-tree. For example, in a research

program that implements many of the bitmap indexing methods discussed later in this

chapter [FastBit, 2005], the keys and the bitmaps are organized as simple arrays in a

binary file. This arrangement was found to be more efficient than implementing bitmap

indexes in B-trees or as layers on top of a DBMS [Stockinger et al. 2002, Wu et al. 2002].

In [Chan and Ioannidis 1998, 1999] the following bitmap encoding strategies are

introduced: equality, range and interval encoding. Equality encoding is optimized for so-

called exact match queries of the form a = v where a is an attribute and v the value to be

searched for. Range encoding, on the other hand, is optimized for one-sided range queries

of the from a op v where op in {<, <=,>,>=}. Finally, interval encoding shows the best

performance characteristics for two sided-range queries of the form v1 op a op v2. Wu and

Buchmann [1998] represented attribute values in binary form that yields indexes with

only ||log 2 A bitmaps, where |A| is the attribute cardinality. The advantage of this

encoding scheme is that the storage overhead is even smaller than for interval encoding.

However, in most cases query processing is more efficient with interval encoding since in

the worst case only two bitmaps need to be read whereas with binary encoding always all

bitmaps have to be read. As already mentioned before, simple bitmap indexes are

efficient for low-cardinality attributes but they show a considerable storage overhead for

high-cardinality attributes. One way of reducing the storage complexity is to use bitmap

compression. An efficient bitmap compression scheme not only has to reduce the size of

bitmaps but also has to perform bitwise Boolean operations efficiently.

 �	

Various bitmap compression schemes have been discussed in [Johnson, 1999,

Amer-Yahia and Johnson, 2000]. The authors demonstrated that the scheme named Byte

aligned Bitmap Code (BBC) [Antoshenkov, 1994, Antoshenkov and Ziauddin, 1996]

shows the best overall performance characteristics. More recently a new compression

scheme called Word-Aligned Hybrid (WAH) [Wu et al., 2004] was introduced. This

compression algorithm significantly reduces the overall query processing time compared

to BBC. The key reason for the efficiency of WAH is that it uses a much simpler

compression algorithm. A number of empirical studies have shown that WAH

compressed bitmap indexes answer queries faster than uncompressed bitmap indexes,

projection indexes, and B-tree indexes, on both high and low-cardinality attributes [Wu et

al,. 2001, 2002, 2004, Stockinger et al. 2002]. The authors complement the observations

with rigorous analyses. Their main conclusion includes that the WAH compressed bitmap

index is in fact optimal. Some of the most efficient indexing schemes such as B+- tree

indexes and B�-tree indexes have a similar optimality property [Comer, 1979, Knuth,

1998]. However, a unique advantage of compressed bitmap indexes is that the results of

one-dimensional queries can be efficiently combined to answer multidimensional queries.

This makes WAH compressed bitmap indexes well suited for ad hoc analyses of large

high-dimensional datasets.

To compress a bitmap, a simple option is to use a text compression scheme, such

as LZ77 (used in gzip) [Gailly and Adler, 1998, Ziv and Lempel 1977]. These schemes

are efficient in reducing file sizes. However, performing logical operations on the

compressed bitmaps is usually much slower than on the uncompressed bitmaps, since the

compressed bitmaps have to be explicitly uncompressed before any operation. To

illustrate the importance of efficient logical operations, assume that the attribute

NumParticles can have integer values from 1 to 10,000. Its bitmap index would have

10,000 bitmaps. To answer a query involving “NumParticles > 5000,” 5000 bitmaps have

to be ORed together. To efficiently answer this query, it is not sufficient that the bitmaps

are small; the operations on them must be fast as well. To improve the performance of

bitwise logical operations, a number of specialized schemes have been proposed. Johnson

and colleagues have thoroughly studied many of these schemes [Johnson, 1999, Amer-

Yahia and Johnson, 2000]. From their studies we know that the logical operations with

 �

these specialized schemes are usually faster than those with LZ77. One such specialized

scheme, called the Byte-Aligned Bitmap Code (BBC), is especially efficient

[Antoshenkov, 1994, Antoshenkov and Ziauddin, 1996]. However, in the worst case, the

total time required to perform a logical operation on two BBC compressed bitmaps can

still be 100 times longer than on two uncompressed bitmaps. A number of compression

schemes that improve the overall query response time by improving their worst-case

performance have been discussed [Wu et al. 2001]. In this article, the main concentration

was on the Word-Aligned Hybrid (WAH) code for two main reasons: (1) it is the easiest

to analyze, which leads them to prove an important optimality about the compressed

bitmap indexes, and (2) it is the fastest in their tests. In earlier tests, the authors observed

that bitwise logical operations on WAH compressed bitmaps are 2 to 100 times faster

than the same operations on BBC compressed bitmaps because WAH is a much simpler

compression method than BBC [Wu et al., 2001, Stockinger et al., 2002].

There is a space-time tradeoff among these compression schemes. Comparing

BBC with LZ77, BBC trades some space for more efficient operations. Similarly, WAH

trades even more space for even faster operations. Compressing individual bitmaps is

only one way to reduce the bitmap index size. An alternative strategy is to reduce the

number of bitmaps, for example, by using binning or more complex encoding schemes.

With binning, multiple values are grouped into a single bin and only the bins are indexed

[Koudas, 2000, Shoshani et al., 1999, Wu and Yu, 1996]. Many researchers have studied

the strategy of using different encoding schemes to reduce the index sizes [Chan and

Ioannidis, 1998, 1999, O’Neil and Quass, 1997, Wong et al., 1985, Wu and Buchmann,

1998]. One well-known scheme is the bit-sliced index that encodes c distinct values using

log2c bits and creates a bitmap for each binary digit [O’Neil and Quass, 1997]. This is

referred to as the binary encoding scheme elsewhere [Wong et al., 1985, Chan and

Ioannidis, 1998, Wu and Buchmann, 1998]. A drawback of this scheme is that most of

the bitmaps have to be accessed when answering a query. To answer a two-sided range

query such as “120 < Energy < 140,” most bitmaps have to be accessed twice. There are

also a number of schemes that generate more bitmaps than the bit-sliced index but access

fewer of them while processing a query, for example, the attribute value decomposition

[Chan and Ioannidis, 1998], interval encoding [Chan and Ioannidis, 1999], and the K-of-

 ��

N encoding [Wong et al., 1985]. In all these schemes, an efficient compression scheme

should improve their effectiveness. Additionally, a number of common indexing schemes

such as the signature file [Furuse et al., 1995, Ishikawa et al. 1993, Lee et al., 1995] may

also benefit from an efficient bitmap compression scheme. Compressed bitmaps can also

be effective for purposes other than indexing. In one case, the authors demonstrated that

using compressed bitmaps significantly speeds up the tracking of spatial features as they

evolve in the simulation of a combustion process [Wu et al., 2003].

The bitmap indexes discussed so far encode each distinct attribute value as one

bitmap vector. This technique is very efficient for integer or floating point values with

low attribute cardinalities. However, scientific data is often based on floating point values

with high attribute cardinalities. The work presented in [Stockinger et al., 2004]

demonstrated that bitmap indexes with binning can significantly speed up multi-

dimensional queries against high-cardinality attributes. A further bitmap index with

binning called range-based bitmap indexing was introduced in [Wu and Yu, 1996]. The

idea is to evenly distribute skewed attribute values onto various bins in order to achieve

uniform search times for different queries. The bin ranges for the bitmap vectors are

chosen based on a dynamic bucket expansion and contraction approach. In the initial

phase, the number of entries per bucket (bin) is counted. If the number of entries per

bucket grows beyond a certain threshold, the bucket is dynamically expanded into

buckets with smaller ranges. Finally, multiple buckets with adjacent ranges are combined.

The authors demonstrated that the algorithm efficiently redistributes highly skewed data.

However, performance results about query response times were not discussed.

A methodology for building space efficient bitmap indexes is introduced for high-

cardinality attributes based on binning [Koudas, 2000]. The work in [Koudas, 2000]

focuses on point (equality) queries rather than range queries. An optimal dynamic

programming algorithm is used for efficiently choosing bin ranges. The author raised

several interesting open research issues that inspired our research, like extending the

work by analyzing range queries.

 ��

2.1.1. Bitmap Indexes in Commercial Systems
The first commercial product to use the name bitmap index is Model 204. O'Neil

has published a description of the indexing method in [O’Neil, 1987]. Model 204

implements the basic bitmap index. It has no binning or compression. Currently, Model

204 is marketed by Computer Corporation of America. ORACLE has a version of

compressed bitmap indexes in its flagship product since version 7.3. They implemented a

proprietary compression method. Based on the observed performance characteristics, it

appears to use equality encoding without binning.

Sybase IQ implements the bit-sliced index [O’Neil & Quass, 1997]. Using the

terminology defined, Sybase IQ supports unbinned, binary encoded, uncompressed

bitmap indexes. In addition, it also has the basic bitmap index for low-cardinality

attributes. IBM DB2 implements a variation of the binary encoded bitmap index called

Encode Vector Index. IBM Informix products also contain some versions of bitmap

indexes for queries involving one or more tables. These indexes are specifically designed

to speed up join-operations and are commonly referred to as join indexes [O’Neil and

Quass, 1997]. InterSystems Corp's Cache also has bitmap index support since version

5.0. Even though we do not have technical details on most of these commercial products,

it is generally clear that they tend to use either the basic bitmap index or the bit-sliced

index.

2.2. Encoding Techniques

The limitations of simple bitmap indexing (SBI) for high cardinality attributes lead to the

suggestion of encoded bitmap indexing which provides the advantage of a drastic

reduction in space requirements and also a corresponding performance gain. The main

idea of encoded bitmap indexing (EBI) is to encode the attribute domain. We will see the

following example: We assume that we have a fact table ‘SALES’ with N tuples and a

dimension table ‘PRODUCT’ with 12,000 different products. If we build a simple bitmap

index on ‘PRODUCT’, it will require 12,000 bitmap vectors of N bits in length.

However, if we use encoded bitmap indexing we only need �

 � � 1412000log 2 = bitmap vectors plus a mapping table which is a very significant

reduction of the space complexity.

 �

2.2.1. Huffman Encoding
[Wu and Buchmann, 1998] proposes query optimization strategies for selections using

bitmaps. Both static and dynamic query optimization strategies have been discussed with

both continuous and discrete selection criteria. Static optimization strategies discussed

are the optimal design of bitmaps, and algorithms based on tree and logical reduction.

The dynamic optimization discussed is the approach of inclusion and exclusion for both

bit-sliced indexes and encoded bitmap indexes. Figure 2.1 explains with an example how

Huffman encoding used for reducing the space complexity of bitmap indexes: We assume

that our attribute domain is given by the table T is {a,b,c}. The encoding schema of EBI

is stored in a separate table called mapping table and simply encodes the values from a

SBI by means of Huffman encoding and therefore reduces the number of bitmaps vectors.

In particular, we use only � � 23log 2 = encoded bitmap vectors instead of 3 simple

bitmap vectors. This means that 2 bits are used to encode the domain {a, b, c}. For

example, the attribute value of ‘A’ is represented by the bit string 100 in the table of the

SBI but in the table of EBI the attribute value ‘A’ is encoded as 00.

Table T SBI EBI Mapping Table

Figure 2.1: Huffman Encoded Bitmap Index

Figure 2.2 gives an example of a Value-List index with 12 records, where each column

(except the first) represents a bitmap B associated with an attribute value v. The column

)(RAπ represents the relation of the attribute values present in the records.

…. column …. Ba Bb Bc B1 B0 A 00
 A 1 0 0 0 0 B 01
 B 0 1 0 0 1 C 10
 C 0 0 1 1 0
 B 0 1 0 0 1
 A 1 0 0 0 0

 ��

)(RAπ B8 B7 B6 B5 B4 B3 B2 B1 B0
1
2
3
4
5
6
7
8
9
10
11
12

Figure 2.2: Example of a Value-List Index

2.2.2. Multi-Component Encoding

Many researchers have proposed strategies to find the balance between the space

and time requirements [Wong et al., 1985, Chan and Ioannidis, 1999]. A method

proposed by [Chan and Ioannidis, 1999] called multi-component encoding can be thought

of as a generalization of binary encoding. In the binary encoding, each bitmap represents

a binary digit of the attribute values; the multi-component encoding breaks the values in a

more general way, where each component could have a different size. Consider an

integer attribute with values ranging from 0 to c-1. Let b1 and b2 be the sizes of two

components c1 and c2, where b1*b2>=c. Any value v can be expressed as

v = c1*b2+c2, where c1 = v / b2 and c2 = v % b2, where ‘/’ denotes the integer division and

‘%’ denotes the modulus operation. One can use a simple bitmap encoding method to

encode the values of c1 and c2 separately. Next, we give a more specific example to

illustrate the multi-component encoding.

Figure 2.3: An illustration of a 2-component bitmap index.

Component 1
1b =23

c
1 <=0

c
1 <=1

c
1 <=2

… c
1 <=23

Component 2
2b =40

c
2 <=0

c
2 <=1

c
2 <=2

… c
2 <=38

3
2
1
2
8
2
2
0
7
5
6
4

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

 ��

Figure 2.3 illustrates a 2-component encoded bitmap index for an attribute with

cardinality c=1000. In our example, the two components have base sizes of b1=25 and

b2=40. Assume the attribute values are in the domain of [0; 999]. An attribute value v is

decomposed into two components with c1 = v / 40 and c2 = v % 40. The component c1 can

be treated as an integer attribute in the range of 0 and 24; the component c2 can be viewed

as an integer attribute in the range of 0 and 39. Two bitmap indexes can be built, one for

each component, for example, c1 with the equality encoding and c2 with range encoding.

If range encoding is used for both components, it uses 24 bitmaps for Component 1 and

39 bitmaps for Component 2. In this case, the 2-component encoding uses 63 bitmaps,

which is more than the 10 bitmaps used by binary encoding. To answer the same query

“v < 105” using the 2-component index, the query is effectively translated to “c1<2 OR

(c1=2 AND c2<25).” Evaluating this expression requires three bitmaps representing

“c1<=1,” “c1<=2,” and “c2<=24.” In contrast, using the binary encoded bitmap index to

evaluate the same query, all 10 bitmaps are needed.

2.2.3. Equality and Range Encoding

Consider the thi component of an index with attribute cardinality ib . There are

essentially two major schemes to directly encode the corresponding values

iv ()10 −≤≤ ii bb in bits:

 Equality Encoding: There are ib bits, one for each possible value. The representation

of value iv has all bits set to 0, except for the bit corresponding to iv , which is set to 1.

Clearly, an equality-encoded component consists of ib bitmaps.

Range Encoding: There are ib bits again, one for each possible value. The representation

of value iv has the iv rightmost bits set to 0 and the remaining bits (starting from the

one corresponding to iv and to the left) set to 1. Intuitively, each bitmap iv
iB has 1

in all the records whose thi component value is less than or equal to iv . Since the

bitmap 1−ib
iB has all bits set to 1, it does not need to be stored, so a range- encoded

component consists of (ib - 1) bitmaps.

 ��

Figures 2.4(b) and (c) show the range-encoded indexes corresponding to the equality-

encoded indexes in figure 2.2.

1
2
3
4
5
6
7
8
9
10
11
12

Figure 2.4: Examples of range-encoded bitmap indexes. (a) Projection of indexed

attribute values with duplicates preserved. (b) Single Component, base-9, range-encoded

bitmap index.

 1
2B 0

2B 1
1B 0

1B

 (c)
 Figure 2.4: (c) Base< 3, 3 > range-encoded bitmap index.

An encoded bitmap index on a column A of a table T consists of a set of bitmap

vectors, lookup table and a set of retrieval Boolean function. Each distinct value of a

1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0

3
2
1
2
8
2
2
0
7
5
6
4

1 0
1 1
1 1
1 1
0 0
1 1
1 1
1 1
0 0
1 0
0 0
1 0

1 0
1 1
1 1
1 1
0 0
1 1
1 1
1 1
0 0
1 0
0 0
1 0

 (a) (b)

 �A (R) B7 B6 B5 B4 B3 B2 B1 B0

 ��

column is encoded using a no. of bits each of which is stored in a bitmap vector. Lookup

table stores the mapping between A (column) and its encoded representation.

As of now, the only encoding scheme that we used is the one used for Value- List

indexes, called Equality Encoding. But there is another scheme that actually allows for

even more compact indexes: the Range Encoding scheme. With this scheme, we not only

set the bit to one that contains the specific value, but also all other bits that are left of this

value, in short: all bits in the bitmaps iB to the desired value ivB . This way, we need one

less column in every bitmap, because the rightmost column has then all bits set to 1 and

does not need to be stored. Figure 2.4(a) and 2.4(b) shows the bitmap from the first

example, now reorganized to use range encoding. Of course this type of encoding can

also be used with multi-component bitmaps. This is even more effective as every single

component now needs one less column to be stored, resulting in an even more compact

index. As we can see in Figure 2.4(c), the index from the initial example has been

reduced from 9 to only 4 columns, i.e. to less than half the original number. The

downside of this method is that we can't use simple bit comparison anymore to get the

desired value, because now not only the specific value has 1 in its index but also all

bitmaps left of it. To overcome this disadvantage, the evaluation algorithm has to be

modified. The general idea is to differ between the possible query operators

()≠=≥>≤< ,,,,, and compute each in a different way.

A key design parameter for bitmap indexes is the encoding scheme, which

determines the set of attribute values “represented” by each bitmap in an index that is the

attribute values that set the corresponding records’ bits in a bitmap to 1. For example, the

simple design mentioned earlier, the encoding scheme is such that the bitmap associated

with the value v represents v alone. Previous studies [Wong et. al., 1985, O’Neil and

Quass, 1997, and Chan and Ioannidis 1999] have identified two basic encoding schemes:

Equality Encoding, which is the one mentioned above and is efficient for equality queries

(i.e. , queries of the form "" vA =), and Range Encoding, which is efficient for one-sided

range queries (i.e., queries of the form "" vA ≤ or "" vA ≥). However, the space-time

performance optimality of either of the encoding schemes is remain an open issue; that is,

it is not known whether or not there exists an encoding scheme with strictly better space-

time performance than equality encoding for equality queries or range encoding for one-

 ��

sided range queries. Two sided Range queries of the form "" 21 vAv ≤≤ Performance of

bitmap indexes for the more general class of membership queries (i.e., queries of the

form { }",...,," 21 kvvvA ∈).

Informally, an encoding scheme S is optimal for a query class Q if there is no

other encoding scheme with strictly better space-time performance than S for Q. Consider

an attribute A of a relation R, where the attribute cardinality is C. For simplicity and

without loss of generality, the domain of A is assumed to be a set of consecutive integers

from 0 to C-1. Let B be an individual bitmap of a bitmap index on A. For notational

convenience, we overload the symbol B so that it indicates both the bitmap itself (i.e., a

sequence of 0’s and 1’s) and the set of attribute values in A that correspond to its bits that

are set to 1. This allows us to use set operators and logical operators interchangeable. The

logical operators AND, OR, and XOR are denoted by ,,∨∧ and ⊕ , respectively, while the

compliment of B is denoted by B

An interval query on attribute A is a query of the form "" yAx ≤≤ or

)"(" yAxNOT ≤≤ . An interval query is an equality query if yx = ; it is a one-sided

range query if 0=x or 1−= Cy ; and it is two sided range query if 10 −<<< Cyx . A

one-sided or two-sided range query is also called a range query. We denote the class of

equality queries, one-sided range queries, two-sided range queries, and range queries by

EQ, 1RQ, 2RQ and RQ, respectively. We refer to a query that belongs to the query class

Q, where { }RQRQRQEQQ ,2,1,∈ , as a Q-query. Queries of the form { }",...,," 21 kvvvA ∈

are membership queries.

Equality encoding is the most fundamental and common bitmap encoding scheme. It

consists of C bitmaps { }110 ,...,, −= CEEEε , where each bitmap { }vE v = .

Evaluation of interval queries using an equality-encoded bitmap index proceeds as in

equation (2.1):

 �	

�
�
�

�

��
�

�

�

∨

=≤≤

∨∨

∨
−

+=

−

=

=

i
C

vi

i
v

i

i
v

vi

EE

E

vAv

1

1

1

0

21

2

1

2

1

""

otherwise

,
2

1 if 12 ��

�
	

	≤+− C
vv

 (2.1)

The range encoding scheme consists of ()1−C bitmaps { }210 ,...,, −=ℜ CRRR , where each

bitmap []vR v ,0= .

 (2.2)

In a binary encoded bitmap index, each attribute value is represented in binary form (i.e.,

with � �)(log 2 C bits, where C is the attribute cardinality); so there are a total of

� �)(log 2 C bitmaps in a binary-encoded index.

Theorem 2.1 states several results for the existing encoding schemes.

Theorem 2.1: The following statements hold:

1. Range encoding is optimal for EQ iff 5≤C .

2. Range encoding is optimal for 1RQ for all C.

3. Range encoding is not optimal for 2RQ for any C.

4. Range encoding is optimal for RQ for all C.

5. Equality encoding is optimal for EQ for all C.

6. Equality encoding is not optimal for 1RQ, 2RQ, and RQ for any C.

Let I denote an n-component index with base >< − 11 ,...,, bbb nn . Then the space and time
usage of the encoding schemes can be computed with the following formulas [Chan and
Ioannidis, 1998]:

�
�
�
�

�

��
�
�

�

�

⊕
−<≤=

−=−<<
−==

−<=<⊕
==

=≤≤

−

−

−

−

otherwise.
,10,0 if

,1,10 if
,1 if

,10 if
,0 if

""

1
21

21
1

21
2

21
1

21
0

21

12

2

1

11

vv

v

v

C

vv

RR

CvvR

CvCvR

CvvR

CvvRR

vvR

vAv

 �

For Equality Encoding:

�
�
� >

==�
= otherwise :1

 2 :
 where,)(

1

ii

i

n

i
i

bb
ssISpace (2.3)

 �
=

+=
n

i
itITime

1

 where),12(
3
1

)(

()
�
�

�
�

�
>

�
�

�

�
�

�

�
��

�
��
�

�
−�
�

�
	
	

�−+�
�

�
	

	
=

otherwise :1

2 :
22

1
2

1

2

i
ii

i
i

ii
b

bb
b

b
bt (2.4)

For Range Encoding:

()�
=

−=
n

i
ibISpace

1

1)((2.5)

�
�

�
�
�
�

�
��

�
��
�

�
−+−= �

=

n

i i bb
nITime

1 1

1
1

3
11

2)((2.6)

The base of the most time-efficient 2-component space-optimal index is given by

, , 12 >+−< δδ bb where � � ,
b
C

 ,C
1

21 �
�

�
	
	

�
== bb and

()
��

�
�

�

��

�
�

�

�
�

�

�

	
	

	 −++−
=

2

4
,0max

2
1212 Cbbbb

δ .

The expected number of pages which are hit by selecting k tuples from a table of n

pages is computed by

 ��

()
�
�
�
�

�

�
�
�
�

�

�

+−

�

�
�
�

� +−−•
−• ∏ − 1

1
1

1
1 rpn

r
n

n
pn

n
k

r , where each page contains p

tuples. The hit rate depends, of course, highly on the value p , clustering criteria,

distribution of indexed attribute, etc.

Consider an example, given are two attributes A and B of a table T. Let the domain of A,

denoted by),(ADom be{ }+∈≤≤ ZA 900,A 100|A and { }wvutfedcbaBDom ,,,,,,,,,)(= .

The cardinality of T is defined by |T| and the cardinality of an attribute is defined by the

cardinality of its domain.

An encoding scheme S is optimal for a query class Q if there is no other encoding scheme

with strictly better space-time performance than S for Q. An encoding function is called

total-order preserving, if there exists a total order in the domain of the indexed attribute,

and the same total order still exists in the encoded attribute domain. We use ‘+’ to denote

the logical operator OR and ‘.’ to denote the logical operator AND.

A min-term of n Boolean variables is a logical conjunction of all n variables, or their

negations. Both >< 6,6,6,5 and >< 8,8,8,2 are well-defined bases. A well-defined base,

>< 1,...,bbn , consists of finite number of components, i.e., +∈ Zn , such that

()��
�

�

�

	
	
	

	

�

−
=

=
∏ i

n
i

A
b

b
n 1

1

.

Space-optimum Given an integer n , the space-optimal n -component bit-sliced index is

the n -component bit-sliced index with the base >−−<
− �������� rrn

bbbb ,...,,1,...,1 ,

where b= � �n A and r is the smallest positive integer such that () Abb rnr ≥− −1 .

Time-optimum Given an integer n , the time-optimal n -component bit-sliced index is

the index with the base >�
�

�
	
	

�
< −

−
1

1
2

,2,...,2
n

n

A
���

.

 ��

2.2.4. Comparison of Bitmap Encoding Schemes
This section compares the space-time tradeoff of the bitmap encoding schemes i.e. the

best compromise between space usage and query response time, see figure 2.5.

Time
 A) Space Optimal

 (B) Time-optimal under space constraint M

 C) Optimal Space-Time Tradeoff (knee)

(D) Optimal Time

 Infeasible Region

 M Space

Figure 2.5: Space-Time Tradeoff

For multi component indexes, the more space we save with splitting the index into

multiple components, the more indexes have to be scanned for a query and so the

processing time rises [Chan and Ioannidis 1999]. The results show that range-encoding in

general provides better space-time tradeoff than equality-encoding in most cases. This

becomes clear as the graph for the range-encoded index most of the time is located under

the graph for the equality-encoded index, meaning the time for using it is shorter.

Encoded Bitmap indexes solves the problem of sparsity, improves the space utilization,

shortens the maintenance and processing time, and also improves the performance of

processing range queries. Most of all, the cardinality of the indexed attribute no longer

dramatically effects the maintenance and processing costs of the encoded bitmap indexes.

 �

The main encoding schemes for bitmap indexes are as follows:

• Attribute value decomposition

– Convert attribute value to suitable base

• Range Encoding

– |A| - 1 bitmaps

• Interval Encoding

– |A|/2 -1 bitmaps

• Equality encoding

– |A| bitmaps

|A| means Attribute cardinality. The figure 2.6 explains the differences.

Figure 2.6: Different encoding techniques

2.2.5. Bit-Sliced Encoding
A bit-sliced index of an attribute is a bitwise projection of the attribute [O’Neil

and Quass, 1997]. The number of bit vectors is equal to the length of the attribute’s data

type in bits, and the length of each bit vector is equal to the cardinality of the indexed

table. A bit-sliced index is based on converting integer values to binary values in order to

perform fast logical operations on them since the hardware directly supports 1’s and 0’s.

We should choose an optimal number of bits per bit-vector in order to represent the

whole attribute domain and to occupy minimum space.

Equality
encoding

Range
encoding

Interval
encoding

6 bins 0 1 2 3 4 5

 ��

Table 2.1: An example of a Bit-sliced Index

 In the above example, table 2.1, column C represents the actual values and C2

represents binary form of the value and B0 to B7 represents the bit slices. As we look in

the index, B0
 represents the bits for the numbers corresponding to the value 20 and B1

represents the bits for the numbers corresponding to the value 21 .So Bi represents the bits

for the numbers corresponding to the value 2i where i is from 0 to m (maximum number

of bit slices required is m+1).In the above example m is 6 since the largest number 156

can be represented in 7 bits. So the number of bit slices required is also 7.

For example, 23 can be written as the sum of 1.20 +1. 21 +1.22 +0.23

+1.24+0.25+0.26+0.27. So for the number 20 B0 contains the value corresponding to 20 i.e.

