
Towards a Model-Driven Approach to Support

SOA-Based Web-Business Platforms

THESIS

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

By

HARSHAVARDHAN JEGADEESAN

Under the Supervision of
Ramana Polavarapu, Ph.D

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN) INDIA

2009

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN) INDIA

CERTIFICATE

This is to certify that the thesis entitled “Towards a Model-Driven

Approach to Support SOA-Based Web-Business Platforms” and

submitted by Mr. Harshavardhan Jegadeesan ID. No. 2004PHXF431 for

the award of Ph.D degree of the institute embodies original work done by

him under my supervision.

Signature of Supervision

(Ramana Polavarapu, Ph.D)

Date: January 18, 2009

Place: Bangalore, India

To my parents, with love and admiration!

i

Acknowledgements

I am immensely thankful to Prof. L. K. Maheshwari, Vice-Chancellor of BITS Pilani for

providing me this opportunity to pursue the PhD program. I express my gratitude to Prof.

Ravi Prakash, Dean, Research and Consultancy Division (RCD), BITS Pilani for his

constant official support and encouragement. I thank Dr. Hemanth Jadav, Mr. Dinesh

Kumar, Ms. Monica Sharma, Mr. Sharad Shrivastava, Mr. Gunjan Soni, Mr. Amit Kumar

and Ms. Sunita Bansal, nucleus members of RCD, BITS Pilani for their cooperation and

guidance. I also express my gratitude to the office staff of RCD whose secretarial

assistance helped me in submitting the various evaluation documents in time and give

pre-submission seminar smoothly. I thank my Doctoral Advisory Committee (DAC)

members, Prof. Rahul Banerjee and Prof. Navneet Goyal, who spared their valuable time

to go through my draft thesis and were audience to my pre-submission seminar in order

to provide valuable suggestions.

This research and thesis would not have been possible, but for the support,

encouragement and sometimes prodding of a lot of people. At first, I would like to thank

all the souls who have influenced my thoughts and deeds, and from whom I have learnt

all my life. My sincere thanks to my supervisor Dr. Ramana Polavarapu who allowed me

to think and work independently, providing me the necessary guidance to bring focus and

rigor to my research. Interacting with him has always been informative, motivating and

highly productive.

I would like to thank Prof. Sundar Balasubramanian, who actually inspired me to pursue

this research work. Working with him, I have imbibed abstract thinking and problem

solving skills which have proved really helpful in my career. He is the best mentor one

could possibly have. I would also like to express heart-felt gratitude to Prof. Rahul

Banerjee, my guru, who instilled confidence in me, stood by me, trusted my capabilities

and allowed me to grow as an individual. I would also like to sincerely thank Prof.

ii

Pramod Chandra P. Bhatt for providing me guidance on my research and constantly

reviewing my work and providing valuable feedback.

My sincere thanks are to my employer, SAP. SAP provided me with a thought-provoking

research environment, real-world research problems and a bunch of really talented

individuals to work with. I would like to specially thank Ramakrishna Yarlapati, Senior

Vice-President - Business Suite, for supporting my research. Special thanks to David S.

Frankel, SAP’s Chief Standards Architect, for reviewing my metamodels and providing me

deep insights in practical model-driven development. I would also like to thank Dr.

Alistair Barros of SAP Research for his reviews and support. I would like to thank Yuvaraj

Raghuvir, Chief Development Architect and a BITS alumnus for his pep talks which

actually helped me complete my thesis. I would like to make a special mention of Blank

Ink, our intrapreneurial venture (20% project) within SAP Labs and my co-founding

engineers - Chandra, Tarun and Surabhi – it has been real pleasure working with them.

All the real-world e-commerce scenarios in this thesis are straight out of Blank Ink’s end-

to-end internet selling platform. My special thanks are due to Nir Paikowsky, Senior

Director of SME product strategy for shaping my understanding on online business

platforms. My experience with Blank Ink, apart from lot of other things, gave me a good

understanding of web-business platforms.

Beyond doubt this research would not have been possible without the strong support and

encouragement of my parents. Thank you Mom and Dad, you are the best! My brother

Ajay Jegadeesan has always been a pillar of strength. Last, but definitely not the least I

appreciate the support of my wife Gayatri, without her tremendous support, inspiration

and warmth it would not have been possible to manage both work as well as research.

Gayatri, thanks, I love you dearly!

iii

Abstract

The advent of the Internet has fostered commerce on the web, creating successful web

businesses. More recently, web businesses which typically started out as websites are

morphing into web-business platforms. They are building product platforms on which

end-users can personalize their experiences and customize it for their needs. For example,

eBay® provides an auctioning and internet selling platform which could be used by

different consumers in different ways – an average Joe can auction used items out of his

garage, an entrepreneur from India can sell Indian handicraft, gems and jewelry to

customers in Europe and America, and a manufacturing company can auction its excess

inventory in the online marketplace – all this with their own tailor-made, co-created user

experiences. A platform strategy is getting increasingly critical for web-business owners to

engage the community – an eco-system of developers, entrepreneurs and customers to

co-innovate and create value around their web-business platforms.

How do platform-owners operationalize their platform strategy? The solution lies in

“opening-up” their web-business platforms, thereby exposing their business capabilities

to consumers in a way they can readily use them. This is quite similar to Windows®

Application Programming Interfaces (APIs) which provide well-defined interfaces to

developers to build applications on top of the Windows® operating systems. These APIs

abstract the “internal workings” of platform functions, providing clean and easy to use

interfaces to invoke these functions. In order to address a larger community, APIs for

web-business platforms or web APIs as we call them have to be based-on interoperable

open-standards. Predominantly, the web APIs are built using open-standards compliant

webservices. By using these webservices, the community can build mash-ups by

leveraging content from multiple information sources; entrepreneurs can exploit

synergies between content and services from different providers to build end-to-end

applications for customers.

iv

Though the concept of “opening-up” web-business platforms through webservices seems

pretty intuitive, there are certain critical technical issues which have to be addressed by

the platform-owners, in order to operationalize it. For instance, webservice technologies

and standards are in a state of constant flux. There are heterogeneities in design

approaches, underlying invocation protocols and client-side consumption environments.

Our research is motivated by these issues; the focus of our research and subsequently this

thesis is to address these issues and facilitate “opening-up” of web-business platforms.

Our solution is based on a model-driven design and development approach in order to

define service artifacts. This allows us to capture the solution space using high-level

conceptual models, thus, delaying technology decisions to later stages of services

development. We provide model views, metamodels and tools-compliant models to

support services development in the context of web-business platforms. We also validate

our research by applying it to non-trivial and real-world web-business platform scenarios.

v

Table of Contents

LIST OF FIGURES .. VIII

LIST OF TABLES ... XI

LIST OF CONVENTIONS ... XII

CHAPTER 1 INTRODUCTION ... 1

1.1 PROBLEM AREA .. 1

1.2 SUCCINCT RESEARCH QUESTIONS ... 3

1.3 CRITERIA FOR SOLUTION .. 3

1.4 OUR PROPOSED APPROACH ... 4

1.5 SCOPE .. 5

1.5.1 Model Views ... 5

1.5.2 Metamodels ... 6

1.5.3 Service Flavors Strategy .. 6

1.6 OUTLINE OF THE THESIS .. 6

1.7 CONTRIBUTION TO RESEARCH .. 7

1.7.1 Vita – Publications resulting from this thesis ... 7

1.8 SUMMARY ... 8

CHAPTER 2 BACKGROUND ... 9

2.1 EMERGENCE OF THE WEB-BUSINESS PLATFORMS .. 9

2.1.1 “Opening-up” the Web-Business Platform... 10

2.1.2 Web Application Programming Interfaces .. 10

2.2 SERVICE-ORIENTED ARCHITECTURES AND WEBSERVICES .. 11

2.2.1 Service Granularity ... 12

2.2.2 Heterogeneity in the webservice ecosystem ..13

2.2.3 Reference Architectures for SOA ... 14

2.3 MDA - RAISING THE LEVEL OF ABSTRACTION ... 15

2.3.1 Model Transformations.. 18

2.4 SUMMARY .. 19

vi

CHAPTER 3 MODELING WEB RESOURCES AND FINE-GRAINED SERVICES 21

3.1 HETEROGENEITY DUE TO CONFLICT OF STYLES ... 21

3.2 THE DOMAIN-DRIVEN DESIGN APPROACH ... 26

3.2.1 Modeling the Domain using Domain-Driven Design Approach 26

3.2.2 Resources Model ... 30

3.2.3 Uniform Access to Resources ... 33

3.3 MODEL TO EXECUTABLE SPECIFICATIONS .. 34

3.4 MODELING AN ONLINE SHOPPING SCENARIO .. 35

3.5 SUMMARY .. 41

CHAPTER 4 MODELING COARSE-GRAINED SERVICES .. 43

4.1 SERVICES METAMODEL – HIGH-LEVEL REQUIREMENTS .. 44

4.2 SERVICES MODEL VIEWS ... 45

4.3 FORMAL SEMANTICS OF THE SERVICES METAMODEL ... 48

4.3.1 Service Definition View ... 49

4.3.2 Service Capability View .. 50

4.3.3 Service Realization View .. 54

4.3.4 Service Mediation View .. 56

4.3.5 Service Deployment View ... 59

4.4 MODELING THE INTERNET AUCTIONS SCENARIO .. 60

4.5 MODELS TO EXECUTABLE SPECIFICATIONS ... 64

4.6 RELATED WORK ...67

4.7 SUMMARY ... 69

CHAPTER 5 MODELING SERVICE POLICIES ... 70

5.1 GENERIC POLICY FRAMEWORK .. 71

5.2 SERVICE POLICY VIEW .. 72

5.3 VOCABULARY SPECIFICATION – DEFINING POLICY DOMAINS AND THEIR VOCABULARY 75

5.3.1 Policy Domain Aspect Catalog ..76

5.4 MODELING THE SHIPPINGSERVICE SCENARIO ... 84

5.5 MODELS TO EXECUTABLE SPECIFICATIONS ... 89

5.5.1 Transforming the Pricing Policy Model ... 91

5.6 POLICY ENFORCEMENT AT THE SOA MIDDLEWARE .. 94

5.7 RELATED WORK .. 96

5.8 SUMMARY ... 97

CHAPTER 6 SERVICE FLAVORS STRATEGY ... 98

6.1 NEED FOR SERVICE DIFFERENTIATION .. 98

vii

6.2 FLAVORING ASPECTS: DIFFERENTIATING ASPECTS OF A SERVICE 100

6.2.1 Note on Vocabulary Items for Flavoring Aspects .. 103

6.3 DIFFERENTIATING SERVICES WITH SERVICE FLAVORS ... 104

6.3.1 Service Flavors – Customer Context-aware Policies .. 106

6.4 RELATED WORK ... 108

6.5 SUMMARY .. 109

CHAPTER 7 SERVICE CONSUMER APIS ... 111

7.1 NEED FOR SERVICE CONSUMER APIS ... 112

7.1.1 Advantages of Service Consumption APIs .. 113

7.1.2 Challenges in Creating Service Consumption APIs .. 114

7.2 OUR MODEL-DRIVEN DEVELOPMENT APPROACH .. 115

7.2.1 Examples.. 119

7.3 RELATED WORK .. 121

7.4 SUMMARY ... 121

CHAPTER 8 EPILOGUE ... 123

8.1 ADDRESSING PROBLEM AREAS ... 123

8.2 CRITERIA FOR THE SOLUTION ... 124

8.3 CONFORMANCE ...127

8.3.1 OASIS SOA Reference Model .. 127

8.3.2 WS-Arch (Web Services Architecture) .. 129

8.4 EXPERIENCES .. 130

8.4.1 Experiences in using the Models .. 130

8.4.2 Experiences with Existing Tools .. 131

8.5 PRAGMATICS & FUTURE WORK .. 133

8.6 CONCLUSIONS ... 135

REFERENCES ... 136

APPENDIX I ... 149

APPENDIX II ... 154

LIST OF PUBLICATIONS ... 162

BRIEF BIOGRAPHY OF CANDIDATE AND SUPERVISOR 163

viii

List of Figures

FIG 2.1: SIMPLIFIED 4-LAYER SOA REFERENCE ARCHITECTURE .. 15

FIG 2.2: THE MDA LAYERS AND TRANSFORMATIONS .. 17

FIG 2.3: UML 4-LAYER HIERARCHY TO SUPPORT FAMILY OF LANGUAGES 17

FIG 3.1: REST-BASED STANDARDIZED HTTP INTERFACES TO A RESOURCE 23

FIG 3.2 (A): SOAP-BASED INTERFACE TO SHOPPING.COM® LISTINGS .. 23

FIG 3.2 (B): REST-BASED INTERFACE TO SHOPPING.COM® LISTINGS ...24

FIG 3.3: THE DDD METAMODEL (A M2-LAYER METAMODEL) .. 27

FIG 3.4: THE DDD METAMODEL – DOMAIN MODEL VIEW ...28

FIG 3.5: THE DOMAIN MODEL VIEW (UML2 PROFILE) ... 30

FIG 3.6 (A): MODEL-TO-MODEL TRANSFORMATION (DOMAIN MODEL TO RESOURCES MODEL) . 31

FIG 3.6 (B): MODEL-TO-MODEL TRANSFORMATION – UMLX VISUAL SYNTAX 31

FIG 3.7: RESOURCES METAMODEL... 32

FIG 3.8: RESOURCES MODEL VIEW ... 32

FIG 3.9: MANAGELISTINGSERVICE – SOAP-BASED SERVICE ... 33

FIG 3.10: TRANSFORMATION TO EXECUTABLE SPECIFICATIONS ... 34

FIG 3.11: ONLINE SHOPPING DOMAIN MODEL (PARTIAL) ... 35

FIG 3.13: ONLINE SHOPPING RESOURCE MODEL .. 39

FIG 3.14: MANAGEPURCHASEORDERSERVICE – SOAP-STYLE INTERFACE 40

FIG 3.15: WADL DESCRIPTION – PURCHASE ORDER .. 41

FIG 4.1: MOF2-BASED SERVICES METAMODEL .. 43

FIG 4.2: SERVICE DEFINITION VIEW .. 50

FIG 4.3: SERVICE DEFINITION MODELING VIEW .. 50

FIG 4.4: SERVICE CAPABILITY VIEW .. 52

FIG 4.5: SERVICE CAPABILITY MODELING VIEW ... 53

FIG 4.6: SERVICE REALIZATION VIEW .. 54

FIG 4.7: SERVICE REALIZATION MODELING VIEW .. 55

FIG 4.8: SERVICE MEDIATION VIEW .. 58

FIG 4.9: SERVICE MEDIATION MODELING VIEW .. 58

FIG 4.10: SERVICE DEPLOYMENT VIEW ... 60

FIG 4.11: SERVICE DEPLOYMENT MODELING VIEW .. 60

ix

FIG 4.12: EBAY INTERNET AUCTIONS SCENARIO - SERVICE DEFINITION 62

FIG 4.13: AUCTIONITEM SERVICE - SERVICE CAPABILITY ... 63

FIG 4.14: AUCTIONITEM SERVICE - SERVICE REALIZATION .. 63

FIG 4.15: AUCTIONITEM SERVICE - SERVICE DEPLOYMENT .. 64

FIG 4.16: AUCTIONSERVICE WSDL 2.0 DESCRIPTION ... 66

FIG 4.17: AUCTION MANAGER JAVA IMPLEMENTATION – SERVICE PROVISIONING67

FIG 5.1: THE GENERIC POLICY MODEL... 72

FIG 5.2: SERVICE POLICY VIEW – THE POLICY METAMODEL .. 73

FIG 5.3: SERVICE POLICY MODELING VIEW (UML PROFILE) .. 74

FIG 5.4: A XML-SCHEMA (PICTORIAL REPRESENTATION) FOR DOCUMENTING ASPECTS 77

FIG 5.5: TECHNICAL ASPECTS ..78

FIG 5.6: SERVICE-LEVEL ASPECTS ... 80

TABLE 5.3: SERVICE-LEVEL ASPECT – SERVICE PRICING ..82

FIG 5.7: DOMAIN-LEVEL ASPECTS ...82

FIG 5.8: FEDEX® OWNERSHIP DOMAIN AND THE SERVICES .. 85

FIG 5.9: SHIPPINGSERVICE – SERVICE CAPABILITY VIEW .. 85

FIG 5.10: WSDL 2.0 SNIPPET FOR ABSTRACT DEFINITION OF THE SHIPPINGSERVICE 86

FIG 5.11: VOCABULARY DEFINITION – PRICING ...87

FIG 5.12: SERVICE PRICING POLICY MODEL... 88

FIG 5.13: SERVICE PRICING POLICY MODEL ... 88

FIG 5.14: MTL TRANSFORMATION (SERVICE POLICY METAMODEL TO SPECIFICATIONS) 91

FIG 5.15: PRICING VOCABULARY XML SCHEMA .. 92

FIG 5.16: PRICING POLICY DEFINITION IN WS-POLICY AND WS-POLICYCONSTRAINTS 93

FIG 5.17: EXTERNAL POLICY ATTACHMENT USING WS-POLICYATTACHMENT 93

FIG 5.18: UNINTRUSIVE POLICY ENFORCEMENT USING PEP INTERMEDIARY 94

FIG 5.19: INSIDE THE PEP INTERMEDIARY..95

FIG 5.20: SAMPLE SOAP REQUEST FOR THE SHIPITEM
(OP)

 OPERATION ..95

FIG 6.1: SERVICE FLAVORS – TARGETED OFFERINGS .. 101

FIG 6.2: VOCABULARY DEFINITION – PROMOTIONS ... 103

FIG: 6.3 PROMOTIONS VOCABULARY – XML SCHEMA ... 104

FIG 6.4: SUBSCRIPTION PRICING POLICY ... 105

FIG 6.5: WS-POLICYCONSTRAINTS ON CREDITPERIOD VOCABULARY ITEM 105

FIG 6.5: SUBSCRIPTION SERVICE FLAVOR ... 106

FIG 6.6: USFSB SERVICE FLAVOR ... 107

FIG 6.7: CONSUMER PROFILING HANDLER .. 107

FIG 6.8: SOAP REQUEST WITH CONSUMER PROFILE INFORMATION .. 108

FIG 7.1: PROCESS OF ENGAGING A SERVICE ... 112

x

FIG 7.2: SERVICE CONSUMPTION APIS IN CONSUMPTION LAYER ... 115

FIG 7.3: MODEL-DRIVEN APPROACH TO BUILD SERVICE CONSUMPTION APIS 116

FIG 7.4: MODEL-TO-MODEL TRANSFORMATIONS TO THE UML2 SERVICE CONSUMPTION API

MODEL ... 118

FIG 7.5: LIGHT-WEIGHT UML2 PROFILE FOR SERVICE CONSUMPTION API 119

FIG 7.6: PARTIAL SERVICE CONSUMPTION API MODEL – FINE-GRAINED SERVICE ACCESS 120

FIG 7.7: SERVICE CONSUMPTION API MODEL – COARSE-GRAINED SERVICE 120

FIG 8.1 TRANSFORMING MODEL TO .ECORE FORMAT .. 131

FIG 8.2 DOMAIN-DRIVEN DESIGN .ECORE FORMAT .. 133

xi

List of Tables

TABLE 4.1: SUMMARY OF SERVICES MODEL VIEWS .. 48

TABLE 4.2: LIST OF ARTIFACTS GENERATED FROM MODELS ...65

TABLE 5.1: STANDARD SCHEMA FOR DOCUMENTING AND CATALOGING ASPECTS 77

TABLE 5.2: TECHNICAL ASPECT – SECURE CONVERSATION .. 80

TABLE 5.4: DOMAIN-LEVEL ASPECT – COMPLIANCE TO BIOTERRORISM ACT 2002 (PRIOR NOTICE)

 ... 84

TABLE 5.5: STANDARDS RELEVANT TO GENERIC POLICY MODEL LAYERS 89

TABLE 6.1: SERVICE PROMOTION – A FLAVORING SERVICE-LEVEL ASPECT 102

TABLE 8.1 RELATED CONCEPTS IN THE WEBSERVICES ARCHITECTURE .. 130

xii

List of Conventions

1. Service names are written in small caps.

2. Service Interface names are suffixed with an (SI) superscript.

3. Service Operation names are suffixed with an (OP) superscript.

4. Service Exception names are suffixed with an (EX) superscript.

5. Message names are suffixed with an (M) superscript.

6. Service Interaction Point names are suffixed with an (IP) superscript.

Chapter 1: Introduction

1

Chapter 1

Introduction

The most recent trend among internet players such as eBay®, Amazon®, Force.com,

Google® and many others is the “opening-up” of their software platforms [1]. These

businesses are ceasing to be mere websites and are evolving into web-business platforms

by pursuing a platform strategy [2-4]. They are opening up their business through the

web, allowing their business functions to be accessed programmatically by a vibrant

community - a community of developers and business partners. Doing so, they promote

community-driven creation of value-added services and solutions for their customers

faster than they could possibly create by themselves [5]. More often than not, the

business functions of these web-business platforms are provided as open-standards

compliant webservices. Technically, platform owners are service providers, providing

their standard business functions as webservices based on service-oriented architecture

principles. Each service represents an underlying business capability.

1.1 Problem Area

Every web-business platform owner would want to incrementally expose their business

functions as externally accessible services based on stakeholders (the community as well

as the customers) needs. While doing so, they face certain critical challenges. Although

some of these challenges are inherent to the solution approach – service-oriented

architectures, specifically the webservices technology. Nonetheless, these challenges need

to be overcome [6].

� Currently, there is a rapid evolution of standards in the webservices technology

space. Webservice technologies like WSDL [7] (for service description) and SOAP

Chapter 1: Introduction

2

[8] (for service invocation) have stabilized, however, associated specifications (WS-

*) [9] are still evolving and are likely to result in more competing standards. These

standards are promoted by different standards bodies and industry lobbies. In

addition, alternate approaches such as Representational State Transfer (REST) [10]

have created more heterogeneity in the services ecosystem. As the standards and

underlying technologies evolve at a rapid pace, the longevity of the solutions built

on them reduces. We call this the Evolving Standards Problem.

� Service Metadata is currently lean and incomplete. The WS-* standards which

describe various facets of service metadata are semantically weak. For example, to

access an eBay® webservice [11], the registration information (developer key and a

merchantID obtained while signing up with the eBay® developer program) must be

supplied for each service invocation. However, this information is not a part of the

formal service description; instead it is specified in the developer documentation.

Not all service facets can be adequately described by existing formal service

description mechanisms; therefore automated ways of service consumption is still

not a reality. We call this the Lean Service Metadata Problem.

� Services in a services marketplace have to be differentiated from that of competitor

service offerings in order to sustain or gain market share. In essence, service

offerings have to be offered to consumers at competitive terms than competing

services in the marketplace. Competitive positioning of already commissioned

services has to be dynamic as well as unintrusive. We call this the challenge of

Unintrusive Differentiation of Service Offerings in a services marketplace [12].

� Business process experts and domain experts along with IT architects and

developers play a crucial role in “opening-up” of the platform. Currently,

webservice assets are described using a multitude of verbose and formal XML [13]

documents. In our opinion, business experts would find it extremely difficult to

use these XML specification documents. Instead, they would prefer visual

paradigms to support handling webservices. We call this the Lack of Visual Syntax

Problem.
Service-oriented computing is an evolving and a ‘moving-target’ discipline. There are

several other challenges in the areas of semantics, (dynamic) service composition,

interoperability, services management and performance [14, 15]. However, this thesis is

primarily motivated from the aforementioned challenges. Hence, the other issues are out

of our addressable scope.

Chapter 1: Introduction

3

1.2 Succinct Research Questions

The questions that our research and this thesis attempt to answer are:

1. How could we support platform owners in methodically “opening-up” their web-

business platforms using webservices?

2. How could we represent service artifacts and metadata, in order to increase the

longevity of the service-oriented solutions by insulating them from rapid

technology evolution?

3. How could we support constant and unintrusive differentiation of commissioned

services to keep them competitive in the services marketplace?

1.3 Criteria for Solution

We believe any solution for these research problems would address the following criteria.

Criterion #1: The services must be represented at a conceptual and technology-

agnostic level. In order to insulate our service-oriented solution from technology

changes, the solution must be captured at an abstract and conceptual-level, agnostic to

technology considerations during early-stage development. The service representation

must describe both the capability-on-offer – the underlying business functionality – and

the terms of offer of the service.

Criterion #2: The high-level conceptual service representation must be easily

convertible to executable service specifications. It must be possible to easily convert

high-level conceptual service representations to executable service specifications, based

on technical considerations like protocol and channel of access.

Criterion #3: The service representation method must have minimal concepts

supporting maximal expressiveness. By having minimal representation concepts with

maximal expressiveness, business experts would find it easy to use the service

representation method to describe various facets of services.

Chapter 1: Introduction

4

Criterion #4: The service representation should be used by different roles involved

during early-stage services development. The service representation must provide

different views or perspectives for different roles to describe service artifacts during early-

stage services development.

Criterion #5: The service representation must have strong underpinnings in the

application domain. The service representation must have underpinnings in the

application domain in order to support easy evolution of the solution and provide a

common communication lingo between domain experts and the IT experts.

Criterion #6: The service representation must be open-standards compliant and

must leverage existing skill-sets and tools. Our service representation method has to

be based on open-standards and must leverage existing skill-sets in projects and popular

tooling environments.

Criterion #7: The solution must support unintrusive changes to the commissioned

services to support competitive differentiation. The solution must support

unintrusive changes to the already deployed (commissioned) services in order to

differentiate service offerings from that of the competition in the services marketplace.

1.4 Our Proposed Approach

Our proposed approach to finding a solution to the aforementioned challenges is based

on OMG’s Model-Driven Architecture (MDA) [16] prescription. MDA proposes that the

solution be captured using high-level computation-independent models (CIM) which

could later undergo a series of transformations to platform-independent models (PIM),

platform-specific models (PSM) and finally run-time artifacts [17, 18]. We use MDA

recommendations to create service representation using models which helps to capture

various facets of services during early-stages of services development. Our metamodels

are the cornerstone to our modeling approach, to support platform owners in exposing

their business functions as services. Our MDA approach helps us to forward engineer our

solution from abstract models to executable webservices specifications.