0 and B1
 contains 0 and B2

 contains 1 etc. Formal definition of bit-sliced index is as

follows:

Definition: A bit-sliced index B, often referred to as a BSI, is an ordered list of bitmaps

BS, BS-1. . . B1, B0; the list of bitmaps is used to represent values of some column C. The

bitmaps BS, BS-1, . . . , B1, B0 are called the bit-slices, and provide binary representations

of C values for all the rows, B0 holds the 1’s bits, B1 holds the 2’s bits, B2 holds the 4’s

bits, etc. More precisely, if we represent the C value of row j by C[j], and the bit for row j

in bit-slice Bi by Bi[j], then the values for Bi[j] are chosen such that C[j]= �s
i=0 Bi[j].2i

.So as mentioned in the previous example 23 = 1.20+1.21 +1.22 +0.23+1.24+0.25

+0.26+0.27 where 23 represents C [4].

RID Value
 C

 Binary
Representation C2

B7

27
B6

26
B5

25
B4

24
B3

23
B2

22
B1

21
B0

20

 1 45 00101101 0 0 1 0 1 1 0 1

 2 156 10011100 1 0 0 1 1 1 0 0

 3 14 00001110 0 0 0 0 1 1 1 0

 4 4 00000100 0 0 0 0 0 1 0 0

 5 82 01010010 0 1 0 1 0 0 1 0

 6 25 00011001 0 0 0 1 1 0 0 1

 ��

2.3. Compression Techniques

Wu et al., 2000, proposed to improve the effectiveness of the basic bitmap index

by compression. Other ways of improving the bitmap index include binning and using

different encoding. With binning, multiple values are grouped into a single bin and only

the bins are indexed [Koudas, 2000, Shoshani, 1999, Wu and Yu, 1996]. This strategy

reduces the number of bitmaps used but it also introduces inaccuracies. In order to

accurately answer a query, one has to scan some of the attribute values after operating on

the indexes. Many researchers have studied the strategy of using different encoding

schemes [Chan and Ioannidis, 1998, 1999, Wong et al., 1985, Wu and Buchmann, 1998].

One well known scheme is the bit-sliced index, that encodes k distinct values using

k2log bits and creates a bitmap for each binary digit [O’Neil and Quass, 1997]. This is

related to the binary encoding scheme discussed earlier. A drawback of encoding scheme

is that to answer each query, most of the bitmaps have to be accessed, and possibly

multiple times. There are also a number of schemes that generate more bitmaps than the

bit-sliced index but access less of them while processing a query, for examples, the

attribute value decomposition [Chan and Ioannidis, 1998], interval encoding [Chan and

Ioannidis, 1999] and the K-of-N encoding [Wong et al.,1985]. Compression techniques

can be applied on any bitmap.

Once we have identified some efficient compression schemes, we can improve all

bitmap indexes. Additionally, a number of other common indexing schemes such as the

signature file [Furuse et al., 1995, Ishikawa et al., 1993, Lee, 1995] and the bit transposed

files [Wong et al., 1985] may also benefit from efficient bitmap compression algorithms.

Other high-dimensional indexing schemes yet to be mentioned include the projection

index [O’Neil and Quass, 1997] and the UB-tree [Bayer, 1997, Markl and Bayer, 2000].

The projection index can be viewed as a different way of organizing the attribute values

of a table. It can be implemented easily and efficiently by using bitmaps to store the

intermediate results, and we use it as the bases for measuring the performance of our

compressed bitmap index. The UB-Tree is a promising technique.

To address the performance issue, a number of special algorithms have been

proposed. Johnson and colleagues have conducted extensive studies on their

performances [Jhonson, 1999, Amer-Yahia and Jhonson, 2000,]. From their studies, we

 ��

know that the logical operations using these specialized schemes are usually faster than

those using gzip. One such specialized algorithm, called the Byte-aligned Bitmap Code

(BBC), is known to be very efficient. It is used in a commercial database system,

ORACLE [Antoshenkov, 1994, Antoshenkov and Ziauddin, 1996]. However, even with

BBC, in many cases logical operations on the compressed data still can be orders of

magnitudes slower than on the uncompressed data.

2.3.1. Byte aligned Bitmap Code (BBC)

 Normal bitmap indexing technique doesn't compress the runs of zero and ones. As

a result it is not space efficient. To overcome this disadvantage, BBC was introduced

[Antoshenkov, 1994]. BBC is designed so that it can compress runs which are both short

and long. As a result we can get better compression ratio (on a normal data). It is based

on the basic idea of run length encoding that represents consecutive identical bits (also

called a fill or a gap) by their bit value and their length. The bit value of a fill is called the

fill bit. If the fill bit is 0, we call it as 0-fill otherwise for 1 called as 1-fill.

 Given a bit sequence, BBC first divides it into bytes and then group bytes into runs. Run

consists of a fill word followed by a tail of literal bytes. It always contains a number of

whole bytes which represents the fill length. Byte Alignment property limits a fill length

to be an integer multiple of bytes. This ensures that during any bitwise logical operation a

tail byte is never broken into individual bits. In BBC we group the bits (which are either 0

or 1) in bytes and then compress them.

 BBC can be categorized into two forms:

 a) one sided (compresses only fills of 0's or 1’s) and

 b) two sided (compresses both fills of 0’s and 1's)

 BBC has got two types of runs viz. fill and literal. The fill runs are the ones where

we actually store the compressed form of long runs, whereas in case of literal, the bits

(which are present in the Byte) have literal meaning i.e., 0 - there is no record and 1 -

there is a record in the database.

Procedure for two sided BBC:

BBC scans through records and generates a bit map vector for it. Then, it

categorizes this into either of four runs, which are described below.

 ��

Type#1 run:

 <header byte> <0 to 3 literal bytes>

 header byte:

 1 <fill bit> <fill length - 2 bit> <tail length - 4 bits>

 fill bit signifies whether the runs are of 0's or 1's.

 With the help of this run, we can store a run having length less than or equal to

24. (as we have 2 bit for fill length) we can store four values viz. 0 to 3, a value of 3 in

fill length bits signifies a run length of 8*3 = 24 (since BBC organizes the run in two

groups of 8).

After the fills we can have a maximum of 15*8=120 bits which can act as literal bits.

Tail length has 4 bits, so the maximum number possible is 15 => 15*8=120 bits.

 e.g 00 8A 37 (in hexa)

 here we have a runs of zero.

 Its run length is 1.

 so, the header bit will now become

 1 0 01 0010 1000 1010 0011 0111

 92 8A 37.

 once we compress this bit, we can identify this run, if a number has a value >=

127. Since the MSB bit is 1, in the header byte.

Type#2 run:

 <header byte>

 01 <fill bit> <fill length - 2 bits> <odd bit position - 3 bits>

 fill bit signifies whether the runs are of 0's or 1's.

 With the help of this run, we can store a run having length less than or equal to

24. (as we have 2 bit for fill length) we can store four values viz. 0 to 3, a value of 3 in

fill length bits signifies a run length of 8*3 = 24 (since BBC organizes the run in to

groups of 8).

 After the fills we can have a literal bit which has got only one 1 and other 7 bits

are zeros. The bit which is one is stored in the header information.

 e.g 80 (HEX)

 ��

 01 0 00 111

 47 (HEX).

 Here we don't have a runs in the beginning so, the fill length is made 0. In

the literal bit we have 1 in the MSB position. Hence the odd bit position is taken as 7. (7

for MSB and 0 for LSB).

 e.g 00 00 00 02.

 01 0 11 001

 59 (HEX).

we have a fill length of 3, followed by a literal which has one in the 1st position (0th

position being LSB). once we compress this bit, we can identify this run, if a number has

a value >= 64 and < 127.

Type#3 run:

 <header> <multi byte counter> <literal>

 001 <fill bit> <tail length - 4 bit>

 The disadvantage of Type 1 run is that it can accomodate run which are less than

or equal to 120. To overcome this we have Type 3 run, where in we can store runs which

are even larger.

 fill bit represent the type of run.

 The length of fill bits is represented using the multibyte counter.

 If MSB of multibyte counter is 1, it signifies that there is another multibyte

counter following it.

 If MSB of multibyte counter is 0, it signifies that there is a no multibyte counter

following it.

 no.of.fill bits = sum of lower 7 bits in the multi byte counter + 4

 we add 4 because, initially we knew that we have started from type 1 run, which

has accounted for 3 runs. So, if we are working on type 3 run it means we will be having

runs which is >=4.

 Tail holds the literal bits.

 e.g 00 (9 times) F3.

 here we have a fill length of 9, which can't be shown using the type 1 run.

 so, we go for type 3 run.

 �	

 fill length = 9-4 =5.

 001 0 0001 0000 0101 1111 0011

 0001 = > there is only one literal byte.

 0000 0101 => this is the last Multi byte counter. (as MSB is 0).

 and the length of fill is 5 + 4 =9

once we compress this bit, we can identify this run, if a number has a value >= 32 and <

64.

Type#4 run:

 <header> <multi byte counter> <literal>

 0001 <fill bit> <odd bit position>

 The disadvantage of Type 2 run is that it can accommodate run which are less

than or equal to 120. To overcome this we have Type 4 run, where in we can store runs

which are even larger.

 fill bit represent the type of run.

 The length of fill bits is represented using the multibyte counter.

 If MSB of multibyte counter is 1, it signifies that there is another multibyte

counter following.

 If MSB of multibyte counter is 0, it signifies that there is a no multibyte counter

following.

 no.of.fill bits = sum of lower 7 bits in the multi byte counter + 4

 we add 4 because, initially we new that we have started from type 1 run, which

has accounted for 3 runs. So, if we are working on type 3 run it means we will be having

runs which is >=4.

 Tail holds the literal bits. we can have only one literal byte.

 e.g 00 (9 times) 02.

 here we have a fill length of 9, which can't be shown using the type 1 run.

 so, we go for type 3 run.

 fill length = 9-4 =5.

 0001 0 001 0000 0101

 001 = > one is present in the 1st position.

 0000 0101 => this is the last Multi byte counter. (as MSB is 0).

 �

 and the length of fill is 5 + 4 =9

 once we compress this bit, we can identify this run, if a number has a value >= 16

and < 32.

2.3.2. Word Aligned Hybrid Code (WAH)
Similar to BBC, this technique is also a hybrid between the run length encoding and the

literal scheme. WAH scheme is much simpler and efficient than BBC [Wu et al., 2004].

WAH stores compressed data in words rather than in bytes.

Two types of word in WAH

1) Literal Word

2) Fill Word

MSB of a word to distinguish between a literal word (0) and a fill word (1) without

explicitly extracting the bit.

Lower bits of a literal word contain the bit values from the bitmap. Second MSB of a fill

word is the fill bit and lower bits store the fill length.

Imposing word alignment requires all fill lengths to be integer multiples of no. of bits,

which ensures that logical operation functions only need to access words not bytes or

bits. In this section, we briefly review the main characteristics of the compression

algorithm used; namely the word-aligned hybrid run-length code or WAH for short. We

don’t describe how the logical operations are performed without decompression.

Interested readers can find details in a technical report [Wu et al., 2001]. As the name

suggests, this scheme is a variation on the run-length code. The essence of the run-length

code is to represent a list of consecutive identical bits by its length and its bit value. As is

common in the literature, we refer to a sequence of identical bits as a fill. The bit value of

a fill is called the fill bit. The number of bits in a fill is called the fill length. To ensure

efficient operations, WAH encodes the fill length and the fill bit in one whole word.

Compared to the uncompressed scheme, this only reduces the space requirement if the fill

is longer than a word. For fills that are shorter, WAH stores them literally. Altogether,

there are two types of code words in WAH, those that contain literal bit values (called

literal words) and those that contain fills (called fill words).

 ��

In our current 32-bit implementation, we use the Leftmost Bit (LMB) of a word to

distinguish between a literal word and a fill word, where 0 indicates a literal word and 1

indicates a fill word. The lower 31 bits of a literal word contains literal bit values. The

second leftmost bit of a fill word is the fill bit and the 30 lower bits store the fill length.

To achieve fast operation, it is crucial that we impose the word-alignment requirement on

this scheme. The word-alignment requirement in WAH requires all fill lengths to be

integer multiples of 31 bits (i.e., literal word size). Given this restriction, we represent fill

lengths in multiples of literal word size. For example, if a fill contains 62 bits, the fill

length will be recorded as two (2), as shown in figure 2.7.

124 bits 1,20*0,3*1,79*0,21*1
31-bit groups 1,20*0,3*1,7*0 62*0 10*0,21*1
Groups in hex 40000380 00000000 00000000 001FFFFF
WAH(hex) 40000380 80000002 001FFFFF

Figure 2.7: A WAH bit vector.

Figure 2.8: A bitwise logical AND operation on WAH compressed bitmaps

Figure 2.8 shows a decompressed version of the three bitmaps involved in the operation

for the purpose of illustration only. The logical operations can be directly performed on

the compressed bitmaps and the time needed by one such operation on two operands is

related to the sizes of the compressed bitmaps. Let the compression ratio be the ratio of

size of a compressed bitmap and its uncompressed counterpart. When the average

Decompressed

A 40000380 00000000 00000000 001FFFFF 0000000F
B 7FFFFFF 7FFFFFFF 7C0001E0 3FE00000 00000003
C 40000380 00000000 00000000 00000000 00000003

Compressed

A 40000380 80000002 001FFFFF 0000000F
 B C0000002 7C0001E0 3FE00000 00000003
 C 40000380 80000003 00000003

 ��

compression ratio of the two operands is less than 0.5, the logical operation time is

expected to be proportional to the average compression ratio [Wu et al., 2001]

Even with small data size, in the majority of the test cases, the word-aligned

scheme is still significantly faster. When the compression ratio is one, the logical

operations on WAH bit vectors are about 80 times faster than the same operations on

BBC bit vectors. Even when the time to read two bit vectors is included, the WAH

scheme is still about 20 times faster than BBC. If we sum up all the total time values

from all test cases (including different logical operations), the sum for BBC is about 12

times that of WAH. In other words, on the average WAH is about 12 times as fast as

BBC. If the IO time is not included, the differences are even larger. Compared to the

literal scheme, the BBC scheme is faster in less than half of the test cases; WAH is faster

in about 60% of the test cases. On the average, WAH-compressed bit vectors use less

than a third of the space required by the uncompressed scheme (LIT). Compared to BBC,

WAH uses only about 50% more space.

In using the WAH compressed bitmap index to answer queries, bitwise logical

operations are the most important operations. For this reason, we next examine the

complexity of the bitwise logical operation procedures. Two different algorithms, one

performs an arbitrary bitwise logical operation on two compressed bitmaps, and the other

performs a bitwise OR between a decompressed bit vector and a compressed one. The

first one is for general use and the second one is mainly used to sum together a large

number of sparse bitmaps. Before we give detailed analyses, we first summarize the main

points.

The time to perform an arbitrary logical operation between two compressed

bitmaps is proportional to the total size of the two bitmaps. The exception is when the

two operands are nearly decompressed; in which case the time needed is constant. The

time to perform a logical OR operation between a decompressed bit vector and a

compressed one is linear in the size of the compressed one. When performing OR

operation on large number of sparse bitmaps using in-place OP, the total time is linear in

the total size of all input bitmaps. In this case, using generic operation takes more time

because it allocates memory for intermediate results and compresses them too. In

contrast, using in-place Oravoids all of these operations. Operations on WAH

 �

compressed bitmaps are faster than the same operations on BBC compressed bitmaps for

three main reasons.

1. The encoding scheme of WAH is much simpler than BBC. WAH has only two kinds

of words, and one test is sufficient to determine the type of any given word. In contrast,

our implementation of BBC has four different types of runs; other implementations have

even more. It may take up to three tests in order to decide the run type of a header byte

and many clock cycles may also be needed to fully decode a run.

2. During the logical operations, WAH always accesses whole words, while BBC

accesses bytes. For this reason, BBC needs more time to transfer its data between the

main memory and CPU registers than WAH.

3. BBC can encode short fills; say those with less than 60 bits, more compactly than

WAH. However, this comes at a cost. Each time BBC encounters a short fill it starts a

new run. WAH typically represents such a short fill in literal words. It takes much less

time to operate on a literal word in WAH than on a run in BBC. This situation is common

when bit density is greater than 0.01 in random bitmaps.

We believe it is worthwhile to trade this 50% more space for 12 fold increase in

operation speed. The gzip scheme is based on an asymptotically optimal compress

scheme. Even compared again this optimal scheme, WAH scheme uses no more than

twice as much space. For this extra space, WAH is able to perform logical operations

several orders of magnitudes faster than gzip. Overall, we believe WAH is the most

appropriate scheme for compressing bitmap indexes. Wu and others [2004] propose a

simple algorithm for compressing the bitmap indexes that improves the speed of logical

operations by an order of magnitude at a cost of small increase in space. This algorithm

not only supports faster logical operations but also enables the bitmap index to be applied

to attributes with high cardinalities. Our tests show that by using WAH compression, we

can achieve good performance on scientific datasets where most attributes have high

cardinalities. From their performance studies, Johnson and colleagues came to the

conclusion that one has to dynamically switch among different compression schemes in

order to achieve the best performance [Amer-Yahia and Jhonson, 2000]. We found that

since WAH is significantly faster than earlier compression schemes, there is no need to

switch compression schemes in a bitmap indexing software. The new compression

 ��

scheme not only improves the performance of the bitmap indexes but also simplifies the

indexing software.

Goyal and others [1999] have considered the application of compression

techniques to data warehouse indexes. They examined a recently proposed access

structure for warehouses known as DataIndexes and discussed the application of several

compression methods to this approach and discusses when each of them should be used.

Wu and others [2001] talks about bitmap compression as bitmaps are easy to compress

but compressing them reduce the query processing efficiency. To solve this problem they

developed a new word-aligned compression scheme technique. They also evaluated

several bitmap encoding schemes, like equality encoding, range encoding and interval

encoding. Their results shows that the compressed bitmap indexes are not only much

smaller in size than their uncompressed versions, but are also just as fast in query

processing as their uncompressed counterparts. Systematic analysis of the effectiveness

of the two most efficient bitmap compression techniques, the Byte-aligned Bitmap Code

(BBC) and the Word-Aligned Hybrid (WAH) code have been discussed in [Wu et. al.,

2004]. Their analysis shows that both compression schemes can be optimal. They also

proposed a novel strategy to select the appropriate algorithms so that their optimality can

be achieved in practice. Their results show that the sizes of the compressed bitmap

indexes are relatively small with the typical B-tree indexes. This is even true for high

cardinality attributes.

Wu and others [2006] discusses word-aligned Hybrid Compression technique for

bitmap indexes making them efficient even for high-cardinality attributes. They proved

its optimality for one-dimensional range queries. Their main result states that the time

required to answer a one-dimensional range query is a linear function of the number of

hits. This strongly supports the well-known observation that compressed bitmap indexes

are efficient for multidimensional range queries because results of one-dimensional range

queries computed with bitmap indexes can be easily combined to answer

multidimensional range queries. They show that WAH not only reduces the bitmap index

sizes but also improves the query response time. Amer-yahia and Johnson [2000] discuss

about the compressed bitmap indexes to accelerate decision support queries. They

showed that there are several fast algorithms for evaluating Boolean operators on

 ��

compressed bitmaps. These algorithms have different execution times for different

Boolean operations and for different bitmaps. They present a linear time dynamic

programming search strategy based on a cost model to optimize query expression

evaluation plans. Their results show that the optimizer requires a negligible amount to

time to execute, and that optimized complex queries can execute up to three times faster

than un-optimized queries on real data.

Johnson and others [2004] have presented a lossless compression strategy to store

and access large matrices efficiently on disk. Their approach is based on viewing the

columns of the matrix as points in a very high dimensional Hamming space, and then

formulating an appropriate optimization problem that reduces to solving an instance of

the Traveling Salesman Problem on this space. Richards [1986] talks about file

compression when all the records of the file have the same field structure. Here

‘differencing’ compression scheme is analyzed. The idea is to arrange the records in

some order and output the first record, which differs from the previous record. The

problem is to sort the records so that they are in a Gray-code order. They presented an

improvement to Ernwall’s algorithm, extend it to the full mixed-radix case and present

another algorithm. Stockinger and others [2006] described an integration effort that can

significantly reduce the unnecessary reading all variables into memory by using an

efficient compressed bitmap indexing into ROOT framework. By using this index, any

arbitrary combinations of queries can be answered very efficiently. Their performance

results show that for multi-dimensional queries, bitmap indexes outperform the

traditional analysis method up to a factor of 10. Wu and others [2001] presented a

comparison of two word based compression schemes with BBC. Their results show that

these word-aligned schemes take only 50% more space than BBC but perform logical

operations 12 times faster on both real application data and synthetic data. Wong and

others [1985] introduces a file structure called bit transposed file which suits the special

characteristics of large Scientific/Statistical Database applications. The data is stored by

vertical bit partitions. The bit patterns of attributes are assigned using one of several data

encoding methods. The bit partitions can be compressed using a version of the run length

encoding scheme. Results from experiments shows that bit transposed may be a

reasonable alternative file structure for large Scientific/Statistical Databases.

 ��

To reduce the query response time, [Wu et. al., and 2006] designed a CPU-

friendly scheme named the word-aligned hybrid code. They proved that the sizes of

WAH compressed bitmap indexes are about two words per row for large range of

attributes. This size is smaller than typical sizes of commonly used indexes, such as a B-

tree. Therefore, WAH compressed indexes are not only appropriate for low cardinality

attributes but also for high cardinality attributes. In the worst case, the time to operate on

compressed bitmaps is proportional to the total size of the bitmaps involved. The total

size of the bitmaps required to answer a query on one attribute is proportional to the

number of hits. These indicate that WAH compressed bitmap indexes are optimal. Tests

on a STAR dataset show that it is 12 times faster than BBC while using only 60% more

space. They have also shown through both analyses and tests that the query processing

time grows linearly as the index size increases. In addition, they demonstrated that the

query processing time is linear in the number of hits when using a WAH compressed

bitmap index. This proves that WAH compressed bitmap indexes are optimal. Wu and

others [2002] studied the effects of compression on bitmap indexes. To make compressed

bitmaps operate more efficiently, they designed word-aligned hybrid code (WAH). They

demonstrated from tests that improving the compression scheme actually improves the

query answering speed, not only logical operations. Tests show that WAH compressed

indexes are not only smaller than the uncompressed indexes, they also take less time to

answer queries. Compared to the indexes compressed with BBC, the WAH compressed

indexes are faster by a factor of four or five. They did not see a factor of 12

improvements because the times spent in query processing are dominated by logical

operations on very sparse bitmaps. On very sparse bitmaps, WAH scheme is faster than

BBC usually by a factor of about four or five. During query processing there is also some

amount of time spent in parsing the query, obtaining the locks.

Pinar and others [2005] evaluates compressed bitmap indexes for scientific

databases such as high energy physics. Study has been carried out to reorganize bitmap

tables for improved compression rates. Their algorithms are used just as a preprocessing

step, thus there is no need to revise the current indexing techniques and the query

processing algorithms. We introduce the tuple reordering problem, which aims to

reorganize database tuples for optimal compression rates. We propose Gray code

 ��

ordering algorithm for this NP-Complete problem, which is an in-place algorithm, and

runs in linear time in the order of the size of the database. We also discuss how the tuple

reordering problem can be reduced to the traveling salesperson problem. Their

experimental results on real data sets show that the compression ratio can be improved by

a factor of 2 to 10.

2.4. Binning Techniques

The simplest form of bitmap indexes works well for low-cardinality attributes.

However, for high-cardinality attributes simple bitmap indexes are impractical due to

large storage and computational complexities. We have seen the simple bitmap indexes

and encoding schemes like range encoding and interval encoding which are best suited

for one sided range queries and two sided range queries. In addition we have also seen

equality encoding which is the basic bitmap index scheme for simple equality queries.

We have just discussed how different encoding methods could reduce the index size and

improve query response time. Next, we describe a strategy called binning to reduce the

number bitmaps.

Koudas [2000] introduced the idea of binning for bitmap indexes. Instead of

representing one bitmap vector for each distinct value of the attribute domain, design

bitmap for a group of attribute value by taking into consideration the query and data

distribution. By doing so, we can control the size of bitmap index by reducing the number

of bitmap vectors. Now the size of bitmap index is no longer directly proportional to the

cardinality of the attribute domain. This makes bitmap indexing suitable for high

cardinality attributes as well. Here, mathematical formation and its optimal solution is

also discussed. The solution for choosing bitmap ranges efficiently is optimal and

polynomial time. Compressed bitmaps were also considered and branch and bound

algorithm for choosing bitmap ranges is proposed. Wu and Yu [1998] introduced the term

Range-based bitmap indexing for binning, where the attribute values are partitioned into

ranges and a bitmap vector is used to represent a range. Range-based indexing results in

non-uniform search times for different queries as the number of records assigned to

different ranges can be highly uneven. They proposed and evaluated a dynamic bucket

expansion and contraction approach to construct range-based bitmap indexes for multiple

 ��

high-cardinality attributes with skew. Their results shows better performance with highly

skewed data for naïve partition approach and performs favorably with the optimal

approach.

All these bitmap encoding techniques and schemes discussed so far are optimized

for discrete attribute values and they cannot work with the real time scientific data and

multi dimensional index data structures for such scientific data. Hence we go for an

algorithm which works well with real attribute values. This generic algorithm is called

the “Generic Range Encoding Algorithm”. The main problem with this algorithm is that

we have to do candidate check for getting the exact hits as we are encoding the attribute

ranges and not exact values of attributes. Hence candidate check problem determines the

performance factor in this case Since the encoding methods described before only take

certain integer values as input, we may also view binning as a way to produce these

integer values (bin numbers) for the encoding strategies. The basic idea of binning is to

build a bitmap for a bin rather than each distinct attribute value. This strategy

disassociates the number of bitmaps from the attribute cardinality and allows one to build

a bitmap index of a prescribed size, no matter how large the attribute cardinality is. A

clear advantage of this approach is that it allows one to control the index size. However,

it also introduces some uncertainty in the answers if one only uses the index. To generate

precise answers, one may need to examine the original data records (candidates) to verify

that the user specified conditions are satisfied. The process of reading the base data to

verify the query conditions is called candidate check [Stockinger et al., 2004, Rotem et

al., 2005b]. A small example of an equality-encoded bitmap index with binning is given

in Figure 2.9. In this example we assume that an attribute A has values between 0 and

100. The values of the attribute A are given in the second leftmost column. The range of

possible values of A is partitioned into five bins [0, 20), [20, 40).... A “1-bit” indicates

that the attribute value falls into a specific bin. On the contrary, a “0-bit” indicates that

the attribute value does not fall into the specific bin. Take the example of evaluating the

query “Count the number of rows where 37 <= A < 63”. The correct result should be 2

(rows 5 and 7). We see that the range in the query overlaps with bins 1, 2 and 3. We

know for sure that all rows that fall into bin 2 definitely qualify (i.e., they are hits). On the

other hand, rows that falls into bins 1 and 3 possibly qualify and need further verification.

 �	

In this case, we call bins 1 and 3 edge bins. The rows (records) that fall into edge bins are

candidates and need to be checked against the query constraint.

In the following example, there are four candidates, namely rows 1 and 3 from bin

1, and rows 5 and 6 from bin 3. The candidate check process needs to read these four

rows from disk and examine their values to see whether or not they satisfy the user-

specified conditions.

Figure 2.9: Range query “37 <= A < 63” on a bitmap index with binning.

On a large data set, a candidate check may need to read many pages and may

dominate the overall query response time [Rotem et al., 2005b]. There are a number of

strategies to minimize the time required for the candidate check [Stockinger et al., 2004,

Rotem et al. 2005a, 2005b]. Koudas [2000] considered the problem of finding the optimal

binning for a given set of equality queries. Rotem and others considered the problem of

 RID A [0; 20) [20; 40) [40; 60) [60; 80) [80; 100) bit ranges

 0 1 2 3 4 bitmap identifier

0

0

0

1

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

1

0

34.7

94

24.9

15.5

61.7

67.2

58.6

1

2

3

4

5

6

7

0

1

0

0

0

0

0

attribute values on disk
(base data)

 query range: 37<=A<63

 �

finding the optimal binning for range queries. Their approaches are based on dynamic

programming. Since the time required by the dynamic programming grows quadratic

with the problem size, these approaches are only efficient for attributes with relatively

small attribute cardinalities or with relatively small sets of known queries. Stockinger and

others [2004] considered the problem of optimizing the order of evaluating multi-

dimensional range queries. The key idea is to use more operations on bitmaps to reduce

the number of candidates checked. This approach usually reduces the total query

response time. Further improvements to this approach are to consider the attribute

distribution and other factors that influence the actual time required for the candidate

check. To minimize number of disk page accesses during the candidate check, it is

necessary to cluster the attribute values. A commonly used clustering (data layout)

technique is called the vertical partition or otherwise known as projection index. In

general, the vertical data layout is more efficient for searching, while the horizontal

organization (commonly used in DBMS) is more efficient for updating. To make the

candidate check more efficient, we recommend the vertical data organization. We have

seen that for high dimensional data the storage overhead for bitmaps indexes is very high.

There are two possible solutions to deal with this problem namely, generic range

evaluation algorithm where in attribute ranges are encoded rather than attribute values.

The other one is to compress the bitmap that has been built and thus save the large

storage overhead. Though the reduction in storage over head that is achievable with range

encoding or binary encoding comes at the cost of degraded query response hence study of

bitmap compression is of great importance.

2.4.1. Binning Strategies

Dynamic Bucket Expansion and Contraction (DBEC), the data are first scanned

into the buffer to construct the bucket ranges by counting the data points falling into each

bucket. If a bucket grows beyond a threshold, it is expanded into smaller-range buckets

[Wu andYu, 1998]. After the scan, adjacent buckets are combined it into the final

required number of buckets with approximately balanced count. Bitmap vectors are then

built for the contiguous ranges represented by the final buckets. [Stockinger et. al., 2004]

presented a new strategy to evaluate queries using bitmap indexes for very high

cardinality attributes. They considered scientific data analysis applications where most of

 ��

the attributes have very high cardinalities. They analyzed how binning affects the number

of pages accessed during query processing and proposed an optimal way of using bitmap

indexes to reduce the number of pages accessed. Their strategy reduces the query

response time by up to a factor of two by minimizing the number of records scanned

during the candidate checking, but requires more operations on bitmaps. They provided

detailed analyses and experimental measurements to verify the efficiency of their new

strategy. Three discussed strategies are as follows:

All queries to be conjunctive with a one-sided range condition on each attribute xi < vi.

Strategy 1: In the first phase the bitmap index is scanned for both attributes. In the next

phase, the candidate check for attribute 1 is performed by reading the attribute values

from disk and checking them against the range condition and similarly for attribute 2 is

done.

Strategy 2: This strategy evaluates each dimension separately. The bitmap index for the

first attribute is evaluated first and the candidates of this attribute are checked

immediately afterward. Similarly, dimension 2 is evaluated.

Strategy 3: The third strategy is an optimal combination of the above two strategies.. In

this the first part is similar to strategy one i.e. we find the combined total candidates for

all the dimension asked in the query and instead of reading all those pages for candidate

checking we now follow a different strategy.

We do the candidate checking for only those which are in the intersecting regions

of the Ctotal (candidates of all dimensions) and candidates of dimension 1 i.e. C1. We

then combine the candidates that passed the candidate checking to the Ctotal and use the

new Ctotal for doing the same with rest of the dimensions. By proceeding in this way we

are filtering out all the unnecessary candidate checks that would have been done if

candidate checking is done for each attribute separately and then combining them and

finally filtering out the rest which do not meet all the query requirements i.e. we are

performing the masking of candidates that satisfy the query constraint and eliminating the

unnecessary candidates which even might be successful in their individual candidate

checking but do not form the part of final result. Thus the third strategy seems to be more

advantageous over the other two as it has both the strategies intertwined to give a better

performance.

 ��

Since many scientific applications operate on floating point number, Stockinger, [2001]

presented a novel algorithm called GenericRangeEval for processing one-sided range

queries over floating point values. They also presented a cost model for predicting the

performance of bitmap indexes for high-dimensional search spaces. They studied

analytically and experimentally the performance behavior of multi-dimensional queries.

Their experimental evaluation showed that the cost model predicted the performance of

the bitmap index fairly well and could thus easily be incorporated into a query optimizer.

It can decide whether the query shall be answered by using the index and tell its

estimated query response time.

Stockinger [2002] analyzed the behavior of GenericRangeEval bitmap index

algorithm against various queries based on different data distributions. They also

implemented an improved version of BBC. Results show that depending on the

underlying data distribution and the query access patterns, proposed bitmap indexes can

significantly improve the response time of high-dimensional queries when compared to

conventional access methods. They demonstrated that the query response times of

compressed bitmap indexes can be significantly lower than for uncompressed bitmap

indexes. Stockinger and others [2000] discuss the design and implementation of bitmap

indexes for High-Energy Physics analysis, where the potential search space consists of

hundreds of independent dimensions. They evaluated both equality and range encoding

techniques and found that the number of bitmap vectors per attribute is a central

optimization parameter. Their results helps in choosing the optimal number of bitmap

vectors for multi-dimensional indexes with attributes of different value distribution and

query selectivity. They solved the candidate check bottleneck by increasing the number

of bins and came to an optimal query performance. This optimum can be regarded as a

trade-off between a high number of candidates and consequently more I/O on the event

data vs. a low number of candidates and therefore a higher number of bins.

Stockinger and others [2005] propose a novel approach to scalable data analysis

for large scientific databases by combining bitmap indexing and visualization

infrastructure. They combined bitmap indexing with a visualization pipeline for

generating images of abstract data results in a tool suitable for use by scientists in fields

where data size and complexity poses a barrier to efficient analysis. They present an

 	

architectural overview of the system (Dexterous Data Explorer) along with an analysis

showing substantial performance over traditional visualization pipelines. Bitmap Indexes

are used to quickly locate features in data and grow them into connected regions. The

results are then used as input to the visualization pipeline. Rotem and others [2004]

studied the problem of finding optimal locations for the bin boundaries in order to

minimize the access costs subject to storage constraints. They proposed a dynamic

programming algorithm for optimal partitioning of attribute values into bins that takes

into account query access patterns as well as data distribution statistics. Their optimized

binning strategy improves the query response time and reduces candidate check costs.

Re-arranging the bin boundaries reduces the total size of the bitmap indexes and also re-

arranging attribute values between bins. This strategy can be used for periodically

reorganizing the bitmap index based on observed query workloads.

Rotem and others [2005] studies strategies for minimizing the access costs for

processing multi-dimensional queries using bitmap indexes with binning. Their approach

includes optimally placing the bin boundaries and dynamically reordering the evaluation

of the query terms. They derive several analytical results concerning optimal bin

allocation for a probabilistic query model Based on data distribution and query

distributions, their approach place bin boundaries such that the number of candidates that

need to be checked against the query constraints is minimized. They also suggest

reordering the evaluation of the attributes in multi-dimensional queries according to the

estimated attribute selectivity. The results show that as the number of query dimensions

increase, the efficiency of their algorithm increases.

Rotem and others [2006] studied strategies for minimizing the I/O costs for

candidate checking for multi-dimensional queries. Determining the number of bins

allocated for each dimension and then placing bin boundaries in optimal locations do this.

Their algorithms also take data distribution and query distributions and finds bin

allocation for each attribute. They performed analytical and experimental studies to

evaluate the efficiency of their algorithm. Rotem and others [2005b] have introduced a

novel algorithm for improving the query response time of bitmap indexes by computing

optimal bin boundaries. They also aimed at working on candidate check problem by

minimizing the total time required to answer queried by optimally placing the bin

 	�

boundaries using their dynamic programming algorithm. They presented an analytical

and experimental evaluation of the performance of synthetic and real query workloads for

a large data set from the Sloan Digital Sky Survey. Their results show improvement by a

factor of 2. Rotem and others [2005a] studied several strategies for optimizing the

candidate check cost for multi-dimensional queries. They present an efficient candidate

check algorithm based on attribute value distribution, query distribution as well as query

selectivity with respect to each dimensional. They also showed that re-ordering the

dimensions during query evaluation can be used to reduce I/O costs. Their results show

significant improvements.

2.4.2. Binning Cost Model

So far we have discussed various optimization techniques, different strategies and

different algorithms for achieving the faster query response time and lesser I/O costs. We

have discussed different binning strategies where in we chose some number of bins for

binning and the sole concentration was on selecting the bin boundaries and optimizing

this selection process but now we pay attention to selection of the number of bins that we

are going to use and the optimization of this number. Here we present a probabilistic

model that optimizes the number of bins to be used based on frequency with which the

attributes appear in the queries i.e. more bins for attributes that appear more frequently

and fewer bins for attributes that appear less frequently. A brief introduction to what we

have already discussed in detail includes choosing of optimal bin boundary placement. A

dynamic programming algorithm that works well for the single attribute case but when it

comes to multi attribute case a lot of parameters arise such as how many bins have to be

chosen for each attribute, likelihood of an attribute to appear in a query and the selectivity

factor. On a whole we can treat it as the total cost associated with binning of each

attribute Ai which is �Cost (Ai). But this is an NP-hard problem as the function Cost(Ai)

depends on ki(number of bins) for each attribute Ai and in general depends on the query

and data distributions. Hence we apply a closed form solution to multi dimensional bin

allocation problem where each Cost (Ai) is a differentiable function under the

probabilistic query model [Rotem et al., 2005].

The solution is described in two pahses. In the first phase we determine the

number of bins to be allocated to each attribute based on data and query statistics. In the

 	�

second phase we proceed with this bin allocation and applying the dynamic programming

algorithm we have used for the single attribute case for each attribute separately.

Probabilistic query model:

In this model that we are going to develop on the query set Q we assume attribute

independence i.e. the probability pi that an attribute Ai will show up in a query is

independent of the probability of appearance of other attributes in the query. Thus for a

query qi the probability �
�

�
	

�
−�

�

�
	

�
∏∏

∉∈ qAi
i

qAi
i pp)1(where Ai belongs to qi, implies that Ai is

specified in the query qi and vice versa. The selectivity of an attribute is denoted by Si.

The query evaluation is done in phases where in each phase the range condition is

evaluated on one of the attributes and the candidates that pass through the current phase

are sent to next phase to check for the range condition of next attribute. Thus the number

of candidates checked in each phase is a multiple of total records in the data base and

selectivities of attributes checked in the previous phases

A cost formula for candidate check is the derived as a recursive equation which is

∏�
+==

−−=
t

ij
jj

t

i
ii spkfptC

11
))1(1()(*)((2.7)

Where Cost of candidate check on attribute Ai i.e. Cost (Ai) is a function f(ki) on the

number of bins ki. We denote it as expected cost of candidate check on j attributes in the

order Aj, Aj-1,…,At. with ki bins allocated to each attribute and is simply denoted as

C(j,N) where N is the total number of records or simply C(j).

Finally a formula is derived for finding the optimal binning allocation which is

))11(11(
1

)1('
)('

+−+−
+

=
+ iii

i

i

i

spp
p

kf
kf

 for 1< i <t, where t is the total number of attributes.

Choosing proper binning strategies is also important as it may affect the query response

time considerably. Equal depth binning and equal width binning are two possible binning

strategies which can be implemented based on knowledge of data distribution and query

patterns.

 	�

2.4.3. Factor effecting Binning strategies
Following are the main factors which guides the binning strategies:

� Due to disk storage constraints, bitmap indexing systems that use binning must

limit the number of bins that are allowed per attribute. Such constraints are still

applicable even when bitmap compression is effectively used.

� Effective binning strategies attempt to compute bin location boundaries that

minimize the I/O cost incurred by the candidate check step subject to total index

storage constraints. It turns out that an optimal binning strategy must be sensitive

to both query distribution as well as data distribution.

� Query distribution, in terms of location of query endpoints and popularity of

queries, may affect bin boundary locations as the number of edge bins may be

minimized by attempting to align bin boundaries with query endpoints. In

addition, more bins can be allocated to data regions that are heavily hit by queries.

� Data distribution affects the binning strategy as one can allocate more bins to

densely populated regions of the data to avoid costly candidate check operations

on edge bins with many values.

2.5. Complexity Issues and Research Gaps

The simple bitmap indexing works well with attributes having low cardinalities.

The size of bitmap index can be very large for a high cardinality attribute where there are

thousands or even millions of distinct values. B-trees have been widely adopted in

database systems for external indexing. Their strength is their dynamic nature,

performance and stability under update – the properties that are not required in a Data

Warehouse (DW). In the DW environment, building simple bitmap indexes usually costs

less time and space than building B-trees. The restriction on simple bitmap indexes is that

they are not suitable for high cardinality attributes. Therefore, there is a need for a new

indexing technique, which does not have this restriction, but at the same time hold the

advantage of bitmap indexes.

It is well accepted that I/O cost dominates the query response time when using

out-of-core indexing methods. Thus, most indexing techniques focus on minimizing I/O

cost. For bitmap indexes, most research efforts concentrate on reducing the sizes of

 	�

indexes. However, tests show that the computation time can dominate the total time when

using compressed bitmap indexes. In addition, as main memories become cheaper, we

expect that “popular” bitmaps would remain in memory. This would further reduce the

average I/O cost and make the time spent in CPU more prominent part of the total query

processing time. For these reasons, we seek to improve the computational efficiency of

operations on compressed bitmaps. The space requirement of a simple bitmap index is a

linear function of the cardinality of the indexed attribute and of the indexed table, and the

index processing time for a single value selection is a linear function of the length of

bitmaps. The sparsity of the bit vectors increases with the cardinality resulting in poor

space utilization and high processing cost. Many variations of bitmap indexing have been

proposed to solve the sparsity problems. Two common objectives of the proposed

methods are (1) reducing the space complexity of the index and (2) improving the

performance of index processing. Many strategies have been devised to reduce the index

sizes, such as, more compact encoding strategies, binning and compression.

Based on above literature survey, we aimed at following objectives for our research:

• Finding new encoding scheme and encoding algorithms to process queries.

• Finding new compression algorithms that retains are advantages of bitwise

operators and solves are queries without decompressing the compressed bitmaps.

Finding new strategies to improve compression ratios for existing compression

techniques.

• Finding new binning strategies and algorithms to solve queries with better

performance than existing techniques.

2.6. Summary

This chapter gives an overview of some approaches on bitmap indexing. As has been

shown, bitmap indexes offer an efficient way of indexing data that remains consistent

most of the time. The methods and approaches discussed in this chapter can help

integrating bitmap indexes in existing databases. All in all, bitmap indexes are becoming

more and more popular, as indicated by the increasing use in commercial databases like

the ones by Oracle, RedBrick and Sybase.

 	�

In this chapter, we reviewed a number of recent developments in the area of

bitmap indexing technology. We reviewed the existing literature and organized much of

the research work under the three orthogonal categories of encoding, compression and

binning.

 		

Chapter 3: Compression Strategies and Encoding Techniques

3.1. Introduction

Data Warehouses are becoming more important for decision makers. Most of the queries

against a large data warehouse are complex and iterative. The ability to answer these

queries efficiently is a critical issue in the data warehouse environment. If the right index

structures are built on the columns, performance of the queries especially ad-hoc queries

will be greatly enhanced. This efficient query processing can be done using bitmap

indexing techniques, which helps in improving the time and space complexities of the

vast and complex queries that data warehouses deal with. The simplification of query

processing in turn speeds up the analysis process which is vital to any large organization.

Bitmap Indexing is one such technique. It primarily functions by representing the

huge amount of information stored in data warehouses as bitmap vectors which nothing

but binary representations of the data stored and the processing of binary data is many

folds faster than the processing of textual/numerical data. Though simple bitmap indexing

simplifies query processing and improves time complexity thereby speeding up the

processing of complex real time ad-hoc queries, it has a major bottleneck of dealing with

space efficiently caused by huge cardinality datasets. In this chapter, an attempt has been

made to address the problem.

3.2. Encoding of Bitmap Indexes

The simple bitmap index consists of a collection of bitmap vectors each of which is

created to represent each distinct value of the indexed column. The thi bit in a bitmap

vector, representing value x, is set to 1 if the thi record in the indexed table contains x.

A bitmap for a value: an array of bits where the thi bit is set to 1 if the thi record has the

value. A bitmap index consists of one bitmap for each value that an attribute can take

[O’Neil, 1987].

 	

3.2.1. Simple Bitmap Indexing
The basic idea of simple bitmap indexing is to use a string of bits (0 or 1) to

indicate whether an attribute in a table is equal to a specific value or not. The position of

a bit in the bit string denotes the position of the tuple in the table. The bit is set, if the

content of an attribute is associated with a specific value. For a typical example, a simple

bitmap index on the attribute gender, where the domain of gender is {Male, Female},

results in two bitmap vectors BMale and BFemale. For BMale the bit is set to 1, if the

associated tuple has the attribute gender = Male, otherwise the bit is set to 0. For BFemale

the bit is set to 1, if the associated tuple has the attribute gender = Female, otherwise the

bit is set to 0. The simple bitmap index on the attribute Gender, Bgrnder, is a collection of

bitmap vectors { BMale, BFemale } [Buchmann, 1998].

3.2.2. Encoded Bitmap Indexing
Suppose that a fact table attributes, sales, containing N tuples of sales data and a

dimension table, products, containing information about 12000 different products.

Traditionally, in order to build a simple bitmap index on products table, it will result in

12000 bitmap vectors of N bits in length. In encoded bitmap indexing instead of 12000

vectors, only [log2 N] = 14 bitmap vectors, plus a mapping table is used. For example,

suppose that the domain of attribute A of a table T is {a, b, c}. Instead of 3 bitmap

vectors, we use [log2 3] = 2 vectors to build the index on attribute A. 2 bits are used to

encode the domain {a, b, c}, where ‘a’ is encoded as 00, ‘b’ is encoded as ‘01’ and ‘c’ is

encoded as ‘10’ respectively. For those tuples with A = ‘a’, set the corresponding

positions in both bitmap vectors B1 and B2 to 0 and so on. The retrieval Boolean

functions for ‘a’,’b’,’c’ are , and respectively [Wu and Buchmann,

1998].

3.2.3. Maintenance of Encoded Bitmap Indexes

As data in a data warehouse is updated, the encoded bitmap indexes also need to

be maintained to reflect the changes. There are two categories of updates:

1) Updates without domain expansion

2) Updates with domain expansion

 	�

Updates without domain expansion: In the example stated in the previous section, if a

tuple with A = b is appended to table T, then we need to append only B1 [j] = 0 and B0 [j]

= 1 at the end of bitmap vectors B1 and B0 where j is the position of the newly inserted

tuple in table T.

Updates with domain expansion: If a tuple with A = d is appended to T, i.e. the domain is

now expanded to {a, b, c, d}, then the following equation should be first tested.

 Upper Limit (log2|A (m-1)|) = Upper Limit (log2|A (m)|)

Where |A (m-1)| denotes the cardinality of A before insertion and |A (m)| denotes the

cardinality of ‘A’ after insertion.If equation (1) is true, as is the case in our example, then

add the mapping MA(d) = 11 into the mapping table and set Bi[j] = MA(d)[i].

If another tuple with A = e is added to table T, the domain of A is now expanded

to {a, b, c, d, e}, then Upper Limit (log2|A(m-1)|) < Upper Limit (log2|A(m)|). The following

actions need to be taken to reflect the change to the encoded bitmap index which will be

explained by the next algorithm.

a.) Expand the mapping table MA = {a, b, c, d} to MA = {a, b, c, d, e}

b.) Add the bitmap vector B2 to BA and set B2 equal to 0

c) Set Bi[j] = MA (e) [i], where i = 0, 1, 2 and j = the position of the newly

inserted tuple in the table T

d.) Revise the retrieval Boolean functions

T
 B1 B0

 Mapping Table

Figure 3.1(a): Encoded Bitmap Index and mapping table without expansion

… A …
 a
 b
 c
 b
 a
 .

.

.

 d

a 00
b 01
c 10
d 11

0
0
1
0
0
.
.
.
1

0
1
0
1
0
.
.
.
1

 	�

 B2 B1 B0

 Mapping Table

Figure 3.1(b): Encoded Bitmap Index and mapping table with expansion

3.2.4. Solving Queries using Indexing Techniques
As data warehousing applications grow in size, existing data organizations and access

strategies, such as relational tables and B-tree indexes, are becoming increasingly

ineffective. The two primary reasons for this are that these datasets involve many

attributes and the queries on the data usually involve conditions on small subsets of the

attributes. Two strategies are known to address these difficulties well, namely vertical

partitioning and bitmap indexes. Here, we primarily concentrate on the latter one. One

important observation is that indexing is often more efficient than using B-tree based

indexes to answer ad hoc range queries on static datasets. For range queries, compressed

bitmap indexes are in most cases more efficient than other indexing techniques. We also

evaluate the performance of two different encoding schemes for bitmap indexes. The

program aims at comparing the efficiency and the performance of the indexing

techniques discussed above for solving queries corresponding to a relational database.

3.2.4.1. Database Generation

 The program requires large database with multiple records and multiple attributes

for each record as input in order to simulate a real ad-hoc data warehouse. Data records

are generated using simulation programs.

… A …
 a
 b
 c
 b
 a
 .

.

.

 d
 e

0
0
0
0
0
.
.
.
0
1

0
0
1
0
0
.
.
.
1
0

0
1
0
1
0
.
.
.
1
0

a 000
b 001
c 010
d 011
e 100

3.2.4.2. Construction of Mapping Tables

 A mapping table is constructed for each field of the record. So, if a table has

degree (arity) 5, then the number of mapping tables required is 5. In case of simple

bitmap indexing, the value of the new tuple is verified with the already existing tuples in

the table. If a match is found, corresponding to the attribute, a ‘1’ is inserted in the

position. If the match is not found, a ‘0’ is inserted and a new record corresponding to the

newly entered value is made and a ‘1’ is inserted.

In the case of encoded bitmap indexing, there will be two types of tables. One is

the mapping table and the other is the encoded bitmap table. First the mapping table is

verified for the value of the newly entered tuple. If a match is found, then the value

corresponding to the tuple in the mapping table is added to the encoded bitmap table. If a

match is not found, then the problem of domain expansion comes into light, i.e. whether

to domain expansion should take place or not. If the domain expansion takes place, then

there will be a slight change in the representation (a bit added) and all the updates take

place as mentioned in the section 3.2.3.

3.2.4.3. Solving Queries

 The query that is to be solved is present in the input file. The program takes the

query as input and constructs mapping tables using both the indexing techniques. In the

case of simple bitmap indexing, logical ‘and’ing or ‘or’ing is performed on the bits of the

corresponding record number, as given in the query. If the result is ‘1’, then the record is

included in the output, otherwise, eliminated. For encoded bitmap indexing, retrieval

Boolean functions are defined. If the o/p corresponding to the Boolean function defined is

‘1’, then the record is included.

3.2.4.4. Performance Evaluation

An analysis of performance of both types of indexing has been done. The amount

of space consumed for executing the “SQL select queries” using both types of indexing,

simple and encoded, has been recorded, varying the number of records in the database.

�

SAMPLE MEASUREMENTS (SPACE REQUIRED):

NO OF

RECORDS

SIMPLE BITMAP

INDEXING

ENCODED BITMAP

INDEXING

DIFFERENCE

5 12 14 -2

10 40 31 9

20 137 72 65

40 475 160 315

80 1750 355 1395

160 6700 785 5915

320 26200 1725 24475

640 103600 3765 99835

1280 412000 8165 403835

Table 3.1: Table showing the space required using simple bitmap indexing and encoded

bitmap indexing

Space required using Simple Bitmap
Indexing

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

5 10 20 40 80 160 320 640 1280

No. of Records

S
pa

ce
 R

eq
ui

re
d

in
 B

yt
es

Figure 3.2: Space required for simple bitmap indexing

�

Space required using Encoded Bitmap
Indexing

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

5 10 20 40 80 16
0

32
0

64
0

12
80

No of Records

S
pa

ce
 r

eq
ui

re
d

in
 B

yt
es

Figure 3.3: Space required for Encoded Bitmap Indexing

Comparision of Simple vs Encoded Bitmap
Indexing

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

5 10 20 40 80
160 32

0
64

0
128

0

No. of Records

S
pa

ce
 r

eq
ui

re
d

 in
 B

yt
es

SimpleBitmap
EncodedBitmap

Figure 3.4: Space Comparison for simple and encoded bitmap indexing

�

Comparision of Simple vs Encoded Bitmap
Indexing

0
50

100
150
200
250
300
350
400
450
500

5 10 20 40
No. of Records

S
pa

ce
 r

eq
u

ir
ed

 in
 B

yt
es

SimpleBitmap
EncodedBitmap

Figure 3.5: Simple and Encoded bitmap indexing analysis of break-even point

Figures 3.2 and 3.3 depict the space required for both types of indexing. Figures 3.4 and

3.5 compare both the indexing techniques in terms of the space required (in bytes). From

figure 3.5, we can observe that the break-even point occurred when the record count is

around 7. This suggests that, if the record count is less than 7 simple bitmap indexing is

more efficient than encoded bitmap indexing as far as the space is concerned and if the

record count is above 7, then encoded bitmap indexing is better compared to simple

bitmap indexing.

SAMPLE MEASUREMENTS (TIME TAKEN):

Number of records = 1280

Total time required for Encoded Bitmap Indexing in clock ticks 984.00

Total time required for simple bitmap indexing in clock ticks 3344.00

Difference in execution times in clock ticks 2360.00

2360 / CLOCKS_PER_SEC gives the time in seconds

The experiments were conducted on a Pentium 4 machine with 1 Gb RAM running

Linux.

�

Space requirements for comparing Huffman Encoding and Gray Code Encoding will

always be same which is equal to [log2 N], N as the cardinality of an attribute.

3.2.5. New Encoding Scheme

The proposed new encoding scheme is explained through using the following

student database:

NAME AGE DISCIPLINE CGPA Gender

Ajay 19 EEE 6.163266 M

Ram 22 Civil 6.024028 M

. 20 . 9.713227 F

. 22 . 6.031079 M

. 18 . 7.837317 F

. 19 . 4.468817 M

. 22 . 7.211664 M

. 18 . 5.597524 M

. 20 . 4.122381 F

. 21 . 8.157804 M

. 21 . 7.259367 M

. 22 . 8.829899 F

. 20 . 5.219405 M

. 18 . 8.355764 M

. 18 . 6.070122 F

. 19 . 7.835711 M

. 22 . 4.996277 F

. 21 . 5.456334 F

. 21 . 8.319742 M

. 19 . 8.375886 M

Yashveer 19 CS 4.202766 F

Figure 3.6: Sample Student Database

�

The dataset has five different values for the attribute age i.e.18,19,20,21,22.

The bitmap of attribute age is given below:

18: 000010010000011000000

19: 100001000000000100011

20: 001000010001000000000

21: 000000001100000011000

22: 010100100001000010000

We have created five bitmap vectors for each distinct value of age. Each bitmap

consists of 22 bit values since our example comprises 22 students. For instance, the last

bit of the bitmap of age 21 is set to 0 because the last student is not of age 21. Space

overhead is clearly arising for high cardinality of data which slows down the query

processing. This bottleneck can be brought under control only by bringing to a halt to the

increase in number of records or by devising a way by which the encode attribute values

to control the space requirements. We would discuss its solution details in the

forthcoming section.

3.2.5.1. Implementation Issues and Performance Analysis
To begin with we constructed randomly generated data comprising of student

information with “Age” and “Gender” as the indexed columns. After generating the

random data we need to look for distinct elements of “Age” and “Gender” in order to

process queries dealing with the sample database that have been generated. The bitmap

on each of the columns can be generated by constructing bitmap vector for each of the

distinct elements of each indexed column.