Chapter 1: Introduction

5

By representing the solution using high-level models instead of evolving webservice

specifications (WS-*), we hope to address the Evolving Standards Problem. By capturing

the solution space using models, independent of the representational depth and

capabilities provided by the current specifications, we hope to completely capture

services metadata, thereby addressing the Lean Services Metadata Problem. As models are

first-class citizens in MDA, we hope that business experts benefit from existing visual

modeling tools making our approach business experts-friendly. Therefore we hope to

address the Lack of Visual Syntax Problem.

1.5 Scope

The focus of this thesis is to understand the different facets of service-oriented

development in the context of web business platforms. Using this understanding, we

create methodology, modeling perspectives and metamodels to support early-stage

services development for platform-owners. We address services granularity [19] by

supporting both fine-grained and coarse-grained services. We also address the issue of

competitive and unintrusive service differentiation. Throughout this thesis, we have a

service provider perspective as our goal is to support the platform-owners. Following are

the concrete outcomes of our thesis:

1.5.1 Model Views

We provide modeling perspectives for different roles involved during the early-stage

services development. We present these modeling perspectives as model views. These

model views assist in defining services at different granularity, representing service

capability, defining policies associated with services, service realization (or service

provisioning), service mediation and service deployment.

Chapter 1: Introduction

6

1.5.2 Metamodels

Our MOF2-compliant [20] metamodels – Services Metamodel and Resources Metamodel

support modeling of both fine-grained and coarse-grained services from the perspective

of web-business platforms. These metamodels are open-standards compliant; therefore,

existing tools and skill-sets could be deployed to support modeling of services. Even

standard transformation languages (like MOF2-QVT [21] and MOF2-Model2Text [22])

could be used to transform the service-oriented solution captured using our metamodels

to standard webservice specifications.

1.5.3 Service Flavors Strategy

We provide a competitive and unintrusive service differentiation strategy called the

service flavors strategy. Using this strategy, we could isolate the terms of offer of the

service from the capability on-offer and competitively alter the terms to differentiate

service offerings from that of competition in a services marketplace.

1.6 Outline of the Thesis

In chapter 2, we present the necessary background and context to present our thesis. We

discuss the emergence of web-business platforms and the “opening-up” of these platforms

through application programming interfaces (web APIs). We also discuss service-oriented

paradigm for building loosely-coupled applications and how webservices are the best

proposition for web APIs. We discuss in detail the heterogeneities in webservice

ecosystems and how model-driven development addresses these heterogeneities by

raising the level-of abstraction. We also present a 4-layer SOA architecture used

throughout this thesis. Finally, we discuss service granularity.

In chapter 3, we address fine-grained services by modeling web resources. We use the

principles of domain-driven design methodology to create a domain model, which forms

the basis of our web resources model. The fine-grained services provide basic CRUD

Chapter 1: Introduction

7

operations on these resources. In chapter 4, we address modeling of coarse-grained

services using six model views and our Services Metamodel. In chapter 5, we address

modeling of service policies for these services using our service policy metamodel. We

explain in detail our domain-independent policy development approach.

In chapter 6, we address unintrusive differentiation of services using our service flavors

strategy. Chapter 7 provides a service consumption API model to support creation and

evolution of client-libraries to address heterogeneities in service consumption

environments. In chapter 8, we present an evaluation of our approach, establish

conformance with reference architectures and explain the pragmatics of using our

approach. Finally we present conclusions and future work.

1.7 Contribution to Research

The primary contribution of our research and this thesis is our model views, our

standards-compliant metamodels to model service-oriented solutions for web-business

platforms and the service flavors strategy to differentiate services in a service marketplace.

1.7.1 Vita – Publications resulting from this thesis

Journal publications resulting from this research is as follows:

- Harshavardhan Jegadeesan, Sundar Balasubramaniam: "An MOF2-based Services

Metamodel", in Journal of Object Technology, vol. 7, no. 8, Nov-Dec 2008 (to

appear)

- Harshavardhan Jegadeesan, Sundar Balasubramaniam: "A Model-Driven Approach

to Service Policies ", in Journal of Object Technology, vol. 8, no. 3, Mar-Apr 2009

(to appear)

Conference papers resulting from this research is as follows:

Chapter 1: Introduction

8

- Harshavardhan Jegadeesan, Sundar Balasubramaniam: "Differentiating

Commoditized Services in a Services Marketplace ", in the 2008 IEEE Conference

on Services Computing (SCC 2008), Honolulu, Hawaii, USA, July 8 – 11, 2008.
- Sundar Balasubramaniam, Harshavardhan Jegadeesan: ''eThens - A Modular

Framework for e-Governance'', Proceedings of the International Conference on

Politics and Information Systems, Technologies and Applications (PISTA

2004),Orlando, Florida, USA, July 2004.

The following paper has been communicated to a journal:

- Harshavardhan Jegadeesan, Sundar Balasubramaniam: “Service Flavors:

Differentiating Service Offerings in a Services Marketplace”, communicated to the

Journal of Webservices Research on January 22, 2008.

1.8 Summary

Web-business platform owners are “opening-up” their platforms – providing their

business functions to be externally and programmatically accessible by the community

for co-innovation. They are using the popular open-standard based webservices to expose

their business functions by means of web APIs. While doing so, the platform owners are

countered by challenges such as the evolving standards problem, lean service metadata

problem, lack of visual syntax for describing services and the challenge of unintrusively

differentiating service offering from that of competition. In order to methodically expose

their platforms and improve longevity and competitiveness of their services, they need to

counter these problems. The motivation for this thesis is to address these challenges by

adopting a model-driven development approach to “opening-up” of SOA-based web

business platforms.

Chapter 2: Background

9

Chapter 2

Background
Web-Business Platforms, Webservices-based SOA and Model-Driven

Development

In this chapter, we provide the prelude and necessary context required to present our

research. We present details on the emergence of web-business platforms, their technical

elements and how they use webservices – a technology manifestation of service-oriented

architectures – to expose their business functions to the community. We also highlight

the problems and challenges faced by platform owners while using these technologies to

expose their business functions. In addition, we provide a brief overview of model-driven

development – the approach we think is best suited to tackle these challenges.

2.1 Emergence of the Web-Business Platforms

The world-wide web (WWW) has continuously evolved at a rapid pace from the time it

came to existence in the early nineties to the present day web 2.0 [23]. From being a static

universe of network-accessible information (read-only web), it has transformed to its

present form – dynamic, transaction-oriented and collaborative (read-write web) [24, 25].

Web sites that provided access to own content and services are morphing to support

user-generated content and community created value-added services. From being mere

websites, they are transforming into ‘web platforms’. For example, eBay® which started as

an auctioning website has become a complete e-commerce web-business platform

creating an entire ecosystem of buyers, sellers and affiliates doing business on the web [1].

Chapter 2: Background

10

2.1.1 “Opening-up” the Web-Business Platform

A software platform [26] is a piece of foundation software around which systems and

applications could be built. It is a software program which makes services available to

other software programs through APIs. These well-defined interfaces abstract underlying

complexity and provide access to platform functionalities. Technically, APIs open-up the

platform for developers to build innovative applications around it. The operating system is

a prime example of a software platform – it provides high-level interfaces to handle

hardware resources such as processor, memory and storage. Similarly, by “opening-up”

their web-business platforms to the community – developers, business partners and

customers – through well-defined interfaces, platform owners foster innovation,

emergence of new applications and usage scenarios that they themselves might not have

envisaged.

Analogous to the operating systems, web-business platforms expose their business

functions through well-defined interfaces or web APIs to the community. “Opening-up”

of web platforms through web APIs has created new possibilities [27]. Firstly, custom

functionality can be built by customers based on unique business needs without using

website user-interfaces. For example, with eBay® APIs it is possible to list items for

auctioning on the eBay® marketplace, without using their web site. A manufacturing

company can auction excess inventory in the eBay® marketplace directly from its

enterprise-resource planning system using APIs. Secondly, an exciting genre of web

application hybrids, commonly known as mash-ups [28] can now be built using web APIs

by leveraging content from more than one source of information (content provider).

Thirdly, entrepreneurs and developers can exploit synergies between different content

and service providers to build innovative end-to-end applications for customers.

2.1.2 Web Application Programming Interfaces

In the previous section, we discussed that web APIs are used to open-up web business

platforms. The most important technical criteria for web APIs is that, they must be

accessible by heterogeneous consumers, especially, from a variety of technology platforms

such as .NET® [29], Java™ [30], open-source platforms (such as PHP, Pearl and Python),

propriety platforms (such as SAP®) and browser environments (JavaScript™). As

Chapter 2: Background

11

webservices [31] are based on open-standards and are widely adopted, they meet the

technical criteria of platform-independence. Therefore, webservices emerge as a natural

choice for web APIs. Presently, apart from web APIs, the platform owners also provide

language-specific application libraries (especially .NET, Java and PHP language libraries)

to be used directly in client code. These libraries are webservice client-proxy programs

that abstract message-based interactions with the remote web service. We address client-

libraries in chapter 7.

2.2 Service-Oriented Architectures and

Webservices

Service-oriented computing paradigm deals with organizing and utilizing distributed

capabilities under the control of different ownership domains [32]. Every service

represents a capability on-offer – a business function – and the terms at which this

capability is offered (terms of offer) [33]. The capability on-offer satisfies the goal of the

service consumer under the constraints of the terms of offer. We refer to the OASIS SOA

Reference Model (herein SOA-RM) [32] for a formal and broad definition of service – A

service represents an underlying capability offered by a service provider that meets the goals

of one or more service consumers. Service-Oriented Architecture (SOA) considers services

as first-class entities to build applications [34]. Webservices – a technology

implementation of SOA – are self-describing, self-contained components that can be

automatically discovered and invoked using open-standards. Fundamentally, SOA is an

architectural style while webservices are practical implementations based on the SOA

architectural style. Webservices are popular due to the fact that they are based on

interoperable open-standards such as SOAP, WSDL which make them platform-

independent.

The term ‘web service’ has been commonly used while referring to SOAP based

webservices. However for our research, the term ‘webservice’ encompasses all services

offered on the web (web-based services), based on open-standards, accessible in a loosely-

coupled fashion through message-based interactions1. Apart from the standard SOAP-

1 Note the use of “webservice” instead of “web service”. We use this subtle difference to refer to our

definition of webservices.

Chapter 2: Background

12

based services, this could include services based on the REST (REpresentational State

Transfer) architectural style and Plain Old XML (POX) services. The SOAP-based services

could still further be document-style or RPC-style supported through a variety of

transport protocols, the most popular being HTTP [35, 36]. The REST-based services

support message exchange over plain-HTTP in either XML or in JSON (java script object

notation) [37] payloads. REST-style services could also be based on popular syndication

protocols such as ATOM and RSS [38].

2.2.1 Service Granularity

Granularity is a relative measure of how broad the level of interaction between a service

consumer and a service provider has to be. Service granularity refers to scope of business

functionality a service exposes, thus addressing the level of encapsulation of a particular

business capability to support the “loosely-coupled” philosophy of service-oriented

architecture [39]. Right service granularity is critical to achieve service reusability. The

approach we take to build services has an impact on granularity. Services could be built

using a “code-first” or an inside-out approach. In the inside-out approach existing IT

assets are exposed by using webservices interfaces. Alternatively, the “contract-first” or

the outside-in approach is purely driven by stakeholder requirements. By using the latter

approach, services could be built in the right granularity [40].

Broadly, services could be either fine-grained or coarse-grained [41]. Fine-grained services

address a small unit of functionality. In contrast, coarse-grained services address a larger

functionality. In our thesis, we view fine-grained services as services providing CRUD

(Create, Retrieve, Update, Delete) [42, 43] manipulation of web resources [44]. Fine-

grained services are primarily used in user-interfaces and mash-ups. They can also be

used in a few application-to-application integration scenarios. We address fine-grained

services in chapter 3. Coarse-grained services, on the other hand, handle larger business

tasks. They support triggering of business functions in the platform, notifications of

events and functions that require manipulation of one or more resources. They could be

used in business-to-business integration scenarios and some application integration

scenarios. We address coarse-grained services in chapter 4.

Chapter 2: Background

13

SAP’s Enterprise Services [45] defines three types of service interfaces – A2X (application

to ‘any’), A2A (application to application) and B2B (business to business). The A2X

services are fine-granular while the A2A and B2B services are coarse-granular in nature. In

addition, by convention, A2X services are always synchronous, while A2A and B2B

services could be either invoked synchronously or asynchronously.

2.2.2 Heterogeneity in the webservice ecosystem

Various service delivery styles and protocols have led to heterogeneity in development

approaches as well as the webservices ecosystem as a whole [46]. The web services

interoperability specifications [47] addresses interoperability of WS-* web services from

different vendors through the WS-I Basic Profile [48]. At one end, the heterogeneity in

the ecosystem is due to evolving standards, at the other, it is due to different

interpretations of standards by implementing vendors. Nevertheless, it is important for

the platform-owners to support various styles and protocols to increase platform usage

and adoption among the community. Recently, there is a growing understanding that

each of these service delivery styles and protocols are suited for a specific-purpose or an

environment. For example, XML payloads are better suited for webservices consumed by

third-party applications, while JSON payloads are easier to handle in browser-based

environments, due to their native JavaScript support. SOAP-based services are useful for

coarser service-cuts, while REST is best suited for fine-granular services – primarily CRUD

services on web resources [49, 50]. We discuss this further in chapter 3.

Thumb rules over appropriateness of service delivery styles and protocols are beginning

to emerge. However, platform-owners must have the flexibility to offer their business

functions as services in whichever way they deem fit. It should be possible to offer the

same service in different delivery styles or protocols to support different consumer’s

technical environments. Presently, web business platforms such as eBay®, Amazon®,

Google® and many others have been providing web APIs which are based on both SOAP-

based and REST-based service interfaces [51].

Chapter 2: Background

14

2.2.3 Reference Architectures for SOA

Though SOA offers significant advantages by fostering loosely-coupled applications,

creating a SOA-based solution is rather difficult. Specifically, it is difficult to

systematically organize and implement the solution [52]. In order to create SOA based

solutions easily and in an organized fashion, reference architectures and patterns have

emerged [53-55]. The Service-oriented Solution Stack (S3) [56], a popular vendor-neutral

SOA reference architecture provides a metamodel and a flexible nine-layer solution stack

for SOA solutions based on best industry practices. Each layer addresses specific logical

and physical perspectives, thus helping in effective separation of concerns. The S3 can be

employed with methods such as IBM’s Service-oriented Modeling and Architecture

(SOMA) [52] to create SOA-based solutions. For the purpose of this thesis, however, we

use a slightly altered and simplified “4-layer architecture” to present our work (fig. 2.1).

Even though our discussions are based on our layered architecture, the methods we

present are independent of it and can be applied in the context of any reference

architecture. We briefly explain our 4-layered SOA architecture below:

� Operational Systems Layer: The operational systems layer consists of home-

grown custom applications, legacy systems, packaged enterprise systems and

databases. The operational systems layer depicts the existing IT-assets in the

system landscape.

� Domain Layer: We use a domain layer in a broader context than that of the

service components layer in S3. The domain layer contains domain entities and

business functions and can be organized using a Business Reference Model (BRM).

The BRM in the Federal Enterprise Architecture (FEA) [57] could be used for this

purpose; however, this is not in the scope of our solution. The BRM hierarchically

organizes the business functions in a given domain. These business functions are

ideally exposed as services to the community. The domain layer also attempts to

bridge the gap between business and IT. The domain experts are closely involved

in defining the business entities and the related business functions in the domain

layer, as well as organizing them based on the business reference model.

� Services Layer: The services layer consists of all services defined in the solution.

These services are offered by the platform owners based on different service

delivery styles and protocols. The services could be of different granularities

ranging from a coarse-grained service used for business-to-business

communication or a fine-granular CRUD service consumed in mashup interfaces.

Chapter 2: Background

15

Fig 2.1: Simplified 4-Layer SOA Reference Architecture

� Consumption Layer: The consumption layer consists of applications, business

processes, mash-ups and other 3rd party applications in which services are

consumed. It also contains service consumption APIs, popularly known as client-

libraries or consumer proxies.

2.3 MDA - Raising the Level of Abstraction

In order to address heterogeneity in the webservices ecosystem, we adopt a model-driven

approach prescribed by Model-Driven Architecture (MDA) to services design and

development. Before understanding MDA, it is essential to have a common definition of a

model. A model is an abstract definition of (part of) a system written in a well-defined

language [58]. A well-defined language is a language with well-defined form (syntax), and

meaning (semantics). OMG’s MDA [59] is a framework for software development which

prescribes using models as first-class entities for specifying a software system and its

Chapter 2: Background

16

functionality. MDA effectively separates system specification from its implementation,

keeping the focus on abstract and conceptual system definition in early-stages of

development. In addition, it helps postponing technology decisions to appropriate later

stages of the development cycle.

MDA supports separation of concerns by using three-layers of models – the Computation

Independent Model (CIM), the Platform-Independent Model (PIM) and the Platform-

Specific Model (PSM) [60]. The CIM model elements capture the problem domain from a

functional and a business viewpoint. The PIM model elements build on the CIM and add

computation specific aspects without being concerned with the implementation platform.

Finally the PSM builds on the PIM to add technology platform specific implementation

details. A PSM can then be transformed into executable code and specifications (fig. 2.2).

A series of transformations (a.k.a. model transformations) is used to convert from CIM to

PSM. Behind the model specification and transformations, lie a set of metamodels –

fundamentally a model is an instance of its metamodel. The metamodel is a language with

well-defined formal syntax and semantics to describe models [16, 20]. The metamodel is

essentially a domain-specific language (DSL) [61] to define systems in a particular domain.

OMG’s Meta-Object Facility (MOF2) provides the abstract syntax to define the modeling

constructs of a metamodel. MOF2 is tightly aligned with the UML2 Infrastructure [62] –

MOF2 and UML share a common and unifying set of modeling elements called the kernel.

Transformation languages such as MOF2 Queries/ Views/ Transformations (MOF QVT)

and MOF Model2Text support model to model and model to text transformations

respectively. UML in its new avatar – UML2 – is a family of languages [63] supporting the

creation of domain-specific languages to address modeling of specific domains. This is

possible because of the structured 4-layer UML2 hierarchy [64] (fig. 2.3). The M3, meta-

meta model layer has basic model elements to support creation of a metamodel. The M2

layer represents the metamodels such as UML – to support modeling of object-oriented

systems, Common Warehouse Metamodel (CWM) [65] – to support modeling of

databases and warehouses and Ontology Definition Metamodel (ODM) [66] – to support

modeling of ontologies.

Chapter 2: Background

17

Fig 2.2: The MDA Layers and Transformations

Fig 2.3: UML 4-layer Hierarchy to Support Family of Languages

The M1 layer contains the system model instantiated by the metamodel and the M0 layer

contains the object instance model representing the running system. The prevalent

approach to create a domain-specific modeling language is to create a MOF2-based

metamodel with domain-specific concepts as model elements along with a corresponding

UML2 Profile [67]. The UML2 profile helps to leverage existing tools and skills. A UML2

profile is a stereotyped package that contains model elements that are customized for a

M0: Object Instance Model

M1: Model

M2: Meta-Model

M3: Metameta-Model MOF

UML, CWM

System Model

Running System

Chapter 2: Background

18

specific purpose using extension mechanisms such as stereotypes, tagged values and

constraints. We also adhere to this approach by creating metamodels and corresponding

UML2 profiles to model services.

2.3.1 Model Transformations

Model Transformations are central to model-driven development. A transformation is an

automatic generation of a target model(s) from a source model(s), according to a

transformation definition [68]. A transformation definition is a set of transformation rules

that describe how a model in the source language can be transformed into one or more

constructs in the target language. A transformation rule is a description of how one or

more constructs in the source language can be transformed to one or more constructs in

the target language [69].

Model Transformations could either be model-to-model transformations or model-to-text

transformations, supporting transformations of a model to another model (e.g. PIM to

PSM) or text (e.g. PSM to code). The vision of model-driven development is to shift the

focus from programming to capturing the solution in conceptual models, thereby

increasing the longevity of the solution. For this vision to become a reality, it must be

possible to transform high-level conceptual models to useful executable specifications or

code. Using one or more input models and producing one or more output models,

requires a good understanding of the formal abstract syntax and semantics of the input

and output models. Numerous model-to-model transformation languages are emerging.

Some of them are ATL (ATLAS transformation language) [70], transformation using XSLT

[71] on XMI [72, 73] representations, and Kermeta [74]. Again, these are based on different

approaches such as direct manipulation, graph-transformation and other hybrid

approaches [75]. In order to standardize the model-to-model transformations, OMG has

come out with MOF2 QVT (Query/View/Transform). A classification of model

transformation approaches is presented in [75]. There are also graphical model

transformation languages such as MOLA (Model transformation language) [76], UMLX

[77] and GReat [78] which provide a visual syntax to support model transformations.

Model-to-text transformations are also becoming popular. Models can be transformed to

executable specifications, code and other XML-based artifacts (deployment descriptors).

Chapter 2: Background

19

Some of the model-to-text transformation languages include MOFScript, Xpand, and Java

Emitter Templates (JET) [79]. These transformation languages are either based on visitor-

based approach or a template-based approach, the latter being more popular. The OMG’s

MOF2 Model to Text (mof2text) standard addresses how to translate a model to various

text artifacts using a template-based approach.

2.4 Summary

In this chapter, we presented a background of web-based business platforms. We

explained platform strategy – operationalized by exposing a web-business platform using

open-standards based webservices. We also presented details on model-driven

development – our chosen approach to address challenges faced by platform-owners. We

follow the prescription of Model-Driven Architecture (MDA) to support platform owners

in systematically “opening-up” their web-business platforms using webservices-based web

APIs.

We specify services and web resources precisely using technology-agnostic, high-level

conceptual models. These models can later be translated to concrete executable

specifications or code using transformations. We address both fine-grained and coarse-

grained services (see section 2.2.1). Fine-grained services support CRUD-based access to

web resources. Web resources are basically real-world objects in the business domain,

captured in the domain model. We use a domain-driven design approach to create an

expressive domain model of the application domain (chapter 3). Certain domain entities

in the domain model could be exposed as web resources. We have a resource model

representing certain domain entities which are opened-up for manipulation. Fine-grained

services support fine-granular manipulation of these web resources. For coarse-grained

services, we define a MOF2-based Services Metamodel (a M2-level model in the 4-layer

UML hierarchy) to support various facets of modeling coarse-grained services (chapter 4).

We compliment our Services Metamodel with a UML Profile to leverage existing

modeling tools. We also support independent service policies development using a policy

model (chapter 5).

Chapter 2: Background

20

In summary, platform-owners face complex challenges while operationalizing their

platform strategy. There is plenty of research, though conceived in a different context,

which partly address these challenges. However, we strongly believe that they do not

provide a comprehensive solution to address web-business platform challenges (as

discussed in chapter 1). In subsequent chapters, we explain different components of our

solution. We also attempt to provide a comprehensive related works section in each

chapter where we compare and contrast our solution components to that of other

existing approaches.

Chapter 3: Modeling Web Resources and Fine-Grained Services

21

Chapter 3

Modeling Web Resources and Fine-

Grained Services
Using Domain-Driven Design Techniques to Model Web Resources and Fine-Grained

Services

In this chapter, we address modeling of web resources and subsequently the fine-grained

services which provide CRUD-manipulation on these resources. Resource is a real-world

entity in the domain that would have an identifier [80]. Apart from having an identifier, a

resource has a name, has a reasonable representation, a resource description and is owned

by a person or an organization [81]. Representation of a resource reflects the state of the

resource. Resource is a fundamental concept that underpins the web. While a service

represents an underlying capability offered by a service provider, a resource is an

underlying entity in a particular domain – a domain entity. In an abstract sense, a service

is activity-centric and focused on ‘verbs’, in contrast to resources which are focused on

‘nouns’. A resource represents the state of the domain entity explicitly while a service

represents the state implicitly. In this chapter we focus on modeling web resources.

3.1 Heterogeneity Due to Conflict of Styles

In chapter 2, we discussed the heterogeneities in the SOA landscape. These

heterogeneities could be due to technical protocols (WS-*), payloads (XML, JSON) or

even due to styles (SOAP vs. POX vs. REST) [50]. We also discussed how model-driven

development – the approach we take in our thesis – helps in managing these

heterogeneities and increasing the longevity of the solution. In this section, we would like

to discuss briefly about the heterogeneity due to conflict of styles – the REST vs. SOAP-

Chapter 3: Modeling Web Resources and Fine-Grained Services

22

style debate. Although we acknowledge that this is not significantly relevant, the

underlying issues it highlights are more important than the debate itself. The

fundamental principle of SOA is loose-coupling. This debate is about which style supports

development of loosely-coupled and scalable applications based on service-oriented

architectures. Our aim is to provide the necessary abstraction in early-stage design and

modeling to support different styles, payloads and protocols. Nevertheless, we still

consider it important to discuss these conflicting styles to emphasize the difference

between activity-oriented vs. resource-oriented focus of these styles [82].

Representational State Transfer (REST) is an architectural style which underpins the web

– it supports independent development and therefore scalability in web architectures.

The central principal in REST is the existence of resources, each of which could be

identified by a globally unique identifier – the Uniform Resource Identifier (URI) in the

context of the web. In addition, each resource has a standard representation which

reflects the state of the resource. REST-style is supported by the Hyper-Text Transfer

Protocol (HTTP), which provides standardized interfaces to manipulate these resources

through the POST, GET, PUT, and DELETE methods [10] (fig 3.1). These methods support

CRUD (Create, Retrieve, Update and Delete) operations on the resources. While the

HTTP methods are a part of the HTTP-header, the payload consists of a resource

representation in either XML or in JSON. In terms of service granularity, REST-based

services support fine-grained CRUD services which could be readily consumed in mashup

user interfaces or in other web applications.

Before the REST-style was articulated by Roy Fielding in this doctoral thesis, webservices

were predominantly based on SOAP and WS-* protocols. A significant point to note is

that, Fielding presented REST in the context of uniform information access (‘resource’

focus) rather than remote function calls (‘activity’ focus). While every practitioner has his

own preferences and loyalties, it is important to use appropriate styles to solve different

classes of problems [50, 49]. Let us contrast the resource-oriented REST-style to that of

the activity-oriented SOAP-style using an example. Consider an online LISTINGSERVICE

such as the one offered by Shopping.com®2, which supports pricing comparison across

online shops. The LISTINGSERVICE supports the online shops and merchants to list their

products in Shopping.com® listings. A buyer could search and compare products in

2 The services and scenarios we describe in the context of Shopping.com is fictitious, however it closely

represents real-world scenarios.

Chapter 3: Modeling Web Resources and Fine-Grained Services

23

different online shops through Shopping.com®. Once the buyer decides to buy a

particular product, he is redirected to the online shop. Fig 3.2(a, b) depicts both a REST-

based interface and a SOAP-based interface for the service. Note that while the SOAP-

interface is activity-centric (note the verbs e.g. CreateNewListing), the REST-interface is

resource-centric (note the nouns e.g. Listing).

Fig 3.1: REST-based Standardized HTTP Interfaces to a Resource

Fig 3.2 (a): SOAP-based Interface to Shopping.com® Listings

Resource
URI (Unique Identifier)

HTTP/HTTPS PUT

Create|Replace

GET

Read

POST

Create|Update|Delete

DELETE

Delete

HTTP Methods

C
R
U
D

Payload

REPRESENTATION

Chapter 3: Modeling Web Resources and Fine-Grained Services

24

Create HTTP

Method

POST/PUT

Payload Listing XML instance

Retrieve GET: http://shopping.fictitious.com/listings/aoed-156-

w2rdf

GET:

http://shopping.fictitious.com/listings?query=ipod+classic

 (Lists all iPod Classic listings from different online

shops)

Update HTTP

Method

POST/PUT

Payload Listing XML instance

Delete HTTP

Method

DELETE

Payload Listing XML instance

Fig 3.2 (b): REST-based Interface to Shopping.com® Listings

With time some thumb rules have evolved in the community in choosing one approach

over the other [50]. In our opinion, the most important of these is service granularity. For

fine-grained services which support CRUD like operations, REST-style is considered

Chapter 3: Modeling Web Resources and Fine-Grained Services

25

minimal; however for coarse grained services which represent underlying business

capabilities, SOAP-style is preferred. In addition, for direct consumption in mashup user

interfaces and web applications, fine-grained REST-style services are preferred. Coarse-

grained SOAP-style services are used in application integration or for business-to-

business (B2B) scenarios. Apart from service granularity, the second distinction is the

informational vs. transactional nature of the scenarios in general [83]. Our suitability

argument that is for information access (simple ‘read/write’) scenarios, REST-based

services are simple and best suited and for transactional scenarios SOAP-based services

are best suited. However for platform-owners, consumer preferences and considerations

also play a big role in deciding one style over the other. We would like to emphasize our

suitability argument with empirical examples. Let us consider a practical example of

Google™ Services. Google exposes its different web-platforms in different ways. Google

Base [84] is a platform through which one could post any type of semantic content to

Google and make it searchable from other Google properties. A typical scenario would be

for merchants and online sellers to post product information or their entire catalog to

Google Base and make it accessible through Google Product Search (earlier Froogle®) [85].

The Google Base platform is exposed using REST-based services through the Google Base

API. The Google Base API is based on Google Data APIs [86] (GData for short), a standard

protocol for reading and writing data on Google properties. GData works based on

popular syndication protocols such as RSS and Atom Publishing Protocol (APP) [87]. The

GData is built in the spirit of the REST approach. A common feature of all Google

properties using REST-based GData (like Base, Blogger, Calendar, Contacts etc.) is that

they provide fine-grained information access. Contrast this with other Google platforms

such as Google Checkout [88] and Google Adwords [89]. Google Checkout supports safe

and single-login purchases across different online stores for customers and a new and

efficient way to process sales for merchants. Google Adwords platform is a targeted

advertisement platform. Both Checkout and Adwords API services are coarse grained and

transactional in nature; therefore, they are SOAP-based. It is also possible for a provider

to provide access to its web-platforms based on both the styles, and leave the choice

entirely to the consumer. Consider the example of eBay® Shopping and Merchandizing

APIs [90], they provide both SOAP and REST-based interfaces with support for different

payloads and protocols.

It is important for web business-platform owners to support both SOAP-based as well as

REST-based interfaces to their platforms. This will facilitate wider platform adoption,

thereby supporting diverse service consumption and platform usage scenarios. Hence our

Chapter 3: Modeling Web Resources and Fine-Grained Services

26

approach should focus on modeling resources and fine-grained access to these web

resources, abstracting protocol and style details.

3.2 The Domain-Driven Design Approach

Irrespective of the styles and protocols, there is a fundamental need to model web

resources and fine-grained services. Web resources are basically domain entities in an

application domain. For example, a Product Listing is a domain entity in the e-commerce

domain. We would need fine-grained CRUD services to manipulate product listings.

There is a need to identify domain entities in a particular domain, which would

eventually be resources. Once resources are identified, they have to be adequately

represented. In order to have a business domain focus in our solution, we follow a

domain-driven design (DDD) approach [91] – an extensive use of domain models to

identify and model domain entities and eventually resources.

Domain modeling is an activity that would happen in the domain-layer of our simplified

4-layered SOA architecture. The DDD approach, apart from supporting identification of

resources through domain entities, also supports realization of fine-grained services

associated with these resources. So what is domain-driven design? The goal of domain-

driven design is to put the domain model at the heart of developing software, keeping the

focus on models rather than technology. A domain model is an abstract representation of a

particular domain crystallized by a domain expert [92]. The domain model provides the

structural underpinnings for our solution and is focused at describing the domain-layer.

3.2.1 Modeling the Domain using Domain-Driven

Design Approach

As a first step, we use the principles of domain-driven approach to model the application

domain. The domain entities in the domain model would eventually be web resources.

We model the domain based on the tenets of domain-driven design. In order to support

the use of domain-driven design, we create our DDD Metamodel, a domain-specific

language for domain-driven design where the model elements are extensively borrowed from

Chapter 3: Modeling Web Resources and Fine-Grained Services

27

the domain-driven design approach. Our DDD Metamodel is a MOF2-based M2-layer

metamodel compatible with UML family of languages. It extends the UML Infrastructure

Library::Core package (fig 3.3). The DDD Metamodel (fig 3.4) supports our Domain

Model View, a model view at the domain layer. In order to leverage existing UML tools

to model the domain, we have also created an UML2 Profile (fig 3.5). The domain model

created using the DDD Metamodel could be transformed to code in different provisioning

languages to support implementation, using model-to-text transformations.

Fig 3.3: The DDD Metamodel (a M2-layer metamodel)

Key Classes and Associations

Entity: Entity is a domain object which is defined primarily by its identity [91]. Entity is

something that has continuity through its life-cycle and is distinguished by its identity

rather than its attributes. An entity could be independent or be part of an Aggregate

(discussed below). It could also be an aggregate root. The attribute isAggregateMember:

Boolean determines if the entity is part of an aggregate or not. An entity has a

globalIdentifier: UUID, natural identifiers from the domain (e.g. social security number

for an employee) and a lifecycle state. The Identifier, UUID and the LifeCycleState extend

the Core: Property. An entity is a RepositoryItem, and a Repository (discussed below)

manages the life cycle of an entity. In addition, an entity is created by a Factory

(discussed below). An entity could conform to one or more Specification (discussed

below). An entity has an operation checkConsistency which ensures that the entity is

consistent and conformant with specifications. It extends the Core: Class.

DDD

Metamodel

Chapter 3: Modeling Web Resources and Fine-Grained Services

28

Fig 3.4: The DDD Metamodel – Domain Model View

Value Object: Value object is an object in the domain which has a descriptive nature but

with no conceptual (or natural) identity in the domain [91]. A value object can also be an

aggregate member (isAggregateMember: Boolean). Value objects are immutable and can

be created by a Factory. It extends the Core: Class.

Aggregate: An aggregate is a cluster of associated objects (entities, value objects) which

we treat as a single unit for the purpose of data changes and maintaining consistency [91].

Every aggregate has a root entity which is the only object that could be accessed directly

outside the aggregate boundary. An aggregate is created by a Factory. An aggregate is also

a RepositoryItem. An aggregate also has a checkConsistency operation which ensures the

consistency of the aggregate. It extends Core: Class.

Module: A module logically partitions the domain. The partitioning is from a conceptual

and domain perspective [91]. It extends Core: Package.

Chapter 3: Modeling Web Resources and Fine-Grained Services

29

Factory: A factory provides the necessary encapsulation to create entities, value objects

or aggregates [91]. Factories do not necessarily represent a domain concept, but are

responsible for constructing one. It has a create operation which is responsible for

creation of entities, value objects or repositories. It extends the Core: Class.

Repository: A repository is a conceptual set of all objects of a certain type [91]. It acts as a

collection with elaborate querying capabilities (finding objects by their identifiers

(if any), or by other attribute criteria). A repository supports addition of new objects as

well as updating and deleting existing objects. It supports operations such as add, remove,

and update as well as querying operations such as findByIdentifier and findByCriteria.

Specification: A specification provides a concise way to capture business rules [91].

Normally such rules would be hard-coded in business logic. Specification makes it easy to

specify rules explicitly in the model. A specification has a checkConformance operation

which checks if an entity conforms to the specification. A specification could have one or

more conforming entities. It extends the Core: Class.

Domain Service3: There are some domain operations which do not fit naturally in an

entity or a value object. A domain service is an activity in the domain rather than an

entity that represents these domain operations [91]. At the domain layer, the means of

providing access to a domain service (through distributed architectures such as RMI,

CORBA or SOAP [93]) is not as important as the design decision to carve off a particular

system responsibility as a service itself.

3 In Domain-Driven design the Domain Service is actually called a SERVICE. We call it domain service just to

differentiate it from the services in the services layer

Chapter 3: Modeling Web Resources and Fine-Grained Services

30

Fig 3.5: The Domain Model View (UML2 Profile)

3.2.2 Resources Model

Using the principles of domain-driven design and with the help of our DDD Metamodel,

it is possible to model the application domain in the domain-layer. Once we have the

domain model and the domain entities, web resources have to be identified and created.

As resources have identifiers, the model entities from the DDD Metamodel – Entities and

Aggregates – would be ideal candidates for web resources. However it is possible that

based on business requirements of the web business platform, only certain Entities and

Aggregates from the domain model would be exposed as resources. We have a resources

model that is derived from the domain model through a model-to-model transformation

(fig 3.6.A) to represent resources.

Chapter 3: Modeling Web Resources and Fine-Grained Services

31

Fig 3.6 (A): Model-to-Model Transformation (Domain Model to Resources Model)

Fig 3.6 (B) provides an overview of the model-to-model transformation using UMLX

visual syntax. The resources model is based on our Resources Metamodel (fig 3.7).

Fig 3.6 (B): Model-to-Model Transformation – UMLX Visual syntax

Chapter 3: Modeling Web Resources and Fine-Grained Services

32

Fig 3.7: Resources Metamodel

Fig 3.8: Resources Model View

Our Resources Metamodel is also a MOF2-based M2-layer metamodel which extends the

UML2 Infrastructure::Core. We also have an associated UML2 profile (fig 3.8)

Key Classes and Associations

Resource: A resource is an entity in the domain with an identifier [94]. A resource could

have related resources and has an identifier URI. It also has one or more resource

representations. An ownership domain owns resources. It extends Core: NamedElement.

Chapter 3: Modeling Web Resources and Fine-Grained Services

33

URI: An URI uniquely identifies a resource. It is derived from the qualified name of an

entity as well as the entity identifier (UUID) in the domain model.

Resource Representation: A resource representation provides a semantic

representation for a resource through a data schema. A resource could have more than

one representation. The representation could be based on XML, JSON, RDF or any other

description language identified through the mime-type attribute. It extends the Core:

Type.

3.2.3 Uniform Access to Resources

Once the resources are identified, it is essential to support uniform access to manipulate

resources. We support the standard fine-grained CRUD pattern to access to resources in

the services-layer irrespective of whether the platform owner decides to expose the

resource through a SOAP-based interface or through REST. Creating REST-style

interfaces for manipulating a resource is straightforward as it fits with the CRUD pattern.

If the platform owner chooses to expose the resource through a SOAP-style service for

whatever reason, then a standard service is created automatically at the service-layer to

manipulate the resource. We call it the MANAGE<RESOURCE>SERVICE. The manage service

for a resource would support operations such as creation (Create<Resource> (OP)), change

(Change<Resource> (OP)), delete (Delete<Resource> (OP)) and querying a particular

resource (fig 3.9). The query on the resource could either be based on resource identifier

(Query<Resource>ById (OP)) or through some criteria (Query<Resource>ByCriteria (OP)).

Fig 3.9: MANAGELISTINGSERVICE – SOAP-based Service

Domain Layer

Service Layer

Listing

MANAGELISTINGSERVICE S

 CreateListing ChangeListing

 DeleteListing QueryListingById

 QueryListingByCriteria

Chapter 3: Modeling Web Resources and Fine-Grained Services

34

The manage service at the service-layer is a fine-grained service to manage and

manipulate resources through a uniform mechanism. Whichever style the resource is

exposed, the provisioning (implementation) for the standard CRUD pattern to

manipulate the resource is supported in the domain-layer. This is supported by the

operations of the Repository of the corresponding entity or the aggregate. The standard

Repository operations such as add, remove, update, findByIdentifier and findByCriteria

support the uniform CRUD pattern interface.

3.3 Model to Executable Specifications

 Fig 3.10: Transformation to Executable Specifications

Fig 3.10 explains the transformations from the models to executable machine process-able

artifacts. The domain model is transformed to provisioning (implementation) skeleton

code using a model-to-text transformation. The skeleton code could be in Java, .NET or

any other provisioning language using different model-to-text transformations. Earlier,

we discussed that the domain model is converted to resource model using a model-to-

model transformation. The resource model has to be converted to executable

specifications. The choice of specifications is based on if the resource is exposed through

a SOAP-style interface or through a REST-style interface. For the SOAP-style interface we

transform the resource model to WSDL 2.0 with SOAP-bindings. For the REST-style

interface the resource model is transformed to either WADL [95] (Web Application

Description Language) or to WSDL 2.0 with HTTP-bindings. However, it is possible to

Model-to-Model

Transformation

MOF2 QVT Domain Model Resources Model

MODELS

EXECUTABLE

SPCIFICATIONS

Provisioning

Code
 Java, .NET, ABAP

Model-to-Text

SOAP-Style

WSDL 2.0

(SOAP Binding)

REST-Style

WADL /WSDL 2.0

(HTTP Binding)

Model-to-Text

Chapter 3: Modeling Web Resources and Fine-Grained Services

35

transform the resource model to any other machine process-able description such as APP

(Atom Publishing Protocol) etc. This is achieved by creating new transformations for

REST-style services.

3.4 Modeling an Online Shopping Scenario

Fig 3.11: Online Shopping Domain Model (partial)

We use a fictitious online shopping scenario based on eBay ProStores®4 to illustrate the

use of our DDD Metamodel and the Resources Metamodel, to model web resources. The

ProStores® platform supports a merchant to setup a web store to sell products on the

internet. By using an iterative domain driven design approach, we arrive at the online

shopping domain model (fig 3.11) modeled using our DDD Metamodel. We only present

the partial domain model for brevity. Using the domain model, it is possible to generate

the skeleton provisioning code in a language of choice. For our example, we use Java and

4 The ProStores® scenario we describe here is fictitious, however it closely relates to the real world online

selling scenario supported by ProStores®.

Chapter 3: Modeling Web Resources and Fine-Grained Services

36

hence using standard JET (Java Emitter Template) transformations, we create partial

provisioning code (fig 3.12) below:

Chapter 3: Modeling Web Resources and Fine-Grained Services

37

Chapter 3: Modeling Web Resources and Fine-Grained Services

38

Fig 3.12: Java Code Listing - Provisioning

Now consider that the platform owner has a new requirement to support. The scenario

could be that, a merchant wants to support his customers to place an order directly in the

ProStores® platform. The customers would want to place orders from his home-grown

procurement application instead of the web shop shopping cart. To support this scenario,

the platform owner could open up the ‘Order’ (domain) entity as a web resource which

could be manipulated by a CRUD pattern by an external consumer. By doing so, an

‘Order’ can be created directly in the ProStores® platform. Fig 3.13 shows the resource

model derived from the domain model using the model-to-model transformation. We

have a XML representation of the resources in our example.

Chapter 3: Modeling Web Resources and Fine-Grained Services

39

Fig 3.13: Online Shopping Resource Model

The resource could either be exposed through the SOAP-style or REST-style services. Fig

3.14 shows an abstract MANAGEPURCHASEORDERSERVICE WSDL 2.0 description. The WSDL

service description is obtained from the resource model using a model-to-text

transformation. If the platform owner chooses to expose the resource based on the REST-

style, we provide a WADL (Web Application Description Language) description (fig 3.15)

of the service using a resource model to WADL model-to-text transformation. WADL

provides a machine process-able description of REST-based services.

Chapter 3: Modeling Web Resources and Fine-Grained Services

40

Fig 3.14: MANAGEPURCHASEORDERSERVICE – SOAP-style Interface

Chapter 3: Modeling Web Resources and Fine-Grained Services

41

Fig 3.15: WADL description – Purchase Order

3.5 Summary

In this chapter we presented our approach to model resources as well as fine-grained

services to manipulate these resources. In our approach, any resource could be uniformly

manipulated through CRUD-interfaces. Our modeling approach is based on domain-

driven design with the focus on domain models. From the domain models, we derive the

resources model depicting web resources. The transformation from a domain entity to a

resource is based on business requirements, as illustrated in the online shopping scenario.

The resource model is in the domain-layer in our simplified 4-layered SOA architecture,

while the fine-grained services to manipulate resources are in the service-layer. The fine-

grained access to web resources could either be through SOAP-style interface or through

a REST interface. We support this through transformation of the model to executable

Chapter 3: Modeling Web Resources and Fine-Grained Services

42

specifications using model-to-text transformations. The choice of style is left to the web

platform owner.

In chapter 4 we address modeling of coarse-grained services in the service-layer. These

services are modeled from a stake-holder perspective. Some of these services could be

directly provisioned using the Domain Services we described in the DDD metamodel.

Chapter 4: Modeling Coarse-Grained Services

43

Chapter 4

Modeling Coarse-Grained Services
Model Views and a Services Metamodel to model different facets of Coarse-

Grained Services

In this chapter, we address coarse-grained services. Modeling these services involves

capturing various service requirements and solutions identified during early-stage

services development using high-level conceptual models. Earlier, we argued that in order

to improve the longevity of the solution and to rigorously represent all facets of services,

it is important to capture the solution space in a platform and technology independent

way using high-level models. These models must be rich enough to capture associated

services metadata irrespective of whether the current standards support them. These

models must support business users to visually model services. In this chapter, we

identify different perspectives of services modeling and present six model views to

support different facets of services. We also define our MOF2-based Services Metamodel

to support modeling these different perspectives. Our Services Metamodel is a layer 2 (M2)

model and extends the UML Infrastructure Library::Core package (herein known as Core)

(fig 4.1).

Fig 4.1: MOF2-based Services Metamodel

Chapter 4: Modeling Coarse-Grained Services

44

4.1 Services Metamodel – High-Level

Requirements

Our Services Metamodel addresses the early-stage modeling of web-based electronic

services from the perspective of web business platforms. A Services Metamodel must not

only enable capturing of different perspectives of services, but also support maximum

expressiveness with a small set of modeling elements (see criteria #3). Some of the criteria

we mentioned in section 1.3 are addressed by the high-level requirements for the Services

Metamodel we present below:

R1: The metamodel shall enable capture of the high-level description of the service

(addresses criteria #1 – high-level conceptual service representation).

R2: The metamodel shall enable capture of the different roles and perspectives of the

actors associated with a service (addresses criteria #4)

R3: The metamodel shall enable capture of realization (or provisioning) of services.

R4: The metamodel shall enable capture of the operational details of a service in use.

R5: The metamodel must be conformant to the Oasis SOA Reference Model (SOA-RM)

Some of our high-level requirements also correspond to a subset of mandatory

requirements in the OMG’s RFP (Request for Proposal) – the UML Profile and Metamodel

for Services (herein referred to as RFP-UPMS) [96]. Though our intention is not to

address all the requirements in RFP-UPMS, we just provide a correlation. The high-level

description of a service (R1) includes ownership information, service capabilities and the

roles involved in exercising these capabilities. Service interfaces and their operations,

along with their pre-conditions and post-conditions, must also be a part of the service

description. These correspond to RFP-UPMS mandatory requirement Service Description

(requirement 6.5.7). The metamodel must support different roles of actors associated

with the service (R2). Roles may include those of providers, consumers, aggregators and

mediators. These requirements correspond to the RFP-UPMS mandatory requirements

Service Provider and Service Consumer (requirements 6.5.12, 6.5.13). The metamodel

must support realization mechanisms of services (R3). The realization mechanisms could

include implementation by service providers or through aggregation of already existing

Chapter 4: Modeling Coarse-Grained Services

45

services by an aggregator. These correspond to the RFP-UPMS mandatory requirements

Realization, Composition, and Extension (6.5.14, 6.5.15, 6.5.17). The metamodel must

support provisioning of services (R4) over many channels, deployment and invocation

mechanisms for the service. These correspond to the RFP-UPMS mandatory requirement

Invocation (6.5.9). In addition, our metamodel also meets the requirements on UML

Compatibility (6.5.2) and Platform Independence (6.5.3).

4.2 Services Model Views

A model view is a representation of one aspect or perspective of a system [97]. By looking

at a system through different viewpoints, we would be able to deal with different aspects

of the system better. In order to arrive at the right set of model views for modeling

services for web business platforms, we look at a practical example. Our example is based

on a real life scenario – eBay® Auctions5 [98]. eBay® is a web-based business platform

which allows auctioning of a variety of items based on certain rules and policies in an

online marketplace. Sellers can auction items by choosing a minimum bid amount and

duration. Bidders bid for the item and the bidder with the highest bid at bid closing wins.

The winning bidder pays the seller and the seller ships the item to the buyer. Both the

buyers and sellers rate each other and the rating determines their credibility in the

marketplace. eBay® supports business services such as auctioning, bidding and rating but

collaborates with business partners for payment (Paypal®) and shipping services (FedEx®).

There could as well be other partners in the services marketplace providing these services.

eBay® opened-up its ecommerce web business platform for customers, business partners

and affiliates by exposing their business functions as webservices-based web APIs.

Opening up of the platform would enable a manufacturing company to auction its excess

inventory through eBay® auctions directly from its Supplier Relationship Management

(SRM) software like SAP® SRM. To expose a business function as a consumable service, a

business expert must be able to specify the broad definition of this service in a

technology-agnostic fashion. Consider the AUCTIONITEM service which allows sellers to

list an item in eBay® auctions. A business expert from eBay® needs a model view for

5 The services and the scenario described here are completely fictitious. However the scenario is

representational of other web business platform scenarios.

Chapter 4: Modeling Coarse-Grained Services

46

defining this service, its broad purpose and the associated ownership domain. An

ownership domain represents a logical partitioning of the services for administrative or

deployment purposes. We need a Service Definition View to support the business expert

in defining a service. The service definition view must support classification of the

services as atomic, composite or abstract. Atomic services (e.g. AUCTIONITEM) represent

atomic business functions such as auctioning an item. Composite services aggregate other

services (constituent services) and through this packaging improve value proposition to

consumers. Consider the BUYITNOW service from eBay® which lets a seller directly sell the

item at a fixed price instead of auctioning it. The BUYITNOW service in turn uses the

PROCESSPAYMENT service from Paypal® and SHIPPINGSERVICE from FedEx®. The BUYITNOW

service which aggregates the PROCESSPAYMENT and the SHIPPINGSERVICE services provided

by business partners is a composite service. Lastly, a business expert must be able to

define a service that represents a business need – a gap in the value-chain – yet to be

provided by any service provider. The reasons for defining an abstract service are the

following:

- An ownership domain would like its business partners to provide it with this

service based on some terms and conditions (expression of intent to outsource the

service)

- The ownership domain would want to defer the realization of the service. The

service could be defined for advertisement purposes but need not necessarily be

realized immediately.

For example, assume that eBay® wants to introduce a new VALIDATEAUCTIONITEM service

which would validate certain items being auctioned (e.g. art pieces). eBay® would want to

outsource the realization of this service (to say artnet®) because they might not have the

expertise to do this in-house. The intention to outsource this service could be expressed

by defining an abstract service.

The next step after service definition for the AUCTIONITEM service would be to define the

capabilities provided by this service more concretely. How does the interface for

auctioning an item look like? What are the different service properties (e.g. cost of access,

availability etc.)? We need a Service Capability View which would define service

properties and capabilities. The view must describe service interfaces, their service

operations and the syntax associated with invoking these operations along with the

schema of the messages and the message exchange pattern for interacting with the

service. The service capability view essentially defines the capability on-offer of a service.

Chapter 4: Modeling Coarse-Grained Services

47

Once the basic capabilities and properties are defined, it must be possible to specify

policies (such as security policy, auction policy or service disruption policy). The security

policy could state that only registered and authorized users must be allowed to access the

AUCTIONITEM service. The auction policy could state that perishable items could not be

auctioned. We need a Service Policy View to define policies on services. Exact

mechanisms to realize these policies are specified by the IT team during realization by

enhancing the policy definitions. For example, the IT experts could decide that the

authorization (security policy) should happen through a signed certificate (e.g. X.509

digital certificate [99]). The service policy view defines the terms of offer of a service.