 Query processing is done by asking the user for the student age and/or gender

whose information he/she wants to use in his/her decision-making. Now, using AND and

OR binary operators, query posed by user is resolved. Both equality and range queries are

considered. The time complexity graph for this approach is shown in Figure 3.7.

Method1: Normal implementation by generation of simple bitmaps on corresponding

indexed columns. From the above approach we can see how increase in cardinality

drastically affects the query processing time. For processing a query over 10,000 records

	

is taking around 25 milliseconds while to process a query over 100,000 records is taking

around 250 milliseconds. That is about 10 times more and is the direct effect of

increasing cardinality.

To solve this particular overhead we can go for the second approach defined
below.

Method2: This method represents the improved implementation that saves time by

storing only two positions (start and end) of each of the distinct indexed column entries.

This alternative to “Method1” can save a lot of space. In this improved method

we need to first sort the random generated data based on the distinct elements and then

store the beginning and ending indexes of each of the distinct elements of a particular

record in a data structure and then we can go for query processing. This new method will

save a lot of space as we are just storing two indexes for each of the distinct elements of

each of the indexed columns and thus improve the query processing time to a large

extent.

 The output of this approach on a student database with 80,000 records will be as

follows:

For age = 18 start index = 0 , end index = 15950

For age = 19 start index = 15951 , end index = 31934

For age = 20 start index = 31935 , end index = 48061

For age = 21 start index = 48062 , end index = 64095

For age = 22 start index = 64096 , end index = 79999

For gender = M start index = 0 , end index = 39708

For gender = F start index = 39709 , end index = 79999

 The above method clearly illustrates the processing done by just storing the first

and last positions of each distinct indexed column (age and gender) entries and thus

removing the bottleneck. From the above approach we can see how the increase in

cardinality is being dealt with efficiently. For processing a query over 10,000 records is

taking around 20 milliseconds while to process a query over 100,000 records is taking

around 120 milliseconds. That is about 6 times more and is almost half the amount of

time taken to process queries with the previous approach (Method1).

The time complexity comparison for both approaches is shown below:

Performance Comparison

0

50

100

150

200

250

10000 30000 60000 80000 100000

Number of Records

Ti
m

e(
m

ill
i s

ec
on

ds
)

Time curve for
Method1
Time curve for
Method2

Figure 3.7: Query Processing Time Comparisons for Simple and Encoded Bitmap

Indexes

3.3. Compression of Bitmap Indexes

The bitmap index is one of the most promising strategies for indexing high-

dimensional data arising in such environments as data warehousing, decision support

systems, and scientific databases. One of the first database systems to use such a scheme

is a system called Model 204 [O’Neil, 1987]. Most of the major commercial database

systems now support some form of a bitmap index. In the research community, the

earliest forms of the bitmap indexes are known by such names as bit transposed files.

Some research results on signature files are also directly useful to enhancing the

effectiveness of bitmap indexes. Recently, a number of optimal bitmap schemes have also

been proposed. For high dimensional data, various tests have shown that bitmap schemes

are faster than commonly used tree based indexes.

The main advantage for using a compressed bitmap index is to reduce the space

requirement. It also reduces the amount of I/O time that is required for long sequential

�

data transfers. The classical bitmap index produces one bitmap for each distinct value of

the attribute being indexed. The size of the indexes could be much larger than the size of

the dataset. This is especially true for scientific databases where most of the attributes

have high cardinality. However, the bitmaps from the bitmap indexes are often very

sparse, i.e., they contain mostly zero bits. They are therefore prime candidates for

compression. The common compression schemes, such as g-zip and bzip2, aren’t

designed for compressing bitmap indexes. If a bitmap index is compressed using such a

scheme, the query processing usually takes much longer than using the uncompressed

index. One solution to this problem is to use specially designed compression schemes.

Recently, a number of studies were performed on compression schemes especially

designed for bitmap indexes. It is also possible to perform database operations (e.g.

aggregation) directly on compressed data, there by potentially reducing CPU time

requirements. One of the most promising compressing schemes is the byte-aligned

bitmap code (BBC) [Antoshenkov, 1994]. This scheme permits efficient operations

without decompression, thereby reducing both the disk space requirement and the

memory requirement for performing operations. The question we address in this chapter

is whether a compressed bitmap index can outperform its uncompressed counterpart.

We briefly review three well known schemes for representing bitmaps. These three

schemes are selected as representatives from a number of schemes studied previously a

straightforward way of representing a bitmap is to use one bit of computer memory for

each bit of the bitmap. We call this the literal (LIT) bit vector. This is the uncompressed

scheme and logical operations on uncompressed bitmaps are extremely fast. The second

type of scheme is the general purpose compression scheme such as gzip. They are highly

effective in compressing data files. We use gzip as the representative because it is usually

faster than others in decompressing the data files. As mentioned earlier, there are a

number of compression schemes that offer good compression and also allow fast bitwise

logical operations.

The BBC scheme performs bitwise logical operations efficiently and it compresses

almost as well as gzip. BBC scheme is a version of the two-sided BBC. Many of the

specialized bitmap compression schemes, including BBC, are based on the basic idea of

run-length encoding that represents consecutive identical bits (also called a fill or a gap)

�

by their bit value and their length. The bit value of a fill is called the fill bit. If the fill bit

is zero, we call the fill a 0-fill, otherwise it is a 1-fill. Compression schemes generally try

to store repeating bit patterns in compact forms. The run length encoding is among the

simplest of these schemes. This simplicity allows logical operations to be performed

efficiently on the compressed bitmaps. Different run-length encoding schemes commonly

differ in their representations of the fill lengths and the short fills. A naive run-length

code may use a word to represent all fill lengths. This is ineffective because it uses more

space to represent short fills than in the literal scheme. One common improvement is to

represent the short fills literally. The second improvement is to use as few bits as possible

to represent the fill length.

 Given a bit sequence, the BBC scheme first divides it into bytes and then groups

the bytes into runs. Each BBC run consists of a fill followed by a tail of literal bytes.

Since a BBC fill always contains a number of whole bytes, it represents the fill length as

the number of bytes rather than the number of bits. In addition, it uses a multi-byte

scheme to represent the fill lengths. This strategy often uses more bits to represent a fill

length than others such as ExpGol. However it allows for faster operations. Another

property that is crucial to the efficiency of the BBC scheme is the byte alignment. This

property limits a fill length to be an integer multiple of bytes. More importantly, it

ensures that during any bitwise logical operation a tail byte is never broken into

individual bits. Because working on individual bits is much less efficient than working on

whole bytes on most CPUs, byte-alignment is crucial to the operational efficiency of

BBC. Removing the alignment may lead to better compression. For example, the ExpGol

scheme can compress better than BBC partly because it does not obey the byte alignment.

However, bitwise logical operations on ExpGol bit vectors are often much slower than on

BBC bit vectors. Most of the known compression schemes are byte based, that is, they

access computer memory one byte at a time. On most modern computers, accessing one

byte takes as much time as accessing one word. A computer CPU with MMX technology

offers the capability of performing a single operation on multiple bytes. This may

automatically turn byte accesses into word accesses. However, because the bytes in a

compressed bit vector typically have complex dependencies, logical operations

implemented in high-level languages are unlikely to take advantage of the MMX

 �

technology. Instead of relying on the hardware and compilers, we developed a new

scheme that accesses only whole words. It is named the word-aligned hybrid code

(WAH).The word-aligned hybrid (WAH) code is similar to BBC in that it is a hybrid

between the run-length encoding and the literal scheme [Wu et.al, 2001]. Unlike BBC,

WAH is much simpler and it stores compressed data in words rather than in bytes. There

are two types of words in WAH: literal words and fill words. In our implementation, we

use the most significant bit of a word to distinguish between a literal word (0) and a fill

word (1). This choice allows one to easily distinguish a literal word from a fill word

without explicitly extracting the bit. The lower bits of a literal word contain the bit values

from the bitmap.

The second most significant bit of a fill word is the fill bit and the lower bits store

the fill length. WAH imposes the word-alignment requirement on the fills, it requires that

all fill lengths be integer multiples of the number of bits in a literal word. The word

alignment ensures that logical operation functions only need to access words not bytes or

bits

3.4. New Strategy to improve performance

The major concern for solving queries is minimum space requirements for bitmap

indexes and minimum response time. As we have seen various bitmap index compression

schemes which satisfy these requirements. We propose a new area to be explored

regarding the run length encoding of the bitmap indexes. In this newly proposed scheme

we will encode only the runs of ‘one’ and taking rest of the bitmap as filled with ‘zeros’.

These run lengths will be represented as starting and ending location (integer

format) of runs of ‘ones’ in the bitmap. So in our bitmap index representation we will

represent only ‘ones’ as rest of the bits can be taken as default ‘zero’. In this way we can

minimize the space requirements to store the bitmap indexes. This scheme if incorporated

with the sorted data will drastically minimize the storage requirements. But one should

have to be cautious towards the implementation of query response. As it can lead to large

overheads in terms of query response and computations involved.

 ��

3.4.1. New Approach Adopted
To study and implement we will first go through the schemes which are already

introduced or in use. Then we will take random database to simulate a data warehouse

after that indexes can be built on the various attributes. These indexes can be compressed

using schemes like WAH, BBC etc. and finally by our proposed scheme. Various types

of queries can be run based on these compressed indexes and finally the space utilized to

store the compressed indexes and query response time can be compared. As WAH and

BBC schemes are proven to be best in space utilization and query response we can hope

that our scheme can also stand side by side or can be proved better than these schemes.

The approach adopted here, is very straightforward. BBC and WAH provide

better results in terms of compression when there are long runs of zeros and ones. In

random data, it is very unlikely that there will be long runs. If the column on which the

bitmap index is created has high cardinality then the bit vectors would be sparse. But

there will not be long runs of ones. To guarantee long runs of both zeros and ones, the

column on which the bitmap index is to be created, is sorted. The index created on the

sorted column is called the clustering bitmap index as it similar to clustering index. Any

other bitmap index on the same table will be called a secondary bitmap index. The only

processing overhead that the proposed strategy has is that the table, on which the

clustering bitmap index is to be created, must be sorted. Also we need to decide in

advance about the field on which the clustering bitmap index is to be created, as the

sorting will be done during the ETL process. This increases the amount of processing

during the ETL phase, but the benefits of doing this in terms of saved space and

processing time of queries is enormous. If the bitmap indexing strategy has to be

changed, it can be done at the next refreshing of the data warehouse, whenever it is

scheduled. To summarize, the new strategy has the following issues:

• Sorting of the table on the column on which the clustering bitmap index is to be

created

• There can be only one clustering bitmap index on a table

• Need to decide in advance (i.e. before loading the data on to the data warehouse)

about the bitmap indexing strategy

 ��

• Indexing strategy can be changed only during the next refresh of the data

warehouse

But fortunately these limitations have no effect on the query performance. In this

newly proposed scheme we will encode only the runs of ‘one’ and taking rest of the

bitmap as filled with ‘zeros’. These run lengths will be represented as starting and ending

location (integer format) of runs of ‘ones’ in the bitmap. So in our bitmap index

representation we will represent only ‘ones’ as rest of the bits can be taken as default

‘zero’. In this way we can minimize the space requirements to store the bitmap indexes.

This scheme if incorporated with the sorted data will drastically minimize the storage

requirements. But one should have to be cautious towards the implementation of query

response. As it can lead to large overheads in terms of query response and computations

involved.

3.5. Experimental Work and Results

This section presents experimental results comparing the space-time performance

of the proposed bitmap indexing strategy against BBC and WAH. The space-efficiency

of an index is in terms of the disk space for storing the index. The time-efficiency of an

index is in terms of the processing time taken to answer a query. The processing time

includes disk I/O time, CPU time for bitmap operations, and the decompression time for

compressed bitmaps.

The experiments were run on a 2.4 GHz Pentium-IV processor with 256 MB

RAM running Linux Red Hat 9.1.

All the results presented in the this section are obtained using randomly generated

data with table cardinality varying from 5000 to 2.5 million and column cardinality C

taking values 5 and 10.

3.5.1. Space Efficiency
The index file size comparisons for increasing table cardinality is done in Figure

3.8 and 3.9 for C = 5 and 10 respectively. First thing to note is that the space

requirements increase with C for all compressed indexes. It is clear from the figures that

the space requirements for BBC and WAH increase exponentially for increasing table

 ��

cardinality. It is true for both C = 5 and 10. The most interesting result is that the space

required by WAH-sorted (WAH index created on a sorted column) is constant for

increasing number of records and it requires only 125 bytes of space for C = 5 and 250

bytes for C = 10. The space required by WAH-sorted increases linearly with C. This

means that even for very large tables the bitmaps can be stored using just a few bytes

using WAH-sorted.

BBC-sorted (BBC index created on a sorted column) takes only a very small

fraction of the space required by BBC but it increases with the increase in number of

records. It is therefore recommended that the field on which bitmap index is to be

created, should be sorted and WAH should be used to get maximum compression.

3.5.2. Performance Efficiency

Equality and range queries are considered for testing the performance of the

proposed strategy. The results are presented graphically comparing the effect of sorting

on the performance of BBC and WAH for C = 5 and 10. The results for equality queries

BBC and WAH are presented in Figures 3 and 4 respectively. Figure 3.8 and 3.9, it is

clear that the BBC-sorted performs better than BBC for both C = 5 and C = 10. The

performance benefit of using BBC-sorted is more pronounced for C = 10 and it increases

with the increase in number of records. BBC-sorted, on an average, takes up to less than

20% time for C = 5 than BBC. This figure goes up to 60% for C = 10.

In case of WAH-sorted also the performance gains are more for C = 10 and

increases with the increase in number of records as can be seen from Figure 3.9.

WAH-sorted, on an average, takes up to less than 50% time for C = 5 than WAH. This

figure, as expected, goes up to 64% for C = 10.

Results for range queries for WAH are presented in Figure 3.12. The type of

range queries considered has the general form:

select * from table where X < 1

If X takes values 0, 1, 2, 3, and 4, then the OR operation is carried out between

the bit vectors for X = 0 and X = 1 to answer the query. Figure 2.12 shows the advantages

of using WAH-sorted are clear. It is faster than WAH for both values of column

cardinalities considered. For C = 5, WAH-sorted takes, on an average, 27% less time than

WAH for number of records more than 10000, whereas for C = 10, it is 34% faster.

 ��

From the results presented in this section, it is clear that BBC-sorted and WAH-

sorted offer better compression and performance than BBC and WAH respectively. This

is true for all combinations of table and column cardinalities and for both equality and

range queries.

1

10

100

1000

10000

100000

1000000

10000000

5000 10000 50000 100000 500000 1000000 1500000 2000000 2500000

FI
LE
 S
IZ
E
 I
N
 L
O
G
 (
B
Y
T
E
S)

NUMBER OF RECORDS

BBC WAH BBC Sorted WAH Sorted

Figure 3.8: Index File Size for C = 5

 ��

1

10

100

1000

10000

100000

1000000

10000000

5000 10000 50000 100000 500000 1000000 1500000 2000000 2500000

FI
L
E
 S
IZ
E
 I
N
 L
O
G
 (
B
Y
T
E
S)

NUMBER OF RECORDS

BBC WAH BBC Sorted WAH Sorted

Figure 3.9: Index File Size for C = 10

0

0.5

1

1.5

2

2.5

3

3.5

4

5000 50000 500000 1500000 2500000
NUMBER OF RECORDS

 T
IM

E
 IN

 S
E

C
S.

C=5 C=10

Unsorted Sorted

 Figure 3.10: Performance of BBC-sorted for Equality Queries

 �	

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5000 50000 500000 1500000 2500000

NUMBER OF RECORDS

 T
IM

E
 IN

 S
E

C
S

C=5

Unsorted Sorted

C=10

Figure 3.11: Performance of WAH-sorted for Equality Queries

0

1

2

3

4

5

6

7

8

5000 50000 500000 1500000 2500000
NUMBER OF RECORDS

T
IM

E
 I

N
 S

E
C

S

C=5 C=10

Unsorted Sorted

Figure 3.12: Performance of WAH-sorted for Range Queries

 �

3.6. Contributions and Summary

In this chapter, we have discussed about simple and encoded bitmap indexes, how

to solve queries using these techniques, performance analysis of both these techniques

and compressing simple bitmap indexes on sorted fields. We have given a performance

analysis of both simple and encoded bitmap indexes using graphical approach. The result

is satisfactory and shows that as the cardinality and the range of selections increase,

encoded bitmap indexes perform and more stable than simple bitmap indexes. However,

still some implementation-oriented problems to be solved. Also, an efficient algorithm

for logical reduction of the boolean retrieval functions is indispensable, if we want to

achieve a better performance of the encoded bitmap indexes. As part of future work, one

can look into the compression aspects of encoded bitmap indexes.

A new bitmap indexing strategy for speeding up queries in a data warehouse has

been proposed. The strategy is to sort the column on which a bitmap index is to be

created and then using BBC and WAH compression schemes. Sorting produces long runs

of zeros and ones and this gives higher degree of compression for both BBC and WAH.

Moreover, the response time of queries is found to decrease considerably for both

equality and range queries. It is found that in some cases BBC-sorted is up to 60% faster

than BBC and WAH-sorted is up to 64% faster than WAH. With such considerable gains

in terms of space saved and performance, the new strategy offers a simple yet effective

solution to query performance challenges in a data warehousing environment.

To sum up, we can say that simple bitmap indexing works well with low

cardinalities attributes. To deal with high cardinalities, our new approach makes simple

bitmap indexes suitable. Compressed bitmap indexing is shown as a promising technique

to overcome space problem. Also, there are several fast algorithms for evaluating boolean

operators on compressed bitmaps are available, which can be examined. Another issue is

that we also need some other efficient encoding techniques to lower the number of logical

operations.

 ��

Chapter 4: Multi-Component Encoding and Data
Reorganization

4.1. Introduction

Designing efficient bitmap schemes for storage and retrieval of massive scientific data is

a challenging problem. Large volumes of data have been generated in scientific

experiments including biology, high-energy physics, astrophysics, and climate modeling.

Querying such huge amounts of data is becoming increasingly difficult. Being an

effective way to store the synopsis of the original data, bitmap index is a particularly

promising strategy for accessing these types of data efficiently. However, the size of

bitmap index is still large. Run length encoding and its lossless compression variants

have been applied to further compress the bitmap indexes. Along with Word-Aligned

Hybrid code (WAH), Gray code ordering of the data tuples has already been shown to

greatly boost the compression ratio. For both conventional and scientific databases, the

number of tuples in the database will far exceed the number of attributes for the tuple.

Every tuple in the database is represented by one row of the bitmap index whereas each

column of the bitmap is generated by classifying every tuple attribute into a few

categories. Thus, the bitmap index generally has much higher order of rows than the

number of columns.

Bitmap index used in database indexing is a special kind of bit matrix. Each

binary row vector in the bitmap represents one tuple in the database. It is usually

generated by quantizing the attributes of the tuples. The quantization process proceeds in

two steps. First, many categories are produced by limiting the possible values of each

attribute. Next, the tuple data are encoded according to the attribute category to which it

belongs. Bitmap Compression may not be enough for the enormous data generated in

some applications such as high-energy physics. We are concerned with rearranging the

order in which data is stored in a database so as to maximize the amount of compression.

To improve the compression rates, reorganization of bitmap tables is studied where tuple

reordering problem has been introduced and Gray code ordering algorithm has been

proposed [Pinar et al., 2005]. In this chapter, we study how to reduce the number of

 ��

columns for binned bitmap tables to improve better ordering and improve the space

complexity for tuple reordering problem. In tuple reordering problem, we found that for

lesser number of columns, Gray code ordering gives better compression rates. We applied

Multi-Component indexing technique to reduce the number of columns, which is a new

idea to apply on binned bitmap tables.

In this chapter, we discuss bitmap compression indexes using multi-component

indexing for the efficient storage and fast retrieval of large data. The bitmap compression

indexes embedded multi-component shows superiority over bitmap compressed indexes.

Tuple reordering problem is studied to reorganize database tuples for optimal

compression rates. Gray Code ordering algorithm is also used which runs in linear time in

the order of the size of the database. Reduction in the number of columns is observed in

our study when multi-component indexing on the binned data is applied. An

improvement in the space requirement for bitmap index by 25% is observed when one

time component indexing is applied. Satisfactory improvement factor is observed when

gray code ordering and WAH compression technique is used. Due to processing

overhead, two component index is used. Our experimental results on real data sets show

that the compression ratio can be improved by a factor of 2 to 8

4.2. Tuple Reordering Problem

Our objective in reordering is to increase the performance of run-length encoding by

having longer uniform segments and thus fewer number of blocks. Recall that run-length

encoding, when used on bitmaps, packs each segment of “1”s into a block and stores a

pointer to each block together with the length of the block. Thus the storage size is

determined by the number of such blocks. Consider two consecutive tuples in the bitmap

table. If the tuples are on the same bin for an attribute, they will be packed to the same

block. If not, a new block should start. Efficiency can be enhanced by reordering tuples

so that they fall into the same bins as much as possible. An example is illustrated in

Figure 1. In this example, the original table has 12 blocks, whereas the reordered table

requires only 7 blocks. Let diff(ti, tj) be the number of attributes that tuple ti and tuple tj

fall in different bins. Notice that diff(iπ , 1+iπ) gives how many new blocks start at the ith

 �

tuple after reordering when run-length encoding is used, where iπ denotes the ith tuple in

ordering π [Pinar et al.,2005].

Definition 1 (Tuple reordering problem) Let π be an ordering of m tuples so that iπ

denotes the ith tuple in the ordering. Tuple reordering problem is finding an ordering

π that minimizes),(1

1

1
+

−

=
� ii

m

i

diff ππ (4.1)

In equation (4.1), we sum diff values over all consecutive tuples to attain the number of

new runs that start for the whole table. The first tuple requires starting a run for each

attribute. Thus the number of blocks can be computed as A +),(1

1

1
+

−

=
� ii

m

i

diff ππ , where A

is the number of attributes. Thus an ordering that minimizes equation (1) also minimizes

the number of blocks in the reordered table. For instance, equation (1) returns 2 + 2 + 2 +

1 + 2 = 9 for the initial ordering in Figure 4.1, which means with the addition of the

number of attributes, there will be 9+3 = 12 blocks in the compressed table. Whereas for

the reordered table in the same figure, Equation 1 returns 0+1+1+1+1= 4, which means

only 7 blocks in the compressed file.

 t1 t1

 t2 t4

 t3 t5

 t4 t3

 t5 t6

 t6 t2

 (a) Original Table (b) Reordered Table

Figure 4.1: Tuple Reordering

4.3. Gray Code Encoding

A Gray code is an encoding of numbers so that adjacent numbers have only a single

digit differing by 1. For binary numbers two adjacent numbers differ only by one digit.

1 0 1 0 0 0

0 1 0 1 0 1

1 0 0 1 1 0

1 0 1 0 0 1

1 0 1 0 1 0

0 1 0 1 1 0

1 0 1 0 0 1

1 0 1 0 0 1

1 0 1 0 1 0

1 0 0 1 1 1

0 1 0 1 1 0

0 1 0 1 0 1

 ��

For instance (000, 001, 011, 010, 110, 111, 101, 100) is a binary 3-bit Gray code. An n-

bit Gray code corresponds to a Hamiltonian cycle on an n-dimensional Hamming space.

From another perspective, it is a kind of Space-Filling Curve (SFC) in Hamming space,

where a space-filling curve is a mapping from a one dimensional set to a multi-

dimensional set. Gray code is analogous to a binary version of Hilbert SFC, because both

are optimal in minimizing the changes between adjacent points [Liao et al., 2001, Mokbel

and Aref, 2001]. It is worth noting that Gray code is not unique. After a certain

transformation, such as the cyclic shift of the entries or permutation of the bits, the code

is still Gray code. Binary Gray code is often referred to as the “reflected" code, because it

can be generated by the reflection technique described below.

1. Let S = (s1, s2, . . . , sn) be a Gray code.

2. First write S forwards and then append the same code S by writing it backwards, so

that we have (s1, s2, . . . , sn, sn, . . . ,s2, s1).

3. Append 0 at the beginning of the first n numbers, and 1 at the beginning of the last n

numbers.

As an example, take the Gray code (0, 1). Write it forwards, and then add the

same sequence backwards, and we get (0, 1, 1, 0). Then we add 0's and 1's to get (00, 01,

11, 10). We can use this new sequence as an input to our algorithm. After the reflection

step we get (00, 01, 11, 10, 10, 11, 01, 10). We add the first digits to attain: (000, 001,

011, 010, 110, 111, 101, 100). It is worth noting that Gray codes are not unique, and

different orders on the same group of numbers might satisfy the Gray code property. We

use the term fundamental Gray code to refer to a Gray code generated by the reflection

technique described above with using (0, 1) as the initial sequence. We will refer to

ordering a set of numbers with respect to the fundamental Gray codes as Gray code

ordering, which we describe next.

Definition 2 (Gray code rank) The Gray code rank g(s) of an n-bit binary number s is

the rank of this number in an n-bit fundamental Gray code. For instance, g(0000) = 1,

since it is the first number in the 4-bit fundamental Gray code. And g(0001) = 2, since it

follows 0000 in the fundamental Gray code.

Definition 3 (Gray code sorting) A sequence S = (s1, s2, . . . , sm) is Gray code sorted

iff)()(1+≤ ii sgsg for i = 1, 2, …..m - 1, where g(si) refers to the Gray code rank of si.

 ��

The sequence (0001, 0010, 0101, 1100, 1110, 1011) is Gray code sorted because g(0001)

= 2 < g(0010) = 4 < g(0101) = 7 < g(1100) = 9 < g(1110) = 12 < g(1011) = 14.

This brings the question of how to efficiently order a set of numbers to be Gray

code sorted. We can reverse the fundamental Gray code generation process, to sort

numbers with respect to the fundamental Gray code. As the first step, we can divide

numbers as those that start with 0 and those that start with 1. Clearly those that start with

0 will precede others in the ordering. Then we can recursively order those that start with

0. The same can be applied to the second group of numbers that start with 1, but we need

to reverse their ordering due to the reflective property of the Gray code. Gray Code

sorting algorithm is explained in reference [Pinar et al., 2005].

(a) Before Flipping (b) After Flipping

Figure 4.2: Gray code ordering algorithm.

 ��

In Figure 4.2, each bar represents one column in the bitmap. Shown are the first 6

columns of the bitmap. The white portion of the bar represents the continued sequence of

0s whereas the black portion represents the continued sequence of 1s. As mentioned

earlier, Gray code ordering is essentially a numerical ordering with reflecting or

reversing. Depicted graphically, the reflecting or reversing operation is to flip a certain

segment with two portions: one white and one black. The part (a) in the figure

demonstrates the ordering before flipping or simply the ordinary numerical sorting

whereas the part (b) in the figure depicts the result of flipping or the outcome of Gray

code ordering. It is easy to see that many runs concatenate to form longer runs after

flipping. This explains why Gray code ordering is more effective than the

numerical/lexicographic ordering.

4.4. Multi-Component Encoding

Simple bitmap indexes take huge amount of space for high cardinality data since we need

to make bitmap vector for each distinct value. By using Multi-component Indexes,

number of bitmap vectors can be reduced. The general idea behind multi-component

index is to perform the Attribute Value Decomposition [Chan and Ioannidis, 1999]. One

value can be decomposed into several components with same base or different bases.

Instead of representing bitmap with single table, the same values can be represented with

several smaller bitmaps working together. Let C be the attribute cardinality, which means

the number of actual values that an attribute can have. Then you can create a bitmap

Index in the following way:

Consider an attribute value v and a sequence of (n-1) numbers 121 ,....,, bbb nn −− .

Let us define

�
�
�

�

�

	
	
	

	

�

∏
= −

= i

n

i

n

b

C
b

1

1

.

Then v can be decomposed into a sequence of n digits 11 ,,, vvv nn �− as follows:
v = V1

= V2b1 + v1

= V3(b2b1) + v2b1 + v1

= V4 (b4b2b1) + v3 (b2b1) + v2b1 + v1

 = ………….