The AUCTIONITEM service once defined and capabilities expressed must be realized (or

provisioned). Realizing a service could either be through an existing or new

implementation – in case of atomic services (by service providers) or through service

composition – in case of composite services (by service aggregators). The IT team could

use underlying IT assets from operational systems (packaged applications, custom home-

grown systems or mainframes) to implement a service. We need a Service Realization

View to capture provisioning of services.

Every service consumer has a goal which a service offering would satisfy. The relationship

between consumer goals and service offerings is an n x m relationship. Sometimes there

may not be a direct ‘fit’ between the goals and services due to inherent heterogeneities,

resulting in the need for mediation. For example, the BIDFORITEM service which is used to

bid for an auctioned item could be re-purposed to support a proxy-bidding scenario. In a

proxy-bidding scenario, the system alters the bid for an item on behalf of the bidder

based on user-specified rules. A service mediator could support this proxy-bidding

scenario. We need a Service Mediation View to support specification of mediation.

After the abstract definition for a service is specified followed by the service realization, it

must be possible to define external interaction points through which a service consumer

could access the service. It must be possible to define various ways of binding to the

service through the use of different transport protocols. It must also be possible to define

service invocation properties. We need a Service Deployment View to describe the

service interaction points and service invocation mechanisms.

Chapter 4: Modeling Coarse-Grained Services

48

From the eBay® Auctions scenario, we have identified the six model views – service

definition view, service capability view, service policy view, service realization view,

service mediation view and the service deployment view. These six views represent

different perspectives of services modeling in the context of web business platforms.

Table 4.1 below provides a summary of our six services model views.

Model View Viewpoint addresses
Service Description
View

Description and classification of
Services based on ownership domain

Service Capability
View

Description of Service, Service Properties, Interfaces,
Operations, Messages and message-exchange pattern. In
essence, defines the capability on-offer.

Service Policy View Definition of Service Policies. In essence, defining the
term of offer of a service

Service Realization
Service

Defining the service provisioning approach, either service
implementation from underlying IT assets or through
composition of constituent services

Service Mediation
View

Defining how existing services could be re-purposed to
address different consumer goals using process or data
mediation.

Service
Deployment View

Describes service interaction points and service
invocation mechanisms

Table 4.1: Summary of Services Model Views

4.3 Formal Semantics of the Services

Metamodel
In this section, we provide the formal semantics of the Services Metamodel which

supports modeling in different views. In addition to the MOF2-based metamodel for each

model view, we also present UML2 Profile defined in a stereotyped package <<Modeling

View>> for each of these model views which would help leveraging existing UML tools.

In this section, we focus on five model views and we deal with the service policy view

separately in the next chapter.

Chapter 4: Modeling Coarse-Grained Services

49

4.3.1 Service Definition View

The service definition view (fig 4.2) defines a service, its purpose along with the

ownership domain which owns the service. The ownership domain provides a logical

partitioning of services in terms of physical or administrative boundaries. The business

entity which owns the service could be the top-level ownership domain. Enterprise-wide

service portfolio could be organized under hierarchies of ownership domains. Ideally, the

business expert uses the service definition view as a starting point to define the ownership

domain and the services they own.

Key Classes and Associations

Service: A service represents a capability of a provider which meets goals of consumers. It

is a first-class modeling entity in our Services Metamodel. Service extends the Core:

NamedElement from UML Infrastructure Library6. A service could be atomic, composite

(isComposite = true) or an abstract service (isAbstract = true).

Ownership Domain: An ownership domain represents partitioning of services based on

physical deployment or administrative domains [32]. Ownership domain has owned

services associated with it. An ownership domain can in turn belong to other ownership

domain thereby creating a hierarchy of ownerships. The ownership domain extends the

Core: Namespace. The ownership domain also has a namespace URI (uniform resource

identifier).

6 Core represents the UML Infrastructure Library – the kernel. In our diagrams, we use the stereotype

<<metaclass>> to represent the Core.

Chapter 4: Modeling Coarse-Grained Services

50

Fig 4.2: Service Definition View

Fig 4.3: Service Definition Modeling View

4.3.2 Service Capability View

The service capability view (fig 4.4) helps in defining the capabilities and properties of a

service which is defined using the service definition view. Using this view it is possible to

define the service description, service properties, the service interface and the various

service operations along with their pre- and post-conditions.

Chapter 4: Modeling Coarse-Grained Services

51

Key Classes and Associations

Service: Service has a property isExtensible which determines if the service could be
extended or enhanced. Extension of a service could either be functional enhancements
(extending its capabilities) or property enhancements (enhancing service properties or
policies associated with a service). Every service can have one or more service
descriptions.

Service Description: A service description has a semantic description of the service and
could have many classifications. Service Description is associated with a Service Property
and a Service Interface. A service could have multiple service descriptions; also a service
description could exist without any service realizing it.

Service Property: A service property represents properties of service such as cost of
access, availability and service rating. The property could be quantitative (describing a
measure) or qualitative. One or more service properties are associated with every service
description. Service properties are also used in identifying appropriate services during
service discovery.

Service Classification: A service could be classified based on different taxonomies. The

classification system could be based on an internal taxonomy or be based on an existing

system such as the North American Industry Classification System (NAICS) [100]. It

extends the Core: Namespace.

Service Interface: A service interface represents the underlying capabilities brought to

bear by a service. A service interface could be extended to support specialization of a

service. For a service to be extended, the isExtensible property must be set true. Every

service interface has a set of supported operations and an exception associated with it.

The Service Interface extends the Core: NamedElement.

Service Constraint: A service constraint represents pre-conditions or post-conditions on

service operations. A constraint could be a hard constraint (mandatory constraint) or just

a preference (best-effort constraint). Service Constraint extends the Core: Constraint. A

service constraint is owned by an OwnershipDomain.

Chapter 4: Modeling Coarse-Grained Services

52

Fig 4.4: Service Capability View

Service Operation: A service operation represents an underlying capability. Event-

driven scenarios could also be modeled using a notification or an event receiver operation.

A notification operation (isNotifier = true) sends out messages that represent a

notification, whereas an event receiver operation (isEventReceiver = true) receives

messages representing an event. Every operation has input and output messages and the

Chapter 4: Modeling Coarse-Grained Services

53

sequencing of these messages get determined by the message exchange patterns. Marking

an operation as isNotifier or isReceiver could determine the message exchange pattern. It

extends Core: NamedElement.

Service Exception: A service exception represents an exceptional condition in a service

operation execution. Every service operation would have an infault or an outfault message

based on the message exchange pattern. A message exchange pattern defines the order of

the messages between the provider and the consumer. An exception could also be defined

at the level of a service interface. A service exception could be a resumable exception – an

exception does not halt the further execution of an operation after being handled

properly. It extends the Core: TypedElement.

Message: A message encapsulates input and output data for a service operation. We use

the terminology message as it is indicative of a loosely-coupled communication between

service providers and consumers. The messages that are exchanged must be strictly typed

and hence Message extends Core: TypedElement. The message label identifies whether a

message is an input message or an output message.

Fig 4.5: Service Capability Modeling View

Chapter 4: Modeling Coarse-Grained Services

54

4.3.3 Service Realization View

The service realization view (fig 4.6) helps to describe how services specified using the

service definition, capability and policy views are realized. Service realization is done by

IT experts. Realization of a service could be either through implementation or through

composition. Atomic services are realized through service provider implementations

whereas composite services are realized through composition of existing services. These

service providers could be existing IT assets in the operational systems or new

implementations. Composition is achieved by service aggregators using known

composition patterns and composition directives. Design-time composition directives

enable dynamic composition decisions at execution-time.

Fig 4.6: Service Realization View

Chapter 4: Modeling Coarse-Grained Services

55

Key Classes and Associations

Service: Service has an attribute isComposable which determines if the service is

composable. Also if a service is a composite service, then it is composed of many

constituent services. Each composite service has an associated composition pattern.

Service Participant: A service participant represents a role played by a stakeholder in a

services marketplace. Service Provider, Service Aggregator, Service Consumer and Service

Mediator are different roles representing service participants. It extends the Core:

Classifier.

Fig 4.7: Service Realization Modeling View

Service Provider: A service provider supports realization of an atomic service through its

service implementations. A service could be realized with an existing off-the-shelf

component, a function module in a packaged application, a stored procedure in a

database or through an entirely new implementation. A service provider is a service

participant and it also extends the Core: Class.

Service Implementation: A service implementation extends the Core: Operation. It

supports the actual implementation of an atomic service.

Chapter 4: Modeling Coarse-Grained Services

56

Service Aggregator: A service aggregator aggregates different (constituent) services to

provide a value-added composite service through service composition. A service

aggregator is a service participant.

Composition Pattern: A composition pattern is a pattern which describes a structured

assembly of constituent services to create a composite service. There are many patterns

available in the literature. The composition pattern extends the Core: NamedElement.

Composition Directive: The composition directive represents a directive used for

composing constituent services to create a composite service using the composition

pattern. A composition directive is associated with a composition pattern. It extends the

Core: OpaqueExpression.

Constraints

1. Only Composite services have a composition pattern associated with them.

2. Only Composite services have an aggregator associated with it.

3. The supported service of a service provider is always an atomic service

4. The supported service of a service aggregator is always a composite service

5. If one or more constituent services of a composite service are abstract, then the

constituent service is also abstract.

4.3.4 Service Mediation View

In a loosely-coupled environment, mediators are needed to cope with inherent

heterogeneities. Service Mediators are used to re-purpose services to cater to a wider

variety of user goals. Such mediation is called process mediation. Service Mediation is

also needed during service composition to support differences in service data and

message schemas. Such mediation is called data mediation. The Service Mediation View

(fig 4.8) helps in defining data or process mediation scenarios.

Chapter 4: Modeling Coarse-Grained Services

57

Key Classes and Associations

Service Mediator: A service mediator facilitates mediation for a service. Mediation could

either be data or process mediation. The type of mediator is specified by MediatorType

(data or process). The mediatorType attribute denotes the actual mediation. The service

mediation provides a mediation service which supports the actual mediation.

Service: A service has an attribute isMediator which signifies whether a service is a

mediator or not. The mediator service can either mediate between a consumer and a

service or between a service and another service. It also has another attribute isRealized

which determines whether the service has a realization.

Goal: The goal represents the goal (or need) of a service consumer. Each Service

Consumer has associated goals (consumer goals). Each of these goals is satisfied by one or

more services (satisfying services) and each service supports one or more goals. A goal has

both pre- and post-conditions which have to be met if the goal has to be satisfied. Goal

extends Core: NamedElement.

Service Mediation: Service Mediation represents the mediation between either two

services (in a composition scenario) or between a service and an external service

consumer. A service mediator is associated with a mediator service which does the actual

mediation. It extends the Core: DirectedRelationship.

Constraints

Abstract services are not realized (isRealized = false).

Chapter 4: Modeling Coarse-Grained Services

58

Fig 4.8: Service Mediation View

Fig 4.9: Service Mediation Modeling View

Chapter 4: Modeling Coarse-Grained Services

59

4.3.5 Service Deployment View

The service deployment view (fig 4.10) helps to describe how realized and concrete

services are deployed and how they could be invoked by external stakeholders.

Key Classes and Associations

Interaction Point: The interaction point defines an endpoint at which a service could be

accessed by service consumers. It is uniquely determined by a location URI. Interaction

point encapsulates the semantics of a channel through which a service is exposed

(exposed service). The choice of a channel is represented by a BindingType i.e. logical

channel type such as SOAP, HTTP etc. An ownership domain may have one or more

interaction points. Also a service could be exposed through different interaction points

(end-points). It extends Core: NamedElement.

Service Invocation: Service invocation defines an invocation of a service through the

interaction point by an external service consumer or another service (in a service

composition scenario). It also defines the mode of interaction i.e. Invocation Mode –

whether the service invocation is synchronous or asynchronous. A service invocation

could be either stateful (isStateful = true) or stateless.

Service: Service has an attribute isDeployed which signifies if a service is deployed and

has at least one interaction point.

Constraints

Abstract services will not have interaction points since they cannot be deployed

(isDeployed = false).

Chapter 4: Modeling Coarse-Grained Services

60

Fig 4.10: Service Deployment View

Fig 4.11: Service Deployment Modeling View

4.4 Modeling the Internet Auctions Scenario

In this section, we use our Services Metamodel to model the eBay® internet auctions

scenario, particularly we would keep the focus on simple modeling of the AUCTIONITEM

service in four steps. We use this modeling exercise to demonstrate the usefulness of our

metamodel.

Chapter 4: Modeling Coarse-Grained Services

61

Step I: Defining the AUCTIONITEM Service

We start with the service definition view to define all the services and the ownership

domains in the internet auctions scenario (see fig 4.12). The eBay ownership domain owns

the BUYITNOW composite service (isComposite = true). It also owns other ownership

domains – Feedback and Auction ownership domains, which in turn own atomic services

such as RATINGSERVICE, AUCTIONITEM and BIDFORITEM. The Paypal ownership domain

owns the PROCESSPAYMENT service and the FedEx ownership domain owns the

SHIPPINGSERVICE.

Step II: Modeling the AUCTIONITEM Service Capability

We take the AUCTIONITEM service and model its capability on-offer (see fig 4.13) using the

service capability view. The service description has a single classification based on the

NACIS. The AUCTIONITEM service is classified as a business-to-consumer (B2C) service.

The service description has an AuctionServiceInterface (SI) which has an

AuctionNotPermitted (EX) service exception. The exception denotes a business contract

violation of trying to auction a prohibited item (could be based on the auction policy).

The service interface supports a service operation AuctionSingleItem (OP) which follows

the request-response message exchange pattern. Since the pattern supports an in as well

as an out message, we have defined both the messages. The AuctionRequestMessage(M),

the in message encapsulates item name, item description, minimum bid and auction

closing date and AuctionResponseMessage(M), the out response message returns an

auction identifier as a reference.

Step III: Realizing the AUCTIONITEM Service

The AUCTIONITEM service is an atomic service that is realized (or provisioned) by a service

provider implementation (see fig 4.14). The auction manager is the service provider which

provides a service implementation listAuctionItem () which implements the service.

Chapter 4: Modeling Coarse-Grained Services

62

 Fig 4.12: eBay Internet Auctions Scenario - Service Definition

Step IV: Deploying the AUCTIONITEM Service

Once the AUCTIONITEM is defined, capability modeled and realized it has to be exposed

(or deployed) for consumption (see fig 4.15). We expose the AUCTIONITEM service through

an interaction point AuctionSOAPEndpoint (IP)
.
 The transport protocol for this endpoint

is SOAP/HTTP. The location URL is specified through which this service could be

consumed synchronously by a seller from the public domain.

Chapter 4: Modeling Coarse-Grained Services

63

Fig 4.13: AUCTIONITEM service - Service Capability

Fig 4.14: AUCTIONITEM service - Service Realization

Chapter 4: Modeling Coarse-Grained Services

64

Fig 4.15: AUCTIONITEM service - Service Deployment

4.5 Models to Executable Specifications

Once the service is modeled using our model views and our Services Metamodel, we

would have to transform these models to usable artifacts. The artifacts which get

generated from our services models are listed below (table 4.2).

Input Models Specifications
Service Description
Model / Service
Capability Model

- Abstract Service Description (e.g. WSDL) – service
description without concrete protocol bindings and
endpoints
- Service registry listings (e.g. UDDI [31]) for aiding
service discovery for consumers

Chapter 4: Modeling Coarse-Grained Services

65

Service Realization
Model

Service provisioning code templates based on particular
provisioning environments (java, .NET etc.)

Service Policy
Model

Policy descriptions (e.g. WS-Policy [101]) and policy
attachment to services (e.g. WS-PolicyAttachment [102])
(more in chapter 5)

Service
Deployment Model

- Concrete service descriptions (WSDL with protocol
bindings)
- Deployment descriptors

Table 4.2: List of Artifacts Generated from Models

Generally, these artifacts could be executable specifications, deployment descriptors as

well as code templates. In model-driven development, the transformations from model to

text (artifacts) happen through model to text transformation languages. Model to text

transformation is evolving and there are multiple transformation languages such as

MOFScript, OMG’s Model to Text Transformation Language (MTL), JET (Java Emitter

Templates) and OpenArchitectureWare’s Xpand [103]. The choice of the languages could

be based on MDA tools, personal preferences and suitability (for example, JET is used to

create transformations between model to Java code). The support for model

transformation is one of the core features which support longevity and usefulness of a

MDA solution.

For each of these artifacts generated, there could be one or more input models. Using the

service description and the capability models, we could generate abstract service

descriptions (e.g. WSDL without bindings). We could also create service registry entries

to aid consumers in discovering the service using standards such as UDDI. Using the

service realization model, we could create code templates to support service provisioning.

For example, we could create a service provider class to support the provisioning of the

AUCTIONITEM service. The class template could be created for different technical

platforms such as java or .NET. The service policy model could be transformed to run-

time policy specifications (more in chapter 5) and the deployment model could be used to

create concrete service specifications with protocol bindings and endpoint. It could also

be used to create application server deployment descriptors. Technically, we could have

transformations from our Services Metamodel to any executable service description

Chapter 4: Modeling Coarse-Grained Services

66

language. But our choice of executable specification for our default transformation is

driven by industry adoption. Based on industry adoption, Web Services Description

Language (version 1.1 or 2.0) is the widely adopted service description standard. We have

developed a MTL template (see Appendix I) to transform our services models to WSDL

2.0 service description (fig 4.16). For provisioning the AUCTIONITEM service, the service

realization model is converted to a skeleton java class (fig 4.17). It is also possible to create

the provisioning class in any technology platform by altering the transformation.

Fig 4.16: AuctionService WSDL 2.0 Description

Chapter 4: Modeling Coarse-Grained Services

67

Fig 4.17: Auction Manager Java Implementation – Service Provisioning

4.6 Related Work

Model-driven development of services is still in the nascent stage. Model-driven

development of web-services is addressed in [104-107]. The RFP-UMPS is an effort by

OMG to consolidate existing approaches into a consistent metamodel and UML2 profile

for modeling services. There are existing UML-based approaches to modeling services. In

[108], they use UML class diagrams to model services. In this approach ‘Service’ is not

viewed as a first-class modeling entity. UML Collaboration diagrams have been used

Chapter 4: Modeling Coarse-Grained Services

68

extensively to model behavioral-aspects such as service collaboration and compositions

[109,110].

There are also other efforts to provide support for services modeling through light-weight

extensions to UML through Profiles [111-113]. All these efforts provide a direct mapping

between WSDL 1.1 elements and their model elements. Also they are based on the UML1.x

standards. UML-profiles for services and SOA are proposed by [114,115]. An UML 2.0

Profile for Software Services [116] is proposed by IBM. In this profile, a service is

restrictively modeled as a Port of a UML Composite class. The service realization

mechanisms are only through implementation by components. Composition as a

realization mechanism is not supported. The profile does not support modeling of

policies and mediation. Although Service is a first-class modeling entity, it is tightly

associated with a Component. In contrast, in our services metamodel services are truly

first-class modeling entities. Modeling of realization mechanisms such as implementation

and composition are supported. Our service metamodel also supports modeling non-

functional aspects of services through service properties and policies. We also provide

support for deployment and mediation of services.

UML-profile for distributed object computing (EDOC) [117] facilitates modeling of

enterprise systems but does not provide means to model services. The UN/CEFACT's

Unified Modeling Methodology (UMM) [118] provides a standard way for business

processes and information modeling for e-Commerce. An UML-profile for B2B e-

commerce is presented in [119]. Our services metamodel could complement these

approaches and act as the foundation for a model-based service repository.

Apart from UML-based modeling approaches, there are other approaches which aid

modeling of services. [120] provides a formal-model of services with a theoretical

foundation for specifying services and service composition. The Webservices Modeling

Framework (WSMF) [121] defines conceptual entities for services modeling. Web-Service

Modeling Ontology (WSMO) [122] has its foundations in WSMF but it defines a formal

ontology to semantically describe webservices. The Webservices Modeling Language

(WSML) [123] provides a formal syntax for WSMO based on different logical formalisms.

Chapter 4: Modeling Coarse-Grained Services

69

4.7 Summary

In this chapter, we presented our Services Metamodel with six model views to model

different perspectives of services development. These model views have a formal

foundation based on MOF2. They support different stakeholders such as business experts

and the IT experts to model services during early-stage services design. The metamodel

draws its foundations from technical specifications like WSDL 2.0, WS-Policy and WSMF

since our focus is on web-based electronic services. We have used our services metamodel

to model a fictitious eBay® auctions scenario. Through this modeling exercise, we have

demonstrated how different facets of services such as service description, realization,

mediation and deployment could be modeled using our services metamodel. The

Services Metamodel addresses the high-level requirements we had mentioned. The

service description and capability views address the high-level description of web-based

services. Each of the views addresses different participants (roles) – service provider,

aggregator, mediator and consumer, involved. The service realization view addresses the

provisioning of defined services. The service deployment view addresses operational

details of the service such as available interaction points, protocols and modes to access

the service.

Chapter 5: Modeling Service Policies

70

Chapter 5

Modeling Service Policies
Modeling the Terms of offer of a Service using Service Policies

A service representation describes two facets of a service – the service functionality

(capability on-offer) and the terms at which the service is offered (terms of offer) [33]. The

capability on-offer satisfies the goal of a service consumer under the constraints of the

terms of offer. Essentially, the terms of offer describe the service-level agreement (SLA)

between a service provider and a consumer. Service Policies are used to define the terms

of offer of a service offering. In general, a service policy defines constraints or conditions

of use of a service. Policies deal with different aspects such as security, pricing, quality of

service etc. Consider the example of a SHIPPINGSERVICE from FedEx®, the capability on-

offer is to ship packages from one place to another, the terms of offer could be the time-

to-delivery and rates of shipping. In our research, we address two significant issues in the

development of service policies.

- Firstly, current approaches to service policies focus primarily on technical or

infrastructural aspects such as security, trust and reliable messaging. We take a

broader view of service policy development. In our view, service policies would

address three-levels of aspects – service-level (e.g. availability, pricing, promotions and

quality of service), business or domain-level (e.g. compliance, industry regulations)

and technical-level (e.g. security, trust). While technical policies are defined by IT

experts, the service-level and domain policies would be defined by domain experts.

- Secondly, we address independent development of service policies. Traditionally,

service descriptions have had a bias towards describing service functionality as

opposed to non-functional terms of offer (e.g. WSDL for web service description).

Lately, there have been efforts to address description of non-functional terms of offer

in service descriptions (Features & Properties in WSDL 2.0 and the WS-Policy

framework [124]). However, service development approaches still consider service

Chapter 5: Modeling Service Policies

71

policies in the confined context of the underlying service functionality which they

constraint. Instead, service policies could be developed independently by domain

experts and could later be applied on a chosen set of services in the services portfolio

through well-defined quantification and fine-tuning. For example, the security expert

could define encryption and authentication policies independently and later apply it

to selected services in the portfolio.

5.1 Generic Policy Framework

The most-important aspect of our service policy development approach is our service

policy view supported by the service policy metamodel – a part of our Services Metamodel.

In order to arrive at our policy metamodel for the service policy view, it is important to

understand the generic policy model – an abstract model for service policies. The generic

policy model consists of four functional layers to describe service policies [125] (fig 5.1).

• Vocabulary Specification Layer: Deals with specification of the vocabulary

associated with various policy domains representing independent aspects. These

aspects could be technical, service-level or domain-level aspects. Vocabulary

consists of vocabulary items and their applicable values which would then be used

in service policies. It also involves specifying the semantics and syntax associated

with the vocabulary items. Constraints are always specified on these vocabulary

items in the constraint specification layer.

• Constraint Specification Layer: Deals with specification of policy constraints,

which would ideally be constraints on the agreeable values of vocabulary items.

Constrained vocabulary items are assertions which are the building blocks of a

policy.

• Policy Specification Layer: Deals with specification of acceptable combinations

of the constrained vocabulary items. Each combination of constrained vocabulary

items represents a policy alternative.

• Bindings Specification Layer: Deals with specification of application of the

service policies on various policy subjects. Policy subjects could be services,

Chapter 5: Modeling Service Policies

72

ownership domains as well as individual operations. Binding layer supports the

quantification and fine-tuning of policies for different policy subjects.

Fig 5.1: The Generic Policy Model

This generic policy model is largely representative of several policy specifications which

are based on propositional logic with the assertions representing an indivisible unit and

their combinations through conjunction or disjunction representing a policy.

5.2 Service Policy View

The service policy view (fig 5.2) is used to define policies which could later be applied on

selected service artifacts. It is supported by the policy metamodel, part of the Services

Metamodel. The service policy <<modeling view>> is presented in fig 5.3.

Chapter 5: Modeling Service Policies

73

Service Policy: A service policy defines a set of enforceable constraints which would be

applied on a policy subject [32]. It presents these enforceable constraints as a set of

alternatives. A service policy reflects the point of view of a service participant. Service

Policy extends the Core: NamedElement. A service policy is owned by an

OwnershipDomain.

Policy Subject: A policy subject represents an entity on which a policy is applied [101]. A

policy subject extends the Core: Element. The policy subjects could be Ownership Domain,

Service, Service Interface, Service Operation, Message and Interaction Point (end point).

If a set of policies are applicable on a single policy subject, at run-time these are

reconciled and represented as an effective policy.

Fig 5.2: Service Policy View – The Policy Metamodel

Chapter 5: Modeling Service Policies

74

Policy Scope: A policy scope represents a set of policy subjects on which a policy could

be applied [101]. It is a mechanism to group related policy subjects together in order to

apply the same policy on them. More than one policy could also be applied on the policy

scope. The policy scope supports quantification of service policy by domain experts.

Policy Alternative: Each policy has a set of policy alternatives out of which at least one

has to be honored [101]. The policy alternative which is honored is called the chosen

alternative. Every policy alternative would have more than one policy assertion.

Fig 5.3: Service Policy Modeling View (UML Profile)

Policy Assertion: Every policy alternative would have one or more policy assertions [101].

A policy assertion is related to a constraint that is applied on a vocabulary item

(constrained element) of a particular domain. The policy assertion specifies the allowable

range, range of values, or set of values for a vocabulary item. It has an operator associated

with it – the operator is a predicate operator used to describe constraints. The policy

assertion could be optional in nature and could represent a preference of the service

participant. It extends the Core: NamedElement.

Chapter 5: Modeling Service Policies

75

A policy assertion is an atomic unit of a service policy. It represents a constraint on a

vocabulary item representing different technical, service-level or domain-level (business)

aspects. A policy assertion could be represented as:

Policy Assertion = {VI, PO, AV, C}

Where, VI - vocabulary item representing a particular aspect

 PO - predicate operator

 AV - accepted value / values or range of values

 C – category of the assertion (Mandatory / preference)

Consider examples of security assertion (use of Kerberos security token) and pricing

assertion (cost of service-access) below:

Security Token Assertion = {‘Security Token’, ‘Equals’, ‘Kerberos’, ‘Preference’}

Pricing Assertion = {‘Cost of Access’, ‘Equals’, ‘1 EUR’, ‘Mandatory’}

Policy Domain: A policy domain represents a grouping of assertions belonging to a

particular aspect such as pricing, availability, security & trust etc. A policy domain is

identified by a name and a namespace URI and it extends the Core: Namespace.

Vocabulary Item: A vocabulary item represents semantics associated with a particular

aspect and belongs to a policy domain. Every vocabulary item has a set of applicable

values. The vocabulary items for a particular domain (aspect) are defined by the domain

expert. Vocabulary Item extends the Core: DataType.

5.3 Vocabulary Specification – Defining Policy

Domains and their Vocabulary

Vocabulary specification involves identifying policy domains and describing their

vocabulary. The policy domain vocabulary involves defining Vocabulary Items to describe

the policy domain. The vocabulary items would have a type and a range of acceptable

values. The policy assertions apply constraints on the vocabulary items by specifying

agreeable values for the vocabulary items. Policy domains address aspects that represent

Chapter 5: Modeling Service Policies

76

independent concerns such as security, pricing etc. These concerns are pre-dominantly

crosscutting in nature as they apply to a set of services in the services portfolio and not

just a single service. From aspect-oriented software development literature, we refer to

these crosscutting concerns represented by the policy domains as aspects. We group

these aspects as technical, service-level or domain-level (business) aspects. It is important

to identify these aspects early in the life-cycle of service development and define their

vocabulary in order to use them in service policies.

5.3.1 Policy Domain Aspect Catalog

Becasue the technical, service-level and domain-level aspects are reusable assets in

services development, it is important to document and catalog these aspects. Notably,

this catalog of aspects is extensible and could be extended to create additional aspects

either by extending existing aspects or by adding new aspects. We have defined a

standard schema (table 5.1) to document aspects.

Name of Concern The name of the concern addressed by the

aspect

Type of Aspect Denotes the aspect type

Related Aspects Denotes related aspects for this aspect

Context Denotes the context for this aspect

Rationale &

Discussion

Provides a brief description of the aspect and

its application

Quantification Denotes applicability of the aspect. It could be:

1. List of services in the services portfolio

2. Select services, interfaces, operations or

interaction points (end-points)

3. Ownership Domains

Chapter 5: Modeling Service Policies

77

Table 5.1: Standard Schema for Documenting and Cataloging Aspects

We believe this would facilitate better communication among stakeholders during early-

stage design and development activities. A formal definition of this schema is done using

XML-Schema (aspect.xsd). A pictorial XML-Schema is presented in fig 5.4.

Fig 5.4: A XML-Schema (pictorial representation) for Documenting Aspects

In the remainder of this section, we present the top-level technical, service-level and

domain-level aspects we have identified. An important point to note is that the

vocabulary for these aspects would evolve and standardize over a period of time. Existing

ontologies could also be used to standardize the vocabulary.

Vocabulary Vocabulary defines a set of vocabulary items

and their applicable values

Vocabulary Items Type Applicable Values

Domain terms to

describe the

aspect

Type of vocabulary

item

Acceptable values for

the vocabulary item

Chapter 5: Modeling Service Policies

78

Technical Aspects

Technical aspects address infrastructural and messaging concerns such as security, trust

and transactions. These aspects must be conveyed though service policies to enable

secure trusted and reliable conversation between the service provider and the consumer.

Fig 5.5 presents the top-level technical aspects we have identified – Security, Trust,

Reliable Messaging and Transactions.

Fig 5.5: Technical Aspects

Security: Security deals with message level security between the service provider and

consumer thereby guaranteeing a secure conversation. Security mainly involves end-to-

end message integrity, message confidentiality and authentication. As an example, we use

the catalog schema to document the security aspect (see Table 5.2).

Trust: Trust is closely related to security. In the context of a secure conversation, trust

determines the reliability and integrity of the service consumer from the perspective of

the provider or vice-versa. In order to prove integrity, the consumer requests a token

from a trusted third-party (e.g. Kerberos token from a Kerberos Token Distribution

Center) and sends this to the provider to establish it’s identify.

Reliable Messaging: Reliable messaging deals with end-to-end reliable and guaranteed

delivery of messages between a service provider and a consumer.

Transactions: Transactions addresses standard transaction mechanisms for short-

duration ACID transactions as well as long-running business transactions.

Technical Aspects

Reliable Messaging Security Transactions Trust

Chapter 5: Modeling Service Policies

79

Name of Concern Secure Conversation

Type of Aspect Security

Related Aspects Trust

Context Security addresses secure conversation
between the service provider and the
consumer.

Rationale & Discussion Security addresses issues such as
authentication, encryption and integrity of
messages between the provider and the
consumer.

Quantification Externally exposed services needing secure
access

Vocabulary

Vocabulary Terms Type Applicable Values

Username String

PasswordType String Clear Text, Digest

PasswordValue String

IsBinarySecurityTokenRequired Boolean

BinaryEncodingType String Base64, Hex, UU

BinaryEncodingTokenType String Kerberos, X.509
(variants)

BinaryEncodingTokenValue anyType

isDigitalSignatureRequired Boolean

SignatureMethod String

HashMethod String SHA1, MD5

DigestValue anyType

IsEncryptionRequired Boolean

Chapter 5: Modeling Service Policies

80

Table 5.2: Technical Aspect – Secure Conversation

Service-Level Aspects

Service-level aspects addresses service concerns such as quality of service, privacy of

service consumers, pricing and availability. It also addresses how to promote the use of

services in the services marketplace. Fig 5.6 describes the top-level service-level aspects

we have identified.

Fig 5.6: Service-Level Aspects

Service Pricing: Service pricing deals with the price at which a service is offered. It also

deals with price types, payment modes and the charging styles for the use of a service. As

an example, we use the catalog schema to document the pricing aspect (Table 5.3).

Service Availability: Service availability deals with spatial (location) and temporal

availability concerns of a service. It determines the time of the day and the duration for

which the service is available. It also determines the geographical reach (countries,

regions, cities and states) of the service.

EncryptionMethod String DES, TripleDES, PGP

Service-Level Aspects

Service Availability Service Pricing Service Promotion

Service Privacy Service Quality

Chapter 5: Modeling Service Policies

81

Name of Concern Pricing of a Service Offering

Type of Aspect Service Pricing

Related Aspects Service Promotion

Context A Service offering from a provider could have an

associated cost.

Rationale & Discussion Pricing deals with associating a cost of access

with a service. It involves payment and

settlement. Payment is a concern during access

of a paid service. Payment for a service is

determined by cost of service access, the

charging style and the payment modes.

Quantification Payment is a concern across a set of paid

services.

Vocabulary

Vocabulary Terms Type Applicable Values

Pricing Period Validity

Applicable Location Location

Pricing Mechanism String Absolute, Proportional, Dynamic

Price Amount Amount

Price Type String Regular, Tax, Shipping, Commission,

Octroi

Credit Period Duration

Payment Mode String Cheque, Cash, Credit Card, Bank

Transfer

Charging Style String Pay-per-use, Rental, Subscription

Chapter 5: Modeling Service Policies

82

Table 5.3: Service-Level Aspect – Service Pricing

Service Promotion: Service promotion deals with promoting service consumption by

customers and market segments by providing them with discounts and rewards.

Service Privacy: Deals with protecting consumer information and ensuring

confidentiality of the data exchanged between the service consumer and the provider. It

also determines whether the consumer information would be shared with business

partners in case of composite service offerings.

Service Quality: Deals with guaranteeing consumers acceptable and agreed upon quality

of service such as service availability, response time, performance and reliability.

Domain-Level Aspects

Domain-level aspects address business-level concerns such as compliance to legislative as

well as industry regulations, adherence to business rules and following industry

conventions (fig 5.7).

Fig 5.7: Domain-Level Aspects

Business Rules: Business rules define constraints on the operations, or operational

procedure of a business which influences the behavior of the business. Business rules

could pertain to business calculations, business policies or restrictions.

Domain-Level Aspects

Business Rules Compliance Conventions

Regulatory Compliance Legislative Compliance

Chapter 5: Modeling Service Policies

83

Compliance: Compliance addresses issues related to adhering to legislation (rule of the

land) or with regulations set by industry regulatory authorities.

Conventions: Conventions deal with generally accepted practices which have been

followed in a particular business or industry over a period of time.

Domain-Level Aspects Vs Technical & Service-Level Aspects

Flexible Vocabulary: Technical aspects like security and service-level aspects such as

pricing can have a generic vocabulary which could standardize over a period of time or

through standard ontologies. The vocabulary of technical or service-level aspects remains

similar across businesses or industries. However, in the case of domain-level aspects,

though business rules and compliance are broad crosscutting concerns, their specific

vocabulary vary. Consider the example of the Shipping industry – a business like FedEx®

in the shipping business, has to comply with the Bioterorrism Act 2002 - Prior Notice for

food shipments. Meanwhile, the aviation industry would have to comply with Federal

Aviation Act. We note that though compliance remains an aspect across industries, the

vocabulary for compliance is flexible. Due to its flexible vocabulary, domain-level aspects

have to be specifically defined for each business by regulatory and governance (domain)

experts. We define vocabulary for Compliance to Bioterrorism Act 2002 - Prior Notice

(table 5.4) regulation in the Shipping industry. The regulation requires the consumer of

the ShippingService ShipItem (OP) operation to intimate the FDA (Federal Drug

Administration) with a prior notice for food shipments and use the prior notice

confirmation while using ShipItem (OP).

Restricted Quantification: Quantification deals with the selection of services and other

policy subjects in the services portfolio for applying a Policy i.e. it determines the policy

scope. Unlike, technical and service-level aspects, the domain-level aspects have a limited

quantification i.e. they do not have a broad impact on services in the services portfolio.

Due to the nature of domain-level aspects they apply to specific services e.g. Compliance

to Bioterrorism Act 2002 - Prior Notice applied to ShippingService ShipItem (OP) operation.

Most importantly, the aspects and their vocabulary we identified in this section are more

indicative than prescriptive. They could evolve as per specific business or industry. New

aspects could derive from the existing aspects, or they could be entirely independent.

Chapter 5: Modeling Service Policies

84

Table 5.4: Domain-Level Aspect – Compliance to Bioterrorism Act 2002 (Prior Notice)

5.4 Modeling the SHIPPINGSERVICE Scenario

We use a fictitious SHIPPINGSERVICE offered by FedEx® to explain the use of our service

policy view. The service represents an underlying capability of shipping an item from one

place to another. The SHIPPINGSERVICE defines a ShipItem(OP) operation which supports

shipping a package. In addition to this, there could be other operations (fig 5.8) such as

Get Rates and Transit Times(OP) – an operation which provides rates and transit times

between two locations and Schedule Pick-up(OP) – an operation which supports pick-up of

items from consumer’s location. In addition, FedEx® also offers the TRACKINGSERVICE

which supports tracking a shipment through its Track Shipment(OP) operation.

Name of Concern Compliance to Bioterrorism Act 2002 – Prior Notice

Regulation

Type of Aspect Bioterorrism Act 2002 - Prior Notice Compliance

Related Aspects Regulatory Compliance

Context Compliance notice to the service consumer while shipping

food exports.

Rationale &

Discussion

The aspect deals with compliance to the Bioterrorism Act

2002 – Prior Notice which requires the consumer to use a

prior notice confirmation number to ship food exports.

Quantification SHIPPINGSERVICE ShipItem(OP) Operation

Vocabulary

Vocabulary Terms Type Applicable Values

IsPriorNoticeRequired Boolean

PriorNoticeConfirmationNumber String

Chapter 5: Modeling Service Policies

85

Fig 5.8: FedEx® Ownership Domain and the Services

The service capability view (fig 5.9) provides a functional view of the ShippingService. By

applying a WSDL 2.0 transformation (from Appendix I) on the service capability view, the

abstract service description could be obtained (fig 5.10).

 Fig 5.9: SHIPPINGSERVICE – Service Capability View

Chapter 5: Modeling Service Policies

86

Below, we define an example pricing policy which is later applied to the ShipItem(OP)

service operation. The domain experts use the service policy metamodel to independently

define the pricing policy and associate it with the ShipItem(OP) policy subject. Defining

the pricing policy inolves firstly defining the pricing domain vocabulary, secondly

defining the alternatives by constraining the pricing vocabulary items and finally applying

the policy on the ShipItem(OP) operation.

Pricing Policy: Every customer could be a subscription customer or a regular customer.

Subscription customers pay a propotional price based on their use. Regular customers pay

an absolute price per service access.

Fig 5.10: WSDL 2.0 Snippet for abstract definition of the SHIPPINGSERVICE

Chapter 5: Modeling Service Policies

87

 Step I: Defining the Service Pricing Policy Domain

The first step for the pricing expert (domain expert) is to define the domain vocabulary

for the service pricing domain (fig 5.11) if it is not done previously. The domain vocabulary

is defined using visual models using the Service Policy View.

Fig 5.11: Vocabulary Definition – Pricing

Step II: Defining the Pricing Policy

After modeling the pricing vocabulary, the pricing policy has to be modeled by the

domain experts. Fig 5.12, shows the pricing policy modeled using our services policy

metamodel.

Chapter 5: Modeling Service Policies

88

Step III: Quantification – Applying the Pricing Policy to ShipItem(OP)

Once the pricing policy id modeled, it has to be applied to the ShipItem(OP) operation (fig

5.13) – a policy subject.

Fig 5.12: Service Pricing Policy Model

Fig 5.13: Service Pricing Policy Model

Chapter 5: Modeling Service Policies

89

5.5 Models to Executable Specifications

Once the domain experts model the policies using our service policy view, these policy

models have to be converted to appropriate interoperable standards. The policies should

also be incorporated into service descriptions.

For the SHIPPINGSERVICE, the service capability model (in fig 5.9) captured the underlying

capability on offer. The capability model was then converted to a standard WSDL 2.0

service description (in fig 5.10). In a similar manner, the policies described using our

service policy models have to be transformed to appropriate industry accepted

interoperable standards. Since there are multiple and sometimes competing standards,

we look at different standards available in each of layers of the generic policy model (table

5.5).

Table 5.5: Standards Relevant to Generic Policy Model Layers

Generic Policy Model Layer Specifications

Vocabulary Specification - XML Schema [126]

- Web Ontology Language (OWL) [127] to support

specification of domain ontologies

Constraint Specification - Domain Dependent Specification: Domain

specific assertions using WS-SecurityPolicy, WS-

Trust, WS-ReliableMessagingPolicy [128].

- Domain Independent Specification: Domain

independent assertions using WS-

PolicyConstraints [129], XACML [130].

Policy Specification - WS-Policy

- Web Service Policy Language (WSPL) [131]

Binding Specification - WS-PolicyAttachment

Chapter 5: Modeling Service Policies

90

Technically, the policy models created using our service policy metamodel could be

transformed to any of these specifications using MOF2 Models to Text Transformation

Language (MTL) standard mappings (or any other mapping language). But we have made

certain choices about the standards we would use for our standard transformations.

These choices are based on two considerations – current industry adoption and support

for generic processing of policies.

Based on industry adoption we choose WS-Policy specification to specify policies. WS-

Policy specification has a solid industry backing and is a mature W3C recommendation

now. SOA vendors also support policies defined using WS-Policy in their middleware

software. Having chosen WS-Policy, choosing WS-Policy Attachment was an obvious

option for binding specification. For vocabulary specification and constraint specification:

Domain-dependent constraint specification languages like WS-Security policy (security

domain) and WS-ReliableMessagingPolicy (reliable messaging domain) have matured

and evolved with WS-Policy. They provide standard semantics and constraints to specify

security and reliable messaging capability. However, we choose a domain-independent

constraint specification language – WS-PolicyConstraints. WS-PolicyConstraints help to

specify domain-independent generic constraints using XACML-based functions. We

choose the nascent WS-PolicyConstraints over the much adopted domain-dependent

constraint languages for the following reason:

• Absence of existing assertion languages to specify domain-specific assertions for

service-level aspects such as availability, pricing, promotions as well as domain-

specific aspects.

• To provide flexibility in rich vocabulary specification for service-level and domain-

level aspects across industries and businesses. Domain-dependent assertion

languages have currently restricted vocabulary to improve interoperability.

• Advantage of using a common generic policy handling logic for parsing policies in

the SOA middleware instead of having multiple policy handlers.

We have developed a MTL transformation to transform the model developed using the

service policy metamodel to preferred specifications (XML Schema, WS-PolicyConstraints,

WS-Policy and WS-PolicyAttachment) (fig. 5.14). The Normal Form of WS-Policy is

chosen for the transformation.

Chapter 5: Modeling Service Policies

91

5.5.1 Transforming the Pricing Policy Model

Fig 5.14: MTL Transformation (Service Policy Metamodel to Specifications)

We apply our standard MTL transformation to the pricing policy model. The pricing

vocabulary we defined is converted to XML Schema using standard XML mappings (fig

5.15).

Chapter 5: Modeling Service Policies

92

Fig 5.15: Pricing Vocabulary XML Schema

The pricing model is transformed to WS-Policy with the policy constraints being

expressed in WS-PolicyConstraints (fig 5.16) and the pricing policy is attached to the

ShipItem (OP) using WS-PolicyAttachment (fig 5.17). A pricing policy handler (a Policy

Enforcement Handler) is optionally generated and added in the SOA middleware to

handle pricing policies (more on this in the next section).

Chapter 5: Modeling Service Policies

93

Fig 5.16: Pricing Policy Definition in WS-Policy and WS-PolicyConstraints

Fig 5.17: External Policy Attachment using WS-PolicyAttachment

Chapter 5: Modeling Service Policies

94

5.6 Policy Enforcement at the SOA Middleware

Once the policies are modeled and associated to the policy subjects, the service

descriptions are enhanced with policy information. Now these policies have to be

enforced in the SOA middleware. The most important criterion for policy enforcement is

that it has to be unintrusive. We use an active SOAP intermediary – the Policy

Enforcement Point intermediary (PEP) Intermediary (fig 5.18). The PEP intermediary

works on the SOAP headers associated with service policies. We use Apache Axis 2.0 [132]

(herein Axis2) SOAP engine as our PEP SOAP intermediary. We take advantage of the

extensible SOAP processing model of Axis2.

Fig 5.18: Unintrusive Policy Enforcement using PEP Intermediary

Inside the PEP intermediary (fig 5.19), we have a Generic Handler (an XACML policy

processor) to handle all service policies – an advantage of using the domain-independent

WS-PolicyConstraints. However, if we need application specific programming logic to

handle special policy enforcement for certain policy domains, we could optionally choose

to have an exclusive Policy Enforcement Handler (PE Handler). The generic handler and

the optional PE handlers are part of a user-defined Policy Enforcement Phase (PE Phase).

As soon as a new instance of a policy domain is added in the policy model, a

corresponding policy enforcement handler is optionally generated and automatically

added to the end of the PE phase. The SOAP headers representing different aspects such

as security, pricing etc. have the role http://fictitious.com/role/policyEnforcement and

the PE intermediary which plays the policy enforcement role must understand and

process these headers.

Chapter 5: Modeling Service Policies

95

Fig 5.19: Inside the PEP Intermediary

Fig 5.20: Sample SOAP Request for the ShipItem(OP) Operation

Once the policy enforcement is done, the SOAP messages are routed to the ultimate

receiver (or the service provider). Fig 5.20 presents a sample SOAP request for the

ShipItem (OP) operation (the SOAP body is not presented for brevity). The header element

Service Pricing would be interpreted by the PEP intermediary based on the role. The

message is then handled by Pricing Handler.

Chapter 5: Modeling Service Policies

96

5.7 Related Work

Model-driven approaches to developing webservices [104-106] are increasingly getting

popular. OMG realized the need to standardize model-driven services development – the

result – RFP (request for proposal) UML Profile and Metamodel for Services (UPMS) [133],

hereon RFP UPMS. However, the RFP UPMS does not address Service Policies; the focus

is on Services Modeling – capability and contract modeling. The OASIS SOA Reference

Model (SOA-RM) [32] and the WS-Arch [94] (Webservices Architecture) describe service

policies in detail. Our approach complies with the SOA-RM. In our approach, we consider

all aspects of service policy modeling by addressing the 4-layers of the generic policy

model.

A close related work – Ortiz et al.’s [134] work on modeling extra-functional properties

deals with modeling services based on the Service-Component Architecture (SCA) and

defining extra-functional properties. They have developed a UML Profile for SCA and to

model extra-functional properties [135]. However the focus of their approach is not on

independent policy development – by describing alternatives and constraints – instead

the focus is on defining extra-functional properties at the modeling level and representing

it using WS-Policy. Policy enforcement implementations are based on aspect-oriented

techniques [136]. Moreover, the aspects dealt (e.g. logging) are more technical in nature;

in comparison our approach addresses technical, service-level and domain-level aspects.

Also Ortiz et al.’s approach does not address vocabulary specification for policy domains

and constraint specification.

With respect to vocabulary specification, O’Sullivan has done extensive work on non-

functional properties in service descriptions; he has also produced concrete XML syntax

of service properties [137], which could be reused as vocabularies. Also ontologies such as

QoSOnt [138] (an ontology for QoS) could be reused to describe policy vocabulary.

With respect to policy enforcement implementations, we use a SOAP intermediary to

handle policy enforcements. However, there are variety of approaches [139, 140]

(including Ortiz et al.’s) using aspect-oriented programming techniques to handle

crosscutting aspects like service management and adaptability. Our approach could

complement those approaches and provide means to identify aspects and aid in the entire

Chapter 5: Modeling Service Policies

97

life-cycle of service policy development. Later, we could enhance our approach to support

AOP-based quantification.

5.8 Summary

In this chapter we addressed broad-based independent service policy development using

our service policy view and the policy metamodel. We addressed service policy

development in the early-stage services development based on the generic policy

framework. We also addressed different levels of policy aspects – technical, service-level

and domain-level aspects and vocabulary associated with these aspects. We presented an

aspect catalog to define aspects related to policy domains. We demonstrated our policy

modeling approach using the SHIPPINGSERVICE and a service pricing policy example. We

also explained policy enforcement using the PEP intermediary.

Chapter 6: Service Flavors Strategy

98

Chapter 6

Service Flavors Strategy

Differentiating Services in a Services Marketplace

In a services marketplace where a service is provided by multiple service providers,

service offerings have to be differentiated against competitor services. Differentiation

helps to sustain as well as grow market share. Strategies to differentiate service offerings

have to be unintrusive – without requiring major changes to the existing service

realization mechanisms. In order to unintrusively differentiate services, we need a

differentiation strategy – a method to identify and document differentiating aspects of a

service and manipulate them to differentiate services from that of competition.

6.1 Need for Service Differentiation

In the context of a services marketplace, a service can be a commoditized service, a

specialized service or a monopolistic service based on the number of service providers

providing that service. Monopolized services are provided by a single service provider (e.g.

eGovernance services provided by the Government). Specialized services are provided by

very few service providers in the services marketplace (e.g. payroll & benefits services).

On the contrary, commoditized services are always provided by multiple competing

service providers in a services marketplace. For example, consider the SHIPPINGSERVICE in

the context of an e-marketplace such as eBay® provided by multiple providers such as

UPS®, USPS®, DHL®, OverniteExpress® and FedEx®. More often than not, the underlying

capabilities represented by competing commoditized services remain the same.

Additionally, competing services may even have standardized (open standards-compliant)

messages and interfaces. Standardization leads to business layer interoperability, efforts

Chapter 6: Service Flavors Strategy

99

such as Universal Business Language (UBL) [141], ebXML [142], RosettaNet [143] and

UN/CEFACT address business layer interoperability [144]. The standardization of these

competing services is a result of market compulsions or regulatory compliance

requirements (in case of HL7 [145] and SWIFT [146]). For customers, standardization

supports easy migration from one provider to another. However, standardization takes

away provider lock-in advantages for service providers. As a result, every service provider

is faced with the dilemma of balancing standardization and differentiation of their service

offerings. Given that standardization is a necessity, service providers of commoditized

services are pressed with the challenge to differentiate their service offerings from that of

the competition in order to sustain as well as grow market share. However, in case of the

monopolistic and specialized services, the need to differentiate is not as much as the need

to differentiate commoditized services. Differentiation of commoditized services is

possible by providing competitive and differentiated offerings [147,148]. A service

development and delivery platform must support service providers in creating both

competitive and targeted offerings of their services.

Competitive Offerings: Given the functionality of the services are the same (due to

market enforced standardization), differentiation of commoditized services is often done

through competitive pricing, promotions, enhancing the reach of service offerings and

improving quality of service. By understanding the differentiating aspects among

competing services and manipulating these aspects competitively we can create

competitive offerings. Ideally, it is done by making the terms of offer of a service

attractive for a consumer.