 ��

 = 112

1

1

1

1

...... vbvbvbv j

i

j
ij

n

j
n +++��

�
�
�
�

�
++��

�
�
�
�

�
∏∏

−

=

−

=

where vi = Vi mod bi , �
�

�
	

	
=

−

−

1

1

i

i
i b

V
V , 1 <i <n range 0 = vi < bi. Based on the above, each

choice of n and sequence < 121 ,...,, bbb nn −− >.gives a different representation of attribute

values, and therefore a different index. An index is well-defined if nibi ≤≤≥ 1,2 . The

sequence < 121 ,...,, bbb nn −− > is the base of the index, which is in turn called a base-

< 121 ,...,, bbb nn −− > index. If bbbb nn ≡=== − 11 ... , then the base is called uniform and the

index is called base-b for short. The index consists of n components, i.e., one component

per digit. Each component individually is now a collection of bitmaps, constituting

essentially a base bj index. As you can see vi has to be smaller than bi, which means they

have to be consecutive integer values with a range from 0 to C - 1. If this is not the case,

then the index can either be built on the entire domain of present values making it

generally much larger, or the values can be mapped on C consecutive values via a lookup

table. The sequence < 121 ,...,, bbb nn −− > is the base of the index, which in turn is called a

base < 121 ,...,, bbb nn −− > index. The index consists of n components, which means that each

choice of n and a sequence < 121 ,...,, bbb nn −− > gives a different representation of the index

because each component individually is now a collection of bitmaps.

)(RAπ 2
2B 1

2B 0
2B 2

1B 1
1B 0

1B
1 → +031x
2 → +230x
3 → +130x
4 → +230x
5 → +232x
6 → +230x
7 → +230x
8 → +030x
9 → +132x
10 → +231x
11 → +032x
12 → +131x

Figure 4.3: Example of a 2-Component index with base < 3, 3 >

3
2
1
2
8
2
2
0
7
5
6
4

0 1 0
0 0 1
0 0 1
0 0 1
1 0 0
0 0 1
0 0 1
0 0 1
1 0 0
0 1 0
1 0 0
0 1 0

0 0 1
1 0 0
0 1 0
1 0 0
1 0 0
1 0 0
1 0 0
0 0 1
0 1 0
1 0 0
0 0 1
0 1 0

 ��

Let ni denote the number of bitmaps in the ith component of an index and

{ }0,...,, 21
i

n
i

n
i BBB ii −− denote the collection of ni bitmaps that form the ith component. Let's

give an example on this to make things clear. We take the same 12-record relation used in

Figure 1 and transform it in a base-< 3; 3 > Value- List index (Figure 2). By doing this,

the number of bitmaps has been reduced from 9 to 6. If we now want to calculate the

actual value of a record, we use the appropriate line from the calculation shown above.

Since the example uses a 2-component index, the formula to use is V2b1 + v1; V2 is then

replaced by the number in the first component which contains the “1” denoting the actual

value, in this case the one from 2
1B , which is the bitmap in the middle of the component.

This value is then multiplied with the base b1, resulting in a “3”, and added to v1

determined in the same way, in this case a “0”. So the final outcome of the calculation

and the value stored in the first record is a “3”.

High cardinality data is divided into number of bins to reduce the number the

bitmap vectors for each attribute. The basic idea of binning is to build a bitmap for a bin

rather than each distinct attribute value. This strategy disassociates the number of

bitmaps from the attribute cardinality and allows one to build a bitmap index of a

prescribed size, no matter how large the attribute cardinality is. A clear advantage of this

approach is that it allows one to control the index size. If a value falls into a bin, this bin

is marked “1” otherwise “0”. Since a value can only fall into a single bin, only a single

“1” can exist for each row of each attribute. After binning, the whole database is

converted into a huge 0-1 bitmap, where rows correspond to tuples and columns

correspond to bin. Table 1 shows a binning example with three attributes, each

partitioned into two bins. The first tuple t1 falls into the first bins in the attributes 1 and 2,

and the second bin in attribute 3. Note that after binning we can treat each tuple as a

binary number. For instance t1 = 101001 and t2 = 010101.

 �	

Tuple Attribute 1

bin1 bin2

Attribute 2

bin1 bin2

Attribute 3

bin1 bin2

t1
t2
t3
t4
t5
t6

1 0
0 1
1 0
1 0
1 0
0 1

1 0
0 1
0 1
1 0
1 0
0 1

0 1
0 1
1 0
0 1
1 0
1 0

 Table 4.1: Binning Example

WAH Compression scheme is a variation on the run-length code. The essence of

the run-length code is to represent a list of consecutive identical bits by its length and its

bit value. In 32-bit implementation, the Leftmost Bit (LMB) of a word is used to

distinguish between a literal word and a fill word, where 0 indicates a literal word and 1

indicates a fill word. The lower 31 bits of a literal word contains literal bit values. The

second leftmost bit of a fill word is the fill bit and the 30 lower bits store the fill length.

To achieve fast operation, it is crucial to impose the word-alignment requirement on this

scheme. The word-alignment requirement in WAH requires all fill lengths to be integer

multiples of 31 bits (i.e., literal word size). Given this restriction, we represent fill lengths

in multiples of literal word size. For example, if a fill contains 62 bits, the fill length will

be recorded as two (2) [Wu, et al, 2001, Jhonson, 1999], see Figure 4.2.

a) Input bitmap with 124 bits
100000000………………..11111
124 bits 1, 20*0, 3*1, 79*0, 21*1

b) Group bits into 4 31-bit groups
1,20*0,3*1,7*0 31*0 31*0 10*0,21*1

c) Merge neighboring groups with identical bits
1,20*0,3*1,7*0 62*0 10*0,21*1

d) Encode each group using one word

0100 … 0011 100…. 10000…10 0000…1111..
 31 literal bits run length is 2

 Fill bit 0
Bit 0 indicates “tail” word Bit 1 indicates “fill” word

 �

Input bit vector 100000000………………..11111 (124 bits)
124 bits 1, 20*0, 3*1, 79*0, 21*1
31-bit groups 1,20*0,3*1,7*0 62*0 10*0,21*1
Groups in hex 40000380 00000000 00000000 001FFFFF
WAH(hex) 40000380 80000002 001FFFFF

Table 4.2: WAH bit vector

4.5. Experimental Work and Results

Basic format of input file

Run length encoding and it various form segments of a sequence, thus their performances

depend directly on the longer data segments. Thus the data is stored in a compressed

manner in a file which ultimately depicts a 0-1 matrix in the bitmap table.

The following code will generate the bitmap table given the file where the info is stored

in compressed manner.

Input :

File name “input” which has the following information

 6 6 18

0 3 6 9 12 15 18

0 2 5 1 3 5 0 3 4 0 2 5 0 2 4 1 3 4

The first row:

6 6 18 represents the number of rows, number of columns and number of non-zero

elements, respectively.

 The second row

0 3 6 9 12 15 18 represents the starting positions of each column in the bitmap (third

row). Basically, this line means from [0,3) is for first row of the matrix, [3,6) second

row, [6,9) third row, [9,12) forth row and so on.

The third row

0 2 5 1 3 5 0 3 4 0 2 5 0 2 4 1 3 4 represent the column number of those non-zero

elements.

 ��

Output :

 A 0-1 bitmap table based on the information present in the input file.

 1 0 1 0 0 1

 0 1 0 1 0 1

 1 0 0 1 1 0

 1 0 1 0 0 1

 1 0 1 0 1 0

 0 1 0 1 1 0

In this section we present the results of our experiments on six datasets. The

experiments were conducted on a Pentium 4 machine with 1 Gb RAM running Linux.

We compare here three preprocessing schemes on bitmap data, before actually applying

WAH Compression algorithm. Since, the warehoused data is read mostly, the time

involved in preprocessing is not a major concern here. We took the uncompressed data

with bin size 8, in the first scheme, applied multi-component indexing, thereby reducing

the bin size from 8 to 6. In the second scheme, we applied multi-component indexing

twice, in a single step, reducing the bin size from 8 to 3. And in third scheme, we applied

multi-component indexing (as in scheme 1), but saved the two components in two

different files, in order to see the effect on Compression algorithm. We have collected the

results by looking at the improvement in storage of datasets, which is how much

compression is achieved. The Improvement Factor (IF) is defined as

Improvement Factor =
sizeCompressed

SizeOriginal

That is the ratio of original file size to compressed file size. The Improvement

Factor achieved by applying multi component indexing is a straight forward 1.33 for

multi component indexing, as initially, the bin size is initially 8 while multi component

indexing reduces it to 6. The case for double multi component indexing is 2.66, as it

reduces bin size to 3. This is clearly visible in the graph in figure 4.4.

 ��

0

0.5

1

1.5

2

2.5

3

his
to64

ga
us

sia
n1

6

sto
ck

360

his
tobig

64

sto
ck

dft3
60

his
tobig

sv
d6

4

Scheme 1

Scheme 2

Scheme 3

Figure 4.4: Double Multi-Component on all three schemes

The second set of experiments deals with the performance achieved by WAH

Compression algorithm when either of schemes one, two or three is used as a

preprocessing steps before applying WAH.

It is to be noted here that these improvement factors have been calculated using

the file size obtained by applying WAH on dataset and by applying one of the schemes

and then applying WAH to it. This allows for comparison of the effect of each of the

schemes on the WAH compression. The second scheme out performs the other two,

which is obvious. The more interesting point in these results is that storing in two

different files doesn’t affect the compression of WAH.

Name

Uncompressed
size (bytes)
Original

Uncompressed
size (bytes)
MultiComponent

Compressed
size (bytes)
Original

Compressed
size (bytes)
Reordered

Improvement
Factor

histo64 6208839 4659655 267399 135558 1.97258
gaussian16 12900000 9700000 2786733 1965789 1.417616
stock360 18726500 14046500 1448424 196461 7.372578
histobig64 57641193 43258985 1935619 497493 3.890746
stockdft360 18726500 10858304 1172268 612837 1.912854
histobigsvd64 57641193 43258985 4011647 1996345 2.009496

Table 4.3: Improvement in compression of real data sets

 ��

Table 4.3 reveals the effectiveness of our approach on six data sets from various

applications. In this table, the first two columns give sizes of the uncompressed bitmap

tables for the original and multi-componented data and next two columns give sizes of

the compressed bitmap tables for the original and multi-componented data. The last

column presents the improvement factor. The data set, histogram, comes from an image

database with 112,361 images. Images are collected from a commercial CD-ROM and

64-dimensional color histograms are computed as feature vectors. The data set, stock, is a

time- series data which contains 360 days stock price movements of 6500 companies, i.e.,

6500 data points with dimensionality 360. The data set histogram is partially correlated,

whereas the stock data set is highly correlated.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

his
to6

4

ga
us

sia
n1

6

sto
ck

36
0

his
tob

ig6
4

sto
ck

dft
36

0

his
tob

igs
vd

64

Scheme 1

Scheme 2

Scheme 3

Figure 4.5: Effect of Preprocessing Schemes without WAH compression

The third set of experiments deals with the effect of the three preprocessing

schemes on re-ordering tuples before applying the compression algorithm. As with results

above, the improvement factors here are calculated with respect to running the re-

ordering and compression algorithms directly on datasets. Ignoring the obvious good

results of Scheme 2, in the figure 4.5 clearly shows Scheme 3 out performs Scheme 1.

This is because the reordering algorithm is better able to align the tuples for better

compression.

 ���

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

his
to64

ga
us

sia
n1

6

sto
ck

360

his
tobig

64

sto
ck

dft3
60

his
tobig

sv
d6

4

Scheme 1

Scheme 2

Scheme 3

Figure 4.6: Effect of Preprocessing Schemes with WAH compression

From the experiments, it is clear that multi component indexing improves the

performance of compression algorithms providing for better storage of warehoused

bitmap data. Choosing the base for multi component indexing is critical, as shown by

results of Scheme 2. And also, it was established that storing components in different

files improves storage, if tuple re-ordering is done before the actual compression.

4.6. Contributions and Summary

We studied tuple reordering problem to improve bitmap compression rate for large

datasets. WAH is indeed a very efficient compression method for bitmap indexes.We

applied multi-component indexing to get maximum benefits of Gray Code sorting

algorithm, which is an in-place algorithm and runs in linear time in the order of the size

of the database. It has been found that efficiency of gray code can further be improved by

using hybrid indexing technique, consisting of both gray code and component indexing

Multi component indexing improves the performance of compression algorithms

providing for better storage of warehoused bitmap data. An improvement in the space

requirement for bitmap index by 25% is observed when one time component indexing is

applied. Satisfactory improvement factor is observed when gray code ordering and WAH

 ���

compression technique is used. And also, it was established that storing components in

different files improves storage, if tuple re-ordering is done before the actual

compression. Choosing the base for multi component indexing is critical and thus finding

a good base that maximizes the performance of WAH will be another interesting research

project.

 ���

Chapter 5: Binning Strategies and Algorithms

5.1. Introduction

Bitmap indexes are known to be both space and time efficient for low cardinality

data, but for high cardinality and high dimensionality data, the associated space

overheads tend to negate the performance benefits. In this chapter, we propose methods

that make bitmap indexes suitable for high cardinality data. A common approach for

reducing the space requirements of bitmap indexes for high-cardinality attributes is

binning [Yu and Wu, 1998]. This technique partitions the attribute values into a number

of ranges, called bins, and uses bitmap vectors to represent bins (attribute ranges) rather

than the distinct attribute values. Binning definitely reduces the space requirements, but

have an adverse affect on query performance. In case of binning, answering queries may

require an additional step called candidate check [Stockinger, 2000] which requires

reading data from the disk thus increasing the disk I/Os. It is found that candidate checks

usually dominate the total query processing time. In order to have acceptable query

response times, it is critical to minimize the number of candidate checks for a given set of

queries.

In this chapter, we propose a binning strategy for bitmap indexes for high

cardinality attributes. The idea is to do binning in such a way so as to minimize the

number of candidate checks. Attempts have been made towards finding a solution to the

problem of placing the bin boundaries optimally to reduce the overall number of disk

reads thereby improving the response time with minimal increase in storage overheads.

The main feature of the proposed approach is that it takes into consideration the query

access patterns and also the data distribution. A new concept of overlapping and exact

bins is introduced to compensate for the marginally increased space requirements in

terms of improved query response times. In the following section we describe this new

approach to binning. We also describe in detail the algorithms developed to answer

queries.

 ���

The concept of overlapping bins, in a very primitive way, was first introduced by

[Stockinger et al., 2000] and it was meant for answering one-sided range queries. We

have introduced range binning for two sided range queries as an extension of one sided

range queries and the algorithm for the same is presented. The concept of exact match

binning has been introduced to improve the query processing time and minimize the

candidate check problem. Another feature of the approach is that it allows bins to

overlap. Although number of bins increases but it reduce CPU processing time sharply as

less number of candidate checks need to be performed.

5.2. Candidate Check Problem

The basic bitmap index uses every distinct value of the indexed attribute as a key,

and generates one bitmap containing as many bits as the number of records in the dataset

for each key. The sizes of these basic bitmap indexes are relatively small for low-

cardinality attributes, such as “gender”, “types of houses sold in the San Francisco Bay

Area”, or “car models produced by Ferrari.” However, for high-cardinality attributes such

as “temperature values in a supernova explosion”, the index sizes may be too large to be

of any practical use. In this case, bitmap indexes are often designed with bins. This

bitmap index strategy partitions the attribute values into a number of ranges, called bins,

and uses bitmap vectors to represent bins (attribute ranges) rather than distinct values.

This strategy disassociates the number of bitmaps from the attribute cardinality and

allows one to build a bitmap index of a prescribed size, no matter how large the attribute

cardinality is. A clear advantage of this approach is that it allows one to control the index

size. However, it also introduces some uncertainty in the answers if one only uses the

index. To generate precise answers, one may need to examine the original data records

(candidates) to verify that the user specified conditions are satisfied. The process of

reading the base data to verify the query conditions is called candidate check [Stockinger

et al., 2004, Rotem et al., 2005b].

 ���

 Here, we are focusing on aggregation queries that are common in data

warehousing and scientific applications. These types of queries do not return result

records but rather statistical information on the result set, e.g. compute the size of the

result set. Figure 5.1 shows a small example of evaluating such queries with binned

bitmap indexes [Rotem et al., 2005b]. In this example we assume that an attribute A has

values between 0 and 50. The values of the attribute A are given in the second leftmost

column. The range of possible values of A is partitioned into five sub-ranges (bins),

namely [0, 10], [11, 20] etc. with a bin allocated to each sub-range. The values of the sub-

ranges are called bin boundaries. In this example, the width of each bin is of the same

size. A “1-bit” indicates the attribute value falls into the range and “0-bit” otherwise.

Assume that we want to evaluate the query “Count the number of rows where 8 < A <

37”. The correct result should be 9. We know that all records that fall into internal bins

Record
 ID

Original
 Values 0-10 11-

20
21-
30

31-
40

41-
50

1 5 1 0 0 0 0
2 34 0 0 0 1 0
3 23 0 0 1 0 0
4 9 1 0 0 0 0
5 12 0 1 0 0 0
6 6 1 0 0 0 0
7 34 0 0 0 1 0
8 42 0 0 0 0 1
9 11 0 1 0 0 0

10 22 0 0 1 0 0
11 44 0 0 0 0 1
12 23 0 0 1 0 0
13 18 0 0 0 0 1
14 41 0 1 0 0 0
15 39 0 0 0 1 0

Edge bin Internal bin

 8 < A < 37

Figure 5.1: Two- sided range query 8 < A < 37 on a bitmap index with binning

 �	�

(highlighted in light gray) are sure hits (qualifying records). These records are indicated

by a “1-bit” and are calculated by performing a Boolean OR operation on all internal

bins. On the other hand, records that fall into so-called edge bins (highlighted in dark

gray) contain both qualifying and non-qualifying values. In order to prune the false

positives, the original data values need to be checked against the query constraint. In

particular, all records of the edge bins with a bit set to “1”, need to be checked. Such a

check may involve additional accesses to disk pages depending on how the attribute

values are stored. Given the query 8 < A < 37, let us look at the candidate check for the

left edge bin. The candidate records are the records with RIDs 1, 4 and 6. The values of

these records are 5, 9 and 5, respectively. The only qualifying record is record 4 that

represents the value 9. The other two records do not fulfill the query constraint and do not

qualify. This is evident from the above example that the cost of performing a candidate

check on an edge bin is related to the number of “1-bits” in that bin. The larger the

number of candidates that need to be checked, the higher the total query processing cost.

Figure 5.2: Two Sided Range Query

 0 1 2 3 4 bitmap identifier

Attribute values on disk
(base data)

 Query range: 37<=A<63

0

0

0

1

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

1

0

34.7

94

24.9

15.5

61.7

67.2

58.6

1

2

3

4

5

6

7

0

1

0

0

0

0

0

 RID A [0 20) [20 40) [40 60) [60 80) [80 100) bit ranges

 �
�

In this example we assume that an attribute A has values between 0 and 100. The values

of the attribute A are given in the second leftmost column. The range of possible values

of A is partitioned into five bins [0, 20), [20, 40).... A “1-bit” indicates that the attribute

value falls into a specific bin. On the contrary, a “0-bit” indicates that the attribute value

does not fall into the specific bin. Take the example of evaluating the query “Count the

number of rows where 37 ≤ A < 63”. The correct result should be 2 (rows 5 and 7). We

see that the range in the query overlaps with bins 1, 2 and 3. We know for sure that all

rows that fall into bin 2 definitely qualify (i.e., they are hits). On the other hand, rows that

falls into bins 1 and 3 possibly qualify and need further verification. In this case, we call

bins 1 and 3 edge bins. The rows (records) that fall into edge bins are candidates and

need to be checked against the query constraint.

In the above example, there are four candidates, namely rows 1 and 3 from bin 1,

and rows 5 and 6 from bin 3. The candidate check process needs to read these four rows

from disk and examine their values to see whether or not they satisfy the user-specified

conditions. On a large data set, a candidate check may need to read many pages and may

dominate the overall query response time [Rotem et al., 2005b]. [Koudas, 2000]

considered the problem of finding the optimal binning for a given set of equality queries.

[Rotem et al. 2005a, 2005b] considered the problem of finding the optimal binning for

range queries. Their approaches are based on dynamic programming. Since the time

required by the dynamic programming grows quadratic with the problem size, these

approaches are only efficient for attributes with relatively small attribute cardinalities

[Koudas, 2000] or with relatively small sets of known queries [Stockinger et al. 2004].

They also considered the problem of optimizing the order of evaluating multi-

dimensional range queries. The key idea is to use more operations on bitmaps to reduce

the number of candidates checked. This approach usually reduces the total query

response time. Further improvements to this approach are to consider the attribute

distribution and other factors that influence the actual time required for the candidate

check.

To minimize number of disk page accesses during the candidate check, it is

necessary to cluster the attribute values [Rotem et al., 2006]. A commonly used clustering

(data layout) technique is called vertical partitioning. In general, the vertical data layout

 ���

is more efficient for searching, while the horizontal organization (commonly used in

DBMS) is more efficient for updating.

The behavior of the bitmap index in the multi-dimensional space is depicted in Figure

5.4. Note that for each attribute the candidate check is done separately, e.g after

“XOR"ing the “candhits" slice with the “previous" slice. However, for all remaining

attributes, the bit slice which is yielded after “XOR"ing, is “AND"ed together with the

“global" hit slice. This means, for example, that for attribute 2, only these candidate

objects need to be checked against the query constraint that are hits of attribute 1. The

resulting positive effect of this approach is that with a low “attribute query selectivity"

the number of candidate objects for each further dimension gets reduced. Finally, the hits

of each dimension are “AND"ed together. Throughout the thesis we will refer to this

process of sieving out the hits from the candidates as the candidate check. The details of

the approach described above, is given in [Stockinger et al. 2004].

Figure 5.3: Candidate check in multi-dimensional space.

1
0
0
1
0
0

1
0
1
1
1
0

1
1
1
1
1
0

1
0
0
1
0
0

0
0
0
1
0
0

1
0
0
1
0
0

1
0
0
1
0
0

1
1
1
1
1
0

1
0
1
1
1
0

0
0
0
1
0
0

1
0
1
1
1
0

1
1
1
1
1
0

1
0
0
1
0
0

1
0
0
1
0
0

0
0
0
1
0
0

AND
AND

“candidate check”

candidate check on
reduced number of
items

candidate check on
reduced number of
items

XOR XOR XOR

 ���

5.3. Strategies for Efficient Binning

We extend the concept of equi-width bins, that is, each bin has the same width and thus

the distribution of data values is reflected in the number of entries for each bin. Along

with equi-width binning, there is further possibility of equi-depth binning which

guarantees that each bin has the same number of entries. Both binning strategies have

their own advantages and disadvantages. The binning strategy depends on two factors,

namely the data distribution and the query access patterns or the query distribution. Equi-

depth binning guarantees nearly constant access time for all kind of queries independent

of the data distribution. One would choose this kind of binning when no query access

patterns are available. Since equi-width bins reflect the data distribution, this kind of

binning is preferable if the query access patterns are such that those bins are queried

most, which have the least number of entries. Binning could be made even more effective

if the query access patterns can be incorporated in deciding the bin boundaries. Thus, for

heavily queried regions in the search space, the bin ranges should be narrow such that

these bins only have a small number of entries.

Consider an attribute, A, with values ranging from 200 to 240, having equi-width

binning: 200 - 210, 210 - 220, 220 - 230 and 230 - 240. To implement the equi-width

binning, width of bin is taken as input. The query end points are searched in all the bin

boundaries to locate which bins contains the lower and higher query end points. If the

selected bins are 1b and 2b . All the bins that fall between these bins so obtained are

ORed, as they all contain only hits. The records corresponding to the result of the OR

operation are directly retrieved. The bins 1b and 2b contain some records which are not

hits and some of them are hits. Thus, for these two bins each record is taken and verified

to check if it falls within the query boundaries and printed only if it is a hit.

Now, consider range binning: 200 - 210, 200 - 220, 200 - 230 and 200 - 240. The bins 1b

and 2b are obtained in a similar manner to solve the query. We construct three

intermediate equi-width bitmaps fb ,
1f

b and '
fb . The pseudo-code for answering two sided

range query using range binning is as follows:

 ���

If (1b != 0)
{

fb =
1f

b XOR (
1f

b - 1) //
1f

b - 1 indicates the bin before 1b

 '
fb = NOT (

1f
b)

}
If(

1f
b == 0)

{
fb =

1f
b

'
fb = 0xffffffff

}

To search all records corresponding to “1” bit in fb , and whenever a hit record is found,

clear the bit corresponding to that record in fb .

fb = fb XOR '
fb

1f
b = 2b XOR (2b -1)

To search all records corresponding to “1” bit in fb , and whenever a miss record is found

clear the bit corresponding to that record in fb .

1f
b =

1f
b OR (2b - 1)

fb =
1f

b AND fb

Finally, fb contains only those records which lie within the query range and

consequently printed without any record checking.

We introduce the concept of exact match binning, where we choose the bin

boundaries exactly on the basis of the end points of most frequent queries on our system.

It may happen that the entire range of a given attribute may not get covered by exact

match bins. We create additional bins to cover the entire range. It may be noted that exact

match binning produces non-uniform overlapping bins. When we pose any of our most

frequent queries (satisfying a minimum threshold frequency) we don’t need to perform

the candidate check, we search the bin matching the query end points and get all hits

from that bin. As all the high frequency queries match with the bin boundaries, this type

of binning is the fastest possible binning. For answering low frequency queries, we may

 ����

use the algorithms that were used with equi-width binning. This approach gives best

results when we have more number of queries with frequencies greater than the threshold

frequency. The concept of exact match binning is explained through an example.

Example: Suppose we consider two frequent queries 223 < A < 233 and 228 < A < 235.

The bins are created as 200 – 223, 223 – 233, 228 – 235 and 235 – 240. When answering

queries, for which exact bins are not there, and the query can be answered using multiple

bins, we choose the bin which has less number of candidates so that the query response

time may be reduced.

With exact match binning, the response time of queries is reduced considerably, at the

expense of some additional space.

Figure 5.4 demonstrate a set of 10 range queries and a binning into 4 bins. The query q3

has no edge bins since both of endpoints fall on bin boundaries. Each of the queries q4,

q5, q6, q7, q10 has 1 edge bin and queries q1, q2, q8, q9 has 2 edge bins. Horizontal lines

represent query ranges and dotted vertical lines mark query endpoints.

Figure 5.4: Query endpoints and bin boundaries.

q1
q4

q5

q6

q7
q3

q1

q8

q9 q2

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

b1 b2 b3 b4

 ����

Figure 5.5 shows same set of 10 range queries with overlapping bins. The query

q3 has no edge bins since both of endpoints fall on bin boundaries. Each of the queries q4,

q5, q6, q7, q10 has 1 edge bin and queries q1, q2, q8, q9 has 2 edge bins.

Figure 5.5: Exact match binning.

5.4. Algorithms for Query Processing

We now present algorithm for query processing for the new binning strategy described in

the above section.

5.4.1. Algorithm for Equi-width Binning

Assuming attribute range 0 to 1000 and the number of bins is 10. Then equi-width
binning is constructed as 0-100, 100-200, …... , 800-900, 900-1000.

POINT QUERY:

Read x
For (i = 0 to bN) //Find the bin that contains the entered x

 If (lx [i] ≤ x < ux [i]) b = i
 //scan through the entire bin and print records that match.

// b has only candidates and not hits. (check=1)
Print record(b ,1)

q1
q4

q5

q6

q7 q3

q1

q8

q9 q2

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

b1
b2

b3

b4

 ����

LEFT SIDED QUERY:

Read x
For (i = 0 to bN) //Find the bin that contains the entered x

 If(lx [i] ≤ x < ux [i]) b = i
If b = 0 GOTO LABEL
//allocate memory equal to the size of one bin to some pointer named fb
For (i = 0 to b - 1)
//Now bitmap will have only hits as all bins to the left of b have hits

 fb = fb OR b [i]
Print records (fb , 0)
LABEL :
Print records (b , 1)

RIGHT SIDED QUERY:

Read x
For i=0 to bN //find the bin that contains the entered 'x '

 If(lx [i]<= x < ux [i]) b = i
If b = bN GOTO LABEL
//allocate memory equal to the size of one bin to some pointer named ' fb '
For(i= b +1 to bN)//bitmap have only hits as all bins to the right of ‘ b ’have
hits

 fb = fb OR b [i]
//print the records in bitmap without checking (check=0)
Print records(fb ,0)
LABEL :
//print the records in ‘b ’with checking as it has only candidates (check=1)
print_record(b ,1)

TWO SIDED QUERY:

Read ql and qu
For i = 0 to bN //find the bin that contains the entered 'ql '

 If(lx [i]<= ql < ux [i])

lb = i
 For i=0 to bN //find the bin that contains the entered 'qu '
 If(lx [i]<= qu < ux [i])

hb = i

 ����

 //allocate memory equal to the size of one bin to some pointer named
' fb ’bitmap
 //if lb and hb are adjacent goto label
 If (hb - lb) < 2
 GOTO LABEL
 For(i= lb +1 to hb -1)
 fb = fb OR b [i]

 //print the records in 'bitmap' without checking as it has only hits (check=0)
 Print records(fb ,0)
 //print the records in lb and hb with checking as they have candidates
(check=1)

LABEL :
Print records(hb , lb ,1)

5.4.2. Algorithm for Exact match Binning

POINT QUERY:

Read x
 Read mR //take a large number and call it ' mR '

For(i=0 to bN)
 If((lx [i]<= x < ux [i]) && R [i]< mR)
 {b = i

mR = R [i]}
 //above step selects all bins containing the entered ‘ x ’ and then

//selects the bin with minimum number of candidates among them
//print the records in 'b ' with checking as it has only candidates (check=1)
Print records (b ,1)

LEFT SIDED QUERY:

Read x
 Read mR //take a large number and call it ' mR '

For(i=0 to bN)
 If((lx [i]<= x < ux [i]) && R [i]< mR)
 {b = i

mR = R [i]}
 //above step selects all bins containing the entered id and then

//selects the bin with minimum number of candidates among them

 ����

//allocate memory equal to the size of one bin to some pointer named ' fb '
//allocate memory equal to the size of one bin to some pointer named ' 1fb '
For(i=0 to bN)

 If(ux (b [i])> lx (b))
 { 1fb = b OR b [i] break }
 If(ux (b [i])<= lx (b))
 fb = fb OR b [i]

print the records in ' 1fb ' with checking as it has only candidates (check=1)
//print the records in ' fb ' without checking as it has only hits (check=0)
Print records(fb ,0)

RIGHT SIDED QUERY:

Read x
Read mR //take a large number and call it ' mR '
For(i=0 to bN)

 lx [i]<= x < ux [i]) && R [i]< mR)
 {b = i mR = R [i]}

//above step selects all bins containing the entered id and then
// selects the bin with minimum number of candidates among them
//allocate memory equal to the size of one bin to some pointer named ' fb '
//allocate memory equal to the size of one bin to some pointer named ' 1fb '
For(i=0 to bN)

 If(lx (b [i])< ux (b))
 { 1fb = b OR b [i] break }
 If(lx (b [i])>= ux (b))
 fb = fb OR b [i]

//print the records in ' 1fb ' with checking as it has only candidates (check=1)
Print records(1fb ,1)
//print the records in ' fb ' without checking as it has only hits (check=0)
Print records(fb ,0)

TWO SIDED QUERY:

Read ql and qu
If(f >=5)

 For i=0 to bN //find the bin that exactly matches the query

 ��	�

 If(lx [i]= ql AND ux [i]= qu)
. b = i
 //As this is a bin created specially for this particular query, it has all hits
 //print the records in 'b ' without checking as it has only hits (check=0)
 Print records(b,0)

If(f <5)
For(i=0 to bN)

 If((lx [i]<= ql < ux [i]) && R [i]< mR)
 { lb = i

mR = R [i]}
For(i=0 to bN)

 If(lx [i]<= qu < ux [i]&& R [i]< mR)
 { hb = i

mR = R [i]
}

//allocate memory equal to the size of one bin to some pointer ' fb ’
//allocate memory equal to the size of one bin to some pointer ' 1fb ’
//allocate memory equal to the size of one bin to some pointer ' 2fb ’
If(hb = lb)

 //print the records in lb ' with checking as it has only candidates (check=1)
 Print records(lb ,1)
 EXIT

For(i= lb +1 to hb -1)
 If(ux (b [i])> lx [hb])
 { 1fb = hb OR b [i] break }
 If(lx (b [i])>= ux [lb]&& ux [i]<= lx [hb])
 fb = fb OR b [i]

For(i= hb to lb +1)
 If(lx (b [i])< ux (lb))
 { 2fb = lb OR b [i] break }

//print the records in ' fb ’without checking as it has only hits (check=0)
Print records(fb ,0)
//print the records in ' 1fb ’with checking as it has only candidates (check=1)
Print records(1fb ,1)
//print the records in ' 2fb ’with checking as it has only candidates (check=1)

 ��
�

Print records(2fb ,1)

5.4.3. Algorithm for Range Binning

POINT QUERY:

Read x
For(i=0 to bN) //find the bin that contains the entered 'id'

 If(lx [i]<= x < ux [i]) b = i
If(b =0) { fb = b GOTO LABEL }

 //allocate memory equal to the size of one bin to some pointer named ' fb '

fb = b -1 AND b //now bitmap will have less number of candidates, as
we //eliminated many records not in the required range and which fall in
previous bin
//print the records in ' fb ' with checking as it has only candidates (check=1)
Print records(fb ,1)

LEFT SIDED:

Read x
For i=0 to bN //find the bin that contains the entered 'x '

 If(lx [i]<= x < ux [i]) b = i
If(b =0){
Print records(lb ,0)

 EXIT
 }
//allocate memory equal to the size of one bin to some pointer named ' fb '

fb = b -1 AND b
//print the records in ' fb ' with checking as it has only candidates (check=1)
Print records(fb ,1)
//print the records in 'b -1' without checking as it has only hits (check=0)
Print records(b -1,0)

RIGHT SIDED:

Read x
For i=0 to bN //find the bin that contains the entered 'x '

 If(lx [i]<= x < ux [i]) b = i
//allocate memory equal to the size of one bin to some pointer named ' fb '

//allocate memory equal to the size of one bin to some pointer named ‘ '
fb ’

If(b =0)

 ����

 { '
fb = ~b

 fb = b }
If(b !=0)

 { fb = (b -1) AND b

 '
fb = ~(b -1)

 '
fb = '

fb AND fb }
//print the records in ' fb ' with checking as it has only candidates (check=1)
Print records(fb ,1)

//print the records in ‘ '
fb ’without checking as it has only hits (check=0)

Print records('
fb ,0)

TWO SIDED :

Read ql and qu
For i=0 to bN //find the bin that contains the entered 'ql '

 If(lx [i]<= ql < ux [i])

lb = i
For i=0 to bN //find the bin that contains the entered 'qu '
If(lx [i]<= qu < ux [i])

hb = i
//allocate memory equal to the size of one bin to some pointer named ' fb '
//allocate memory equal to the size of one bin to some pointer named ' 1fb '

//allocate memory equal to the size of one bin to some pointer named ''

fb ’
part1:
If(lb !=0)

 fb <- (lb -1) AND (lb)

 '
fb = ~(lb)

If(lb =0)
 fb = lb

 '
fb =0xffffffff

/*
candidate check on bitmap: miss -> do not alter the bit //for this
purpose hitORmiss() function is used hit -> clear the bit
*/

fb = fb AND '
fb

 ����

//after this step bitmap has only records greater than the lower limit
part2:

1fb = hb -1 AND hb
/*
candidate check on 1fb : miss -> set the bit to zero //for this purpose
hitORmiss() function is used hit -> do not alter the bit
*/

1fb = 1fb OR hb -1
//after this step bitmap has only records lesser than the lower limit

fb = fb & 1fb //right and left sided query results are combined
//Now bitmap is combination of Left and Right queries and contains exactly
the //results that are needed.
//print the records in ' fb ’without checking as it has only hits (check=0)
Print records(fb ,0)

5.5. Experimental work and Results

To compare the proposed binning strategy with the existing binning approaches, we have

created a sample database and generated a set of 20 two-sided range queries with varying

frequencies. Total number of queries in the set is 92. The sample queries are given in

Table 5.1. The number of queries for which exact bins were created at different threshold

frequencies is given in Table 5.2. The binning strategies considered are equi-width

binning, range binning, and the proposed exact binning. We have developed a new query

processing algorithm for exact binning which selects the best bin in case there is more

than one bin from which a query can be answered. Testing of proposed algorithm for

query processing was done for increasing number of records in the database starting from

1000 and going up to 50000. The CPU clock time for different query processing

algorithms for different binning strategies is presented in Tables 5.3, 5.4, 5.5 and 5.6. The

average time taken for answering the queries for frequency �=5 and for increasing

number of records is shown in Figure 5.6. The affect of increasing threshold frequency on

the number of candidate checks is depicted in Figure 5.7. The improvement factor (%)

over equi-width binning is given in Figure 5.8. The affect of increasing threshold

frequency on average time needed to answer queries against 50000 records is presented

in Figure 5.9. The variation in space required for exact binning with increasing threshold

 ���

frequency is shown in Figure 5.10. The analysis of all the results presented is given

below.

Following sample query set is considered:

Query No. Query Frequency
q1 100 ≤ IDNO ≤ 203 6
q2 053 ≤ IDNO ≤ 800 2
q3 417 ≤ IDNO ≤ 501 2
q4 121 ≤ IDNO ≤ 225 3
q5 600 ≤ IDNO ≤ 700 9
q6 817 ≤ IDNO ≤ 842 9
q7 052 ≤ IDNO ≤ 207 4
q8 333 ≤ IDNO ≤ 409 9
q9 701 ≤ IDNO ≤ 779 7
q10 321 ≤ IDNO ≤ 407 3
q11 505 ≤ IDNO ≤ 612 8
q12 170 ≤ IDNO ≤ 225 2
q13 213 ≤ IDNO ≤ 219 2
q14 714 ≤ IDNO ≤ 805 4
q15 117 ≤ IDNO ≤ 162 5
q16 070 ≤ IDNO ≤ 099 5
q17 400 ≤ IDNO ≤ 427 1
q18 221 ≤ IDNO ≤ 233 3
q19 072 ≤ IDNO ≤ 144 6
q20 513 ≤ IDNO ≤ 517 2

Table 5.1: Sample Queries

The number of exact and non exact queries at different frequency for the sample query
set is as follows:

Frequency ≥ Number of Exact Queries Non Exact
3 81 11
4 72 20
5 64 28
6 54 38
7 42 50

Table 5.2: Frequency of Exact and Non Exact Queries

 ����

From the tables 5.3 – 5.6 it is clear that the average time taken to answer the queries is

minimum for exact binning and for the proposed query processing algorithm. It is true for

all values of table cardinality considered. The summary of these results is presented in

Figure 5.6. It can be seen from the figure that exact binning strategy performs far better

than equi-width and range binning. The improvement achieved is more pronounced for

higher number of records.

In Figure 5.7, the effect of increasing threshold frequency (�) on the number of candidate

checks is depicted. For equi-width binning, the number of candidate checks needed is

independent of �. For exact binning, the number of candidate checks increases with

increasing �. The proposed algorithm for exact binning reduces the number of candidate

checks which in turn leads to faster response times for queries. In Figure 5.10, the space

requirement for exact binning is plotted against threshold frequency. It takes more space

than equi-width binning, as expected, but is found to decrease with frequency. From

Figures 5.7- 5.10, it is evident that space-time performance optimality can be achieved by

suitably choosing �.

Query No. Equi Width Range Exact (Equi) Exact(Overlap)
q1 42760000 63490000 21520000 21560000
q2 190530000 195790000 168840000 209560000
q3 41990000 58260000 39000000 27100000
q4 42780000 64290000 48560000 81130000
q5 42880000 63170000 21080000 21180000
q6 41070000 45290000 5010000 5020000
q7 191300000 73570000 188420000 79510000
q8 42220000 57260000 15680000 15710000
q9 42530000 57800000 16160000 16460000
q10 42320000 59300000 42710000 78500000
q11 43030000 64250000 22150000 22200000
q12 42740000 53880000 48560000 79530000
q13 42550000 43170000 54130000 20780000
q14 41710000 59560000 23730000 77660000
q15 43030000 51610000 9440000 10320000
q16 41960000 46990000 5800000 5810000
q17 41640000 46420000 35150000 26660000
q18 42520000 44340000 54120000 20780000
q19 42450000 56550000 14810000 14850000
q20 42250000 42410000 44310000 21170000

 Average
 57213000 62370000 43959000 42774500

Table 5.3: Query Processing Time for number of records = 50000

 ����

Query No. Equi Width Range Exact (Equi) Exact(Overlap)
q1 1720000 2620000 880000 960000
q2 7830000 8300000 7240000 7150000
q3 1750000 2540000 1730000 830000
q4 1700000 2650000 2030000 1010000
q5 1800000 2760000 940000 1000000
q6 1710000 1930000 230000 230000
q7 7820000 3070000 8050000 1460000
q8 1780000 2460000 670000 710000
q9 1750000 2470000 690000 740000
q10 1770000 2540000 1820000 3310000
q11 1770000 2730000 940000 1010000
q12 1710000 2250000 2030000 530000
q13 1720000 1810000 2320000 50000
q14 1730000 2540000 1000000 2770000
q15 1700000 2140000 400000 420000
q16 1690000 1980000 250000 270000
q17 1810000 2060000 1530000 950000
q18 1710000 1840000 2310000 930000
q19 1700000 2360000 630000 680000
q20 1700000 1750000 1880000 930000

 Average
 2343500 2640000 1878500 1297000

Table 5.4: Query Processing Time for number of records = 10000

Query No. Equi Width Range Exact (Equi) Exact(Overlap)
q1 450000 700000 240000 240000
q2 2090000 2200000 1890000 1750000
q3 480000 700000 470000 220000
q4 440000 700000 540000 250000
q5 460000 690000 230000 240000
q6 470000 540000 70000 60000
q7 2060000 810000 2110000 370000
q8 500000 720000 210000 200000
q9 450000 630000 170000 170000
q10 510000 730000 490000 890000
q11 450000 700000 240000 240000
q12 460000 610000 540000 140000
q13 440000 460000 590000 10000
q14 470000 670000 250000 690000
q15 460000 560000 90000 90000
q16 430000 500000 60000 70000
q17 510000 580000 430000 250000
q18 450000 480000 590000 220000
q19 440000 610000 160000 140000
q20 440000 460000 480000 260000

 Average
 623000 702500 492500 325000

Table 5.5: Query Processing Time for number of records = 5000

 ����

Query No. Equi Width Range Exact (Equi) Exact(Overlap)

q1 30000 40000 10000 10000
q2 130000 150000 120000 110000
q3 30000 40000 30000 10000
q4 30000 40000 30000 10000
q5 20000 40000 20000 20000
q6 20000 30000 10000 10000
q7 130000 50000 110000 50000
q8 30000 40000 10000 10000
q9 40000 40000 20000 10000
q10 20000 50000 20000 60000
q11 20000 40000 30000 10000
q12 40000 30000 20000 10000
q13 20000 30000 40000 10000
q14 20000 40000 20000 50000
q15 40000 40000 10000 10000
q16 30000 30000 10000 10000
q17 30000 40000 30000 10000
q18 20000 30000 30000 20000
q19 30000 30000 20000 10000
q20 30000 40000 30000 20000

 Average
 38000 43500 31000 20000

Table 5.6: Query Processing Time for number of records = 1000

Performance Comparison
for frequency=5

0
10000
20000
30000
40000
50000
60000
70000

0 20000 40000 60000

Number of Records

Ti
m

e(
m

ill
i s

ec
on

ds
)

Equi-Width

Range

Exact(Equi)

Exact(Overlap)

Figure 5.6: Average Time for Different Binning Algorithms

 ����

Candidate Check Comparison
for 50,000 records

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8

Frequency

Equi-Width
Exact(Equi)
Exact(Overlap)

Figure 5.7: Number of candidates at different frequencies for binning algorithms

Improvement Comparison
for 50,000 records

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8

Frequency

Exact(Equi)
Exact(Overlap)

Figure 5.8: Improvement percentage at different frequencies for binning algorithms

 ����

Performance Comparison
for 50,000 records

0

10000

20000

30000

40000

50000

60000

70000

80000

0 1 2 3 4 5 6 7 8

Frequency

Equi-Width
Exact(Equi)
Exact(Overlap)

Figure 5.9: Query processing time at different frequencies for binning algorithms

Space Comparison
for 50,000 records

0

20000

40000

60000

80000

100000

120000

0 1 2 3 4 5 6 7 8

Frequency

Exact(Overlap)
Equi-width

Figure 5.10: Space Comparison of exact binning with equi-width binning

 ��	�

5.6. Contributions and Summary

In this chapter, we proposed a new binning strategy called exact binning which

takes query distribution into account. The bins are allowed to overlap and a given query

could be answered from more than one bin. This necessitated the need for new query

processing algorithms to be developed in order to minimize the number of candidate

checks. We developed an algorithm for the same and compared its performance with the

existing algorithms given for equi-width binning. It was found that the new binning

strategy performs much better than any of the existing binning techniques at the expense

of space. The threshold frequency � can be optimally chosen to get maximum

performance benefits with minimal space overhead.

 ��
�

Chapter 6: Conclusions and Recommendations

6.1. Conclusions

The ability to extract data to answer complex, iterative, and ad hoc queries

quickly is a critical issue for data warehouse applications and scientific databases. A

proper indexing technique is crucial to avoid I/O intensive table scans against large

tables. The challenge is to find an appropriate index type that would improve the queries

performance. Bitmap Indexes play a key role in answering data warehouse’s queries

because they have an ability to perform operations on index level before retrieving base

data. This speeds up query processing tremendously. Bitmap indexes are the preferred

multi-dimensional indexing structures especially suited for data warehouses and scientific

databases which contain huge volumes of multidimensional data. In the thesis, an attempt

has been made to improve the performance of bitmap indexes through better encoding,

compression, and binning techniques.

One of the major issues with bitmap indexes is the space requirement. BBC and

WAH are two very effective and popular compression schemes for bitmap indexes.

Sorting the column on which a bitmap index has been created can drastically improve the

compression achieved by BBC and WAH as both these compression schemes are variants

of the run-length encoding (RLE) scheme. Using this simple technique, we observed that

the space requirement increases only linearly with the increase in the number of tuples in

the relation. It is very effective in read-mostly data warehouses and can be done during

the ETL phase. Also, the response time of both equality and range queries is found to

decrease. It was found that there is up to 60% improvement in response time of queries.

With such promising gains in terms of both space and performance, the proposed strategy

offers a simple yet effective solution to query performance challenges in large datasets.

The other columns in the relation can continue to have BBC or WAH compressed bitmap

indexes.

Data reorganization, mainly tuple reordering, plays an important role in

improving the compression ratios achieved by BBC and WAH. In read-mostly

environments, data reorganization is found to be very effective strategy to achieve good

 ����

compression ratios. Multi-component encoding has been used as a preprocessing

technique to improve the compression ratio achieved by Gray code ordering algorithm

used for tuple reordering. Spacing saving of 25% was achieved by applying multi-

component encoding just once. Choosing the base for multi component indexing is

critical and thus finding a good base that maximizes the performance of WAH will be

another interesting research project.

Binning plays a very important role in reducing the size of bitmap indexes on high

cardinality columns. We have introduced the concept of exact overlapping bins to

minimize the number of candidate checks needed to answer a set of queries. The

overlapping and exact bins are created based on the frequency of queries. New

algorithms for performing candidate checks have also been developed. Results are

presented for different combination of parameters like cardinality and query frequency.

The proposed new binning strategy and the associated algorithms greatly improve the

response time of range queries as compared to the conventional binning techniques.

6.2. Recommendations for the future work

The techniques proposed in the thesis can be applied to bitmapped join indexes to

reduce the space requirements of such indexes. It would be interesting to see the affect of

this on the join operation.

It was observed for binning techniques that the number of candidate checks to be

performed for a set of queries Q, is sensitive to the choice of the qualifying frequency.

How to find an optimal frequency so that the numbers of candidate checks required for

answering queries in a given set Q are minimized? This could be an interesting research

problem. Also, dynamic binning strategies could be explored. If the binning boundaries

could be changed based on the changing query profiles, query response times could be

reduced drastically.

We are continuing our work on bitmap indexes to be applied in data mining as

group bitmap index and improving its performance for doing better analysis. Bitmap

indexing can be extensively used in data mining algorithms to extract data in faster.

 ����

Developing new indexing strategies based on bitmap indexes is still an interesting

research area.

Despite the success of bitmap indexes, there are a number of important issues that

remain to be addressed.

How to automatically select the best combination of encoding, compression and binning

techniques?

How to use bitmap indexes to answer more general join queries?

Research work on bitmap indexes so far has concentrated on answering queries

efficiently in a read-mostly environment, but has often neglected the issue of updating the

indexes. Clearly, there is a need to update the indexes efficiently as and when the data file

changes. Efficient solutions to this issue could lead to a wider adaptation of bitmap

indexes in commercial systems.

 ���

List of Publications

1. Navneet Goyal, Yashvardhan Sharma, Susheel Kumar Zaveri, ‘Improved Bitmap

Indexing Strategy for Data Warehouses’, Proceedings of 9th International Conference

on Information Technology (ICIT), Bhubaneshwar, IEEE Computer Society Press, 18th -

21st December, pp 213-216, 2006

2. Yashvardhan Sharma, Navneet Goyal, Som Ranjan Satpathy, ‘New Approach to

overcome the complexity issues raised by Simple Bitmap Indexing’, Proceedings of

International Joint Conferences on Computer, Information, and Systems Sciences, and

Engineering (CIS2E 06), 4th -14th December, Bridgeport, USA, Springer, pp.501-503,

2006.

3. Yashvardhan Sharma, ‘Effective Usage of Metadata in Data Warehousing’,

Proceedings of 2nd National Conference on Information & Emerging

Technologies(NCIET), Ropar, Punjab, 7th – 8th September, pp. 97-105, 2007.

4. Yashvardhan Sharma and Navneet Goyal, ‘Data Mining Algorithms with Bitmap

Indexes’, Proceedings of National Conference On Emerging Trends In Information

Technology(NCETIT), Indore, 18th – 20th December , pp. 316-320, 2007.

5. Yashvardhan Sharma and Navneet Goyal, ‘An Efficient Multi-Component Indexing

Embedded Bitmap Compression for Data Reorganization’, Information Technology

Journal, Asian Network for Scientific Information Publications, Vol 7, No. 1, ISSN 1812-

5638, pp.160-164, 2008.

6. Navneet Goyal and Yashvardhan Sharma, ‘Bitmap based Binning Algorithms for

Two Sided Range Queries’, ACM SIGMOD (Communicated).

 ����

REFERENCES

Aho, A. V. and Ullman, J. D., ‘Optimal Partial-Match Retrieval When Fields Are

Independently Specified’, ACM Transactions Database Systems, Vol. 4, No. 2,

pp.168–179, 1979.

Albrecht, J., Gunzel, H.and Lehner, W., ‘An Architecture for Distributed OLAP’, In

Proceedings of International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA), Las Vegas, USA ,July 13-16, 1998.

Amer-Yahia, S. and Johnson, T., ‘Optimizing Queries on Compressed Bitmaps’, In

Proceedings of VLDB 2000, Morgan Kaufmann, September 10-14, pp. 329-338,

2000.

Antoshenkov, G. and Ziauddin, M., ‘Query Processing and Optimization in ORACLE

RDB’, VLDB Journal, Vol. 5, pp. 229-237, 1996.

Antoshenkov, G., ‘Byte-aligned Bitmap Compression’, Technical Report, Oracle

Corporation, 1994. U.S. Patent number 5,363,098.

Bayer, R., ‘UB-trees and UB-cache – A new processing paradigm for database

systems’, Technical Report TUM-I9722, TU Mnchen, 1997.

Bayer, R., ‘The Universal B-Tree for Multidimensional Indexing: general Concepts’,

In Proceedings of the International Conference on Worldwide Computing and Its

Applications, March 10-11, pp.198-209, 1997 .

Bentley, J. L. , ‘Multidimensional binary search trees used for associative searching’,

Communications of the ACM, Vol. 18, No. 9, pp. 509-517, 1975.

 ����

Berchtold, S. , Bohm, C., Keim, D. and Kriegel, H., ‘A cost model for nearest

neighbor search in high-dimensional data Space’, In Proceedings ACM Symposium

on Principles of Database Systems, Tuscon, Arizona, pp. 78–86, June 1997.

Berchtold, S., Keim, D. and Kriegel, H., ‘The X-tree: An index structure for high-

dimensional data’, In Proceedings of the International Conference on Very Large

Data Bases, Bombay, India, pp. 28–39, 1996.

Berchtold, S., Boehm, C., and Kriegl, H.P., ‘The Pyramid-Technique: Towards

Breaking the Curse of Dimensionality’ SIGMOD Record, Vol. 27, No. 2, pp. 142-

153, 1998.

Bernardo, Luis M., Shoshani, A., Sim, A. and Nordberg, H., ‘Access coordination of

tertiary storage for high energy physics applications’, In IEEE Symposium on Mass

Storage Systems, pp. 105-118, 2000.

Bohm, C., Berchtold, S. and Keim, D. A., ‘Searching in high-dimensional spaces:

Index structures for improving the performance of multimedia databases’, ACM

Computing Surveys, Vol.33, No. 3, pp.322–373, 2001.

Bookstein, A. and Klein, S.T., ‘Compression of Correlated Bit-Vectors’, Information.

Systems, Vol.16, No.4, pp. 387-400, 1991.

Canahuate, G., FerhatosmaNoglu, H. and Pinar, A., ‘Improving Bitmap Index

Compression by Data Reorganization’, IEEE Transactions on Knowledge and Data

Engineering (Accepted 2006).

Chakrabarti, K. and Mehrotra, S., ‘The hybrid tree: An index structure for high

dimensional feature spaces’, In Proceedings of the International Conference Data

Engineering, Sydney, Australia, pp. 440–447, 1999.

 ����

Chan, C.Y. and Ioannidis, Y.E. ‘Bitmap Index Design and Evaluation’, SIGMOD,

USA, ACM Press, pp. 355-366, 1998.

Chan, C.Y. and Ioannidis, Y.E., ‘An Efficient Bitmap Encoding Scheme for Selection

Queries’, SIGMOD Conference, USA, ACM Press, Vol. 28, No. 2, pp. 215-226,

1999.

Chaudhuri, S. Dayal, U. and Ganti, V., ‘Database Technology for Decision Support

Systems’, Computer, Vol. 34, No. 12, IEEE Computer Society Press , pp. 48-55,

2001.

Chaudhuri, S., and Dayal, U., ‘An Overview of Data Warehousing and OLAP

Technology’, ACM SIGMOD Record, Vol. 26, No.1, pp. 65-74, 1997.

Chu, J-H. and Knott, G., ‘An Analysis of B-Trees and Their Variants’, Information

Systems, Vol. 14, No. 5, pp. 359-370, 1989.

Codd, E. D., ‘ A relational model for large shared data banks’, Communications of

the ACM, Vol 13, No. 6, pp. 377-387,1970.