Targeted Offerings: Creating discrete variations of services specially targeted towards a

market segment or a customer niche. These discrete service variations –Service Flavors, as

we call it – are created through customizing differentiating aspects and making the

service attractive to the consumer.

Chapter 6: Service Flavors Strategy

100

6.2 Flavoring Aspects: Differentiating Aspects of

a Service

Before attempting to differentiate a commodity service, it is important to understand the

changing parts in a service description across service offerings. By understanding the

changing parts that influence a consumer’s decision to choose a service offering, we could

identify differentiating aspects of a service that help in differentiating it against

competing services. As we discussed earlier, every service represents an underlying

capability on-offer offered under specific terms and conditions – the terms of offer. The

capability on-offer satisfies the goal of a consumer under the constraints of the terms of

offer. Terms of offer – aspects such as cost, discounts, availability, quality of service,

convenience of use, and packaging – could be represented as service properties. Most

often, the capability on-offer represents the functional aspects, whereas the terms of offer

represent the non-functional aspects of a service. A service description must describe

both the capability on-offer as well as the terms of offer for automatic selection and

consumption of a service.

In case of our commodity SHIPPINGSERVICE, the underlying capability is to ship items from

one place to another. Given that the capability on-offer is the same across competing

services in a services marketplace, how does a service provider differentiate his shipping

service from that of the competition? On what basis does a service consumer choose a

particular shipping service? Consider the examples of a websites such as

www.redroller.com and iShipTM that compare the shipping services provided by various

providers such as USPS®, DHL® and OverniteExpress®. It is interesting to note the terms

at which these services are compared – delivery date (quality of service) and shipping rates

(price). Therefore, given that the capability on-offer is the same, consumers would choose

a particular service based on attractiveness of the terms of offer. Certain aspects of the

terms of offer which could make service offerings attractive to consumers would become

differentiating aspects.

Competitive offerings could be created by appropriately varying these differentiating

aspects and attractively positioning services to consumers. Targeted offerings could be

created by offering the same capability on-offer under different terms of offer (fig 6.1).

Each targeted offering represents a discrete variation of a service or a Service Flavor. Since

Chapter 6: Service Flavors Strategy

101

the differentiating aspects are used in service flavoring, they are also called Flavoring

Aspects. Some of our domain-level, technical or service-level aspects, we identified in the

previous chapter could be flavoring aspects. The important criteria to determine if an

aspect is a flavoring aspect or not is to answer this question – ‘would the aspect make the

terms of offer attractive to the consumer and differentiate the service offering from that

of competition?’ We call this the attractiveness of terms of offer criteria. There are other

aspects such as service reputation, market perception and service rating by rating

agencies which also significantly impact the choice of a service by a consumer. However,

we do not address them as they are not under the direct and explicit influence of the

service provider – though they are implicitly addresses by other aspects.

Fig 6.1: Service Flavors – Targeted Offerings

It is important to identify differentiating aspects during early-stage design of services and

provide a way to alter them appropriately and unintrusively to support differentiation of

services. Some of the non-functional aspects we identified in the Chapter 5 could ideally

be differentiating flavoring aspects – i.e. they would satisfy the attractiveness of terms of

offer criteria. A case in point is the service pricing and promotions aspects. By attractively

pricing and promoting service offerings, service providers can effectively differentiate

their service offerings thereby gaining market share. In this chapter, we use service

pricing and service promotion as examples of flavoring aspects to explain our flavoring

strategy. We documented the service-level service pricing flavoring aspect in the previous

chapter using our standard schema. Similarly, we also document service promotion in

table 6.1.

Service

Service Flavors

(same capability offered under different terms of

Capability on- Offer Terms of Offer

Chapter 6: Service Flavors Strategy

102

Table 6.1: Service Promotion – A Flavoring Service-Level Aspect

We model the service promotion vocabulary (fig 6.2) and we also show the corresponding

XML schema generated using the standard XML mapping (fig 6.3).

Name of Concern Service Promotion

Type of Aspect Promotion

Related Aspects Discounts & Rewards

Context A Service provider would promote his

service by offering discounts and

rewards to service consumers.

Rationale & Discussion Promotion is a concern which deals

with promoting the use of a service

offering among service consumers.

Promotion schemes could provide

discounts on using the service, waive

cost for a fixed time-period or offer

reward points which could be

redeemed.

Vocabulary

Vocabulary Terms Type Applicable Values

Promotion Period Validity

Applicable Location Location

Reward Type String Reward Points, Coupons

Reward Value Integer

Discount Percent Integer

Discount Value Float

Chapter 6: Service Flavors Strategy

103

Fig 6.2: Vocabulary Definition – Promotions

6.2.1 Note on Vocabulary Items for Flavoring Aspects

The vocabulary items associated with the flavoring aspects have to standardize across

service providers offering a particular service in a specific domain. The standardization

leads to accurate comparison of the terms of offer across service offerings. The

standardization of vocabulary in an industry or domain could happen through consensus

or evolution. For example the shippingCost and deliveryTime are now standardized

vocabulary items in the package shipping industry. Another efficient way of achieving

consensus on vocabulary in a particular domain could be through domain ontologies

[149]. For example, QoSOnt [138] – ontology for quality of service for service-centric

systems could be used as a vocabulary for the service quality aspect. Vocabulary items are

different in different industries and businesses. For example, promotions in the shipping

& logistics domain could be based on reward points, but in the aviation domain,

promotions are based on accumulated flyer miles. For this reason, the vocabulary items

we defined for service pricing and promotion are more prescriptive than indicative and

hence could be extended or replaced completely.

Chapter 6: Service Flavors Strategy

104

Fig: 6.3 Promotions Vocabulary – XML Schema

6.3 Differentiating Services with Service Flavors

Consider the example of a targeted offering of the SHIPPINGSERVICE - Subscription

Service Flavor targeting a customer niche, subscription customers. The subscription

service flavor supports the business strategy of attracting more subscription customers in

order to have predictability in revenues. The strategy to attract subscription customers is

by offering them a one-month credit period. The subscription service flavor adheres to

the following Subscription Pricing policy:

“The service provider of the fictitious ShippingService provides a one-month credit period for

its subscription customers.”

Chapter 6: Service Flavors Strategy

105

Fig 6.4: Subscription Pricing Policy

On using our standard transformation, the creditPeriod and the chargingStyle vocabulary

items of the pricing policy domain is constrained. Fig 6.5 provides a WS-PolicyConstraint

representation of the creditPeriod. In fig 6.6, the SHIPPINGSERVICE WSDL2.0 description is

enhanced with the subscription pricing policy.

Fig 6.5: WS-PolicyConstraints on creditPeriod vocabulary item

The subscription service flavor is created by offering the SHIPPINGSERVICE with different

terms of offer for the subscription customers. The subscription pricing policy is specified

with a single alternative which has domain-independent assertions on vocabulary item

creditPeriod and chargingStyle specified using WS-PolicyConstraints. The policy is

intrinsically referenced in the <service/> using the WS-Policy Attachment’s <wsp: Policy

Reference />. The enhanced service description describes the targeted offering -

Subscription Service Flavor for the subscription customers (market segment).

Chapter 6: Service Flavors Strategy

106

Fig 6.5: Subscription Service Flavor

6.3.1 Service Flavors – Customer Context-aware Policies

Segmenting markets and targeting those market segments with promotions is a good

service differentiation strategy [147]. Service flavors have to be created for each of these

market segments (e.g. subscription service flavor). For example, the pricing or

promotions could be different for members of an alliance (e.g. members of Star Alliance

in the aviation sector can redeem frequent flyer miles (reward points) across member

airlines) from that of other consumers.

The service consumers could be segmented based on various customer segmentation

schemes – based on customer characteristics such as small businesses, business partners,

or members of an alliance or based on qualitative characteristics such as gold, silver or

platinum customers derived based on previous engagements or revenues from the

customer. The domain expert defines consumer segments and associates service policies

Chapter 6: Service Flavors Strategy

107

to that segment. For example, consider a Service Flavor: USFSB Service Flavor – a

targeted offering strategy (fig 6.6):

“The promotion policy provides a flat 10% discount on the ShippingService to members of

the United States Federation of Small Businesses (USFSB, Inc.). “

Fig 6.6: USFSB Service Flavor

At run-time, the service consumer’s market segment is identified and the appropriate

service flavor is provisioned for the consumer. In order to support this at the SOA

middleware, we have a Consumer Profiling Handler (CPH) (fig 6.7) which is the first

handler that gets invoked in the PE phase before the generic and the other PE handlers.

The CPH deals with identifying and profiling the consumer. The consumer profile

information is shared with the other handlers using the MessageContext.

Fig 6.7: Consumer Profiling Handler

Chapter 6: Service Flavors Strategy

108

The SOAP header would have the consumer profile information (fig 6.8). It provides the

consumer reference UUID (global unique identifier), the access time, location and the

formatted name of the consumer.

Fig 6.8: SOAP Request with Consumer Profile Information

6.4 Related Work

Service Flavors present a strategy to differentiate services in the service marketplace from

the perspective of the provider. The closest related work is the Webservices Offering

Language (WSOL) [150], but WSOL is not specifically intended for differentiating services.

It is designed to support management of services, expressing constraints (pre-, post-

conditions) etc. Though the ‘class of service’ concept in WSOL could be considered to

create a service flavor, it is not standards compliant. The WSOL specification presents a

WSDL1.1-compatible custom-XML language to describe a service offering. In comparison,

Service Flavors is open-standards compliant (WS-Policy, WS-Policy Attachment and WS-

PolicyConstraints). Service Flavors supports the entire life-cycle from early-stage

identification, definition and documentation of differentiating (flavoring) aspects as well

as the vocabulary items associated with them.

Chapter 6: Service Flavors Strategy

109

Flavors could be seen as services with different Service-Level Agreements (SLA’s). For

defining SLAs, there are languages such as the IBM’s Web Service-Level Agreement

(WSLA) [151] and HP’s Webservice Management Language (WSML) [152]. These

languages support QoS guarantees than really defining discrete variations. WS-QoS [153]

is a QoS specification language which has a notion of class of service; however it is

centered on network-level QoS and is not useful to flavor services. Flavoring aspects

represent crosscutting service-level concerns from the perspective of the service provider.

Aspect-Oriented Software Development (AOSD) [154] offers an elegant way to handle

cross-cutting concerns in software development by modularizing these concerns as

aspects. The flavoring aspects represent crosscutting concerns such as availability,

quality of service, pricing and promotions which are largely service-level provider

concerns. There could be other crosscutting concerns in services development such as

domain-level concerns, technical middleware concerns, service realization concerns

(implementation and composition concerns) which are not addressed by flavoring aspects.

Certain flavoring aspects are non-functional in nature. Definition of non-functional

properties of a service is addressed by frameworks such as OWL-S, WSMO [155] and

Features & Properties in WSDL 2.0 and [4]. However, the properties they define are fixed

and these approaches do not take into account business and industry-centric vocabulary.

In contrast, flavoring aspects support flexible vocabulary specification and domain-

independent constraint specification. In essence, service flavoring addresses variability in

service offerings arising out of the need to differentiate services in the marketplace –

variability in service definition and provisioning.

6.5 Summary

In this chapter we presented a strategy to support differentiation of services in a service

marketplace. We identified terms of offer of a service to be the changing part in a service

description in the context of differentiation. Certain terms of offer that make service

offerings attractive to consumers become differentiating or flavoring aspects. New and

attractive terms of offer could be associated with a service through service policies

without requiring a change in the underlying service realization mechanisms. Hence, by

Chapter 6: Service Flavors Strategy

110

adopting the service flavors strategy, a service provider can unintrusively differentiate his

services by creating competitive as well as targeted offerings.

Chapter 7: Service Consumer APIs

111

Chapter 7

Service Consumer APIs
Addressing Heterogeneities in Service Consumption

In the previous chapters, our focus was on modeling and provisioning of both fine-

grained and coarse-grained services from the perspective of the service provider. In this

chapter, we address heterogeneities in service consumption, from a service consumer

perspective. It is important for web-business platform owners (service providers) to

support service consumption from different platforms as well as different types of

customer applications. Supporting service consumption in heterogeneous consumer

environments is a challenge, which nevertheless has to be addressed to increase platform

usage.

Presently, the most popular approach of the web-business platforms such as eBay®,

Google®, Amazon® and others has been to offer readily usable service consumer APIs for

different technology platforms such as Java, .NET, Ruby and PHP [156]. Such an approach

of providing technology platform-specific APIs is primarily to engage a wider developer

community. In addition, supports service consumption by heterogeneous client

applications such as web applications, desktop applications (widgets, dashboards etc.)

and other packaged applications. In our opinion, it is a huge challenge for web-business

platform owners to create, maintain and evolve consumer APIs in different programming

languages targeting different technology platforms. In this chapter, we provide a model-

driven development approach for service consumer APIs. Broadly, we derive a service

consumption API model from our existing models (domain, resource and our services

model) using model-to-model transformations. We then transform the generated

consumption API model to client-libraries in different programming languages using

model-to-text transformations.

Chapter 7: Service Consumer APIs

112

7.1 Need for Service Consumer APIs

Before we deal with the need for service consumer APIs, let us establish the standard

model in which a service is consumed. The WS-Arch (web service architecture) explains

the general process of consuming a web service in detail [94]. Typically, the process

consists of 2-steps (fig 7.1):

Fig 7.1: Process of Engaging a Service

Step 1 - Service Discovery: The requester entity (the service consumer) becomes aware

of the existence of a service provided by a provider entity (the service provider).

Awareness could be through service discovery supported by a service registry [157].

Technically, discovery is supported by a search and discovery protocol (e.g. UDDI) [158].

The service consumer then obtains a formal machine-readable service description (e.g.

WSDL).

Step 2 – Service Invocation: The requester entity formulates a service invocation call

using an invocation protocol (e.g. SOAP / HTTP) based on the formal service description.

The interaction between the requester and provider entity is through loosely-coupled

message exchanges.

Chapter 7: Service Consumer APIs

113

Though webservices follow open-standards, service invocation for the consumer is not so

straightforward due to heterogeneity in invocation protocols. For example, SOAP binding

is just one invocation protocol for services defined using WSDL. There are other such

bindings such as direct binding with HTTP, RMI/IIOP or Java Connector API [159]. In

case of REST services, the invocation protocol could be plain HTTP (HTTPS in case of

secure invocations). Currently service invocation approaches are of 2-types:

� Direct Consumption: Developers could assemble a SOAP message (or for that

matter, any RSS/APP or Plain-XML messages) based on the service description and

send it directly across the network to the service endpoint. However, direct

consumption fails to hide low-level communication and data encoding details

from programmers.

� Consumption using automatically generated consumer proxies: A proven approach

is to automatically generate a client-proxy in the target programming language

(using existing tools) and use the proxy to consume services from client programs.

This approach is quite popular and is based on the well-known Proxy design

pattern [160]. The advantage of using the automatically generated proxy is that

consumers are not required to deal with XML messaging and other low-level

communication details. They can consume services through the native

programming paradigm. For example, in an object-oriented environment like Java,

service interfaces can be viewed as classes, service operations as methods and

faults as exceptions [161].

7.1.1 Advantages of Service Consumption APIs

Though automatically generated client-proxies support service consumption in the target

technology platform, they still need to be wrapped around in client libraries (or service

consumption APIs, as we call them). This is also the most prevalent approach among the

existing web-business platforms. There are certain advantages of creating service

consumption APIs:

1. A service consumption API addresses particular business functionality unlike a client-

proxy which addresses a single service. An individual client-proxy can be generated for

a fine-grained MANAGEORDERSERVICE service with a SOAP-style interface. However, we

would need to provide the customer with a client library for the entire ‘Order

Chapter 7: Service Consumer APIs

114

Management’ business functionality. The order management client library would

support, creating, changing and cancelling orders. In addition, it would support

tracking of order, choosing a logistics provider and shipping the order. Hence, it is

essential to group individual services addressing particular business functionality and

to create a service consumption API around that business functionality. For example,

eBay® provides separate developer APIs for different business functionality such as

buying, selling and market research (tracking pricing trends etc.) [11] [162].

2. Service consumption API provides the semantic underpinning for consuming these

services. They are essential for maintaining the conceptual integrity of the client

application.

3. Service consumption API insulates customer applications from changes to

automatically generated client-proxies. Client proxies could change due to changes in

service description, new service versions as well as changes to protocol bindings.

Due to the advantages it offers, a service consumption API is the best proposition to

address heterogeneities in invocation protocols in the client applications. Most

importantly they bridge the gaps between the service-oriented paradigm with that of the

native application’s paradigm (object-oriented) [163], ensuring conceptual integrity of the

client applications.

7.1.2 Challenges in Creating Service Consumption APIs

The service consumption APIs are part of the consumption layer of our 4-layer SOA

architecture (fig 7.2). The consumption APIs support consumption of both coarse-grained

and fine-grained services. Creating service consumption APIs is no doubt advantageous;

however managing and evolving these APIs is not as easy. There are certain challenges

that have to be addressed; the most important being the large effort required to create,

maintain and evolve consumption APIs consistently for different technology platforms.

Consider the following scenario – based on a new business case, specific platform

functionality may have to be exposed or enhanced. This would result in either creation of

a new service (either fine-grained or coarse-grained), or in a new version of an existing

service. Such a change would translate to either creation of new consumption APIs or

Chapter 7: Service Consumer APIs

115

enhancement of an existing consumption API. Service consumption API for each

technology platform must be modified in order to support this change. The APIs must

also maintain backward compatibility. In addition, it requires a lot of effort to create new

consumption APIs to cater to other technology platforms, say the platform-owner would

want to support SAP® ABAP-based environments.

Fig 7.2: Service Consumption APIs in Consumption Layer

How do we enable the platform owner to handle these challenges? We propose a model-

driven approach to support the creation and evolution of service consumption APIs. With

this approach, we believe that the effort to create and evolve these APIs would

significantly reduce. In addition, consumption APIs for new technology platforms can be

developed easily either by the platform owner or by the community.

7.2 Our Model-Driven Development Approach

As mentioned earlier, we employ a model-driven development approach to develop and

evolve service consumption APIs. We create a standard UML2 class diagram from our

other MOF2-based models (domain, resources, and the services model). We leverage

existing transformations to transform the UML2 class model to different languages such

Chapter 7: Service Consumer APIs

116

as Java, .NET etc. Fig 7.3 shows the transformations that are involved in our approach.

The model-to-model transformations from the domain, resources and the services models

create a UML2 class model of the service consumption APIs. We use the standard UML2

class model for our service consumption APIs becasue we support an object-oriented

client library.

Fig 7.3: Model-Driven Approach to build Service Consumption APIs

Using the UML2 class model, we can create client libraries for different technology

platforms. For creating client libraries in different programming languages, we rely on

existing transformations such as ATL transformation for UML2-to-Java, UML-to-C#

transformations for the .NET platform [164], and xmi2php for UML-to-PHP

transformations [165].

For the model-to-model transformations, we could technically use any transformation

language to transform our input models (domain, resources and the services model) to

the UML2 model. In fig 7.4, we present our model-to-model transformations using a

MODELS

TECHNOLOGY PLATFORMS

(Programming Languages)

Model-to-Text

Transformation

Domain Model Resources Model
Services Model

(Service Capability

 Model)

UML2 Model

(Classes Diagram)

Model-to-Model

Transformation

Model-to-Model

Transformation Model-to-Model

Transformation

DLL Client-

Library
 .NET Platform

JAR Files

Java Platform

PHP, Ruby,

Pearl, Python

Chapter 7: Service Consumer APIs

117

UMLX diagram – a visual concrete syntax to MOF QVT7 transformations – to explain our

model-to-model transformations. Though our service consumption APIs are based on

UML2 metamodel and our transformations are to UML2 Class Diagram model, we still

introduce domain driven design notions in the consumption API model. We believe that

the domain-driven design notions are important in order to provide a consistent

mechanism to use consumption APIs for both the fine-grained and the coarse-grained

services. We use a necessary set of five concepts namely Domain Object, Repository,

Factory and a Service from the domain-driven design methodology in our consumption

API model. We have a light-weight extension UML2 Profile for the Service Consumption

API to represent these model concepts (fig 7.5).

Each Entity and Aggregate from the domain model is directly mapped to a Domain Object

(basically a Class), if it is exposed as a resource, in the resource model. For simplicity, we

do not distinguish between an Entity and an Aggregate in the consumption API model.

We retain the name of the Resource (if there are any differences in name between Entity,

Aggregate and the Resource). We also preserve the concept of a Repository and a Factory

to support the life-cycle of the Domain Object in the consumption model. The repository

supports basic CRUD operations through its methods add, remove, update and findBy* on

the domain objects. The RepositoryItem is also preserved in the consumption API model

to handle repository operations. The major difference between the domain-model and the

service consumption API model is the implementation.

7 Though we depict our model-to-model transformations using a UMLX visual syntax, the diagram (fig. 7.3)

is not completely compliant to UMLX concrete-syntax and is primarily used for representation purposes.

Chapter 7: Service Consumer APIs

118

Fig 7.4: Model-to-Model Transformations to the UML2 Service Consumption API Model

This is in addition to certain concepts in the domain model which are missing in the

service consumption API model. In the domain model, the focus of implementation code

is provisioning; whereas, the focus of the consumption API model is to abstract client-

proxy calls to the remote services. The repository methods consume the client-proxies of

these CRUD services (either SOAP-based or REST-based interfaces), abstracting those

details from the consumer. Thus, we support fine-grained manipulation of our resources

through our service consumption API.

Chapter 7: Service Consumer APIs

119

Fig 7.5: Light-weight UML2 Profile for Service Consumption API

For the coarse-grained services, the Service Interface in the Service Capability Model is

transformed to a Class (Service), with the Service Operations and Message(s) as

operations and parameters. The Service Exception becomes the raisedException of the

class operation. In the next subsection, we would look at a few examples of service

consumption API models.

7.2.1 Examples

Consider the online shopping example we presented in section 3.4, where the Purchase

Order and the Product (OrderItem) was exposed as web resources. As mentioned earlier,

this supports the customers to place orders directly from their systems instead of using

the online shopping cart. By using our model-driven approach, it is possible to generate a

service consumption API model for the Direct Order functionality (fig. 7.6). Our model-

to-model transformations create a UML2-based consumption API model with Domain

Objects – Purchase Order, OrderItem, a Repository and Factory for these domain objects.

Using this UML model it is possible to create technology platform-specific client-libraries

to aid service consumption through existing model-to-text transformations.

For an example of a coarse-grained service, consider the example of the AUCTIONITEM

service (fig. 7.7). The AuctionItemInterface is a Service – transformed from the services

Chapter 7: Service Consumer APIs

120

model. It has a single operation AuctionSingleItem (OP). The AuctionSingleItem (OP)

operation has an AuctionRequestMessage (M) input parameters and would return an

AuctionResponseMessage parameter. It also has AuctionNotPermitted (Ex) as a

raisedException for the method AuctionSingleItem. The method implementation would

call the automatically generated client-proxy in that particular programming language.

Fig 7.6: Partial Service Consumption API Model – Fine-Grained Service Access

Fig 7.7: Service Consumption API Model – Coarse-Grained Service

Chapter 7: Service Consumer APIs

121

7.3 Related Work

The Web Service Invocation Framework (WSIF) [159] is a closely related work. WSIF is a

framework based on Java to invoke webservices generically, independent of the

invocation protocol (protocol bindings). WSIF uses an abstract WSDL description of a

web service and allows developers to program against this abstract WSDL to access the

remote service, independent of protocol bindings. New protocol bindings can be

supported by the WSIF dynamic providers. Using the abstract WSDL, WSIF framework

generates a stub – a Java object, which can be readily consumed in Java programs. Though

WSIF solves the problem of invocation protocol heterogeneities in the consumption

platform, it is specific for the Java platform.

Another interesting related work is REST Describe & Compile tool [166]. The goal of the

tool is to generate client-code in various programming languages to access REST-based

webservices, described using WADL. The REST Compile tool is a compiler which

generates an Abstract Syntax Tree (AST) based on an input WADL file. Using the AST,

the compiler generates client-code for consuming REST-based services in various

programming languages (currently supports PHP 5, Ruby, Python and Java). The tool

reduces considerable effort in creating and maintaining client-code of REST-based

services access. Though REST Compile supports automatic client-code generation for

REST-based fine-grained services described using WADL, it is quite similar to the

numerous consumer proxy generation tools for WSDL in different technology platforms.

In contrast, our service consumption API provides client-libraries compliant to the

domain-driven design methodology. This supports conceptual integrity of consumer

applications based on an object-oriented paradigm.

7.4 Summary

In this chapter, we support the creation of service consumption APIs to consume fine-

grained and coarse-grained services. Using our service consumption APIs we address 2-

important points in service consumption:

− Firstly, we address heterogeneities in service consumption environments arising due

to different invocation protocols. We d0 this by providing a client-library to

Chapter 7: Service Consumer APIs

122

abstract the application programmer from low-level communication and protocol

details.

− Secondly, we support Reduction in effort involved in creating and evolving

technology platform-specific APIs. We do this by adopting model-driven

development principles to generate client-libraries in different programming

languages.

Using our approach web-business platform owners can create client-libraries to

consume services in different programming languages targeting various technology

platforms.

Chapter 8: Epilogue

123

Chapter 8

Epilogue
Evaluation, Experiences and Pragmatics

Our thesis addressed the research problems in the area of “opening-up” web-business

platforms using webservices. Through this thesis, we have attempted to answer our

succinct research questions. We support platform owners in methodically opening-up

their web-business platforms through fine and coarse granular webservices using our

model-driven approach. We represent service artifacts and metadata at a conceptual level

using our model views and metamodels; and additionally, support competitively and

unintrusively differentiating services in a services marketplace using our service flavors

strategy.

8.1 Addressing Problem Areas

We had mentioned four problem areas in section 1.1. Our thesis addresses each of these

problem areas. We present a correlation of how our thesis addresses those problem areas.