Colliat, G., ‘OLAP, Relational and Multidimensional Database System’, SIGMOD

Record, Vol. 25, No. 3, pp.64-69, 1996.

Comer, D., ‘The ubiquitous B-Tree’, Computing Surveys, Vol. 11, No. 2, pp. 121-

137, 1979.

Datta, A. , Ramamritham, K. and Thomas, H., ‘Curio: A Novel Solution for Efficient

Storage and Indexing of Data’, In Proceedings of the 25th VLDB Conference,

pp.730-733, 1999.

 ����

Datta, A., Moon, B. and Thomas, H., ‘A Case for Parallelism in Data Warehousing

and OLAP’, In Proceedings of the 9th International Conference on Database and

Expert Systems Applications (DEXA’98), pp. 226-231, 1998.

DeWitt, D.J. and Gray, J., ‘Parallel Database Systems: The future of high

performance database systems’, Communications of the ACM, Vol. 35, No. 6, pp.85-

98 , 1992.

Edelstein, H., ‘Faster Data Warehouse’, Information Week, pp. 77-88, 1995.

Evangelidis, G., Lomet, D. and Salzberg, B., ‘The hBII -tree: A modified hB-tree

supporting concurrency, recovery and node consolidation’, In Proceedings of Very

Large Data Bases, pp. 551-561, 1995.

Ezeife, C.I., ‘A Uniform Approach For Selecting Views and Indexes in a Data

Warehouse’, In Proceedings of the 1997 International Database Engineering and

Application Symposium, Canada, IEEE publication, pp. 151 – 160, 1997.

FastBit - An Efficient Compressed Bitmap Index Technology.

http://sdm.lbl.gov/fastbit/.

FastBit (2005), Retrieved January 11, from http://sdm.lbl.gov/fastbit, 2006.

French. C. D., ‘"One Size Fits All" Database Architectures Do Not Work for DSS’, In

Proceedings of the 1995 ACM SIGMOD Conference, pp. 449-450,1995.

Furuse, K. , Asada, K. and Iizawa, A., ‘Implementation and performance evaluation

of compressed bit-sliced signature files’, In Proceedings of the 6th International

Conference, CISMOD'95, Bombay, India, Volume 1006 of Lecture Notes in

Computer Science, Springer, pp.64-177, 1995.

 ����

Gaede, V. and Guenther, O., ‘Multidimensional Access Methods’, ACM Computing

Surveys, Vol. 30, No. 2, pp. 170—231, 1998.

Gosink, L. J., Shalf, J., Stockinger, K., Wu, K. and Bethel, W., ‘HDF5-FastQuery:

Accelerating Complex Queries on HDF Datasets using Fast Bitmap Indices’, In

Proceedings of the 18th International Conference on Scientific and Statistical

Database Management, SSDBM 2006, 3-5 July, Vienna, Austria, IEEE Computer

Society , pp.149-158, 2006.

Goyal, K. B., Ramamritham, K., Datta, A. and Thomas, H. M., ‘Indexing and

Compression in Data Warehouses’, In Proceedings of the Int'l. Workshop Design and

Management of Data Warehouses, Heidelberg, Germany, 14-15 June, pp. 11-17,

1999.

Gray J., Bosworth A., Layman A., and Pirahesh H., ‘Data Cube: A Relational

Operator Generalizing Group-By, Cross-Tab, and Sub-Totals’, In Proceedings of the

12th International Conference on Data Engineering, pp. 152-159, 1996.

Gray, J. , Liu, D. T. , Nieto-Santisteban, M., Szalay, A., DeWitt, D. and Heber, G.,

‘Scientific Data Management in the Coming Decade’, In SIGMOD Record, Vol. 34,

No. 4, December 2005.

Guha, S. , Koudas, N. and Srivastava, D., ‘Fast Algorithms For Hierarchical Range

Histogram Construction’, In Proceedings of the ACM Symposium on Principles of

Database Systems (PODS), Madison, Wisconsin, USA, ACM Press, pp. 180-187,

2002.

Gupta, A., Davis, K.C., and Jennifer, G-L., ‘Performance comparison of property

map and bitmap indexing’, International Workshop on Data Warehousing and OLAP,

pp. 65-71, 2002.

 ��	�

Guttman, A., ‘R-trees: A dynamic index structure for spatial searching’, In

Proceedings of 1984 ACM SIGMOD, pp. 47-57, 1984.

Hallmark, G. , ‘The oracle warehouse’, In Proceedings of the Very Large Data Bases,

pp. 707-709, 1995.

Harinarayan,V., Rajaraman, A. and Ullman, J. D., ‘Implementing Data Cubes

Efficiently’, In Proceedings of the 1996 ACM SIGMOD Conference, pp. 205-216,

1996.

Hellerstein, J. M. , Koutsoupias, E. and Papadimitriou, C. H., ‘On the Analysis of

Indexing Schemes’, In Proceedings of the Symposium on Principles of Database

Systems (PODS), Tucson, Arizona, USA, May, pp. 249-256, 1997.

HP, ‘HP Intelligent Warehouse’, Hewlett Packard white paper, http://www.hp.com,

1997.

Informatica, ‘EnterpriseScalable Data Marts: A New Strategy for Building and

Deploying Fast, Scalable Data Warehousing Systems’, Informatica white paper,

http://www.informatica.com, 1997.

Ishikawa, Y., Kitagawa, H. and Ohbo, N., ‘Evalution of signature files as set access

facilities in OODBs’, In Proceedings ACM SIGMOD International Conference on

Managerment of Data, Washington, D.C., ACM Press pp. 247–256, 1993.

Jeong, J. and Nang, J., ‘An Efficient Bitmap Indexing Method for Similarity Search

in High Dimensional Multimedia Databases’, In Proceedings of ICME 2004, pp. 815-

818, 2004.

Johnson, D. S., Krishnan, S., Chhugani, J., Kumar, S. and Venkatasubramanian, S.,

‘Compressing large boolean matrices using reordering techniques’, In Proceedings of

 ��
�

the 30th International Conference on Very Large Data Bases, pp. 13–23, 2004.

Johnson, T. and Shasha, D., ‘Some Approaches to index design for cube forests’,

Bulletin of the Technical Committee on Data Eng., Vol. 20, No. 1, pp. 27-35, 1997.

Johnson, T., ‘Performance measurements of compressed bitmap indices’, In

Proceedings of the 25th International Conference on Very Large Data Bases, Morgan

Kaufmann, pp. 278-289, 1999.

Jurgens, M. and Lenz, H.-J. ,’Tree based indexes vs. bitmap indexes - a performance

study’, International Journal of Cooperative Information Systems, Vol. 10, No. 3,

pp.355-376, 2001.

Keim, D. and Hinneburg, A., ‘Optimal Grid-Clustering: Towards Breaking the Curse

of Dimensionality in High-Dimensional Clustering’, In Proceedings of the

International Conference on Very Large Data Bases (VLDB), San Francisco. Morgan

Kaufmann, pp. 506-517, 1999.

Kiyoki, Y., Tanaka, K., Aiso, H. and Kamibayashi, N., ‘Design and Evaluation of a

Relational Data Base Machine Employing Advanced Data Structures and

Algorithms’, Symposium on Computer Architecture, Los Alamitos, CA, USA., IEEE

Computer Society Press, pp. 407-423, 1981.

Knuth, D. E., ‘The Art of Computer Programming’, Vol. 3, Addison Wesley, 1998.

Koudas, N. , ‘Space Efficient Bitmap Indexing’, In Proceedings of the Ninth

International Conference on Information Knowledge Management CIKM, McLean,

VA , pp. 194-201, 2000.

Koudas, N. , Muthukrishnan, S. and Srivastava, D., ‘Optimal Histograms for

Hierarchical Range Queries’, In Proceedings of the ACM Symposium on Principles

 ����

of Database Systems (PODS), Dallas, Texas, USA, ACM Press, pp. 196 -204, 2000.

Lee, D. L. , Kim, Y. M. and Patel. G., ‘Efficient signature file methods for text

retrieval’, IEEE Transactions on Knowledge and Data Engineering, Vol. 7, No. 3, pp.

423-435, 1995.

Leslie, H., Jain, R., Birdshell, D., and Yagmai, H., ‘Efficient Search of

Multidimensional B-Trees’ , In Proceedings of the International Conference on Very

Large Data Bases (VLDB), Zurich, Switzerland, pp. 710-719, 1995.

Liao, S., Lopez, M. A and Leutenegger, S. T. , ‘High dimensional similarity search

with space filling curves’, In Proceedings of the 17th International Conference on

Data Engineering, IEEE Computer Society, pp. 615-622, 2001.

Lim, S.J. and. Ng, Y. K., ‘A Formal Approach for Horizontal Fragmentation in

Distributed Deductive Database Design’, In Proceedings of the International

Conference on Database and Expert Systems Applications (DEXA’96), Zurich,

Switzerland, pp234-243, 1996.

Lin, K. , Jagadish, H. V. and Faloutsos, C., ‘The TV-tree: An index structure for high-

dimensional data’, VLDB Journal,Vol.3,pp.517–542, 1995.

Lomet, D. B. and Salzberg, B., ‘The hb-tree: A multi-attribute indexing method with

good guaranteed performance’, ACM Transactions on Database Systems, Vol. 15,

No.4, pp.625–658, 1990.

Lu, H., Ooi, B. C. and Tan, K. L., ‘Query Processing in Parallel Relational Database

Systems’, IEEE Computer Society, May 1994.

Markl, V., and Bayer, R., ‘Processing relational OLAP queries with UB-trees and

multidimensional hierarchical clustering’, In Proceedings of the Second International

 ����

Workshop on Design and Management of Data Warehouses, DMDW 2000,

Stockholm, Sweden, June 5-6, pp. 1-10, 2000.

Markl, V., Zirkel, M. and Bayer, R., ‘Processing operations with restrictions in

RDBMS without external sorting: The tetris algorithm’, In Proceedings of the 15th

International Conference on Data Engineering, March, Sydney, Austrialia, IEEE

Computer Society, pp. 562-571, 1999.

Meredith, M.A, and Khader, A., ‘Divide and Aggregate – Designing Large

warehouses’, Database Programming and Design, Vol. 9, No. 6, pp. 24-30, 1996.

Mofat, A. and Zobel, J., ‘Parameterised compression for sparse bitmaps’, In

Proceedings ACM-SIGIR International Conference on Research and Development in

Information Retrieval, Copenhagen, June 1992, ACM Press, pp. 274-285, 1992.

Mohr, A. E., ‘Bit Allocation in Sub-linear Time and the Multiple-Choice Knapsack

Problem’, In Proceedings of the Data Compression Conference, Snao Bird, Utah,

USA, IEEE Computer Society Press, pp. 352-361, 2002

Mokbel, M. F. and Aref, W. G. , ‘Irregularity in multi-dimensional space-filling

curves with applications in multimedia databases’, In Proceedings of the tenth

international conference on Information and knowledge management, ACM

Press, pp. 512-519, 2001.

Nam, B. and Sussman, A., ‘Improving Access to Multidimensional Self-describing

Scientific Dataset’, In International Symposium on Cluster Computing and the Grid

(CCGrid), May 2003, Tokyo, Japan. IEEE Computer Society Press, pp. 172-179,

2003.

O’Neil, E. , O’Neil, P., and Wu, K., ‘Bitmap Index Design Choices and Their

Performance Implications’, In Proceedings of the 11th International Database

 ���

Engineering and Applications Symposium (IDEAS 2007) , IEEE Computer Society ,

pp. 72-84, 2007.

O’Neil, P. and Graefe, G., ‘Multi-Table Joins Through Bitmapped Join Indices’,

ACM SIGMOD Record, pp. 8-11, 1995.

O’Neil, P. and Quass D., ‘Improved Query Performance with Variant Indexes’, In

Proceedings ACM SIGMOD International Conference on Management of Data,

ACM Press Tucson, Arizona, pp. 38-49, 1997.

O’Neil, P., ‘Model 204 Architecture and Performance’, In Second International

Workshop in High Performance Transaction Systems, Volume 359 of Springer-

Verlag Lecture Notes in Computer Science, Asilmore, California, pp. 40-59, 1987

OLAP Council, ‘APB-1 OLAP Benchmark Release II’, November 1998.

http://www.olapcouncil.org.

O'Neil, P. ‘Informix and Indexing Support for Data Warehouses’, Database

Programming and Design, Vol. 10, No. 2, pp. 38-43, 1997.

Otoo, E. J. , Shoshani, A. and Hwang, S., ‘Clustering high dimensional massive

scientific dataset’, In SSDBM, Fairfax, Virginia, pp. 147–157, 2001.

Ozbutun, C., ‘Bitmap Indexes, Oracle 7.3 and 8.0.’, ORACLE Technical Report,

ACTA Journal, June 1997.

Park, J. and Nang, J., ‘A hierarchical bitmap indexing method for content based

multimedia retrieval’, In Proceedings of the 24th IASTED international conference

on Internet and multimedia systems and applications, Austria, ACTA Press, pp. 223-

228, 2006.

 ����

Pinar, A. and Heath, M., ‘Improving performance of sparse matrix-vector

multiplication’, In Proceedings of Supercomputing , 1999.

Pinar, A., Tao, T. and Ferhatosmanoglu, H., ‘Compressing bitmap indices by data

reorganization’, In International Conference on Data Engineering, pp. 310–321, 2005.

Poess, M. and Floyd, C., ‘New TPC Benchmarks for Decision Support and Web

Commerce’ ACM SIGMOD Record, Vol. 29, No. 4, pp. 64-71, 2000.

Ramakrishna, M.V., ‘In Indexing Goes a New Direction’, Vol. 2, pp. 70-77, 1999.

Richards, D., ‘Data compression and gray-code sorting’, Information Processing

Letters, Vol. 22, No. 4, pp.201–205, 1986.

Rinfret, D., O'Neil, P. E. and O'Neil, E. J., ‘Bit-Sliced Index Arithmetic’, In

Proceedings of the ACM Conference on Management of Data (SIGMOD), Santa

Barbara, CA, USA, ACM Press, pp. 47–57, 2001.

Robinson, J., ‘The K-D-B-tree: A search structure for large multidimensional

dynamic indexes’, In Proceedings of 1981 ACM SIGMOD, pp. 10-18, 1981.

Rotem, D. , Stockinger, K. and Wu, K., ‘Efficient Binning for Bitmap Indices on

High-Cardinality Attributes’, Technical Report LBNL-56936, Berkeley Lab,

Berkeley, California, USA, Nov. 2004.

Rotem, D., Stockinger, K. and Wu, K. ‘Optimizing I/O Costs of Multi-Dimensional

Queries using Bitmap Indices’, In Proceedings of the International Conference on

Database and Expert Systems Applications (DEXA), Copenhagen, Denmark,

Springer Verlag, pp. 220-229, 2005a.

Rotem, D., Stockinger, K. and Wu, K., ‘Minimizing I/O Costs of Multi-Dimensional

 ����

Queries with Bitmap Indices’, In Proceedings of the 18th International Conference on

Scientific and Statistical Database Management, Vienna, Austria, IEEE Computer

Society, pp. 33-44, 2006.

Rotem, D., Stockinger, K. and Wu, K., ‘Optimizing Candidate Check Costs for

Bitmap Indices’, In Proceedings of the Conference on Information and Knowledge

Management (CIKM), Bremen, Germany, November, ACM Press, pp. 648-655,

2005b.

Rotem, D., Stockinger, K. and Wu, K., ‘Towards Optimal Multi-Dimensional Query

Processing with Bitmap Indices’, Technical Report LBNL- 58755, Berkeley Lab,

Berkeley, California, USA, 2005.

Sarawagi, S. and Stonebraker, M., ‘Efficient organization of Large Multidimensional

Arrays’, In Proceedings of the tenth international Conference on Data Engineering

ICDE, Houston, pp. 328-336, 1994.

Sarawagi, S., ‘Indexing OLAP Data’, Bulletin of the Technical Committee on Data

Engineering, IEEE, Vol. 20, No. 1, pp. 36-43, 1997

Savage, C. , ‘A survey of combinatorial Gray codes’, SIAM Review, Vol. 39, No. 4,

pp. 605-629, 1997.

Schuegraf, E.J., ‘Compression of Large Inverted Files with Hyperbolic Term

Distribution’, Information Processing and Management, pp. 377-384, 1976.

SciDAC. Scientific data management center. http://sdm.lbl.gov/sdmcenter/, 2002.

Sellis, T., Roussopoulos, N. and Faloutsos, C., ‘The R+-tree: A dynamic index for

multi-dimensional objects’, In Proceedings of 13th VLDB Conference, pp. 507-518,

1987.

 ����

Shoshani, A., “Statistical Databases : Characteristics, problems and some solutions’,

In Proceedings of the 8th International Conference on Very Large Data Bases

(VLDB), Mexico City, pp. 208-213, 1982.

Shoshani, A., Bernardo, L. M., Nordberg, H., Rotem, D., Sim, A., ‘Multidimensional

indexing and query coordination for tertiary storage management’, In 11th

International Conference on Scientijic and Statistical Database Management

(SSDBM), IEEE Computer Society, pp. 214-225, 1999.

Sinha, R. R. and Winslett, M., ‘Multi-Resolution Bitmap Indexes for Scientific Data’,

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 16, August 2007.

Sinha, R. R., Mitra, S., and Winslett, M., ‘Bitmap indexes for large scientific data

sets: A case study’, In Proceedings of the IEEE International Parallel & Distributed

Proceessing Symposium, IEEE Computer Society Press, Los Alamitos, CA, 2006.

Sloan Digital Sky Survey. http://www.sdss.org/dr1/.

SNAP. SuperNova acceleration probe. http://snap.lbl.gov/, 2004.

Staman, J.P., ‘Structuring databases for analyses’, IEEE Spectrum, pp. 55-58, 1993.

Stockinger, K. , Duellmann, D., Hoschek, W. and Schikuta, E., ‘Improving the

performance of high-energy physics analysis through bitmap indices’, In 11th

International Conference on Database and Expert Systems Applications DEXA 2000,

London, Greenwich, UK, pp. 835-845, September 2000.

Stockinger, K. , Shalf, J., Bethel, W. , and Wu, K. ‘Query-Driven Visualization of

Large Data Sets’, In IEEE Visualization, Minneapolis, MN, October 23-25, IEEE

Computer Society Press, 2005.

 ����

Stockinger, K. , Wu, K., Brun, R. and Canal, P., ‘Bitmap Indices for Fast End-User

Physics Analysis in ROOT’, Nuclear Instruments and Methods in Physics Research

Section A, Vol. 559, No. 1, pp. 99-102, 2006.

Stockinger, K., ‘Design and Implementation of Bitmap Indices for Scientific Data’, In

International Database Engineering & Applications Symposium, Grenoble, France,

July 2001, IEEE Computer Society Press, pp. 47-57, 2001.

Stockinger, K., Rotem, D., Shoshani, A. and Wu, K., ‘Analyzing Enron Data: Bitmap

Indexing Outperforms MySQL Queries by Several Orders of Magnitude’, Technical

Report LBNL- 61768, Berkeley Lab, Berkeley, California, USA, 2006.

Stockinger, K., Shalf, J., Bethel, W. and Wu, K., ‘DEX: Increasing the Capability of

Scientific Data Analysis Pipelines by Using Efficient Bitmap Indices to Accelerate

Scientific Visualization’, In Proceedings of the International Conference on Scientific

and Statistical Database Management (SSDBM), Santa Barbara, California, USA,

IEEE Computer Society Press, 2005.

Stockinger, K., Wu, K. , Campbell, S., Lau, S. , Fisk, M. , Gavrilov, E., Kent, A.,

Davis, C.E. , Olinger, R., Young, R. , Prewett, J.E. , Weber, P. , Caudell, T.P. ,

Bethel, E.W. and Smith, S. ‘Network Traffic Analysis With Query Driven

Visualization SC 2005 HPC Analytics Results’ In Supercomputing 2005, HPC

Analytics Challenge, November 2005

Stockinger, K., Wu, K. and Shoshani, A., ‘Evaluation Strategies for Bitmap Indices

with Binning’, In Proceedings of the International Conference on Database and

Expert Systems Applications (DEXA), Zaragoza, Spain, Springer-Verlag, pp. 120-

129, 2004.

Stockinger, K., Wu, K. and Shoshani, A., ‘Strategies for Processing ad hoc Queries

 ����

on Large Data Warehouses’, In Proceedings of the fifth ACM international workshop

on Data Warehousing and OLAP, ACM Press, McLean, Virginia, USA, pp. 72-79,

2002.

Stockinger,K., ‘Bitmap Indices for Speeding Up High-Dimensional Data Analysis’,

In Proceedings of the 13th International Conference on Database and Expert Systems

Applications, pp.881-890, 2002

Szalay, A. , Kunszt, P., Thakar, A., Gray, J. and Slutz, D., ‘Designing and Mining

Multi-Terabyte Astronomy Archives: The Sloan Digital Sky Survey’, In SIGMOD,

Dallas, Texas, USA, ACM Press, 2000.

TeraScaleCombustion, ‘TeraScale High-Fidelity Simulation of Turbulent Combustion

with Detailed Chemistry’, Retrieved January 11, 2006 from http://scidac.psc.edu.

Transaction Processing Performance Council (TPC), “TPC Benchmark D, Decision

Support”, Standard Specification Revision 2.0.1, December 5, 1998,

http://www.tpc.org.

Weber, R. , Schek, H.J. and Blott, S., ‘A quantitative analysis and performance study

for similarity-search methods in high-dimensional spaces’, In Proceedings of the 24th

International Conference on Very Large Data Bases, August 1998, New York City,

New York, USA, pp. 194-205,1998.

Winter, R., ‘Indexing Goes a New Direction’, Intelligent Enterprise, 1999, Vol.2,

No.2, pp. 70-73, 1999.

Wong, H. K. T., Liu H. F., Olken F., Rotem D. and Wong L. ‘Bit Transposed files’,

In Proceedings of International Conference on Very Large Databases, pp. 448-457,

1985.

 ��	�

Wu, C.-L., Koh, J.-L., and An, P.Y., ‘Improved sequential pattern mining using an

extended bitmap representation’, In Proceedings of the International Conference on

Database and Expert System Applications, pp. 776—785, 2005.

Wu, K. , Otoo, E. and Shoshani, A., ‘A performance comparison of bitmap indexes’,

In Proceedings of the 2001 ACM CIKM International Conference on Information and

Knowledge Management, Atlanta, Georgia, USA, November 5-10, ACM, pp. 559-

561, 2001.

Wu, K., Otoo, E. and Shoshani, A., ‘An Efficient Compression Scheme for Bitmap

Indices’, Technical Report LBNL-49626, ACM Transactions on Database Systems

(TODS), Vol. 31, pp. 1-38, 2006.

Wu, K., Zhang, W.M., Perevoztchikov, V., Lauret, J.and Shoshani, A., ‘The Grid

Collector: Using an Event Catalog to Speedup User Analysis in Distributed

Environment’, In Computing in High Energy and Nuclear Physics (CHEP) 2004,

Interlaken, Switzerland, 2004.

Wu, K., Koegler, W., Chen J., and Shoshani ,A., ‘Using bitmap index for interactive

exploration of large datasets’, In Proceedings of the 15th international conference on

Scientific and statistical database management (SSDBM),IEEE Computer Society,

pp. 65-74, 2003.

Wu, K., Otoo, E., and Shoshani, A., ‘Compressed bitmap indices for efficient query

processing’, Technical Report LBNL-56936, Berkeley Lab, Berkeley, California,

USA, 2001.

Wu, K., Otoo, E., and Shoshani, A., ‘Optimizing bitmap indices with efficient

compression’, ACM Transactions on Database Systems, Vol. 31, No.1, pp. 1-38,

2006.

 ��
�

Wu, K., Otoo, E., Shoshani, A., and Nordberg, H., ‘Notes on design and

implementation of compressed bit vectors’, Technical Report LBNL/PUB-3161,

Lawrence Berkeley National Laboratory, Berkeley, CA, 2001

Wu, K., Otoo, E.J., and Shoshani, A., ‘Compressing Bitmap Indexes for Faster Search

Operations’, In Proceedings of the International Conference on Scientific and

Statistical Database Management (SSDBM), IEEE Computer Society Press, pp. 99-

108, 2002.

Wu, K., Otoo, E.J., and Shoshani, A., ‘On the Performance of Bitmap Indices for

High Cardinality Attributes’, In Proceedings of the International Conference on Very

Large Data Bases VLDB'2004, Toronto, Canada. Morgan Kaufmann, pp. 24 – 35,

2004.

Wu, K., Shoshani, A., and Otoo, E. J., ‘Word aligned bitmap compression method,

data structure, and apparatus’, US Patent 6,831,575. 2004.

Wu, K.-L. and Yu, P.S, ‘Range-Based Bitmap Indexing for High Cardinality

Attributes with Skew’, In Proceedings of the 22nd International Computer Software

and Application Conference (COMPSAC), pp. 61–67, 1998.

Wu, M. C. , ‘Query optimization for selections using bitmaps’, In Proceedings of the

ACM Conference on Management of Data (SIGMOD), ACM, New York, pp. 227-

238, 1999.

Wu, M.C. and Buchmann, A. P., ‘Research Issues in Data Warehousing’, In

Datenbanksystem in Bro, Technik und Wissenschaft, pp. 61-82, 1997.

Wu, M.C., and Buchmann, A.P., ‘Encoded Bitmap Indexing for Data Warehouses’, In

Proceedings of the International Conference on Data Engineering, Orlando, Florida,

IEEE Computer Society Press, pp. 220-230, 1998.

 ����

Yao, S. B., ‘Approximating block Accesses in Database Organizations’,

Communication of the ACM, Vol. 20, No. 4, pp. 260-261, 1978.

Zaki, M. J. and Wang, J. T. L., ‘Special issue on bioinformatics and biological data

management’, Information Systems, Vol. 28, pp.241–367, 2003.

Ziv, J., and Lempel, A., ‘A universal algorithm for sequential data compression’,

IEEE Transactions on Information Theory, Vol.23, No.3, pp.337-343, 1977.