Using our model-driven approach, we capture the solution space using high-level

conceptual models; therefore, offering insulation from changing standards, supporting

heterogeneities in the environment and increasing longevity of the solution. By doing this,

we addressed the Evolving Standards Problem. For example, a service property can either

be represented using Features & Properties in WSDL 2.0, or using separate service policies.

In addition, a service can be offered as either a REST-based or a SOAP-based service as we

demonstrated with the Shopping.com Listings example in fig. 3.2.

Chapter 8: Epilogue

124

Our models – the services and resources model - capture metadata with a necessary

representation depth irrespective of whether current standards support it. By doing so,

we address the Lean Service Metadata Problem. For example, it is possible to capture

service access information (registration information such as developer key and merchant

ID) using formal service policies, which could be machine-processed leading to automatic

consumption of services. A service could be defined as an abstract service, to represent

intention to outsource, as we demonstrated with the VALIDATEAUCTIONITEM service in

section 4.2. However, current standards do not support defining an abstract service.

Through our service flavoring approach – our method to create targeted and

differentiated service offerings – we addressed the Unintrusive Differentiation of Service

Offerings Problem. Service offerings can be competitively differentiated by unintrusively

changing differentiating aspect as demonstrated in the Subscription service flavor and the

USFSB service flavor examples in section 6.3.

We also created UML2 profiles of our model views in order to leverage existing modeling

tools and skills. Our profiles provide visual modeling syntax for domain and business

experts to define services, altogether removing the need to understand verbose XML

syntax. Through our model views and corresponding profiles, we addressed the Lack of

Visual Syntax Problem.

8.2 Criteria for the Solution

In chapter 1, we presented seven-point criteria. Any solution to the research problems we

mentioned would satisfy these criteria. In this section, we provide a mapping between

each criterion and evaluate how we address it in our thesis.

Criterion #1: The services must be represented at a conceptual and technology-

agnostic level. In order to insulate the service-oriented solution from technology changes,

the solution must be captured at an abstract and conceptual-level agnostic to technology

considerations during early-stage development. The service representation must describe

both the capability-on-offer – the underlying business functionality – and the terms of offer

of the service.

Chapter 8: Epilogue

125

Using our service and resource models we represent both coarse and fine-grained services

at a conceptual and technology-agnostic level. While our service capability model

presented in section 4.3.2 represents the capability on offer, our service policy models in

section 5.2 represents the terms of offer of the service.

Criterion #2: The high-level conceptual service representation must be easily

convertible to executable service specifications. It must be possible to easily convert

high-level conceptual service representations to executable service specifications, based on

technical considerations like protocol and channel of access.

The service representations captured in our models can be converted to executable

specifications using model-to-text transformations. Such a transformation is possible

because our metamodels are based on OMG’s MOF2. We demonstrated in section 4.5,

how our service capability model of the AUCTIONSERVICE was transformed to executable

WSDL 2.0 specification using MTL mappings presented in Appendix I. In addition, the

service provisioning code was generated for the Auction Manager in Java. In section 5.5,

we demonstrated how service policy model was transformed to executable WS-Policy

specifications. In section 3.3, we demonstrated how our resources model is used to

generate service provisioning code as well as fine-grained service description as REST

interfaces or using WSDL 2.0.

Criterion #3: The service representation method must have minimal concepts

supporting maximal expressiveness. By having minimal concepts with maximal

expressiveness, business experts would find it easy to use the service representation method

to describe various facets of services.

Our services model is very well organized into six-model views representing different

facets of services development. We have ensured that the model elements are minimal by

creating our own domain-specific language (Services Metamodel, Resources Metamodel

derived from domain-driven design metamodel) for modeling services, rather than using

UML2, a general-purpose modeling language. Our approach of using domain-driven

design techniques to provide a conceptual underpinning to our SOA-based solutions

lowers the representation gap for domain experts. Expressivity of our models is proved by

the successful mapping of models to executable specifications as demonstrated in

sections 3.3, 4.5 and 5.5.

Chapter 8: Epilogue

126

Criterion #4: The service representation should be used by different roles involved

during early-stage services development. The service representation must provide

different views or perspectives for different roles to describe service artifacts during early-

stage services development.

In our thesis, we provide different model views for different stakeholders during early-

stage services development. Our domain model, from which our resources model is built,

is defined by domain experts using our domain model view. Similarly, we provide

different model views such as service description, capability, policy, realization,

mediation and deployment views. While the description view could be used by the

business expert, the architect could use the capability view to describe service capability.

The developer could use the realization view to define service provisioning. By providing

different model views, we support different roles involved in services development.

Criterion #5: The service representation must have strong underpinnings in the

application domain. The service representation must have underpinnings in the

application domain in order to support easy evolution of the solution and provide a

common communication lingo between domain experts and the IT experts.

Using the application domain as the conceptual underpinning, as advocated by the

domain-driven approach, we aim to support solution evolution and provide a “ubiquitous

language” for bridging the business as well as the IT experts. In addition, we hope to

make services semantically rich by directly borrowing domain concepts.

Criterion #6: The service representation must be open-standards compliant and

must leverage existing skill-sets and tools. Our service representation method has to

be based on open-standards and must leverage existing skill-sets in projects and popular

tooling environments.

Our service representation is based on models, as prescribed by the model-driven

development approach. Our metamodels are based on MOF2; moreover we have provided

corresponding UML2 profiles for our metamodel to leverage existing tooling. We also

have Ecore (Eclipse EMOF Core) [167] representations of our metamodels (see section 8.5,

Appendix II), which facilitate the use of model-driven environments such as eclipse-based

openArchitectureWare [168] (a.k.a. oAW). Using such tools, it is easy to create

transformations of our models to open-standards based executable specifications.

Chapter 8: Epilogue

127

Criterion #7: The solution must support unintrusive changes to the commissioned

services to support competitive differentiation. The solution must support unintrusive

changes to the already deployed (commissioned) services in order to differentiate service

offerings from that of the competition in the services marketplace.

Based on our service flavors strategy (chapter 6), we can create competitive services by

creating either targeted or differentiated offerings. In order to do this, we support

manipulation of differentiating or flavoring aspects of a service. These flavoring aspects

are terms of offer, which improve the attractiveness of the service offering. We support

service flavoring by attaching different service policies to existing services. As our policy

enforcement points are abstracted from the service provisioning in the SOA-middleware,

we can support unintrusive service differentiation.

8.3 Conformance

We evaluated our thesis on conformance to contemporary reference models and

conceptual architectures. We wish to ensure compliance with the concepts presented in

the OASIS Reference Model for Service-Oriented Architectures and the WS-Arch (Web

services Architecture).

8.3.1 OASIS SOA Reference Model

We present the state of our compliance to the reference model’s conformance guidelines

(Section 4 of [32]) below:

1) Have entities that can be identified as services as defined by this Reference Model

We have a first-class model entity ‘Service’ in our services metamodel. Service represents

a set of capabilities provided by a service provider (or a service aggregator) which meets

the goals (needs) of service consumers.

2) Be able to identify how visibility is established between service providers and consumers

Chapter 8: Epilogue

128

A service consumer could become aware of a service provider and its capabilities on offer

through a service description (awareness). However we do not address discovery and

advertising capabilities within a services marketplace as yet. Service providers and service

consumers interact through an interaction point (reachability).

3) Be able to identify how interaction is mediated

The interaction is mediated through the understanding provided by the service

description. The message exchange patterns of service operation dictate the sequence of

communication between the provider and the consumer. In case, an interaction between

a consumer and provider needs data or process mediation, our ‘Mediator’ supports it.

4) Be able to identify how the effect of using services is understood

Given that the pre-conditions and policies are met, the post-conditions on a service

operation specify the real-world effects of invoking the service operation.

5) Have descriptions associated with services

Service description (containing the service interface, associated operations and properties)

and the service policy provide description about choosing and using a particular service.

While the service capability view describes the capability on offer, the service policy view

represents the terms of offer.

6) Be able to identify the execution context required to support interaction

Though we have the infrastructural elements such as service description and service

policies, we do not completely address all requirements of execution context to support

interaction between the providers and consumers.

7) It will be possible to identify how policies are handled and how contracts may be modeled

and enforced

Our service policy view completely addresses modeling of policy alternatives, assertions

for a service. Enforcement of policy is possible through the policy enforcement point

(PEP), a SOAP intermediary. Modeling support for service contracts is still missing.

Chapter 8: Epilogue

129

8.3.2 WS-Arch (Web Services Architecture)

We also compare our models to W3C’s Webservices Architecture [94]Webservices. In

table 8.1, we present a comparison of the concepts present in the webservices architecture

with the concepts in our metamodels. The webservices architecture represents the

concepts and their relationships as concept maps; whereas, we have formal services and

resources models based on MOF2. As our focus is on early-stage design, certain concepts

(e.g. message body and header) are not present in our model.

Webservices Architecture Services/ Resources Metamodel

Service Oriented Model

Service Definition / Service Capability

View

Service Service

Service Description Service Description

Service Interface Service Interface

Person / Organization Ownership Domain

Provider Agent Service Provider

Requestor Agent Service Requestor

Service Intermediary Service Mediator

Policy Model Service Policy View

Policy Service Policy

Policy Description Service Policy

Domain Domain Assertion

Permission / Obligation Guard Policy Assertion

Resource Oriented Model Resources View

Chapter 8: Epilogue

130

Service (is a Resource) Resource (fine-grained services)

Message Oriented Model Service Capability View

Message Message

Message Exchange Pattern

Service Operation's Message Exchange

Pattern

Table 8.1 Related Concepts in the Webservices Architecture

8.4 Experiences

8.4.1 Experiences in using the Models

We used our models to extensively model popular, non-trivial e-Commerce scenarios. We

borrowed our fictitious scenarios from hugely popular web-business platforms such as

eBay®, Shopping.com, FedEx® and Google®. We modeled an online shopping scenario

similar to the one supported by eBay ProStores®, using our domain-driven design

metamodel in section 3.4. We modeled the online shopping domain and created a

resources model from the domain model. We modeled various facets of eBay Auctions®

scenario in chapter 4 using our services model, model views and profiles. Further, we

modeled a Shipping scenario closely relating to FedEx® shipping scenario.

In our experience, our models were formal and expressive enough to capture a high-

level conceptual view of the domain, domain objects, various facets of services and

policies. With the UML2 profiles for these model views, we were able to leverage

existing tools supporting and use existing modeling skills. Especially, we used a

community edition of MagicDraw 15.0 to model our scenarios (details in 8.5.2). Most

importantly, the model views supported incremental and iterative development of

services. The model views provided implicit logical steps to define and develop services.

Starting with the domain model, helped to leverage domain semantics, evolve resources

and develop straight-forward fine-grained CRUD services. In the next step, the services

model views, the service description, capability, realization and the deployment views

Chapter 8: Epilogue

131

provided us with a logical sequence to design, realize and deploy services. In our

experience of using these models, they are comprehensible and highly coherent.

In order to generate runtime artifacts such as code and executable specifications from our

models, there was some effort involved in setting up the model-driven development

platform. However, this was a one-time evaluation and setup effort. We used existing

tools to convert our MOF2-compliant models to EMF metamodel (see section 8.5.2).

Writing transformations involved deeper understanding of current model-driven

development practices, metamodels and transformation languages. While we wrote

transformations to popular WSDL 2.0 and WS-Policy standards (see Appendix I), we

realized that it was easy to map our models to executable specifications. In our opinion,

the executability – the ease at which models can be executed to create runtime artifacts

is good.

8.4.2 Experiences with Existing Tools

In order to work with these models, we needed a model-driven development platform.

Such a platform should support creating model instances, validating constraints and

finally support code-generation. We built our formal MOF2-based metamodels – our

domain-driven design metamodel, resources metamodel, services metamodel and our

consumption API metamodel – using a formal modeling tool, MagicDraw® [169]. Using

the export feature, we exported our metamodels into XMI format (XML Metadata

Interchange) (see Appendix II) (fig 8.1).

Fig 8.1 Transforming Model to .ecore format

Chapter 8: Epilogue

132

For manipulating our models, we used openArchitectureWare (oAW), a model-driven

development platform. oAW is part of the Eclipse GMT (Generative Modeling

Technologies) [170] project to support instantiation and creation of model,

transformation to other models and code. 0AW is available as a plug-in in the open-

source eclipse development environment. oAW, as well as other tools are converging on

the ECore or the EMF metamodel standard to represent metamodels.

The EMF metamodel is defined by the EMF (Eclipse Modeling Framework) project and is

based on Essential MOF, a core subset of the MOF2 standard. Using a model-to-model

transformation (UML2Ecore), we transformed our metamodel (in XMI) to .ecore format

EMF metamodels. For example, we transformed our domain-driven design metamodel to

DomainDrivenDesign.ecore (fig 8.2). We present other .ecore models in Appendix II.

Using the .ecore format of the model, we could manipulate the model, create validated

model instances and write transformations to generate code.

In our experience, it was fairly simple and easy to convert our MOF2-based metamodels

to EMF metamodels, manipulate them and transform them to executable specifications

and code. The advantage of using a mature model-driven development platform is that

there are community developed cartridges (transformations) which we could readily

leverage, for example, the JavaBasic cartridge supports service provisioning code

generation in Java. There are other comparable MDA tools such as AndroMDA [171],

Motion Modeling [172] etc. As most, currently not all, of the MDA tools support EMF

metamodel we could safely assume that our models could be used with those tools as well.

Chapter 8: Epilogue

133

Fig 8.2 Domain-Driven Design .ecore format

8.5 Pragmatics & Future Work

In this section we discuss certain pragmatic issues, we realized while using our approach.

We mention some limitations and possible solutions leading to future work. Below is a

set of pragmatic issues:

Chapter 8: Epilogue

134

Model Extensions: Though we have tried our best to create metamodels which capture

the domain pretty well, we do envisage scenarios where we would need to add new

attributes or model elements to our existing metamodels. In particular, we envision two

scenarios a) Development-specific model attributes – to support the service development

process and b) Domain-specific Model elements or attributes. An example for

development-specific model attributes would be addition of a “versionID” field to our

“Service” model element to support version tracking or addition of attributes to model

elements which would help software asset tracking in a development environment. For

development specific model attributes, we propose to have a DevelopmentDescriptor

model element, associated with each model element at the metamodel which would have

the necessary attributes. For handling domain-specific model elements or attributes we

would have to evaluate model versioning techniques [173].

Support for Semantics: Currently our models do not address semantics explicitly,

though there is lot of traction on semantic webservices in research. Current approaches

for adding semantics is converging on annotating service descriptions with semantics,

especially the Semantic Annotations for webservices (SAWSDL) [174] based on WSDL-S

[175]. In the future, we could look at using MOF2-compliant ODM (Ontology Definition

Metamodel) in our platform to work with ontologies. We would evaluate model

annotation techniques [176] to annotate our models with these ontology-defined

semantics. In the policy front, we could evaluate the use of SBVR (Semantics of Business

Vocabulary and Rules) [177] to define policy domain and vocabulary. SBVR also has a

textual-syntax which is easy for business experts to work with.

Middleware-Agnostic Service Policy Enforcement: We currently achieve abstraction

and modularity in policy enforcement using the PEP intermediary. This approach is

tightly coupled to the underlying SOA middleware. However we would like to investigate

a middleware-agnostic approach based on aspect-oriented techniques to support

quantification and enforcement of service policies [136, 140]. In addition, we would have

to investigate the issue of modeling dependencies between policy domains, e.g. modeling

the relation between service pricing and promotions.

Chapter 8: Epilogue

135

8.6 Conclusions

This thesis is an attempt to address the problems faced by web-business platform owners

with a service-oriented platform strategy. We strongly believe that our research would

support platform-owners in systematically “opening-up” their web-business platforms

and support large-scale platform adoption in the community. We believe our primary

contribution is our model-driven approach. This includes our:

− model views which support systematic development of fine as well as coarse-

grained services,

− standards-compliant metamodels which support the actual modeling of service

artifacts (presented in chapter 3, 4, and 5)

− Service flavoring strategy (presented in chapter 6) to differentiate service offerings

in a services marketplace.

We demonstrated with non-trivial examples from popular online businesses, that our

approach is suitable to realize the platform strategy of any web-business platform. As next

steps, we would look at commercialization opportunities of the approaches mentioned in

this thesis. Specifically, we would look to build an eclipse-based model-driven

development platform to support platform-owners in using services to open-up their

web-business platforms.

136

References

[1] L.H. Lin, A. Tanyavutti, and S. Jindrapacha, “Analyzing eBay Platform Strategies: An
Application of Meyer's Product Platform Strategy Model,” Management of
Engineering and Technology, Portland International Center for, 2007, pp. 125-142.

[2] D.S. Evans, A. Hagiu, and R. Schmalensee, Invisible Engines: How Software Platforms
Drive Innovation and Transform Industries: The MIT Press, 2008.

[3] A. Gawer and M.A. Cusumano, Platform Leadership: How Intel, Microsoft, and Cisco
Drive Industry Innovation: Harvard Business School Press, 2002.

[4] M.E. McGrath, Product Strategy for High-Technology Companies: How to Achieve
Growth, Competitive Advantage, and Increased Profits: Irwin Professional Publishing,
1994.

[5] M.H. Meyer and A.P. Lehnerd, The Power of Product Platforms: Free Press, 1997.

[6] H. Jegadeesan and S. Balasubramaniam, “A MOF2-based Services Metamodel", in
Journal of Object Technology, vol. 7, no. 8, Nov-Dec 2008 (to appear).

[7] J.J. Moreau et al., Web Services Description Language (WSDL) Version 2.0 Part 1: Core
Language, 2006: http://www.w3.org/TR/wsdl20/ [September 20, 2008].

[8] Martin Gudgin, Marc Hadley, Jean-Jacques Moreau, Henrik Frystyk Nielsen, SOAP
Version 1.2, World Wide Web Consortium(W3C), Working Draft WD-soap12-
20010709, July 2001

[9] M.P. Papazoglou and D. Georgakopoulos, “Service-Oriented Computing,”
Communications of the ACM, vol. 46, 2003, pp. 25-28.

[10] R.T. Fielding, “Architectural Styles and the Design of Network-based Software
Architectures”. Doctoral Thesis, University of California, Irvine , 2000.

[11] “eBay Developers Program”. Internet: http://developer.ebay.com/, [September 20,
2008]

[12] H. Jegadeesan and S. Balasubramaniam, “Differentiating Commoditized Services in a
Services Marketplace,” IEEE International Conference on Services Computing
(SCC'08.), 2008, pp. 153-160

[13] D.C. Fallside, “XML Schema Part 0: Primer,” W3C Candidate Recommendation CR-
xmlschema-0-20001024, World Wide Web Consortium (W3C), Oct, 2000.

137

[14] M.P. Papazoglou et al., “Service-Oriented Computing: A Research Roadmap,”
International Journal of Cooperative Information Systems (IJCIS), vol.17, Issue 2
(June 2008), pp. 223-255, 2008.

[15] M.P. Papazoglou et al., “Service-Oriented Computing: State of the Art and Research
Challenges,” IEEE Computer, pp. 38-45, 2007,

[16] D.S. Frankel, Model Driven Architecture: Applying MDA to Enterprise Computing:
Wiley, 2003.

[17] A.G. Kleppe, J.B. Warmer, and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise: Addison-Wesley, 2003.

[18] M.P. Gervais, “Towards an MDA-oriented methodology,” Computer Software and
Applications Conference, 2002. COMPSAC 2002. Proceedings. 26th Annual
International, 2002, pp. 265-270.

[19] A. Erradi, S. Anand, and N. Kulkarni, “SOAF: An Architectural Framework for Service
Definition and Realization,” Proceedings of the IEEE International Conference on
Services Computing table of contents, IEEE Computer Society Washington, DC, USA,
2006, pp. 151-158.

[20] O.M.G. (OMG), Meta Object Facility (MOF) Specification 2.0 Core, 2006. Internet:
http://www.omg.org/spec/MOF/2.0/. [September 20, 2008]

[21] T. Gardner et al., “A review of OMG MOF 2.0 Query/Views/Transformations
Submissions and Recommendations towards the final Standard,” MetaModelling for
MDA Workshop, 2003.

[22] J. Oldevik et al., “Toward Standardised Model to Text Transformations,” Lecture
Notes In Computer Science, vol. 3748, 2005, p. 239.

[23] T. Oreilly, “What is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software.”

[24] T. Berners-Lee and M. Fischetti, Weaving the Web: Orion Business Books, 1999.

[25] M. Lawson, “Berners-Lee on the read/write web,” BBC NEWS. Internet:
http://news.bbc.co.uk/1/hi/technology/4132752.stm, 2005. [September 20, 2008]

[26] M. Muffatto, “Introducing a platform strategy in product development,”
International Journal of Production Economics, vol. 60, 1999, pp. 145-153.

[27] T.W. Simpson et al., “Platform-Based Design and Development: Current Trends and
Needs in Industry,” ASME Design Engineering Technical Conferences-Design
Automation Conference, Philadelphia, PA, 2006, pp. 10-13.

138

[28] D. Butler, “Mashups mix data into global service,” Nature, vol. 439, 2006, pp. 6-7.

[29] D.S. Platt, Introducing the Microsoft .NET Platform: Microsoft Press, 2001.

[30] D. Kramer, “The Java Platform: A White Paper,” Sun Microsystems Inc, 1996.

[31] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana,
"Unraveling The Web Services Web: An Introduction to SOAP, WSDL, And UDDI,"
Internet Computing, IEEE, vol. 6, no. 2, pp. 86-93, 2002. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=991449

[32] (OASIS), Reference Model TC: Oasis Reference Model for Service Oriented
Architectures (working draft 10), Technical Report, Organization for the
Advancement of Structured Information Standards (OAIS), 2005.

[33] H. Jegadeesan and S. Balasubramaniam, “A Model-Driven Approach to Service
Policies", in Journal of Object Technology, vol. 8, no. 3, Mar-Apr 2009 (to appear)

[34] E. Newcomer and G. Lomow, Understanding SOA with Web Services (Independent
Technology Guides): Addison-Wesley Professional, 2004.

[35] M. Henkel and J. Zdravkovic, “Approaches to Service Interface Design,” Proceedings
of the Web Service Interoperability Workshop, First International Conference on
Interoperability of Enterprise Software and Applications (INTEROP-ESA'2005),
Hermes Science Publisher, Geneva, Switzerland, 2005.

[36] D. Box et al., “SOAP: Simple Object Access Protocol,” MSDN Library, 2001.

[37] "JavaScript Object Notation (JSON)". Internet: http://www.json.org.[September 20,
2008]

[38] H. Wittenbrink, RSS and Atom: Understanding And Implementing Content Feeds And
Syndication: Packt Publishing, 2005.

[39] “Zap Think Research - Solving the Service Granularity Challenge”. Internet:
http://www.zapthink.com/report.html?id=ZAPFLASH-200639. [September 20, 2008]

[40] N. To, “Introducing Service-Oriented Architecture”: Pro WCF, Apress, 2007.

[41] F. Leymann, “Web Services: Distributed Applications without Limits”: Business,
Technology and Web, Leipzig, 2003.

[42] J.W. Yoder, R.E. Johnson, and Q.D. Wilson, “Connecting Business Objects to
Relational Databases,” Urbana, vol. 51, p. 61801.

[43] D. Szepielak, “REST-based Service Oriented Architecture for Dynamically Integrated
Information Systems,” PhD Symposium at ICSOC, 2006.

139

[44] D. Sprott and L. Wilkes, “Understanding Service-Oriented Architecture,” CBDI
Journal, 2004.

[45] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: Service-Oriented Architecture
Best Practices: Prentice Hall, 2004.

[46] B. Benatallah et al., “Developing Adapters for Web Services Integration,” Lecture
Notes in Computer Science, Springer, 2005, pp. 415-429; Available :
http://www.springerlink.com/content/qcgdyp6ja7xcwnck/.

[47] H.R.M. Nezhad et al., “Web Services Interoperability Specifications,” IEEE Computer,
2006, pp. 24-32.

[48] S. Kumar and K. Padmanabhuni, “WS-I Basic Profile: a practitioner's view,” Web
Services, 2004. Proceedings. IEEE International Conference on, 2004, pp. 17-24.

[49] Steve Vinoski, “REST Eye for the SOA Guy,” , IEEE Internet Computing, vol. 11, 2007,
pp. 82-84.

[50] Pautasso, C., Zimmermann, O., and Leymann, F. 2008. Restful web services vs. "big"'
web services: making the right architectural decision. In Proceeding of the 17th
international Conference on World Wide Web (Beijing, China, April 21 - 25, 2008).
WWW '08. ACM, New York, NY, 805-814

[51] W. Iverson, Real World Web Services: O'Reilly Media, Inc., 2004.

[52] A. Arsanjani, “Service-Oriented Modeling and Architecture,” IBM developer works:
Internet: http://www.ibm.com/developerworks/library/ws-soa-design1/, 2004.
[September 20, 2008]

[53] U. Zdun, C. Hentrich, and W.M.P. Van Der Aalst, “A survey of patterns for Service-
Oriented Architectures,” International Journal of Internet Protocol Technology, vol.
1, 2006, pp. 132-143.

[54] L. Liu, S. Thanheiser, and H. Schmeck, “A Reference Architecture for Self-organizing
Service-Oriented Computing,” Lecture Notes In Computer Science, vol. 4934, 2008,
p. 205.

[55] J. Cheesman and G. Ntinolazos, “The SOA Reference Model,” CBDi Journal, 2004.

[56] A. Arsanjani et al., “S3: A Service-Oriented Reference Architecture,” IT Professional,
2007, pp. 10-17.

[57] C.I.O. Council, “Federal Enterprise Architecture Framework Version 1.1,”, Internet:,
http://www.whitehouse.gov/omb/egov/a-1-fea.html. [September 20, 2008]

140

[58] S. Kent, “Model Driven Engineering,” Lecture Notes In Computer Science, 2002, pp.
286-298.