 ����

Appendix - A

A.1 Code for WAH and BBC Compression Algorithms

#define WAH_RUN_0 "0000000000000000000000000000000"
#define WAH_RUN_1 "1111111111111111111111111111111"
#define BBC32_0 "00000000000000000000000000000000"
#define BBC32_1 "11111111111111111111111111111111"
#define BBC24_0 "000000000000000000000000"
#define BBC24_1 "111111111111111111111111"
#define BBC16_0 "0000000000000000"
#define BBC16_1 "1111111111111111"
#define BBC8_0 "00000000"
#define BBC8_1 "11111111"

#define COUNT 10000000
#include<stdio.h>
#include<time.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include "compress.h"

int wah_counter = 0;

char array[32];

void reverseString(char *string)
{
 int left = 0;
 char temp;
 int right = strlen(string) - 1;
 while(left < right){
 temp = string[left];
 string[left] = string[right];
 string[right] = temp;
 left++;
 right--;
 }
}

void decimalToBinary(int number,char *binNum,int length)
{
 int i = 0;
 while(number){
 binNum[i++] = number % 2 + 48;
 number = number / 2;
 }
 binNum[i] = 0;
 for(i = strlen(binNum); i < length; i++)
 binNum[i] = '0';
 binNum[i] = 0;
 reverseString(binNum);
 return;
}

 ���

int binaryToDecimal(char *strNum)
{
 int i = strlen(strNum);
 int index = 0;
 int number = 0;
 while(i--){
 if(strNum[i] - 48){
 number += (int)pow(2,index);
 }
 index++;
 }
 return number;
}

void compress_wah(char *input_file_name, char *output_file_name)
{
 bool run_0=false;
 bool run_1=false;
 int counter=0;
 FILE *fp = fopen(input_file_name,"r");
 if(!fp){
 perror("Error in opening input file");
 exit(1);
 }
 FILE *fo = fopen(output_file_name,"w");
 if(!fo){
 fclose(fp);
 perror("Error in opening output file");
 exit(1);
 }

 char temp[32];
 int n = 0;
 clock_t start = clock();
 while(!feof(fp)){
 n = fread(array,1,sizeof(array) - 1,fp);
// if(!feof(fp)){
 if(n < 0){
 perror("Error in reading file");
 fclose(fp);
 fclose(fo);
 exit(2);
 }
 array[n] = 0;
 if(n < 31){
 //active word
 int len = 31 - strlen(array);
 for(int i = 0; i < len + 1; i++)
 fprintf(fo,"%s","0");
 fprintf(fo,"%s",array);
 clock_t finish = clock();
 printf("Time taken = %2.7lf
seconds\n",(double)(finish - start)/CLOCKS_PER_SEC);
 int size = ftell(fo);
 long usize = ftell(fp);

 ����

 printf("Uncompressed File Size = %d bytes\n",
usize/8);
 printf("Compressed Size = %d bytes\n",size/8);
 printf("Percentage Compressed %2.2lf%%
\n",100*(double)(usize-size)/usize);
 break;
 }
 if(!strcmp(array,WAH_RUN_0))
 {
 if(run_1)
 {
 //write run1 1
 decimalToBinary(counter,temp,30);
 // temp[31]=0;
 fprintf(fo,"%s%s","11",temp);
 run_1=false;
 counter=1;
 }
 else if(run_0)
 counter++;
 else
 counter=1;
 run_0=true;
 }
 else if(!strcmp(array,WAH_RUN_1))
 {
 if(run_0)
 {
 //write run 0
 decimalToBinary(counter,temp,30);
 // temp[31]=0;
 fprintf(fo,"%s%s","10",temp);
 run_0=false;
 counter=1;
 }
 else if(run_1)
 counter++;
 else
 counter=1;
 run_1=true;
 }
 else
 {
 if(run_1)
 {
 //write run1 1
 decimalToBinary(counter,temp,30);
 // temp[31]=0;
 fprintf(fo,"%s%s","11",temp);
 run_1=false;
 }
 if(run_0)
 {
 //write run 0
 decimalToBinary(counter,temp,30);
 // temp[31]=0;
 fprintf(fo,"%s%s","10",temp);

 ����

 run_0=false;
 }
 //write literal
 fprintf(fo,"%s%s","0",array);
 counter=0;
 run_0=false;
 run_1=false;
 }

 }
// }
 fclose(fp);
 fclose(fo);
}

int get_literal_count(FILE *fp ,char **literal_buffer)
{
 //int loc = ftell(fp);
 //bool condition = true;
 char temp[9];
 int n = 0;
 strcpy(*literal_buffer,"");
 int literal_count = 0;
 bool first = true;
 while(true){
 n = fread(temp,1,8,fp);
 temp[n] = 0;
 if(n < 8){
 fseek(fp,-(n),SEEK_CUR);
 break;
 }
 if(!strcmp(temp,BBC8_0) || !strcmp(temp,BBC8_1)){
 fseek(fp,-8,SEEK_CUR);
 break;
 }
 strcat(*literal_buffer,temp);
 if(first){
 first = false;
 char *ptr = strstr(temp,"0");
 ptr = strstr(ptr + 1,"0");
 if(!ptr)
 return -(strstr(temp,"0")-temp);
 ptr = strstr(temp,"1");
 ptr = strstr(ptr + 1,"1");
 if(!ptr)
 return -(strstr(temp,"1")-temp);
 }
 literal_count++;
 if(literal_count > 15)
 break;
 }
 //fseek(fp,loc,SEEK_SET);
 return literal_count;
}

 ����

void set_run_3_4_header(int counter, char **array)
{
 counter = counter - 4;
 int bit_size = (int)ceil((double)log(counter) / log(2));
 bit_size = (int)ceil((double)bit_size / 7);
 *array = new char[bit_size * 8 + 1];
 char *temp=new char[bit_size * 9];
 strcpy(*array,"");
 decimalToBinary(counter,temp,0);
 int i = 0;
 while(strlen(temp + i) > 7){
 strcat(*array,"1");
 strncat(*array,temp + i,7);
 i += 7;
 }
 int len = 7 - strlen(temp + i);
 while(len >= 0){
 strcat(*array,"0");
 len--;
 }
 strcat(*array,temp + i);
 delete temp;
 return;
}

void compress_bbc(char *input_file_name, char *output_file_name)
{
 int counter=0;
 FILE *fp = fopen(input_file_name,"r");
 if(!fp){
 perror("Error in opening input file");
 exit(1);
 }
 FILE *fo = fopen(output_file_name,"w");
 if(!fo){
 fclose(fp);
 perror("Error in opening output file");
 exit(1);
 }

 char temp[33];
 char literal_array[5];

 char *literal_buffer = new char[121];
 int n = 0;
 char *run_header;
 int run_fill_size = 0;
 int literal_length = 0;
 clock_t start = clock();
 while(!feof(fp)){
 n = fread(temp,1,32,fp);
 if(n < 0){
 perror("Error in reading");
 exit(2);
 }
 temp[n] = 0;
 if(n < 32){

 ����

 fprintf(fo,"%s%s","10000100",temp);
 // code if read less than 32 bits
 break;
 }
 else{
 if(!strcmp(temp,BBC32_0)){
 run_fill_size = 4;
 while(true){
 n = fread(temp,1,8,fp);
 temp[n] = 0;
 if(n < 8){

 fprintf(fo,"%s","00100001");

 set_run_3_4_header(run_fill_size,&run_header);
 fprintf(fo,"%s%s",run_header,temp);
 delete run_header;
 break;
 }
 if(!strcmp(temp,BBC8_0))
 run_fill_size++;
 else{
 fseek(fp,-8,SEEK_CUR);

 literal_length=get_literal_count(fp,&literal_buffer);
 if(literal_length<=0)
 {
 //run type 4
 literal_length=-
literal_length;

 decimalToBinary(literal_length,literal_array,3);

 fprintf(fo,"%s%s","00010",literal_array);

 set_run_3_4_header(run_fill_size,&run_header);
 fprintf(fo,"%s",run_header);
 delete run_header;

 //fprintf(fo,"%s%s%s","01011",literal_array);
 }
 else
 {
 //run type 3

 decimalToBinary(literal_length,literal_array,4);

 fprintf(fo,"%s%s","0010",literal_array);

 set_run_3_4_header(run_fill_size,&run_header);

 fprintf(fo,"%s%s",run_header,literal_buffer);
 delete run_header;

 }

 ����

 }
 }
 //run 3 or 4
 }
 else if(!strcmp(temp,BBC32_1)){

 run_fill_size = 4;
 while(true){
 n = fread(temp,1,8,fp);
 temp[n] = 0;
 if(n < 8){

 fprintf(fo,"%s","00110001");

 set_run_3_4_header(run_fill_size,&run_header);
 fprintf(fo,"%s%s",run_header,temp);
 delete run_header;
 break;
 }
 if(!strcmp(temp,BBC8_1))
 run_fill_size++;
 else{
 fseek(fp,-8,SEEK_CUR);

 literal_length=get_literal_count(fp,&literal_buffer);
 if(literal_length<=0)
 {
 //run type 4
 literal_length=-
literal_length;

 decimalToBinary(literal_length,literal_array,3);

 fprintf(fo,"%s%s","00011",literal_array);

 set_run_3_4_header(run_fill_size,&run_header);
 fprintf(fo,"%s",run_header);
 delete run_header;

 //fprintf(fo,"%s%s%s","01011",literal_array);
 }
 else
 {
 //run type 3

 decimalToBinary(literal_length,literal_array,4);

 fprintf(fo,"%s%s","0011",literal_array);

 set_run_3_4_header(run_fill_size,&run_header);

 fprintf(fo,"%s%s",run_header,literal_buffer);
 delete run_header;

 }

 ��	�

 }
 }
 //run 3 or 4

 //run 3 or 4
 }
 else{
 if(!strncmp(temp,BBC24_0,24)){
 fseek(fp,-8,SEEK_CUR);
 literal_length =
get_literal_count(fp,&literal_buffer);
 if(literal_length<=0)
 {
 literal_length=-literal_length;

 decimalToBinary(literal_length,literal_array,3);

 fprintf(fo,"%s%s","01011",literal_array);
 }
 else
 {

 decimalToBinary(literal_length,literal_array,4);

 fprintf(fo,"%s%s%s","1011",literal_array,literal_buffer);
 // run 1 or 2 for length = 24 bits
 }
 }
 else if(!strncmp(temp,BBC24_1,24)){
 fseek(fp,-8,SEEK_CUR);
 literal_length =
get_literal_count(fp,&literal_buffer);
 if(literal_length<=0)
 {
 literal_length=-literal_length;

 decimalToBinary(literal_length,literal_array,3);

 fprintf(fo,"%s%s","01111",literal_array);
 }
 else
 {

 decimalToBinary(literal_length,literal_array,4);

 fprintf(fo,"%s%s%s","1111",literal_array,literal_buffer);
 //run 1 or 2 for length = 24 bits
 }
 }
 else if(!strncmp(temp,BBC16_0,16)){
 fseek(fp,-16,SEEK_CUR);
 literal_length =
get_literal_count(fp,&literal_buffer);
 if(literal_length<=0)
 {
 literal_length=-literal_length;

 ��
�

 decimalToBinary(literal_length,literal_array,3);

 fprintf(fo,"%s%s","01010",literal_array);

 }
 else
 {

 decimalToBinary(literal_length,literal_array,4);

 fprintf(fo,"%s%s%s","1010",literal_array,literal_buffer);
 //run 1 or 2 for length = 16 bits
 }
 }
 else if(!strncmp(temp,BBC16_1,16)){
 fseek(fp,-16,SEEK_CUR);
 literal_length =
get_literal_count(fp,&literal_buffer);
 if(literal_length<=0)
 {
 literal_length=-literal_length;

 decimalToBinary(literal_length,literal_array,3);

 fprintf(fo,"%s%s","01110",literal_array);

 }
 else
 {

 decimalToBinary(literal_length,literal_array,4);

 fprintf(fo,"%s%s%s","1110",literal_array,literal_buffer);
 }
 //run 1 or 2 for length = 16 bits
 }
 else if(!strncmp(temp,BBC8_0,8)){
 fseek(fp,-24,SEEK_CUR);
 literal_length =
get_literal_count(fp,&literal_buffer);
 if(literal_length<=0)
 {
 literal_length=-literal_length;

 decimalToBinary(literal_length,literal_array,3);

 fprintf(fo,"%s%s","01001",literal_array);

 }
 else
 {

 decimalToBinary(literal_length,literal_array,4);

 fprintf(fo,"%s%s%s","1001",literal_array,literal_buffer);
 }

 ����

 //run 1 or 2 for length = 8 bits
 }
 else if(!strncmp(temp,BBC8_1,8)){
 fseek(fp,-24,SEEK_CUR);
 literal_length =
get_literal_count(fp,&literal_buffer);
 if(literal_length<=0)
 {
 literal_length=-literal_length;

 decimalToBinary(literal_length,literal_array,3);

 fprintf(fo,"%s%s","01101",literal_array);

 }
 else
 {

 decimalToBinary(literal_length,literal_array,4);

 fprintf(fo,"%s%s%s","1101",literal_array,literal_buffer);
 }
 //run 1 or 2 for length = 8 bits
 }
 else{
 fseek(fp,-32,SEEK_CUR);
 literal_length =
get_literal_count(fp,&literal_buffer);
 if(literal_length<=0)
 {
 literal_length=-literal_length;

 decimalToBinary(literal_length,literal_array,3);

 fprintf(fo,"%s%s","01000",literal_array);

 }
 else
 {

 decimalToBinary(literal_length,literal_array,4);

 fprintf(fo,"%s%s%s","1000",literal_array,literal_buffer);
 }
 //fseek(fp,-24,SEEK_CUR);
 //literal
 }
 }
 }
 }
 clock_t finish = clock();
 printf("Time taken = %2.7lf seconds\n",(double)(finish -
start)/CLOCKS_PER_SEC);
 int size = ftell(fo);
 long usize = ftell(fp);
 printf("Uncompressed File Size = %d bytes\n", usize/8);
 printf("Compressed Size = %d bytes\n",size/8);

 ����

 printf("Percentage Compressed %2.2lf%% \n\n",100*(double)(usize-
size)/usize);

}

int main()
{

 printf("\nDoing WAH Compression\n\n");
 compress_wah("input_data.txt","wah.txt");
 printf("\nDoing BBC Compression\n\n");
 compress_bbc("input_data.txt","bbc.txt");
 return 0;
}

A.2 Code for Gray Code Ordering Algorithm

#include<stdio.h>
#include<stdlib.h>

int rows,cols;

void findcols(FILE *fp)
{
 cols=0;
 char c;
 while(1)
 {
 fscanf(fp,"%c",&c);
 if(c==' ')
 continue;

 else if(c=='\n')
 goto final;

 else
 cols++;
 }

final:
rewind(fp);
}

void findrows(FILE *fp)
{
 rows=0;
 char c;
 while(1)
 {
 if(feof(fp))
 goto final;

 fscanf(fp,"%c",&c);

 if(c=='\n')
 rows++;

 �	�

 }

final:
rows++;
rewind(fp);
}

void reversing(int i,int j)
{
 if(i>=j)
 return;

 FILE *f1;
 FILE *f2;

 int temp1;
 int temp2;

 int k;
 char c,ctemp;

 f1=fopen("o1.txt","r+");
 f2=fopen("o1.txt","r+");

 temp1=(2*cols+1)+((2*cols+2)*(i-2))+2;
 temp2=(2*cols+1)+((2*cols+2)*(j-2))+2;

 fseek(f1,temp1,1);
 fseek(f2,temp2,1);

 while(1)
 {
 if(i==j)
 break;

 for(k=1;k<=cols;k++)
 {
 fscanf(f2,"%c",&c);
 ctemp=c;
 fseek(f2,-1,1);
 fscanf(f1,"%c",&c);
 fprintf(f2,"%c",c);
 fseek(f1,-1,1);
 fprintf(f1,"%c",ctemp);

 if(k==cols)
 break;

 fseek(f1,1,1);
 fseek(f2,1,1);
 }

 fseek(f1,-(2*cols-1),1);
 fseek(f2,-(2*cols-1),1);

 �	��

 i++;
 j--;

 if(i>j)
 break;

 fseek(f1,(2*cols+2),1);
 fseek(f2,-(2*cols+2),1);

 }

 fclose(f1);
 fclose(f2);
}

void gcsort(int start,int end,int b)
{
 if(start>=end)
 return;

 FILE *f1;
 FILE *f2;

 int i;
 int j;

 char n1,n2,c,ctemp;

 int k;
 int temp1;
 int temp2;

 i=start;
 j=end;

 f1=fopen("o1.txt","r+");
 f2=fopen("o1.txt","r+");

 temp1=(2*cols+1)+((2*cols+2)*(i-2))+(2*b);
 temp2=(2*cols+1)+((2*cols+2)*(j-2))+(2*b);

 fseek(f1,temp1,1);
 fseek(f2,temp2,1);

 while(i<j) //positioning f1,f2 to swap loc
 {

 while(1)
 {
 if(j==start)
 {
 fscanf(f2,"%c",&n2);
 break;
 }

 �	��

 fscanf(f2,"%c",&n2);

 if(n2=='0')
 break;

 j--;
 fseek(f2,-(2*cols+3),1);

 }

 while(1)
 {
 if(i==end)
 {
 fscanf(f1,"%c",&n1);
 break;
 }

 fscanf(f1,"%c",&n1);

 if(n1=='1')
 break;

 i++;
 fseek(f1,(2*cols+1),1);

 }

 fseek(f1,-1,1);
 fseek(f2,-1,1);

 if(i<j)
 {
 fseek(f1,-(2*b-2),1);
 fseek(f2,-(2*b-2),1);

 for(k=1;k<=cols;k++)
 {
 fscanf(f2,"%c",&c);
 ctemp=c;
 fseek(f2,-1,1);
 fscanf(f1,"%c",&c);
 fprintf(f2,"%c",c);
 fseek(f1,-1,1);
 fprintf(f1,"%c",ctemp);

 if(k==cols)
 break;

 fseek(f1,1,1);
 fseek(f2,1,1);
 }
 fseek(f1,-(2*(cols-b)+1),1);
 fseek(f2,-(2*(cols-b)+1),1);
 }

 �	��

 }

 if(b<cols)
 {
 gcsort(start,j,b+1);
 gcsort(j+1,end,b+1);
 reversing(j+1,end);
 }

 fclose(f1);
 fclose(f2);
}

void main()
{

 FILE *f1;

 f1=fopen("o1.txt","r+");

 findrows(f1);
 findcols(f1);

 fclose(f1);

 gcsort(1,rows,1);
}

A.3 Code for Multi-Component Encoding

#include<stdio.h>
#include<stdlib.h>
#include<conio.h>

void main()
{
 clrscr();
 int cols,rows,i,j,k,base1,base2,rem,quo,num,r;
 FILE *fr,*fw;
 char c,ch1,ch2,ch3;

 fr=fopen("SING.CPP","r");
 fw=fopen("king.cpp","w");

 cols=0;
 while(1)
 {
 fscanf(fr,"%c",&c);
 if(c=='0' || c=='1')
 {

 �	��

 cols++;
 }
 if(c=='\n')
 break;
 }

 printf("%2d",cols);

 /*We reduce the size of each rows of bitmap from 12 bits in each
 row to 7 bits using multicomponent equality encoded index */

 rewind(fr);

 rows=0;
 while(1)
 {
 c=fgetc(fr);

 if(c==EOF)
 break;

 if(c=='\n')
 rows++;
 }
 rows=rows+1;
 printf("%2d",rows);

 rewind(fr);

 base1=4; //NOTE base1 is larger of 2 bases
 base2=3;

 for(i=1;i<=rows;i++)
 {
 for(j=cols-1;j>=0 ;j--)
 {
 fscanf(fr,"%c",&c);
 fscanf(fr,"%c",&c);
 if(c=='1')
 {
 num=j;
 }
 }
 quo=num/base1;
 rem=num%base1;

 ch1='0';
 ch2='1';
 ch3=' ';
 for(k=base2-1;k>=0;k--)
 {
 fprintf(fw,"%c",ch3);
 if(k==quo)
 {
 fprintf(fw,"%c",ch2);

 �	��

 }
 else
 {
 fprintf(fw,"%c",ch1);
 }
 }

 for(r=base1-1;r>=0;r--)
 {
 fprintf(fw,"%c",ch3);
 if(r==rem)
 {
 fprintf(fw,"%c",ch2);
 }
 else
 {
 fprintf(fw,"%c",ch1);
 }
 }
 fscanf(fr,"%c",&c);
 fprintf(fw,"%c",'\n');
 }

}

A.4 Code for Synthesizing Student Records

#include<stdio.h>
#include<stdlib.h>

main(int argc,char *argv[])

{char *year[]={"2000","2001","2002","2003","2004","2005"};
char *A[]={"A1","A2","A3","A4","A5","A6","A7","A8"};
char *B[]={"B1","B2","B3","B4","B5"};
char *C[]={"C2","C5","C6","C7"};
char *dual1[8][5];
char *dual2[8][8];
char *dual3[4][4];
char *sing1[8];
char *sing2[5];
char *all[130];
char *last[999];
int a,i,c,d,count,j,l,ran,k,ran2,ran3,ran4;
char name[16]="",idno[12]="";
char
*host[]={"RM","BD","KR","GN","SK","VY","BG","VK","AK","RP","ML","MB"};
FILE *f1,*f2,*f3,*f4,*f5,*f6;
char *dig[]={"0","1","2","3","4","5","6","7","8","9"};
f1=fopen(argv[1],"w");
f2=fopen(argv[2],"w");
f3=fopen(argv[3],"w");
f4=fopen(argv[4],"w");
f5=fopen(argv[5],"w");
f6=fopen(argv[6],"w");

 �		�

/*generating the disciplines*/

for(i=0;i<=7;i++)
for(j=0;j<=4;j++)
{
dual1[i][j]=(char *)malloc(4);
strcat(dual1[i][j],B[j]);
strcat(dual1[i][j],A[i]);
}

for(i=0;i<=7;i++)
for(j=0;j<=7;j++)
{if(i!=j)
{
dual2[i][j]=(char *)malloc(4);
strcat(strcat(dual2[i][j],A[i]),A[j]);

}
}

for(i=0;i<=3;i++)
for(j=0;j<=3;j++)
{if (i!=j)
{
dual3[i][j]=(char *)malloc(4);
strcat(strcat(dual3[i][j],C[i]),C[j]);
}
}

for(i=0;i<=7;i++)
{
sing1[i]=(char *)malloc(4);
strcat(strcat(sing1[i],A[i]),"PS");
}

for (j=0;j<=4;j++)
{
sing2[j]=(char *)malloc(4);
strcat(strcat(sing2[j],B[j]),"TS");
}

k=0;

/* moving all the disciplines into one array pointer*/

for(i=0;i<=7;i++)
for(j=0;j<=4;j++)
{
all[k]=(char *)malloc(sizeof(dual1[i][j]));
strcat(all[k], dual1[i][j]);
free(dual1[i][j]);
k=k+1;
}

for(i=0;i<=7;i++)
for(j=0;j<=7;j++)

 �	
�

{if (i!=j)
{
all[k]=(char *)malloc(sizeof(dual2[i][j]));
strcat(all[k],dual2[i][j]);
free(dual2[i][j]);
k=k+1;
}
}

for(i=0;i<=3;i++)
for(j=0;j<=3;j++)
{if(i!=j)
{
all[k]=(char *)malloc(sizeof(dual3[i][j]));
strcat(all[k],dual3[i][j]);
free(dual3[i][j]);
k=k+1;
}
}

for(i=0;i<=7;i++)
{
all[k]=(char *)malloc(sizeof(sing1[i]));
strcat(all[k],sing1[i]);
free(sing1[i]);
k=k+1;
}
for (j=0;j<=4;j++)
{
all[k]=(char *)malloc(sizeof(sing2[j]));
strcat(all[k],sing2[j]);
free(sing2[j]);
k=k+1;
}

printf("discipline gen finished\n");
l=0;
/*generating the id last three*/
for(i=0;i<=9;i++)
for(j=0;j<=9;j++)
for(k=0;k<=9;k++)
{if(i!=0||j!=0||k!=0)
{
last[l]=(char *)malloc(3);
strcpy(last[l],dig[i]);
strcat(strcat(last[l],dig[j]),dig[k]);
l=l+1;
}
}

/*
for(i=0;i<=998;i++)
printf("%s\n",last[i]);
*/

 �	��

//==
/*generating file 1 */

count=0;
c=0;
d=15;
for(i=0;i<2000000;i++)
 {
if (count<d)
 { a=97+(int)(26.0*rand()/(RAND_MAX+1.0));
name[count]=(char)a;
 count=count+1;
 }
else
{if(c>99)
break;
name[count]='\0';
ran=0+(int)(12.0*rand()/(RAND_MAX+1.0));
ran2=0+(int)(6.0*rand()/(RAND_MAX+1.0));
ran3=0+(int)(998.0*rand()/(RAND_MAX+1.0));
ran4=0+(int)(121.0*rand()/(RAND_MAX+1.0));
strcpy(idno,year[ran2]);
strcat(idno,all[ran4]);
strcat(idno,last[ran3]);
strcat(idno,"\0");
fprintf(f1,"%s %s %s\n",idno,name,host[ran]);
count=0;
d=(int)(1+(int)(15.0*rand()/(RAND_MAX+1.0)));
c=c+1;
}
}
fclose(f1);
printf("finished generating 1st file\n");
}

A.5 Code for Binning Algorithms

//query.h

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

extern int b_num,b_width,rec_no,max,min;
int **bin_ranges;
int numberofbins;
int rec_read;
int temp;
int b_num,b_width,rec_no,max,min;
FILE *OutFile;

struct ind
{
 int seek;
 int recNO;
 };

 �	��

typedef struct ind inde;

void *binning(char *[]);
unsigned int power(int,int);
void queries(char *[],unsigned int *(*)[]);
void categorize(unsigned int *(*)[],int,FILE *);
void create_indexFile(char *[]);
void print_record(int,int,int,char *[],int,int,int);
int id_num(char *);
int compar(const void *,const void *);
int bitcount(unsigned int x);
void Print_Binary(int);
void Print_Bin_Byte(int);

//main.c

#include "query.h"

main(int argc,char *args[])
{
int id,rm,temp;
int i=0;
unsigned int* (*bin)[];
void *tmp;

bin=binning(args);
tmp=bin;
queries(args,bin);
}

//Index of data file

#include<stdio.h>
#include <string.h>
#include <stdlib.h>

struct ind
{
 int seek;
 int recNO;
 };
typedef struct ind inde;

main(int argc, char *argv[])
{
 inde i_w, i_r;
 char ch,id[40],name[40],bhawan[2];
 int rec_read = 2,record=0,n=0;
 FILE *recFile = fopen(argv[1],"r");
 FILE *indexFile = fopen("index","w");

 i_w.seek = ftell(recFile);
 i_w.recNO = 1;
 fwrite(&i_w,sizeof(i_w),1,indexFile);
 while((ch=getc(recFile))!=EOF)
 {
 if(ch=='\n')

 �
�

 {
 i_w.seek = ftell(recFile) + 1;
 i_w.recNO = rec_read;
 rec_read++;
 fwrite(&i_w,sizeof(i_w),1,indexFile);
 }
 }
 fclose(indexFile);

///RETRIEVAL OFRECORDS
 printf("TOTAL RECORDS = %d", rec_read-2);
rread:
 printf("\nEnter the Record to be retrieved :");
 scanf("%d",&record);
 if(rec_read-2 < record || record <= 0)
 {
 printf("RECORD DOESN'T EXIST\n");
 printf("\npress 1 to try again or 0 to exit:");
 scanf("%d",&n);
 if(n == 0) exit(1);
 else goto rread;
 }
 fopen("index","r");
 do
 {
 fread(&i_r,sizeof(i_r),1,indexFile);
 }while(i_r.recNO!=record);

 fseek(recFile,i_r.seek-1,0);
 if(record == 1) rewind(recFile);
 fscanf(recFile,"%s %s %s",id,name,bhawan);
 printf("%s %s %s\n",id,name,bhawan);
 printf("\npress 1 to try again or 0 to exit:");
 scanf("%d",&n);
 if(n == 1) {fclose(indexFile);goto rread;}
 else exit(1);
 fclose(recFile);
 fclose(indexFile);
 }

 �
��

Biography of the Supervisor

Dr. Navneet Goyal is an Associate Professor in the Department of Computer Science and

Information Systems at BITS, Pilani. He is also Assistant Chief of Computer Assisted

House Keeping Unit at BITS, Pilani.

Dr. Goyal obtained his doctorate from Indian Institute of Technology, Roorkee in 1995.

After completing his Ph.D, he joined BITS-Pilani in 1995, where he has been involved in

teaching, research and administration. He has published more than 15 research papers in

national and international journals in Applied Mathematics, Databases, Data

Warehousing, and Data Mining. He presently teaches courses on database systems, data

warehousing, and data mining to undergraduate and graduate students at BITS. He also

holds a PG Diploma in Health Systems Management from Tulane University, USA.

Biography of the Candidate

Yashvardhan Sharma has completed his first degree from BITS-Pilani, India with first

division in the year 1999 and M.E. (Software Systems) from BITS-Pilani with first class

in the year 2001. He has a teaching experience of over 8 years to undergraduate and

graduate students at BITS-Pilani. Currently he is working as Lecturer in Computer

Science and Information Systems group at BITS-Pilani. His areas of interest include Data

Warehousing Performance Enhancing Techniques, Data Mining, Object Oriented

Software Engineering and Application Programming.

	COVER PAGE.pdf
	CERTIFICATE.pdf
	Complete-17-6-08.pdf