[59] (OMG), “MDA Guide,” Version 1.0.1, vol. 1, 2003, pp. 2003-05. Available:
http://www.omg.org/docs/omg/03-06-01.pdf

[60] W. Zhang et al., “Transformation from CIM to PIM: A Feature-Oriented Component-
Based Approach,” Lecture Notes In Computer Science, vol. 3713, 2005, p. 248.

[61] A. van Deursen and J. Visser, “Domain-specific languages: an annotated bibliography,”
ACM SIGPLAN Notices, vol. 35, 2000, pp. 26-36.

[62] (OMG), “UML 2.0 Infrastructure Specification,” OMG formal document, pp. 03-09,
2007. Available: http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/

[63] K. Duddy, “UML2 must enable a family of languages,” Communications of the ACM,
vol. 45, 2002, pp. 73-75.

[64] J.M. Alvarez, A. Evans, and P. Sammut, “Mapping between Levels in the Metamodel
Architecture,” Lecture Notes In Computer Science, 2001, pp. 34-46.

[65] J. Poole and D. Mellor, Common Warehouse Metamodel: An Introduction to the
Standard for Data Warehouse Integration: John Wiley & Sons, Inc. New York, USA,
2001.

[66] D. Djuric, D. Gasevic, and V. Devedzic, “A MDA-based Approach to the Ontology
Definition Metamodel,” Proceedings of a 4TH Workshop On Computational
Intelligence And Information Technologies. October, 2003.

[67] S. Cook, “The UML Family: Profiles, Prefaces and Packages,” Lecture Notes In
Computer Science, 2000, pp. 255-264.

[68] A.G. Kleppe, J.B. Warmer, and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise: Addison-Wesley, 2003.

[69] T. Mens and P. Van Gorp, “A Taxonomy of Model Transformation,” Electronic Notes
in Theoretical Computer Science, vol. 152, 2006, pp. 125-142.

[70] F. Jouault and I. Kurtev, “Transforming Models with ATL,” Lecture Notes In
Computer Science, vol. 3844, 2006, p. 128.

[71] M. Kay, “XSL Transformations (XSLT) Version 2.0,” W3C Working Draft, vol. 16, 2002.

[72] T.J. Grose et al., Mastering XMI: Java programming with XMI, XML, and UML, Wiley,
2002.

141

[73] R. Cover, XML Metadata Interchange (XMI), 2001. Available:
http://www.omg.org/technology/documents/formal/xmi.htm

[74] F. Chauvel and F. Fleurey, Kermeta Language Overview. Available:
http://www.kermeta.org/docs/KerMeta-MetaModel.pdf

[75] K. Czarnecki and S. Helsen, “Classification of Model Transformation Approaches,”
Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context
of the Model Driven Architecture, 2003.

[76] A. Kalnins, J. Barzdins, and E. Celms, “Model Transformation Language MOLA,”
Lecture Notes In Computer Science, vol. 3599, 2005, p. 62.

[77] E.D. Willink, “UMLX: A graphical transformation language for MDA,” Model Driven
Architecture: Foundations and Applications, 2003, pp. 03-27.

[78] A. Agrawal, “Graph Rewriting And Transformation (GReAT): A Solution For The
Model Integrated Computing (MIC) Bottleneck,” 18th IEEE International Conference
on Automated Software Engineering (ASE'03).

[79] M. Albert et al., “Model to Text Transformation in Practice: Generating Code from
Rich Associations Specifications,” Lecture Notes In Computer Science, vol. 4231,
2006, p. 63.

[80] R.T. Fielding and R.N. Taylor, “Principled design of the modern Web architecture,”
Software Engineering, 2000. Proceedings of the 2000 International Conference on,
2000, pp. 407-416.

[81] D. Booth et al., “Web Services Architecture,” W3C Working Group Note, vol. 11, 2004,
pp. 2005-1.

[82] D. HinchCliffe, “REST vs. SOAP: The Battle of the Web Service Titans,” Internet:
http://soa.sys-con.com/node/79282. [September 20, 2008]

[83] T. O'Reilly, “REST vs. SOAP at Amazon”, Internet:
http://www.oreillynet.com/pub/wlg/3005 [September 20, 2008]

[84] “Google Base”; Internet: http://www.google.com/base. [September 20, 2008]

[85] “Google Product Search”; Internet: http://www.google.com/products. [September 20,
2008]

[86] “Google Data APIs - Google Code”; Internet: http://code.google.com/apis/gdata/.
[September 20, 2008]

[87] R. Sayre, “Atom: The Standard in Syndication,” IEEE Internet Computing, 2005, pp.
71-78.

142

[88] “Google Checkout”; Internet: http://checkout.google.com. [September 20, 2008]

[89] “Google AdWords”; Internet: http://adwords.google.com/. [September 20, 2008]

[90] “What is the eBay API? — eBay Developers Program”; Internet:
http://developer.ebay.com/common/api/. [September 20, 2008]

[91] E. Evans, Domain-driven Design: Tackling Complexity in the Heart of Software,
Addison-Wesley, 2003.

[92] C. Larman, Applying UML and Patterns: An Introduction to Object-oriented Analysis
and Design, Prentice Hall PTR, 1998.

[93] N.A.B. Gray, “Comparison of Web Services, Java-RMI, and CORBA service
implementations,” School of Information Technology & Computer Science,
University of Wollongong.

[94] W. (W3C), Web Services Architecture, 2004; Available: http://www.w3.org/TR/ws-
arch/.

[95] M.J. Hadley, “Web Application Description Language (WADL),” Technical
Specification, Sun Microsystems, 2006.

[96] J. Amsden, “UML Profile and Metamodel for Services”, OMG formal document
soa/06-09-09.Available: http://www.omg.org/cgi-bin/doc?soa/2006-9-9

[97] J. Sztipanovits and G. Karsai, “Model-integrated computing,” IEEE Computer, vol. 30,
1997, pp. 110-111.

[98] W. Iverson and T. O’Reilly, “Web Services in Action: Integrating with the eBay
Marketplace,” A White Paper from O'Reilly Media.

[99] R. Housley et al., “RFC3280: Internet X. 509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” RFC Editor United States, 2002.

[100] J.B. Murphy, “Introducing the North American Industry Classification System,”
Monthly Labor Review, vol. 121, 1998, p. 43.

[101] P. Yendluri et al., “Web Services Policy 1.5-Primer”, W3C Working Group Note,
November 2007. Available: http://www.w3.org/TR/ws-policy-primer/

[102] A.S. Vedamuthu et al., “Web Services Policy 1.5-Attachment,” W3C Recommendation,
September 2007. Available: http://www.w3.org/TR/ws-policy-attach/

[103] S. Efftinge and C. Kadura, OpenArchitectureWare 4.1 Xpand Language Reference;
Internet:http://www.eclipse.org/gmt/oaw/doc/4.1/r20_xPandReference.pdf
[September 20, 2008]

143

[104] C. Emig et al., “Model-Driven Development of SOA Services,” Technical report,
Forschungsbericht, 2007.

[105] M. Brambilla et al., “Model-driven Development of Web Services and Hypertext
Applications,” SCI2003, Orlando, Florida, July, 2003.

[106] K. Bai'na et al., “Model-Driven Web Service Development,” Advanced Information
Systems Engineering: 16th International Conference, CAiSE 2004, Riga, Latvia, June 7-
11, 2004: Proceedings, 2004.

[107] J. Bezivin et al., “Applying MDA Approach for Web Service Platform,” EDOC, IEEE
Computer Society, 2004, pp. 58–70.

[108] G. Benguria et al., “A Platform Independent Model for Service Oriented
Architectures,” Proceedings of I-ESA Conference, 2006.

[109] D. Skogan, R. Gronmo, and I. Solheim, “Web Service Composition in UML,” 8th IEEE
Intl. Enterprise Distributed Object Computing Conference, pp. 47–57.

[110] R.T. Sanders et al., “Using UML 2.0 Collaborations for Compositional Service
Specification,” Lecture Notes In Computer Science, vol. 3713, 2005, p. 460.

[111] J. Bezivin et al., “An Experiment in Mapping Web Services to Implementation
Platforms,” Research Report. Atlas Group, INRIA and LINA University of Nantes,
2004.

[112] B. Bordbar and A. Staikopoulos, “Automated Generation of Metamodels for Web
Service Languages,” Proc. of Second European Workshop on Model Driven
Architecture (MDA), 2004.

[113] D. Frankel and J. Parodi, “Using Model-Driven Architecture to Develop Web
Services,” IONA Technologies white paper, 2002.

[114] R. Amir and A. Zeid, “A UML profile for service oriented architectures,” Conference
on Object Oriented Programming Systems Languages and Applications, ACM New
York, NY, USA, 2004, pp. 192-193.

[115] R. Heckel, M. Lohmann, and S. Thone, “Towards a UML Profile for Service-Oriented
Architectures,” Proc. of Workshop on Model Driven Architecture: Foundations and
Applications (MDAFA), CTIT Technical Report TR-CTIT-03-27. University of Twente,
Enschede, The Netherlands, 2003.

[116] S. Johnston, “UML 2.0 Profile for Software Services,” IBM developerWorks, vol. 15,
2005. Available: http://www.ibm.com/developerworks/rational/library/05/419_soa/

144

[117] M.P. Gervais, “Towards an MDA-oriented methodology,” Computer Software and
Applications Conference, 2002. COMPSAC 2002. Proceedings. 26th Annual
International, 2002, pp. 265-270.

[118] B. Hofreiter, C. Huemer, and K.D. Naujok, “UN/CEFACT’s Business Collaboration
Framework-Motivation and Basic Concepts,” Proc. of MKWF04 Track on
Coordination in Value Creation networks/Agent Technology for Business
Applications, LNI GITO, 2004.

[119] B. Korherr et al., “UN/CEFACT'S Modeling Methodology (UMM): A UML Profile for
B2B e-Commerce,” Lecture Notes In Computer Science, vol. 4231, 2006, p. 19.

[120] M. Broy, I.H. Krüger, and M. Meisinger, “A formal model of services,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 16, 2007.

[121] D. Fensel and C. Bussler, “The Web Service Modeling Framework WSMF,” Electronic
Commerce Research and Applications, vol. 1, 2002, pp. 113-137.

[122] H. Lausen, A. Polleres, and D. Roman, “Web Service Modeling Ontology (WSMO),”
W3C Member Submission, vol. 3, 2005. Available: http://www.wsmo.org/

[123] J. de Bruijn et al., “The Web Service Modeling Language WSML,” WSML Final Draft
D, vol. 16, 2005.Available: http://www.wsmo.org/wsml/

[124] Ü. Yalçinalp et al., Web Services Policy 1.5 - Framework, W3C Recommendation, 2007.
Available: http://www.w3.org/TR/ws-policy/

[125] A.H. Anderson, “Domain-Independent, Composable Web Services Policy
Assertions,” Proc. of the 7th IEEE Int’l Workshop on Policies for Distributed Systems
and Networks, IEEE CS, 2006, pp. 149–152.

[126] P.Walmsly et al., “XML Schema Part 0: Primer Second Edition,” W3C
Recommendation, 2004. Available: http://www.w3.org/TR/xmlschema-0/

[127] M.K. Smith, C. Welty, and D.L. McGuinness, “OWL Web Ontology Language Guide,”
W3C Recommendation, vol. 10, 2004. Available: http://www.w3.org/TR/owl-
features/

[128] H.R.M. Nezhad et al., “Web Services Interoperability Specifications,” IEEE Computer,
2006, pp. 24-32.

[129] A. Anderson, WS-PolicyConstraints: A domain-independent web services policy
assertion language, November, 2005.

[130] A. Anderson, “XACML-Based Web Services Policy Constraint Language (WS-
PolicyConstraints),” Working Draft, vol. 5, 2005, p. 27.

145

[131] A.H. Anderson, “An introduction to the Web Services Policy Language (WSPL),”
Policies for Distributed Systems and Networks, 2004. POLICY 2004. Proceedings.
Fifth IEEE International Workshop on, 2004, pp. 189-192.

[132] S. Perera et al., “Axis2, Middleware for Next Generation Web Services,” Proceedings
of ICWS 2006, 2006, pp. 833-840.

[133] O.M.G. (OMG), UML Profile and Metamodel for Services (UPMS) RFP, 2006;
http://www.omg.org/cgi-bin/apps/doc?soa/06-09-09.pdf.

[134] G. Ortiz, J. Hernandez, and P.J. Clemente, “How to Deal with Non-functional
Properties in Web Service Development,” Web Engineering: 5th International
Conference, ICWE 2005, Sydney, Australia, July 27-29, 2005: Proceedings, 2005.

[135] G. Ortiz and J. Hernández, “Toward UML Profiles for Web Services and their Extra-
Functional Properties,” Proc. Int. Conf. on Web Services, Chicago, EEUU, September,
2006.

[136] G. Ortiz et al., “How to Model Aspect-Oriented Web Services,” Workshop on Model-
driven Web Engineering.

[137] J. O’Sullivan, D. Edmond, and A.H.M. ter Hofstede, Formal description of non-
functional service properties, Technical report, Queensland University of
Technology, Brisbane, 2005. Available from http://www. service-description. com, .

[138] G. Dobson, R. Lock, and I. Sommerville, “QoSOnt: a QoS Ontology for Service-
Centric Systems,” Software Engineering and Advanced Applications, 2005. 31st
EUROMICRO Conference on, 2005, pp. 80-87.

[139] F. Baligand and V. Monfort, “A concrete solution for web services adaptability using
policies and aspects,” Proceedings of the 2nd international conference on Service
oriented computing, 2004, pp. 134-142.

[140] G. Ortiz and F. Leymann, “Combining WS-Policy and Aspect-Oriented
Programming,” AICT-ICIW '06: Proceedings of the Advanced Int'l Conference on
Telecommunications and Int'l Conference on Internet and Web Applications and
Services, Washington, DC, USA: IEEE Computer Society, 2006, p. 143.

[141] J. Bosak, T. McGrath, and G.K. Holman, “Universal Business Language v2. 0,”
Organization for the Advancement of Structured Information Standards (OASIS),
Standard, December, 2006.

[142] B.K. Gibb and S. Damodaran, ebXML: Concepts and Application, John Wiley & Sons,
Inc. New York, NY, USA, 2002.

146

[143] Damodaran, S. 2004. B2B integration over the Internet with XML: RosettaNet
successes and challenges. In Proceedings of the 13th international World Wide Web
Conference on Alternate Track Papers WWW Alt. '04. New York

[144] B. Medjahed et al., “Business-to-business interactions: issues and enabling
technologies,” The VLDB Journal The International Journal on Very Large Data Bases,
vol. 12, 2003, pp. 59-85.

[145] R.H. Dolin et al., HL7 Clinical Document Architecture, Release 2, Am Med Inform
Assoc, 2006.

[146] J.B. Stewart Jr, “Changing Technology and the Payment System,” Federal Reserve
Bank of New York Current Issues in Economics and Finance, vol. 6, 2000.

[147] P.R. Dickson and J.L. Ginter, “Market Segmentation, Product Differentiation, and
Marketing Strategy,” Journal of Marketing, vol. 51, 1987, pp. 1-10.

[148] J.L. Heskett, Managing in the Service Economy, Harvard Business SchoolPress, 1986.

[149] N.F. Noy and D.L. McGuinness, “Ontology Development 101: A Guide to Creating
Your First Ontology,” Knowledge Systems Laboratory, March, 2001.

[150] V. Tosic, K. Patel, and B. Pagurek, “WSOL-Web Service Offerings Language,” Web
Services, E-Business, and the Semantic Web: CAiSE 2002 International Workshop,
WES 2002, Toronto, Canada, May 27-28, 2002: Revised Papers, 2002.

[151] A. Keller and H. Ludwig, “The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services,” Journal of Network and Systems Management,
vol. 11, 2003, pp. 57-81.

[152] J. de Bruijn et al., “The Web Service Modeling Language WSML: An Overview,”
Proceedings of the 3rd European Semantic Web Conference (ESWC), 2006.

[153] M. Tian et al., “A concept for QoS integration in Web services,” Web Information
Systems Engineering Workshops, 2003. Proceedings. Fourth International Conference
on, 2003, pp. 149-155.

[154] R.E. Filman, Aspect-oriented Software Development, Addison-Wesley, 2005.

[155] I. Toma and D. Foxvog, Non-functional properties in Web services; Available:
http://www.wsmo.org/TR/d28/d28.4/v0.1/20061025/.

[156] D.M. Gosnell, Professional Development with Web APIs: Google, eBay, PayPal,
Amazon. com, MapPoint, FedEx, Wrox Press Ltd. Birmingham, UK, UK, 2005.

147

[157] M.P. Papazoglou, “Service-Oriented Computing: Concepts, Characteristics and
Directions,” Proceedings of the Fourth International Conference on Web Information
Systems Engineering, Washington: IEEE Computer Society Press, December, 2003.

[158] E. Newcomer, Understanding Web Services: XML, WSDL, SOAP, and UDDI, Addison-
Wesley, 2002.

[159] M.J. Duftler et al., “Web Services Invocation Framework (WSIF),” OOPSLA 2001
Workshop on Object-Oriented Web Services, 2001.

[160] E. Gamma et al., Design patterns: elements of reusable object-oriented software,
Addison-Wesley Reading, MA, 1995.

[161] D.A. Chappell and T. Jewell, Java Web Services, O'Reilly Media, Inc., 2002.

[162] J.P. Mueller, Mining eBay Web Services: Building Applications with the eBay API,
Sybex, 2004.

[163] N. Kothavenkata and S.R. Bhargava, “Object Orientation versus Service Orientation,”
Workshop on Introducing Service-Oriented Computing WISOC 2007 Tempe, Spring
2007.

[164] “ATL Transformations", Internet:
http://www.eclipse.org/m2m/atl/atlTransformations/. [September 20, 2008]

[165] “XMI2PHP”, Internet: http://xmi2php.sourceforge.net/. [September 20, 2008]

[166] “REST Describe & Compile”; Internet: http://tomayac.de/rest-
describe/latest/RestDescribe.html. [September 20, 2008]

[167] F. Budinsky, S.A. Brodsky, and E. Merks, Eclipse Modeling Framework, Pearson
Education, 2003.

[168] M. Volter, “openArchitectureWare 4–the flexible open source tool platform for
model-driven software development,” Bericht, openArchitectureWare, 2007.

[169] “MagicDraw - UML Modeling & Diagramming”; Internet:
http://www.magicdraw.com/. [September 20, 2008]

[170] “Eclipse Generative Modeling Technologies (GMT) Project”; Internet:
http://www.eclipse.org/gmt/. [September 20, 2008]

 [171] “AndroMDA - MDA Tool”, Internet: http://www.andromda.org/. [September 20,
2008]

[172] “Motion Modeling, open source MDA environment in eclipse”; Internet:
http://motionmodeling.sourceforge.net/. [September 20, 2008]

148

[173] P. Hnetynka and F. Plášil, “Distributed versioning model for MOF,” Proceedings of
the winter international synposium on Information and communication technologies,
Trinity College Dublin, 2004, pp. 1-6.

[174] J. Kopecký et al., “SAWSDL: Semantic Annotations for WSDL and XML Schema,”
IEEE Internet Computing, vol. 11, 2007, pp. 60-67.

[175] R. Akkiraju et al., “Web Service Semantics-WSDL-S,” W3C Member Submission, vol.
7, 2005.

[176] S.J. Mellor et al., “Model-Driven Architecture,” Lecture Notes In Computer Science,
2002, pp. 290-297.

[177] D. Chapin, “Semantics of Business Vocabulary & Business Rules (SBVR),” Hawke et
al.(2005), 2005.

149

Appendix I
Evidence for Empirical Evaluation: OMG Model-to-Text

(MTL) Transformation from Services Model to WSDL 2.0

150

Listing 1: Transformation from Services Model to WSDL2.0

151

Listing 2: Create Types definition from messages by iteratively transforming

Messages to XML Schema

Listing 3: Query to get all messages from all supported operations

152

Listing 4: Create interface and operation definitions

153

Listing 5: Create Bindings

Listing 6: Create Service Endpoints

154

Appendix II
Evidence for Empirical Evaluation: Domain-Driven Design

Metamodel to EMF Metamodels

155

Domain-Driven Design Metamodel

Step 1: Metamodel (using MagicDraw®)

156

Step 2: XMI Export of the Metamodel – Using XMI 2.1 Export

157

158

159

160

Step 3: XMI to ECore Conversion – Using the wf-uml2ecore-policy.oaw Cartridge

<?xml version="1.0"?>
<workflow>
<cartridge
 file="org/openarchitectureware/util/uml2ecore/uml2ecoreWorkflow.oaw"
 uml2ModelFile="md/DDD.uml"
 nsUriPrefix="http://www.fictitious.org/domainmodel"
 addNameAttribute="true"
 includedPackages="DDDMetamodel"
 resourcePerToplevelPackage="false"
 outputPath="src-gen" />
</workflow>

Step 4: ECore Model

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0"
 xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
name="DomainDrivenDesign"
 nsURI="http:///DomainDrivenDesign.ecore" nsPrefix="DomainDrivenDesign">
 <eClassifiers xsi:type="ecore:EClass" name="Entity"
eSuperTypes="uml.ecore#//Class #//RepositoryItem">
 <eOperations name="checkConformance" ordered="false" lowerBound="1"/>
 <eStructuralFeatures xsi:type="ecore:EReference" ordered="false"
lowerBound="1"
 eType="#//Identifier" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="isAggregateMember"
ordered="false"
 lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="RepositoryItem"
abstract="true"/>
 <eClassifiers xsi:type="ecore:EClass" name="Identifier"
eSuperTypes="uml.ecore#//Property"/>
 <eClassifiers xsi:type="ecore:EClass" name="Specification"
eSuperTypes="uml.ecore#//Class"/>
 <eClassifiers xsi:type="ecore:EClass" name="ValueObject"
eSuperTypes="uml.ecore#//Class">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="isAggregateMember"
ordered="false"
 lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Repository"
eSuperTypes="uml.ecore#//Class">
 <eOperations name="findByIdentifier" ordered="false" lowerBound="1"
eType="#//RepositoryItem">
 <eParameters name="indentifiers" ordered="false" lowerBound="1"
upperBound="-1"

161

 eType="#//Identifier"/>
 </eOperations>
 <eOperations name="findByCriteria" ordered="false" upperBound="-1"
eType="#//RepositoryItem">
 <eParameters name="attributes" ordered="false" lowerBound="1"
upperBound="-1"
 eType="ecore:EClass uml.ecore#//Property"/>
 </eOperations>
 <eOperations name="add" ordered="false" lowerBound="1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean">
 <eParameters name="items" ordered="false" lowerBound="1" upperBound="-
1" eType="#//RepositoryItem"/>
 </eOperations>
 <eOperations name="remove" ordered="false" lowerBound="1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean">
 <eParameters name="items" ordered="false" lowerBound="1" upperBound="-
1" eType="#//RepositoryItem"/>
 </eOperations>
 <eStructuralFeatures xsi:type="ecore:EReference" name="_" ordered="false"
upperBound="-1"
 eType="#//RepositoryItem" containment="true"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Aggregate"
eSuperTypes="uml.ecore#//Class #//RepositoryItem">
 <eOperations name="checkConsistency" ordered="false" lowerBound="1"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="aggregateRoot"
ordered="false"
 lowerBound="1" eType="#//Entity"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="_" ordered="false"
upperBound="-1"
 eType="#//ValueObject" containment="true"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Factory"
eSuperTypes="uml.ecore#//Class">
 <eOperations name="create" ordered="false" lowerBound="1"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="_" ordered="false"
lowerBound="1"
 eType="#//Entity"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Module"
eSuperTypes="uml.ecore#//Namespace"/>
 <eClassifiers xsi:type="ecore:EClass" name="Service"
eSuperTypes="uml.ecore#//Class"/>
</ecore:EPackage>

162

List of Publications

Peer-Reviewed Journal Papers

- Harshavardhan Jegadeesan, Sundar Balasubramaniam: "An MOF2-based Services

Metamodel", in Journal of Object Technology, vol. 7, no. 8, Nov-Dec 2008

- Harshavardhan Jegadeesan, Sundar Balasubramaniam: "A Model-Driven Approach

to Service Policies ", in Journal of Object Technology, vol. 8, no. 3, Mar-Apr 2009

(to appear)

- Harshavardhan Jegadeesan, Sundar Balasubramaniam: “Service Flavors:

Differentiating Service Offerings in a Services Marketplace”, communicated to the

Journal of Webservices Research on January 22, 2008.

Peer-Reviewed Conference Papers

- Harshavardhan Jegadeesan, Sundar Balasubramaniam: "Differentiating

Commoditized Services in a Services Marketplace ", in the 2008 IEEE Conference

on Services Computing (SCC 2008), Honolulu, Hawaii, USA, July 8 – 11, 2008.
- Sundar Balasubramaniam, Harshavardhan Jegadeesan: ''eThens - A Modular

Framework for e-Governance'', Proceedings of the International Conference on

Politics and Information Systems, Technologies and Applications (PISTA

2004),Orlando, Florida, USA, July 2004.

163

Brief Biography of Candidate and

Supervisor

Harshavardhan Jegadeesan currently works as a Product Development Lead in the

Enterprise SOA team within the Business Suite organization in SAP Labs, India. Prior to

this he was working with the Research & Breakthrough Innovation group on SAP®

ByDesign®. He is also a guest faculty with BITS, Pilani teaching object-oriented analysis &

design for the collaborative graduate program is software engineering. He holds a Masters

in Software Systems from BITS, Pilani. His areas of interest include service-oriented

architectures, enterprise systems and business process platforms.

Ramana Polavarapu, Ph.D currently works with the Services Science group in IBM

Research. Prior to joining IBM Research, he worked in SAP Labs (Palo Alto and Bangalore)

as a Platinum Developer. Ramana has around ten years of experience in software design,

architecture and programming. Earlier, he was an Assistant Professor of Economics in the

University of Colorado at Denver where he taught international trade, game theory and

industrial organization. He holds a Ph.D from the University of California at Davis.

